WO2014025176A1 - Na 공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법 - Google Patents

Na 공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법 Download PDF

Info

Publication number
WO2014025176A1
WO2014025176A1 PCT/KR2013/007044 KR2013007044W WO2014025176A1 WO 2014025176 A1 WO2014025176 A1 WO 2014025176A1 KR 2013007044 W KR2013007044 W KR 2013007044W WO 2014025176 A1 WO2014025176 A1 WO 2014025176A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
electrode
back electrode
flexible substrate
Prior art date
Application number
PCT/KR2013/007044
Other languages
English (en)
French (fr)
Inventor
안승규
윤경훈
윤재호
조준식
안세진
곽지혜
신기식
박상현
박주형
어영주
유진수
조아라
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US14/389,884 priority Critical patent/US20150114466A1/en
Publication of WO2014025176A1 publication Critical patent/WO2014025176A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a CIGS solar cell using a flexible substrate, and more particularly, to a flexible substrate CIGS solar cell and a method of manufacturing the improved method of supplying Na to the light absorption layer.
  • the solar cell is a device that converts solar energy directly into electrical energy, and is expected to be an energy source that can solve future energy problems due to its low pollution, infinite resources and a semi-permanent lifetime.
  • Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon.
  • silicon solar cells using silicon.
  • Thin-film solar cells are manufactured with a thin thickness, so the materials are consumed less and the weight is lighter.
  • As a material of such a thin-film solar cell research on amorphous silicon and CdTe, CIS (CuInSe 2 ) or CIGSiCuInnGa x Sez is being actively conducted.
  • the cis or ciGS thin film is one of the i-m-iv compound semiconductors and has the highest conversion efficiency among the thin film solar cells made in the laboratory. In particular, it can be manufactured with a thickness of less than 10 microns, and has stable characteristics even when used for a long time, and is expected to be a low-cost, high-efficiency solar cell that can replace silicon.
  • Solar cells using the CIGS thin film is generally manufactured on a soda lime glass substrate.
  • Corning glass which can be used in high process, was used, but the photoelectric conversion efficiency of CIGS solar cell was improved by the soda-lime glass substrate used to reduce manufacturing cost. Since its discovery, soda-lime glass substrates have been indispensable.
  • the soda-lime glass substrate has a low melting point, which limits the manufacturing of CIGS solar cells, and the disadvantage is that it cannot use a flexible substrate made of metal or polymer.
  • a method of forming a NaF layer between the rear electrode and the CIGS light absorbing layer and vacuum evaporation and supplying NaF together with the material of the light absorbing layer in the process of depositing the CIGS light absorbing layer was developed.
  • the method of forming the NaF layer separately has the disadvantage that the efficiency of the rear electrode is deteriorated due to the additional manufacturing process and the NaF layer formed between the light absorption layer and the rear electrode, and the method of injecting NaF in the simultaneous vacuum evaporation process is precise. It becomes a factor which makes the process of forming the light absorption layer which requires adjustment difficult.
  • This technique includes a substrate 100, a back electrode 200, a CIGS light absorbing layer 300, a buffer pack 400,
  • the TC0 front electrode 500 and the front anti-reflection layer 600 are composed of a general CIGS solar cell structure.
  • the increasing rear electrode 200 forms a Na-added Mo electrode layer 210 at the bottom and a Na-added electrode layer 220 at the top (Patent 10-0743923), and a Na-added Mo electrode layer 210 at the top. ) And forming a Na-free Mo electrode layer 220 in the lower portion, and a technique for forming a Na-added Mo electrode layer 210 between the Na-free Mo electrode layer 220 and the like.
  • the Mo-electrode layer 220 may be formed separately, which may cause damage to the Na-added Mo electrode layer, as shown in Patent No. ⁇ 743923.
  • the process of forming the electrode layer is generally performed in an Ar partial pressure of 5 ⁇ 15mTorr or 5 ⁇ 10mTorr.
  • the process of forming a two- or three-layer back electrode is complicated in that a process of forming a Mo electrode layer containing Na and a process of forming a Mo electrode layer containing no Na is divided.
  • the back electrode has a multilayer structure, which is difficult to apply to a flexible substrate.
  • An object of the present invention is to provide a flexible substrate CIGS solar cell having a back electrode composed of a single metal electrode layer having a low specific resistance and containing Na, to solve the problems of the prior art described above.
  • the substrate of a flexible material A back electrode formed on the substrate, a CIGS light absorbing layer formed on the back electrode; A buffer layer formed on the CIGS light absorbing layer; And a front electrode formed on the buffer layer, wherein the back electrode is a Na-added metal electrode layer composed of a single layer.
  • the back electrode composed of a single layer of Na-added metal electrode layer has a resistivity of 5X.
  • CIGS is defined to include all of the I-III-VI group chalcopyrite compound semiconductors such as CIS, CIGS, CIGSe, CIGSSe, and the like.
  • a flexible substrate CIGS solar cell using only a single layer of a Na-added metal electrode layer was invented.
  • the flexible substrate may be a polymer material such as polyimide or a metal foil such as stainless steel foil.
  • the metal used for the metal electrode layer of the back electrode is preferably Mo.
  • the adhesion between the back electrode and the substrate is excellent.
  • an adhesive layer for improving adhesion between the substrate and the back electrode may be further provided between the substrate and the back electrode.
  • a method of forming a back electrode of a flexible substrate CIGS solar cell having an improved Na supply method is a method of forming a back electrode included in a CIGS solar cell having the above structure.
  • a Na-added metal electrode layer is formed by a sputtering process using a target, and the sputtering process is performed at an Ar pressure range of 0.5 to 2.5 mTorr and an output density of 0.5 to 5 W / cm 2 suitable for a target.
  • the present invention forms a Na-added metal electrode layer by a sputtering process in a relatively low Ar pressure atmosphere, compared to the conventional technique of forming a multilayer electrode including a multi-layered Na electrode layer. Since the electrode layer has a low specific resistance, it can be applied as a back electrode of a flexible substrate CIGS solar cell even as a single layer.
  • the specific resistance is 5X10 4 ⁇ even at an output density of 1.5 W / cm 2 or less, which is mainly used in the conventional process of forming a multi-layered back electrode. It is possible to form an adjacent metal electrode layer, When performing at an output density of more than 1.5 f / cm there is an advantage that can form a lower resistivity metal electrode layer with a shorter process time.
  • the metal of the metal target for forming the back electrode is preferably a Mo material.
  • the present invention exhibits an excellent effect of changing the conditions of the sputtering process to form a Na-added Mo electrode layer exhibiting a specific resistance about 1/10 lower than that of the Na-added Mo electrode layer formed under conventional process conditions.
  • the process cost required for forming the back electrode can be greatly reduced.
  • the rear electrode formed by the method of the present invention the amount of Na doped in the target
  • the doping amount of Na may vary depending on the composition ratio and thickness of each element of the CIGS light absorber, but in general, when the doping amount of Na exceeds 10 wt%, the efficiency of the solar cell is not further improved. Rather, the efficiency of the solar cell can be enjoyed.
  • the Na content is lower than 1%, the amount of Na diffused into the light absorbing layer during the light absorbing layer formation is small, so that the effect of improving the optical hop layer is insignificant. Therefore, it is preferable to set this value to the preferable upper limit and lower limit of Na addition amount.
  • the flexible substrate CIGS solar cell manufacturing method of the present invention comprises the steps of preparing a flexible substrate; Forming a back electrode layer on the substrate; Forming a CIGS light absorbing layer including CIGS on the back electrode layer; Forming a buffer layer on the CIGS light absorbing layer; And forming a front electrode on the buffer layer, wherein forming the back electrode layer comprises a process of forming a single metal electrode layer to which Na is added.
  • the process of forming a single metal electrode layer containing Na is a sputtering process using a target doped with Na, and the sputtering process is performed per area with respect to the target.
  • the metal of the metal target used for a sputtering process is Mo material.
  • the present invention exhibits an excellent effect of changing the conditions of the sputtering process to form a Na-added Mo electrode charge exhibiting a specific resistance about 1/10 lower than that of the Na-added Mo electrode layer formed under conventional process conditions. By omitting the process of forming the Na-added Mo electrode worm, the process cost for forming the back electrode can be greatly reduced.
  • the multilayer structure It is possible to form a single metal electrode layer with a specific resistance close to the level of 5 X 10— ⁇ ⁇ even at an output density of 1.5 W / cm or less commonly used in the conventional process of forming a back electrode.
  • the power density is greater than 2 , there is an advantage in that a metal electrode layer having a lower resistivity can be formed with a shorter process time.
  • the back electrode composed of a metal layer of Na added to a single layer formed by the method of the present invention, by adjusting the amount of Na doped in the target in the range of 0.01 ⁇ L0 wt%, light absorption
  • the amount of Na supplied to the layer can be optimized.
  • the method may further include removing the Na compound formed on the surface of the Na-added metal electrode layer before forming the CIGS light absorbing layer for manufacturing a solar cell, when the Na-added metal layer is exposed to air for a long time.
  • removing the Na compound formed on the surface of the light absorbing layer can solve the problem of reducing the conversion efficiency of the solar cell.
  • the step of removing the Na compound may be performed by washing the Na compound formed on the surface using a solvent.
  • a solvent for washing the Na compound including Na salt or hydroxide of Na one or more selected from water, ethane, methanol and glycerol may be used.
  • a Na-added Mo electrode layer exhibiting a specific resistance of about 1/10 lower than that of Na-added Mo electrode layer formed under a back electrode formation process condition which is conventionally composed of multiple layers even though Na is added.
  • CIGS solar cells can reduce the manufacturing process and manufacturing costs.
  • the method may further include removing a Na compound formed on the surface while the Na-added metal layer is exposed to air, thereby eliminating the problem that the light absorption layer is peeled off or the conversion efficiency of the solar cell is reduced. It works.
  • FIG. 1 is a schematic diagram showing the structure of a flexible engine CIGS solar cell having an improved Na supply method according to the present invention.
  • Example 4 is a SIMS analysis result of the light absorption layer of the CIGS solar cell manufactured according to Example 4 of the present invention.
  • 3 is a SIMS analysis result of the light absorption layer of the CIGS solar cell prepared according to Comparative Example 4.
  • Example 4 is a result of measuring Vickers hardness of the electrode layer formed according to Example 5 of the present invention.
  • FIG. 7 is an electron micrograph showing the formation of a Na compound on the surface of a Na-added Mo electrode layer exposed in air.
  • FIG. 9 is a schematic view showing the structure of a conventional CIGS solar cell having a multi-layered back electrode.
  • FIG. 1 is a cross-sectional view showing the structure of a flexible substrate CIGS solar cell having an improved Na supply method according to the present embodiment.
  • the flexible substrate CIGS solar cell of the present embodiment is provided on the flexible substrate 10, the back electrode 20,
  • the CIGS light absorption layer 30, the buffer layer 40, the front electrode 50 and the front anti-reflection layer 60 are laminated in this order, and the rear electrode 20 is composed of only a metal electrode layer containing a single Na. It is characteristic in that it becomes.
  • the manufacturing method of the flexible substrate CIGS solar cell of the present embodiment on the flexible substrate 10, the back electrode 20, the light absorption layer 30, the buffer layer 40, the front electrode 50 and the front antireflection layer It is composed of a method of forming the (60) in turn, but is characterized in that it is formed of a metal electrode layer to which a single Na is added in the process of forming the back electrode 20, except that the other components can be applied to all the general methods have.
  • the manufacturing method of the flexible substrate CIGS solar cell of this embodiment is as follows.
  • the flexible substrate 10 is prepared.
  • the material of the flexible substrate 10 is not particularly limited and can be applied to all materials, and specifically, a flexible substrate made of a polymer material such as pullimide or a metal foil material such as stainless steel can be used. These flexible
  • the surface of the substrate 10 is prepared by sequentially washing with acetone, methanol and distilled water.
  • the rear electrode may be formed after forming an adhesive layer for improving adhesion on the surface of the cleaned flexible substrate or a texturing layer made of metal oxide or nitride.
  • a Na-doped target is used to form a back electrode 20 which is a single metal electrode layer to which Na is added by a sputtering process.
  • Mo is generally used, and 0.1 to 10% of
  • DC sputtering or RF sputtering is performed on the Na-doped Mo target with an output density in the range of 0.5 to 5 W / cm 2 , but the deposition pressure is adjusted to an Ar pressure atmosphere of 0.5 2.5 mTorr.
  • the process conditions are formed by improving the process conditions by performing deposition at a relatively low Ar partial pressure, compared to the conventional technique of forming a multilayer back electrode including a Mo electrode layer containing Na.
  • the specific resistance of the electrode layer is lowered. According to this, 1.5, which was mainly used in the conventional process of forming a rear electrode composed of a multilayer,
  • the back electrode manufactured by the manufacturing method of the present invention is composed of a single Mo electrode layer containing Na, but because of low resistivity and excellent hardness, only a single layer may act as a back electrode, and the description thereof will be described in detail. I will explain through.
  • the CIGS light absorption layer 30, the buffer layer 40, the front electrode 50, and the front antireflection layer 60 are sequentially formed on the rear electrode 20, and the method of forming them is not particularly limited. In general, any method applicable can be applied.
  • the CIGS light absorbing layer 30 is formed on the surface of the back electrode 20.
  • This removal process is for removing Na compound formed on the surface of the electrode layer when Na-added Mo electrode layer constituting the back electrode is exposed to air for a long time, and is not particularly limited as long as it is a method capable of removing Na compound. can do.
  • the Na compounds formed on the surface of the Na-added Mo electrode layer exposed to air are generally hydroxides or Na salts of Na or their It is a mixed substance and can be removed by washing water, ethane with one or more solvents selected from methanol and glycerol.
  • the method of forming the CIGS light absorption layer 30 is applied to both a vacuum process such as nanoparticle precursor or solution precursor for use Bijin method and the current binary performance simultaneously in the three-step known to the highest ball evaporation method and the starting material Can be.
  • a CdS film is formed by a CBD cheraical bath deposition process, and a ZnS film or a ZnSe film is formed by a CBD process, or an In x Se y film or ZnIn x Se y is formed by evaporation.
  • a film may be formed, or an In x Se y film or a ZnSe film may be formed by a CVD-based process.
  • a method of forming the front electrode 50 is performed by a sputtering process such as ITO or? ⁇ 0: A1.
  • the TC0 film can also be formed by a method such as an electron vapor deposition method or a thermal evaporation method.
  • the front electrode may be composed of only the TC0 film, or a grid electrode may be added to the TC0 film using a material such as A1.
  • MgF 2 may be formed by thermal evaporation or ALlXatomic la3 ⁇ 4r deposition, or A1 2 0 3 may be formed by ALD.
  • the manufacturing method of the flexible substrate CIGS solar cell of the present invention as described above and the flexible substrate CIGS solar cell manufactured according to this the Na added to the rear electrode in the manufacturing process diffused into the CIGS super water layer efficiency of the solar cell
  • 3 ⁇ 4 which forms a back electrode is comprised by the single process which forms only a single layer of Na addition Mo electrode charge, and the process cost can be reduced significantly because no additional 1 process or equipment is input.
  • DC sputtering was performed for 25 minutes at an output density of 4 W / cm 2 target to form a single Na addition Mo electrode layer.
  • DC sputtering was performed for 60 minutes at an output density of a target of 1 W / cm 2 to form a single Na-doped Mo electrode layer.
  • RF sputtering was performed for 30 minutes at a power density of the target of W / cm 2 to form a single Na-doped Mo electrode layer.
  • DC sputtering was performed for 32 minutes at an output density of the target of W / cm 2 to form a Na-added Mo electrode charge.
  • DC sputtering was performed for 34 minutes at an output density of the target of W / cm 2 to form a Na-added Mo electrode layer.
  • DC sputtering was performed for 50 minutes at an output density of the target of W / cm 2 to form a Na-added Mo electrode layer.
  • Comparative examples show the power density for a target of 1 to 1.5 W / cm 2 and an Ar pressure atmosphere of 5 m 15 mTorr, which is a condition for forming a Na-added Mo electrode charge in the prior art of forming a multi-layered back electrode.
  • the sputtering ol was carried out, and the difference in process time between the comparative examples and the examples was adjusted to form a Mo electrode layer having a similar thickness in consideration of the difference in output density and the process pressure on the target.
  • Table 1 shows the results of measuring the specific resistance of the electrode electrode layer formed by the above Examples and Comparative Examples.
  • the Mo electrode charges of the Comparative Example showed a high resistivity that cannot be used as a back electrode of the solar cell as a single layer, whereas the Mo electrode layers of the Example exhibited a specific resistance of the Mo electrode of the Comparative Example. It can be seen that the resistivity is lower than about 1/10.
  • resistivity is lower than 0.5 ⁇ 1 ⁇ ( 3 ⁇ ), and it can be seen that it can be applied as a back electrode of solar cell even with single layer.
  • DC sputtering was performed for 30 minutes at an output density of up to 3 W / cn / target under an Ar pressure of 0.5 mTorr to form a single Na-doped Mo electrode layer.
  • a CIGS light absorption layer was formed on the Na-added Mo electrode layer using a co-vacuum evaporation method, and a CdS film was formed as a buffer layer by a chemical bath deposit ion (CBD) process, followed by Zn0: M A front electrode of the material was formed.
  • CBD chemical bath deposit ion
  • an Na-free Mo electrode charge was formed using a Mo target.
  • a CIGS light absorbing layer, a CdS film, and a ⁇ 0: ⁇ 1 front electrode were formed under the same conditions as in Example 4 on the Na-free Mo electrode charge.
  • FIG. 2 is a SIMS analysis result of the light absorption layer of the CIGS solar cell manufactured according to Example 4 of the present invention
  • Figure 3 is a SIMS analysis of the light absorption of the CIGS solar cell prepared according to Comparative Example 4 The result is.
  • Example 4 In the case of the CIGS light absorbing layer, the distribution of Cu was almost similar to that of Example 4 and Comparative Example 4, and in the case of Na, a larger amount was detected in Example 4.
  • the diffusion effect of Na can be obtained more or at least the same level as in the case of using a soda-lime glass substrate. I can confirm that there is.
  • DC sputtering was performed at a power density of the target of W / cm 2 to form a single Na-added Mo electrode layer, and one week after the formation of the electrode charge, hardness was measured using a Vickers hardness tester.
  • DC sputtering was performed at a power density of up to 1.3 W / cm 2 under a 10 mTorr Ar pressure to form a lower electrode layer.
  • DC sputtering was performed at a power density of up to 5 W / cm 2 under Ar pressure to form an upper electrode charge, and one week after the formation of the electrode layer, hardness was measured using a Vickers hardness tester.
  • Figure 5 is a result of measuring the Vickers hardness of the electrode layer formed according to Comparative Example 5.
  • Comparative Example 5 was formed according to the two-step Mo back electrode forming method commonly used in CIGS solar cells using a soda-lime glass substrate, the Vickers hardness measured at the upper electrode surface was 546.2 HV, The Vickers hardness measured for the Na-added Mo electrode layer prepared according to Example 5 represented 689.0 HV. It can be seen that the hardness of the Na-added Mo electrode layer prepared according to the higher.
  • FIG. 6 is a result of evaluating the adhesiveness between the electrode worm formed in accordance with the present embodiment and the stainless steel substrate.
  • the evaluation result according to ASTM-D3359 standard (0B ⁇ 5B) is evaluated as the highest 5B, stainless steel It can be confirmed that the adhesion with the substrate of the material is very excellent.
  • the single Na-added Mo electrode layer according to the present embodiment may be formed on the stainless steel foil substrate, which is a substrate of a flexible material, without a separate adhesive layer.
  • These Na salts and hydroxides of Na can be removed by dissolving with a solvent.
  • a solvent water, ethanol, methanol, glycerol, or a mixed solution thereof can be used. Meanwhile, in this embodiment, the components were analyzed after exposure to air for a long time in order to analyze the components of the Na compound formed on the surface of the Na-added Mo electrode layer. It occurs even when exposed, and short exposure time does not cause the problem of peeling CIGS layer, but it causes the efficiency of solar cell.
  • a Na-added Mo electrode layer formed by using a Mo target doped with 5 at% (about 1.563 ⁇ 3 ⁇ 4) of Na on a stainless steel flexible substrate is exposed to air vapor. DI water) was used to wash the surface of the Na-added Mo electrode layer to remove the Na compound, and a CIGS light absorbing layer, a buffer charge and a front electrode were sequentially formed using a single Na-added Mo electrode layer as the back electrode.
  • the CIGS solar cell was manufactured by performing the same process as the comparative example except for removing the Na compound.
  • FIG. 8 is a graph comparing the conversion efficiency of the solar cell subjected to the Na compound removal process and the solar cell not performed.
  • the comparative solar cell without the Na compound removal process using ultrapure water showed a conversion efficiency of 3.24% lower than expected, but according to the present embodiment, the Na compound removal process was performed using ultrapure water.
  • the solar cell performed showed a conversion efficiency of 10.78%.
  • the phenomenon of peeling of the light absorbing layer is added by adding a process for removing Na compound formed on the surface of the back electrode while exposed to air. And efficiency reduction phenomenon, and can finally improve the efficiency of the solar cell manufacturing process and the conversion efficiency of the solar cell. It can be confirmed that.

Abstract

본 발명은 Na 공급 방법이 개선된 유연기판 CIGS 태양전지에 관한 것으로,유연한 재질의 기판; 상기 기판 위에 형성된 후면전극, 상기 후면전극 위에 형성된 CIGS 광흡수층; 상기 CIGS 광흡수층 위에 형성된 버퍼층; 및 상기 버퍼층 위에 형 성된 전면전극을 포함하여 구성되며, 상기 후면전극은 단일층으로 구성된 Na 첨가 금속 전극층인 것을 특징으로 한다. 본 발명은 종래의 Na 첨가 Mo 전극층에 비하여 약 1/10정도 낮은 비저항올 나타내는 Na 첨가 Mo 전극층을 적용하여, 단일층으로 후면전극을 구성한 고효율의 유연기판 CIGS 태양전지를 제공할 수 있는 효과가 있다. 또한, 후면전극층을 형성하는 공정이 단일층의 Na 첨가 Mo 전극층을 형성하는 공정만으로 이루어져, 유연기판 CIGS 태양전지의 제조공정 및 제조비용을 줄일수 있는 효과가 있다. 나아가, Na 첨가 금속층이 공기 중에 노출된 동안에 표면에 형성된 Na 화합물을 제거하는 공정을 더 포함함으로써, 광흡수층이 박리되거나 태양전지의 변환효율이 감소하는 문제를 해소할 수 있는 효과가 있다.

Description

【명세서】
【발명의 명칭】
Na공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법
【기술분야】
본 발명은 유연기판을 사용한 CIGS 태양전지에 관한 것으로, 더욱 자세하게 는 광흡수층에 Na를 공급하는 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방 법에 관한 것이다.
【배경기술]
최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 증에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환시키는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명 을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다. 태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최 근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가 하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무 게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 비정질 실리콘과 CdTe, CIS(CuInSe2) 또는 CIGSiCuInnGaxSez)에 대한 연구가 활발하게 진행 되고 있다.
cis 또는 ciGS박막은 i-m-iv 화합물 반도체 중의 하나이며, 실험실에서 만든 박막 태양전지 중에서 가장 높은 변환효율을 기톡하고 있다. 특히 10마이크 론 이하의 두께로 제작이 가능하고, 장시간 사용 시에도 안정적인 특성을 가지고 있어, 실리콘을 대체할수 있는 저가의 고효율 태양전지로 기대되고 있다.
이러한 CIGS 박막을 이용한 태양전지는 소다라임 유리 기판 위에서 제조하는 것이 일반적이다. CIGS 태양전지 개발 초기에는 높은 공정은도에서 사용할 수 있 는 코닝 (Corning) 유리를 이용하였으나, 제조비용 절감을 위해 사용된 소다라임 유 리 기판에 의하여 CIGS 태양전지의 광전 변환효율이 향상되는 현상이 발견된 이후 로 소다라임 유리 기판이 필수적으로사용되고 있다.
이는 소다라임 유리 기판에 포함된 Na가 다양한 작용을 통해 CIGS 태양전지 의 효율을 향상시키기 때문이다. 다만, 소다라임 유리 기판은 녹는점이 낮아서 CIGS 태양전지 제조에 제약이 있으며, 금속 또는 폴리머 재질의 유연기판을 사용하 지 못하는 것이 단점으로꼽힌다. <7> 이러한 단점을 해결하기 위하예 후면전극과 CIGS 광흡수층의 사이에 NaF층 을 형성하는 방법과, CIGS 광흡수층을 증착하는 과정에서 광흡수층의 재료물질과 함께 NaF를 동시에 진공증발하여 공급하는 방법이 개발되었다. NaF층을 별도로 형 성하는 방법은 제조공정이 추가되고 광흡수층과 후면전극 사이에 형성된 NaF층으로 인해 후면전극의 효율이 나빠지는 단점이 있으며, 동시진공증발 공정에서 NaF를 주 입하는 방법은 정밀한 조정이 필요한 광흡수층 형성 공정을 어렵게 만드는 요인이 되고 있다.
<8> 최근에는 Na 첨가 Mo 전극층과 Na 미첨가 Mo 전극충의 두 층으로 후면전극을 구성하는 기술이 개발되었으며, 이를 도 9에 도시하였다.
<9> 이 기술은 기판 (100), 후면전극 (200), CIGS 광흡수층 (300), 버퍼충 (400),
TC0 전면전극 (500) 및 전면반사방지층 (600)의 일반적인 CIGS 태양전지 구조로 구성 된다. 이 증 후면전극 (200)이 하부에 Na 첨가 Mo 전극층 (210)을 형성하고 상부에 Na 미첨가 전극층 (220)을 형성하는 기술 (둥록특허 10-0743923)과, 상부에 Na 첨가 Mo 전극층 (210)을 형성하고 하부에 Na 미첨가 Mo 전극층 (220)을 형성하는 기술, 그 리고 Na 미첨가 Mo 전극충 (220) 사이에 Na 첨가 Mo 전극층 (210)을 형성하는 기술 등으로 나뉜다.
<ιο> 이러한 기술들은 Na 첨가 Mo 전극층 (210)의 비저항이 높기 때문에, 이를 보 상해줄 수 있는 Mo 전극층 (220)을 별도로 형성하는 것이며, 이때 등록특허 1으 ◦743923에 나타난 것과 같이 Na 첨가 Mo 전극층을 형성하는 과정은 5~15mTorr 또는 5~10mTorr의 Ar 분압상태에서 수행되는 것이 일반적이다.
<u> 이상과 같이 2층 또는 3층의 후면전극을 구성하는 기술도 Na가포함된 Mo 전 극층을 형성하는 공정과 Na가 포함되지 않은 Mo 전극층올 형성하는 공정이 나뉘는 점에서 공정이 복잡하며, 후면전극이 다층 구조로 구성되어 유연기판에는 적용하기 어려운 단점이 있다.
<12> [선행기술문헌] 한국 등록특허 1으0743923
<13>
【발명의 상세한설명】
【기술적 과제】
<14> 본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 비저항이 낮고 Na가 포함된 단일의 금속 전극층으로 구성된 후면전극을 구비한 유연기판 CIGS 태양전지를 제공하는데 그 목적이 있다.
【기술적 해결방법】 <16> 상기 목적을 달성하기 위한본 발명에 의한 Na공급 방법이 개선된 유연기판
CIGS 태양전지는, 유연한 재질의 기판; 상기 기판 위에 형성된 후면전극, 상기 후 면전극 위에 형성된 CIGS 광흡수층; 상기 CIGS 광흡수층 위에 형성된 버퍼층; 및 상기 버퍼충 위에 형성된 전면전극을 포함하여 구성되며, 상기 후면전극은 단일층 으로 구성된 Na 첨가금속 전극층인 것을 특징으로 한다.
<17> 이때, 단일층의 Na 첨가 금속 전극층으로 구성된 후면전극은 비저항미 5X
10— 4 Ω cm 이하인 것이 바람직하다.
<18> 본 발명에서 CIGS라 함은, CIS, CIGS, CIGSe, CIGSSe 등 I-III— VI족 칼코파 이라이트 (chalcopyrite)계 화합물반도체를 모두 포함하는 것으로 정의한다.
<19> 본 발명자들은 CIGS 태양전지에서 광흡수층에 Na를 공급하기 위해서 종래에
Na 첨가 전극층과 Na 미첨가 전극층의 다충구조 후면전극을 형성하는 것과 달리, Na 첨가 금속 전극층의 단일층만을 이용한 유연기판 CIGS 태양전지를 발명하였다.
<20> 이 때, 유연한 재질의 기판은 폴리이미드와 같은 폴리머 재질이거나, 스테인 리스 강 포일과 같은 금속포일일 수 있다.
<21> 그리고 후면전극의 금속 전극층에 사용된 금속은 Mo인 것이 바람직하다 . 스 테인리스강 포일올 기판으로 사용하는 경우에는 후면전극과 기판의 접착성이 뛰어 나다. 하지만, 필요에 따라서 기판과 후면전극의 접착성을 향상시키는 접착층을 기판과 후면전극의 사이에 추가로 구비할 수 있다.
<22> 또 본 발명에 따라 Na공급 방법이 개선된 유연기판 CIGS 태양전지의 후면전 극 형성방법은, 상기 구조의 CIGS 태양전지에 포함된 후면전극을 형성하는 방법으 로서, Na가 도핑된 금속 타깃을 이용한 스퍼터링 공정으로 Na 첨가 금속 전극층올 형성하며, 상기 스퍼터링 공정은 0.5~2.5 mTorr의 Ar 압력 범위와 타깃에 대한 면 적당 0.5~5 W/cm2 범위의 출력밀도로 수행되는 것이 특징이다.
<23> 본 발명은 Na이 첨가된 Mo 전극층을 포함하는 다층으로 구성된 후면전극을 형성하는 종래의 기술에 비하여 , 상대적으로 낮은 Ar 압력 분위기에서 스퍼터링 공 정으로 Na 첨가 금속 전극층을 형성하며, 이렇게 형성된 전극층은 비저항이 낮아서 단일층으로도 유연기판 CIGS 태양전지의 후면전극으로 적용할 수 있다.
<24> 본 발명과 같이 스퍼터링 공정에서의 Ar 압력 범위를 낮추면, 다층으로 구성 된 후면전극을 형성하던 종래 공정에서 주로 사용되던 1.5 W/cm2 이하의 출력밀도에 서도 비저항이 5X104 Ωαη 수준에 근접하는 금속 전극층을 형성할 수 있으며 , 1.5 f/cm 를 초과하는 출력밀도로 수행하는 경우에 더욱 짧은 공정시간으로 더욱 낮은 비저항의 금속 전극층을 형성할수 있는 장점이 있다.
<25> 이때, 후면전극 형성을 위한 금속 타깃의 금속은 Mo 재질이 바람직하다. 특 히, 본 발명은 스퍼터링 공정의 조건을 변경하여 종래의 공정 조건에서 형성된 Na 첨가 Mo 전극층에 비하여 약 1/10정도 낮은 비저항을 나타내는 Na 첨가 Mo 전극층 을 형성할 수 있는 뛰어난 효과를 발휘하며, 결국 Na 미첨가 Mo 전극층을 형성하는 공정을 생략함으로써 후면전극 형성에 소요되는공정비용을 크게 줄일 수 있다.
<26> 또한, 본 발명의 방법으로 형성된 후면전극은, 타깃에 도핑된 Na의 양이
0.1-10 wt% 범위인 것을 사용하도록 한다. Na의 도핑량은 CIGS 광흡수충의 각 원 소별 조성비 및 두께에 따라 달라질 수 있으나, 일반적으로 Na의 도핑량이 10 wt% 를 넘는 경우에는 태양전지에서 의 효율이 더 향상되지 않으며, 과도한 Na 공급으 로 인해 오히려 태양전지의 효율이 즐어들 수 있다. 반대로 Na 함량이 으 1 %보 다 낮으면 광흡수층 형성과정에서 광흡수층으로 확산되는 Na의 양이 적어서 광홉수 층 효율 향상 효과가 미미하다. 따라서 상기 값을 Na 첨가량의 바람직한 상한과 하한으로 설정함이 바람직하다.
<27> 본 발명의 유연기판 CIGS 태양전지 제조방법은, 유연기판을 준비하는 단계; 상기 기판 위에 후면전극층을 형성하는 단계 ; 상기 후면전극층 위에 CIGS를 포함하 는 CIGS 광흡수층을 형성하는 단계 ; 상기 CIGS 광흡수층 위에 버퍼층을 형성하는 단계; 및 상기 버퍼층 위에 전면전극을 형성하는 단계를 포함하고, 상기 후면전극 층을 형성하는 단계가, Na가 첨가된 단일의 금속 전극층을 형성하는 공정으로 구성 되는 것을 특징으로 한다.
<28> 이때, Na가 첨가된 단일의 금속 전극층을 형성하는 공정이 Na가 도핑된 타깃 을 이용한 스퍼터링 공정인 것이 바람직하며, 스퍼터링 공정은 타깃에 대한 면적당
0.5-5 W/cm2 범위의 출력밀도와 0.5—2.5 mTorr의 Ar 압력 범위에서 수행되는 것이 좋다.
<29> 스퍼터링 공정에 사용되는 금속 타깃의 금속은 Mo 재질인 것이 바람직하다 . 특히, 본 발명은 스퍼터링 공정의 조건을 변경하여 종래의 공정 조건에서 형성된 Na 첨가 Mo 전극층에 비하여 약 1/10정도 낮은 비저항을 나타내는 Na 첨가 Mo 전극 충을 형성할 수 있는 뛰어난 효과를 발휘하며, 결국 Na 미첨가 Mo 전극충을 형성하 는 공정을 생략함으로써 후면전극 형성에 소요되는 공정비용을 크게 줄일 수 있다.
<30> 본 발명과 같이 스퍼터링 공정에서의 Ar 압력 범위를 낮추면, 다층으로 구성 된 후면전극을 형성하던 종래의 공정에서 주로 사용되던 1.5 W/cm 이하의 출력밀도 에서도 비 저항이 5 X 10— Ω αη 수준에 근접하는 단일의 금속 전극층을 형성할 수 있 으며 , 1.5 W/cm2 를 초과하는 출력 밀도로 수행하는 경우에 더욱 짧은 공정시간으로 더욱 낮은 비저항의 금속 전극층을 형성할 수 있는 장점이 있다.
<3i> 또한, 본 발명의 방법으로 형성된 단일층의 Na가 첨가된 금속 전극층으로 구 성 된 후면전극은, 타깃에 도핑된 Na의 양을 0. 1~ L0 wt% 범위에서 조절하여, 광흡수 층에 공급되는 Na의 양을 최 적화 할 수 있다.
<32> 태양전지 제조를 위하여 CIGS 광흡수층을 형성하는 단계 전에, Na 첨가 금속 전극층의 표면에 형성된 Na 화합물을 제거하는 단계를 더 포함하면, Na 첨가 금속 층이 공기 중에 장시간 노출될 때, 이 금속층의 표면에 형성되는 Na 화합물에 의해 서 광흡수층이 박리되거나 태양전지의 변환효율이 감소하는 문제를 해소할 수 있 다.
<33> 이때, Na 화합물을 제거하는 단계는, 용매를 이용하여 표면에 형성된 Na 화 합물을 세척하여 수행될 수 있다 . Na 염 또는 Na의 수산화물을 포함하는 Na 화합물 을 세척하는 용매로는 물 , 에탄을, 메탄올 및 글리세를 중에서 선택된 하나 이상을 사용할 수 있다.
【유리 한 효과】
<35> 상술한 바와 같이 구성된 본 발명은 , Na을 첨가하고도 종래에 다층으로 구성 된 후면전극 형성 공정 조건에서 형성된 Na 첨가 Mo 전극층에 비하여 약 1/10정도 낮은 비저항을 나타내는 Na 첨가 Mo 전극층을 형성함으로써, 단일의 금속층으로 유 연기판 CIGS 태양전지의 후면전극을 구성할 수 있는 효과가 있다.
<3f» 또한, Na가 첨가된 단일의 전극층으로 후면전극을 구성함으로써, 유연기판
CIGS 태.양전지의 제조공정 및 제조비용을 줄일 수 있는 효과가 있다.
<37> 나아가, Na 첨가 금속층이 공기 중에 노출된 동안에 표면에 형성 된 Na 화합 물을 제거하는 공정을 더 포함함으로써, 광흡수층이 박리되거나 태양전지의 변환효 율이 감소하는 문제를 해소할 수 있는 효과가 있다.
【도면의 간단한 설명】
<38> 도 1은 본 발명의 Na 공급 방법 이 개선된 유연기관 CIGS 태양전지의 구조를 나타내는 모식도이다 .
<39> 도 2는 본 발명의 실시 예 4에 따라서 제조된 CIGS 태양전지의 광흡수층에 대 한 SIMS 분석 결과이다 . <40> 도 3은 비교예 4에 따라서 제조된 CIGS 태양전지의 광흡수층에 대한 SIMS분 석 결과이다ᅳ
<4i> 도 4는 본 발명의 실시예 5에 따라 형성된 전극층에 대하여 비커스 경도를 측정한 결과이다.
<42> 도 5는 비교예 5에 따라서 형성된 전극층에 대하여 비커스 경도를 측정한 결 과이다.
<43> 도 6은 본 실시예에 따라 형성된 전극층과스테인리스강 기판사이의 접착성 을 평가한 결과이다.
<44> 도 7은 공기 중에 노출된 Na 첨가 Mo 전극층의 표면에 Na 화합물이 생성된 모습을 나타낸 전자현미경 사진이다.
<45> 도 8은 Na 화합물의 제거 공정을 수행한 태양전지와 수행하지 않은 태양전지 의 변환효율을 비교한 그래프이다.
<46> 도 9는 종래의 다충구조 후면전극을 구비한 CIGS 태양전지의 구조를 나타내 는모식도이다.
【발명의 실시를 위한 형태】
<47> 첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.
<48> 도 1은 본 실시예의 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 구조 를 나타내는 단면도이다.
<49> 본 실시예의 유연기판 CIGS 태양전지는 유연기판 (10) 위에, 후면전극 (20),
CIGS 광흡수층 (30), 버퍼층 (40), 전면전극 (50) 및 전면반사방지층 (60)이 차례로 적 층된 구조로 구성되며, 후면전극 (20)이 단일의 Na가 첨가된 금속 전극층만으로 구 성되는 점에 특징이 있다.
<50> 따라서 본 실시예의 유연기판 CIGS 태양전지의 제조방법은 유연기판 (10) 위 에, 후면전극 (20), 광흡수층 (30), 버퍼층 (40), 전면전극 (50) 및 전면반사방지층 (60)을 차례로 형성하는 방법으로 구성되지만, 후면전극 (20) 형성과정에서 단일의 Na가 첨가된 금속 전극층으로 형성하는 점에 특징이 있으며, 이를 제외한 다른 구 성부분은 일반적인 방법이 모두 적용될 수 있다.
<5i> 본 실시예의 유연기판 CIGS 태양전지의 제조방법을 설명하면 다음과 같다.
<52> 먼저 유연기판 (10)을 준비한다. 유연기판 (10)의 재질은 특별히 제한되지 않 고 모든 재질을 적용할 수 있으며, 구체적으로 풀리이미드와 같은 폴리머 재질이나 스테인리스강과 같은 금속 포일 재질의 유연기판을 사용할 수 있다. 이러한 유연 기판 (10)의 표면을 아세톤, 메탄올 및 증류수를 이용하여 차례로 세정하여 준비한 다.
<53> 유연기관과 후면전극의 접착성이 나쁜 경우에는 세척된 유연기판의 표면에 접착성을 향상시키기 위한 접착층이나, 금속 산화물이나 질화물 재질의 텍스처링층 을 형성한 뒤에 후면전극을 형성할 수도 있으며, 이는 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게는 자명한사항이므로 자세한설명은 생략한다.
<54> 다음으로 Na가도핑된 타깃을 이용하여 스퍼터링 공정으로 Na가 첨가된 단일 의 금속 전극층인 후면전극 (20)을 형성한다.
<55> 구체적으로 후면전극 (20)의 재질은 Mo이 일반적으로 사용되며, 0.1~10 %의
Na가 도핑된 Mo 타깃에 대하여 0.5~5 W/cm2범위의 출력밀도로 DC 스퍼터링 또는 RF 스퍼터링을 수행하되, 증착 시 압력은 0.5 2.5 mTorr의 Ar 압력 분위기로 조절한 다.
<56> 이러한 공정 조건은, Na이 첨가된 Mo 전극층을 포함하는 다층의 후면전극을 구성하는 종래의 기술에 비하여 상대적으로 낮은 Ar 분압에서 증착을 수행하는 방 법으로 공정조건을 개선함으로써, 형성된 Mo 전극층의 비저항을 낮춘 것이다. 이에 따르면, 다층으로 구성된 후면전극을 형성하던 종래의 공정에서 주로 사용되던 1.5
W/cm2 이하의 출력밀도에서도 비저항이 5X10— 4 Si cm 수준에 근접하는 단일의 금속 전극층을 형성할수 있으며, 1.5 W/cm2를 초과하는 출력밀도로 수행하는 경우에 더 욱 짧은 공정시간으로 더욱 낮은 비저항의 금속 전극층을 형성할 수 있는 장점이 있다. 본 발명의 제조방법에서 제조된 후면전극은 단일의 Na가 포함된 Mo 전극층으 로 구성되지만 비저항이 낮고 경도가 뛰어나기 때문에 단일층만으로도 후면전극으 로 작용할 수 있으며, 이에 대한설명은 구체적인 실시예를 통해 설명하기로 한다.
<57> 그리고 후면전극 (20)의 위에 CIGS 광흡수층 (30), 버퍼층 (40), 전면전극 (50) 및 전면반사방지층 (60)올 차례로 형성하며, 이들을 형성하는 방법은 특별하게 제한 되지 않고 일반적으로 적용될 수 있는 모든 방법이 적용될 수 있다.
<58> 한편, CIGS 광흡수층 (30)을 형성하기에 앞서, 후면전극 (20)의 표면에 형성된
Na 화합물올 제거하는 공정을 더 포함할 수 있다. 이러한 제거 공정은 후면전극을 구성하는 Na 첨가 Mo 전극층이 공기 중에 장시간 노출될 때, 이 전극층의 표면에 형성되는 Na 화합물을 제거하기 위한 것으로서, Na 화합물을 제거할 수 있는 방법 이면 특별히 제한되지 않고 적용할 수 있다. 공기 중에 노출된 Na 첨가 Mo 전극층 의 표면에 형성되는 Na 화합물은 대체적으로 Na의 수산화물이나 Na 염 또는 이들이 흔합된 물질이며, 물, 에탄을, 메탄올 및 글리세롤 중에서 선택된 하나 이상의 용 매로 세척하여 제거할수 있다.
<59> ' CIGS 광흡수층 (30)의 형성방법은 원료물질의 나노입자 전구체 또는 용액 전 구체를 이용하는 비진공법과 현재 성능이 가장높은 것으로 알려진 3단계의 동시진 공 증발법과 같은 진공법이 모두 적용될 수 있다.
<60> 버퍼층 (40)의 형성방법은 CBD cheraical bath deposition) 공정으로 CdS막을 형성하는 것이 일반적이며, CBD 공정으로 ZnS막 또는 ZnSe막을 형성하거나, 증발법 으로 InxSey막 또는 ZnInxSey막을 형성할 수도 있으며, CVD 기반 공정으로 InxSey막 또는 ZnSe막을 형성할 수도 있다.
<6i> 전면전극 (50)의 형성방법은 스퍼터링 공정에 의해서 ITO나 Ζη0:Α1과 같은
TC0 막을 형성하는 것이 일반적이며, 전자범 증발법이나 열 증발법 등의 방법 _ 로 TC0 막을 형성할 수도 있다. 또한 TC0 막만으로 전면전극을 구성할 수도 있 |, TC0막의 위에 A1 등의 재료로 그리드 전극을추가할수도 있다.
<62> 전면반사방지층 (60)의 형성방법은 열 증발법이나 ALlXatomic la¾r deposition)법으로 MgF2를 형성하거나, ALD법으로 A1203를 형성할수도 있다.
<63> 이상과 같은 본 발명의 유연기판 CIGS 태양전지의 제조방법 및 이에 따라 제 조된 유연기판 CIGS 태양전지는, 제조과정에서 후면전극에 첨가된 Na가 CIGS 굉^ 수층으로 확산되어 태양전지의 효율을 향상시키면서도, 후면전극을 형성하는 괴|¾ 이 Na 첨가 Mo 전극충의 단일층만을 형성하는 단일 공정으로 구성되어, 추가적 1 공정이나 장비가투입되지 않기 때문에 공정비용을 크게 줄일 수 있다.
<64>
<65> 이하에서는 본 실시예에 따라 제조된 Na 첨가 Mo 전극층의 비저항, Na이온의 확산, 기계적 경도 및 스테인리스강 기관에 대한 접착성을 구체적인 실시예와 비교 예를 통하여 확인하도록 한다.
<66>
<67> <비저항'확인 > , '
<68> -실시예 1
<69> Na가 1.5 wt%도핑된 Mo 타깃을 이용하여 , 0.5 mTorr의 Ar 압력 하에서 최대
4 W/cm2의 타깃에 대한 출력밀도로 25분간 DC 스퍼터랑을 수행하여 단일의 Na 첨가 Mo 전극층을 형성하였다.
<70> <7i> - 실시예 2
<72> Na가 1.5 wt% 도핑된 Mo 타깃을 이용하여, 0.5 mTorr의 Ar 압력 하에서 최대
1 W/cm2의 타깃에 대한 출력밀도로 60분간 DC 스퍼터링을 수행하여 단일의 Na 첨가 Mo 전극층을 형성하였다.
<73>
<74> ᅳ 실시예 3
<75> Na가 3 wt 도핑된 Mo 타깃을 이용하여, 1 mTorr의 Ar 압력 하에서 최대 3
W/cm2의 타깃에 대한 출력밀도로 30분간 RF 스퍼터링을 수행하여 단일의 Na 첨가 Mo 전극층을 형성하였다.
<76>
<77> - 비교예 1
<78> Na가 1 wt 도큉된 Mo 타깃을 이용하여, 10 mTorr의 Ar 압력 하에서 최대 1
W/cm2의 타깃에 대한 출력밀도로 32분간 DC 스퍼터링을 수행하여 Na 첨가 Mo 전극충 을 형성하였다.
<79>
<80> - 비교예 2
<8i> Na가 1.5 wt% 도¾된 Mo 타깃을 이용하여, 10 mTorr의 Ar 압력 하에서 최대 1
W/cm2의 타깃에 대한 출력밀도로 34분간 DC 스퍼터링을 수행하여 Na 첨가 Mo 전극층 을 형성하였다.
<82>
<83> - 비교예 3
<84> Na가 3 wt% 도핑된 Mo 타깃을 이용하여 , 5 mTorr의 Ar 압력 하에서 최대 1.5
W/cm2의 타깃에 대한 출력밀도로 50분간 DC 스퍼터링을 수행하여 Na 첨가 Mo 전극층 올 형성하였다.
<85>
<86> 비교예들은 다층으로 구성된 후면전극을 형성하는 종래기술에서 Na 첨가 Mo 전극충을 형성하는 조건인 5ᅳ 15 mTorr의 Ar 압력분위기 및 1~1.5 W/cm2의 타깃에 대 한 출력밀도로 스퍼터링올 수행한 것이며, 각 비교예와 실시예의 공정시간 차이는, 타깃에 대한 출력밀도의 차이와 공정압력의 차이를 감안하여 비슷한 두께의 Mo 전 극층을 형성하기 위하여 조절된 것이다. <87>
<88> 상기한 실시예와 비교예에 의해서 형성된 Μθ 전극층의 비저항을 측정한 결과 를 표 1에 나타내었다 .
<89> 【표 1】
Figure imgf000012_0001
<90> 표 1에 나타난 것과 같이, 비교예의 Mo 전극충들은 단일층으로는 태양전지의 후면전극으로 사용할 수 없을 정도의 높은 비저항을 나타내는 반면에, 실시예의 Mo 전극층들은 비교예의 Mo 전극이 나타내는 비저항의 약 1/10 보다 낮은 비저항을 나 타냄을 알수 있다.
<9i> 나아가, 최근 태양전지의 투명전극으로 사용되는 Zn0:AI의 비저항 값인
0.5~1Χΐ(3Ωαη보다도 낮은 수준의 비저항을 나타내어, 단일의 층으로도 태양전지 의 후면전극으로 적용할수 있음을 알수 있다.
<92>
<93> <Na이온 확산 확인 >
<94> - 실시예 4
<95> 스테인리스강 재질의 기판 위에, Na가 1.5 wt% 도핑된 Mo 타깃을 이용하여,
0.5 mTorr의 Ar 압력 하에서 최대 3 W/cn/의 타깃에 대한 출력밀도로 30분간 DC 스 퍼터링을 수행하여 단일의 Na 첨가 Mo 전극층을 형성하였다.
<96> 그리고 Na 첨가 Mo 전극층의 위에 동시진공 증발법을 이용하여 CIGS 광흡수 층을 형성하고, 버퍼층으로서 CdS 막을 CBD(chemical bath deposit ion)공정으로 형 성한뒤에, DC스퍼터링을 이용하여 Zn0:M 재질의 전면전극을 형성하였다.
<97>
<98> - 비교예 4
<99> 소다라임 유리 재질의 기판 위에, Mo 타깃을 이용하여, Na 미첨가 Mo 전극충 을 형성하였다.
<ιοο> 그리고 Na 미첨가 Mo 전극충의 위에 실시예 4와 동일한 조건으로 CIGS 광흡 수층과 CdS 막 및 Ζη0:Α1 전면전극을 형성하였다.
<101>
<102> 상기한 과정으로 제조된 CIGS 태양전지의 제조과정에서 CIGS 광흡수층으로 확산된 Na 이온의 양을 확인하기 위하여, SIMS(secondary ion mass spectrometer, 2차 이은 질량 분석) 분석을 수행하였다. <i 3> 도 2는 본 발명의 실시예 4에 따라서 제조된 CIGS 태양전지의 광흡수층에 대한 SIMS 분석 결과이고, 도 3은 비교예 4에 따라서 제조된 CIGS 태양전지의 광흡 수충에 대한 SIMS 분석 결과이다.
<104> CIGS 광흡수층의 경우에는 실시예 4와 비교예 4의 제조 조건이 동일하기 때 문에 거의 비슷한 Cu의 분포를 나타내고 있으며, Na의 경우는 실시예 4에서 더 많 은 양이 검출되었다.
<105> 이로부터 본 실시예의 Na 첨가 Mo 전극층의 단일층으로 구성된 후면전극올 이용하는 경우에 종래에 소다라임 유리 재질의 기판을 사용하는 경우보다, 많거나 적어도 동일한 수준을 Na의 확산 효과를 얻을 수 있는 것을 확인할 수 있다.
<106>
<107> <기계적 경도 확인>
<J08> ᅳ 실시예 5
<i09> Na가 3 wt% 도핑된 Mo 타깃을 이용하여, 1 mTorr의 Ar 압력 하에서 최대 3
W/cm2의 타깃에 대한 출력밀도로 DC 스퍼터링을 수행하여 단일의 Na 첨가 Mo 전극층 올 형성하였으며, 전극충올 형성하고 1주일이 지난 뒤에 비커스 경도계를 이용하여 경도를 측정하였다.
<110>
<ιπ> ᅳ 비교예 5
<112> Na가 도핑되지 않은 Mo 타깃을 이용하여, 먼저 10 mTorr의 Ar 압력 하에서 최대 1.3 W/cm2의 타깃에 대한 출력밀도로 DC 스퍼터링을 수행하여 하부 전극층을 형성하고, 다음으로 1 mTorr의 Ar 압력 하에서 최대 5 W/cm2의 타깃에 대한 출력밀 도로 DC 스퍼터링을 수행하여 상부 전극충을 형성하였으며, 전극층을 형성하고 1주 일이 지난 뒤에 비커스 경도계를 이용하여 경도를 측정하였다.
<Π3>
<ii4> 도 4는 본 발명의 실시예 5에 따라 형성된 전극층에 대하여 비커스 경도를 측정한 결과이며, 도 5는 비교예 5에 따라서 형성된 전극층에 대하여 비커스 경도 를 측정한 결과이다.
<U5> 비교예 5는 소다라임 유리 재질의 기판을 이용한 CIGS 태양전지에 많이 사용 되는 2단계 방식의 Mo 후면전극 형성방법에 따라서 형성된 것으로서 상부전극 표면 에서 측정된 비커스 경도는 546.2 HV를 나타내었으며, 실시예 5에 따라서 제조된 Na 첨가 Mo 전극층에 대하여 측정된 비커스 경도는 689.0 HV을 나타내어 본 실시예 에 따라 제조된 Na 첨가 Mo 전극층의 경도가 더 높은 것을 확인할 수 있다.
<116>
<117> <스테인리스강 포일 기판에 대한 접착성 확인 >
<Π8> 금속 포일 재질의 유연기판인 스테인리스강 재질의 포일 기판 위에, Na가
1.5 wt% 도핑된 Mo 타깃올 이용하여, 0.5 mTorr의 Ar 압력 하에서 최대 2 W/cm2의 타깃에 대한 출력밀도로 DC 스퍼터링을 수행하여 단일의 Na 첨가 Mo 전극층올 형성 하고, ASTM-D3359 규격에 의한 스카치테이프법으로 단일의 Mo 전극층과 스테인리스 강 기판 사이의 접착성을 평가하였다.
<H9> 도 6은 본 실시예에 따라 형성된 전극충과 스테인리스강 기판 사이의 접착성 을 평가한 결과이다.
<120> 도시된 것과 같이, 본 실시예에 따른 단일의 Na가 첨가된 Mo 전극층의 경우 에 ASTM-D3359 규격에 따른 평가 결과 (0B~5B) 증에서 가장 높은 5B로 평가되어, 스 테인리스강 재질의 기판과의 접착성이 매우 뛰어난 것을 확인할 수 있다.
<i2i> 따라서 본 실시예메 따른 단일의 Na 첨가 Mo 전극층은 유연성 재질의 기판인 스테인리스강 포일 기판에 별도의 접착충 없이 형성할 수 있음을 알 수 있다.
<122>
<123> <표면 Na 화합물 형성 및 제거 공정의 효과 확인 >
<124> 한편, 본 실시예에 따라 형성된 단일의 Na 첨가 Mo 전극층을 후면전극으로 하여 광흡수층과 버퍼층 및 전면전극을 순차적으로 형성하여 CIGS 태양전지를 제조 하는 과정에서, 광흡수층이 박리되는 현상과 제조된 태양전지의 효율이 예상보다 낮은 결과가 일부 관찰되었다. 이러한 현상은 종래에 다층으로 구성된 후면전극을 이용하여 CIGS 태양전지를 제조하는 과정에서도 일부 발생하는 현상이다.
<125> 이에 대한 연구를 계속한 결과, 이러한 현상이 Na 첨가 Mo 전극충이 공기 중 에 장시간 노출되는 경우에 발생하는 현상임을 확인하였다. CIGS 태양전지를 제조 하는 과정에서 CIGS광흡수층을 형성하는 방법 및 전체 공정을 조율하는 과정에서 Na 첨가 Mo 전극충을 형성한 뒤에 장시간 공기 증에 노출된 상태로 방치되는 경우 가 발생하며, 이러한 경우에 Na 첨가 Mo 전극층의 표면에 Na 화합물이 발생하여 광 흡수충의 박리 또는 태양전지 효율의 감소 현상이 발생한다.
<126>
<!27> 도 7은 공기 중에 노출된 Na 첨가 Mo 전극충의 표면에 Na 화합물이 생성된 모습을 나타낸 전자현미경 사진이다.
<128> 10 at% (약 3.125 wt«의 Na가 도핑된 Mo 타깃을 이용하여, 0.5 mTorr의 Ar 압력 하에서 최대 4 W/cm의 타깃에 대한 출력밀도로 DC 스퍼터링을 수행하여 단일 의 Na 첨가 Mo 전극층을 형성하고, 1주일간 공기 중에 노출 시킨 뒤에 표면을 촬영 하였다. Na가 첨가된 Mo 전극층의 표면에 Na 화합물이 형성된 것을 확인할 수 있 다. EDS 분석을 통해서 이러한 Na 화합물의 성분을 확인한 결과, Na 외에 다량의 0, C와 미량의 Mo 등이 검출되었으며, H 원자는 EDS 분석에서 검출이 블가능하여 검출되지 않았지만 Na가 공기와 접하여 형성된 화합물이므로 H를 포함한 수산화물 이 형성되었을 것으로 생각된다. 이러한 Na 염과 Na의 수산화물은 용매를 이용하 여 녹여서 제거할 수 있으며, 용매로서는 물, 에탄올, 메탄올, 글리세롤 등이나 이 들의 흔합용액을 사용할 수 있다. 한편, 본 실시예에서는 Na 첨가 Mo 전극층의 표 면에 형성된 Na 화합물의 성분을 분석하기 위하여 장시간 동안 공기 중에 노출시킨 뒤에 성분을 분석하였으나, 이러한 Na 화합물은 Na 첨가 Mo 전극층이 공기 중에 수 분 정도로 짧게 노출된 경우에도 발생하며, 노출시간이 짧은 경우에는 CIGS층이 박 리될 정도의 문제가 발생하지는 않지만 태양전지의 효율을 떨어뜨리는 원인이 된 다.
<129>
<130> 본 실시예에서는 스테인리스강 재질의 유연기판에 5 at% (약 1.563 ^¾)의 Na 가 도핑된 Mo 타깃을 이용하여 형성된 Na 첨가 Mo 전극층을 공기 증에 노출시킨 다 음에 , 초순수 (DI water)를 사용하여 Na 첨가 Mo 전극층의 표면의 세척하여 Na 화합 물을 제거하고, 단일의 Na 첨가 Mo 전극층을 후면전극으로 하여 CIGS 광흡수층과 버퍼충 및 전면전극을 순차적으로 형성하여 CIGS 태양전지를 제조하였다. 또한, 비교예로서 Na 화합물을 제거하는 공정을 제외한 나머지 공정을 동일하게 수행하여 CIGS 태양전지를 제조하였다.
<i3i> 도 8은 Na 화합물의 제거 공정을 수행한 태양전지와 수행하지 않은 태양전지 의 변환효율을 비교한 그래프이다.
<132> 도시된 것과 같이, 초순수를 이용한 Na 화합물 제거 공정을 거치지 않은 비 교예의 태양전지는 예상보다 낮은 3.24%의 변환효율을 나타내었지만, 본 실시예에 따라서 초순수를 이용해서 Na 화합물 제거 공정을 수행한 태양전지는 10.78%의 변 환효율올 나타내었다.
<133> 이로부터, Na 첨가 금속 전극층을 단일층의 후면전극으로 적용하는 경우에, 공기 중에 노출된 상태에서 후면전극의 표면에 형성되는 Na 화합물을 제거하는 공 정을 추가함으로써 광흡수층의 박리 현상 및 효율 감소 현상올 방지할 수 있으며, 최종적으로 태양전지 제조 공정의 효율 및 태양전지의 변환 효율을 크게 향상시킬 수 있음을 확인할수 있다.
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사 상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 아분야에서 통상의 지식 을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예 가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims

【청구의 범위】
【청구항 1]
유연한 재질의 기판;
상기 기판 위에 형성된 후면전극,
상기 후면전극 위에 형성된 CIGS 광흡수층;
상기 CIGS광흡수층 위에 형성된 버퍼층; 및
상기 버퍼층 위에 형성된 전면전극을 포함하여 구성되며,
상기 후면전극은 단일층으로 구성된 Na 첨가 금속 전극층인 것을 특징으로 하는 Na공급 방법이 개선된 유연기판 CIGS 태양전지.
[청구항 2】 .
청구항 1에 있어서,
상기 후면전극의 비저항이 5ΧΐΟ_4Ωαιι 이하인 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지.
【청구항 3]
청구항 1에 있어서,
상기 기판은 폴리이미드와 같은 폴리머 또는 스테인리스강 포일과 같은 금속 포일인 것을 특징으로 하는 Na 공급 방법이 개선된 유연기관 CIGS 태양전지.
【청구항 4]
청구항 1에 있어서,
상기 후면전극의 금속 전극층이 Mo 전극층인 것올 톡징으로 하는 Na공급 방 법이 개선된 유연기판 CIGS 태양전지 .
【청구항 5】
청구항 1에 있어서,
상기 기판과 상기 후면전극의 접착성을 향상시키는 접착층이, 상기 기판과 상기 후면전극의 사이에 추가된 것을 특징으로 하는 Na 공급 방법이 개선된 유연기 판 CIGS 태양전지.
Γ¾—구 졔 청구항 1 내지 청구항 5 중에 하나의 태양전지에 포함되는 후면전극을 형성 하는 방법으 S서,
Na가 도핑된 금속 타깃을 이용한 스퍼터링 공정으로 단일층으로 구성된 Na 첨가 금속 전극층을 형성하며, 상기 스퍼터링 공정은 0.5~2.5 mTorr의 Ar 압력 범 위와 타깃에 대한 면적당 0.5~5 W/cm2 범위의 출력밀도로 수행되는 것을 특징으로 하는 Na공급 방법이 개선된 유연기판 CIGS 태양전지의 후면전극 형성방법.
【청구항 7】
청구항 6에 있어서,
상기 스퍼터링 공정이 타깃에 대한 면적당 1.5 W/cm2 초과 5 W/cm2 이하범위 의 출력밀도로 수행되는 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 후면전극 형성방법 :
【청구항 8】
청구항 6에 있어서,
상기 금속 타깃의 금속이 Mo인 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 후면전극 형성방법.
【청구항 9】
청구항 8에 있어서,
상기 금속 타깃에 도핑된 Na의 양이 0.1~L0 wt%인 것을 특징으로 하는 Na공 급 방법이 개선된 유연기판 CIGS 태양전지의 후면전극 형성방법.
【청구항 10】
유연기판을 준비하는 단계 ;
상기 기판위에 후면전극층을 형성하는 단계;
상기 후면전극충 위에 CIGS를 포함하는 CIGS광흡수층을 형성하는 단계 ; 상기 CIGS광흡수층 위에 버퍼층을 형성하는 단계 ; 및
상기 버퍼층 위에 전면전극을 형성하는 단계를 포함하고,
상기 후면전극층을 형성하는 단계가, 단일층으로 구성된 Na 첨가 금속 전극 층을 ^ — ifelit성g≡^ 는ᅳ Na— :공급쌍법 l^fl^^^fF연 기판 CIGS 태양전지의 제조방법 . 【청구항 11]
청구항 10에 있어서,
상기 Na 첨가 금속 전극층을 형성하는 공정이, Na가 도핑된 타깃을 이용한 스퍼터링 공정인 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전 지의 제조방법 .
【청구항 12】
청구항 11에 있어서,
상기 스퍼터링 공정이 타깃에 대한 면적당 0.5~5 W/cm2 범위의 출력밀도와
0.5-2.5 mTorr의 Ar 압력 범위에서 수행되는 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 제조방법.
【청구항 13】
청구항 12에 있어서,
상기 스퍼터링 공정이 타깃에 대한 면적당 2~5 W/cm2 범위의 출력밀도로 수 행되는 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 제조 방법.
【청구항 14】
청구항 12에 있어서,
상기 금속 타깃의 금속이 Mo인 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 제조방법.
【청구항 15】
청구항 12에 있어서,
상기 금속 타깃에 도핑된 Na의 양이 0,1~10 %인 것을 특징으로 하는 Na 공 급 방법이 개선된 유연기판 CIGS 태양전지의 제조방법 .
【청구항 16】
청구항 10에 있어서,
상기 CIGS 광흡수층을 형성하는 단계 전에 , 상기 Na 첨가 금속 전극충의 표 면에 형성된 Na 화합물을 제거하는 단계를 더 포함하는 것을 특징으로 하는 Na 공 급 방법 이 개선된 유연기판 CIGS 태양전지의 제조방법 .
【청구항 17】
청구항 16에 있어서,
상기 Na 화합물을 제거하는 단계가, 용매를 이용하여 Na 화합물을 세척하여 수행되는 것을 특징으로 하는 Na 공급 방법이 개선된 유연기판 CIGS 태양전지의 제 조방법 ᅳ
【청구항 18】
청구항 17에 있어서,
상기 용매가 물, 에탄올, 메탄을 및 글리세를 중에서 선택된 하나 이상인 것 을 톡징으로 하는 Na 공급 방법 이 개선된 유연기판 CIGS 태양전지의 제조방법 .
PCT/KR2013/007044 2012-08-09 2013-08-05 Na 공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법 WO2014025176A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/389,884 US20150114466A1 (en) 2012-08-09 2013-08-05 CIGS Solar Cell Having Flexible Substrate Based on Improved Supply of Na and Fabrication Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0087075 2012-08-09
KR20120087075 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014025176A1 true WO2014025176A1 (ko) 2014-02-13

Family

ID=50068352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007044 WO2014025176A1 (ko) 2012-08-09 2013-08-05 Na 공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법

Country Status (3)

Country Link
US (1) US20150114466A1 (ko)
KR (1) KR101406734B1 (ko)
WO (1) WO2014025176A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269868A (zh) * 2018-01-29 2018-07-10 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池
WO2019090824A1 (zh) * 2017-11-13 2019-05-16 华中科技大学鄂州工业技术研究院 钙钛矿太阳能电池、双层金属电极及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349995B2 (en) * 2013-12-23 2016-05-24 Solar-Tectic Llc Hybrid organic/inorganic eutectic solar cell
CN108321075A (zh) * 2017-12-15 2018-07-24 米亚索乐装备集成(福建)有限公司 Cigs薄膜太阳能电池的制备方法
KR102462688B1 (ko) * 2020-07-17 2022-11-04 한국전력공사 유연 태양전지 및 이의 제조 방법
CN112054071B (zh) * 2020-08-07 2022-05-27 宣城开盛新能源科技有限公司 一种cigs柔性薄膜太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092744A1 (en) * 2007-10-05 2009-04-09 Mustafa Pinarbasi Roll to Roll Evaporation Tool for Solar Absorber Precursor Formation
US20100248419A1 (en) * 2009-02-15 2010-09-30 Jacob Woodruff Solar cell absorber layer formed from equilibrium precursor(s)
KR20110066300A (ko) * 2009-12-11 2011-06-17 심포니에너지주식회사 씨아이지에스 박막 태양전지 제조 시 나트륨 첨가 방법
KR20110066260A (ko) * 2009-12-11 2011-06-17 심포니에너지주식회사 황화나트륨을 이용한 유연 cigss 박막태양전지 제조 및 제조방법
US20120061628A1 (en) * 2009-05-21 2012-03-15 E.I. Du Pont De Nemours And Company Copper tin sulfide and copper zinc tin sulfide ink compositions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442824C1 (de) * 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
US7179677B2 (en) * 2003-09-03 2007-02-20 Midwest Research Institute ZnO/Cu(InGa)Se2 solar cells prepared by vapor phase Zn doping
US20070151862A1 (en) * 2005-10-03 2007-07-05 Dobson Kevin D Post deposition treatments of electrodeposited cuinse2-based thin films
WO2008095146A2 (en) * 2007-01-31 2008-08-07 Van Duren Jeroen K J Solar cell absorber layer formed from metal ion precursors
US8784701B2 (en) * 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
JP5309285B2 (ja) * 2007-11-30 2013-10-09 株式会社豊田中央研究所 光電素子及びその製造方法
AT10578U1 (de) * 2007-12-18 2009-06-15 Plansee Metall Gmbh Dunnschichtsolarzelle mit molybdan-haltiger ruckelektrodenschicht
JP4384237B2 (ja) * 2008-05-19 2009-12-16 昭和シェル石油株式会社 Cis系薄膜太陽電池の製造方法
US7785921B1 (en) * 2009-04-13 2010-08-31 Miasole Barrier for doped molybdenum targets
JP2011176285A (ja) * 2010-02-01 2011-09-08 Fujifilm Corp 光電変換素子、薄膜太陽電池および光電変換素子の製造方法
US20110203655A1 (en) * 2010-02-22 2011-08-25 First Solar, Inc. Photovoltaic device protection layer
US8628997B2 (en) * 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US20140048137A1 (en) * 2010-11-22 2014-02-20 E I Du Pont De Nemours And Company Process for preparing coated substrates and photovoltaic devices
KR101306529B1 (ko) * 2011-11-21 2013-09-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092744A1 (en) * 2007-10-05 2009-04-09 Mustafa Pinarbasi Roll to Roll Evaporation Tool for Solar Absorber Precursor Formation
US20100248419A1 (en) * 2009-02-15 2010-09-30 Jacob Woodruff Solar cell absorber layer formed from equilibrium precursor(s)
US20120061628A1 (en) * 2009-05-21 2012-03-15 E.I. Du Pont De Nemours And Company Copper tin sulfide and copper zinc tin sulfide ink compositions
KR20110066300A (ko) * 2009-12-11 2011-06-17 심포니에너지주식회사 씨아이지에스 박막 태양전지 제조 시 나트륨 첨가 방법
KR20110066260A (ko) * 2009-12-11 2011-06-17 심포니에너지주식회사 황화나트륨을 이용한 유연 cigss 박막태양전지 제조 및 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019090824A1 (zh) * 2017-11-13 2019-05-16 华中科技大学鄂州工业技术研究院 钙钛矿太阳能电池、双层金属电极及其制备方法
CN108269868A (zh) * 2018-01-29 2018-07-10 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池

Also Published As

Publication number Publication date
KR20140021971A (ko) 2014-02-21
KR101406734B1 (ko) 2014-06-16
US20150114466A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
Tiwari et al. CdTe solar cell in a novel configuration
Bhattacharya et al. 18.5% copper indium gallium diselenide (CIGS) device using single-layer, chemical-bath-deposited ZnS (O, OH)
JP6096790B2 (ja) 光電池のための導電性基材
WO2014025176A1 (ko) Na 공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법
EP2876696A1 (en) Method for preparing copper indium gallium selenide film solar cell
US8969124B2 (en) Method for fabricating Cu—In—Ga—Se film solar cell
US20150059842A1 (en) Solar cell
KR101219835B1 (ko) 태양전지 및 이의 제조방법
KR20090100705A (ko) 텐덤 방식의 cis계 및 cgs계 광흡수층을 갖는 박막형태양전지 및 이의 제조 방법
KR101210171B1 (ko) 태양전지 및 이의 제조방법
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN102956722B (zh) 一种薄膜太阳能电池
CN109004045B (zh) 一种碲化镉太阳能电池及其制备方法
KR101036165B1 (ko) 칼코지나이드계 태양전지의 제조방법
KR101017141B1 (ko) 3차원 접합형 태양전지 및 그 제조방법
KR101300791B1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
KR101180998B1 (ko) 태양전지 및 이의 제조방법
KR20120037320A (ko) 태양 전지 및 이의 제조 방법
CN102496645B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
WO2014155444A1 (ja) 太陽電池の製造方法、および太陽電池
WO2013141644A1 (ko) 후면전극 표면에 텍스처가 형성된 2중 텍스처 구조의 칼코게나이드계 태양전지의 제조방법 및 이에 따라 제조된 칼코게나이드계 태양전지
KR101144483B1 (ko) 태양광 발전장치, 이를 포함하는 태양광 발전 시스템 및 이의 제조방법
JP2011091249A (ja) 太陽電池
US20210210645A1 (en) Chalcogenide solar cell having transparent conducting oxide back contact, and method of manufacturing the chalcogenide solar cell
CN113130679A (zh) 薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14389884

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828547

Country of ref document: EP

Kind code of ref document: A1