WO2014024276A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014024276A1
WO2014024276A1 PCT/JP2012/070224 JP2012070224W WO2014024276A1 WO 2014024276 A1 WO2014024276 A1 WO 2014024276A1 JP 2012070224 W JP2012070224 W JP 2012070224W WO 2014024276 A1 WO2014024276 A1 WO 2014024276A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
indoor
convection
flows
Prior art date
Application number
PCT/JP2012/070224
Other languages
English (en)
French (fr)
Inventor
麻子 田村
直史 竹中
若本 慎一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/070224 priority Critical patent/WO2014024276A1/ja
Priority to JP2014529195A priority patent/JP5734524B2/ja
Priority to EP12882657.5A priority patent/EP2894410B1/en
Priority to US14/415,484 priority patent/US9890976B2/en
Publication of WO2014024276A1 publication Critical patent/WO2014024276A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • the present invention relates to an air conditioner such as a multi air conditioner for buildings that has a plurality of indoor units and can be operated simultaneously with air conditioning.
  • heat exchange is performed by natural convection that does not blow by a blower, in addition to a convection (blower type) heat exchanger that forcibly exchanges heat by a blower.
  • a convection (blower type) heat exchanger that forcibly exchanges heat by a blower.
  • the convection heat exchanger can be rapidly cooled, there is a possibility that unpleasant feeling or the like may be given to a person by direct ventilation.
  • the radiant indoor heat exchanger can perform the cooling and heating operation without direct ventilation, but cannot perform the rapid cooling and heating operation.
  • the air conditioning system which has both a radiant heat exchanger and a convection heat exchanger is proposed (for example, refer to patent documents 1).
  • Patent Document 1 has a configuration in which a radiant heat exchanger is arranged on the floor side and a convective heat exchanger is arranged on the ceiling side, and the radiant heat exchanger and the convective heat exchanger are connected in series.
  • An air-conditioning system that circulates refrigerant by disposing the refrigerant is disclosed.
  • Patent Document 2 By the way, instead of directly connecting the refrigerant between the outdoor unit and the indoor unit, a primary side refrigerant circuit and a secondary side refrigerant circuit are provided, and intermediate heat is generated between the primary side refrigerant circuit and the secondary side refrigerant circuit.
  • An air conditioner that performs heat exchange using an exchanger has been proposed (see, for example, Patent Document 2).
  • Patent Document 2 there are mainly four operation modes of a cooling only operation, a heating only operation, a heating main operation, and a cooling main operation, and a convection heat exchanger having a blower is used according to the situation of the room or the like.
  • the operation mode of each indoor unit can be set individually.
  • Patent Document 1 discloses a cooling / heating system in which one radiant heat exchange unit and one blast heat exchange unit are connected. However, in the case of performing a cooling / heating operation of an entire building such as a building. A plurality of indoor units as shown in Patent Document 2 are required. On the other hand, as shown in Patent Document 2, not only when using a convection heat exchanger, but also by appropriately arranging indoor units using a radiant heat exchanger, comfortable air conditioning that matches the situation of the room, etc. It is desirable to provide.
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that can perform comfortable air conditioning according to the use and arrangement of each room in a building such as a building.
  • the purpose is that.
  • An air conditioner includes an outdoor unit including a compressor that compresses a refrigerant, a heat source side heat exchanger that performs heat exchange between air and the primary refrigerant, and air and a secondary refrigerant.
  • a plurality of indoor units having an indoor heat exchanger that exchanges heat with each other, and a primary unit that is connected to the outdoor unit by a primary refrigerant pipe and to the indoor unit by a secondary refrigerant pipe
  • a plurality of intermediate heat exchangers that perform heat exchange between the side refrigerant and the secondary refrigerant, and a heat medium flow switching unit that switches a combination of connections between each indoor unit and each intermediate heat exchanger.
  • the plurality of indoor units include a convection indoor unit provided with a convection indoor heat exchanger and a radiant indoor unit provided with a radiant indoor heat exchanger.
  • An air conditioner according to the present invention is an air conditioning system in which an indoor unit includes a convection heat exchanger and a radiant indoor heat exchanger, and both the convection air conditioning system and the radiant air conditioning system are installed. It is possible to perform air conditioning according to the use and the load of each room far more space and energy saving than doing.
  • FIG. FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of the air-conditioning apparatus of the present invention.
  • the air conditioner 1 is considered as a unit of heat
  • an outdoor unit 1A that is a heat source unit
  • a plurality of indoor units C1n and C2m (hereinafter simply referred to as an indoor unit C when referred to without distinction).
  • the intermediate unit 1B the intermediate unit 1B.
  • m and n are natural numbers of 1 or more
  • m represents the number of radiant indoor heat exchangers
  • n represents the number of convection indoor heat exchangers.
  • the outdoor unit 1A and the intermediate unit 1B are connected by a first refrigerant pipe, and the intermediate unit 1B and the plurality of indoor units C are each connected by a second refrigerant pipe.
  • the cold or warm heat generated in the outdoor unit 1A is transmitted to the indoor units C1n and C2m via the intermediate unit 1B.
  • the outdoor unit 1A is usually installed in an outside space such as a rooftop of a building, and supplies cold heat or hot heat to the indoor units C1n and C2m via the intermediate unit 1B.
  • the outdoor unit 1A includes a compressor 103, a heat source side heat exchanger 104, and a first flow path switch 106.
  • the compressor 103 sucks the primary refrigerant in the gas state, compresses it and discharges it in a high-temperature and high-pressure state, and is composed of, for example, an inverter compressor whose capacity can be controlled.
  • the heat source side heat exchanger 104 functions as a radiator during cooling operation and functions as an evaporator during heating operation, and performs heat exchange between outdoor air supplied from the fan 104a and the primary refrigerant.
  • the first flow path switch 106 is composed of, for example, a four-way valve, and is primary in the cooling operation (all cooling operation mode and cooling main operation mode) and in the heating operation (all heating operation mode and heating main operation mode).
  • the flow of the side refrigerant is switched. Specifically, during the cooling operation, the first flow path switching unit 106 causes the primary side refrigerant discharged from the compressor 103 to flow to the heat source side heat exchanger 104 and the primary side refrigerant flowing out from the intermediate unit 1B.
  • the refrigerant flow path is switched so that flows to the compressor 103.
  • the first flow path switch 106 allows the primary side refrigerant discharged from the compressor 103 to flow to the intermediate unit 1B and the primary side refrigerant flowing out of the heat source side heat exchanger 104 to pass through the compressor.
  • the refrigerant flow path is switched to flow to 103.
  • the four check valves 113a to 113d have a function of making the flow direction of the primary refrigerant flowing between the outdoor unit 1A and the intermediate unit 1B constant.
  • the check valve 113a is provided in a refrigerant pipe connecting the first flow path switch 106 and the valves 111c and 111d, and the primary side refrigerant is only in the direction from the valves 111c and 111d toward the first flow path switch 106. Circulate.
  • the check valve 113b is provided in a refrigerant pipe connecting the heat source side heat exchanger 104 and the valve 111e, and allows the primary side refrigerant to flow only in the direction from the heat source side heat exchanger 104 to the valve 111e.
  • the check valve 113c is provided in a refrigerant pipe connecting a refrigerant pipe connecting the first flow path switch 106 and the check valve 113a and a refrigerant pipe connecting the check valve 113b and the valve 111e.
  • the primary-side refrigerant is circulated only in the direction from the refrigerant piping side connecting the one-flow selector 106 and the check valve 113a toward the refrigerant piping side connecting the check valve 113b and the valve 111e.
  • the check valve 113d is provided in a refrigerant pipe connecting the check valve 113a and the refrigerant pipe connecting the valves 111c and 111d and the refrigerant pipe connecting the heat source side heat exchanger 104 and the check valve 113b.
  • the primary-side refrigerant is circulated only in the direction from the refrigerant piping side connecting the check valve 113a and the valves 111c and 111d to the refrigerant piping side connecting the heat source side heat exchanger 104 and the check valve 113b. .
  • the intermediate unit 1B is, for example, a separate housing from the outdoor unit 1A and the indoor unit C, and is installed at a position different from the outdoor space and the indoor space.
  • the refrigerant pipe and the second refrigerant pipe are connected.
  • the intermediate unit 1B includes intermediate heat exchangers 107a and 107b, throttle mechanisms 105a and 105b, pumps 109a and 109b, and valves 111a to 111f, 112na to 112nd, 115ma to 115md, and 114a to 114d.
  • the intermediate unit 1B is connected to the outdoor unit 1A by the first refrigerant pipe via the throttle mechanisms 105a and 105b and the valves 111a to 111f.
  • the intermediate unit 1B is connected to the indoor units C1n and C2m via the pumps 109a and 109b and valves 112na to 112nd, 115ma to 115dm, and 114a to 114d, respectively.
  • the intermediate heat exchangers 107a and 107b are composed of, for example, a double pipe heat exchanger, a plate heat exchanger, a microchannel water heat exchanger, a shell and tube heat exchanger, or the like, and a primary refrigerant. And a refrigerant channel through which the secondary refrigerant flows.
  • the intermediate heat exchangers 107a and 107b function as a radiator or an evaporator and perform heat exchange between the primary refrigerant and the secondary refrigerant. That is, the primary side refrigerant circulating in the primary side refrigerant circuit 2 and the secondary side refrigerant circulating in the secondary side refrigerant circuit 3 are heat-exchanged by the intermediate heat exchangers 107a and 107b.
  • the intermediate heat exchanger 107a is provided between the throttle mechanism 105a on the primary refrigerant circuit 2 side and the valve 111c, and between the valve 114a on the secondary refrigerant circuit 3 side and the pump 109a.
  • the intermediate heat exchanger 107b is provided between the throttle mechanism 105b on the primary refrigerant circuit 2 side and the valve 111d, and between the valve 114b on the secondary refrigerant circuit 3 side and the pump 109b.
  • the intermediate heat exchangers 107a and 107b are plate-type heat exchangers, considering the phase change of the primary refrigerant, the primary refrigerant flows in from the lower side when the primary refrigerant absorbs heat, It is good to install in the direction in which the primary side refrigerant flows in from the upper side when the primary side refrigerant dissipates heat.
  • the throttle mechanisms 105a and 105b are configured such that an opening degree (opening area) of an electronic expansion valve or the like can be variably controlled, for example, and a decompression for decompressing and expanding the primary side refrigerant of the primary side refrigerant circuit 2 -It has a function as an expansion valve.
  • the throttle mechanism 105a is provided between the intermediate heat exchanger 107a and the valve 111e
  • the throttle mechanism 105b is provided between the intermediate heat exchanger 107b and the valve 111e.
  • Each of the third flow path switching devices 111a to 111f is configured by, for example, a two-way valve, and in the primary side refrigerant circuit 2, the primary side refrigerant flowing into and out of the intermediate heat exchangers 107a and 107b from the first refrigerant pipe.
  • the flow path is switched.
  • the valve 111a is a refrigerant pipe that connects a refrigerant pipe that connects the intermediate heat exchanger 107a and the valve 111c and a refrigerant pipe that connects the valve 111b and the check valve 113b (or the valve 111f). It is provided.
  • the valve 111b is provided in a refrigerant pipe connecting the refrigerant pipe connecting the intermediate heat exchanger 107b and the valve 111d and the refrigerant pipe connecting the valve 111a and the check valve 113b (or the valve 111f). is there.
  • the valve 111c is provided in a refrigerant pipe that connects the check valve 113a and the intermediate heat exchanger 107a.
  • the valve 111d is provided in a refrigerant pipe that connects the check valve 113a and the intermediate heat exchanger 107b.
  • the valve 111e is provided in a refrigerant pipe connecting the throttle mechanism 105a (or the throttle mechanism 105b) and the check valve 113a.
  • the valve 111f is provided in a refrigerant pipe that bypasses the check valve 113a and the check valve 113b.
  • two four-way valves respectively provided in the intermediate heat exchangers 107a and 107b may be provided.
  • the pumps 109a and 109b are configured to pump and circulate the secondary side refrigerant in the secondary side refrigerant circuit 3, and include, for example, a capacity-controllable pump.
  • the suction side of the pump 109a is connected to the intermediate heat exchanger 107a, and the discharge side is branched and connected to a plurality of valves 112na.
  • the suction side of the pump 109b is connected to the intermediate heat exchanger 107b, and the discharge side is branched and connected to a plurality of valves 112nb.
  • the second flow path switch has valves 112na to 112nd, 114a to 114d, and 115ma to 115md.
  • the valves 112na, 112nb, 112nc, and 112nd switch the secondary refrigerant flow path that is sent to the convection indoor heat exchanger 108n of each convection indoor unit C1n.
  • Valves 115ma, 115dm, 114a, and 114b are used to switch the secondary refrigerant flow path that is fed into the indoor heat exchanger 116m of the radiant indoor unit C2m.
  • These valves 112na to 112nd and 115ma to 115md control the flow rate of the secondary refrigerant flowing through the indoor heat exchangers 108n and 116m by adjusting the opening degree (opening area).
  • the air conditioner 1 includes a convection indoor unit C1n that includes only the convection indoor heat exchanger 108n and a radiant indoor unit C2m that includes only the radiant indoor heat exchanger 116m.
  • the convection indoor unit C1n includes a convection indoor heat exchanger 108n and a blower 108na, and performs air conditioning by performing a cooling operation or a heating operation on the indoor space.
  • the convection indoor heat exchanger 108n functions as a radiator during a heating operation, and functions as an evaporator during a cooling operation.
  • the convection indoor heat exchanger 108n performs heat exchange between the indoor air supplied from the blower and the secondary refrigerant, and generates heating air or cooling air to be supplied to the indoor space.
  • the refrigerant pipe connected to one side branches, and is connected to valves 112na and 112nb, respectively, and the refrigerant pipe connected to the other side branches to each valve. 112nc and 112nd.
  • Each of the radiant indoor units C2m includes a radiant indoor heat exchanger (chilled beam) 116m, and performs air conditioning by performing a cooling operation or a heating operation on the provided indoor space.
  • the radiant indoor heat exchanger 116m functions as a radiator during a heating operation and functions as an evaporator during a cooling operation. Since the radiant indoor heat exchanger 116m does not include a blower, heating air or cooling for performing heat exchange between the indoor air supplied by natural convection and the secondary refrigerant and supplying the air to the indoor space is performed. Produce air.
  • the refrigerant piping connected to one side of the radiant indoor heat exchanger 116m is branched and connected to the valves 115ma and 115mb, respectively, and the refrigerant piping connected to the other side is branched and is connected to the valve 115mc. , 115 md.
  • the plurality of convection indoor heat exchangers 108n are connected in parallel, and the plurality of radiant indoor heat exchangers 116m are connected in parallel.
  • the plurality of radiant indoor heat exchangers 116m are installed downstream of the plurality of convective indoor heat exchangers 108n. For this reason, the secondary side refrigerant after heat exchange in the convection type indoor heat exchanger 108n is supplied to the radiant indoor heat exchanger 116m.
  • the intermediate unit 1B has piping and valves (valves) 114c and 114d for bypassing the plurality of convection indoor heat exchangers 108n, and a plurality of convection indoor heat exchanges from the intermediate heat exchangers 107a and 107b.
  • the secondary side refrigerant can be directly supplied to the downstream-side radiant indoor heat exchanger 116m by bypassing the vessel 108n.
  • the air conditioner 1 shown in FIG. 1 includes two refrigerant circuits, a primary refrigerant circuit 2 and a secondary refrigerant circuit 3.
  • the primary refrigerant circuit 2 includes a compressor 103, a heat source side heat exchanger 104, throttle mechanisms 105a and 105b, a first flow path switch 106, intermediate heat exchangers 107a and 107b, and valves 111a to 111f. .
  • the primary refrigerant circuit 2 includes a compressor 103, a first flow path switch 106, a heat source side heat exchanger 104, throttle mechanisms 105a and 105b, intermediate heat exchangers 107a and 107b, and a first flow path switch 106.
  • the refrigerant circuit is configured by connecting the first refrigerant pipe in order of the compressor 103.
  • a fluorocarbon refrigerant such as R410A and R32
  • a hydrocarbon refrigerant such as propane, or a natural refrigerant such as carbon dioxide
  • azeotropic refrigerants such as R410A, non-azeotropic refrigerants such as R407C, R32 and R134a, and R32 and R1234yf can be used as the primary refrigerant.
  • the secondary refrigerant circuit 3 includes intermediate heat exchangers 107a and 107b, a convection indoor heat exchanger 108n, a radiant indoor heat exchanger 116m, pumps 109a and 109b, and valves 112na to 112nd, 115ma to 115dm, and 114a to 114d. It is configured.
  • the secondary refrigerant circuit 3 includes pumps 109a and 109b, a convection indoor heat exchanger 108n, a radiant indoor heat exchanger 116m, intermediate heat exchangers 107a and 107b, and pumps 109a and 109b in this order by a second refrigerant pipe.
  • the refrigerant circuit is configured by being connected.
  • an antifreeze solution for example, an antifreeze solution (brine), water, a mixed solution thereof, a mixed solution of water and an additive having an anticorrosive effect, or the like
  • a highly safe one is used as the secondary side refrigerant, thus improving safety. Will contribute.
  • said primary side refrigerant circuit 2 and said secondary side refrigerant circuit 3 are circuit structures at the time of making into the reference
  • a cooling only operation mode in which all of the indoor units C perform a cooling operation a heating only operation mode in which all of the indoor units C perform a heating operation, and an indoor unit Cooling operation or heating operation can be selected for each C, and a cooling main operation mode with a larger cooling load, and a cooling operation or heating operation can be selected for each indoor unit C, and a heating main operation mode with a larger heating load can be selected.
  • each operation mode is demonstrated with the flow of a primary side refrigerant
  • FIG. 2 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant when the air-conditioning apparatus 1 of FIG. 1 is in the cooling only operation mode.
  • the pipes represented by the thick lines indicate the pipes through which the primary-side refrigerant and the secondary-side refrigerant flow.
  • the direction in which the primary-side refrigerant flows is indicated by the solid line arrow, and the direction in which the secondary-side refrigerant flows. Is indicated by a dashed arrow.
  • FIGS. 3 to 7 The same applies to FIGS. 3 to 7 below.
  • the cooling only operation mode will be described with reference to FIG.
  • the primary side refrigerant discharged from the compressor 103 flows to the heat source side heat exchanger 104, and the primary side refrigerant flowing out from the intermediate unit 1B flows to the compressor 103.
  • the first flow path switch 106 is switched. Further, it is assumed that the valves 111a, 111b, and 111f are in a closed state and the valves 111c, 111d, and 111e are in an open state.
  • the valves 112na to 112nd, 114a, 114b, and 115ma to 115dm are opened, and the valves 114c and 114d are closed.
  • the primary refrigerant in the low-temperature and low-pressure gas state is compressed by the compressor 103 and discharged in a high-temperature and high-pressure state, flows into the heat source side heat exchanger 104 via the first flow path switch 106, The heat is radiated to the outdoor air, and a part or all of it is condensed to become a gas-liquid two-phase state or a liquid state.
  • the gas-liquid two-phase or liquid primary refrigerant flowing out of the heat source side heat exchanger 104 flows out of the outdoor unit 1A through the check valve 113b and flows into the intermediate unit 1B.
  • the primary refrigerant that has flowed into the intermediate unit 1B passes through the valve 111e, branches, flows into the throttle mechanisms 105a and 105b, and is expanded and depressurized to form a low-temperature and low-pressure gas-liquid two-phase state.
  • the heat flows into the heat exchangers 107a and 107b in parallel.
  • the primary-side refrigerant in the gas-liquid two-phase state that has flowed into the intermediate heat exchangers 107a and 107b absorbs heat from the secondary-side refrigerant and evaporates into a low-temperature and low-pressure gas state.
  • the low-temperature and low-pressure primary refrigerants flowing out from the intermediate heat exchangers 107a and 107b pass through valves 111c and 111d, merge, flow out of the intermediate unit 1B, and flow into the outdoor unit 1A.
  • the primary refrigerant in the gas state flowing into the outdoor unit 1A is sucked into the compressor 103 via the check valve 113a and the first flow path switch 106, and is compressed again.
  • the low-temperature secondary refrigerant flows out of the intermediate heat exchanger 107a by driving the pump 109a, passes through the valves 112na, and then flows into the convection indoor heat exchanger 108n of each convection indoor unit C1n.
  • the low-temperature secondary refrigerant flows out of the intermediate heat exchanger 107b by driving the pump 109b, passes through the valve 112nb, and then flows into the convection indoor heat exchanger 108n of each convection indoor unit C1n. .
  • the secondary side refrigerant that has flowed from the intermediate unit 1B into each convection indoor heat exchanger 108n cools the room air to be in a high temperature state, flows out from the convection indoor unit C1n, and flows into the intermediate unit 1B. .
  • the secondary refrigerant that has flowed out of the convection indoor heat exchanger 108n branches into one that returns to the intermediate heat exchangers 107a and 107b and one that flows into the radiant indoor unit.
  • the secondary side refrigerant is divided into a secondary side refrigerant that flows into the intermediate heat exchanger 107a via the valve 112nc and the valve 114a, and a secondary side refrigerant that goes from the valve 112nc to the radiant indoor unit C2m. Branch.
  • the secondary refrigerant branches into a secondary refrigerant flowing into the intermediate heat exchanger 107b via the valve 112nd and the valve 114b, and a secondary refrigerant flowing from the valve 112nd to the radiant indoor unit C2m. .
  • the secondary refrigerant directed to the radiant indoor unit C2m passes through the valves 115ma, then flows out of the intermediate unit 1B, and flows into the radiant indoor heat exchanger 116m of each radiant indoor unit C2m. In this way, the secondary refrigerant flowing from each convection indoor unit C1n into each convection indoor heat exchanger 108n via the intermediate unit 1B cools the room air to a high temperature state, and each convection indoor unit C1n. And then flows into the intermediate unit 1B.
  • the secondary refrigerant flowing out of the radiant indoor heat exchanger 116m flows into the intermediate unit 1B, flows into the intermediate heat exchanger 107a through the valve 115mc, and flows into the intermediate heat exchanger 107b through 115dm. .
  • the secondary refrigerant flowing into the intermediate heat exchangers 107a and 107b is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchangers 107a and 107b, respectively.
  • the secondary refrigerant flowing out of the intermediate heat exchangers 107a and 107b flows into the pumps 109a and 109b, respectively, and is sent out again.
  • FIG. 3 is a refrigerant circuit diagram illustrating the flows of the primary side refrigerant and the secondary side refrigerant when the air-conditioning apparatus 1 of FIG. 1 is in the heating only operation mode.
  • the heating only operation mode will be described with reference to FIG.
  • the primary refrigerant circuit 2 the primary refrigerant previously discharged from the compressor 103 flows to the intermediate unit 1 ⁇ / b> B, and the primary refrigerant flowing out of the heat source side heat exchanger 104 flows to the compressor 103.
  • the flow path switch 106 is switched.
  • valves 111a, 111b, and 111f are in an open state and the valves 111c, 111d, and 111e are in a closed state.
  • the valves 112na to 112nd, 114a, 114b, and 115ma to 115dm are opened and the valves 114c and 114d are closed as in the cooling only operation mode.
  • the primary refrigerant in the low-temperature and low-pressure gas state is compressed by the compressor 103, discharged in a high-temperature and high-pressure state, and flows out from the outdoor unit 1A via the first flow path switch 106 and the check valve 113c. And flows into the intermediate unit 1B.
  • the primary refrigerant flowing into the intermediate unit 1B branches and flows in parallel to the intermediate heat exchangers 107a and 107b via the valves 111a and 111b, respectively.
  • the high-temperature and high-pressure primary refrigerant flowing into the intermediate heat exchangers 107a and 107b dissipates heat to the secondary refrigerant, and a part or all of it is condensed into a gas-liquid two-phase state or a liquid state.
  • the gas-liquid two-phase state or liquid-state primary refrigerant flowing out from the intermediate heat exchangers 107a and 107b flows into the throttle mechanisms 105a and 105b, respectively, and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase state. Thereafter, the primary refrigerants respectively flowing out from the throttle mechanisms 105a and 105b merge, flow out from the intermediate unit 1B via the valve 111f, and flow into the outdoor unit 1A.
  • the primary-side refrigerant in the gas-liquid two-phase state that has flowed into the outdoor unit 1A flows into the heat source side heat exchanger 104 via the check valve 113d, absorbs heat from the outdoor air, and evaporates to generate a low-temperature and low-pressure gas. It enters a state and is sucked into the compressor 103 via the first flow path switch 106 and compressed again.
  • the high-temperature secondary refrigerant sent from the pumps 109a and 109b heats the room air by the convection heat exchanger 108n to become a low temperature state, and heats the room air by the radiant indoor heat exchanger 116m to lower the temperature further.
  • the intermediate heat exchangers 107a and 107b are heated by the high-temperature primary side refrigerant, and again flow into the pumps 109a and 109b at a high temperature, and are sent out again.
  • FIG. 4 is a refrigerant circuit diagram illustrating the flows of the primary side refrigerant and the secondary side refrigerant in the cooling main operation mode 1 of the air conditioner 1 of FIG.
  • the cooling main operation mode 1 is an operation mode in which the cooling load is larger than the heating load, and at least one of the convection indoor units C1n performs the heating operation.
  • the convection indoor unit C11 and the radiant indoor unit C21 perform the heating operation
  • the convection indoor units C12 and C13 and the radiant indoor units C22 and C23 perform the cooling operation.
  • the primary side refrigerant previously discharged from the compressor 103 flows to the heat source side heat exchanger 104, and the primary side refrigerant that flows out from the intermediate unit 1 ⁇ / b> B flows to the compressor 103 so that the first side refrigerant flows.
  • the flow path switch 106 is switched.
  • the valves 111a, 111d, 111e, and 111f are closed, and the valves 111b and 111c are opened.
  • valves 1121b, 1121d, 1122a, 1122c, 1123a, 1123c, 114a, 114b, 1151b, 1151d, 1152a, 1152c, 1153a, 1153c are opened, and the valves 1121a, 1121c, 1122b, 1122d, 1123b, 1123d, 114c, 114d, 1151a, 1151c, 1152b, 1152d, 1153b, and 1153d are closed.
  • the primary refrigerant in the low-temperature and low-pressure gas state is compressed by the compressor 103 and discharged in a high-temperature and high-pressure state, flows into the heat source side heat exchanger 104 via the first flow path switch 106, Heat is radiated to the outdoor air, and a part of the air is condensed to form a gas-liquid two-phase state.
  • the primary-side refrigerant in a gas-liquid two-phase state that has flowed out of the heat source side heat exchanger 104 flows out of the outdoor unit 1A via the check valve 113b and flows into the intermediate unit 1B.
  • the gas-liquid two-phase primary refrigerant flowing into the intermediate heat exchanger 107a absorbs heat from the secondary refrigerant and evaporates into a low-temperature and low-pressure gas state.
  • the low-temperature and low-pressure gas state primary refrigerant that has flowed out of the intermediate heat exchanger 107a flows out of the intermediate unit 1B via the valve 111c, and flows into the outdoor unit 1A.
  • the primary refrigerant in the gas state flowing into the outdoor unit 1A is sucked into the compressor 103 via the check valve 113a and the first flow path switch 106, and is compressed again.
  • the low-temperature secondary refrigerant sent out by driving the pump 109a branches and passes through the valves 1122a and 1123a, respectively, then flows out from the intermediate unit 1B, and is respectively a convection indoor heat exchanger of the convection indoor unit C12. 1082 and the convection indoor heat exchanger 1083 of the convection indoor unit C13.
  • the secondary refrigerant flowing into the convection indoor heat exchangers 1082 and 1083 cools the room air to a high temperature state, flows out from the convection indoor units C12 and C13, and flows into the intermediate unit 1B.
  • the convection type indoor heat exchanger 1082 flows out and flows into the intermediate unit 1B, the secondary refrigerant passing through the valve 1122c and the convection type indoor heat exchanger 1083 flows out and flows into the intermediate unit 1B, and the valve 1123c.
  • the secondary refrigerants that have passed through are joined, they branch into one that passes through the valve 114a and one that goes to the indoor units C22 and C23.
  • the secondary-side refrigerant directed to the indoor units C22 and C23 branches again and passes through the valves 1152a and 1153a, then flows out from the intermediate unit 1B, and the radiant indoor heat exchanger 1162 of the indoor unit C22 and the indoor unit respectively. It flows into the radiant indoor heat exchanger 1163 of the unit C23.
  • the secondary refrigerant that has flowed into the radiant indoor heat exchangers 1162 and 1163 cools the room air to a higher temperature, flows out of the indoor units C22 and C23, and flows into the intermediate unit 1B again.
  • the radiant indoor heat exchanger 1162 flows out and flows into the intermediate unit 1B, the secondary refrigerant passing through the valve 1152c and the radiant indoor heat exchanger 1163 flows out and flows into the intermediate unit 1B, and the valve 1153c.
  • the secondary-side refrigerant that has passed through is merged with the secondary-side refrigerant that has passed through the valve 114a, and flows into the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107a is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107a flows into the pump 109a and is sent out again.
  • the high-temperature secondary refrigerant sent out by driving the pump 109b flows through the valve 1121b, then flows out from the intermediate unit 1B, and flows into the convection indoor heat exchanger 1081 of the convection indoor unit C11.
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchanger 1081 heats indoor air to a low temperature state, flows out of the convection indoor unit C11, and flows into the intermediate unit 1B.
  • the secondary refrigerant flowing out of the convection indoor heat exchanger 1081 and flowing into the intermediate unit 1B and passing through the valve 1121d branches into one passing through the valve 114b and one going toward the indoor unit C21.
  • the secondary refrigerant directed to the indoor unit C21 flows out of the intermediate unit 1B via the valve 1151b and flows into the radiant indoor heat exchanger 1161 of the indoor unit C21.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchanger 1161 cools the room air to a higher temperature, flows out of the indoor unit C21, and flows into the intermediate unit 1B again.
  • the secondary-side refrigerant that has flowed out of the radiant indoor heat exchanger 1161 and flows into the intermediate unit 1B and has passed through the valve 1151d merges with the secondary-side refrigerant that has passed through the valve 114b, and flows into the intermediate heat exchanger 107b. .
  • the secondary refrigerant flowing into the intermediate heat exchanger 107b is heated by the high-temperature primary refrigerant and flows out of the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107b flows into the pump 109b and is sent out again.
  • FIG. 5 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant in the cooling main operation mode 2 of the air-conditioning apparatus 1 of FIG. 1.
  • the cooling main operation mode 2 is an operation mode in which the cooling load is larger than the heating load, all the convection indoor units C11 to C13 perform the cooling operation, and at least one of the indoor units C21 to C23 performs the heating operation. It is.
  • the cooling main operation mode 2 will be described with reference to FIG. In FIG. 5, the convection indoor units C11 to C13 and the radiant indoor units C22 and C23 perform the cooling operation, and the radiant indoor unit C21 performs the heating operation.
  • the flow path switching of the primary refrigerant circuit 2 is the same as in the cooling main operation mode 1, and the flow of the secondary refrigerant in the secondary refrigerant circuit will be described below.
  • valves 1121a to 1123a, 1121c to 1123c, 114a, 114b, 114d, 1151b, 1151d, 1152a, 1152c, 1153a, 1153c are opened, and the valves 1121b to 1123b, 1121d to 1123d, 114c, 1151a , 1151c, 1152b, 1152d, 1153b, and 1153d are closed.
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchangers 1081, 1082, and 1083 cools the indoor air to a high temperature state, flows out from the convection indoor units C11, C12, and C13, and flows into the intermediate unit 1B. .
  • Secondary refrigerant flowing into the intermediate unit 1B via the valve 1121c, secondary refrigerant flowing into the intermediate unit 1B via the valve 1122c, and flowing into the intermediate unit 1B via the valve 1123c The secondary refrigerant thus branched branches into one that passes through the valve 114a and one that goes to the indoor units C22 and C23.
  • the secondary refrigerant directed to the indoor units C22 and C23 branches again and passes through the valves 1152a and 1153a, and then flows out from the intermediate unit 1B.
  • the radiant indoor heat exchanger 1162 and the indoor unit C23 of the indoor unit C22 respectively. To the radiant indoor heat exchanger 1163.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchangers 1162 and 1163 cools the room air to a higher temperature, flows out of the indoor units C22 and C23, and flows into the intermediate unit 1B again.
  • the radiant indoor heat exchanger 1162 flows out and flows into the intermediate unit 1B
  • the secondary refrigerant passing through the valve 1152c and the radiant indoor heat exchanger 1163 flows out and flows into the intermediate unit 1B, and the valve 1153c.
  • the secondary-side refrigerant that has passed through is merged with the secondary-side refrigerant that has passed through the valve 114a, and flows into the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107a is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107a flows into the pump 109a and is sent out again.
  • the high-temperature secondary refrigerant sent out by driving of the pump 109b branches through the valve 114d and then to the one passing through the valve 114b and the one going to the indoor unit C21.
  • the secondary refrigerant directed to the indoor unit C21 flows out of the intermediate unit 1B via the valve 1151b and flows into the radiant indoor heat exchanger 1161 of the indoor unit C21.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchanger 1161 heats indoor air to a low temperature state, and flows out of the indoor unit C21 and flows into the intermediate unit 1B.
  • the secondary-side refrigerant that has flowed out of the radiant indoor heat exchanger 1161 and flows into the intermediate unit 1B and has passed through the valve 1151d merges with the secondary-side refrigerant that has passed through the valve 114b, and flows into the intermediate heat exchanger 107b. .
  • the secondary refrigerant flowing into the intermediate heat exchanger 107b is heated by the high-temperature primary refrigerant and flows out of the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107b flows into the pump 109b and is sent out again.
  • FIG. 6 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant in the heating main operation mode 1 of the air-conditioning apparatus 1 of FIG. 1.
  • the heating main operation mode 1 is an operation mode in which the heating load is larger than the cooling load and at least one of the convection indoor units C11 to C13 performs the cooling operation.
  • the heating main operation mode 1 will be described with reference to FIG.
  • the convection indoor units C11 and C12 and the radiant indoor units C21 and C22 perform the heating operation
  • the convection indoor unit C13 and the radiant indoor unit C23 perform the cooling operation.
  • the primary side from which the primary side refrigerant discharged from the compressor 103 flows to the intermediate unit 1B and flows out from the heat source side heat exchanger 104 is passed through the first flow path switch 106 in advance.
  • the refrigerant is switched to flow to the compressor 103, the valves 111b and 111c are opened, and the valves 111a and 111d to 111f are closed.
  • valves 1121b, 1121d, 1122b, 1122d, 1123a, 1123c, 114a, 114b, valves 1151b, 1151d, 1152b, 1152d, 1153a, 1153c are opened.
  • valves 1121a, 1121c, 1122a, 1122c, 1123b, 1123d, 114c, 114d, 1151a, 1151c, 1152a, 1152c, 1153b, and 1153d are closed.
  • the primary refrigerant in the low-temperature and low-pressure gas state is compressed by the compressor 103, discharged in a high-temperature and high-pressure state, and flows out from the outdoor unit 1A via the first flow path switch 106 and the check valve 113c. And flows into the intermediate unit 1B.
  • the high-temperature and high-pressure primary refrigerant flowing into the intermediate unit 1B flows into the intermediate heat exchanger 107b via the valve 111b, dissipates heat to the secondary refrigerant, and part or all of the condensed refrigerant is gas-liquid. It becomes a two-phase state or a liquid state.
  • the secondary refrigerant that has flowed out of the intermediate heat exchanger 107b is expanded and depressurized by passing through the throttle mechanism 105b and the throttle mechanism 105a to be in a low-temperature and low-pressure gas-liquid two-phase state, and flows into the intermediate heat exchanger 107a.
  • the primary-side refrigerant in the gas-liquid two-phase state that has flowed into the intermediate heat exchanger 107a absorbs heat from the secondary-side refrigerant, and part of it evaporates.
  • the primary refrigerant flowing out of the intermediate heat exchanger 107a flows out of the intermediate unit 1B through the valve 111c and flows into the outdoor unit 1A.
  • the primary refrigerant that has flowed into the outdoor unit 1A flows into the heat source side heat exchanger 104 via the check valve 113d, absorbs heat from the outdoor air, evaporates, and becomes a low-temperature and low-pressure gas state.
  • the air is sucked into the compressor 103 via the path switch 106 and compressed again.
  • the low-temperature secondary refrigerant sent out by driving the pump 109a passes through the valve 1123a, then flows out from the intermediate unit 1B, and flows into the convection indoor heat exchanger 1083 of the convection indoor unit C13.
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchanger 1083 cools the room air to a high temperature state, flows out of the convection indoor unit C13, and flows into the intermediate unit 1B.
  • the secondary refrigerant flowing out of the convection type indoor heat exchanger 1083 and flowing into the intermediate unit 1B and passing through the valve 1123c branches into one passing through the valve 114a and going to the indoor unit C23.
  • the secondary refrigerant directed to the indoor unit C23 flows out of the intermediate unit 1B via the valve 1153a and flows into the radiant indoor heat exchanger 1163 of the indoor unit C23.
  • the secondary refrigerant that has flowed into the radiant indoor heat exchanger 1163 cools the room air to a higher temperature, flows out of the indoor unit C23, and flows into the intermediate unit 1B again.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107a is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchanger 107a.
  • the high-temperature secondary-side refrigerant sent out by driving the pump 109b branches passes through the valves 1121b and 1122b, and then flows out from the intermediate unit 1B, respectively. It flows into the heat exchanger 1081 and the convection indoor heat exchanger 1082 of the convection indoor unit C12.
  • the secondary refrigerant that has flowed into the convection indoor heat exchangers 1081 and 1082 heats the indoor air to a low temperature state, flows out from the convection indoor units C11 and C12, and flows into the intermediate unit 1B.
  • the convection type indoor heat exchanger 1081 flows out and flows into the intermediate unit 1B, the secondary refrigerant passing through the valve 1121d and the convection type indoor heat exchanger 1082 flows out and flows into the intermediate unit 1B, and the valve 1122d After joining, the secondary side refrigerant that has passed through is branched into one that passes through the valve 114b and one that goes to the indoor units C21 and C22.
  • the secondary-side refrigerant directed to the indoor units C21 and C22 branches again and passes through the valves 1151b and 1152b, then flows out of the intermediate unit 1B, and the radiant indoor heat exchanger 1161 of the indoor unit C21 It flows into the radiant indoor heat exchanger 1162 of the unit C22.
  • the secondary refrigerant that has flowed into the radiant indoor heat exchangers 1161 and 1162 heats the indoor air to a lower temperature state, flows out from the indoor units C21 and C22, and flows into the intermediate unit 1B again.
  • the radiant indoor heat exchanger 1161 flows out and flows into the intermediate unit 1B, the secondary refrigerant passing through the valve 1151d, and the radiant indoor heat exchanger 1162 flows out into the intermediate unit 1B and flows into the valve 1152d.
  • the secondary-side refrigerant that has passed through flows into the secondary-side refrigerant that has passed through the valve 114b and flows into the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107b is heated by the high-temperature primary refrigerant and flows out of the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107b flows into the pump 109b and is sent out again.
  • FIG. 7 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant in the heating main operation mode 2 of the air-conditioning apparatus 1 of FIG. 1.
  • the heating main operation mode 2 is an operation mode in which the heating load is larger than the cooling load, all the convection indoor units C11 to C13 perform the heating operation, and at least one of the indoor units C21 to C23 performs the cooling operation. .
  • the heating main operation mode 2 will be described with reference to FIG. In FIG. 7, the convection indoor units C11 to C13 and the radiant indoor units C21 and C22 perform the heating operation, and the radiant indoor unit C23 performs the cooling operation.
  • the primary side from which the primary side refrigerant discharged from the compressor 103 flows to the heat source side heat exchanger 104 and flows out from the intermediate unit 1 ⁇ / b> B is passed through the first flow path switch 106. It is assumed that the refrigerant is switched to flow to the compressor 103, the valves 111a, 111d, 111e, and 111f are closed, and the valves 111b and 111c are opened.
  • valves 1121b to 1123b, 1121d to 1123d, 114a, 114b, 114c, 1151b, 1151d, 1152b, 1152d, 1153a, 1153c are opened, and the valves 1121a to 1123a, 1121c to 1123c, 114d, 1151a, 1151c, 1152a, 1152c, 1153b, and 1153d are closed.
  • the low-temperature secondary refrigerant sent out by driving the pump 109a passes through the valve 114c, and then branches into one that passes through the valve 114a and one that goes to the indoor unit C23.
  • the secondary refrigerant directed to the indoor unit C23 flows out of the intermediate unit 1B via the valve 1153a and flows into the radiant indoor heat exchanger 1163 of the indoor unit C23.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchanger 1163 cools the room air to a high temperature state, flows out of the indoor unit C23, and flows into the intermediate unit 1B. Outflow from the radiant indoor heat exchanger 1163 flows into the intermediate unit 1B, and the secondary refrigerant passing through the valve 1153c merges with the secondary refrigerant passing through the valve 114a and flows into the intermediate heat exchanger 107a. .
  • the secondary-side refrigerant that has flowed into the intermediate heat exchanger 107a is cooled by the low-temperature primary-side refrigerant and flows out of the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107a flows into the pump 109a and is sent out again.
  • the high-temperature secondary refrigerant sent out by driving the pump 109b branches, passes through the valves 1121b, 1122b, and 1123b, then flows out from the intermediate unit 1B, and the convection in the convection indoor unit C11. Flow into the convection indoor heat exchanger 1082 of the convection indoor unit C13 and the convection indoor heat exchanger 1083 of the convection indoor unit C13.
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchangers 1081, 1082, and 1083 heats the indoor air to a low temperature state, flows out from the convection indoor units C11, C12, and C13, and flows into the intermediate unit 1B. .
  • the secondary side refrigerant directed to the indoor units C21 and C22 branches again, passes through the valves 1151b and 1152b, and then flows out from the intermediate unit 1B, and the radiant indoor heat exchanger 1161 of the indoor unit C21, and It flows into the radiant indoor heat exchanger 1162 of the indoor unit C22.
  • the secondary refrigerant that has flowed into the radiant indoor heat exchangers 1161 and 1162 heats the indoor air to a lower temperature state, flows out from the indoor units C21 and C22, and flows into the intermediate unit 1B again.
  • the radiant indoor heat exchanger 1161 flows out and flows into the intermediate unit 1B, the secondary refrigerant passing through the valve 1151d, and the radiant indoor heat exchanger 1162 flows out into the intermediate unit 1B and flows into the valve 1152d.
  • the secondary-side refrigerant that has passed through flows into the secondary-side refrigerant that has passed through the valve 114b and flows into the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107b is heated by the high-temperature primary refrigerant and flows out of the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107b flows into the pump 109b and is sent out again.
  • the number of the convection indoor unit C1n including the convection indoor heat exchanger 108n and the number of the radiant indoor units C2m including the radiant indoor heat exchanger 116m can be freely selected, and In the indoor unit C, cooling and heating can be arbitrarily set.
  • air conditioning that can stand up quickly and withstand large air-conditioning loads in rooms with convection type indoor units C1n can be performed without noise or drafts in rooms with radiant type indoor units C2m.
  • high-quality air conditioning can be performed for the entire building according to the usage and load of the room.
  • a convection indoor unit C1n provided with a convection heat exchanger 108n and a radiant indoor unit C2m provided with a radiant indoor heat exchanger 116m are provided in one air conditioning system. Space saving and energy saving can be realized rather than installing both air conditioning systems.
  • the radiant indoor heat exchanger 116m is installed downstream of the convective indoor heat exchanger 108n.
  • the secondary refrigerant at 5 ° C. is supplied to the convection indoor heat exchanger 108n, and the secondary refrigerant is exchanged by heat exchange in the convection indoor heat exchanger 108n. After the temperature of the side refrigerant rises to 15 ° C., it is supplied to the radiant indoor heat exchanger 116m.
  • both the convection indoor heat exchanger 108n and the radiant indoor heat exchanger 116m can be appropriately air-conditioned. That is, when the same temperature refrigerant is supplied to the convective heat exchanger 108n and the radiant indoor heat exchanger 116m, the convective heat exchanger 108n has insufficient capacity or the radiant indoor heat exchanger 116m has no capacity. There is a problem of becoming excessive. Therefore, by installing the radiant indoor heat exchanger 116m downstream of the convective indoor heat exchanger 108n, both the convective indoor heat exchanger 108n and the radiant indoor heat exchanger 116m can be appropriately air-conditioned.
  • the secondary refrigerant having a lower temperature than the convection indoor heat exchanger 108n after the heat exchange in the convection indoor heat exchanger 108n is radiated indoor heat. It is supplied to the exchanger 116m.
  • the 45 ° C. secondary side refrigerant is supplied to the convection indoor heat exchanger 108n, and the temperature is reduced to 130 ° C. by exchanging heat in the convection indoor heat exchanger 108n, and then supplied to the radiant indoor heat exchanger 116m. Is done. Therefore, both the convection indoor heat exchanger 108n and the radiant indoor heat exchanger 116m can be appropriately air-conditioned.
  • the temperature of the secondary refrigerant generated by the intermediate heat exchanger 107b is slightly lowered.
  • the compressor input can be reduced and the operation efficiency is good.
  • the temperature of the secondary refrigerant generated by the intermediate heat exchanger 107a is slightly increased. It is possible to reduce the input of the compressor and improve the operation efficiency.
  • FIG. 8 to 11 are refrigerant circuit diagrams showing Embodiment 2 of the air conditioning apparatus of the present invention.
  • the air conditioning apparatus 100 will be described with reference to FIG.
  • the air conditioner 100 of FIG. 8 differs from the air conditioner 1 of FIG. 1 in the configuration of the intermediate unit and the indoor unit.
  • the secondary refrigerant circuit includes at least the intermediate heat exchangers 107a and 107b, the convection indoor heat exchanger 108n, the radiant indoor heat exchanger 116n, the pumps 109a and 109b, and the valves 112na to 112nd. ing.
  • the secondary refrigerant circuit is roughly composed of pumps 109a and 109b, convection indoor heat exchanger 108n, radiant indoor heat exchanger 116n, intermediate heat exchangers 107a and 107b, and pumps 109a and 109b in this order.
  • a refrigerant circuit is configured by being connected by piping.
  • the intermediate unit 100B is installed as a separate housing from the outdoor unit 1A and the indoor unit C, at a position different from the outdoor space and the indoor space.
  • the outdoor unit 1A and the indoor unit C3n is relayed by refrigerant piping.
  • the intermediate unit 1B includes intermediate heat exchangers 107a and 107b, throttle mechanisms 105a and 105b, pumps 109a and 109b, and valves 111a to 111f and 112na to 112nd.
  • the intermediate heat exchanger 107a is provided between the refrigerant pipe where the valve 112nc joins and the pump 109a
  • the intermediate heat exchanger 107b is provided between the refrigerant pipe where the valve 112nd joins and the pump 109b. ing.
  • the convection radiant indoor unit C3n performs air conditioning by performing a cooling operation or a heating operation on the indoor space, and includes a convection heat exchanger 108n, a blower 108na, and a radiant indoor heat exchanger 116n. ing.
  • the valves 112na and 112nb on the intermediate unit 100B side are connected to the inflow side of the convection heat exchanger 108n of the indoor unit C3n.
  • the discharge side of the convective heat exchanger 108n is connected to the inflow side of the radiant indoor heat exchanger 116n, and the radiant indoor heat exchanger 116n is connected in series to the downstream side of the convective heat exchanger 108n. ing.
  • the discharge side of the radiant indoor heat exchanger 116n is connected to the valves 112nc and 112nd of the intermediate unit 100B.
  • the indoor air or the outside air supplied from the blower 108na exchanges heat with the secondary refrigerant in the indoor heat exchanger 108n, and then exchanges heat with the secondary refrigerant again in the radiant indoor heat exchanger 116n.
  • FIGS. 9 to 14 are refrigerant circuit diagrams illustrating an example of the flow of the primary side refrigerant and the secondary side refrigerant in each operation mode, and the operation of the air conditioner 100 in each operation mode with reference to FIGS. 9 to 14. An example will be described. Note that, since the flow of the primary side refrigerant is the same as that of the first embodiment (see FIGS. 2 to 7), only the flow of the secondary side refrigerant will be described.
  • FIG. 9 is a refrigerant circuit diagram illustrating the flows of the primary-side refrigerant and the secondary-side refrigerant in the cooling only operation mode of the air-conditioning apparatus 100 of FIG.
  • pipes represented by bold lines indicate pipes through which the primary side refrigerant and the secondary side refrigerant flow
  • the direction in which the primary side refrigerant flows is indicated by the solid line arrow
  • the direction in which the secondary side refrigerant flows is indicated by the broken line arrow Is shown.
  • FIGS. 10 to 12 the cooling only operation mode will be described with reference to FIG.
  • valves 112na to 112nd are opened beforehand.
  • the low-temperature secondary refrigerant sent out by driving the pump 109a branches passes through the valves 1121a, 1122a, 1123a, and then flows out from the intermediate unit 1B, respectively, and the convection type of the convection radiant indoor unit C31. It flows into the indoor heat exchanger 1081, the convection indoor heat exchanger 1082 of the convection radiant indoor unit C32, and the convection indoor heat exchanger 1083 of the convection radiant indoor unit C33.
  • the low-temperature secondary refrigerant sent out by driving the pump 109b branches passes through the valves 1121b, 1122b, and 1123b, and then flows out of the intermediate unit 1B, respectively. It flows into the convection indoor heat exchanger 1081, the convection indoor heat exchanger 1082 of the indoor unit C2, and the convection indoor heat exchanger 1083 of the convection radiant indoor unit C33.
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchangers 1081, 1082, and 1083 cools the indoor air or outside air to a high temperature state, and flows into the radiant indoor heat exchangers 1161 and 1162, respectively.
  • the secondary refrigerant flowing into the radiant indoor heat exchangers 1161, 1162, and 1163 cools the air and the indoor air heat-treated in the convective indoor heat exchangers 1081, 1082, and 1083, respectively, and becomes a higher temperature state.
  • the radiant indoor heat exchanger 1161 It flows out from the radiant indoor heat exchanger 1161 and flows into the intermediate unit 1B and branches.
  • One of the refrigerant flows out of the radiant indoor heat exchanger 1162 through the valve 1121c and flows into the intermediate unit 1B.
  • the secondary refrigerant joins and flows into the intermediate heat exchanger 107a.
  • the refrigerant flows out of the radiant indoor heat exchanger 1161 and flows into the intermediate unit 1B and branches.
  • the other refrigerant flows out of the secondary refrigerant passing through the valve 1121d and the radiant indoor heat exchanger 1162 and flows into the intermediate unit 1B.
  • the other side flows into the branch unit, the other side passes through the valve 1122d and the secondary refrigerant flows out of the radiant indoor heat exchanger 1163, flows into the intermediate unit 1B, branches, and the other side passes through the valve 1123d.
  • the secondary side refrigerants merged and flow into the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing into the intermediate heat exchangers 107a and 107b is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchangers 107a and 107b, respectively.
  • the secondary refrigerant flowing out of the intermediate heat exchangers 107a and 107b flows into the pumps 109a and 109b, respectively, and is sent out again.
  • FIG. 10 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant in the heating only operation mode of the air-conditioning apparatus 100 of FIG. 8.
  • the heating only operation mode will be described with reference to FIG.
  • the flow of the secondary side refrigerant in the secondary side refrigerant circuit will be described.
  • the flow of the secondary side refrigerant is the same as in the cooling only operation mode.
  • the valves 112na to 112nd are opened beforehand.
  • the high-temperature secondary refrigerant sent out by driving the pump 109a branches passes through the valves 112na, 1122a, and 1123a, respectively, then flows out from the intermediate unit 1B, and the convection type of the convection radiant indoor unit C31. It flows into the indoor heat exchanger 1081, the convection indoor heat exchanger 1082 of the convection radiant indoor unit C32, and the convection indoor heat exchanger 1083 of the convection radiant indoor unit C33.
  • the high-temperature secondary refrigerant sent out by driving the pump 109b branches passes through the valves 1121b, 1122b, and 1123b, then flows out from the intermediate unit 1B, and the convection in the convection indoor unit C1. Flow into the convection indoor heat exchanger 1082 of the convection radiant indoor unit C33 and the convection indoor heat exchanger 1083 of the convection radiant indoor unit C33.
  • the secondary-side refrigerant that has flowed into the convective indoor heat exchangers 1081, 1082, and 1083 heats indoor air or outside air to a low temperature state, and flows into the radiant indoor heat exchangers 1161, 1162, and 1163, respectively.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchangers 1161, 1162, and 1163 heats the air that has been heat-treated in the convection indoor heat exchangers 1081, 1082, and 1083 and the indoor air, respectively, and becomes a lower temperature state.
  • the radiant indoor heat exchanger 1161 It flows out from the radiant indoor heat exchanger 1161 and flows into the intermediate unit 1B and branches.
  • One of the refrigerant flows out of the radiant indoor heat exchanger 1162 through the valve 1121c and flows into the intermediate unit 1B.
  • the secondary refrigerant joins and flows into the intermediate heat exchanger 107a.
  • the refrigerant flows out of the radiant indoor heat exchanger 1161 and flows into the intermediate unit 1B and branches.
  • the other refrigerant flows out of the secondary refrigerant passing through the valve 1121d and the radiant indoor heat exchanger 1162 and flows into the intermediate unit 1B.
  • the other side flows into the branch unit, the other side passes through the valve 1122d and the secondary refrigerant flows out of the radiant indoor heat exchanger 1163, flows into the intermediate unit 1B, branches, and the other side passes through the valve 1123d.
  • the secondary side refrigerants merged and flow into the intermediate heat exchanger 107b.
  • the secondary side refrigerant flowing into the intermediate heat exchangers 107a and 107b is heated by the high temperature primary side refrigerant and flows out from the intermediate heat exchangers 107a and 107b, respectively.
  • the secondary refrigerant flowing out of the intermediate heat exchangers 107a and 107b flows into the pumps 109a and 109b, respectively, and is sent out again.
  • FIG. 11 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant in the cooling main operation mode of the air-conditioning apparatus 100 of FIG. 8.
  • the cooling main operation mode will be described with reference to FIG.
  • the convection radiant indoor unit C31 performs the heating operation
  • the convection radiant indoor units C32 and C33 perform the cooling operation.
  • the flow of the secondary side refrigerant in the secondary side refrigerant circuit will be described.
  • the valves 1121b, 1121d, 1122a, 1122c, 1123a, 1123c are opened, and 1121a, 1121c, 1122b, 1122d, 1123b, 1123d are closed.
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchangers 1082 and 1083 cools the indoor air or outside air to a high temperature state, and flows into the radiant indoor heat exchangers 1162 and 1163, respectively.
  • the secondary refrigerant flowing into the radiant indoor heat exchangers 1162 and 1163 cools the air heat treated in the convective indoor heat exchangers 1082 and 1083 and the indoor air, respectively, and becomes a higher temperature state. It flows out from the indoor units C32 and C33 and flows into the intermediate unit 1B.
  • the radiant indoor heat exchanger 1162 flows out and flows into the intermediate unit 1B, the secondary refrigerant passing through the valve 1122c, and the radiant indoor heat exchanger 1163 flows out into the intermediate unit 1B, and the valve 1123c.
  • the secondary-side refrigerants that have passed through are merged and flow into the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107a is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107a flows into the pump 109a and is sent out again.
  • the high-temperature secondary refrigerant sent out by driving the pump 109b passes through the valve 1121b, then flows out from the intermediate unit 1B, and flows into the convection indoor heat exchanger 1081 of the convection radiant indoor unit C31. .
  • the secondary-side refrigerant that has flowed into the convection indoor heat exchanger 1081 heats indoor air to a low temperature state, and flows into the radiant indoor heat exchanger 1161.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchanger 1161 heats the air that has been heat-treated in the convective indoor heat exchanger 1081 and the indoor air, and then enters a lower temperature state, and flows out of the convective radiant indoor unit C31. , Flows into the intermediate unit 1B.
  • the secondary refrigerant flowing out of the radiant indoor heat exchanger 1161 and flowing into the intermediate unit 1B and passing through the valve 1121d flows into the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107b is heated by the high-temperature primary refrigerant and flows out of the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107b flows into the pump 109b and is sent out again.
  • FIG. 12 is a refrigerant circuit diagram illustrating flows of the primary side refrigerant and the secondary side refrigerant in the heating main operation mode of the air-conditioning apparatus 100 of FIG. 8.
  • the heating main operation mode will be described with reference to FIG. In FIG. 12, it is assumed that the convection radiant indoor units C31 and C32 perform the heating operation, and the convection radiant indoor unit C33 performs the cooling operation.
  • valves 1121b, 1121d, 1122b, 1122d, 1123a, 1123c are opened, and 1121a, 1121c, 1122a, 1122c, 1123b, 1123d are closed.
  • the low-temperature secondary refrigerant sent out by driving the pump 109a passes through the valve 1123a, then flows out from the intermediate unit 1B, and flows into the convection indoor heat exchanger 1083 of the convection radiant indoor unit C33.
  • the secondary refrigerant that has flowed into the convection indoor heat exchanger 1083 cools the indoor air to a high temperature state, and flows into the radiant indoor heat exchanger 1163.
  • the secondary-side refrigerant that has flowed into the radiant indoor heat exchanger 1163 heats the air and the indoor air that have been heat-treated in the convective indoor heat exchanger 1083 to a higher temperature, and flows out of the convective radiant indoor unit C31. , Flows into the intermediate unit 1B.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107a is cooled by the low-temperature primary refrigerant and flows out of the intermediate heat exchanger 107a.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107a flows into the pump 109a and is sent out again.
  • the high-temperature secondary refrigerant sent out by driving the pump 109b branches, passes through the valves 1121b and 1122b, and then flows out from the intermediate unit 1B, respectively, and the convection type of the convection radiant indoor unit C31. It flows into the indoor heat exchanger 1081 and the convection indoor heat exchanger 1082 of the convection radiant indoor unit C32.
  • the radiant indoor heat exchanger 1161 flows out and flows into the intermediate unit 1B, and the secondary refrigerant passing through the valve 1121d and the radiant indoor heat exchanger 1162 flows out into the intermediate unit 1B and flows into the valve 1122d.
  • the secondary-side refrigerants that have passed through are joined and flow into the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing into the intermediate heat exchanger 107b is heated by the high-temperature primary refrigerant and flows out of the intermediate heat exchanger 107b.
  • the secondary refrigerant flowing out of the intermediate heat exchanger 107b flows into the pump 109b and is sent out again.
  • FIG. 13 to 15 are diagrams showing examples of installation of the convection radiating indoor unit C3n of the air conditioning apparatus 100 according to Embodiment 2.
  • FIG. 13 a convection indoor heat exchanger 108 and a radiant indoor heat exchanger 116 are connected to the intermediate unit 1B by a secondary refrigerant pipe.
  • the broken line arrows indicate the direction in which the secondary refrigerant flows, and the secondary refrigerant flowing out of the intermediate unit 1B flows in the order of the convection indoor heat exchanger 108n and the radiant indoor heat exchanger 116n, and flows into the intermediate unit 1B.
  • the indoor air 1a is sucked by the blower 108a, heat-exchanged by the convection heat exchanger 108n, and then heat-exchanged by the radiant indoor heat exchanger 116n to perform air conditioning.
  • the outside air 1b is sucked in by the blower 108a, heat exchanged by the convection heat exchanger, and then heat exchanged by the radiant indoor heat exchanger 116m, thereby ventilation and air conditioning.
  • the indoor air 1a and the outside air 1b are sucked in by the blower 108a, heat-exchanged by the convection heat exchanger, and then heat-exchanged by the radiant indoor heat exchanger 116.
  • the ratio of room air to outside air may be adjusted according to the outside air temperature and the indoor air quality. Thereby, the sensible heat cooling capacity can be increased and the occurrence of condensation in the radiant indoor heat exchanger 116n can be prevented.
  • FIG. FIG. 16 is a refrigerant circuit diagram illustrating Embodiment 3 of the air-conditioning apparatus of the present invention.
  • the air-conditioning apparatus 200 will be described with reference to FIG.
  • the air conditioner 200 of FIG. 16 differs from the air conditioners 1 and 100 of FIGS. 1 and 8 in that three different types of convection indoor units C1, C2, and C3 are connected to the intermediate unit 1B. is there.
  • the air conditioner 200 includes a radiant convection indoor unit C31 including both a convection indoor heat exchanger 1081 and a radiant indoor heat exchanger 1164, and convection indoor heat exchangers 1081 and 1082 as heat exchangers.
  • Convection type indoor units C12 and C13 provided with only the indoor units C21 to C13 provided with only the radiant type indoor heat exchanger 116m.
  • FIG. 1 and Embodiment 2 it applies to Embodiment 1 and Embodiment 2.
  • the embodiments of the present invention are not limited to the above embodiments.
  • the case where two intermediate heat exchangers 107a and 107b are provided in the intermediate unit 1B is illustrated, but two or more units may be provided.
  • the radiant indoor heat exchanger may be a so-called active chilled beam or a passive chilled beam.
  • Air conditioner 1A outdoor unit, 1B, 100B intermediate unit, 2 primary side refrigerant circuit, 3 secondary side refrigerant circuit, 103 compressor, 104 heat source side heat exchanger, 104a fan, 105a, 105b Throttle mechanism, 106, first flow path switch, 107a, 107b intermediate heat exchanger, 108n convection indoor heat exchanger, 108na blower, 109a, 109b pump, 111a-111f valve (flow path switch), 112na valve, 112nb Valve, 112nc valve, 112nd valve, 113a-113d check valve, 115ma valve, 115mb valve, 115mc valve, 115md valve, 116 radiant indoor heat exchanger, 116n radiant indoor heat exchanger, C1n convection indoor unit, 2m radiant indoor unit, C3 convection radiant indoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 空気調和装置は、1次側冷媒を圧縮する圧縮機と、空気と1次側冷媒との間で熱交換を行う熱源側熱交換器とを備えた室外ユニットと、空気と2次側冷媒との間で熱交換を行う室内熱交換器を備えた複数の室内ユニットと、室外ユニットに1次側冷媒配管により接続されているとともに室内ユニットに2次側冷媒配管により接続された、1次側冷媒と2次側冷媒との間で熱交換を行う複数の中間熱交換器と、各室内ユニットと各中間熱交換器との接続の組み合わせを切り替える流路切替器とを有している。複数の室内ユニットには、対流式室内熱交換器を備えた対流式室内ユニットと、放射式室内熱交換器を備えた放射式室内ユニットとが含まれている。

Description

空気調和装置
 この発明は、複数の室内側ユニットを有し、冷暖房同時運転が可能なビル用マルチエアコン等の空気調和装置に関するものである。
 ビルや家等に設置される空気調和装置の室内機には、送風機により強制的に熱交換を行う対流式(送風式)熱交換器の他に、送風機による送風を行わない自然対流により熱交換を行う放射式(輻射式)熱交換器が存在する。対流式熱交換器は急冷が可能であるが、直接の送風により人に不快感等を与えてしまうおそれがある。放射式室内熱交換器は、直接の送風なしに冷暖房運転を行うことが可能であるが、急速な冷暖房運転を行うことができない。そこで、輻射式熱交換器と対流し熱交換器との双方を有する冷暖房システムが提案されている(たとえば特許文献1参照)。特許文献1には、床側に輻射式熱交換器が配置されるとともに天井側に対流式熱交換器が配置された構成を有し、輻射式熱交換器と対流式熱交換器とを直列に配置して冷媒を循環させる冷暖房システムが開示されている。
 ところで、室外機と室内機とを直接冷媒を接続させるのではなく、1次側冷媒回路と2次側冷媒回路とを設け、1次側冷媒回路と2次側冷媒回路との間で中間熱交換器を用いて熱交換を行う空気調和装置が提案されている(たとえば特許文献2参照)。特許文献2においては、全冷房運転、全暖房運転、暖房主体運転、冷房主体運転の主として4つの運転モードが用意されており、部屋等の状況に合わせて送風機を有する対流型熱交換器を用いた各室内ユニットの運転モードを個別に設定することができるようになっている。
特開平10-38324号公報 国際公開第2010/113296号
 しかし、特許文献1においては、1台の輻射熱交換部と1台の送風熱交換部とが接続された冷暖房システムが開示されているが、ビル等の建物全体の冷房暖房運転を行うような場合、特許文献2に示すような複数の室内ユニットが必要となる。一方で、特許文献2に示すように、対流式熱交換器を用いた場合のみならず、輻射式熱交換器を用いた室内ユニットを適宜配置して部屋の状況等に合致した快適な空調を提供することが望ましい。
 本発明は、上記のような問題点を解決するためになされたものであり、ビル等の建物内の各部屋の用途・配置に合わせて快適な空調を行うことができる空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、空気と1次側冷媒との間で熱交換を行う熱源側熱交換器とを備えた室外ユニットと、空気と2次側冷媒との間で熱交換を行う室内熱交換器を備えた複数の室内ユニットと、室外ユニットに1次側冷媒配管により接続されているとともに室内ユニットに2次側冷媒配管により接続された、1次側冷媒と2次側冷媒との間で熱交換を行う複数の中間熱交換器と、各室内ユニットと各中間熱交換器との接続の組み合わせを切り替える熱媒体流路切替器とを有している。複数の室内ユニットには、対流式室内熱交換器を備えた対流式室内ユニットと、放射式室内熱交換器を備えた放射式室内ユニットとが含まれたものである。
 本発明に係る空気調和装置は、室内ユニットに対流式熱交換器と放射式室内熱交換器とを備えた空調システムであり、対流式の空調システムと放射式の空調システムとの両システムを設置するよりもはるかに省スペースかつ省エネルギーに、部屋それぞれの用途や負荷に合わせた空調を行うことができる。
本発明の空気調和装置の実施形態1を示す冷媒回路図である。 図1の空気調和装置の全冷房運転モード時における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図1の空気調和装置の全暖房運転モード時における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図1の空気調和装置の冷房主体運転モード1における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図1の空気調和装置の冷房主体運転モード2における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図1の空気調和装置1の暖房主体運転モード1における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図1の空気調和装置1の暖房主体運転モード2における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 本発明の空気調和装置の実施形態2を示す冷媒回路図である。 図8の空気調和装置の全冷房運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図8の空気調和装置の全暖房運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図8の空気調和装置の冷房主体運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図8の空気調和装置の暖房主体運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。 図8の空気調和装置の室内ユニットの設置例を示す図である。 図8の空気調和装置の室内ユニットの設置例を示す図である。 図8の空気調和装置の室内ユニットの設置例を示す図である。 本発明の空気調和装置の実施形態3を示す冷媒回路図である。
実施形態1.
 図1は本発明の空気調和装置の実施形態1を示す冷媒回路図である。図1で示されるように、空気調和装置1は、ユニット単位で考えた場合、熱源機である室外ユニット1A、複数台の室内ユニットC1n、C2m(以下、区別なく称する場合、単に室内ユニットCというものとする)、中間ユニット1Bにより構成されている。なお、m、nは1以上の自然数であって、mは放射式室内熱交換器の台数、nは対流式室内熱交換器の台数をそれぞれ示す。実施形態1においてはm=3、n=3の場合について例示する。室外ユニット1Aと中間ユニット1Bとは第1冷媒配管により接続されており、中間ユニット1Bと複数の室内ユニットCとはそれぞれ第2冷媒配管により接続されている。そして、室外ユニット1Aで生成された冷熱又は温熱は、中間ユニット1Bを介して室内ユニットC1n、C2mに伝達されるようになっている。
(室外ユニット1Aの構成)
 室外ユニット1Aは、通常、ビルの屋上等の外の空間に設置され、中間ユニット1Bを介して室内ユニットC1n、C2mに冷熱又は温熱を供給するものである。室外ユニット1Aは、圧縮機103、熱源側熱交換器104、第1流路切替器106を備えている。圧縮機103は、ガス状態の1次側冷媒を吸入し、圧縮して高温高圧の状態にして吐出するものであり、例えば、容量制御可能なインバーター圧縮機等で構成されている。熱源側熱交換器104は、冷房運転時には放熱器として、暖房運転時には蒸発器として機能し、ファン104aから供給される室外空気と1次側冷媒との間で熱交換を実施するものである。
 第1流路切替器106はたとえば四方弁からなっており、冷房運転(全冷某運転モード及び冷房主体運転モード)時と暖房運転(全暖房運転モード及び暖房主体運転モード)時とにおいて1次側冷媒の流れを切り替えるものである。具体的には、冷房運転時には、第1流路切替器106は、圧縮機103から吐出された1次側冷媒が熱源側熱交換器104へ流れるとともに、中間ユニット1Bから流出した1次側冷媒が圧縮機103へ流れるように冷媒流路を切り替える。また、暖房運転時には、第1流路切替器106は、圧縮機103から吐出された1次側冷媒が中間ユニット1Bへ流れるとともに、熱源側熱交換器104から流出した1次側冷媒が圧縮機103へ流れるように冷媒流路を切り替える。
 4つの逆止弁113a~113dは、室外ユニット1Aと中間ユニット1Bとの間を流通する1次側冷媒の流通方向を一定方向にする機能を有するものである。逆止弁113aは、第1流路切替器106と、バルブ111c、111dとを接続する冷媒配管に設けられ、バルブ111c、111dから第1流路切替器106へ向かう方向のみに1次側冷媒を流通させる。逆止弁113bは、熱源側熱交換器104とバルブ111eとを接続する冷媒配管に設けられ、熱源側熱交換器104からバルブ111eへ向かう方向のみに1次側冷媒を流通させる。逆止弁113cは、第1流路切替器106と逆止弁113aとを接続する冷媒配管と、逆止弁113bとバルブ111eとを接続する冷媒配管とを接続する冷媒配管に設けられ、第1流路切替器106と逆止弁113aとを接続する冷媒配管側から、逆止弁113bとバルブ111eとを接続する冷媒配管側へ向かう方向のみに1次側冷媒を流通させる。逆止弁113dは、逆止弁113aと、バルブ111c、111dとを接続する冷媒配管と、熱源側熱交換器104と逆止弁113bとを接続する冷媒配管とを接続する冷媒配管に設けられ、逆止弁113aと、バルブ111c、111dとを接続する冷媒配管側から、熱源側熱交換器104と逆止弁113bとを接続する冷媒配管側へ向かう方向のみに1次側冷媒を流通させる。
(中間ユニット1Bの構成)
 中間ユニット1Bは、たとえば室外ユニット1A及び室内ユニットCとは別筐体として、室外空間及び室内空間とは別の位置等に設置されるものであり、室外ユニット1Aおよび室内ユニットCにそれぞれ第1冷媒配管および第2冷媒配管を介して接続されたものである。中間ユニット1Bは、中間熱交換器107a、107b、絞り機構105a、105b、ポンプ109a、109b、及び、バルブ111a~111f、112na~112nd、115ma~115md、114a~114dを備えている。中間ユニット1Bは、室外ユニット1Aに対し絞り機構105a、105bおよびバルブ111a~111fを介して第1冷媒配管により接続されている。一方、中間ユニット1Bは、各室内ユニットC1n、C2mに対し各ポンプ109a、109bおよびバルブ112na~112nd、115ma~115dm、114a~114dを介して複数の室内ユニットCにそれぞれ接続されている。
 中間熱交換器107a、107bは、例えば、二重管熱交換器、プレート式熱交換器、マイクロチャネル式水熱交換器又はシェルアンドチューブ式熱交換器等で構成されており、1次側冷媒が流通する冷媒流路と2次側冷媒が流通する冷媒流路とを備えている。そして、中間熱交換器107a、107bは放熱器又は蒸発器として機能して1次側冷媒と2次側冷媒との熱交換を実施する。つまり、1次側冷媒回路2を循環する1次側冷媒と、2次側冷媒回路3を循環する2次側冷媒とが中間熱交換器107a及び107bにより熱交換されるようになっている。
 中間熱交換器107aは、1次側冷媒回路2側の絞り機構105aとバルブ111cとの間に、かつ2次側冷媒回路3側のバルブ114aとポンプ109aの間に設けられている。また、中間熱交換器107bは、1次側冷媒回路2側の絞り機構105bとバルブ111dとの間に、かつ2次側冷媒回路3側のバルブ114bとポンプ109bの間に設けられている。なお、中間熱交換器107a、107bがプレート式熱交換器からなる場合、1次側冷媒の相変化を考慮し、1次側冷媒が吸熱するときに1次側冷媒が下側から流入し、1次側冷媒が放熱するときに1次側冷媒が上側から流入する向きに設置するとよい。
 絞り機構105a、105bは、例えば電子式膨張弁等の開度(開口面積)が可変に制御可能なもので構成されており、1次側冷媒回路2の1次側冷媒を減圧及び膨張させる減圧・膨張弁としての機能を有するものである。絞り機構105aは、中間熱交換器107aとバルブ111eとの間に設けられており、絞り機構105bは、中間熱交換器107bとバルブ111eとの間に設けられている。
 各第3流路切替器111a~111fはそれぞれたとえば二方弁で構成されており、1次側冷媒回路2において、第1冷媒配管から中間熱交換器107a、107bに流出入する1次側冷媒の流路を切り替えるものである。具体的には、バルブ111aは、中間熱交換器107aとバルブ111cとを接続する冷媒配管と、バルブ111bと逆止弁113b(又はバルブ111f)とを接続する冷媒配管とを接続する冷媒配管に設けられたものである。バルブ111bは、中間熱交換器107bとバルブ111dとを接続する冷媒配管と、バルブ111aと逆止弁113b(又はバルブ111f)とを接続する冷媒配管とを接続する冷媒配管に設けられたものである。バルブ111cは、逆止弁113aと中間熱交換器107aとを接続する冷媒配管に設けられたものである。バルブ111dは、逆止弁113aと中間熱交換器107bとを接続する冷媒配管に設けられたものである。バルブ111eは、絞り機構105a(又は絞り機構105b)と逆止弁113aとを接続する冷媒配管に設けられたものである。バルブ111fは、逆止弁113aと逆止弁113bとをバイパスルする冷媒配管に設けられたものである。なお、4つのバルブ111a~111dに代えて各中間熱交換器107a、107bにそれぞれ設けられた2つの四方弁を設けてもよい。
 ポンプ109a、109bは、2次側冷媒回路3内において2次側冷媒を圧送して循環させるものであり、例えば、容量制御可能なポンプ等で構成されている。ポンプ109aの吸入側は中間熱交換器107aに接続されており、吐出側は分岐して複数のバルブ112naに接続されている。一方、ポンプ109bの吸入側は中間熱交換器107bに接続されており、吐出側は分岐して複数のバルブ112nbに接続されている。
 第2流路切替器は、バルブ112na~112nd、114a~114d、115ma~115mdを有している。バルブ112na、112nb、112nc、112ndはそれぞれ各対流式室内ユニットC1nの対流式室内熱交換器108nに送り込む2次側冷媒流路を切り替えるものである。また、バルブ115ma、115dm、114a、114bは放射式室内ユニットC2mの室内熱交換器116mに送り込む2次側冷媒流路を切り替えるものである。これらのバルブ112na~112nd、115ma~115mdは、開度(開口面積)を調整することによって、室内熱交換器108n、116mに流れる2次側冷媒の流量が制御される。
(室内ユニットC1n、C2mの構成)
 空気調和装置1は対流式室内熱交換器108nのみを備えた対流式室内ユニットC1nと、放射式室内熱交換器116mのみを備えた放射式室内ユニットC2mとを備えている。対流式室内ユニットC1nは、それぞれ対流式室内熱交換器108nと送風機108naとを備えており、室内空間に対して冷房動作又は暖房動作を行って空調を実施するものである。対流式室内熱交換器108nは、暖房動作時には放熱器として機能し、冷房動作時には蒸発器として機能する。対流式室内熱交換器108nは送風機から供給される室内空気と2次側冷媒との間で熱交換を実施し、室内空間に供給するための暖房用空気又は冷房用空気を生成する。対流式室内熱交換器108nは、一方の側に接続された冷媒配管は、分岐して、それぞれバルブ112na、112nbに接続され、他方の側に接続された冷媒配管は、分岐して、それぞれバルブ112nc、112ndに接続されている。
 また、放射式室内ユニットC2mは、それぞれ放射式室内熱交換器(チルドビーム)116mを備えており、備えられた室内空間に対して、冷房動作又は暖房動作を行って空調を実施するものである。放射式室内熱交換器116mは、暖房動作時には放熱器として機能し、冷房動作時には蒸発器として機能する。放射式室内熱交換器116mは、送風機を備えないため、自然対流によって供給される室内空気と2次側冷媒との間で熱交換を実施し、室内空間に供給するための暖房用空気又は冷房用空気を生成する。放射式室内熱交換器116mの一方の側に接続された冷媒配管は、分岐して、それぞれバルブ115ma、115mbに接続され、他方の側に接続された冷媒配管は、分岐して、それぞれバルブ115mc、115mdに接続されている。
 ここで、複数の対流式室内熱交換器108nはそれぞれ並列に接続されており、複数の放射式室内熱交換器116mはそれぞれ並列に接続されている。そして、複数の放射式室内熱交換器116mは、複数の対流式室内熱交換器108nよりも下流に設置されている。このため、放射式室内熱交換器116mには対流式室内熱交換器108nにおいて熱交換を行った後の2次側冷媒が供給されることになる。また、中間ユニット1Bは複数の対流式室内熱交換器108nをバイパスするための配管およびバルブ(弁)114c、114dを有しており、中間熱交換器107a、107bから複数の対流式室内熱交換器108nをバイパスして下流側の放射式室内熱交換器116mへ2次側冷媒を直接供給することができるようになっている。
(冷媒回路の構成)
 図1の空気調和装置1は、1次側冷媒回路2及び2次側冷媒回路3の2つの冷媒回路によって構成されている。1次側冷媒回路2は、圧縮機103、熱源側熱交換器104、絞り機構105a、105b、第1流路切替器106、中間熱交換器107a、107b及びバルブ111a~111fにより構成されている。また、1次側冷媒回路2は、圧縮機103、第1流路切替器106、熱源側熱交換器104、絞り機構105a、105b、中間熱交換器107a、107b、第1流路切替器106、圧縮機103の順に第1冷媒配管によって接続されて冷媒回路が構成されている。1次側冷媒回路2を流通する1次側冷媒として、たとえばR410A、R32等のフロン系冷媒、プロパン等の炭化水素系冷媒、又は、二酸化炭素等の自然冷媒等を用いることができる。また、1次側冷媒としてR410A等の共沸混合冷媒、R407C、R32及びR134a、並びに、R32及びR1234yf等の非共沸混合冷媒の使用も可能である。
 2次側冷媒回路3は、中間熱交換器107a、107b、対流式室内熱交換器108n、放射式室内熱交換器116m、ポンプ109a、109b及びバルブ112na~112nd、115ma~115dm、114a~114dによって構成されている。また、2次側冷媒回路3は、ポンプ109a、109b、対流式室内熱交換器108n、放射式室内熱交換器116m、中間熱交換器107a、107b、ポンプ109a、109bの順に第2冷媒配管によって接続されて冷媒回路が構成されている。2次側冷媒回路を流通する2次側冷媒は、例えば、不凍液(ブライン)、水、これらの混合液、又は、水と防食効果を有する添加剤との混合液等を用いることができる。このような2次側冷媒を用いることによって、2次側冷媒が室内ユニットCから室内空間に漏洩しても、2次側冷媒として安全性の高いものを使用しているため、安全性を向上に寄与することになる。
 なお、本実施の形態では対流式室内熱交換器が3台(n=3)、放射式室内熱交換器が3台(m=3)となっているが、1台や2台でも良いし、4台以上でも良い。また、上記の1次側冷媒回路2及び2次側冷媒回路3は、同種類の冷媒が流れる冷媒回路を基準にした場合の回路構成である。
 本実施の形態に係る空気調和装置が実施する運転モードとして、室内ユニットCの全てが冷房動作を実施する全冷房運転モード、室内ユニットCの全てが暖房動作を実施する全暖房運転モード、室内ユニットCごとに冷房動作又は暖房動作を選択でき、冷房負荷の方が大きい冷房主体運転モード、及び、室内ユニットCごとに冷房動作又は暖房動作を選択でき、暖房負荷の方が大きい暖房主体運転モードがある。以下に、各運転モードについて、1次側冷媒及び2次側冷媒の流れとともに説明する。
(全冷房運転モード)
 図2は、図1の空気調和装置1の全冷房運転モード時における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。なお、図2においては、太線で表された配管が1次側冷媒及び2次側冷媒の流れる配管を示しており、1次側冷媒が流れる方向を実線矢印で、2次側冷媒が流れる方向を破線矢印で示している。以下、図3~図7において同様とする。以下、図2を参照しながら、全冷房運転モードについて説明する。
 予め、1次側冷媒回路2においては、圧縮機103から吐出された1次側冷媒が熱源側熱交換器104へ流れ、中間ユニット1Bから流出した1次側冷媒が圧縮機103へ流れるように第1流路切替器106が切り替えられる。また、バルブ111a、111b、111fが閉状態であり、バルブ111c、111d、111eが開状態であるものとする。2次側冷媒回路においては、バルブ112na~112nd、114a、114b、115ma~115dmは開状態、バルブ114c、114dは閉状態とするものとする。
 低温低圧のガス状態の1次側冷媒は、圧縮機103によって圧縮され、高温高圧状態となって吐出され、第1流路切替器106を経由して、熱源側熱交換器104へ流入し、室外空気に対して放熱し、一部又は全部が凝縮して、気液二相状態又は液状態となる。熱源側熱交換器104から流出した気液二相状態又は液状態の1次側冷媒は、逆止弁113bを経由して、室外ユニット1Aから流出し、中間ユニット1Bへ流入する。中間ユニット1Bへ流入した1次側冷媒は、バルブ111eを経由した後、分岐して、それぞれ絞り機構105a、105bへ流入し、膨張及び減圧されて、低温低圧の気液二相状態となり、中間熱交換器107a、107bへそれぞれ並列に流入する。
 中間熱交換器107a、107bへ流入した気液二相状態の1次側冷媒は、2次側冷媒から吸熱し、蒸発して低温低圧のガス状態となる。中間熱交換器107a、107bから流出した低温低圧のガス状態の1次側冷媒は、それぞれバルブ111c、111dを経由した後、合流して、中間ユニット1Bから流出し、室外ユニット1Aへ流入する。室外ユニット1Aへ流入したガス状態の1次側冷媒は、逆止弁113a及び第1流路切替器106を経由して、圧縮機103へ吸入され、再び圧縮される。
 次に、2次側冷媒回路における2次側冷媒の流れについて説明する。低温の2次側冷媒がポンプ109aの駆動によって中間熱交換器107aから流出し、各バルブ112naを経由した後、各対流式室内ユニットC1nの対流式室内熱交換器108nへ流入する。同様に、低温の2次側冷媒は、ポンプ109bの駆動によって中間熱交換器107bから流出し、それぞれバルブ112nbを経由した後、各対流式室内ユニットC1nの対流式室内熱交換器108nへ流入する。このように中間ユニット1Bから各対流式室内熱交換器108nへ流入した2次側冷媒は、室内空気を冷却して高温状態となり、それぞれ対流式室内ユニットC1nから流出し、中間ユニット1Bへ流入する。
 対流式室内熱交換器108nから流出した2次側冷媒は、中間熱交換器107a、107bに戻るものと、放射式室内ユニット側に流入するものとに分岐する。具体的には、2次側冷媒は、バルブ112ncおよびバルブ114aを経由して中間熱交換器107aに流入する2次側冷媒と、バルブ112ncから放射式室内ユニットC2mへ向かう2次側冷媒とに分岐する。同様に、2次側冷媒は、バルブ112ndおよびバルブ114bを経由して中間熱交換器107bに流入する2次側冷媒と、バルブ112ndから放射式室内ユニットC2mへ向かう2次側冷媒とに分岐する。
 放射式室内ユニットC2mへ向かった2次側冷媒は、各バルブ115maを経由した後、中間ユニット1Bから流出して、各放射式室内ユニットC2mの放射式室内熱交換器116mへそれぞれ流入する。このように、各対流式室内ユニットC1nから中間ユニット1Bを介して各対流式室内熱交換器108nへ流入した2次側冷媒は、室内空気を冷却して高温状態となり、それぞれ対流式室内ユニットC1nから流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器116mから流出した2次側冷媒は中間ユニット1Bへ流入し、バルブ115mcを経由して中間熱交換器107aに流入するとともに、115dmを介して中間熱交換器107bに流入する。中間熱交換器107a、107bへ流入した2次側冷媒は、低温状態の1次側冷媒によって冷却され、それぞれ中間熱交換器107a、107bから流出する。中間熱交換器107a、107bから流出した2次側冷媒は、それぞれ、ポンプ109a、109bへ流入し、再び送り出される。
(全暖房運転モード)
 図3は、図1の空気調和装置1の全暖房運転モード時における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。以下、図3を参照しながら、全暖房運転モードについて説明する。1次側冷媒回路2において、予め圧縮機103から吐出された1次側冷媒が中間ユニット1Bへ流れ、熱源側熱交換器104から流出した1次側冷媒が圧縮機103へ流れるように第1流路切替器106が切り替えられる。また、バルブ111a、111b、111fが開状態であり、バルブ111c、111d、111eを閉状態であるものとする。また、2次側冷媒回路においては、全冷房運転モードと同様、バルブ112na~112nd、114a、114b、115ma~115dmを開状態、バルブ114c、114dを閉状態とするものとする。
 低温低圧のガス状態の1次側冷媒は、圧縮機103によって圧縮され、高温高圧状態となって吐出され、第1流路切替器106及び逆止弁113cを経由して、室外ユニット1Aから流出し、中間ユニット1Bへ流入する。中間ユニット1Bへ流入した1次側冷媒は、分岐して、それぞれバルブ111a、111bを経由して、中間熱交換器107a、107bへ並列に流入する。中間熱交換器107a、107bへ流入した高温高圧状態の1次側冷媒は、2次側冷媒へ放熱し、一部又は全部が凝縮して、気液二相状態又は液状態となる。中間熱交換器107a、107bから流出した気液二相状態又は液状態の1次側冷媒は、それぞれ絞り機構105a、105bへ流入し、膨張及び減圧されて、低温低圧の気液二相状態となり、その後、絞り機構105a、105bからそれぞれ流出した1次側冷媒は合流し、バルブ111fを経由して中間ユニット1Bから流出して室外ユニット1Aへ流入する。室外ユニット1Aへ流入した気液二相状態の1次側冷媒は、逆止弁113dを経由して、熱源側熱交換器104へ流入し、室外空気から吸熱し、蒸発して低温低圧のガス状態となり、第1流路切替器106を経由して、圧縮機103へ吸入され、再び圧縮される。
 2次側冷媒回路における2次側冷媒の流れは、全冷房運転モードと同様であるため、全冷房運転モードとは異なる熱の移動についてのみ説明する。ポンプ109a、109bから送り出された高温の2次側冷媒は、対流式熱交換器108nで室内空気を加熱して低温状態となり、放射式室内熱交換器116mで室内空気を加熱して更に低温の状態となり、その後中間熱交換器107a、107bで高温状態の1次側冷媒によって加熱され、高温の状態で再びポンプ109a、109bへ流入し、再び送り出される。
(冷房主体運転モード1)
 図4は、図1の空気調和装置1の冷房主体運転モード1における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。冷房主体運転モード1は、冷房負荷が暖房負荷よりも大きく、対流式室内ユニットC1nのうち少なくとも1台が暖房動作を実施する運転モードである。なお、図4においては、対流式室内ユニットC11および放射式室内ユニットC21が暖房動作を実施し、対流式室内ユニットC12、C13および放射式室内ユニットC22、C23が冷房動作を実施するものとする。
 1次側冷媒回路2において、予め圧縮機103から吐出された1次側冷媒が熱源側熱交換器104へ流れ、中間ユニット1Bから流出した1次側冷媒が圧縮機103へ流れるように第1流路切替器106が切り替えられる。バルブ111a、111d、111e、111fを閉状態とし、バルブ111b、111cを開状態とするものとする。また、2次側冷媒回路においては、バルブ1121b、1121d、1122a、1122c、1123a、1123c、114a、114b、1151b、1151d、1152a、1152c、1153a、1153cを開状態とし、バルブ1121a、1121c、1122b、1122d、1123b、1123d、114c、114d、1151a、1151c、1152b、1152d、1153b、1153dを閉状態とするものとする。
 低温低圧のガス状態の1次側冷媒は、圧縮機103によって圧縮され、高温高圧状態となって吐出され、第1流路切替器106を経由して、熱源側熱交換器104へ流入し、室外空気に対して放熱し、一部が凝縮して、気液二相状態となる。熱源側熱交換器104から流出した気液二相状態の1次側冷媒は、逆止弁113bを経由して、室外ユニット1Aから流出し、中間ユニット1Bへ流入する。
 中間ユニット1Bへ流入した気液二相状態の1次側冷媒は、バルブ111bを経由して、中間熱交換器107bへ流入し、2次側冷媒を加熱することによってさらに凝縮する。中間熱交換器107bを流出した2次側冷媒は、絞り機構105b及び絞り機構105aへ経由することによって膨張及び減圧されて低温低圧の気液二相状態となり、中間熱交換器107aへ流入する。中間熱交換器107aへ流入した気液二相状態の1次側冷媒は、2次側冷媒から吸熱し、蒸発して低温低圧のガス状態となる。中間熱交換器107aから流出した低温低圧のガス状態の1次側冷媒は、バルブ111cを経由して、中間ユニット1Bから流出し、室外ユニット1Aへ流入する。室外ユニット1Aへ流入したガス状態の1次側冷媒は、逆止弁113a及び第1流路切替器106を経由して圧縮機103へ吸入され、再び圧縮される。
 次に、2次側冷媒回路における2次側冷媒の流れについて説明する。ポンプ109aの駆動によって送り出された低温の2次側冷媒は、分岐してそれぞれバルブ1122a、1123aを経由した後、中間ユニット1Bから流出して、それぞれ対流式室内ユニットC12の対流式室内熱交換器1082、及び、対流式室内ユニットC13の対流式室内熱交換器1083へ流入する。対流式室内熱交換器1082、1083へ流入した2次側冷媒は、室内空気を冷却して高温状態となり、それぞれ対流式室内ユニットC12、C13から流出し、中間ユニット1Bへ流入する。
 対流式室内熱交換器1082を流出して中間ユニット1Bへ流入し、バルブ1122cを経由した2次側冷媒、及び、対流式室内熱交換器1083を流出して中間ユニット1Bへ流入し、バルブ1123cを経由した2次側冷媒は合流した後、バルブ114aを通るものと、室内ユニットC22、C23へ向かうものとに分岐する。室内ユニットC22、C23へ向かった2次側冷媒は、再び分岐しバルブ1152a、1153aを経由した後、中間ユニット1Bから流出して、それぞれ室内ユニットC22の放射式室内熱交換器1162、及び、室内ユニットC23の放射式室内熱交換器1163へ流入する。放射式室内熱交換器1162、1163へ流入した2次側冷媒は、室内空気を冷却してさらに高温の状態となり、それぞれ室内ユニットC22、C23から流出し、中間ユニット1Bへ再び流入する。
 放射式室内熱交換器1162を流出して中間ユニット1Bへ流入し、バルブ1152cを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入し、バルブ1153cを経由した2次側冷媒は、バルブ114aを通った2次側冷媒と合流し、中間熱交換器107aへ流入する。中間熱交換器107aへ流入した2次側冷媒は低温状態の1次側冷媒によって冷却され、中間熱交換器107aから流出する。中間熱交換器107aを流出した2次側冷媒は、ポンプ109aへ流入し、再び送り出される。
 一方、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、バルブ1121bを経由した後、中間ユニット1Bから流出して、対流式室内ユニットC11の対流式室内熱交換器1081へ流入する。対流式室内熱交換器1081へ流入した2次側冷媒は、室内空気を加熱して低温状態となり、対流式室内ユニットC11から流出し、中間ユニット1Bへ流入する。
 対流式室内熱交換器1081を流出して中間ユニット1Bへ流入し、バルブ1121dを経由した2次側冷媒は、バルブ114bを通るものと、室内ユニットC21へ向かうものとに分岐する。室内ユニットC21へ向かった2次側冷媒は、バルブ1151bを経由して中間ユニット1Bから流出し、室内ユニットC21の放射式室内熱交換器1161へ流入する。放射式室内熱交換器1161へ流入した2次側冷媒は、室内空気を冷却してさらに高温の状態となり、室内ユニットC21から流出し、中間ユニット1Bへ再び流入する。放射式室内熱交換器1161を流出して中間ユニット1Bへ流入し、バルブ1151dを経由した2次側冷媒は、バルブ114bを通った2次側冷媒と合流し、中間熱交換器107bへ流入する。中間熱交換器107bへ流入した2次側冷媒は、高温状態の1次側冷媒によって加熱され、中間熱交換器107bから流出する。中間熱交換器107bを流出した2次側冷媒は、ポンプ109bへ流入し、再び送り出される。
(冷房主体運転モード2)
 図5は、図1の空気調和装置1の冷房主体運転モード2における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。冷房主体運転モード2は、冷房負荷が暖房負荷よりも大きく、対流式室内ユニットC11~C13の全てが冷房動作を実施し、室内ユニットC21~C23のうち少なくとも1台が暖房動作を実施する運転モードである。以下、図5を参照しながら、冷房主体運転モード2について説明する。なお、図5においては、対流式室内ユニットC11~C13および放射式室内ユニットC22、C23が冷房動作を、放射式室内ユニットC21が暖房動作を実施するものとする。なお、1次側冷媒回路2の流路切替については冷房主体運転モード1と同様であり、以下に2次側冷媒回路における2次側冷媒の流れについて説明する。
 2次側冷媒回路において、バルブ1121a~1123a、1121c~1123c、114a、114b、114d、1151b、1151d、1152a、1152c、1153a、1153cが開状態となり、バルブ1121b~1123b、1121d~1123d、114c、1151a、1151c、1152b、1152d、1153b、1153dが閉状態となる。
 ポンプ109aの駆動によって送り出された低温の2次側冷媒は、分岐して、それぞれバルブ1121a、1122a、1123aを経由した後、中間ユニット1Bから流出して、それぞれ対流式室内ユニットC11の対流式室内熱交換器1081、対流式室内ユニットC12の対流式室内熱交換器1082、及び、対流式室内ユニットC13の対流式室内熱交換器1083へ流入する。対流式室内熱交換器1081、1082、1083へ流入した2次側冷媒は、室内空気を冷却して高温状態となり、それぞれ対流式室内ユニットC11、C12、C13から流出し、中間ユニット1Bへ流入する。
 バルブ1121cを経由して中間ユニット1B側へ流入した2次側冷媒、バルブ1122cを経由して中間ユニット1B側へ流入した2次側冷媒、及び、バルブ1123cを経由して中間ユニット1B側へ流入した2次側冷媒は、バルブ114aを通るものと、室内ユニットC22、C23へ向かうものとに分岐する。室内ユニットC22、C23へ向かった2次側冷媒は、再び分岐しバルブ1152a、1153aを経由した後、中間ユニット1Bから流出して、それぞれ室内ユニットC22の放射式室内熱交換器1162及び室内ユニットC23の放射式室内熱交換器1163へ流入する。
 放射式室内熱交換器1162、1163へ流入した2次側冷媒は、室内空気を冷却してさらに高温の状態となり、それぞれ室内ユニットC22、C23から流出し、中間ユニット1Bへ再び流入する。放射式室内熱交換器1162を流出して中間ユニット1Bへ流入し、バルブ1152cを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入し、バルブ1153cを経由した2次側冷媒は、バルブ114aを通った2次側冷媒と合流し、中間熱交換器107aへ流入する。中間熱交換器107aへ流入した2次側冷媒は低温状態の1次側冷媒によって冷却され、中間熱交換器107aから流出する。中間熱交換器107aを流出した2次側冷媒は、ポンプ109aへ流入し、再び送り出される。
 一方、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、バルブ114dを経由した後、バルブ114bを通るものと、室内ユニットC21へ向かうものとに分岐する。室内ユニットC21へ向かった2次側冷媒は、バルブ1151bを経由して中間ユニット1Bから流出し、室内ユニットC21の放射式室内熱交換器1161へ流入する。放射式室内熱交換器1161へ流入した2次側冷媒は、室内空気を加熱して低温状態となり、それぞれ室内ユニットC21から流出し、中間ユニット1Bへ流入する。放射式室内熱交換器1161を流出して中間ユニット1Bへ流入し、バルブ1151dを経由した2次側冷媒は、バルブ114bを通った2次側冷媒と合流し、中間熱交換器107bへ流入する。中間熱交換器107bへ流入した2次側冷媒は、高温状態の1次側冷媒によって加熱され、中間熱交換器107bから流出する。中間熱交換器107bを流出した2次側冷媒は、ポンプ109bへ流入し、再び送り出される。
(暖房主体運転モード1)
 図6は、図1の空気調和装置1の暖房主体運転モード1における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。暖房主体運転モード1は、暖房負荷が冷房負荷よりも大きく、対流式室内ユニットC11~C13のうち少なくとも1台が冷房動作を実施する運転モードである。以下、図6を参照しながら、暖房主体運転モード1について説明する。なお、図6においては、対流式室内ユニットC11、C12および放射式室内ユニットC21、C22が暖房動作を実施し、対流式室内ユニットC13および放射式室内ユニットC23が冷房動作を実施するものとする。
 予め、1次側冷媒回路2においては、第1流路切替器106を、圧縮機103から吐出された1次側冷媒が中間ユニット1Bへ流れ、熱源側熱交換器104から流出した1次側冷媒が圧縮機103へ流れるように切り替え、バルブ111b、111cが開状態になり、バルブ111a、111d~111fが閉状態になる。また、2次側冷媒回路においては、バルブ1121b、1121d、1122b、1122d、1123a、1123c、114a、114b、バルブ1151b、1151d、1152b、1152d、1153a、1153cが開状態になる。一方、バルブ1121a、1121c、1122a、1122c、1123b、1123d、114c、114d、1151a、1151c、1152a、1152c、1153b、1153dが閉状態になる。
 低温低圧のガス状態の1次側冷媒は、圧縮機103によって圧縮され、高温高圧状態となって吐出され、第1流路切替器106及び逆止弁113cを経由して、室外ユニット1Aから流出し、中間ユニット1Bへ流入する。中間ユニット1Bへ流入した高温高圧状態の1次側冷媒は、バルブ111bを経由して、中間熱交換器107bへ流入し、2次側冷媒へ放熱し、一部又は全部が凝縮して気液二相状態又は液状態となる。中間熱交換器107bを流出した2次側冷媒は、絞り機構105b及び絞り機構105aへ経由することによって、膨張及び減圧されて、低温低圧の気液二相状態となり、中間熱交換器107aへ流入する。中間熱交換器107aへ流入した気液二相状態の1次側冷媒は、2次側冷媒から吸熱し、一部が蒸発する。中間熱交換器107aから流出した1次側冷媒は、バルブ111cを経由して、中間ユニット1Bから流出し、室外ユニット1Aへ流入する。室外ユニット1Aへ流入した1次側冷媒は、逆止弁113dを経由して、熱源側熱交換器104へ流入し、室外空気から吸熱し、蒸発して低温低圧のガス状態となり、第1流路切替器106を経由して、圧縮機103へ吸入され、再び圧縮される。
 次に、2次側冷媒回路における2次側冷媒の流れについて説明する。ポンプ109aの駆動によって送り出された低温の2次側冷媒は、バルブ1123aを経由した後、中間ユニット1Bから流出して、対流式室内ユニットC13の対流式室内熱交換器1083へ流入する。対流式室内熱交換器1083へ流入した2次側冷媒は、室内空気を冷却して高温状態となり、対流式室内ユニットC13から流出し、中間ユニット1Bへ流入する。
 対流式室内熱交換器1083を流出して中間ユニット1Bへ流入し、バルブ1123cを経由した2次側冷媒は、バルブ114aを通るものと、室内ユニットC23へ向かうものとに分岐する。室内ユニットC23へ向かった2次側冷媒は、バルブ1153aを経由して中間ユニット1Bから流出し、室内ユニットC23の放射式室内熱交換器1163へ流入する。放射式室内熱交換器1163へ流入した2次側冷媒は、室内空気を冷却してさらに高温の状態となり、室内ユニットC23から流出し、中間ユニット1Bへ再び流入する。放射式室内熱交換器1163を流出して中間ユニット1Bへ流入し、バルブ1153cを経由した2次側冷媒は、バルブ114aを通った2次側冷媒と合流し、中間熱交換器107aへ流入する。中間熱交換器107aへ流入した2次側冷媒は、低温状態の1次側冷媒によって冷却され、中間熱交換器107aから流出する。中間熱交換器107aを流出した2次側冷媒は、ポンプ109aへ流入し、再び送り出される。
 一方、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、分岐して、それぞれバルブ1121b、1122bを経由した後、中間ユニット1Bから流出して、それぞれ対流式室内ユニットC11の対流式室内熱交換器1081、及び、対流式室内ユニットC12の対流式室内熱交換器1082へ流入する。対流式室内熱交換器1081、1082へ流入した2次側冷媒は、室内空気を加熱して低温状態となり、それぞれ対流式室内ユニットC11、C12から流出し、中間ユニット1Bへ流入する。対流式室内熱交換器1081を流出して中間ユニット1Bへ流入し、バルブ1121dを経由した2次側冷媒、及び、対流式室内熱交換器1082を流出して中間ユニット1Bへ流入し、バルブ1122dを経由した2次側冷媒は、合流した後、バルブ114bを通るものと、室内ユニットC21、C22へ向かうものとに分岐する。室内ユニットC21、C22へ向かった2次側冷媒は、再び分岐しバルブ1151b、1152bを経由した後、中間ユニット1Bから流出して、それぞれ室内ユニットC21の放射式室内熱交換器1161、及び、室内ユニットC22の放射式室内熱交換器1162へ流入する。放射式室内熱交換器1161、1162へ流入した2次側冷媒は、室内空気を加熱してさらに低温の状態となり、それぞれ室内ユニットC21、C22から流出し、中間ユニット1Bへ再び流入する。
 放射式室内熱交換器1161を流出して中間ユニット1Bへ流入し、バルブ1151dを経由した2次側冷媒、及び、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入し、バルブ1152dを経由した2次側冷媒は、バルブ114bを通った2次側冷媒と合流し、中間熱交換器107bへ流入する。中間熱交換器107bへ流入した2次側冷媒は高温状態の1次側冷媒によって加熱され、中間熱交換器107bから流出する。中間熱交換器107bを流出した2次側冷媒は、ポンプ109bへ流入し、再び送り出される。
(暖房主体運転モード2)
 図7は、図1の空気調和装置1の暖房主体運転モード2における1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。暖房主体運転モード2は、暖房負荷が冷房負荷よりも大きく、対流式室内ユニットC11~C13の全てが暖房動作を、室内ユニットC21~C23のうち少なくとも1台が冷房動作を実施する運転モードである。以下、図7を参照しながら、暖房主体運転モード2について説明する。なお、図7においては、対流式室内ユニットC11~C13および放射式室内ユニットC21、C22が暖房動作を、放射式室内ユニットC23が冷房動作を実施するものとする。
 予め、1次側冷媒回路2においては、第1流路切替器106を、圧縮機103から吐出された1次側冷媒が熱源側熱交換器104へ流れ、中間ユニット1Bから流出した1次側冷媒が圧縮機103へ流れるように切り替え、バルブ111a、111d、111e、111fを閉状態とし、バルブ111b、111cを開状態とするものとする。また、2次側冷媒回路においては、バルブ1121b~1123b、1121d~1123d、114a、114b、114c、1151b、1151d、1152b、1152d、1153a、1153cを開状態とし、バルブ1121a~1123a、1121c~1123c、114d、1151a、1151c、1152a、1152c、1153b、1153dを閉状態とするものとする。
 1次側冷媒回路2については暖房主体運転モード1と同様であるためその説明を省略し、2次側冷媒回路における2次側冷媒の流れについてのみ説明する。ポンプ109aの駆動によって送り出された低温の2次側冷媒は、バルブ114cを経由した後、バルブ114aを通るものと、室内ユニットC23へ向かうものとに分岐する。室内ユニットC23へ向かった2次側冷媒は、バルブ1153aを経由して中間ユニット1Bから流出し、室内ユニットC23の放射式室内熱交換器1163へ流入する。放射式室内熱交換器1163へ流入した2次側冷媒は、室内空気を冷却して高温状態となり、それぞれ室内ユニットC23から流出し、中間ユニット1Bへ流入する。放射式室内熱交換器1163を流出して中間ユニット1Bへ流入し、バルブ1153cを経由した2次側冷媒は、バルブ114aを通った2次側冷媒と合流し、中間熱交換器107aへ流入する。
 中間熱交換器107aへ流入した2次側冷媒は、低温状態の1次側冷媒によって冷却され、中間熱交換器107aから流出する。中間熱交換器107aを流出した2次側冷媒は、ポンプ109aへ流入し、再び送り出される。一方、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、分岐して、それぞれバルブ1121b、1122b、1123bを経由した後、中間ユニット1Bから流出して、それぞれ対流式室内ユニットC11の対流式室内熱交換器1081、対流式室内ユニットC12の対流式室内熱交換器1082、及び、対流式室内ユニットC13の対流式室内熱交換器1083へ流入する。対流式室内熱交換器1081、1082、1083へ流入した2次側冷媒は、室内空気を加熱して低温状態となり、それぞれ対流式室内ユニットC11、C12、C13から流出し、中間ユニット1Bへ流入する。
 対流式室内熱交換器1081を流出して中間ユニット1Bへ流入し、バルブ1121dを経由した2次側冷媒、対流式室内熱交換器1082を流出して中間ユニット1Bへ流入し、バルブ1122dを経由した2次側冷媒、及び、対流式室内熱交換器1083を流出して中間ユニット1Bへ流入し、バルブ1123dを経由した2次側冷媒は、合流した後、バルブ114bを通るものと、室内ユニットC21、C22へ向かうものとに分岐する。室内ユニットC21、C22へ向かった2次側冷媒は、再び分岐し、バルブ1151b、1152bを経由した後、中間ユニット1Bから流出して、それぞれ室内ユニットC21の放射式室内熱交換器1161、及び、室内ユニットC22の放射式室内熱交換器1162へ流入する。放射式室内熱交換器1161、1162へ流入した2次側冷媒は、室内空気を加熱してさらに低温の状態となり、それぞれ室内ユニットC21、C22から流出し、中間ユニット1Bへ再び流入する。
 放射式室内熱交換器1161を流出して中間ユニット1Bへ流入し、バルブ1151dを経由した2次側冷媒、及び、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入し、バルブ1152dを経由した2次側冷媒は、バルブ114bを通った2次側冷媒と合流し、中間熱交換器107bへ流入する。中間熱交換器107bへ流入した2次側冷媒は高温状態の1次側冷媒によって加熱され、中間熱交換器107bから流出する。中間熱交換器107bを流出した2次側冷媒は、ポンプ109bへ流入し、再び送り出される。
(実施形態1の効果)
 上記実施形態1によれば、対流式室内熱交換器108nを備えた対流式室内ユニットC1nと放射式室内熱交換器116mを備えた放射式室内ユニットC2mの数を自由に選択でき、かつ、それぞれの室内ユニットCにおいて冷房及び暖房を任意に設定できる。これにより、対流式室内ユニットC1nを設置した部屋では立ち上がりが早く大きな冷暖房負荷にも耐えうる空調が、放射式室内ユニットC2mを設置した部屋では騒音やドラフトの発生することなくムラのない空調が可能となり、部屋の用途や負荷に合わせた建物全体として質の高い空調を行うことができる。
 また、1つの空調システムで対流式熱交換器108nを備えた対流式室内ユニットC1nと放射式室内熱交換器116mを備えた放射式室内ユニットC2mを設けており、対流式の空調システムと放射式の空調システムとを両方設置するよりも、省スペース化・省エネルギー化を実現することができる。
 さらに、2次側冷媒回路において、放射式室内熱交換器116mは対流式室内熱交換器108nよりも下流に設置されている。このため、全冷房運転モード、冷房主体運転モード1においては、例えば、対流式室内熱交換器108nに5℃の2次側冷媒が供給され、対流式室内熱交換器108nの熱交換により2次側冷媒が15℃まで温度上昇した後に放射式室内熱交換器116mに供給される。
 このように、対流式室内熱交換器108nにおいて熱交換を行った後の対流式室内熱交換器108nよりも高い温度の2次側冷媒が放射式室内熱交換器116mに供給されることになる。したがって、対流式室内熱交換器108n、放射式室内熱交換器116mともに適切な空調が可能となる。すなわち、対流式熱交換器108nと放射式室内熱交換器116mとに、同じ温度の冷媒を供給した場合、対流式熱交換器108nにおいて能力が不足しもしくは放射式室内熱交換器116mにおいて能力が過剰になるという問題がある。そこで、放射式室内熱交換器116mを対流式室内熱交換器108nよりも下流に設置することにより、対流式室内熱交換器108n、放射式室内熱交換器116mともに適切な空調が可能となる。
 特に、冷房運転時において、放射式室内熱交換器116mに温度の低すぎる冷媒を供給した場合、結露が発生するという問題がある。冷房運転時において、放射式室内熱交換器116mに対流式室内熱交換器108nよりも温度の高い2次側冷媒を供給することにより、放射式室内熱交換器116mでの結露の発生を防ぐことができる。
 同様に全暖房運転モード、暖房主体運転モードにおいては、対流式室内熱交換器108nにおいて熱交換を行った後の対流式室内熱交換器108nよりも低い温度の2次側冷媒が放射式室内熱交換器116mに供給される。例えば、対流式室内熱交換器108nに45℃の2次側冷媒が供給され、対流式室内熱交換器108nで熱交換することにより130℃まで温度低下し、放射式室内熱交換器116mに供給される。したがって、対流式室内熱交換器108n、放射式室内熱交換器116mともに適切な空調が可能となる。
 また、冷房主体運転モード2においては、バルブ114bを開状態とし、対流式室内熱交換器108nで暖房を行わないため、中間熱交換器107bで生成する2次側冷媒の温度をやや低くすることができ、圧縮機の入力を削減でき運転効率が良い。同様に、暖房主体運転モード2においては、バルブ114aを開状態とし、対流式室内熱交換器108nで冷房を行わないため、中間熱交換器107aで生成する2次側冷媒の温度をやや高くすることができ、圧縮機の入力を削減でき運転効率が良くなる。
実施の形態2.
 図8~図11は本発明の空気調和装置の実施形態2を示す冷媒回路図であり、図8を参照して空気調和装置100について説明する。なお、図8の空気調和装置100において図1の空気調和装置1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図8の空気調和装置100が図1の空気調和装置1と異なる点は、中間ユニットおよび室内ユニットの構成である。
(中間ユニット100Bの構成)
 まず、図8の中間ユニット100Bについて説明する。中間ユニット100Bは、2次側冷媒回路は、少なくとも、中間熱交換器107a、107b、対流式室内熱交換器108n、放射式室内熱交換器116n、ポンプ109a、109b及びバルブ112na~112ndによって構成されている。また、2次側冷媒回路は、大まかに、ポンプ109a、109b、対流式室内熱交換器108n、放射式室内熱交換器116n、中間熱交換器107a、107b、そして、ポンプ109a、109bの順に冷媒配管によって接続されて冷媒回路が構成されている。
 中間ユニット100Bは、実施の形態1同様、室外ユニット1A及び室内ユニットCとは別筐体として、室外空間及び室内空間とは別の位置等に設置されるものであり、室外ユニット1Aと室内ユニットC3nとを冷媒配管によって中継するものである。中間ユニット1Bは、中間熱交換器107a、107b、絞り機構105a、105b、ポンプ109a、109b、及び、バルブ111a~111f、112na~112ndを備えている。中間熱交換器107aは、2次側冷媒回路において、バルブ112ncが合流した冷媒配管とポンプ109aの間に、中間熱交換器107bは、バルブ112ndが合流した冷媒配管とポンプ109bの間に設けられている。
(室内ユニットC3nの構成)
 対流放射式室内ユニットC3nは、室内空間に対して冷房動作又は暖房動作を行って空調を実施するものであって、それぞれ対流式熱交換器108n、送風機108na及び放射式室内熱交換器116nを備えている。中間ユニット100B側のバルブ112na及び112nbは室内ユニットC3nの対流式熱交換器108nの流入側に接続されている。また、対流式熱交換器108nの吐出側には放射式室内熱交換器116nの流入側が接続されており、放射式室内熱交換器116nは対流式熱交換器108nの下流側に直列に接続されている。また、放射式室内熱交換器116nの吐出側には中間ユニット100Bのバルブ112nc及び112ndに接続されている。そして、送風機108naから供給された室内空気もしくは外気が、室内熱交換器108nにおいて2次側冷媒と熱交換し、その後放射式室内熱交換器116nにおいて再び2次側冷媒と熱交換する。なお、図8においては、対流放射式室内ユニットC3nの接続台数をn=3台としているが、これに限定するものではなく、対流放射式室内ユニットC3nは何台でも良い。
 図9から図14は各運転モードにおける1次側冷媒および2次側冷媒の流れの一例を示す冷媒回路図であり、図9から図14を参照して各運転モードにおける空気調和装置100の動作例について説明する。なお、なお、1次側冷媒の流れについては、上記実施形態1と同様であるため(図2~図7参照)、2次側冷媒の流れについてのみ説明する。
(全冷房運転モード)
 図9は、図8の空気調和装置100の全冷房運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。図9において、太線で表された配管が1次側冷媒及び2次側冷媒の流れる配管を示しており、1次側冷媒が流れる方向を実線矢印で、2次側冷媒が流れる方向を破線矢印で示している。以下、図10~図12において同様とする。以下、図9を参照しながら、全冷房運転モードについて説明する。
 2次側冷媒回路における2次側冷媒の流れについて説明する。予め2次側冷媒回路において、バルブ112na~112ndを開状態とするものとする。ポンプ109aの駆動によって送り出された低温の2次側冷媒は、分岐して、それぞれバルブ1121a、1122a、1123aを経由した後、中間ユニット1Bから流出して、それぞれ対流放射式室内ユニットC31の対流式室内熱交換器1081、対流放射式室内ユニットC32の対流式室内熱交換器1082、及び、対流放射式室内ユニットC33の対流式室内熱交換器1083へ流入する。また、ポンプ109bの駆動によって送り出された低温の2次側冷媒は、分岐して、それぞれバルブ1121b、1122b、1123bを経由した後、中間ユニット1Bから流出して、それぞれ対流放射式室内ユニットC31の対流式室内熱交換器1081、室内ユニットC2の対流式室内熱交換器1082、及び、対流放射式室内ユニットC33の対流式室内熱交換器1083へ流入する。
 対流式室内熱交換器1081、1082、1083へ流入した2次側冷媒は、室内空気もしくは外気を冷却して高温状態となり、それぞれ放射式室内熱交換器1161、1162へ流入する。放射式室内熱交換器1161、1162、1163へ流入した2次側冷媒は、それぞれ対流式室内熱交換器1081、1082、1083において熱処理された空気及び室内空気を冷却してさらに高温の状態となり、それぞれ対流放射式室内ユニットC31、C32、C33から流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器1161を流出して中間ユニット1Bへ流入して分岐し、その一方がバルブ1121cを経由した2次側冷媒、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入して分岐し、その一方がバルブ1122cを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入して分岐し、その一方がバルブ1123cを経由した2次側冷媒は、合流して中間熱交換器107aへ流入する。また、放射式室内熱交換器1161を流出して中間ユニット1Bへ流入して分岐し、その他方がバルブ1121dを経由した2次側冷媒、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入して分岐し、その他方がバルブ1122dを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入して分岐し、その他方がバルブ1123dを経由した2次側冷媒は、合流して中間熱交換器107bへ流入する。
 中間熱交換器107a、107bへ流入した2次側冷媒は、低温状態の1次側冷媒によって冷却され、それぞれ中間熱交換器107a、107bから流出する。中間熱交換器107a、107bから流出した2次側冷媒は、それぞれポンプ109a、109bへ流入し、再び送り出される。
(全暖房運転モード)
 図10は、図8の空気調和装置100の全暖房運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。以下、図10を参照しながら、全暖房運転モードについて説明する。2次側冷媒回路における2次側冷媒の流れについて説明する。2次側冷媒の流れは全冷房運転モードと同様である。予め2次側冷媒回路において、バルブ112na~112ndを開状態とするものとする。
 ポンプ109aの駆動によって送り出された高温の2次側冷媒は、分岐して、それぞれバルブ112na、1122a、1123aを経由した後、中間ユニット1Bから流出して、それぞれ対流放射式室内ユニットC31の対流式室内熱交換器1081、対流放射式室内ユニットC32の対流式室内熱交換器1082、及び、対流放射式室内ユニットC33の対流式室内熱交換器1083へ流入する。また、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、分岐して、それぞれバルブ1121b、1122b、1123bを経由した後、中間ユニット1Bから流出して、それぞれ対流式室内ユニットC1の対流式室内熱交換器1081、対流放射式室内ユニットC32の対流式室内熱交換器1082、及び、対流放射式室内ユニットC33の対流式室内熱交換器1083へ流入する。
 対流式室内熱交換器1081、1082、1083へ流入した2次側冷媒は、室内空気もしくは外気を加熱して低温状態となり、それぞれ放射式室内熱交換器1161、1162、1163に流入する。放射式室内熱交換器1161、1162、1163に流入した2次側冷媒は、それぞれ対流式室内熱交換器1081、1082、1083において熱処理された空気及び室内空気を加熱してさらに低温の状態になり、それぞれ対流放射式室内ユニットC31、C32、C33から流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器1161を流出して中間ユニット1Bへ流入して分岐し、その一方がバルブ1121cを経由した2次側冷媒、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入して分岐し、その一方がバルブ1122cを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入して分岐し、その一方がバルブ1123cを経由した2次側冷媒は、合流して中間熱交換器107aへ流入する。また、放射式室内熱交換器1161を流出して中間ユニット1Bへ流入して分岐し、その他方がバルブ1121dを経由した2次側冷媒、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入して分岐し、その他方がバルブ1122dを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入して分岐し、その他方がバルブ1123dを経由した2次側冷媒は、合流して中間熱交換器107bへ流入する。
 中間熱交換器107a、107bへ流入した2次側冷媒は、高温状態の1次側冷媒によって加熱され、それぞれ中間熱交換器107a、107bから流出する。中間熱交換器107a、107bから流出した2次側冷媒は、それぞれポンプ109a、109bへ流入し、再び送り出される。
(冷房主体運転モード)
 図11は、図8の空気調和装置100の冷房主体運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。以下、図11を参照しながら、冷房主体運転モードについて説明する。なお、図11においては、対流放射式室内ユニットC31が暖房動作を実施し、対流放射式室内ユニットC32、C33が冷房動作を実施するものとする。
 2次側冷媒回路における2次側冷媒の流れについて説明する。予め2次側冷媒回路において、バルブ1121b、1121d、1122a、1122c、1123a、1123cを開状態とし、1121a、1121c、1122b、1122d、1123b、1123dを閉状態とするものとする。
 ポンプ109aの駆動によって送り出された低温の2次側冷媒は、分岐して、それぞれバルブ1122a、1123aを経由した後、中間ユニット1Bから流出して、それぞれ対流放射式室内ユニットC32の対流式室内熱交換器1082、及び、対流放射式室内ユニットC33の対流式室内熱交換器1083へ流入する。
 対流式室内熱交換器1082、1083へ流入した2次側冷媒は、室内空気もしくは外気を冷却して高温状態となり、それぞれ放射式室内熱交換器1162、1163へ流入する。放射式室内熱交換器1162、1163へ流入した2次側冷媒は、それぞれ対流式室内熱交換器1082、1083において熱処理された空気及び室内空気を冷却してさらに高温の状態となり、それぞれ対流放射式室内ユニットC32、C33から流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器1162を流出して中間ユニット1Bへ流入し、バルブ1122cを経由した2次側冷媒、及び、放射式室内熱交換器1163を流出して中間ユニット1Bへ流入し、バルブ1123cを経由した2次側冷媒は、合流して中間熱交換器107aへ流入する。中間熱交換器107aへ流入した2次側冷媒は、低温状態の1次側冷媒によって冷却され、中間熱交換器107aから流出する。中間熱交換器107aを流出した2次側冷媒は、ポンプ109aへ流入し、再び送り出される。一方、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、バルブ1121bを経由した後、中間ユニット1Bから流出して、対流放射式室内ユニットC31の対流式室内熱交換器1081へ流入する。
 対流式室内熱交換器1081へ流入した2次側冷媒は、室内空気を加熱して低温状態となり、放射式室内熱交換器1161へ流入する。放射式室内熱交換器1161へ流入した2次側冷媒は、対流式室内熱交換器1081において熱処理された空気及び室内空気を加熱してさらに低温の状態となり、対流放射式室内ユニットC31から流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器1161を流出して中間ユニット1Bへ流入し、バルブ1121dを経由した2次側冷媒は、中間熱交換器107bへ流入する。中間熱交換器107bへ流入した2次側冷媒は、高温状態の1次側冷媒によって加熱され、中間熱交換器107bから流出する。中間熱交換器107bを流出した2次側冷媒は、ポンプ109bへ流入し、再び送り出される。
(暖房主体運転モード)
 図12は、図8の空気調和装置100の暖房主体運転モードにおける1次側冷媒及び2次側冷媒の流れを示す冷媒回路図である。以下、図12を参照しながら、暖房主体運転モードについて説明する。なお、図12においては、対流放射式室内ユニットC31、C32が暖房動作を実施し、対流放射式室内ユニットC33が冷房動作を実施するものとする。
 2次側冷媒回路における2次側冷媒の流れについて説明する。予め2次側冷媒回路において、バルブ1121b、1121d、1122b、1122d、1123a、1123cを開状態とし、1121a、1121c、1122a、1122c、1123b、1123dを閉状態とするものとする。
 ポンプ109aの駆動によって送り出された低温の2次側冷媒は、バルブ1123aを経由した後、中間ユニット1Bから流出して、対流放射式室内ユニットC33の対流式室内熱交換器1083へ流入する。対流式室内熱交換器1083へ流入した2次側冷媒は、室内空気を冷却して高温状態となり、放射式室内熱交換器1163へ流入する。放射式室内熱交換器1163へ流入した2次側冷媒は、対流式室内熱交換器1083において熱処理された空気及び室内空気を加熱してさらに高温の状態となり、対流放射式室内ユニットC31から流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器1163を流出して中間ユニット1Bへ流入し、バルブ1123cを経由した2次側冷媒は、中間熱交換器107aへ流入する。中間熱交換器107aへ流入した2次側冷媒は、低温状態の1次側冷媒によって冷却され、中間熱交換器107aから流出する。中間熱交換器107aを流出した2次側冷媒は、ポンプ109aへ流入し、再び送り出される。一方、ポンプ109bの駆動によって送り出された高温の2次側冷媒は、分岐して、それぞれバルブ1121b、1122bを経由した後、中間ユニット1Bから流出して、それぞれ対流放射式室内ユニットC31の対流式室内熱交換器1081、及び、対流放射式室内ユニットC32の対流式室内熱交換器1082へ流入する。
 対流式室内熱交換器1081、1082へ流入した2次側冷媒は、室内空気もしくは外気を加熱して低温状態となり、それぞれ放射式室内熱交換器1161、1162へ流入する。放射式室内熱交換器1161、1162へ流入した2次側冷媒は、対流式室内熱交換器1083において熱処理された空気及び室内空気を加熱してさらに低温の状態となり、それぞれ対流放射式室内ユニットC31、C32から流出し、中間ユニット1Bへ流入する。
 放射式室内熱交換器1161を流出して中間ユニット1Bへ流入し、バルブ1121dを経由した2次側冷媒、及び、放射式室内熱交換器1162を流出して中間ユニット1Bへ流入し、バルブ1122dを経由した2次側冷媒は、合流して中間熱交換器107bへ流入する。中間熱交換器107bへ流入した2次側冷媒は、高温状態の1次側冷媒によって加熱され、中間熱交換器107bから流出する。中間熱交換器107bを流出した2次側冷媒は、ポンプ109bへ流入し、再び送り出される。
(実施形態2の効果)
 上記実施形態2によれば、室内ユニットに対流式室内熱交換器108nと放射式室内熱交換器116nとを併設しているため、大きな熱負荷を処理し、かつ騒音やドラフトによる不快感の少ない空調を行うことができる。特に、冷房運転時には、対流式室内熱交換器108nで冷却することにより湿度を下げた空気を放射式室内熱交換器116nで適温にして室内へ吹出すことで、顕熱負荷だけでなく潜熱負荷も処理することができる。また、実施の形態1比べると、熱交換能力に対し、冷媒配管を少なくでき、コストを削減できる。
(実施の形態2における室内ユニットの設置例)
 図13~15は実施の形態2に係る空気調和装置100の対流放射式室内ユニットC3nの設置例を示す図である。図13において、対流式室内熱交換器108と、放射式室内熱交換器116とが2次側冷媒配管によって中間ユニット1Bと接続されている。破線矢印は2次側冷媒の流れる方向を示し、中間ユニット1Bから流出した2次側冷媒が対流式室内熱交換器108n、放射式室内熱交換器116nの順に流れ、中間ユニット1Bに流入する。
 図13に示す設置例は、室内空気1aが送風機108aにより吸い込まれ、対流式熱交換器108nで熱交換された後に、放射式室内熱交換器116nによって熱交換されることによって、空調を行う。また、図14に示す設置例では、外気1bが送風機108aにより吸い込まれ、対流式熱交換器で熱交換された後に、放射式室内熱交換器116mによって熱交換されることによって、換気及び空調を行う。図15に示す設置例では、室内空気1a及び外気1bが送風機108aにより吸い込まれ、対流式熱交換器で熱交換された後に、放射式室内熱交換器116によって熱交換されることによって、換気及び空調を行う。外気温度及や室内の空気質により、室内空気と外気の割合を調整するようにしてもよい。これにより、顕熱冷却能力を高めることができるとともに、放射式室内熱交換器116nにおける結露の発生を防止することができる。
実施の形態3.
 図16は、本発明の空気調和装置の実施形態3を示す冷媒回路図であり、図16を参照して空気調和装置200について説明する。なお、図16の空気調和装置200において図1および図8の空気調和装置1、100と同一の構成を有する部位には同一の符号を付してその説明を省略する。図16の空気調和装置200が図1、図8の空気調和装置1、100と異なる点は、種類の異なる3つの対流式室内ユニットC1、C2、C3が中間ユニット1Bに接続されている点である。
 具体的には、空気調和装置200は、対流式室内熱交換器1081と放射式室内熱交換器1164の両方を備えた放射対流室内ユニットC31、熱交換器として対流式室内熱交換器1081、1082のみを備えた対流式室内ユニットC12、C13、放射式室内熱交換器116mのみを備えた室内ユニットC21~23を有している。なお、各要素の構成及び、運転モードにおける冷媒の流れについては、実施形態1及び実施形態2に準ずる。上記実施形態3によれば、1つの空調調和装置200で、3種類の室内ユニットを設置できるため、省スペース、省エネルギーで、部屋それぞれの用途や負荷に合わせた空調を行うことができる。
 本発明の実施形態は上記各実施形態に限定されない。たとえば上記各実施形態において中間ユニット1B内において2つの中間熱交換器107a、107bが設けられている場合について例示しているが、2台以上設けたものであってもよい。
 また、図13~図15において、これに限られず、放射式室内熱交換器はいわゆるアクティブチルドビームであってもよいし、パッシブチルドビームであってよい。
 1、100、200 空気調和装置、1A 室外ユニット、1B、100B 中間ユニット、2 1次側冷媒回路、3 2次側冷媒回路、103 圧縮機、104 熱源側熱交換器、104a ファン、105a、105b 絞り機構、106 第1流路切替器、107a、107b 中間熱交換器、108n 対流式室内熱交換器、108na 送風機、109a、109b ポンプ、111a-111f バルブ(流路切替器)、112na バルブ、112nb バルブ、112nc バルブ、112nd バルブ、113a-113d 逆止弁、115ma バルブ、115mb バルブ、115mc バルブ、115md バルブ、116 放射式室内熱交換器、116n 放射式室内熱交換器、C1n 対流式室内ユニット、C2m 放射式室内ユニット、C3 対流放射式室内ユニット。

Claims (7)

  1.  1次側冷媒を圧縮する圧縮機と、空気と前記1次側冷媒との間で熱交換を行う熱源側熱交換器とを備えた室外ユニットと、
     空気と2次側冷媒との間で熱交換を行う室内熱交換器を備えた複数の室内ユニットと、
     前記室外ユニットに1次側冷媒配管により接続されているとともに前記室内ユニットに2次側冷媒配管により接続された、前記1次側冷媒と前記2次側冷媒との間で熱交換を行う複数の中間熱交換器と、
     前記各室内ユニットと前記各中間熱交換器との接続の組み合わせを切り替える流路切替器と、
     を有し、
     前記複数の室内ユニットには、対流式室内熱交換器を備えた対流式室内ユニットと、放射式室内熱交換器を備えた放射式室内ユニットとが含まれている
     ことを特徴とする空気調和装置。
  2.  前記複数の室内ユニットが、熱交換器として前記対流式室内熱交換器のみを備えた対流式室内ユニットと、放射式室内熱交換器のみを備えた放射式室内ユニットとを含むものであることを特徴とする請求項1に記載の空気調和装置。
  3.  前記複数の対流式室内ユニットがそれぞれ冷媒配管により並列に接続されており、
     前記複数の放射式室内ユニットがそれぞれ冷媒配管により並列に接続されており、
     前記複数の放射式室内ユニットが前記2次側冷媒の流れに対して前記複数の対流式室内ユニットの下流側となるように接続されることを特徴とする請求項1または請求項2に記載の空気調和装置。
  4.  前記複数の室内ユニットが、前記対流式室内熱交換器および放射式室内熱交換器の双方を備えた対流放射式室内ユニットを含むものであり、
     前記対流放射式室内ユニットは、前記2次側冷媒の流れに対して前記複数の対流式室内ユニットの上流側となるように接続されることを特徴とする請求項1から請求項3のいずれか1項記載の空気調和装置。
  5.  前記中間ユニットから前記複数の対流式熱交換器をバイパスして前記複数の放射式室内熱交換器へ前記2次側冷媒を供給するための配管及び弁をさらに有することを特徴とする請求項1から請求項4のいずれか1項に記載の空気調和装置。
  6.  前記複数の室内ユニットが、前記対流式室内ユニット及び前記放射式室内ユニットに代えて熱交換器として前記対流式室内熱交換器および前記放射式室内熱交換器の双方を備えた対流放射式室内ユニットのみからなるものであることを特徴とする請求項1に記載の空気調和装置。
  7.  前記対流式熱交換器がダクト内に設置されており、前記ダクト内であって前記対流式熱交換器から送風される空気の下流側に前記放射式室内熱交換器が配置されていることを特徴とする請求項4または請求項6に記載の空気調和装置。
PCT/JP2012/070224 2012-08-08 2012-08-08 空気調和装置 WO2014024276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/070224 WO2014024276A1 (ja) 2012-08-08 2012-08-08 空気調和装置
JP2014529195A JP5734524B2 (ja) 2012-08-08 2012-08-08 空気調和装置
EP12882657.5A EP2894410B1 (en) 2012-08-08 2012-08-08 Air conditioning device
US14/415,484 US9890976B2 (en) 2012-08-08 2012-08-08 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070224 WO2014024276A1 (ja) 2012-08-08 2012-08-08 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014024276A1 true WO2014024276A1 (ja) 2014-02-13

Family

ID=50067557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070224 WO2014024276A1 (ja) 2012-08-08 2012-08-08 空気調和装置

Country Status (4)

Country Link
US (1) US9890976B2 (ja)
EP (1) EP2894410B1 (ja)
JP (1) JP5734524B2 (ja)
WO (1) WO2014024276A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456731A (zh) * 2014-11-21 2015-03-25 特灵空调系统(中国)有限公司 多联机
WO2016113830A1 (ja) * 2015-01-13 2016-07-21 三菱電機株式会社 空気調和装置
US20170010027A1 (en) * 2014-01-27 2017-01-12 Qingdao Hisense Hitachi Air-Conditionung Systems Co., Ltd Heat recovery variable-frequency multi-split heat pump system and control method thereof
JP2017072339A (ja) * 2015-10-09 2017-04-13 清水建設株式会社 空調システム
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544580B1 (ja) * 2013-07-26 2014-07-09 株式会社 エコファクトリー 空気調和装置及び空気調和装置の運転方法
US20210033302A1 (en) * 2018-02-22 2021-02-04 Mitsubishi Electric Corporation Air-conditioning apparatus and air handling unit
KR20200092604A (ko) 2019-01-25 2020-08-04 엘지전자 주식회사 공기조화기

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479936A (en) * 1977-12-09 1979-06-26 Matsushita Electric Ind Co Ltd Air conditioner
JPH05288428A (ja) * 1992-04-06 1993-11-02 Hitachi Ltd 空気調和機
JPH0634170A (ja) * 1992-07-22 1994-02-08 Hitachi Ltd 熱媒体分配システム及び熱媒体分配方法
JPH0743679U (ja) * 1993-12-31 1995-09-05 株式会社イニシ 冷暖房用配管構造
JPH08303809A (ja) * 1995-04-28 1996-11-22 Sanyo Electric Co Ltd 輻射式空気調和システム
JPH09310877A (ja) * 1996-05-24 1997-12-02 Sanden Corp 空気調和装置
JPH1038324A (ja) 1996-07-23 1998-02-13 Matsushita Electric Works Ltd 冷暖房システム
JP2007232303A (ja) * 2006-03-02 2007-09-13 Toyox Co Ltd 室内冷暖房換気システム
JP2008014575A (ja) * 2006-07-06 2008-01-24 Daikin Ind Ltd 暖房装置
WO2009133644A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置
WO2010113296A1 (ja) 2009-04-01 2010-10-07 三菱電機株式会社 空気調和装置
JP2011226757A (ja) * 2010-03-31 2011-11-10 Ishimoto Kenchiku Jimusho:Kk ヒートポンプ付ファンコイル式放射空調パネル用空調機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276371A (ja) * 1986-05-22 1987-12-01 株式会社東芝 空気調和機
JPH0743679A (ja) 1993-07-29 1995-02-14 Sharp Corp 液晶表示濃度の自動調整装置
TW290624B (ja) 1995-04-28 1996-11-11 Sanyo Electric Co
JP2004270971A (ja) * 2003-03-05 2004-09-30 Takasago Thermal Eng Co Ltd 成層空調の成層高さの制御方法及び成層空調システム
JP4474994B2 (ja) * 2004-04-28 2010-06-09 ダイキン工業株式会社 空気調和システム
JP4696742B2 (ja) * 2005-07-19 2011-06-08 ダイキン工業株式会社 空気調和機
JP4923794B2 (ja) * 2006-07-06 2012-04-25 ダイキン工業株式会社 空気調和装置
AU2009219540B2 (en) * 2008-02-28 2012-07-19 Daikin Industries, Ltd. Refrigeration system
EP2314939A4 (en) * 2008-10-29 2014-07-02 Mitsubishi Electric Corp AIR CONDITIONER AND RELAY DEVICE
JP5178841B2 (ja) * 2008-10-29 2013-04-10 三菱電機株式会社 空気調和装置
JP2012011932A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 車両用液体循環システム
US9732992B2 (en) * 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479936A (en) * 1977-12-09 1979-06-26 Matsushita Electric Ind Co Ltd Air conditioner
JPH05288428A (ja) * 1992-04-06 1993-11-02 Hitachi Ltd 空気調和機
JPH0634170A (ja) * 1992-07-22 1994-02-08 Hitachi Ltd 熱媒体分配システム及び熱媒体分配方法
JPH0743679U (ja) * 1993-12-31 1995-09-05 株式会社イニシ 冷暖房用配管構造
JPH08303809A (ja) * 1995-04-28 1996-11-22 Sanyo Electric Co Ltd 輻射式空気調和システム
JPH09310877A (ja) * 1996-05-24 1997-12-02 Sanden Corp 空気調和装置
JPH1038324A (ja) 1996-07-23 1998-02-13 Matsushita Electric Works Ltd 冷暖房システム
JP2007232303A (ja) * 2006-03-02 2007-09-13 Toyox Co Ltd 室内冷暖房換気システム
JP2008014575A (ja) * 2006-07-06 2008-01-24 Daikin Ind Ltd 暖房装置
WO2009133644A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置
WO2010113296A1 (ja) 2009-04-01 2010-10-07 三菱電機株式会社 空気調和装置
JP2011226757A (ja) * 2010-03-31 2011-11-10 Ishimoto Kenchiku Jimusho:Kk ヒートポンプ付ファンコイル式放射空調パネル用空調機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
US20170010027A1 (en) * 2014-01-27 2017-01-12 Qingdao Hisense Hitachi Air-Conditionung Systems Co., Ltd Heat recovery variable-frequency multi-split heat pump system and control method thereof
US10132530B2 (en) * 2014-01-27 2018-11-20 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Heat recovery variable-frequency multi-split heat pump system and control method thereof
CN104456731A (zh) * 2014-11-21 2015-03-25 特灵空调系统(中国)有限公司 多联机
WO2016113830A1 (ja) * 2015-01-13 2016-07-21 三菱電機株式会社 空気調和装置
JPWO2016113830A1 (ja) * 2015-01-13 2017-07-06 三菱電機株式会社 空気調和装置
GB2548522A (en) * 2015-01-13 2017-09-20 Mitsubishi Electric Corp Air-conditioning device
GB2548522B (en) * 2015-01-13 2020-09-16 Mitsubishi Electric Corp Air-conditioning apparatus
JP2017072339A (ja) * 2015-10-09 2017-04-13 清水建設株式会社 空調システム

Also Published As

Publication number Publication date
JPWO2014024276A1 (ja) 2016-07-21
EP2894410A1 (en) 2015-07-15
EP2894410A4 (en) 2016-04-13
US20150176876A1 (en) 2015-06-25
EP2894410B1 (en) 2020-04-15
JP5734524B2 (ja) 2015-06-17
US9890976B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
JP5734524B2 (ja) 空気調和装置
JP5436575B2 (ja) 空気調和装置
JP5709978B2 (ja) 空気調和装置
JP5452629B2 (ja) 空気調和装置
WO2010109617A1 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
WO2010128557A1 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5490245B2 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
WO2011030407A1 (ja) 空気調和装置
WO2013008278A1 (ja) 空気調和装置
WO2016194145A1 (ja) 空気調和装置
WO2011064830A1 (ja) 空気調和装置
JP4413188B2 (ja) ヒートポンプ式給湯機
WO2014083652A1 (ja) 空気調和装置
WO2020174618A1 (ja) 空気調和装置
JP6388559B2 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
JP6537603B2 (ja) 空気調和装置
WO2023007803A1 (ja) 空気調和装置
WO2022162864A1 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置
JP2006322705A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14415484

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012882657

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE