WO2014024452A1 - バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置 - Google Patents

バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置 Download PDF

Info

Publication number
WO2014024452A1
WO2014024452A1 PCT/JP2013/004694 JP2013004694W WO2014024452A1 WO 2014024452 A1 WO2014024452 A1 WO 2014024452A1 JP 2013004694 W JP2013004694 W JP 2013004694W WO 2014024452 A1 WO2014024452 A1 WO 2014024452A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage detection
voltage
battery system
detection line
unit cell
Prior art date
Application number
PCT/JP2013/004694
Other languages
English (en)
French (fr)
Inventor
由知 西原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/400,553 priority Critical patent/US9627896B2/en
Priority to JP2014529298A priority patent/JPWO2014024452A1/ja
Publication of WO2014024452A1 publication Critical patent/WO2014024452A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a battery system including a voltage detection circuit that detects voltages of a plurality of unit cells, and more particularly, to a battery system that detects a unit cell voltage by connecting a unit cell and a voltage detection circuit with a voltage detection line.
  • the present invention relates to an electric vehicle including the battery system and a power storage device.
  • the battery system that increases the output increases the voltage by connecting many batteries in series.
  • batteries connected in series are charged with the same charging current and discharged with the same current. Therefore, if all the batteries have exactly the same characteristics, no imbalance occurs in the battery voltage or the remaining capacity.
  • the battery imbalance is an imbalance of voltage and remaining capacity when charging and discharging are repeated. Furthermore, battery voltage imbalance causes overcharge or overdischarge of a specific battery. In order to prevent overcharge and overdischarge of the battery, a battery system that detects the voltage of each battery and controls the charge / discharge current has been developed. (See Patent Document 1)
  • This battery system controls the charge and discharge of the battery block by detecting the voltage of each battery with a voltage detection circuit in order to prevent overcharge and overdischarge of each battery.
  • the voltage detection circuit is mounted on a circuit board, and the input side is connected to each battery via a voltage detection line in order to detect the voltage of each battery.
  • the voltage detection line has one end connected to the positive and negative electrode terminals of each battery and the other end connected to a circuit board on which the voltage detection circuit is mounted.
  • each unit cell is connected to a circuit board on which a voltage detection circuit is mounted. For example, 10 to 20 unit cells are connected in series.
  • the battery block is connected to the circuit board via 11 to 21 voltage detection lines.
  • Each voltage detection line has one end connected to the electrode terminal of each unit cell and the other end connected to the circuit board located in the vicinity of the battery block.
  • the resistance is different, and the electrical resistance of the long voltage detection line is larger than the electrical resistance of the short voltage detection line.
  • a thin wire harness, a flexible printed circuit board, or the like is used, so that the difference in electrical resistance increases depending on the length.
  • the difference in electric resistance of the voltage detection line causes a detection error in the voltage detection circuit. This is because the electric resistance of the voltage detection line causes a voltage drop.
  • the voltage detection circuit cannot accurately detect the voltage of the unit cell.
  • the voltage detection circuit that cannot accurately detect the voltage of the unit cell cannot control overcharge or overdischarge of the unit cell in an ideal state, and causes the electrical characteristics of the specific unit cell to deteriorate and deteriorate.
  • An important object of the present invention is to provide a battery system capable of effectively preventing the deterioration of the unit cells and the deterioration of the electric characteristics by detecting the voltage of each unit cell with higher accuracy, and the electric vehicle and the power storage device including the battery system. It is to provide.
  • the battery system of the present invention includes a plurality of unit cells 1, a voltage detection circuit 3 for detecting the voltage of each unit cell, and a plurality of electrode terminals 1 A connected to the input side of the voltage detection circuit 3.
  • the voltage detection line 6 is provided, and the voltage detection circuit 3 detects the voltage of each unit cell 1 through the voltage detection line 6.
  • Each voltage detection line 6 has a different length, and at least one of the voltage detection lines 6 is provided with a resistance adjusting unit 7 that equalizes the electrical resistance of the long voltage detection line 6X and the electrical resistance of the short voltage detection line 6Y.
  • the voltage detection circuit 3 detects the voltage of each unit cell 1 through the voltage detection line 6 in which the electrical resistance is equalized by the resistance adjusting unit 7.
  • the battery system described above has a feature that the voltage of each unit cell can be detected with high accuracy and the degradation of the unit cell and the deterioration of the electrical characteristics can be effectively prevented. This is because the battery system described above is provided with a resistance adjustment unit in the voltage detection line to eliminate the imbalance between the electrical resistance of the long voltage detection line and the short voltage detection line, and to make the voltage drop of each voltage detection line uniform. Because. In other words, both the unit cell connected to the voltage detection circuit with the long voltage detection line and the unit cell connected to the voltage detection circuit with the short voltage detection line detect the voltage under the same conditions, and the unbalance error due to the voltage drop. Because it can be ignored.
  • the correction voltage due to the voltage drop can be made the same voltage, so that the unit cell with higher accuracy by simple correction. Can be detected.
  • a resistance adjusting unit 7A is provided with a plurality of voltage detection lines 6 on the printed circuit board 10 so that the width (W) of the long voltage detection line 6X is wider than the width (W) of the short voltage detection line 6Y. It is possible to equalize the electrical resistance of the long voltage detection line 6X and the electrical resistance of the short voltage detection line 6Y.
  • the above battery system equalizes the electrical resistance of the long voltage detection line 6X and the electrical resistance of the short voltage detection line 6Y with the width (W) of the voltage detection line provided on the printed circuit board, so that it is simple and easy. A feature is realized in which the electric resistance is equalized more accurately and the voltage of the unit cell can be detected with high accuracy.
  • the battery system of the present invention includes a circuit board 5 on which the voltage detection circuit 3 is mounted, and the circuit board 5 can be provided with connection terminals 9 for connecting a plurality of voltage detection lines 6 at a predetermined interval. Further, the battery system is provided with a plurality of voltage detection lines 6 on the flexible printed circuit board 10 ⁇ / b> A, and the flexible printed circuit board 10 ⁇ / b> A has a connection portion 12 connected to the connection terminal 9 of the circuit board 5.
  • the resistance adjusting portion 7A of the line 6 can be arranged away from the connecting portion 12, and the connecting portions 12 can be arranged at equal intervals with equal lateral width.
  • the battery system described above can equalize the electric resistance of each voltage detection line while simply connecting a flexible printed circuit board realizing a plurality of voltage detection lines to a circuit board on which the voltage detection circuit is mounted. This is because the resistance adjustment part provided on the flexible printed circuit board is arranged away from the connection part connected to the circuit board, so that the horizontal width of the connection part can be made equal and can be connected to the connection terminal of the circuit board. is there.
  • the voltage detection line 6 can be used as the lead wire 13, and the lead wire 13 of the long voltage detection line 6X can be made thicker than the lead wire 13 of the short voltage detection line 6Y.
  • the voltage detection line is used as a lead wire, and the electrical resistance of the voltage detection line is adjusted by the length and thickness of the lead wire. Therefore, the electrical resistance of each voltage detection line can be equalized easily and at low cost. The voltage of each unit cell can be detected with high accuracy.
  • the resistor 14 that realizes the resistance adjusting unit 7C can be connected to the short voltage detection line 6Y.
  • the resistance adjusting unit is realized by a resistor, the electric resistance of each voltage detection line can be equalized more accurately and the voltage of each unit cell can be accurately detected.
  • the battery system of the present invention includes a discharge circuit 21 connected to the unit cells 1 via the voltage detection line 6, and a control circuit that controls the discharge state of the discharge circuit 21 to equalize the unit cells 1. 24, the voltage detection circuit 3 detects the discharge state of the discharge circuit 21, and the voltage detection circuit 3 detects the discharge state of the discharge circuit 21.
  • the voltage drop of the detection line 6 can be detected, and the correction
  • the battery system described above has a feature that the voltage of the unit cell can be detected with high accuracy while using the voltage detection line together with the line connecting the discharge circuit to the unit cell. This is because the voltage drop of the voltage detection line in the state where the discharge circuit discharges in order to equalize the unit cells can be made equal to detect the unit cell voltage. In a state where the discharge circuit equalizes and discharges the unit cells, a discharge current that equalizes the unit cells flows through the voltage detection line, and the voltage drop increases.
  • the voltage detection lines with equalized electrical resistance can equalize the voltage drop due to the discharge current that equalizes the unit cells.
  • the voltage drop of the voltage detection line is specified to a constant voltage value, and the voltage of the cell is corrected by correcting the specified voltage drop. Is detected with extremely high accuracy.
  • the correction unit 15 has a memory 16 that stores a voltage drop of the voltage detection line 6 in a discharged state as a correction voltage, and the correction voltage stored in the memory 16 can correct the detection voltage. it can.
  • the voltage drop of the voltage detection line due to the discharge current that equalizes the unit cells is stored in the memory as a correction voltage in advance, so the correction stored in the memory is in the state of equalizing discharge of the unit cells.
  • An electric vehicle includes any one of the battery systems 100 described above, a motor 93 for traveling that is supplied with power from the battery system 100, a vehicle main body 90 including the battery system 100 and the motor 93, and a motor. And a wheel 97 for driving the vehicle main body 90.
  • the above-mentioned electric vehicle can detect the voltage of each unit cell constituting the battery system mounted on it more accurately, effectively preventing the deterioration of the unit cell and the deterioration of the electrical characteristics, and can be used safely for a long time. it can.
  • the power storage device of the present invention one of the battery systems 100 described above is provided, and a power supply controller 84 that controls charging / discharging of the battery system 100 is provided.
  • the power supply controller 84 can charge the prismatic battery with electric power from the outside and can control to charge the prismatic battery.
  • the above power storage device can detect the voltage of each unit cell constituting the battery system used for it more accurately, effectively preventing deterioration of the unit cell and deterioration of electrical characteristics, and can be used with confidence over a long period of time. it can.
  • FIG. 1 is an exploded perspective view of a battery system according to an embodiment of the present invention.
  • FIG. 3 is a plan view of the battery system shown in FIG. 2. It is an enlarged view which shows the connection structure of the circuit board of a battery system shown in FIG. 3, and a voltage detection line. It is a top view which shows another example of a voltage detection line. It is a top view which shows another example of a voltage detection line. It is a flowchart in which the battery system shown in FIG. 1 detects the voltage of each unit cell.
  • the embodiment described below exemplifies a battery system for embodying the technical idea of the present invention, an electric vehicle including the battery system, and a power storage device.
  • the present invention is a battery system and the battery.
  • the electric vehicle and power storage device including the system are not specified as follows. Furthermore, this specification does not limit the members shown in the claims to the members of the embodiments.
  • the battery system has a battery block 2 in which a plurality of rechargeable cells 1 are connected in series, and voltage detection is performed on each of the cells 1 constituting the battery block 2.
  • a voltage detection circuit 3 is provided which is connected via a line 6 and detects the voltage of each unit cell 1.
  • the battery system of FIG. 1 also includes an equalization circuit 4 that discharges the unit cells 1 constituting the battery block 2 to equalize the unit cells 1.
  • the battery system is not necessarily provided with a unit cell equalization circuit.
  • the unit cell 1 constituting the battery block 2 is one secondary battery. However, the unit cell may be a plurality of secondary batteries connected in series or in parallel.
  • the unit cell 1 is a non-aqueous electrolyte battery such as a lithium ion battery or a lithium polymer battery.
  • the unit cell 1 is composed of one secondary battery.
  • the voltage detection circuit 3 detects the voltage of each unit cell 1.
  • the unit cell can be any rechargeable secondary battery such as a nickel metal hydride battery.
  • a battery system in which a secondary battery is a nickel metal hydride battery has a battery module formed by connecting a plurality of secondary batteries in series as one unit cell, and each unit cell, that is, a plurality of secondary batteries are connected in series. The voltage of the battery module is detected, and the battery module is equalized.
  • the voltage detection circuit 3 connects the input side to the positive and negative electrode terminals 1 ⁇ / b> A of each unit cell 1 through the voltage detection line 6.
  • the voltage detection circuit 3 detects the voltage of each unit cell 1 through the voltage detection line 6.
  • the battery system of FIG. 2 includes a battery block 2 including a plurality of unit cells 1 and a circuit board 5 on which the voltage detection circuit 3 is mounted.
  • the plurality of unit cells 1 constituting the battery block 2 are connected in series with electrode terminals 1 ⁇ / b> A adjacent to each other and connected to each other by a bus bar 8.
  • one end of the voltage detection line 6 is connected to the bus bar 8, and the voltage at the connection point of the unit cells 1 connected in series via the bus bar 8 is detected by the voltage detection line 6. Yes.
  • the plurality of unit cells constituting the battery block can be connected in parallel or in series and in parallel.
  • the circuit board 5 is provided with connection terminals 9 for connecting a plurality of voltage detection lines 6 at a predetermined interval, as shown in FIGS.
  • the connection terminal 9 of the circuit board 5 is connected to the voltage detection line 6 connected to the electrode terminal 1 ⁇ / b> A of each unit cell 1.
  • the voltage detection line 6 is connected to the connection terminal 9 of the circuit board 5 by a method such as soldering.
  • the voltage detection line 6 Since the voltage detection line 6 is connected to the connection terminal 9 of the circuit board 5 and the electrode terminal 1A of each unit cell 1, the voltage detection line 6 is different in length and is connected to the unit cell 1 at a position away from the connection terminal 9 of the circuit board 5.
  • the voltage detection line 6 connected is long, and the voltage detection line 6 connected to the unit cell 1 located near the connection terminal 9 is short. That is, the long voltage detection line 6X is connected to the unit cell 1 located away from the connection terminal 9 of the circuit board 5, and the short voltage detection line 6Y is connected to the unit cell 1 located near the connection terminal 9.
  • the voltage detection lines 6 having different lengths have different electric resistances.
  • At least one of the plurality of voltage detection lines 6 includes the electrical resistance of the long voltage detection line 6X and the short voltage.
  • a resistance adjusting unit 7 for equalizing the electrical resistance of the detection line 6Y is provided. The resistance adjustment unit 7 provided in the long voltage detection line 6X reduces the electrical resistance, and the resistance adjustment unit 7 provided in the short voltage detection line 6Y increases the electrical resistance.
  • the printed circuit board 10 realizes the voltage detection line 6 with a plurality of conductive lines provided so as to be insulated from each other. If the conductive lines that realize the long voltage detection line 6X and the short voltage detection line 6Y have the same lateral width (W), the electrical resistance of the long voltage detection line 6X increases. Therefore, in this embodiment, in order to equalize the electrical resistances of the long voltage detection line 6X and the short voltage detection line 6Y, the conductive line that realizes the long voltage detection line 6X is a conductive material that realizes the short voltage detection line 6Y.
  • the resistance adjustment portion 7A having a wider width (W) than the line, that is, by providing the resistance adjustment portion 7A having a large cross-sectional area, the electrical resistance is reduced, and the voltage detection lines 6 are connected to each other. Electric resistance is equalized.
  • the voltage detection lines 6Aa and 6Ab connected to the electrode terminal 1A of the unit cell 1 farthest from the connection terminal 9 of the circuit board 5 are the longest.
  • the detection line 6Ac, the voltage detection line 6Ad,..., And the voltage detection line 6Am are gradually shortened.
  • the voltage detection lines 6Ak, 6Al, and 6Am, which are the short voltage detection lines 6Y are almost equal in length, and the difference between these electric resistances is small enough to be tolerated.
  • the voltage detection lines 6Aa to 6Aj, which are the long voltage detection lines 6X are provided with a resistance adjusting unit 7A in an intermediate portion excluding both end portions 6x to equalize the electric resistance of each voltage detection line 6.
  • the width (W) of the resistance adjusters 7Aa and 7Ab is maximized, and for the voltage detection lines 6Ac to 6Aj, Since the length of the detection line 6Ac, the voltage detection line 6Ad, the voltage detection line 6Ae,... (W) is gradually narrowed in the order of the resistance adjustment unit 7Ac, the resistance adjustment unit 7Ad, the resistance adjustment unit 7Ae,..., And the resistance adjustment unit 7Aj. Thereby, the electric resistances of all the voltage detection lines 6Aa to 6Am are equalized.
  • the resistance adjustment unit provided in the long voltage detection line does not necessarily have to change the width (W) according to the length of the voltage detection line, and the resistance adjustment unit makes the width (W) of the resistance adjustment unit uniform. It is possible to equalize all the voltage detection line electric resistances by adjusting the length of the. In other words, the resistance adjustment unit provided in the long voltage detection line increases the length of the resistance adjustment unit having a wide lateral width (W) provided in the longer voltage detection line, in other words, the narrow conductive portion. By increasing the ratio of the resistance adjustment unit to the line, the electrical resistance of the entire voltage detection line can be equalized.
  • the flexible printed circuit board 10 ⁇ / b> A is provided with connection portions 12 connected to the connection terminals 9 of the circuit board 5 arranged at equal intervals.
  • the connection portions 12 are arranged at the same intervals as the connection terminals 9 of the circuit board 5 with equal widths at one end portions of the plurality of conductive lines.
  • This flexible printed circuit board 10 ⁇ / b> A connects the connection portions 12 arranged at equal intervals to the connection terminals 9 of the circuit board 5 by a method such as soldering.
  • the flexible printed circuit board 10 ⁇ / b> A is arranged such that the resistance adjustment unit 7 ⁇ / b> A of the voltage detection line 6 configured by a conductive line is separated from the connection unit 12.
  • this flexible printed circuit board 10A arranges the resistance adjusting portion 7A away from the connecting portion 12, the interval between the plurality of conductive lines provided in the connecting portion 12 is connected to the connection terminal 9 of the circuit board 5 without affecting the resistance adjusting portion 7A. Can be designed to be connected.
  • the conductive line having the resistance adjustment portion 7A having a wide width (W) is provided with a resistance adjustment portion 7A in the middle, and is connected to the electrode terminal 1A of the unit cell 1 and the connection terminal 9 of the circuit board 5
  • the width of the portion 6x is the same as the width of the other conductive lines.
  • This flexible printed circuit board 10 ⁇ / b> A can easily and reliably connect the narrowed end portions 6 x to the electrode terminal 1 ⁇ / b> A of the unit cell 1 and the connection terminal 9 of the circuit board 5.
  • the conductive line that realizes the voltage detection line 6 provided on the flexible printed circuit board 10A has one end connected to the electrode terminal 1A of the unit cell 1 and the other end connected to the connection terminal 9 of the circuit substrate 5, and the electrode of the unit cell 1 is connected.
  • the terminal 1A is connected to the voltage detection circuit 3 mounted on the circuit board 5.
  • the battery system of FIG. 5 uses the voltage detection lines 6Ba to 6Bm as the lead wires 13, the voltage detection lines 6Ba to 6Bj as the long voltage detection lines 6X, and the voltage detection lines 6Bk to 6B as the short voltage detection line 6Y.
  • a resistance adjustment unit 7B is provided that is thicker than the 6Bm lead wire 13Y and reduces the electrical resistance formed by the thick lead wire 13X on the long voltage detection line 6X. Since the electrical resistance of the lead wire 13 is proportional to the length and inversely proportional to the cross-sectional area of the conducting wire, the ratio of [length] / [cross-sectional area] of each voltage detection line 6Ba to 6Bm is set to a constant value, and the electrical resistance is Equalize.
  • the battery system of FIG. 6 connects the resistor 14 which implement
  • the electric resistance of the detection line 6 is equalized. Since the electric resistance of the voltage detection line 6 increases in proportion to the length, the resistor 14 is connected to the short voltage detection line 6Y.
  • the plurality of voltage detection lines 6 shown in FIG. 6 have the longest voltage detection lines 6Ca and 6Cb connected to the electrode terminal 1A of the unit cell 1 farthest from the connection terminal 9 of the circuit board 5, and hereinafter the voltage detection lines 6Cc.
  • the voltage detection lines 6Cd,..., And the voltage detection line 6Cm are gradually shortened.
  • the voltage detection lines 6Ca and 6Cb which are the long voltage detection lines 6X, are almost equal in length, and the difference between these electric resistances is small enough to allow, so that the resistors 14 are not connected and are uniform. It is a horizontal conductive line.
  • the voltage detection lines 6Cc to 6Cm which are the short voltage detection lines 6Y, are connected to the resistors 14 in the middle so that the electric resistances of the voltage detection lines 6 are equalized.
  • the electrical resistance of the resistor 14 connected to the short voltage detection line 6Y specifies the electrical resistance of the voltage detection lines 6Cc to 6Cm to be equal to the electrical resistance of the longest voltage detection lines 6Ca and 6Cb.
  • the voltage detection circuit 3 can detect the voltage of the unit cell 1 with higher accuracy by correcting the voltage drop of the voltage detection line 6 with equalized electrical resistance. As shown in FIG. 1, the voltage detection circuit 3 includes a correction circuit 15 that performs correction for subtracting the voltage drop of the voltage detection line 6 from the voltage to be detected.
  • the voltage detection circuit 3 including the correction circuit 15 can accurately detect the voltage of the unit cell 1 by correcting the voltage drop of the voltage detection line 6 and can detect it by turning on / off a discharge switch 22 of the equalization circuit 4 described later. By correcting the applied voltage, the voltage of the unit cell 1 can be accurately detected while equalizing the unit cell 1.
  • the equalization circuit 4 equalizes the cell voltage of the unit cell 1 to eliminate the imbalance.
  • the equalization circuit 4 detects the voltage of each unit cell 1 and cancels the voltage imbalance of each unit cell 1 to equalize it.
  • the equalization circuit 4 stops the operation after equalizing all the unit cells 1.
  • the equalization circuit 4 discharges the unit cell 1 having a high voltage to eliminate imbalance.
  • the equalization circuit 4 of FIG. 1 includes a discharge circuit 21 connected in parallel to each unit cell 1 and a control circuit 24 that controls a discharge switch 22 of the discharge circuit 21 to be turned on and off.
  • the discharge circuit 21 includes a series circuit of a discharge resistor 23 and a discharge switch 22. Since the discharge circuit 21 discharges and equalizes each unit cell 1 independently, the discharge circuit 21 is in a battery system in which 100 unit cells, for example, 100 unit cells are connected in series. 100 sets of discharge circuits are provided.
  • the discharge switch 22 and the discharge resistor 23 constituting each discharge circuit 21 are mounted on the circuit board 5.
  • the discharge circuit 21 is connected to each unit cell 1 via the voltage detection line 6 of the voltage detection circuit 3. Therefore, the voltage detection line 6 connects each unit cell 1 to the input side of the voltage detection circuit 3 and is also connected to the discharge circuit 21.
  • the equalization circuit 4 includes a control circuit 24 that controls the discharge switch 22 on and off with the voltage of the unit cell 1.
  • the control circuit 24 in FIG. 1 controls each discharge switch 22 to be turned on / off by the voltage of the unit cell 1 detected by the voltage detection circuit 3.
  • the equalization circuit 4 uses the voltage detection circuit 3 together with a circuit that detects the voltage of the unit cell 1.
  • the equalization circuit may be provided with a dedicated voltage detection circuit for detecting the voltage of the unit cell.
  • the control circuit 24 compares the voltage of each unit cell 1 detected by the voltage detection circuit 3 and controls the discharge switch 22 so as to equalize the voltages of all the unit cells 1.
  • the control circuit 24 turns on the discharge switch 22 of the discharge circuit 21 connected to the unit cell 1 that is too high and discharges it. As the unit cell 1 is discharged, the voltage decreases.
  • the discharge switch 22 is switched from on to off when the voltage of the unit cell 1 decreases until it balances with the other unit cells 1. When the discharge switch 22 is turned off, the discharge of the unit cell 1 is stopped. In this way, the control circuit 24 discharges the high voltage unit cell 1 to balance the voltages of all the unit cells 1.
  • the battery system of FIG. 1 connects the discharge circuit 21 of the equalization circuit 4 to each unit cell 1 via the voltage detection line 6 that connects the voltage detection circuit 3 to each unit cell 1. Therefore, when the voltage detection circuit 3 detects the voltage of each unit cell 1, the discharge switch 22 connected to a certain unit cell 1 is on, and the discharge switch 22 connected to another unit cell 1 is off. It becomes a state. When the discharge switch 22 is in the on state, a voltage drop occurs in the voltage detection line 6 due to the discharge current flowing through the discharge resistor 23. When the discharge switch 22 is in the off state, the discharge current does not flow. A voltage drop in the detection line 6 does not occur. Therefore, when the voltage detection circuit 3 detects the voltage of each unit cell 1, an error occurs in the voltage of the unit cell 1 detected by changing the voltage drop of the voltage detection line 6 by turning on / off the discharge switch 22.
  • the battery system of FIG. 1 includes a correction circuit 15 in the voltage detection circuit 3.
  • the correction circuit 15 includes a memory 16 that stores a voltage drop of the voltage detection line 6 when the discharge switch 22 is on as a correction voltage.
  • the correction circuit 15 switches on the discharge switch 22 to detect a voltage drop of the voltage detection line 6 in a state where the discharge circuit 21 is connected to the unit cell 1 and stores this voltage drop in the memory 16 as a correction voltage.
  • the correction circuit 15 can detect a voltage drop in the voltage detection line 6 by subtracting an on-voltage detected with the discharge switch 22 in an on state from an off-voltage detected with the discharge switch 22 in an off state.
  • each voltage detection line 6 equalizes the electric resistance by the resistance adjustment unit 7, the correction circuit 15 detects the correction voltage from the voltage drop of any one of the voltage detection lines 6, and uses this correction voltage for all the voltages. The voltage drop of the detection line 6 is corrected.
  • the voltage detection circuit 3 includes a detection unit 17 that detects on / off of the discharge switch 22. Since the discharge switch 22 is controlled to be turned on / off by the control circuit 24 of the equalization circuit 4, the detection unit 17 detects the on / off of the discharge switch 22 by the on / off signal of the discharge switch 22 input from the control circuit 24. Then, it is determined whether or not the correction voltage is added to the detection voltage.
  • the voltage detection circuit 3 including the correction circuit 15 that detects the voltage drop of each voltage detection line 6 in a state where each unit cell 1 is discharged by the discharge circuit 21 detects the voltage drop of each voltage detection line 6.
  • the correction circuit 15 determines a failure of the voltage detection line 6 by comparing the voltage drop of each voltage detection line 6 to be detected with a preset voltage stored in advance.
  • the set voltage stored in the correction circuit 15 is the maximum voltage drop of the voltage detection line 6 that does not fail.
  • the voltage detection line 6 equalizes and equalizes the electrical resistance, the voltage drop is equal when the voltage detection line 6 does not fail. Therefore, when the voltage drop in the discharge state of each voltage detection line 6 becomes higher than the set voltage, it can be determined that there is a failure.
  • the voltage detection line 6 has an increased electrical resistance due to poor contact between the connection terminal 9 and the connection portion 12, damage to the lead wire 13, and the like.
  • the voltage detection circuit 3 can determine that the voltage detection line 6 has failed. As a result, the failure of the voltage detection line 6 that occurs with time can be detected quickly, and the safety of the apparatus can be improved.
  • the voltage detection circuit 3 corrects the current flowing to the input side of the voltage detection circuit 3, that is, the voltage drop of the voltage detection line 6 due to the input current of the voltage detection circuit 3 to detect the voltage of the unit cell 1 more accurately. it can.
  • the voltage drop of the voltage detection line 6 detects the input current of the voltage detection circuit 3, further measures the electrical resistance of the voltage detection line 6, and calculates the product of the input current and the electrical resistance of the voltage detection line 6. Can be calculated. Since this voltage drop is generated as the same voltage in all the voltage detection lines 6, the voltage drop is subtracted from the detection voltage to obtain an accurate voltage of the unit cell 1.
  • the above battery system accurately detects the voltage of each unit cell 1 while performing the following operation to equalize the unit cells 1 of the battery block 2.
  • [Step of n 1] The contactor 19 is switched off, and charging / discharging of the battery block 2 is stopped.
  • [Step of n 2] All the discharge switches 22 of the equalization circuit 4 are switched off.
  • [Step n 3] The voltage detection circuit 3 detects the voltage of each unit cell 1.
  • Step n 4] All the discharge switches 22 of the equalization circuit 4 are switched on.
  • Step n 5] The voltage detection circuit 3 detects the voltage of each unit cell 1.
  • the voltage detection circuit 3 detects the on / off state of the discharge switch 22 connected in parallel with the unit cell 1 from which the voltage is detected, and the connected discharge switch 22 is in the on state.
  • the voltages of all the unit cells 1 are detected.
  • the above battery system can be used as an in-vehicle power source.
  • a vehicle equipped with a battery system an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used and used as a power source for these vehicles. .
  • FIG. 8 shows an example in which a battery system is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the battery system shown in this figure has an engine 96 and a running motor 93 that run the vehicle HV, a battery system 100 that supplies power to the motor 93, and power generation that charges a square battery of the battery system 100.
  • the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging and discharging the square battery of the battery system 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the battery system 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the prismatic battery of the battery system 100.
  • FIG. 9 shows an example in which a battery system is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the battery system shown in this figure includes a traveling motor 93 that travels the vehicle EV, a battery system 100 that supplies electric power to the motor 93, and a generator that charges a rectangular battery of the battery system 100.
  • 94 a vehicle main body 90 on which the motor 93, the battery system 100, and the generator 94 are mounted, and a wheel 97 that is driven by the motor 93 and causes the vehicle main body 90 to travel.
  • the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the battery system 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the square battery of the battery system 100.
  • this battery system can be used not only as a power source for a mobile body but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The battery system 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery blocks 81 in a unit form. Each battery block 81 has a plurality of unit cells 1 connected in series and / or in parallel.
  • Each battery block 81 is controlled by a power supply controller 84.
  • the battery system 100 drives the load LD after charging the battery unit 82 with the charging power source CP. For this reason, the battery system 100 includes a charge mode and a discharge mode.
  • the load LD and the charging power source CP are connected to the battery system 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the battery system 100.
  • the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging of the battery system 100 from the charging power source CP.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched and discharging from the battery system 100 to the load LD is permitted.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the battery system 100 simultaneously.
  • the load LD driven by the battery system 100 is connected to the battery system 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the battery system 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the battery system 100.
  • the power controller 84 also includes a communication interface for communicating with external devices.
  • the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232c. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery block 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO.
  • the input / output terminal DI is a terminal for inputting / outputting a signal from the other battery block 81 or the power supply controller 84
  • the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery block 81.
  • the abnormality output terminal DA is a terminal for outputting abnormality of the battery block 81 to the outside.
  • the power supply terminal is a terminal for connecting the battery blocks 81 in series and in parallel.
  • the battery units 82 are connected to the output line OL via the parallel connection switch 85 and connected in parallel to each other.
  • the battery system according to the present invention has a large capacity and a long life because a large number of unit cells are stacked to form a battery block, and further, charging and discharging while detecting the voltage of each unit cell can prevent deterioration of the unit cell. It is effectively used for power storage devices such as power supply devices for electric vehicles, solar cells, wind power generation, midnight power, etc.

Abstract

各素電池の電圧をより精度よく検出して、素電池の劣化や電気特性の低下を有効に防止する。 バッテリシステムは、複数の素電池と、各々の素電池の電圧を検出する電圧検出回路と、各素電池の電極端子(1A)を電圧検出回路(3)の入力側に接続する複数の電圧検出ライン(6)とを備えており、電圧検出回路が電圧検出ライン(6)を介して各素電池の電圧を検出する。各々の電圧検出ライン(6)は長さが異なると共に、電圧検出ライン(6)の少なくとも一つに、長い電圧検出ライン(6X)の電気抵抗と短い電圧検出ライン(6Y)の電気抵抗を均等化する抵抗調整部(7)を設けており、この抵抗調整部(7)によって電気抵抗が均等化された電圧検出ライン(6)を介して、電圧検出回路が各々の素電池の電圧を検出している。

Description

バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置
 本発明は、複数の素電池の電圧を検出する電圧検出回路を備えるバッテリシステムに関し、とくに、素電池と電圧検出回路とを電圧検出ラインで接続して、素電池の電圧を検出するバッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置に関する。
 出力を大きくするバッテリシステムは、多数の電池を直列に接続して電圧を高くしている。このバッテリシステムは、直列に接続している電池を同じ充電電流で充電し、また同じ電流で放電する。したがって、全ての電池が全く同じ特性であれば、電池電圧や残容量にアンバランスは発生しない。しかしながら、現実には、全く同じ特性の電池は製造できない。電池のアンバランスは、充放電を繰り返すときに、電圧や残容量のアンバランスとなる。さらに、電池電圧のアンバランスは、特定の電池を過充電し、あるいは過放電させる原因となる。電池の過充電や過放電を防止するために、各々の電池の電圧を検出して、充放電の電流を制御するバッテリシステムは開発されている。(特許文献1参照)
特開2007-300701号公報
 このバッテリシステムは、各電池の過充電や過放電を防止するために、電圧検出回路で各々の電池の電圧を検出して、電池ブロックの充放電をコントロールする。電圧検出回路は回路基板に実装されて、各々の電池の電圧を検出するために、入力側を電圧検出ラインを介して各電池に接続している。電圧検出ラインは、一端を各々の電池の正負の電極端子に接続して、他端を電圧検出回路を実装する回路基板に接続する。複数の素電池を直列に接続している電池ブロックは、各素電池を、電圧検出回路を実装する回路基板に接続するので、たとえば、10個~20個の素電池を直列に接続している電池ブロックは、11本~21本の電圧検出ラインを介して回路基板に接続される。各々の電圧検出ラインは、一端を各素電池の電極端子に、他端を電池ブロックの近傍に位置する回路基板に接続するが、全てを同じ長さにはできず、各電圧検出ラインで電気抵抗が異なり、長い電圧検出ラインの電気抵抗が、短い電圧検出ラインの電気抵抗よりも大きくなる。また、電圧検出ラインは、電池ブロックの負荷電流が流れず、しかも本数が多いため、細いワイヤーハーネスやフレキシブルプリント基板などが使用されるので、長さによって電気抵抗の差が大きくなる。電圧検出ラインの電気抵抗の違いは、電圧検出回路における検出誤差の原因となる。電圧検出ラインの電気抵抗が電圧降下を発生させるからである。このため、素電池を電圧検出回路に接続する各電圧検出ラインの電気抵抗が異なると、電圧検出回路は素電池の電圧を正確に検出できなくなる。素電池の電圧を正確に検出できない電圧検出回路は、素電池の過充電や過放電を理想的な状態でコントロールできず、特定の素電池の電気特性を低下させて劣化させる原因となる。
 本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、各素電池の電圧をより精度よく検出することで、素電池の劣化や電気特性の低下を有効に防止できるバッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置を提供することにある。
課題を解決するための手段及び発明の効果
 本発明のバッテリシステムは、複数の素電池1と、各々の素電池の電圧を検出する電圧検出回路3と、各素電池1の電極端子1Aを電圧検出回路3の入力側に接続する複数の電圧検出ライン6とを備えており、電圧検出回路3が電圧検出ライン6を介して各素電池1の電圧を検出する。各々の電圧検出ライン6は長さが異なると共に、電圧検出ライン6の少なくとも一つに、長い電圧検出ライン6Xの電気抵抗と短い電圧検出ライン6Yの電気抵抗を均等化する抵抗調整部7を設けており、この抵抗調整部7によって電気抵抗が均等化された電圧検出ライン6を介して、電圧検出回路3が各々の素電池1の電圧を検出している。
 以上のバッテリシステムは、各素電池の電圧を精度よく検出して、素電池の劣化や電気特性の低下を有効に防止できる特徴がある。それは、以上のバッテリシステムが、電圧検出ラインに抵抗調整部を設けて、長い電圧検出ラインと短い電圧検出ラインの電気抵抗のアンバランスを解消して、各々の電圧検出ラインの電圧降下を均一にしているからである。すなわち、長い電圧検出ラインで電圧検出回路に接続される素電池も、短い電圧検出ラインで電圧検出回路に接続される素電池も、同じ条件で電圧が検出されて、電圧降下によるアンバランスの誤差を無視できるからである。また、さらに精度よく素電池の電圧を検出するために、電圧検出ラインの電圧降下を補正するバッテリシステムにおいては、電圧降下による補正電圧を同じ電圧にできるので、簡単な補正でさらに精度よく素電池の電圧を検出できる。
 本発明のバッテリシステムは、複数の電圧検出ライン6をプリント基板10に設けて、長い電圧検出ライン6Xの横幅(W)を短い電圧検出ライン6Yの横幅(W)よりも広くする抵抗調整部7Aを設けることにより、長い電圧検出ライン6Xの電気抵抗と短い電圧検出ライン6Yの電気抵抗を均等化することができる。
 以上のバッテリシステムは、プリント基板に設けた電圧検出ラインの横幅(W)で、長い電圧検出ライン6Xの電気抵抗と短い電圧検出ライン6Yの電気抵抗を均等化するので、簡単かつ容易に、しかもより正確に電気抵抗を均等化して素電池の電圧を精度よく検出できる特徴を実現する。
 本発明のバッテリシステムは、電圧検出回路3を実装してなる回路基板5を備え、この回路基板5は複数の電圧検出ライン6を接続する接続端子9を所定の間隔で設けることができる。さらに、バッテリシステムは、複数の電圧検出ライン6をフレキシブルプリント基板10Aに設けると共に、このフレキシブルプリント基板10Aは、回路基板5の接続端子9に接続される接続部12を有しており、電圧検出ライン6の抵抗調整部7Aを接続部12から離して配置すると共に、接続部12は横幅を等しくして等間隔に配置することができる。
 以上のバッテリシステムは、複数の電圧検出ラインを実現するフレキシブルプリント基板を簡単に電圧検出回路を実装する回路基板に接続しながら、各電圧検出ラインの電気抵抗を均等化できる。それは、フレキシブルプリント基板に設けている抵抗調整部を、回路基板に接続する接続部から離して配置するので、接続部の横幅を等しくして回路基板の接続端子に接続できる等しい間隔にできるからである。
 本発明のバッテリシステムは、電圧検出ライン6をリード線13として、長い電圧検出ライン6Xのリード線13を短い電圧検出ライン6Yのリード線13よりも太くすることができる。
 以上のバッテリシステムは、電圧検出ラインをリード線として、このリード線の長さと太さで電圧検出ラインの電気抵抗を調整するので、簡単かつ低コストに各電圧検出ラインの電気抵抗を均等化して、各素電池の電圧を精度よく検出できる。
 本発明のバッテリシステムは、短い電圧検出ライン6Yに、抵抗調整部7Cを実現する抵抗器14を接続することができる。
 以上のバッテリシステムは、抵抗調整部を抵抗器で実現するので、各電圧検出ラインの電気抵抗をより正確に均等化して、各素電池の電圧を精度よく検出できる。
 本発明のバッテリシステムは、素電池1に電圧検出ライン6を介して接続してなる放電回路21と、この放電回路21の放電状態をコントロールして、各々の素電池1を均等化する制御回路24からなる均等化回路4を備えて、電圧検出回路3が、放電回路21の放電状態を検出する検出部17と、放電回路21の放電状態を検出して、素電池1の放電状態で電圧検出ライン6の電圧降下を検出して、検出する電圧降下で素電池1の検出電圧を補正する補正部15とを備えることができる。
 以上のバッテリシステムは、電圧検出ラインを、放電回路を素電池に接続するラインに併用しながら、素電池の電圧を精度よく検出できる特徴がある。それは、放電回路が素電池を均等化するために放電する状態における電圧検出ラインの電圧降下を等しくして、素電池の電圧を検出できるからである。放電回路が素電池を均等化放電する状態では、電圧検出ラインに素電池を均等化する放電電流が流れて電圧降下が大きくなる。電気抵抗が均等化された電圧検出ラインは、素電池を均等化する放電電流による電圧降下を等しくできる。このため、電圧検出ラインに素電池を均等化する放電電流を流す状態では、電圧検出ラインの電圧降下が一定の電圧値に特定され、特定された電圧降下を補正することで、素電池の電圧は極めて精度よく検出される。
 本発明のバッテリシステムは、補正部15が、放電状態における電圧検出ライン6の電圧降下を補正電圧として記憶するメモリ16を有し、このメモリ16に記憶する補正電圧で検出電圧を補正することができる。
 以上のバッテリシステムは、素電池を均等化する放電電流による電圧検出ラインの電圧降下をあらかじめ補正電圧としてメモリに記憶しているので、素電池を均等化放電する状態では、メモリに記憶される補正電圧で検出電圧を補正して、素電池の電圧を極めて精度よく検出できる。
 本発明の電動車両は、上記のいずれかのバッテリシステム100と、このバッテリシステム100から電力供給される走行用のモータ93と、バッテリシステム100及びモータ93を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えることを特徴とする。
 以上の電動車両は、これに搭載するバッテリシステムを構成する各素電池の電圧をより精度よく検出できるので、素電池の劣化や電気特性の低下を有効に防止して、長期間にわたって安心して使用できる。
 本発明の蓄電装置によれば、上記のいずれかのバッテリシステム100を備えると共に、バッテリシステム100への充放電を制御する電源コントローラ84を備えている。この電源コントローラ84は、外部からの電力により角形電池への充電を可能とすると共に、角形電池に対し充電を行うよう制御することができる。
 以上の蓄電装置は、これに使用するバッテリシステムを構成する各素電池の電圧をより精度よく検出できるので、素電池の劣化や電気特性の低下を有効に防止して、長期間にわたって安心して使用できる。
本発明の一実施の形態にかかるバッテリシステムのブロック図である。 本発明の一実施の形態にかかるバッテリシステムの分解斜視図である。 図2に示すバッテリシステムの平面図である。 図3に示すバッテリシステムの回路基板と電圧検出ラインの接続構造を示す拡大図である。 電圧検出ラインの他の一例を示す平面図である。 電圧検出ラインの他の一例を示す平面図である。 図1に示すバッテリシステムが各素電池の電圧を検出するフローチャートである。 エンジンとモータで走行するハイブリッド自動車にバッテリシステムを搭載する例を示すブロック図である。 モータのみで走行する電気自動車にバッテリシステムを搭載する例を示すブロック図である。 蓄電装置にバッテリシステムを使用する例を示すブロック図である。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのバッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置を例示するものであって、本発明はバッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。
 バッテリシステムは、図1のブロック図に示すように、複数の充電できる素電池1を直列に接続している電池ブロック2と、この電池ブロック2を構成している各々の素電池1に電圧検出ライン6を介して接続されて、各々素電池1の電圧を検出する電圧検出回路3を備えている。さらに、図1のバッテリシステムは、電池ブロック2を構成する素電池1を放電して各々の素電池1を均等化させる均等化回路4も備えている。ただし、バッテリシステムは必ずしも素電池の均等化回路を設ける必要はない。
 電池ブロック2を構成する素電池1はひとつの二次電池である。ただ、素電池は、直列又は並列に接続している複数の二次電池とすることもできる。素電池1は、リチウムイオン電池又はリチウムポリマー電池等の非水系電解液電池である。素電池をリチウムイオン電池又はリチウムポリマー電池等の非水系電解液電池とする電池ブロック2は、素電池1をひとつの二次電池で構成する。このバッテリシステムは、各々の素電池1の電圧を電圧検出回路3で検出する。ただし、素電池は、ニッケル水素電池などの充電できる全ての二次電池とすることができる。二次電池をニッケル水素電池とするバッテリシステムは、複数の二次電池を直列に接続してなる電池モジュールをひとつの素電池とし、各々の素電池、すなわち複数の二次電池を直列に接続している電池モジュールの電圧を検出し、またこの電池モジュールを均等化する。
 電圧検出回路3は、電圧検出ライン6を介して入力側を各々の素電池1の正負の電極端子1Aに接続している。電圧検出回路3は、この電圧検出ライン6を介して、各々の素電池1の電圧を検出する。図2のバッテリシステムは、複数の素電池1からなる電池ブロック2と、電圧検出回路3を実装する回路基板5とを備えている。電池ブロック2を構成する複数の素電池1は、互いに隣接して対向する電極端子1A同士がバスバー8で連結されて直列に接続されている。図に示すバッテリシステムは、電圧検出ライン6の一端をバスバー8に連結しており、このバスバー8を介して直列に接続される素電池1の接続点の電圧を電圧検出ライン6で検出している。ただ、電池ブロックを構成する複数の素電池は、並列に接続することも、直列と並列に接続することもできる。
 回路基板5は、図3と図4に示すように複数の電圧検出ライン6を接続する接続端子9を所定の間隔、図においては一定の間隔で設けている。回路基板5の接続端子9は、各素電池1の電極端子1Aに接続している電圧検出ライン6を接続している。電圧検出ライン6は、ハンダ付けなどの方法で、回路基板5の接続端子9に接続される。
 電圧検出ライン6は、回路基板5の接続端子9と各素電池1の電極端子1Aとに接続されるので長さが異なり、回路基板5の接続端子9から離れた位置にある素電池1に接続される電圧検出ライン6は長く、接続端子9の近くに位置する素電池1に接続される電圧検出ライン6は短くなる。すなわち、回路基板5の接続端子9から離れた位置にある素電池1には長い電圧検出ライン6Xが接続され、接続端子9の近くに位置する素電池1には短い電圧検出ライン6Yが接続される。長さが異なる電圧検出ライン6は電気抵抗が異なる。電圧検出ライン6の電気抵抗が異なると、流れる電流で発生する電圧降下が変化して、素電池1の電圧を検出する誤差の原因となる。電圧検出ライン6の電圧降下が検出する素電池1の電圧を低く変化させるからである。この弊害を防止するために、すなわち、複数の電圧検出ライン6間の電気抵抗を均等化するために、複数の電圧検出ライン6の少なくとも一つに、長い電圧検出ライン6Xの電気抵抗と短い電圧検出ライン6Yの電気抵抗を均等化する抵抗調整部7を設けている。長い電圧検出ライン6Xに設けられる抵抗調整部7は電気抵抗を小さくし、短い電圧検出ライン6Yに設けられる抵抗調整部7は電気抵抗を大きくする。
 図3と図4は、電圧検出ライン6を設けたプリント基板10を示している。このプリント基板10は、互いに絶縁して設けている複数の導電ラインでもって電圧検出ライン6を実現する。長い電圧検出ライン6Xと短い電圧検出ライン6Yを実現する導電ラインは、同じ横幅(W)とすると長い電圧検出ライン6Xの電気抵抗が大きくなる。そこで、本実施形態では、長い電圧検出ライン6Xと短い電圧検出ライン6Yの電気抵抗を均等化するために、長い電圧検出ライン6Xを実現する導電ラインには、短い電圧検出ライン6Yを実現する導電ラインよりも横幅(W)を広くしてなる抵抗調整部7Aを設けることにより、すなわち、断面積の大きい抵抗調整部7Aが設けられることで電気抵抗を小さくし、複数の電圧検出ライン6間の電気抵抗を均等化している。
 図3と図4に示す複数の電圧検出ライン6は、回路基板5の接続端子9から最も離れた素電池1の電極端子1Aに接続される電圧検出ライン6Aa、6Abが最も長く、以下、電圧検出ライン6Ac、電圧検出ライン6Ad、・・・、電圧検出ライン6Amの順に次第に短くなっている。ここで、短い電圧検出ライン6Yとなる電圧検出ライン6Ak、6Al、6Amは、長さがほぼ等しく、これらの電気抵抗の差が許容できる程度に小さいので、抵抗調整部7Aを設けることなく、一様な横幅の導電ラインとしている。これに対して、長い電圧検出ライン6Xとなる電圧検出ライン6Aa~6Ajは、両端部6xを除く中間部に抵抗調整部7Aを設けて、各電圧検出ライン6の電気抵抗を均等化している。とくに、図4に示すように、長さが最も長い電圧検出ライン6Aa、6Abについては、抵抗調整部7Aa、7Abの横幅(W)を最も広くすると共に、電圧検出ライン6Ac~6Ajについては、電圧検出ライン6Ac、電圧検出ライン6Ad、電圧検出ライン6Ae、・・・、電圧検出ライン6Ajの順に長さが次第に短くなるので、これらの電圧検出ライン6Ac~6Ajに設ける抵抗調整部7Ac~7Ajの横幅(W)を、抵抗調整部7Ac、抵抗調整部7Ad、抵抗調整部7Ae、・・・、抵抗調整部7Ajの順に次第に狭くしている。これにより、全ての電圧検出ライン6Aa~6Amの電気抵抗が均等化されるようにしている。
 ただ、長い電圧検出ラインに設ける抵抗調整部は、必ずしも電圧検出ラインの長さに応じて横幅(W)を変化させる必要はなく、抵抗調整部の横幅(W)を均一にして、抵抗調整部の長さを調整することで、全ての電圧検出ライン電気抵抗を均等化することもできる。すなわち、長い電圧検出ラインに設ける抵抗調整部は、電圧検出ラインが長くなるにしたがって、これに設ける横幅(W)の広い抵抗調整部の長さを長くすることにより、言い換えると、幅の狭い導電ラインに対する抵抗調整部の比率を大きくすることにより、電圧検出ライン全体の電気抵抗を均等化することもできる。
 図3と図4のプリント基板10は、フレキシブルプリント基板10Aである。フレキシブルプリント基板10Aは、回路基板5の接続端子9に接続される接続部12を等間隔で配置して設けている。接続部12は、複数の導電ラインの一端部の横幅を等しくして、回路基板5の接続端子9と同じ間隔で配置している。このフレキシブルプリント基板10Aは、等間隔に配置している接続部12を回路基板5の接続端子9にハンダ付けなどの方法で接続する。さらに、フレキシブルプリント基板10Aは、導電ラインで構成される電圧検出ライン6の抵抗調整部7Aを接続部12から離して配置している。このフレキシブルプリント基板10Aは、抵抗調整部7Aを接続部12から離して配置するので、接続部12に設ける複数の導電ラインの間隔を、抵抗調整部7Aに影響なく回路基板5の接続端子9に接続できるように設計できる。横幅(W)を広くしている抵抗調整部7Aのある導電ラインは、中間に抵抗調整部7Aを設けて、素電池1の電極端子1Aと回路基板5の接続端子9とに接続される両端部6xの横幅を他の導電ラインと同じ横幅としている。このフレキシブルプリント基板10Aは、細くしている両端部6xを、素電池1の電極端子1Aと回路基板5の接続端子9とに簡単で確実に接続できる。
 フレキシブルプリント基板10Aに設けられた電圧検出ライン6を実現する導電ラインは、一端を素電池1の電極端子1Aに、他端を回路基板5の接続端子9に接続されて、素電池1の電極端子1Aを回路基板5に実装する電圧検出回路3に接続する。
 図5のバッテリシステムは、電圧検出ライン6Ba~6Bmをリード線13として、長い電圧検出ライン6Xである電圧検出ライン6Ba~6Bjのリード線13Xを、短い電圧検出ライン6Yである電圧検出ライン6Bk~6Bmのリード線13Yよりも太くして、長い電圧検出ライン6Xに太いリード線13Xで構成される電気抵抗を小さくする抵抗調整部7Bを設けている。リード線13の電気抵抗は、長さに比例して導線の断面積に反比例するので、各電圧検出ライン6Ba~6Bmの[長さ]/[断面積]の比率を一定値として、電気抵抗を均等化する。
 さらに、図6のバッテリシステムは、短い電圧検出ライン6Yに抵抗調整部7Cを実現する抵抗器14を接続して、抵抗器14で短い電圧検出ライン6Yの電気抵抗を大きくして、複数の電圧検出ライン6の電気抵抗を均等化している。電圧検出ライン6の電気抵抗は長さに比例して大きくなるので、短い電圧検出ライン6Yに抵抗器14を接続する。図6に示す複数の電圧検出ライン6は、回路基板5の接続端子9から最も離れた素電池1の電極端子1Aに接続される電圧検出ライン6Ca、6Cbが最も長く、以下、電圧検出ライン6Cc、電圧検出ライン6Cd、・・・、電圧検出ライン6Cmの順に次第に短くなっている。ここで、長い電圧検出ライン6Xとなる電圧検出ライン6Ca、6Cbは、長さがほぼ等しく、これらの電気抵抗の差が許容できる程度に小さいので、抵抗器14を接続することなく、一様な横幅の導電ラインとしている。これに対して、短い電圧検出ライン6Yとなる電圧検出ライン6Cc~6Cmは、中間部に抵抗器14を接続して、各電圧検出ライン6の電気抵抗を均等化している。短い電圧検出ライン6Yに接続される抵抗器14の電気抵抗は、電圧検出ライン6Cc~6Cmの電気抵抗を、最も長い電圧検出ライン6Ca、6Cbの電気抵抗と等しくするように特定する。
 電圧検出回路3は、電気抵抗を均等化した電圧検出ライン6の電圧降下を補正して、より精度よく素電池1の電圧を検出できる。この電圧検出回路3は、図1に示すように、検出する電圧から、電圧検出ライン6の電圧降下を減算する補正を行う補正回路15を備えている。補正回路15を備える電圧検出回路3は、電圧検出ライン6の電圧降下を補正して正確に素電池1の電圧を検出でき、さらに、後述する均等化回路4の放電スイッチ22のオンオフによって、検出される電圧を補正することで、素電池1を均等化しながら、素電池1の電圧を精度よく検出できる。
 均等化回路4は、素電池1のセル電圧を均等化してアンバランスを解消する。均等化回路4は、各々の素電池1の電圧を検出して、各々の素電池1の電圧のアンバランスを解消して均等化する。均等化回路4は、全ての素電池1を均等化した後、動作を停止する。
 均等化回路4は、電圧が高い素電池1を放電して、アンバランスを解消する。図1の均等化回路4は、各素電池1に並列に接続される放電回路21と、この放電回路21の放電スイッチ22をオンオフに制御する制御回路24とを備える。放電回路21は、放電抵抗23と放電スイッチ22との直列回路からなる。放電回路21は、各々の素電池1を独立して放電して均等化するので、素電池1の個数と同じ数、たとえば、100個の素電池を直列に接続しているバッテリシステムにあっては、100組の放電回路が設けられる。各々の放電回路21を構成する放電スイッチ22と放電抵抗23は、回路基板5に実装される。放電回路21は、電圧検出回路3の電圧検出ライン6を介して各々の素電池1に接続される。したがって、電圧検出ライン6は、各素電池1を電圧検出回路3の入力側に接続され、かつ、放電回路21にも接続される。
 均等化回路4は、素電池1の電圧で放電スイッチ22をオンオフに制御する制御回路24を備えている。図1の制御回路24は、電圧検出回路3で検出される素電池1の電圧で各々の放電スイッチ22をオンオフに制御する。均等化回路4は、電圧検出回路3を素電池1の電圧を検出する回路に併用している。ただし、均等化回路は、素電池の電圧を検出するために専用の電圧検出回路を設けることもできる。
 制御回路24は、電圧検出回路3で検出される各々の素電池1の電圧を比較して、全ての素電池1の電圧を均等化するように放電スイッチ22を制御する。この制御回路24は、高すぎる素電池1に接続している放電回路21の放電スイッチ22をオンに切り変えて放電させる。素電池1は放電するにしたがって電圧が低下する。放電スイッチ22は、素電池1の電圧が他の素電池1とバランスするまで低下すると、オンからオフに切り変えられる。放電スイッチ22がオフになると、素電池1の放電は停止される。このように、制御回路24は、高い電圧の素電池1を放電して、全ての素電池1の電圧をバランスさせる。
 図1のバッテリシステムは、電圧検出回路3を各々の素電池1に接続している電圧検出ライン6を介して、均等化回路4の放電回路21を各々の素電池1に接続している。したがって、電圧検出回路3が各々の素電池1の電圧を検出するとき、ある素電池1に接続している放電スイッチ22はオン、また他の素電池1に接続している放電スイッチ22はオフ状態となる。放電スイッチ22がオン状態にあると、電圧検出ライン6には放電抵抗23を介して流れる放電電流によって電圧降下が発生し、放電スイッチ22がオフ状態にあると、放電電流が流れないので、電圧検出ライン6の電圧降下は発生しない。したがって、電圧検出回路3が各々の素電池1の電圧を検出するとき、放電スイッチ22のオンオフによって、電圧検出ライン6の電圧降下が変化して検出する素電池1の電圧に誤差が発生する。
 この弊害を解消して、電圧検出回路3が常に素電池1の電圧を精度よく検出するために、図1のバッテリシステムは、電圧検出回路3に補正回路15を設けている。補正回路15は、放電スイッチ22のオン状態における電圧検出ライン6の電圧降下を補正電圧として記憶するメモリ16を備える。補正回路15は、放電スイッチ22をオンに切り換えて、放電回路21を素電池1に接続する状態における電圧検出ライン6の電圧降下を検出し、この電圧降下を補正電圧としてメモリ16に記憶する。補正回路15は、放電スイッチ22をオフ状態として検出されるオフ電圧から、放電スイッチ22をオン状態として検出するオン電圧を減算して電圧検出ライン6の電圧降下を検出できる。放電スイッチ22のオフ状態では放電電流による電圧検出ライン6の電圧降下がなく、オン状態では電圧検出ライン6に放電電流による電圧降下が発生するので、その差電圧から電圧降下を検出できる。各電圧検出ライン6は、抵抗調整部7で電気抵抗を均等化しているので、補正回路15は、何れかの電圧検出ライン6の電圧降下から補正電圧を検出し、この補正電圧で全ての電圧検出ライン6の電圧降下を補正する。
 放電スイッチ22をオンに切り換えて、電圧検出ライン6を介して素電池1を放電すると、この放電電流Iと電圧検出ライン6の電気抵抗Rの積に相当する電圧降下が発生する。電圧降下は、電圧検出回路3が素電池1の電圧を検出する電圧を低下させる。したがって、電圧検出回路3は、オン状態の放電スイッチ22を並列に接続している素電池1の電圧を検出するときは、検出電圧に補正電圧を加算して、素電池1の電圧とし、オフ状態の放電スイッチ22を並列に接続している素電池1の電圧を検出するときは、検出する電圧を素電池1の電圧として、各々の素電池1の電圧を正確に検出できる。電圧検出回路3は、放電スイッチ22のオンオフを検出する検出部17を備える。放電スイッチ22は、均等化回路4の制御回路24でオンオフに制御されるので、検出部17は、制御回路24から入力される放電スイッチ22のオンオフ信号で、放電スイッチ22のオンオフを検出して、検出電圧に補正電圧を加算するかどうかを判定する。
 さらに、各素電池1を放電回路21で放電する状態として、各々の電圧検出ライン6の電圧降下を検出する補正回路15を備える電圧検出回路3は、各電圧検出ライン6の電圧降下を検出して、電圧検出ライン6の故障を判定できる。この補正回路15は、検出する各電圧検出ライン6の電圧降下をあらかじめ記憶している設定電圧に比較して、電圧検出ライン6の故障を判定する。補正回路15が記憶している設定電圧は、故障しない電圧検出ライン6の最大電圧降下としている。
 電圧検出ライン6は電気抵抗を均等化して等しくしているので、電圧検出ライン6が故障しない状態で、電圧降下は等しくなる。したがって、各電圧検出ライン6の放電状態における電圧降下が設定電圧よりも高くなると、故障と判定できる。電圧検出ライン6は、接続端子9と接続部12の接触不良や、リード線13の損傷等が原因で電気抵抗が大きくなる。電圧検出回路3は、補正回路15で検出される電圧検出ライン6の電圧降下が設定電圧よりも大きくなると、電圧検出ライン6の故障と判定することができる。これにより、経時的に発生する電圧検出ライン6の故障を速やかに検出して、装置の安全性を向上できる。
 さらに、電圧検出回路3は、電圧検出回路3の入力側に流れる電流、すなわち、電圧検出回路3の入力電流による電圧検出ライン6の電圧降下を補正してより正確に素電池1の電圧を検出できる。この状態における電圧検出ライン6の電圧降下は、電圧検出回路3の入力電流を検出し、さらに、電圧検出ライン6の電気抵抗を測定して、入力電流と電圧検出ライン6の電気抵抗の積から演算できる。この電圧降下は、全ての電圧検出ライン6に同じ電圧として発生するので、検出電圧からこの電圧降下を減算して素電池1の正確な電圧とする。
 以上のバッテリシステムは、図7のフローチャートに示すように、以下の動作をして電池ブロック2の素電池1を均等化しながら、各々の素電池1の電圧を正確に検出する。
[n=1のステップ]
 コンタクタ19をオフに切り換えて、電池ブロック2の充放電を停止する。
[n=2のステップ]
 均等化回路4の全ての放電スイッチ22をオフに切り換える。
[n=3のステップ]
 電圧検出回路3で各々の素電池1の電圧を検出する。
[n=4のステップ]
 均等化回路4の全ての放電スイッチ22をオンに切り換える。
[n=5のステップ]
 電圧検出回路3で各々の素電池1の電圧を検出する。
[n=6のステップ]
 補正回路15が、n=3のステップで検出された放電スイッチ22がオフ状態の電池電圧と、n=5のステップで検出された放電スイッチ22がオン状態の電池電圧との差電圧から、各々の素電池1の電圧を検出する電圧検出ライン6の電圧降下、すなわち各々の素電池1の補正電圧を検出してメモリ16に記憶する。
[n=7のステップ]
 コンタクタ19をオンに切り換えて、電池ブロック2の充放電を開始する。
[n=8~12のステップ]
 電圧検出回路3が、各々の素電池1の電圧を検出する。このとき、電圧検出回路3は、電圧が検出される素電池1に並列に接続している放電スイッチ22のオンオフを検出部17で検出し、接続している放電スイッチ22がオン状態にあると、検出電圧に補正電圧を加算して素電池1の電圧とし(n=10のステップ)、また、接続している放電スイッチ22がオフ状態にあると、検出電圧を素電池1の電圧とする(n=11のステップ)。
 以上のようにして、全ての素電池1の電圧を検出する。
[n=13のステップ]
 検出された電池電圧から各々の素電池1の残容量を演算する。その後、n=1のステップに戻る。
 以上のバッテリシステムは、車載用の電源として利用できる。バッテリシステムを搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車などの電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド自動車用バッテリシステム)
 図8は、エンジンとモータの両方で走行するハイブリッド自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム100と、バッテリシステム100の角形電池を充電する発電機94と、エンジン96、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、エンジン96又はモータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、バッテリシステム100の角形電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100の角形電池を充電する。
(電気自動車用バッテリシステム)
 また、図9は、モータのみで走行する電気自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム100と、このバッテリシステム100の角形電池を充電する発電機94と、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100の角形電池を充電する。
(蓄電装置用バッテリシステム)
 さらに、このバッテリシステムは、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図10に示す。この図に示すバッテリシステム100は、複数の電池ブロック81をユニット状に接続して電池ユニット82を構成している。各電池ブロック81は、複数の素電池1が直列及び/又は並列に接続されている。各電池ブロック81は、電源コントローラ84により制御される。このバッテリシステム100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このためバッテリシステム100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介してバッテリシステム100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、バッテリシステム100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPからバッテリシステム100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、バッテリシステム100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、バッテリシステム100への充電を同時に行うこともできる。
 バッテリシステム100で駆動される負荷LDは、放電スイッチDSを介してバッテリシステム100と接続されている。バッテリシステム100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、バッテリシステム100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、バッテリシステム100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図10の例では、UARTやRS-232c等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。
 各電池ブロック81は、信号端子と電源端子を備える。信号端子は、入出力端子DIと、異常出力端子DAと、接続端子DOとを含む。入出力端子DIは、他の電池ブロック81や電源コントローラ84からの信号を入出力するための端子であり、接続端子DOは他の電池ブロック81に対して信号を入出力するための端子である。また異常出力端子DAは、電池ブロック81の異常を外部に出力するための端子である。さらに電源端子は、電池ブロック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている
 本発明のバッテリシステムは、多数の素電池を積層して電池ブロックとし、さらに各素電池の電圧を検出しながら充放電することで素電池の劣化を防止できるので、大容量であって長寿命な特性が要求される用途、例えば、電動車両の電源装置、太陽電池、風力発電、深夜電力などの蓄電装置等に有効に使用される。
  1…素電池
  1A…電極端子
  2…電池ブロック
  3…電圧検出回路
  4…均等化回路
  5…回路基板
  6…電圧検出ライン
  6X…長い電圧検出ライン
  6Y…短い電圧検出ライン
  6x…両端部
  6Aa、6Ab、6Ac、6Ad、6Ae、6Af、6Ag…電圧検出ライン
  6Ah、6Ai、6Aj、6Ak、6Al、6Am…電圧検出ライン
  6Ba、6Bb、6Bc、6Bd、6Be、6Bf、6Bg…電圧検出ライン
  6Bh、6Bi、6Bj、6Bk、6Bl、6Bm…電圧検出ライン
  6Ca、6Cb、6Cc、6Cd、6Ce、6Cf、6Cg…電圧検出ライン
  6Ch、6Ci、6Cj、6Ck、6Cl、6Cm…電圧検出ライン
  7…抵抗調整部
  7A…抵抗調整部
  7Aa、7Ab、7Ac、7Ad、7Ae…抵抗調整部
  7Af、7Ag、7Ah、7Ai、7Aj…抵抗調整部
  7B…抵抗調整部
  7C…抵抗調整部
  8…バスバー
  9…接続端子
 10…プリント基板
 10A…フレキシブルプリント基板
 12…接続部
 13…リード線
 13X…太いリード線
 13Y…細いリード線
 14…抵抗器
 15…補正回路
 16…メモリ
 17…検出部
 19…コンタクタ
 21…放電回路
 22…放電スイッチ
 23…放電抵抗
 24…制御回路
 81…電池ブロック
 82…電池ユニット
 84…電源コントローラ
 85…並列接続スイッチ
 90…車両本体
 93…モータ
 94…発電機
 95…DC/ACインバータ
 96…エンジン
 97…車輪
 EV…車両
 HV…車両
 LD…負荷
 CP…充電用電源
 DS…放電スイッチ
 CS…充電スイッチ
 OL…出力ライン
 HT…ホスト機器
 DI…入出力端子
 DA…異常出力端子
 DO…接続端子

Claims (9)

  1.  複数の素電池と、各々の素電池の電圧を検出する電圧検出回路と、前記各素電池の電極端子を前記電圧検出回路の入力側に接続する複数の電圧検出ラインとを備え、
     前記電圧検出回路が前記電圧検出ラインを介して前記各素電池の電圧を検出するバッテリシステムであって、
     各々の電圧検出ラインは長さが異なると共に、前記電圧検出ラインの少なくとも一つに、長い電圧検出ラインの電気抵抗と短い電圧検出ラインの電気抵抗を均等化する抵抗調整部を設けており、
     該抵抗調整部によって電気抵抗が均等化された前記複数の電圧検出ラインを介して、前記電圧検出回路が各々の素電池の電圧を検出するようにしてなるバッテリシステム。
  2.  前記複数の電圧検出ラインがプリント基板に設けられており、長い電圧検出ラインの横幅(W)を短い電圧検出ラインの横幅(W)よりも広くする前記抵抗調整部を設けることで、長い電圧検出ラインの電気抵抗と短い電圧検出ラインの電気抵抗を均等化してなる請求項1に記載されるバッテリシステム。
  3.  前記電圧検出回路を実装してなる回路基板を備え、この回路基板は前記複数の電圧検出ラインを接続する接続端子を所定の間隔で設けており、
     前記複数の電圧検出ラインがフレキシブルプリント基板に設けられており、このフレキシブルプリント基板は、前記回路基板の接続端子に接続される接続部を有し、
     前記電圧検出ラインの抵抗調整部を、前記接続部から離して配置すると共に、該接続部は横幅を等しくして等間隔に配置されてなる請求項2に記載されるバッテリシステム。
  4.  前記電圧検出ラインがリード線で、長い電圧検出ラインのリード線を短い電圧検出ラインのリード線よりも太くしてなる抵抗調整部を備える請求項1に記載されるバッテリシステム。
  5.  前記短い電圧検出ラインが、前記抵抗調整部を実現する抵抗器を接続してなる請求項1に記載されるバッテリシステム。
  6.  前記素電池に前記電圧検出ラインを介して接続してなる放電回路と、この放電回路の放出状態をコントロールして、各々の素電池を均等化する制御回路からなる均等化回路を備え、
     前記電圧検出回路は、前記放電回路の放電状態を検出する検出部と、前記放電回路の放電状態を検出して、素電池の放電状態で電圧検出ラインの電圧降下を検出して、検出する電圧降下で素電池の検出電圧を補正する補正部とを備える請求項1ないし5のいずれかに記載されるバッテリシステム。
  7.  前記補正部が、放電状態における前記電圧検出ラインの電圧降下を補正電圧として記憶するメモリを有し、このメモリに記憶する補正電圧で検出電圧を補正する請求項6に記載されるバッテリシステム。
  8.  請求項1から7のいずれかに記載のバッテリシステムを備える電動車両であって、
     前記バッテリシステムと、該バッテリシステムから電力供給される走行用のモータと、前記バッテリシステム及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とする電動車両。
  9.  請求項1から7のいずれかに記載のバッテリシステムを備える蓄電装置であって、
     前記バッテリシステムへの充放電を制御する電源コントローラを備えており、
     前記電源コントローラでもって、外部からの電力により前記電池ブロックへの充電を可能とすると共に、前記電池ブロックに対し充電を行うよう制御することを特徴とする蓄電装置。
PCT/JP2013/004694 2012-08-09 2013-08-02 バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置 WO2014024452A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/400,553 US9627896B2 (en) 2012-08-09 2013-08-02 Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
JP2014529298A JPWO2014024452A1 (ja) 2012-08-09 2013-08-02 バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176722 2012-08-09
JP2012176722 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024452A1 true WO2014024452A1 (ja) 2014-02-13

Family

ID=50067706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004694 WO2014024452A1 (ja) 2012-08-09 2013-08-02 バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置

Country Status (3)

Country Link
US (1) US9627896B2 (ja)
JP (1) JPWO2014024452A1 (ja)
WO (1) WO2014024452A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107583A1 (ja) * 2014-01-17 2015-07-23 三洋電機株式会社 電源装置
JP2016180653A (ja) * 2015-03-24 2016-10-13 株式会社ケーヒン 電圧検出装置
WO2017185671A1 (zh) * 2016-04-29 2017-11-02 华为技术有限公司 一种电压采集电路及电路控制方法
WO2018143465A1 (ja) * 2017-02-06 2018-08-09 日立オートモティブシステムズ株式会社 電池パック、ホルダ
CN111999670A (zh) * 2019-05-27 2020-11-27 吉业斯益线束有限公司 电池系统用电压检测电路及其制造方法、以及电池系统
JP2021087266A (ja) * 2019-11-26 2021-06-03 京セラ株式会社 蓄電装置および蓄電モジュール
WO2021149300A1 (ja) 2020-01-23 2021-07-29 三洋電機株式会社 電池モジュール、電池モジュールを備える電源装置、電源装置を備える電動車両及び蓄電装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9440601B2 (en) * 2013-09-06 2016-09-13 Johnson Controls Technology Company System for providing voltage measurements of battery cells to a PCB within a battery module
KR101876027B1 (ko) * 2016-06-03 2018-07-06 현대자동차주식회사 친환경 차량의 ldc 제어 장치 및 그 방법
WO2018080087A1 (ko) * 2016-10-26 2018-05-03 삼성에스디아이 주식회사 내부적으로 전원이 공급되는 리얼 타임 클록을 포함하는 전지 시스템 및 리얼 타임 클록을 위한 전원 공급 회로
US10516189B2 (en) * 2016-11-15 2019-12-24 Ford Global Technologies, Llc High voltage bus contactor fault detection
FR3070764B1 (fr) * 2017-09-04 2020-09-04 Renault Sas Procede de determination de l'etat d'une ligne electrique reliant une cellule de batterie d'accumulateurs a une unite de controle et unite de controle correspondante
KR102361334B1 (ko) * 2018-05-09 2022-02-09 주식회사 엘지에너지솔루션 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
CN113071321A (zh) * 2021-05-14 2021-07-06 奇瑞商用车(安徽)有限公司 一种新能源汽车12v蓄电池低压保护控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014023A (ja) * 1998-06-24 2000-01-14 Denso Corp 組電池
JP2004282960A (ja) * 2003-03-18 2004-10-07 Yamaha Motor Co Ltd 容量バラツキ抑制回路
JP2009159794A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 充電状態均等化装置及びこれを具えた組電池システム
WO2012026093A1 (ja) * 2010-08-25 2012-03-01 三洋電機株式会社 バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063198A (ja) * 1996-08-19 1998-03-06 Denso Corp マトリクス型el表示装置
US5993992A (en) * 1997-06-25 1999-11-30 Norvik Traction Inc. Battery pack with connecting battery modules
TWI320241B (en) * 2005-05-27 2010-02-01 Method and apparatus of detecting voltage for battery pack
JP2007287842A (ja) * 2006-04-14 2007-11-01 Ricoh Co Ltd 半導体装置
JP2007300701A (ja) 2006-04-27 2007-11-15 Sanyo Electric Co Ltd 車両用の電源装置
US7808131B2 (en) * 2006-10-12 2010-10-05 Xtreme Power Inc. Precision battery pack circuits
BRPI0820662A2 (pt) * 2007-11-27 2017-05-09 Xtreme Power Inc fornecimento de energia portátil tendo conexões de bateria com resistência casada
JP5372449B2 (ja) * 2008-09-24 2013-12-18 三洋電機株式会社 バッテリシステム
JP5530092B2 (ja) * 2008-11-21 2014-06-25 ラピスセミコンダクタ株式会社 半導体素子
EP2416435B1 (en) * 2009-03-31 2018-08-29 Sanyo Electric Co., Ltd. Battery module, battery system, and electric vehicle
KR20100116493A (ko) * 2009-04-22 2010-11-01 삼성전자주식회사 비트 라인 저항을 보상하는 가변 저항 메모리 장치
US8004875B2 (en) * 2009-07-13 2011-08-23 Seagate Technology Llc Current magnitude compensation for memory cells in a data storage array
WO2011016135A1 (ja) * 2009-08-07 2011-02-10 トヨタ自動車株式会社 電動車両の電源システム
EP2541641A4 (en) * 2010-02-24 2015-06-17 Sanyo Electric Co BATTERY MODULE, BATTERY SYSTEM, ELECTRIC VEHICLE, MOBILE BODY, POWER STORAGE DEVICE, POWER SUPPLY AND ELECTRICAL DEVICE
JP5517692B2 (ja) * 2010-03-26 2014-06-11 三菱重工業株式会社 電池パックおよび電池制御システム
JP5661414B2 (ja) * 2010-10-13 2015-01-28 三洋電機株式会社 電源装置
JP2012151269A (ja) * 2011-01-19 2012-08-09 Seiko Epson Corp 半導体装置、及び半導体装置の製造方法
KR101986335B1 (ko) * 2012-10-08 2019-06-05 삼성전자주식회사 보상 저항성 소자를 포함하는 저항성 메모리 장치
US9542305B2 (en) * 2015-01-16 2017-01-10 Harman International Industries, Inc. Impedance matching for high speed signaling in memory system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014023A (ja) * 1998-06-24 2000-01-14 Denso Corp 組電池
JP2004282960A (ja) * 2003-03-18 2004-10-07 Yamaha Motor Co Ltd 容量バラツキ抑制回路
JP2009159794A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 充電状態均等化装置及びこれを具えた組電池システム
WO2012026093A1 (ja) * 2010-08-25 2012-03-01 三洋電機株式会社 バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745772B (zh) * 2014-01-17 2018-10-19 三洋电机株式会社 电源装置
CN105745772A (zh) * 2014-01-17 2016-07-06 三洋电机株式会社 电源装置
WO2015107583A1 (ja) * 2014-01-17 2015-07-23 三洋電機株式会社 電源装置
US10003107B2 (en) 2014-01-17 2018-06-19 Sanyo Electric Co., Ltd. Power source device
JP2016180653A (ja) * 2015-03-24 2016-10-13 株式会社ケーヒン 電圧検出装置
WO2017185671A1 (zh) * 2016-04-29 2017-11-02 华为技术有限公司 一种电压采集电路及电路控制方法
US10819123B2 (en) 2016-04-29 2020-10-27 Huawei Technologies Co., Ltd. Voltage collection circuit and circuit control method
WO2018143465A1 (ja) * 2017-02-06 2018-08-09 日立オートモティブシステムズ株式会社 電池パック、ホルダ
CN111999670A (zh) * 2019-05-27 2020-11-27 吉业斯益线束有限公司 电池系统用电压检测电路及其制造方法、以及电池系统
CN111999670B (zh) * 2019-05-27 2023-09-01 吉业斯益线束有限公司 电池系统用电压检测电路及其制造方法、以及电池系统
JP2021087266A (ja) * 2019-11-26 2021-06-03 京セラ株式会社 蓄電装置および蓄電モジュール
JP7416609B2 (ja) 2019-11-26 2024-01-17 京セラ株式会社 蓄電装置および蓄電モジュール
WO2021149300A1 (ja) 2020-01-23 2021-07-29 三洋電機株式会社 電池モジュール、電池モジュールを備える電源装置、電源装置を備える電動車両及び蓄電装置

Also Published As

Publication number Publication date
JPWO2014024452A1 (ja) 2016-07-25
US9627896B2 (en) 2017-04-18
US20150137824A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2014024452A1 (ja) バッテリシステム及びこのバッテリシステムを備える電動車両並びに蓄電装置
JP5789846B2 (ja) 車両用の電源装置とこの電源装置を備える車両
JP5911673B2 (ja) 電源装置
CN108377009B (zh) 供电系统
US8278878B2 (en) Voltage detection apparatus
JP5349021B2 (ja) バッテリシステム
US20110074354A1 (en) Car power source apparatus, and capacity equalizing method for the car power source apparatus
JP5660105B2 (ja) 蓄電システム
JP6030066B2 (ja) 電池ユニット、電動車両、移動体、電源装置及び電池制御装置
JP4785797B2 (ja) 車両用の電源装置
JP5274110B2 (ja) 車両用の電源装置
JP5602353B2 (ja) 車両用の電源装置
US20130063154A1 (en) Power supply apparatus
US20120001640A1 (en) Power supply device capable of detecting disconnection of ground line
US8013618B2 (en) Voltage detection apparatus
JP5187406B2 (ja) 補機バッテリ充電装置
JP2012217276A (ja) 電源装置及びこれを備える車両
JP2009204531A (ja) シャント抵抗とこのシャント抵抗を備える車両用の電源装置
JP2014171323A (ja) セルバランス装置
JP2016158333A (ja) 電源システム
US20190225108A1 (en) Method and system of smart management of electrochemical batteries for an electric vehicle
JP2019165583A (ja) 車両用バッテリ充電装置
JP2015133766A (ja) 電源装置及びこの電源装置を備える車両
JP2012165580A (ja) 蓄電装置の制御装置
JP2013074708A (ja) 車両用の電源装置とこの電源装置を備える車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400553

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014529298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827425

Country of ref document: EP

Kind code of ref document: A1