WO2014024501A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2014024501A1
WO2014024501A1 PCT/JP2013/004817 JP2013004817W WO2014024501A1 WO 2014024501 A1 WO2014024501 A1 WO 2014024501A1 JP 2013004817 W JP2013004817 W JP 2013004817W WO 2014024501 A1 WO2014024501 A1 WO 2014024501A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coating layer
tip
ground electrode
spark plug
Prior art date
Application number
PCT/JP2013/004817
Other languages
English (en)
French (fr)
Inventor
勝稔 中山
智克 鹿島
山田 達範
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2014529321A priority Critical patent/JP5755373B2/ja
Priority to BR112015000768-6A priority patent/BR112015000768B1/pt
Priority to EP13828573.9A priority patent/EP2884604B1/en
Priority to US14/419,313 priority patent/US9306374B2/en
Priority to CN201380042245.4A priority patent/CN104521081B/zh
Publication of WO2014024501A1 publication Critical patent/WO2014024501A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat

Definitions

  • the present invention relates to a spark plug used for an internal combustion engine or the like.
  • the spark plug is attached to an internal combustion engine (engine) or the like, and is used to ignite an air-fuel mixture in the combustion chamber.
  • a spark plug is disposed at an insulator having an axial hole extending in the axial direction, a center electrode inserted into the tip end side of the shaft hole, a metal shell provided on the outer periphery of the insulator, and a tip of the metal shell.
  • a ground electrode is bent back so that the tip of the ground electrode is opposed to the center electrode at a substantially intermediate portion of the ground electrode, and a gap is formed between the tip of the ground electrode and the tip of the center electrode.
  • a high voltage is applied to the gap and a spark discharge is generated, so that the air-fuel mixture or the like is ignited.
  • Patent Document 1 also proposes a method of covering the entire surface of the ground electrode with the protective layer.
  • a portion of the ground electrode that is located closer to the center of the combustion chamber than the discharge portion and protrudes more from the tip of the metal shell becomes particularly hot. That is, in the tip portion of the ground electrode, the tip surface and the surface other than the surface located on the side of the center electrode on the outer peripheral surface are particularly hot and oxidative corrosion tends to occur. Therefore, there is a possibility that the oxidation resistance cannot be sufficiently improved by the method of providing the protective layer in the discharge part.
  • the protective layer is inferior in thermal conductivity. Therefore, when the entire surface of the ground electrode is covered with the protective layer, the heat of the ground electrode is not easily dissipated, and the heat extraction of the ground electrode is deteriorated. As a result, the ground electrode is overheated, and there is a risk that premature ignition using the ground electrode as a heat source (pre-ignition) and deterioration of wear resistance may be caused.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spark plug capable of more reliably preventing overheating while sufficiently improving oxidation resistance in a ground electrode. There is.
  • the spark plug of this configuration includes a cylindrical insulator having an axial hole penetrating in the axial direction; A center electrode inserted on the tip side of the shaft hole; A cylindrical metal shell provided on the outer periphery of the insulator; A ground electrode disposed at a tip of the metal shell and forming a gap with the center electrode;
  • the ground electrode is An electrode base extending from the tip of the metal shell toward the tip in the axial direction; A curved bent portion having one end connected to the tip of the electrode base;
  • a coating layer made of a material having oxidation resistance is provided, The base material of the ground electrode is exposed in at least a part of the electrode base.
  • the coating layer having excellent oxidation resistance is provided on at least the tip surface of the electrode tip portion of the ground electrode and on the outer peripheral surface other than the surface located on the center electrode side. Yes. That is, a coating layer is provided for a portion that is particularly hot during operation of an internal combustion engine or the like and is concerned about oxidation corrosion. Therefore, the oxidative corrosion of the ground electrode can be effectively prevented, and the oxidation resistance can be sufficiently improved.
  • the base material of the ground electrode is configured to be exposed without providing a coating layer at least in a part of the electrode base portion that is relatively unlikely to have a relatively high temperature and that is less susceptible to oxidative corrosion. Yes. Therefore, the heat of the ground electrode is easily dissipated while maintaining good oxidation resistance, and the heat extraction of the ground electrode can be improved. As a result, overheating of the ground electrode can be prevented more reliably.
  • a coating layer may or may not be provided on the surface on the center electrode side of the outer peripheral surface of the ground electrode.
  • the coating layer easily peels off in a short period due to spark discharge, and hardly contributes to the improvement of oxidation resistance. Therefore, in view of productivity, it is preferable not to provide a coating layer on the surface on the center electrode side.
  • the spark plug of this configuration is characterized in that, in the above configuration 1, the base material of the ground electrode is exposed over the entire outer surface of the electrode base.
  • the electrode base is not covered with the coating layer, and the ground electrode base material is exposed over the entire outer surface of the electrode base. Therefore, the heat extraction of the ground electrode can be further improved, and overheating of the ground electrode can be more reliably prevented.
  • the spark plug of this configuration is the above configuration 1 or 2, wherein the coating layer is provided only on the tip of the electrode,
  • the bent portion is characterized in that a base material of the ground electrode is exposed.
  • the coating layer is provided only on the tip surface of the tip portion of the electrode, which is particularly likely to become high temperature and susceptible to oxidative corrosion, and the base material of the ground electrode is exposed at the bent portion. Yes. Therefore, it is possible to further improve the heat extraction of the ground electrode while ensuring excellent oxidation resistance, and to further enhance the effect of preventing the overheating of the ground electrode.
  • the spark plug of this configuration is characterized in that, in any one of the above configurations 1 to 3, the base material of the ground electrode is formed of a metal containing 90 mass% or more of nickel (Ni).
  • the base material of the ground electrode is formed of a metal containing 90% by mass or more of Ni. Therefore, the thermal conductivity of the ground electrode can be increased, and the effect of preventing overheating (wear resistance) of the ground electrode can be further improved.
  • the base material of the ground electrode is formed of a metal containing a large amount of Ni as in the above configuration 4, there is a greater concern about the decrease in oxidation resistance. .
  • good oxidation resistance can be realized by adopting the above configuration 1 or the like and providing a coating layer.
  • the above configuration 1 or the like is particularly significant when the base material of the ground electrode is formed of a metal containing 90% by mass or more of Ni in order to further improve the effect of overheating prevention (consumption resistance) of the ground electrode. It is.
  • the spark plug of this configuration is characterized in that, in any one of the above configurations 1 to 4, the thickness of the coating layer is 5 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the coating layer is 5 ⁇ m or more, the contact of oxygen with the ground electrode can be more effectively suppressed. Therefore, the oxidation resistance can be further improved.
  • the thickness of the coating layer is set to 60 ⁇ m or less. Therefore, heat is easily radiated in the portion of the ground electrode covered with the coating layer, and the heat extraction of the ground electrode can be further increased. As a result, overheating of the ground electrode can be prevented more reliably.
  • the coating layer is provided at the electrode tip and the bent portion, and the minimum thickness of the coating layer provided at the electrode tip is larger than the minimum thickness of the coating layer provided at the bent portion. It is characterized by that.
  • the minimum thickness of the coating layer at the electrode tip is the minimum thickness of the coating layer at the bent portion (in the case where the coating layer is provided only at the electrode tip, the minimum thickness of the coating layer at the bent portion).
  • the thickness is 0). That is, a thick coating layer is provided on the tip surface of the tip of the electrode, which is particularly likely to have a high temperature and is susceptible to oxidative corrosion. Therefore, the contact of oxygen with the tip surface of the electrode tip surface can be effectively suppressed, and the oxidation resistance can be improved more effectively.
  • the minimum thickness of the coating layer provided on the tip surface is less than that of the outer peripheral surface. Of these, the thickness is greater than the minimum thickness of the coating layer provided on a surface other than the surface located on the center electrode side.
  • the surface of the electrode tip other than the tip surface and the surface on the center electrode side is likely to become high temperature and oxidative corrosion is likely to occur.
  • the tip surface is farthest from the metal shell and moves toward the metal shell side. Since heat is difficult to draw, the temperature tends to be very high, and oxidation corrosion is very likely to occur.
  • the minimum thickness of the coating layer on the tip surface is set to be larger than the minimum thickness of the coating layer on the surface other than the surface on the center electrode side. Therefore, the contact of oxygen with the tip surface can be suppressed extremely effectively, and the oxidation resistance can be improved more effectively.
  • the coating layer is a surface other than the tip surface and a surface located on the center electrode side of the outer peripheral surface. Only provided, or
  • the coating layer is provided over the entire outer surface of the electrode tip portion, and the minimum thickness of the coating layer provided on the surface of the electrode tip portion located on the center electrode side is The tip layer and the outer peripheral surface are smaller than the minimum thickness of the coating layer provided on a surface other than the surface located on the center electrode side.
  • the coating layer provided on the surface on the side of the central electrode that is, the surface forming a gap with the central electrode
  • the wear resistance of the coating layer is inferior to the wear resistance of the base material of the ground electrode. Therefore, when a thick coating layer is provided on the surface of the electrode tip on the side of the central electrode (that is, the surface forming a gap with the central electrode), the coating layer is peeled off or the coating accompanying spark discharge Due to the rapid depletion of the layer, the size of the gap may increase significantly in a short period of time. If the size of the gap increases, the voltage (discharge voltage) required to cause spark discharge increases, and the ground electrode (coating layer) and the center electrode are rapidly consumed. There is a fear.
  • the coating layer is not provided on the surface on the side of the central electrode in the tip portion of the electrode as in the above-described configuration 8, it is possible to more reliably prevent the gap from rapidly increasing.
  • the minimum thickness of the said film layer is surfaces other than the front end surface of an electrode front-end
  • the spark plug of this configuration is characterized in that, in any one of the above configurations 1 to 8, the coating layer is made of a material containing Ni, cobalt (Co), and chromium (Cr).
  • the coating layer is formed of a material containing Cr that is excellent in oxidation resistance. Therefore, the oxidation resistance of the ground electrode can be improved more reliably.
  • the spark plug of this configuration is characterized in that, in the above configuration 9, the coating layer is made of a material containing yttrium (Y) and aluminum (Al).
  • the constituent material of the coating layer contains Y and Al having good oxidation resistance together with Cr. Therefore, the oxidation resistance of the ground electrode can be improved more reliably.
  • the coating layer is formed of high-speed oxygen fuel spray (HVOF), high-speed air fuel spray (HVAF), plasma spray, cold spray method, or aerosol deposition. It is formed by the (Aerosol Deposition) method.
  • FIG. 1 It is a partially broken front view which shows the structure of a spark plug.
  • A) is an enlarged front view which shows the structure of the front-end
  • (b) is a partially broken enlarged side view which shows the structure of the front-end
  • (A), (b) is an expanded sectional view which shows the structure of the ground electrode in another embodiment.
  • (A)-(c) is the cross-sectional schematic diagram of the electrode front-end
  • FIG. 1 is a partially cutaway front view showing a spark plug 1.
  • the direction of the axis CL ⁇ b> 1 of the spark plug 1 is the vertical direction in the drawing, the lower side is the front end side of the spark plug 1, and the upper side is the rear end side.
  • the spark plug 1 includes an insulator 2 as a cylindrical insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like.
  • the insulator 2 is formed by firing alumina or the like, and in its outer portion, a rear end side body portion 10 formed on the rear end side, and a front end than the rear end side body portion 10.
  • a large-diameter portion 11 that protrudes radially outward on the side, a middle body portion 12 that is smaller in diameter than the large-diameter portion 11, and a tip portion that is more distal than the middle body portion 12.
  • the leg length part 13 formed in diameter smaller than this on the side is provided.
  • the large diameter portion 11, the middle trunk portion 12, and most of the leg long portions 13 are accommodated inside the metal shell 3.
  • a tapered step portion 14 is formed at the connecting portion between the middle body portion 12 and the long leg portion 13, and the insulator 2 is locked to the metal shell 3 at the step portion 14.
  • the insulator 2 is formed with a shaft hole 4 extending along the axis CL 1, and a center electrode 5 is inserted and fixed at the tip side of the shaft hole 4.
  • the center electrode 5 includes an inner layer 5A made of a metal having excellent thermal conductivity (for example, copper, copper alloy, pure nickel (Ni), etc.) and an outer layer 5B made of an alloy containing Ni as a main component.
  • the center electrode 5 has a rod shape (cylindrical shape) as a whole, and a tip portion of the center electrode 5 projects from the tip of the insulator 2.
  • a terminal electrode 6 is inserted and fixed on the rear end side of the shaft hole 4 in a state of protruding from the rear end of the insulator 2.
  • a cylindrical resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 of the shaft hole 4. Both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 through conductive glass seal layers 8 and 9, respectively.
  • the metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a screw for attaching the spark plug 1 to a combustion device such as an internal combustion engine or a fuel cell reformer on the outer peripheral surface thereof.
  • a portion (male screw portion) 15 is formed.
  • a seat portion 16 is formed on the rear end side of the screw portion 15 so as to protrude toward the outer peripheral side, and a ring-shaped gasket 18 is fitted into the screw neck 17 at the rear end of the screw portion 15.
  • a tool engaging portion 19 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the combustion device, and bent inward in the radial direction.
  • a caulking portion 20 is provided on the rear end side of the metal shell 3.
  • a tapered step portion 21 for locking the insulator 2 is provided on the inner peripheral surface of the metal shell 3.
  • the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the step 14 of the metal shell 3 is locked to the step 21 of the metal shell 3. It is fixed to the metal shell 3 by caulking the rear end side opening portion radially inward, that is, by forming the caulking portion 20.
  • An annular plate packing 22 is interposed between the step portions 14 and 21. Thereby, the airtightness in the combustion chamber is maintained, and the fuel gas entering the gap between the leg long portion 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 is prevented from leaking outside.
  • annular ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 23 , 24 is filled with talc 25 powder. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
  • a ground electrode 27 having a rectangular cross section made of a metal containing 90 mass% or more of Ni is disposed at the distal end portion 26 of the metal shell 3.
  • the ground electrode 27 is bent back at an intermediate portion thereof, and includes an electrode base portion 271, a bent portion 272, and an electrode tip portion 273.
  • the electrode base 271 has a straight rod shape with its base end joined to the tip 26 of the metal shell 3 and extending toward the tip in the direction of the axis CL1.
  • One end of the bent portion 272 is connected to the tip of the electrode base 271 and has a curved shape (bent shape).
  • the electrode tip portion 273 has a straight bar shape extending from the other end of the bent portion 272 toward a direction different from the extending direction of the electrode base portion 271 (in the present embodiment, a direction orthogonal to the axis CL1).
  • a spark discharge gap 28 is formed as a gap between the electrode tip 273 and the tip of the center electrode 5, and the spark discharge is performed in the spark discharge gap 28 in a direction substantially along the axis CL ⁇ b> 1. Is to be done.
  • the ground electrode 27 has a relatively long protrusion length L (for example, 7 mm or more) along the direction of the axis CL1 with respect to the tip of the metal shell 3.
  • the protrusion length L is relatively large, the tip side of the ground electrode 27 is likely to be at a higher temperature, and there is a concern about oxidation corrosion at the tip portion of the ground electrode 27.
  • the tip surface 27 ⁇ / b> F and the opposing surface 27 ⁇ / b> A that is a surface located on the center electrode 5 side of the outer peripheral surface of the ground electrode 27.
  • the other surface is provided with a coating layer 31 having excellent oxidation resistance (in FIG. 2 and the like, for convenience of illustration, the coating layer 31 is shown to be thicker than the actual thickness).
  • the coating layer 31 is provided on the front end surface 27F, the back surface 27B located behind the facing surface 27A, and the side surfaces 27S1 and 27S2 adjacent to the facing surface 27A and the back surface 27B.
  • the coating layer 31 is provided only on the electrode tip 273, and the base material of the ground electrode 27 is exposed in the bent part 272.
  • the coating layer 31 is made of a metallic material containing Ni, cobalt (Co), and chromium (Cr), and the metallic material contains the base material of the ground electrode 27 (containing 90 mass% or more of Ni). It has an oxidation resistance superior to the oxidation resistance of the metal. Note that the metal material constituting the coating layer 31 may contain yttrium (Y) and aluminum (Al).
  • the superiority or inferiority of oxidation resistance can be determined by the following method. That is, the surface of a metal piece made of a predetermined metal (for example, an alloy containing Ni as a main component) is provided in the form of a coating layer, and when the metal piece is repeatedly heated and cooled by a predetermined burner, The metal material in which the thickness of the oxide film formed is smaller than the thickness of the oxide film formed when the coating layer is formed from the same metal as the base material of the ground electrode 27 is the base material of the ground electrode 27. It can be said that it has oxidation resistance superior to oxidation resistance.
  • the heating / cooling is performed, for example, for about 3000 cycles, with one cycle consisting of heating for 2 minutes so that the metal piece becomes 1000 ° C. and then slowly cooling for 1 minute.
  • the oxidation resistance can be improved by providing the coating layer 31 as described above, the coating layer 31 containing an additive such as Cr or Al is used as the base material of the ground electrode 27 or the like. Compared to thermal conductivity. Therefore, the provision of the coating layer 31 deteriorates the heat dissipation of the ground electrode 27, and the ground electrode 27 (particularly the tip) may be overheated due to the relatively large protrusion length L.
  • the electrode base 271 is configured not to be covered with the coating layer 31 so that the base material of the ground electrode 27 is exposed. That is, heat is easily drawn toward the metal shell 3 side, and the base material of the ground electrode 27 is exposed without intentionally covering at least a part of the electrode base portion 271 that is not easily heated to a relatively high temperature (not easily oxidized) with the coating layer 31. Is configured to do. Thereby, the heat extraction of the ground electrode 27 can be improved.
  • the coating layer 31 is provided only on the electrode tip 273, the base material of the ground electrode 27 is exposed over the entire outer surface of the electrode base 271 and the bent portion 272. The heat sink of the ground electrode 27 can be remarkably improved.
  • the thickness of the coating layer 31 is 5 ⁇ m or more and 60 ⁇ m or less.
  • the minimum thickness T1 of the coating layer 31 provided on the tip surface 27F is the same as that on the back surface 27B and both side surfaces 27S1, 27S2.
  • the thickness of the coating layer 31 provided is greater than the minimum thickness T2. That is, the tip surface 27 ⁇ / b> F where heat is most difficult to conduct to the metal shell 3 side and is most likely to become the highest temperature (most easily oxidized) is covered with the thick coating layer 31.
  • the coating layer 31 is formed by high-speed oxygen fuel spraying (HVOF), high-speed air fuel spraying (HVAF), plasma spraying, a cold spray method, or an aerosol deposition (Aerosol Deposition) method. . That is, the coating layer 31 is formed by a technique that does not excessively increase the temperature of the ground electrode 27 at the time of formation.
  • HVOF high-speed oxygen fuel spraying
  • HVAC high-speed air fuel spraying
  • plasma spraying a cold spray method
  • aerosol Deposition aerosol Deposition
  • the coating layer 31 is not necessarily provided only on the electrode tip 273, and the coating layer 31 may be provided on the bent portion 272 and the electrode tip 273, as shown in FIG.
  • the minimum thickness T2 of the coating layer 31 provided at the electrode tip 273 is larger than the minimum thickness T3 of the coating layer 31 provided at the bent portion 272. It is preferable to do. That is, it is preferable to cover the tip surface 27F, the back surface 27B, and the like of the electrode tip portion 273 that is less likely to conduct heat to the metal shell 3 side and easily reach high temperatures (easily oxidize) with the relatively thick coating layer 31. In this case, it is possible to more reliably prevent oxygen from coming into contact with the front end surface 27F, the back surface 27B, etc., and to improve the oxidation resistance.
  • the coating layer 31 having excellent oxidation resistance is provided on the tip surface 27F, the back surface 27B, and the both side surfaces 27S1 and 27S2 of the electrode tip portion 273. ing. Therefore, the oxidative corrosion of the ground electrode 27 can be effectively prevented, and the oxidation resistance can be sufficiently improved.
  • the base material of the ground electrode 27 is exposed without providing the coating layer 31 over the entire outer surface of the electrode base portion 271 and the bent portion 272, which are less likely to have a relatively high temperature and are less susceptible to oxidative corrosion. It is configured as follows. Therefore, the heat of the ground electrode 27 is very easily dissipated while maintaining good oxidation resistance, and the heat extraction of the ground electrode 27 can be remarkably improved. As a result, overheating of the ground electrode 27 can be extremely effectively prevented.
  • the base material of the ground electrode 27 is made of a metal containing 90% by mass or more of Ni. Therefore, the thermal conductivity of the ground electrode 27 can be increased, and the effect of preventing overheating (wear resistance) of the ground electrode 27 can be further improved.
  • Ni is relatively inferior in oxidation resistance, but by providing the coating layer 31, good oxidation resistance can be realized in the ground electrode 27.
  • the base material of the ground electrode 27 is formed of a metal containing 90% by mass or more of Ni in order to further improve the overheating prevention effect (consumption resistance) of the ground electrode 27. It is particularly significant.
  • the minimum thickness T1 of the coating layer 31 on the front end surface 27F is larger than the minimum thickness T2 of the coating layer 31 on the back surface 27B and the side surfaces 27S1 and 27S2. Therefore, the contact of oxygen with the tip surface 27F, which tends to be particularly high in temperature, can be extremely effectively suppressed, and the oxidation resistance can be improved more effectively.
  • the coating layer 31 is not provided on the facing surface 27A of the electrode tip 273, it is possible to more reliably prevent the size of the spark discharge gap 28 from being greatly increased due to the spark discharge. As a result, an increase in the discharge voltage can be suppressed, and rapid wear and the like of the ground electrode 27 and the center electrode 5 can be effectively suppressed.
  • the constituent material of the coating layer 31 contains Cr having good oxidation resistance. Therefore, the oxidation resistance can be improved more reliably. Further, by adding Y and Al to the constituent material of the coating layer 31, the oxidation resistance can be further improved.
  • the coating layer 31 is formed by high-speed oxygen fuel spraying (HVOF), high-speed air fuel spraying (HVAF), plasma spraying, a cold spray method, or an aerosol deposition (Aerosol Deposition) method. Therefore, the temperature rise of the ground electrode 27 when forming the coating layer 31 can be suppressed, and damage to the ground electrode 27 due to heat can be more reliably prevented. Furthermore, by preventing damage to the ground electrode 27, the adhesion of the coating layer 31 to the ground electrode 27 can be improved, and the peel resistance of the coating layer 31 can be improved. As a result, excellent oxidation resistance can be maintained over a long period of time.
  • HVOF high-speed oxygen fuel spraying
  • HVAF high-speed air fuel spraying
  • plasma spraying a cold spray method
  • aerosol Deposition aerosol Deposition
  • a spark plug sample in which the protrusion length L of the ground electrode is set to 7.6 mm or 11.6 mm and a coating layer is provided over the entire surface of the ground electrode. 1 (corresponding to a comparative example) and a sample 2 of a spark plug configured so that a coating layer is provided only at the tip and bent portions of the ground electrode, and the base material of the ground electrode is exposed at the electrode base (in the embodiment) And both samples were subjected to a temperature measurement test during heating.
  • the outline of the heating temperature measurement test is as follows.
  • a spark plug sample (reference sample) is prepared so that the base material is exposed over the entire surface without providing a coating layer, and the tip of the ground electrode of the reference sample is heated with a predetermined burner. Then, a heating condition was obtained in which the temperature at the portion 1 mm from the tip of the ground electrode was 900 ° C. Then, using the burner, the tip of the ground electrode in Samples 1 and 2 was heated under the heating conditions, and the temperature of the ground electrode at a portion 1 mm from the tip was measured. In addition, it can be said that the lower the measured temperature, the better the heat extraction of the ground electrode, and the better the overheating prevention effect of the ground electrode.
  • Fig. 6 shows the test results of the temperature measurement test during heating.
  • the ground electrode is made of a metal material (high Ni material) containing 90 mass% or more of Ni, or a metal material (low Ni material) having Ni content of less than 90 mass%, although the main component is Ni. Formed.
  • the test result of a sample in which the projection length L is 7.6 mm and the ground electrode is formed of a high Ni material is shown in black, the projection length L is 11.6 mm, and the ground electrode is formed of a high Ni material.
  • the test results of the samples are shown in a diagonal pattern.
  • test result of a sample in which the projecting length L is 7.6 mm and the ground electrode is formed of a low Ni material is shown in a lattice pattern, and the sample in which the projecting length L is 11.6 mm and the ground electrode is formed of a low Ni material is shown.
  • the test results are shown in a dotted pattern (note that the test results are shown in the same manner in FIG. 7 described later).
  • the coating layer was formed of a metal material containing Ni, Co, Cr, Al, and Y. Further, the size of the spark discharge gap is 1.1 mm, the width of the ground electrode is 2.8 mm, and the thickness thereof is 1.5 mm (the size of the ground electrode, the constituent material of the coating layer, the spark) The size of the discharge gap was the same in the following test). In addition, the thickness of the coating layer in each sample was 20 ⁇ m.
  • the sample 2 configured so that the base material of the ground electrode is exposed at the electrode base is compared with the sample 1 of the spark plug in which the coating layer is provided over the entire surface of the ground electrode. It was found that the temperature of the ground electrode was significantly reduced. This is considered to be because the heat of the ground electrode was sufficiently dissipated at the electrode base.
  • At least the electrode tip of the ground electrode is coated. It can be said that a layer is provided and at least a part of the electrode base is preferably configured such that the base material of the ground electrode is exposed.
  • FIG. 7 shows the test results of the test.
  • the test result of the temperature measurement test at the time of a heating in the above-mentioned sample 2 is shown collectively.
  • Sample 3 configured to expose the base material of the ground electrode at the electrode base and the bent portion can further reduce the temperature of the ground electrode during heating. This is considered to be because the heat of the ground electrode was dissipated more effectively.
  • a coating layer is provided only at the tip of the electrode, and the bent portion and the electrode base are configured such that the base material of the ground electrode is exposed. Is more preferable.
  • a spark plug sample in which the base material of the ground electrode is composed of a metal material containing 75% by mass, 90% by mass, or 98% by mass of Ni, and a coating layer is provided only at the tip and bent portions of the electrode A sample of a spark plug formed by forming a base material of a ground electrode with a metal containing 75% by mass, 90% by mass, or 98% by mass of Ni and without providing a film layer on the ground electrode (No coating layer) was prepared, and a desktop burner test was performed on each sample. The outline of the desktop burner test is as follows. That is, 3000 cycles were carried out with one cycle consisting of heating with a predetermined burner for 2 minutes so that the temperature of the tip of the ground electrode was 1000 ° C.
  • FIG. 8 shows the test results of the test.
  • the test result of the sample provided with the coating layer is shown in black, and the test result of the sample without the coating layer is shown in a hatched pattern.
  • the protruding length L of the ground electrode was 7.6 mm. Furthermore, in the sample provided with the coating layer, the thickness of the coating layer was 15 ⁇ m.
  • the sample without the peritoneal membrane has a very large oxide film thickness.
  • the oxidation resistance was insufficient, it was found that those provided with a coating layer had an extremely small oxide film thickness and had excellent oxidation resistance. That is, in the aspect of improving the oxidation resistance, it is possible to form the base material of the ground electrode with a metal material containing 90% by mass or more of Ni and to provide the coating layer in the spark plug in which the oxidation resistance is particularly insufficient. It proved to be very effective.
  • a sample of a spark plug in which a coating layer is provided only at the electrode tip and the bent portion and the thickness of the coating layer is variously changed, and the end cycle is changed from 3000 cycles to 5000 cycles for each sample.
  • the above-mentioned desktop burner test and the above-described heating temperature measurement test were performed.
  • the desktop burner test when the thickness of the oxide film becomes 0.1 mm or less, it is evaluated as “ ⁇ ”as being extremely excellent in oxidation resistance, and the thickness of the oxide film is 0.1 mm.
  • the thickness was super 0.2 mm or less, the evaluation of “ ⁇ ” was made because the oxidation resistance was good.
  • Table 1 shows the test results of the desktop burner test
  • FIG. 9 shows the test results of the heating temperature measurement test.
  • the protruding length L of the ground electrode was 7.6 mm
  • the base material of the ground electrode was formed of a metal material containing 90% by mass or more of Ni.
  • the thickness of the coating layer was changed by adjusting the spraying time when forming the coating layer.
  • the sample in which the thickness of the coating layer was 60 ⁇ m or less can effectively suppress the temperature rise of the ground electrode during heating. This is considered to be due to the fact that heat is easily radiated in the portion of the ground electrode covered with the coating layer.
  • the thickness of the coating layer is preferably 5 ⁇ m or more and 60 ⁇ m or less from the viewpoint of further improving the oxidation resistance and further enhancing the effect of preventing overheating of the ground electrode.
  • the thickness of the coating layer is more preferably 15 ⁇ m or more from the viewpoint of further improving the oxidation resistance.
  • a base material (90% by mass of nickel) of the ground electrode 27 was prepared, and a coating layer 31 having a thickness of 30 ⁇ m was provided on the electrode tip 273 by high-speed oxygen fuel spraying (HVOF).
  • HVOF high-speed oxygen fuel spraying
  • the coating layer 31 is provided on the tip surface 27F and the back surface 27B side surfaces 27S1 and 27S2 at the electrode tip, and is not provided on the facing surface 27A.
  • Sample A was provided with a coating layer 31 made of Ni, Co, and Cr
  • Sample B was provided with a coating layer 31 made of Ni, Co, Cr, Al, and Y
  • Sample C was not provided with a coating layer 31 at all. .
  • Each sample spark plug was subjected to a thermal durability test under the following test conditions. ⁇ Test conditions> A spark plug was assembled to an L4-2000cc (in-line 4-cylinder) engine, and WOT (1 minute) and idle (1 minute) were repeated at 3500 rpm for 100 hours.
  • Sample A Oxide film thickness 0.05 to less than 0.3 mm
  • Sample B Oxide thickness less than 0.05 mm
  • Sample C Oxide thickness 0.3 mm or more
  • 15 (a) to 15 (c) are schematic cross-sectional views of the electrode tip of the ground electrode after this test.
  • 15A corresponds to the sample A
  • FIG. 15B corresponds to the sample B
  • FIG. 15C corresponds to the sample C.
  • the coating layer 31 provided with the coating layer 31 had a smaller oxide film thickness and superior oxidation resistance compared to the coating layer 31 not provided.
  • the one provided with the coating layer 31 made of Ni, Co, Cr, Al, and Y has a remarkably small thickness of the oxide film and further has excellent oxidation resistance.
  • the constituent material of the coating layer 31 is a metal material containing Ni, Co or the like, but the constituent material of the coating layer 31 is based on the oxidation resistance of the base material of the ground electrode 27. Any other material may be used as long as it has excellent oxidation resistance, and its constituent material is not limited to the above-mentioned metal materials.
  • the base material of the ground electrode 27 is exposed in the entire outer surface of the electrode base 271, but if the base material of the ground electrode 27 is exposed in at least a part of the electrode base 271. Good. Therefore, for example, as shown in FIG. 10, a part of the electrode base 271 is configured to be covered with the coating layer 31, and the base material of the ground electrode 27 is exposed in a part of the electrode base 271. May be.
  • the coating layer 31 is provided on the tip surface 27F, the back surface 27B, and the both side surfaces 27S1 and 27S2 of the electrode tip 273, and the coating layer 31 is provided on the facing surface 27A.
  • a coating layer 31 may be provided on the facing surface 27A.
  • the minimum thickness T4 of the coating layer 31 provided on the facing surface 27A is smaller than the minimum thickness T2 of the coating layer 31 provided on the front end surface 27F, the back surface 27B, and the like. .
  • the coating layer 31 is provided only on the ground electrode 27.
  • the oxidation resistance of the base material of the center electrode 5 is formed on the surface of the center electrode 5.
  • a coating layer 32 made of a metal material having oxidation resistance superior to the property may be provided (in FIG. 13, for convenience of illustration, the coating layer 32 is shown to be thicker than the actual thickness). In this case, oxidation resistance can be enhanced in both the ground electrode 27 and the center electrode 5.
  • the ground electrode 27 has a rectangular cross section, but the cross sectional shape of the ground electrode 27 is not particularly limited. Therefore, for example, as shown in FIG. 14A, the surface 37C other than the opposing surface 37A of the outer peripheral surface of the ground electrode 37 may be configured to have a curved surface that is convex outward. Further, as shown in FIG. 14B, the opposing surface 47A and the back surface 47B of the ground electrode 47 may be configured to be flat, while the side surfaces 47S1 and 47S2 may be curved outwardly convex.
  • the tool engaging portion 19 has a hexagonal cross section, but the shape of the tool engaging portion 19 is not limited to such a shape.
  • the tool engaging portion 19 may have a Bi-HEX (deformed 12-angle) shape [ISO 22777: 2005 (E)] or the like.

Landscapes

  • Spark Plugs (AREA)

Abstract

接地電極において、耐酸化性の十分な向上を図りつつ、その過熱をより確実に防止する。スパークプラグ(1)は、主体金具(3)及び接地電極(27)を備える。接地電極(27)は、主体金具(3)の先端部から先端側に向けて延びる電極基部(271)と、電極基部(271)の先端に一端が連接された屈曲部(272)と、屈曲部(272)の他端から延び、中心電極(5)との間で火花放電間隙(28)を形成する電極先端部(273)とを具備する。接地電極(27)のうち少なくとも電極先端部(273)において、少なくとも先端面(27F)と、外周面のうち中心電極(5)側に位置する面(27A)以外の面とには、接地電極(27)の母材における耐酸化性よりも優れた耐酸化性を有する材料からなる被膜層(31)が設けられる。電極基部(271)の少なくとも一部は、接地電極(27)の母材が露出する。

Description

スパークプラグ
 本発明は、内燃機関等に使用されるスパークプラグに関する。
 スパークプラグは、内燃機関(エンジン)等に取付けられ、燃焼室内の混合気等への着火のために用いられる。一般にスパークプラグは、軸線方向に延びる軸孔を有する絶縁体と、軸孔の先端側に挿通される中心電極と、絶縁体の外周に設けられる主体金具と、主体金具の先端部に配置される接地電極とを備える。接地電極は、自身の略中間部分において自身の先端部が中心電極と対向するように曲げ返されており、接地電極の先端部と中心電極の先端部との間には間隙が形成される。そして、間隙に高電圧が印加され、火花放電が生じることで、混合気等への着火がなされるようになっている。
 また近年では、接地電極における耐酸化性の向上を図るべく、接地電極のうち、中心電極側に位置し、中心電極との間で前記間隙を形成する部位(放電部)を、耐酸化性に優れる金属からなる保護層で覆う技術が提案されている(例えば、特許文献1,2等参照)。また、特許文献1には、接地電極の表面全域を前記保護層で覆う手法も提案されている。
特表2009-533802号公報 特表平11-514145号公報
 しかしながら、内燃機関等の動作時においては、接地電極のうち、放電部よりも燃焼室の中心側に位置するとともに、主体金具の先端からより突出する部位が特に高温となる。すなわち、接地電極の先端部のうち、先端面や、外周面のうち中心電極側に位置する面以外の面が特に高温となり、酸化腐食が生じてしまいやすい。従って、放電部に保護層を設ける手法では、耐酸化性を十分に向上させることができないおそれがある。
 これに対して、接地電極の表面全域を保護層で覆う手法を採用すれば、良好な耐酸化性を実現することができる。ところが、保護層の構成材料には、優れた耐酸化性を実現するために、クロムやアルミニウムなどの添加物が含有されるため、保護層は熱伝導性に劣る。従って、接地電極の表面全域を保護層で覆った場合には、接地電極の熱が放散されにくくなり、接地電極の熱引きが悪化してしまう。その結果、接地電極が過熱されてしまい、接地電極を熱源とする早期着火(プレイグニッション)や、耐消耗性の低下を招いてしまうおそれがある。
 本発明は、上記事情を鑑みてなされたものであり、その目的は、接地電極において、耐酸化性の十分な向上を図りつつ、その過熱をより確実に防止することができるスパークプラグを提供することにある。
 以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。
 構成1.本構成のスパークプラグは、軸線方向に貫通する軸孔を有する筒状の絶縁体と、
 前記軸孔の先端側に挿設された中心電極と、
 前記絶縁体の外周に設けられた筒状の主体金具と、
 前記主体金具の先端部に配置され、前記中心電極との間に間隙を形成する接地電極とを備え、
 前記接地電極は、
 前記主体金具の先端部から前記軸線方向先端側に向けて延びる電極基部と、
 前記電極基部の先端に一端が連接された湾曲状の屈曲部と、
 前記屈曲部の他端から前記電極基部の延出方向と異なる方向に向けて延び、前記中心電極との間で前記間隙を形成する電極先端部とを具備するスパークプラグであって、
 前記接地電極のうち少なくとも前記電極先端部において、少なくとも先端面と、外周面のうち前記中心電極側に位置する面以外の面とには、前記接地電極の母材における耐酸化性よりも優れた耐酸化性を有する材料からなる被膜層が設けられ、
 前記電極基部の少なくとも一部は、前記接地電極の母材が露出していることを特徴とする。
 上記構成1によれば、接地電極の電極先端部のうち、少なくとも先端面と、外周面のうち中心電極側に位置する面以外の面とには、耐酸化性に優れる被膜層が設けられている。すなわち、内燃機関等の動作時において特に高温となり、酸化腐食が懸念される部位に対して、被膜層が設けられている。従って、接地電極の酸化腐食を効果的に防止することができ、耐酸化性を十分に向上させることができる。
 また、上記構成1によれば、比較的高温となりにくく、酸化腐食が比較的生じにくい電極基部の少なくとも一部において、あえて被膜層を設けずに接地電極の母材が露出するように構成されている。従って、良好な耐酸化性を維持しつつ、接地電極の熱が放散されやすくなり、接地電極の熱引きを向上させることができる。その結果、接地電極の過熱をより確実に防止することができる。
 加えて、上記構成1によれば、電極基部の少なくとも一部には被膜層を設けずに済むため、被膜層を設ける際における、加工時間の短縮や製造コストの低減を図ることができる。その結果、生産性の向上を図ることができる。
 尚、接地電極の外周面のうち中心電極側の面には、被膜層を設けてもよいし、設けなくてもよい。但し、被膜層を設けたとしても、火花放電に伴い被膜層は短期間で剥離してしまいやすく、耐酸化性の向上にほとんど寄与しない。従って、生産性の面を考慮すると、中心電極側の面に被膜層を設けない方が好ましい。
 構成2.本構成のスパークプラグは、上記構成1において、前記電極基部の外表面全域において、前記接地電極の母材が露出していることを特徴とする。
 上記構成2によれば、電極基部は被膜層で覆われることなく、電極基部の外表面全域において接地電極の母材が露出するように構成されている。従って、接地電極の熱引きをより向上させることができ、接地電極の過熱を一層確実に防止することができる。
 構成3.本構成のスパークプラグは、上記構成1又は2において、前記被膜層は、前記電極先端部のみに設けられ、
 前記屈曲部は、前記接地電極の母材が露出していることを特徴とする。
 上記構成3によれば、被膜層は、特に高温となりやすく酸化腐食が生じやすい電極先端部の先端面等のみに設けられ、屈曲部においては、接地電極の母材が露出するように構成されている。従って、優れた耐酸化性を確保しつつ、接地電極の熱引きを一層向上させることができ、接地電極の過熱防止効果を一層高めることができる。
 また、屈曲部に被膜層を設けずに済むため、被膜層を設ける際における加工時間の短縮等をより効果的に図ることができる。その結果、生産性を一層向上させることができる。
 構成4.本構成のスパークプラグは、上記構成1乃至3のいずれかにおいて、前記接地電極の母材は、ニッケル(Ni)を90質量%以上含有する金属により形成されることを特徴とする。
 上記構成4によれば、接地電極の母材は、Niを90質量%以上含有する金属により形成されている。従って、接地電極の熱伝導性を高めることができ、接地電極の過熱防止効果(耐消耗性)をより向上させることができる。
 一方で、Niは耐酸化性に比較的劣るため、上記構成4のように、接地電極の母材をNiを多量に含む金属により形成した場合には、耐酸化性の低下がより懸念される。しかしながら、上記構成1等を採用し、被膜層を設けることで、良好な耐酸化性を実現することができる。換言すれば、上記構成1等は、接地電極の過熱防止効果(耐消耗性)をより向上させるべく、接地電極の母材をNiを90質量%以上含有する金属により形成した場合に、特に有意である。
 構成5.本構成のスパークプラグは、上記構成1乃至4のいずれかにおいて、前記被膜層の厚さは、5μm以上60μm以下であることを特徴とする。
 上記構成5によれば、被膜層の厚さが5μm以上とされているため、接地電極に対する酸素の接触をより効果的に抑制することができる。従って、耐酸化性の更なる向上を図ることができる。
 また、上記構成5によれば、被膜層の厚さが60μm以下とされている。従って、接地電極のうち被膜層で覆われた部位において放熱がされやすくなり、接地電極の熱引きをより高めることができる。その結果、接地電極の過熱をより一層確実に防止することができる。
 構成6.本構成のスパークプラグは、上記構成1乃至5のいずれかにおいて、前記被膜層は、前記電極先端部のみに設けられる、又は、
 前記被膜層は、前記電極先端部及び前記屈曲部に設けられるとともに、前記電極先端部に設けられた前記被膜層の最小厚さが、前記屈曲部に設けられた被膜層の最小厚さよりも大きいことを特徴とする。
 上記構成6によれば、電極先端部における被膜層の最小厚さが、屈曲部における被膜層の最小厚さ(尚、電極先端部のみに被膜層を設けた場合、屈曲部における被膜層の最小厚さは0となる)よりも大きなものとされている。すなわち、特に高温となりやすく、酸化腐食が懸念される電極先端部の先端面等には、厚肉の被膜層が設けられている。従って、電極先端面の先端面等に対する酸素の接触を効果的に抑制することができ、耐酸化性をより効果的に向上させることができる。
 構成7.本構成のスパークプラグは、上記構成1乃至6のいずれかにおいて、前記電極先端部に設けられた前記被膜層において、前記先端面に設けられた前記被膜層の最小厚さが、前記外周面のうち前記中心電極側に位置する面以外の面に設けられた前記被膜層の最小厚さよりも大きいことを特徴とする。
 上述の通り、電極先端部のうち先端面や中心電極側の面以外の面は、高温となりやすく酸化腐食が生じてしまいやすいが、特に先端面は、主体金具から最も離間し、主体金具側へと熱が引かれにくいことから、非常に高温となりやすく、酸化腐食が極めて生じてしまいやすい。
 この点を鑑みて、上記構成7によれば、先端面における被膜層の最小厚さが、中心電極側の面以外の面における被膜層の最小厚さよりも大きなものとされている。従って、先端面に対する酸素の接触を極めて効果的に抑制することができ、耐酸化性をより効果的に向上させることができる。
 構成8.本構成のスパークプラグは、上記構成1乃至7のいずれかにおいて、前記電極先端部において、前記被膜層は、前記先端面、及び、前記外周面のうち前記中心電極側に位置する面以外の面のみに設けられる、又は、
 前記電極先端部において、前記被膜層は、前記電極先端部の外表面全域に設けられるとともに、前記電極先端部のうち前記中心電極側に位置する面に設けられた前記被膜層の最小厚さが、前記先端面、及び、前記外周面のうち前記中心電極側に位置する面以外の面に設けられた前記被膜層の最小厚さよりも小さいことを特徴とする。
 上述の通り、電極先端部のうち中心電極側の面(つまり、中心電極との間で間隙を形成する面)に設けられた被膜層は、火花放電に伴い剥離してしまいやすい。また、一般に被膜層の耐消耗性は、接地電極の母材の耐消耗性よりも劣る。そのため、電極先端部のうち中心電極側の面(つまり、中心電極との間で間隙を形成する面)に厚肉の被膜層を設けた場合には、被膜層の剥離や火花放電に伴う被膜層の急激な消耗により、間隙の大きさが短期間で大幅に増大してしまうおそれがある。間隙の大きさが増大してしまうと、火花放電を生じさせるために必要な電圧(放電電圧)が増大してしまうため、接地電極(被膜層)や中心電極が急激な消耗等を招いてしまうおそれがある。
 この点、上記構成8のように、電極先端部のうち中心電極側の面に被膜層が設けないこととすれば、間隙の大きさが急激に増大してしまうことをより確実に防止できる。
 また、上記構成8によれば、中心電極側の面に被膜層が設けられる場合であっても、当該被膜層の最小厚さが、電極先端部の先端面及び中心電極側の面以外の面における被膜層の最小厚さよりも小さなものとされている。従って、被膜層が剥離したり、火花放電に伴い被膜層が急激に消耗したりした場合であっても、間隙の大きさが大幅に増大してしまうことをより確実に防止できる。その結果、放電電圧の増大を抑制することができ、接地電極等の急激な消耗等を効果的に抑制することができる。
 構成9.本構成のスパークプラグは、上記構成1乃至8のいずれかにおいて、前記被膜層は、Ni、コバルト(Co)、及び、クロム(Cr)を含有する材料からなることを特徴とする。
 上記構成9によれば、被膜層は、耐酸化性に優れるCrを含有する材料から形成されている。従って、接地電極における耐酸化性をより確実に向上させることができる。
 構成10.本構成のスパークプラグは、上記構成9において、前記被膜層は、イットリウム(Y)及びアルミニウム(Al)を含有する材料からなることを特徴とする。
 上記構成10によれば、被膜層の構成材料には、Crとともに、良好な耐酸化性を有するYやAlが含有されている。従って、接地電極における耐酸化性をより一層確実に向上させることができる。
 構成11.本構成のスパークプラグは、上記構成1乃至10のいずれかにおいて、前記被膜層は、高速酸素燃料溶射(HVOF)、高速空気燃料溶射(HVAF)、プラズマ溶射、コールドスプレー法、又は、エアロゾルデポジション(Aerosol Deposition)法により形成されることを特徴とする。
 上記構成11によれば、被膜層を形成する際における、接地電極の温度上昇を抑制することができる。従って、熱による接地電極の損傷をより確実に防止することができる。さらに、接地電極の損傷防止が図られることで、接地電極に対する被膜層の密着性を高めることができ、被膜層の耐剥離性を向上させることができる。その結果、優れた耐酸化性を長期間に亘って維持することができる。
スパークプラグの構成を示す一部破断正面図である。 (a)は、スパークプラグの先端部の構成を示す拡大正面図であり、(b)は、スパークプラグの先端部の構成を示す一部破断拡大側面図である。 被膜層の厚さを説明するための部分拡大正面図である。 被膜層の別例を示す拡大正面図である。 別例における被膜層の厚さを説明するための部分拡大正面図である。 接地電極の表面全域に被膜層を設けたサンプル1と、接地電極の電極先端部及び屈曲部のみに被膜層を設けたサンプル2とにおける、加熱時温度測定試験の試験結果を示すグラフである。 接地電極の電極先端部及び屈曲部のみに被膜層を設けたサンプル2と、電極先端部のみに被膜層を設けたサンプル3とにおける、加熱時温度測定試験の試験結果を示すグラフである。 接地電極の母材のNi含有量を種々変更したサンプルにおける、机上バーナー試験の試験結果を示すグラフである。 被膜層の厚さを種々変更したサンプルにおける、加熱時温度測定試験の試験結果を示すグラフである。 別の実施形態における被膜層の構成を示す拡大正面図である。 別の実施形態における被膜層の構成を示す拡大正面図である。 別の実施形態における被膜層の厚さを説明するための部分拡大正面図である。 別の実施形態における中心電極の構成を示す一部破断拡大正面図である。 (a),(b)は、別の実施形態における接地電極の構成を示す拡大断面図である。 (a)~(c)は、被覆層の組成を変更したサンプルに関し、試験後の酸化膜厚みを示す、接地電極の電極先端部の断面模式図である。
 以下に、一実施形態について図面を参照しつつ説明する。図1は、スパークプラグ1を示す一部破断正面図である。尚、図1では、スパークプラグ1の軸線CL1方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。
 スパークプラグ1は、筒状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。
 絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、後端側に形成された後端側胴部10と、当該後端側胴部10よりも先端側において径方向外向きに突出形成された大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれよりも細径に形成された脚長部13とを備えている。加えて、絶縁碍子2のうち、大径部11、中胴部12、及び、大部分の脚長部13は、主体金具3の内部に収容されている。そして、中胴部12と脚長部13との連接部にはテーパ状の段部14が形成されており、当該段部14にて絶縁碍子2が主体金具3に係止されている。
 さらに、絶縁碍子2には、軸線CL1に沿って延びる軸孔4が貫通形成されており、当該軸孔4の先端側には中心電極5が挿入、固定されている。中心電極5は、熱伝導性に優れる金属〔例えば、銅や銅合金、純ニッケル(Ni)等〕からなる内層5Aと、Niを主成分とする合金からなる外層5Bとを備えている。また、中心電極5は、全体として棒状(円柱状)をなし、その先端部分が絶縁碍子2の先端から突出している。
 加えて、軸孔4の後端側には、絶縁碍子2の後端から突出した状態で端子電極6が挿入、固定されている。
 さらに、軸孔4の中心電極5と端子電極6との間には、円柱状の抵抗体7が配設されている。当該抵抗体7の両端部は、導電性のガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。
 加えて、前記主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にはスパークプラグ1を内燃機関や燃料電池改質器等の燃焼装置に取付けるためのねじ部(雄ねじ部)15が形成されている。また、ねじ部15の後端側には座部16が外周側に向けて突出形成されており、ねじ部15後端のねじ首17にはリング状のガスケット18が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3を燃焼装置に取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部19と、径方向内側に向けて屈曲する加締め部20とが設けられている。
 また、主体金具3の内周面には、絶縁碍子2を係止するためのテーパ状の段部21が設けられている。そして、絶縁碍子2は、主体金具3に対してその後端側から先端側に向かって挿入され、自身の段部14が主体金具3の段部21に係止された状態で、主体金具3の後端側開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって主体金具3に固定されている。尚、段部14,21間には、円環状の板パッキン22が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料ガスが外部に漏れないようになっている。
 さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材23,24が介在され、リング部材23,24間には滑石(タルク)25の粉末が充填されている。すなわち、主体金具3は、板パッキン22、リング部材23,24及び滑石25を介して絶縁碍子2を保持している。
 また、図2(a),(b)に示すように、主体金具3の先端部26には、Niを90質量%以上含有する金属からなる断面矩形状の接地電極27が配置されている。接地電極27は、自身の中間部分にて曲げ返されており、電極基部271、屈曲部272、及び、電極先端部273を備えている。
 電極基部271は、自身の基端部が主体金具3の先端部26に接合され、軸線CL1方向先端側に向けて延びる直棒状をなしている。屈曲部272は、自身の一端が電極基部271の先端に連接されており、湾曲状(屈曲状)をなしている。電極先端部273は、屈曲部272の他端から電極基部271の延出方向と異なる方向(本実施形態では、軸線CL1と直交する方向)に向けて延びる直棒状をなしている。加えて、電極先端部273と中心電極5の先端部との間には、間隙としての火花放電間隙28が形成されており、当該火花放電間隙28において、軸線CL1にほぼ沿った方向で火花放電が行われるようになっている。
 加えて、着火性の向上を図るべく、接地電極27は、主体金具3の先端に対する軸線CL1方向に沿った突出長Lが比較的大きなもの(例えば、7mm以上)とされている。一方で、突出長Lを比較的大きなものとした場合には、接地電極27の先端側がより高温となりやすく、接地電極27の先端部における酸化腐食が懸念される。
 この点を鑑みて、本実施形態では、接地電極27のうち少なくとも電極先端部273において、少なくとも先端面27Fと、接地電極27の外周面のうち中心電極5側に位置する面である対向面27A以外の面とには、耐酸化性に優れる被膜層31(尚、図2等では、図示の便宜上、被膜層31を実際よりも厚肉に示している)が設けられている。具体的には、先端面27Fと、前記対向面27Aの背後に位置する背面27Bと、対向面27A及び背面27Bに隣接する両側面27S1,27S2とに対して、被膜層31が設けられている。本実施形態において、被膜層31は、電極先端部273のみに設けられており、屈曲部272は、接地電極27の母材が露出している。
 また、被膜層31は、Ni、コバルト(Co)、及び、クロム(Cr)を含有する金属材料により構成されており、当該金属材料は、接地電極27の母材(Niを90質量%以上含有する金属)における耐酸化性よりも優れた耐酸化性を有するものとされている。尚、被膜層31を構成する金属材料に、イットリウム(Y)及びアルミニウム(Al)を含有させることとしてもよい。
 また、耐酸化性の優劣は、次の手法により判断することができる。すなわち、所定の金属(例えば、Niを主成分とする合金)からなる金属片の表面に被膜層の形で設け、所定のバーナーにより前記金属片を繰り返し加熱・冷却した際に金属片の表面に形成される酸化膜の厚さが、接地電極27の母材と同一の金属から被膜層を形成した場合に形成される酸化膜の厚さよりも小さくなる金属材料は、接地電極27の母材における耐酸化性よりも優れた耐酸化性を有するということができる。尚、加熱・冷却は、例えば、金属片が1000℃となるように2分間加熱した後、1分間する徐冷することを1サイクルとして、3000サイクル程度行われる。
 加えて、上述のように、被膜層31を設けることで耐酸化性の向上を図ることができるものの、CrやAlなどの添加物を含有する被膜層31は、接地電極27の母材等と比べて熱伝導性に劣る。そのため、被膜層31を設けることで、接地電極27の熱引きが悪化してしまい、突出長Lが比較的大きいことも相まって、接地電極27(特に先端部)が過熱されてしまうことが懸念される。
 この点を考慮して、本実施形態では、電極基部271の少なくとも一部は、被膜層31で覆われることなく、接地電極27の母材が露出するように構成されている。すなわち、主体金具3側へと熱が引かれやすく、比較的高温となりにくい(酸化しにくい)電極基部271の少なくとも一部を、あえて被膜層31で覆うことなく、接地電極27の母材が露出するように構成されている。これにより、接地電極27の熱引きを向上させることができるようになっている。特に本実施形態では、上述の通り、電極先端部273のみに被膜層31が設けられているため、電極基部271及び屈曲部272の外表面全域において、接地電極27の母材が露出するように構成されており、接地電極27の熱引きを格段に向上できるようになっている。
 さらに、本実施形態では、被膜層31の厚さが、5μm以上60μm以下とされている。
 加えて、図3に示すように、電極先端部273に設けられた被膜層31において、先端面27Fに設けられた被膜層31の最小厚さT1は、前記背面27Bや両側面27S1,27S2に設けられた被膜層31の最小厚さT2よりも大きなものとされている。すなわち、主体金具3側へと熱が最も伝導しにくく、最も高温となりやすい(最も酸化しやすい)先端面27Fは、特に厚肉の被膜層31で覆われている。
 また、本実施形態において、被膜層31は、高速酸素燃料溶射(HVOF)、高速空気燃料溶射(HVAF)、プラズマ溶射、コールドスプレー法、又は、エアロゾルデポジション(Aerosol Deposition)法により形成されている。すなわち、被膜層31は、その形成時において、接地電極27の温度を過度に上昇させることのない手法により形成されている。
 尚、被膜層31は、必ずしも電極先端部273のみに設けられるものではなく、図4に示すように、被膜層31を、屈曲部272及び電極先端部273に設けることとしてもよい。また、この場合には、図5に示すように、電極先端部273に設けられた被膜層31の最小厚さT2を、屈曲部272に設けられた被膜層31の最小厚さT3よりも大きくすることが好ましい。すなわち、主体金具3側へと熱が伝導しにくく、高温となりやすい(酸化しやすい)電極先端部273の先端面27Fや背面27B等を、比較的厚肉の被膜層31で覆うことが好ましい。この場合には、先端面27Fや背面27B等に対する酸素の接触をより確実に防止することができ、耐酸化性の向上を図ることができる。
 以上詳述したように、本実施形態によれば、電極先端部273のうち、先端面27Fと、背面27Bと、両側面27S1,27S2とには、耐酸化性に優れる被膜層31が設けられている。従って、接地電極27の酸化腐食を効果的に防止することができ、耐酸化性を十分に向上させることができる。
 また、本実施形態では、比較的高温となりにくく、酸化腐食が比較的生じにくい電極基部271や屈曲部272の外表面全域において、あえて被膜層31を設けずに接地電極27の母材が露出するように構成されている。従って、良好な耐酸化性を維持しつつ、接地電極27の熱が非常に放散されやすくなり、接地電極27の熱引きを著しく向上させることができる。その結果、接地電極27の過熱を極めて効果的に防止することができる。
 加えて、電極基部271や屈曲部272には被膜層31を設けずに済むため、被膜層31を設ける際における、加工時間の短縮や製造コストの低減を図ることができる。その結果、生産性の向上を図ることができる。
 また、接地電極27の母材は、Niを90質量%以上含有する金属により形成されている。そのため、接地電極27の熱伝導性を高めることができ、接地電極27の過熱防止効果(耐消耗性)をより向上させることができる。
 一方で、Niは耐酸化性に比較的劣るが、被膜層31を設けることで、接地電極27において良好な耐酸化性を実現することができる。換言すれば、被膜層31を設けることは、接地電極27の過熱防止効果(耐消耗性)をより向上させるべく、接地電極27の母材をNiを90質量%以上含有する金属により形成した場合に、特に有意である。
 加えて、先端面27Fにおける被膜層31の最小厚さT1が、背面27B及び両側面27S1,27S2における被膜層31の最小厚さT2よりも大きなものとされている。従って、特に高温となりやすい先端面27Fに対する酸素の接触を極めて効果的に抑制することができ、耐酸化性をより効果的に向上させることができる。
 また、電極先端部273の対向面27Aには、被膜層31が設けられないため、火花放電に伴い火花放電間隙28の大きさが大幅に増大してしまうことをより確実に防止できる。その結果、放電電圧の増大を抑制することができ、接地電極27や中心電極5の急激な消耗等を効果的に抑制することができる。
 さらに、被膜層31の構成材料には、良好な耐酸化性を有するCrが含有されている。従って、耐酸化性をより一層確実に向上させることができる。また、被膜層31の構成材料にY及びAlを含有させることで、耐酸化性の更なる向上を図ることができる。
 加えて、被膜層31は、高速酸素燃料溶射(HVOF)、高速空気燃料溶射(HVAF)、プラズマ溶射、コールドスプレー法、又は、エアロゾルデポジション(Aerosol Deposition)法により形成されている。そのため、被膜層31を形成する際における、接地電極27の温度上昇を抑制することができ、熱による接地電極27の損傷をより確実に防止することができる。さらに、接地電極27の損傷防止が図られることで、接地電極27に対する被膜層31の密着性を高めることができ、被膜層31の耐剥離性を向上させることができる。その結果、優れた耐酸化性を長期間に亘って維持することができる。
 次いで、上記実施形態によって奏される作用効果を確認すべく、接地電極の突出長Lを7.6mm又は11.6mmとした上で、接地電極の表面全域に被膜層を設けたスパークプラグのサンプル1(比較例に相当する)と、接地電極の電極先端部及び屈曲部のみに被膜層を設け、電極基部において接地電極の母材が露出するように構成したスパークプラグのサンプル2(実施例に相当する)とを作製し、両サンプルについて、加熱時温度測定試験を行った。加熱時温度測定試験の概要は次の通りである。すなわち、被膜層を設けることなく、表面全域において母材が露出するように構成したスパークプラグのサンプル(基準サンプル)を作製するとともに、所定のバーナーにて前記基準サンプルの接地電極の先端部を加熱し、接地電極のうちその先端から1mmの部分における温度が900℃となる加熱条件を得た。その上で、前記バーナーを用いて、前記サンプル1,2における接地電極の先端部を前記加熱条件にて加熱し、接地電極のうちその先端から1mmの部分における温度を測定した。尚、測定された温度が低いほど接地電極の熱引きが良好であり、接地電極の過熱防止効果に優れるといえる。
 図6に、加熱時温度測定試験の試験結果を示す。尚、接地電極は、Niを90質量%以上含有する金属材料(高Ni材)、又は、Niを主成分とするものの、Niの含有量が90質量%未満の金属材料(低Ni材)により形成した。図6においては、突出長Lを7.6mmとし、接地電極を高Ni材により形成したサンプルの試験結果を黒塗りで示し、突出長Lを11.6mmとし、接地電極を高Ni材により形成したサンプルの試験結果を斜線模様で示す。また、突出長Lを7.6mmとし、接地電極を低Ni材により形成したサンプルの試験結果を格子模様で示し、突出長Lを11.6mmとし、接地電極を低Ni材により形成したサンプルの試験結果を散点模様で示す(尚、後述する図7においても同様の態様で試験結果を示す)。
 さらに、各サンプルともに、被膜層を、Ni、Co、Cr、Al、及び、Yを含有する金属材料により形成した。また、火花放電間隙の大きさを1.1mmとするとともに、接地電極は、その幅を2.8mmとし、その厚さを1.5mmとした(接地電極のサイズや被膜層の構成材料、火花放電間隙の大きさは、以下の試験でも同様とした)。加えて、各サンプルにおける被膜層の厚さを20μmとした。
 図6に示すように、電極基部において接地電極の母材が露出するように構成したサンプル2は、接地電極の表面全域に被膜層を設けたスパークプラグのサンプル1と比較して、加熱時における接地電極の温度が著しく低減することが明らかとなった。これは、電極基部において、接地電極の熱が十分に放散されたことによると考えられる。
 上記試験の結果より、特に高温となりやすい接地電極の先端部における酸化腐食を効果的に抑制しつつ、接地電極の過熱をより確実に防止するという観点から、接地電極のうち少なくとも電極先端部に被膜層を設け、電極基部の少なくとも一部は、接地電極の母材が露出するように構成することが好ましいといえる。
 次に、接地電極の突出長Lを7.6mm又は11.6mmとした上で、接地電極の電極先端部のみに被膜層を設け、屈曲部及び電極基部において接地電極の母材が露出するように構成したスパークプラグのサンプル3を作製し、当該サンプルについて、上述の加熱時温度測定試験を行った。図7に、当該試験の試験結果を示す。尚、図7には、上述のサンプル2における加熱時温度測定試験の試験結果を併せて示す。
 図7に示すように、電極基部及び屈曲部において接地電極の母材が露出するように構成したサンプル3は、加熱時において接地電極の温度を一層低減できることが分かった。これは、接地電極の熱がより効果的に放散されたためであると考えられる。
 上記試験の結果より、接地電極の過熱防止効果の更なる向上を図るべく、被膜層を電極先端部のみに設け、屈曲部及び電極基部は、接地電極の母材が露出するように構成することがより好ましいといえる。
 次いで、Niを75質量%、90質量%、又は、98質量%含有する金属材料により接地電極の母材を構成するとともに、電極先端部及び屈曲部のみに被膜層を設けたスパークプラグのサンプル(被膜層あり)と、Niを75質量%、90質量%、又は、98質量%含有する金属により接地電極の母材を構成するとともに、接地電極に被膜層を設けることなく構成したスパークプラグのサンプル(被膜層なし)とを作製し、各サンプルについて、机上バーナー試験を行った。机上バーナー試験の概要は次の通りである。すなわち、所定のバーナーにより、大気雰囲気下にて接地電極先端部の温度が1000℃となるように2分間加熱した後、1分間徐冷することを1サイクルとして3000サイクル実施した。そして、3000サイクル終了後に、接地電極先端部の断面を確認し、接地電極の表面に形成された酸化膜の厚さを測定した。図8に、当該試験の試験結果を示す。尚、図8においては、被膜層を設けたサンプルの試験結果を黒塗りで示し、被膜層を設けなかったサンプルの試験結果を斜線模様で示す。
 また、各サンプルともに、接地電極の突出長Lを7.6mmとした。さらに、被膜層を設けたサンプルにおいては、被膜層の厚さを15μmとした。
 図8に示すように、Niを90質量%以上含有する金属材料により接地電極の母材を形成したサンプルのうち、被腹膜を設けなかったものは、酸化膜の厚さが極めて大きなものとなり、耐酸化性が不十分であったが、被膜層を設けたものは、酸化膜の厚さが著しく小さなものとなり、優れた耐酸化性を有することが分かった。すなわち、Niを90質量%以上含有する金属材料により接地電極の母材を形成し、耐酸化性が特に不十分となりやすいスパークプラグにおいて、被膜層を設けることが、耐酸化性の向上という面で非常に効果的であることが分かった。
 上記試験の結果より、被膜層を設けることは、接地電極の母材がNiを90質量%以上含有する金属材料により形成され、耐酸化性の低下が特に懸念されるスパークプラグにおいて、特に有効であるといえる。
 次に、電極先端部及び屈曲部のみに被膜層を設けるとともに、被膜層の厚さを種々変更したスパークプラグのサンプルを作製し、各サンプルに対して、終了サイクルを3000サイクルから5000サイクルに変更した上述の机上バーナー試験、及び、上述の加熱時温度測定試験を行った。ここで、机上バーナー試験においては、酸化膜の厚さが0.1mm以下となった場合に、耐酸化性に極めて優れるとして「◎」の評価を下し、酸化膜の厚さが0.1mm超0.2mm以下となった場合に、耐酸化性が良好であるとして「○」の評価を下すこととした。一方で、酸化膜の厚さが0.2mm超となった場合には、耐酸化性にやや劣るとして「△」の評価を下すこととした。表1に、机上バーナー試験の試験結果を示し、図9に、加熱時温度測定試験の試験結果を示す。
 尚、各サンプルともに、接地電極の突出長Lを7.6mmとし、接地電極の母材を、Niを90質量%以上含有する金属材料により形成した。また、被膜層の厚さは、被膜層を形成する際の溶射時間を調節することで変更した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、被膜層の厚さを5μm以上としたサンプルは、良好な耐酸化性を有することが明らかとなった。これは、被膜層の厚さが十分に確保され、接地電極に対する酸素の接触が効果的に抑制されたためであると考えられる。
 また特に、被膜層の厚さを15μm以上としたサンプルは、耐酸化性に極めて優れることが確認された。
 さらに、図9に示すように、被膜層の厚さを60μm以下としたサンプルは、加熱時において、接地電極の温度上昇を効果的に抑制できることが分かった。これは、接地電極のうち被膜層で覆われた部位において放熱がされやすくなったためであると考えらえる。
 上記試験の結果より、耐酸化性の一層の向上を図るとともに、接地電極の過熱防止効果を一段と高めるという観点から、被膜層の厚さを5μm以上60μm以下とすることが好ましいといえる。
 また、耐酸化性の更なる向上を図るという点では、被膜層の厚さを15μm以上とすることがより好ましいといえる。
 次に、接地電極27の母材(ニッケルが90質量%)を準備し、電極先端部273に高速酸素燃料溶射(HVOF)にて、厚さ30μmの被覆層31を設けた。
 その被覆層31は、電極先端部において、先端面27F、背面27B側面27S1、27S2に設けられ、対向面27Aに設けられていない。
 サンプルAは、Ni、Co及びCrからなる被覆層31を設け、サンプルBは、Ni、Co、Cr、Al、Yからなる被覆層31を設け、サンプルCは、被覆層31を全く設けなかった。
 その各サンプルのスパークプラグについて、以下の試験条件で冷熱耐久試験を行った。
<試験条件>
 L4-2000cc(直列4気筒)エンジンにスパークプラグを組付け、3500回転で、WOT(1分)とアイドル(1分)を繰返し、100時間行った。
 試験後の各サンプルの接地電極先端部の断面において、先端面27Fに形成された酸化膜厚の最大値を確認したところ、以下に示す結果となった。
  サンプルA:酸化膜厚   0.05以上0.3未満mm
  サンプルB:酸化膜厚   0.05mm未満
  サンプルC:酸化膜厚   0.3mm以上
 図15の(a)~(c)は、本試験後の接地電極の電極先端部の断面模式図である。図15の(a)がサンプルA、図15の(b)がサンプルB、図15の(c)がサンプルCに相当する。
 サンプルCは、被覆層31が全く設けられていないため、母材自体が、酸化して、0.3mm以上の酸化膜が形成されたことになる。
 被覆層31を設けなかったものに比べ、被膜層31を設けたものは、酸化膜の厚さが小さなものとなり、優れた耐酸化性を有することが分かった。特に、Ni、Co、Cr、Al、Yからなる被覆層31を設けたものは、酸化膜の厚さが著しく小さなものとなり、さらに優れた耐酸化性を有することが分かった。 
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
 (a)上記実施形態において、被膜層31の構成材料は、NiやCo等を含有する金属材料とされているが、被膜層31の構成材料は、接地電極27の母材における耐酸化性よりも優れた耐酸化性を有するものであればよく、その構成材料は、上述の金属材料に限定されるものではない。
 (b)上記実施形態では、電極基部271の外表面全域において接地電極27の母材が露出しているが、電極基部271の少なくとも一部において、接地電極27の母材が露出していればよい。従って、例えば、図10に示すように、電極基部271の一部が被膜層31で覆われるように構成し、電極基部271の一部において、接地電極27の母材が露出するように構成してもよい。
 (c)上記実施形態では、電極先端部273のうち、先端面27F、背面27B、及び、両側面27S1,27S2に被膜層31が設けられており、対向面27Aに被膜層31は設けられていないが、図11及び図12に示すように、対向面27Aに被膜層31を設けることとしてもよい。尚、この場合には、対向面27Aに設けられた被膜層31の最小厚さT4を、先端面27Fや背面27B等に設けられた被膜層31の最小厚さT2よりも小さくすることが好ましい。このように構成することで、対向面27Aに設けられた被膜層31が剥離したり、火花放電に伴い急激に消耗したりした場合であっても、火花放電間隙28の大きさが大幅に増大してしまうことをより確実にできる。その結果、放電電圧の増大を抑制することができ、接地電極27や中心電極5の急激な消耗等を効果的に抑制することができる。
 (d)上記実施形態では、接地電極27のみに被膜層31が設けられているが、図13に示すように、中心電極5の表面に、中心電極5の母材(外層5B)における耐酸化性よりも優れた耐酸化性を有する金属材料からなる被膜層32を設けることとしてもよい(尚、図13では、図示の便宜上、被膜層32を実際よりも厚肉に示している)。この場合には、接地電極27及び中心電極5の双方において耐酸化性を高めることができる。
 (e)上記実施形態において、接地電極27は断面矩形状とされているが、接地電極27の断面形状は特に限定されるものではない。従って、例えば、図14(a)に示すように、接地電極37の外周面のうち対向面37A以外の面37Cが、外側に凸の湾曲面状をなすように構成してもよい。また、図14(b)に示すように、接地電極47の対向面47A及び背面47Bを平坦状に構成する一方で、両側面47S1,47S2を外側に凸の湾曲面状としてもよい。これらの場合には、火花放電間隙28と燃料噴射装置との間に接地電極37,47が位置するような状態で、スパークプラグ1が内燃機関等に取付けられた場合に、接地電極37,47を回り込む形で、火花放電間隙28に対して燃料ガスが入り込みやすくなる。その結果、着火性の向上を図ることができる。
 (f)上記実施形態では、主体金具3の先端部26に接地電極27が接合される場合について具体化しているが、主体金具の一部(又は、主体金具に予め溶接してある先端金具の一部)を削り出すようにして接地電極を形成する場合についても適用可能である(例えば、特開2006-236906号公報等)。
 (g)上記実施形態では、工具係合部19は断面六角形状とされているが、工具係合部19の形状に関しては、このような形状に限定されるものではない。例えば、工具係合部19を、Bi-HEX(変形12角)形状〔ISO22977:2005(E)〕等としてもよい。
 1…スパークプラグ
 2…絶縁碍子(絶縁体)
 3…主体金具
 4…軸孔
 5…中心電極
 27…接地電極
 27A…(接地電極の)対向面
 27B…(接地電極の)背面
 27F…(接地電極の)先端面
 27S1,27S2…(接地電極の)側面
 28…火花放電間隙(間隙)
 31…被膜層
 271…電極基部
 272…屈曲部
 273…電極先端部
 CL1…軸線

Claims (11)

  1.  軸線方向に貫通する軸孔を有する筒状の絶縁体と、
     前記軸孔の先端側に挿設された中心電極と、
     前記絶縁体の外周に設けられた筒状の主体金具と、
     前記主体金具の先端部に配置され、前記中心電極との間に間隙を形成する接地電極とを備え、
     前記接地電極は、
     前記主体金具の先端部から前記軸線方向先端側に向けて延びる電極基部と、
     前記電極基部の先端に一端が連接された湾曲状の屈曲部と、
     前記屈曲部の他端から前記電極基部の延出方向と異なる方向に向けて延び、前記中心電極との間で前記間隙を形成する電極先端部とを具備するスパークプラグであって、
     前記接地電極のうち少なくとも前記電極先端部において、少なくとも先端面と、外周面のうち前記中心電極側に位置する面以外の面とには、前記接地電極の母材における耐酸化性よりも優れた耐酸化性を有する材料からなる被膜層が設けられ、
     前記電極基部の少なくとも一部は、前記接地電極の母材が露出していることを特徴とするスパークプラグ。
  2.  前記電極基部の外表面全域において、前記接地電極の母材が露出していることを特徴とする請求項1に記載のスパークプラグ。
  3.  前記被膜層は、前記電極先端部のみに設けられ、
     前記屈曲部は、前記接地電極の母材が露出していることを特徴とする請求項1又は2に記載のスパークプラグ。
  4.  前記接地電極の母材は、ニッケルを90質量%以上含有する金属により形成されることを特徴とする請求項1乃至3のいずれか1項に記載のスパークプラグ。
  5.  前記被膜層の厚さは、5μm以上60μm以下であることを特徴とする請求項1乃至4のいずれか1項に記載のスパークプラグ。
  6.  前記被膜層は、前記電極先端部のみに設けられる、又は、
     前記被膜層は、前記電極先端部及び前記屈曲部に設けられるとともに、前記電極先端部に設けられた前記被膜層の最小厚さが、前記屈曲部に設けられた被膜層の最小厚さよりも大きいことを特徴とする請求項1乃至5のいずれか1項に記載のスパークプラグ。
  7.  前記電極先端部に設けられた前記被膜層において、前記先端面に設けられた前記被膜層の最小厚さが、前記外周面のうち前記中心電極側に位置する面以外の面に設けられた前記被膜層の最小厚さよりも大きいことを特徴とする請求項1乃至6のいずれか1項に記載のスパークプラグ。
  8.  前記電極先端部において、前記被膜層は、前記先端面、及び、前記外周面のうち前記中心電極側に位置する面以外の面のみに設けられる、又は、
     前記電極先端部において、前記被膜層は、前記電極先端部の外表面全域に設けられるとともに、前記電極先端部のうち前記中心電極側に位置する面に設けられた前記被膜層の最小厚さが、前記先端面、及び、前記外周面のうち前記中心電極側に位置する面以外の面に設けられた前記被膜層の最小厚さよりも小さいことを特徴とする請求項1乃至7のいずれか1項に記載のスパークプラグ。
  9.  前記被膜層は、ニッケル、コバルト、及び、クロムを含有する材料からなることを特徴とする請求項1乃至8のいずれか1項に記載のスパークプラグ。
  10.  前記被膜層は、イットリウム及びアルミニウムを含有する材料からなることを特徴とする請求項9に記載のスパークプラグ。
  11.  前記被膜層は、高速酸素燃料溶射(HVOF)、高速空気燃料溶射(HVAF)、プラズマ溶射、コールドスプレー法、又は、エアロゾルデポジション(Aerosol Deposition)法により形成されることを特徴とする請求項1乃至10のいずれか1項に記載のスパークプラグ。
PCT/JP2013/004817 2012-08-09 2013-08-09 スパークプラグ WO2014024501A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014529321A JP5755373B2 (ja) 2012-08-09 2013-08-09 スパークプラグ
BR112015000768-6A BR112015000768B1 (pt) 2012-08-09 2013-08-09 Vela de ignição
EP13828573.9A EP2884604B1 (en) 2012-08-09 2013-08-09 Spark plug
US14/419,313 US9306374B2 (en) 2012-08-09 2013-08-09 Spark plug
CN201380042245.4A CN104521081B (zh) 2012-08-09 2013-08-09 火花塞

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012176828 2012-08-09
JP2012-176828 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024501A1 true WO2014024501A1 (ja) 2014-02-13

Family

ID=50067751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004817 WO2014024501A1 (ja) 2012-08-09 2013-08-09 スパークプラグ

Country Status (6)

Country Link
US (1) US9306374B2 (ja)
EP (1) EP2884604B1 (ja)
JP (1) JP5755373B2 (ja)
CN (1) CN104521081B (ja)
BR (1) BR112015000768B1 (ja)
WO (1) WO2014024501A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050096A (ja) * 2015-08-31 2017-03-09 日本特殊陶業株式会社 スパークプラグ
JP2019175841A (ja) * 2018-03-27 2019-10-10 株式会社デンソー スパークプラグおよびスパークプラグ用の接地電極部品
JP2020004699A (ja) * 2018-06-21 2020-01-09 日本特殊陶業株式会社 スパークプラグ

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012279038B2 (en) 2011-07-05 2015-09-24 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10108783B2 (en) 2011-07-05 2018-10-23 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health of employees using mobile devices
US9962083B2 (en) 2011-07-05 2018-05-08 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
US9710788B2 (en) 2011-07-05 2017-07-18 Saudi Arabian Oil Company Computer mouse system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9844344B2 (en) 2011-07-05 2017-12-19 Saudi Arabian Oil Company Systems and method to monitor health of employee when positioned in association with a workstation
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9492120B2 (en) 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US9722472B2 (en) 2013-12-11 2017-08-01 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for harvesting human energy in the workplace
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
DE102017205520A1 (de) * 2017-03-31 2018-10-04 Robert Bosch Gmbh Zündkerzenelektrode, Zündkerze und Verfahren zur Herstellung einer Zündkerzenelektrode
CN110651055A (zh) * 2017-05-19 2020-01-03 住友电气工业株式会社 电极材料、火花塞用电极以及火花塞
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment
JP7124496B2 (ja) * 2018-07-04 2022-08-24 株式会社デンソー 内燃機関用の点火装置
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
CA3151605C (en) 2019-09-19 2023-04-11 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831417U (ja) * 1971-08-19 1973-04-17
JPS6041785A (ja) * 1983-08-17 1985-03-05 株式会社デンソー 点火栓
JPH11514145A (ja) 1996-08-08 1999-11-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関用の点火プラグのための電極及びそれを製作する方法
JP2006236906A (ja) 2005-02-28 2006-09-07 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2009533802A (ja) 2006-04-07 2009-09-17 フェデラル−モーグル コーポレイション スパークプラグ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439707A (en) * 1980-07-23 1984-03-27 Nippon Soken, Inc. Spark plug with a wide discharge gap
US4742265A (en) 1986-11-12 1988-05-03 Ford Motor Company Spark plug center electrode of alloy material including aluminum and chromium
JPH05114457A (ja) 1991-10-22 1993-05-07 Ngk Spark Plug Co Ltd スパークプラグ
US20010030494A1 (en) * 2000-01-24 2001-10-18 Keiji Kanao Ground electrode for spark plug, spark plug and method of manufacturing the same
JP2007242588A (ja) * 2006-02-13 2007-09-20 Denso Corp 内燃機関用のスパークプラグ
JP4700638B2 (ja) * 2006-03-20 2011-06-15 日本特殊陶業株式会社 内燃機関用スパークプラグ
US20080308057A1 (en) * 2007-06-18 2008-12-18 Lykowski James D Electrode for an Ignition Device
WO2010053116A1 (ja) * 2008-11-06 2010-05-14 日本特殊陶業株式会社 スパークプラグ及びその製造方法
JP5028508B2 (ja) * 2010-06-11 2012-09-19 日本特殊陶業株式会社 スパークプラグ
JP5662983B2 (ja) * 2012-10-25 2015-02-04 日本特殊陶業株式会社 点火プラグ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831417U (ja) * 1971-08-19 1973-04-17
JPS6041785A (ja) * 1983-08-17 1985-03-05 株式会社デンソー 点火栓
JPH11514145A (ja) 1996-08-08 1999-11-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関用の点火プラグのための電極及びそれを製作する方法
JP2006236906A (ja) 2005-02-28 2006-09-07 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2009533802A (ja) 2006-04-07 2009-09-17 フェデラル−モーグル コーポレイション スパークプラグ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050096A (ja) * 2015-08-31 2017-03-09 日本特殊陶業株式会社 スパークプラグ
JP2019175841A (ja) * 2018-03-27 2019-10-10 株式会社デンソー スパークプラグおよびスパークプラグ用の接地電極部品
JP2020004699A (ja) * 2018-06-21 2020-01-09 日本特殊陶業株式会社 スパークプラグ

Also Published As

Publication number Publication date
EP2884604B1 (en) 2019-10-09
BR112015000768A2 (pt) 2019-11-05
JP5755373B2 (ja) 2015-07-29
EP2884604A4 (en) 2016-04-06
CN104521081B (zh) 2016-08-24
JPWO2014024501A1 (ja) 2016-07-25
US20150222096A1 (en) 2015-08-06
EP2884604A1 (en) 2015-06-17
CN104521081A (zh) 2015-04-15
US9306374B2 (en) 2016-04-05
BR112015000768B1 (pt) 2021-12-21

Similar Documents

Publication Publication Date Title
JP5755373B2 (ja) スパークプラグ
US10897123B2 (en) Spark plug for internal combustion engine having a shaped composite chip on center electrode and/or ground electrode
WO2010103790A1 (ja) 内燃機関用スパークプラグ及びその製造方法
JP4625531B1 (ja) スパークプラグ
JP5476123B2 (ja) 内燃機関用スパークプラグ
JP6260040B2 (ja) 点火プラグ
JP5525575B2 (ja) スパークプラグ
WO2011118087A1 (ja) スパークプラグ
JP2010192184A (ja) 内燃機関用スパークプラグ。
US6472801B1 (en) Spark plug with a corrosion impeding layer
JP5820279B2 (ja) 点火プラグ
JP5167334B2 (ja) スパークプラグ
JP5913032B2 (ja) スパークプラグ
JP6612499B2 (ja) スパークプラグ
KR101625349B1 (ko) 전극 재료 및 스파크 플러그
JP5642129B2 (ja) スパークプラグ
WO2023281957A1 (ja) スパークプラグ
JP2014056653A (ja) スパークプラグ
JP2011034959A (ja) スパークプラグ
JP5837858B2 (ja) 点火プラグ
JP6276216B2 (ja) 点火プラグ
JP2013254670A (ja) スパークプラグ
WO2019078294A1 (ja) 内燃機関用の点火プラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529321

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013828573

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000768

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015000768

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150113

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: BR

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2425 DE 27/06/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015000768

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2012-176828; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013.

ENP Entry into the national phase

Ref document number: 112015000768

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150113