WO2016194145A1 - 空気調和装置 - Google Patents
空気調和装置 Download PDFInfo
- Publication number
- WO2016194145A1 WO2016194145A1 PCT/JP2015/065924 JP2015065924W WO2016194145A1 WO 2016194145 A1 WO2016194145 A1 WO 2016194145A1 JP 2015065924 W JP2015065924 W JP 2015065924W WO 2016194145 A1 WO2016194145 A1 WO 2016194145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat medium
- heat
- refrigerant
- heat exchanger
- control device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/003—Indoor unit with water as a heat sink or heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0231—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/13—Pump speed control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
- Some air conditioners have a heat source unit (outdoor unit) arranged outside the building and an indoor unit arranged inside the building, such as a multi air conditioner for buildings.
- the refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (heat absorption) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air.
- the heated or cooled air is sent into the air-conditioning target space for heating or cooling.
- Such an air conditioner usually has a plurality of indoor spaces in a building, and accordingly includes a plurality of indoor units. Moreover, when the scale of the building is large, the refrigerant pipe connecting the outdoor unit and the indoor unit may be 100 m. When the length of the pipe connecting the outdoor unit and the indoor unit is long, the amount of refrigerant charged in the refrigerant circuit increases accordingly.
- Such an indoor unit of a multi-air conditioner for buildings is usually arranged and used in an indoor space where people are present (for example, an office space, a living room, or a store). If for some reason the refrigerant leaks from the indoor unit placed in the indoor space, depending on the type of refrigerant, it may be flammable or toxic, which may be a problem from the perspective of human impact and safety There is. Moreover, even if it is a refrigerant
- a secondary loop system is adopted, the refrigerant is circulated in the primary loop (refrigerant circulation circuit), and is not harmful to the secondary loop (heat medium circulation circuit).
- a heat medium such as water or brine is circulated to transfer the heat or cold of the refrigerant to the heat medium (see, for example, Patent Document 1).
- Patent Document 1 transmits the heat or cold generated in the primary loop to the secondary loop via a heat exchanger between heat media such as a plate heat exchanger or a double pipe. Hot or cold is supplied to the indoor unit by the secondary loop. Further, the technology described in Patent Document 1 suppresses the influence on the human body due to refrigerant leakage because the piping corresponding to the secondary loop through which the non-hazardous heat medium circulates is disposed in the vicinity of the space where the person is present. In addition, when a refrigerant leaks when a flammable refrigerant is used, the refrigerant can be prevented from staying in a space where people are present.
- the heat exchanger related to the heat medium connected to the refrigerant pipe of the primary loop through which the refrigerant flows is installed in a space such as the back of the ceiling, which is a space different from the indoor space.
- a space such as the back of the ceiling
- the refrigerant leaks from the primary loop
- the refrigerant enters the indoor space via the mesh member.
- it is difficult to reliably prevent the refrigerant from leaking into the indoor space, and improvement has been demanded.
- the present invention has been made in view of the above points, and without complicating the piping connection, it is possible to prevent the refrigerant from leaking into the indoor space when the refrigerant leaks and to improve the safety of the refrigerant leak in the room.
- An object is to obtain an air conditioner.
- the air conditioner according to the present invention includes an outdoor unit on which a compressor, a first refrigerant flow switching device, and a heat source side heat exchanger are mounted, a heat exchanger between heat media, a throttling device, and a second refrigerant flow switching.
- Apparatus a heat medium converter equipped with a pump, a branch unit equipped with a heat medium flow control device, and at least one indoor unit equipped with a use side heat exchanger, a compressor,
- the refrigerant flow switching device, the heat source side heat exchanger, the expansion device, the refrigerant flow channel of the heat exchanger related to heat medium, and the second refrigerant flow switching device are connected by a refrigerant pipe to constitute a refrigerant circulation circuit in which the refrigerant circulates.
- a heat medium circulation circuit in which a heat medium flow path, a branch unit, and a use side heat exchanger of the heat exchanger between heat mediums are connected by a heat medium pipe and a heat medium different from the refrigerant circulates is configured.
- the outdoor units and heat medium converters that make up the It is installed in space, in which are configured separately from the branching unit and the indoor unit.
- the outdoor unit and the heat medium converter constituting the refrigerant circulation circuit are configured separately from the branch unit and the indoor unit so that they can be installed in a space separated from the air-conditioning target space.
- the outdoor unit and heat medium converter By installing the outdoor unit and heat medium converter in a space separated from the air-conditioning target space, it is possible to prevent refrigerant from leaking into the air-conditioning target space when refrigerant leaks, and improve the safety of the air-conditioning target space when refrigerant leaks Can be made.
- the heat medium converter can be removed from the indoor unit compared to the case where the heat medium converter is installed in a space that is not separated from the air conditioning target space.
- the branch unit is configured separately from the heat medium converter and can be installed close to the indoor unit. Therefore, the heat medium piping connection between the branch unit and the indoor unit is not necessary. The complexity can be suppressed.
- FIG. 1 It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows the refrigerant circuit structural example of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a refrigerant circuit figure which shows the flow of the refrigerant
- FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention.
- This air conditioner has a refrigerant circulation circuit A that circulates a refrigerant (heat source side refrigerant) and a heat medium circulation circuit B that circulates a heat medium, and the indoor unit 2 is operated in a cooling mode or a heating mode. Can be freely selected.
- the air conditioner employs a method of indirectly using a refrigerant (indirect method). That is, the cold or warm heat stored in the heat-source-side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat-source-side refrigerant, and the air-conditioning target space is cooled or heated with the cold or warm heat stored in the heat medium.
- a refrigerant hereinafter referred to as a heat medium
- the air-conditioning apparatus includes a single outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, an outdoor unit 1, and an indoor unit 2.
- a heat medium relay unit 3 interposed therebetween and a branch unit 40 interposed between the indoor unit 2 and the heat medium relay unit 3 are provided.
- the heat medium converter 3 performs heat exchange between the heat source side refrigerant and the heat medium.
- the branching unit 40 adjusts the flow rate of the heat medium that stores the cold or warm heat to be circulated to the indoor unit 2 in the heat medium circuit B.
- the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 for circulating the heat source side refrigerant.
- the heat medium relay unit 3 and the branch unit 40 are connected by a pipe (heat medium pipe) 5 for circulating the heat medium.
- the branch unit 40 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 for circulating the heat medium.
- the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3 and the branch unit 40.
- the outdoor unit 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and the indoor unit 2 is cooled or heated via the heat medium converter 3 and the branch unit 40. Supply.
- the indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 which is a space (for example, a living room) inside the building 9, and is used for cooling the indoor space 7 serving as an air-conditioning target space. Air or heating air is supplied.
- the heat medium converter 3 is installed in the outdoor space 6 as a separate housing from the outdoor unit 1, the branch unit 40, and the indoor unit 2, and the heat medium converter 3 includes the outdoor unit 1, the branch unit 40, and the refrigerant. They are connected via the pipe 4 and the heat medium pipe 5, respectively, and transmit cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2 via the branch unit 40.
- the branch unit 40 is installed in a space 8 (for example, behind the ceiling) different from the indoor space 7 inside the building 9, and has a flow path of a heat medium that stores cold heat or heat transferred from the heat medium converter 3. The flow rate is adjusted and distributed to each indoor unit 2.
- the outdoor unit 1 and the heat medium converter 3 are connected via two refrigerant pipes 4, and the heat medium converter 3.
- the branch unit 40 are connected via four heat medium pipes 5, and each indoor unit 2 and the branch unit 40 are connected via two heat medium pipes 5.
- the heat medium converter 3 is illustrated as an example in a state where the heat medium converter 3 is installed in the outdoor space 6.
- the installation position of the heat medium converter 3 is not limited to the outdoor space 6, and may be outdoors. It may be a non-residential space through which natural winds pass, and it may be a space separated from the indoor space 7 that is the air-conditioning target space. Therefore, the space separated from the indoor space 7 may be inside the building 9, and the space separated from the indoor space 7 inside the building 9 may be, for example, a machine room or a building 9 provided with a ventilation opening. For example, a warehouse with a vent opening adjacent to the outdoor space 6 is applicable.
- the space separated from the indoor space 7 inside the building 9 is simply referred to as a space 41.
- the branch unit 40 is a space inside the building 9 but different from the indoor space 7 such as a ceiling or the like (for example, a space such as a ceiling behind the building 9, hereinafter simply a space. 8) is shown as an example.
- the branch unit 40 may be installed in a shared space where there is an elevator or the like or a space where the heat medium relay unit 3 is installed.
- the indoor unit 2 is a ceiling cassette type is shown as an example, but the present invention is not limited to this. That is, the air-conditioning apparatus according to Embodiment 1 is capable of blowing heating air or cooling air directly into the interior space 7 or directly into the indoor space 7 by a duct or the like. Any kind of thing.
- the outdoor unit 1 is installed in the outdoor space 6 is shown as an example, but the present invention is not limited to this.
- you may install the outdoor unit 1 in the enclosed space 41, such as a machine room with a ventilation opening.
- the water-cooled outdoor unit 1 it may be installed in the space 41. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
- a ventilator having a ventilation capacity higher than the air volume that can exchange the air in the space 41 four times per hour may be installed (reference standard: international standard ISO5149).
- the heat medium relay unit 3 and the branch unit 40 can be installed in the vicinity of the outdoor unit 1.
- the number of connected outdoor units 1, indoor units 2, heat medium converters 3, and branch units 40 is not limited to the number illustrated in FIG. 1.
- the air conditioner according to Embodiment 1 includes What is necessary is just to determine a number according to the building 9 installed.
- FIG. 2 is a diagram showing a refrigerant circuit configuration example of the air-conditioning apparatus (hereinafter referred to as air-conditioning apparatus 100) according to Embodiment 1 of the present invention. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As illustrated in FIG. 2, the outdoor unit 1 and the heat medium relay unit 3 are connected to each other through a heat exchanger related to heat medium 15 a and a heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected by piping 4. The heat medium relay unit 3 and the branch unit 40 are also connected by the heat medium pipe 5 via the heat medium heat exchanger 15a and the heat medium heat exchanger 15b. Further, the branch unit 40 and the indoor unit 2 are connected by a heat medium pipe 5. The refrigerant pipe 4 will be described in detail later.
- the air conditioner 100 makes the part through which the heat medium passes in the heat medium converter of Patent Document 1 independent as a unit (branch unit) that is separate from the heat medium converter.
- a feature is that a portion through which both of the heat medium passes (heat medium converter) and a portion through which only the heat medium passes (branch unit) can be installed at locations separated from each other.
- the heat medium relay unit 3 includes a connection port 3 a for connecting the branch unit 40, and the branch unit 40 is connected to the connection port 3 a via the heat medium pipe 5.
- the branch unit 40 includes a connection port 40 a as a connection port to the heat medium relay unit 3, and the connection port 40 a and the connection port 3 a on the heat medium relay unit 3 side are connected by the heat medium pipe 5.
- the branch unit 40 further includes a connection port 40 b for connecting to each indoor unit 2, and the indoor unit 2 is connected to the connection port 40 b via the heat medium pipe 5.
- the heat medium converter 3 through which both the refrigerant and the heat medium pass and the branch unit 40 through which only the heat medium passes can be installed in separate spaces, and the heat medium converter 3 can be installed in the air conditioning target space. It was installed in a space separated from a certain indoor space 7. As a result, all the devices and refrigerant pipes constituting the refrigerant circuit A are installed in a space separated from the indoor space 7. Therefore, even if refrigerant leakage occurs from the refrigerant circuit A, the refrigerant can be prevented from flowing into the indoor space 7.
- each indoor unit Two reciprocating heat medium pipes 5 are required to connect the air conditioner and the heat medium converter (for example, when four indoor units are connected, eight heat medium pipes 5 are necessary). Further, a plurality of long heat medium pipes 5 for directly connecting a plurality of indoor units inside the building and a heat medium converter outside the building or in the machine room are necessary.
- the number of the heat medium relay unit 3 located outside the building or in the machine room and the branch unit 40 located inside the building are determined (4 It is the structure connected by the heat medium piping 5 of this. For this reason, the number of the heat medium pipes 5 from the outside of the building or the machine room to the inside of the building does not change according to the number of indoor units 2. Therefore, the number of the heat medium pipes 5 connected from the heat medium converter 3 to the inside of the building can be reduced as compared with Patent Document 1. Furthermore, since the two reciprocating heat medium pipes 5 connected to each of the plurality of indoor units 2 need only have a length up to the branch unit 40, it is necessary to extend to the heat medium converter 3 as compared with Patent Document 1. The length can be shortened. Therefore, it is possible to improve the workability such as easy alignment of each of the plurality of indoor units 2 and the branch unit 40.
- the outdoor unit 1 stores a compressor 10 that compresses refrigerant, a first refrigerant flow switching device 11 that includes a four-way valve, a heat source side heat exchanger 12 that functions as an evaporator or a condenser, and excess refrigerant.
- An accumulator 19 is connected to and mounted on the refrigerant pipe 4.
- the first refrigerant flow switching device 11 may not be a four-way valve, and may be configured by combining, for example, a three-way valve, a two-way valve, and an electromagnetic valve.
- the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, a backflow prevention device 13a, a backflow prevention device 13b, a backflow prevention device 13c, and a backflow prevention device 13d.
- first connection pipe 4a, the second connection pipe 4b, the backflow prevention device 13a, the backflow prevention device 13b, the backflow prevention device 13c, and the backflow prevention device 13d By providing the first connection pipe 4a, the second connection pipe 4b, the backflow prevention device 13a, the backflow prevention device 13b, the backflow prevention device 13c, and the backflow prevention device 13d, the outdoor unit regardless of the operation required by the indoor unit 2
- the flow of the heat source side refrigerant flowing from 1 to the heat medium relay unit 3 can be in a certain direction.
- the refrigerant flowing out of the outdoor unit 1 flows out of the outdoor unit 1 through the refrigerant pipe 4 (first refrigerant pipe) connected to the backflow prevention devices 13a and 13b, and then from the heat medium converter 3 to the outdoor unit. 1 flows into the outdoor unit 1 through the refrigerant pipe 4 (second refrigerant pipe) connected to the backflow prevention devices 13c and 13d.
- the backflow prevention devices 13a to 13d are preferably constituted by check valves or the like.
- the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to a high temperature and high pressure state.
- the compressor 10 may be composed of an inverter compressor capable of capacity control.
- the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and the heating main operation mode) and in the cooling operation mode (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the heat source side refrigerant.
- the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a radiator (gas cooler) during cooling operation, and between the air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed.
- the accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, a change in the transient operation (for example, a change in the number of indoor units 2 operated). Or the excess refrigerant
- a use side heat exchanger 26 is mounted on the indoor unit 2.
- the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the heat medium pipe 5.
- the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
- FIG. 2 an example is shown in which four indoor units 2 are connected to the heat medium relay unit 3, and as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the lower side of the page, It is shown.
- the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d.
- the number of connected indoor units 2 is not limited to four as shown in FIG.
- the heat medium converter 3 includes two heat medium heat exchangers 15 (15a, 15b) that exchange heat between the refrigerant and the heat medium, two expansion devices 16 (16a, 16b) that depressurize the refrigerant, and refrigerant Two opening / closing devices 17 (17a, 17b) for opening and closing the flow path of the pipe 4, two second refrigerant flow switching devices 18 (18a, 18b) for switching the refrigerant flow path, and two pumps 21 for circulating the heat medium (21a, 21b) are provided.
- the two heat exchangers 15a, 15b function as condensers (radiators) or evaporators, perform heat exchange between the heat source side refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the heat source side refrigerant. The generated cold or warm heat is transmitted to the heat medium.
- the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there.
- the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A and serves to heat the heat medium in the cooling / heating mixed operation mode. is there.
- the two heat exchangers 15a and 15b are configured as follows so that the refrigerant and the heat medium do not mix even if the refrigerant leaks from the refrigerant side heat transfer tube. That is, for example, the two heat exchangers 15a, 15b are provided with a double wall plate heat exchanger or a heat transfer tube through which a refrigerant flows and a heat transfer tube through which a heat medium flows separately, and are bonded to each other by brazing or the like. It is comprised with the comprised heat exchanger etc.
- the two expansion devices 16a and 16b have a function as a pressure reducing valve or an expansion valve, and expand the heat source side refrigerant by reducing the pressure.
- the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
- the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
- the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
- the two opening / closing devices 17a and 17b are configured by a two-way valve or the like and open / close the refrigerant pipe 4. That is, the opening / closing of the two opening / closing devices 17a and 17b is controlled according to an operation mode to be described later in order to adjust the flow of the refrigerant supplied from the refrigerant piping 4 (first refrigerant piping).
- the two second refrigerant flow switching devices 18a and 18b are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode.
- the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
- the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
- the second refrigerant flow switching device 18 may not be a four-way valve, and may be configured by combining, for example, a three-way valve, a two-way valve, and an electromagnetic valve.
- the two pumps 21 a and 21 b circulate the heat medium in the heat medium pipe 5.
- the pump 21 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
- the pump 21 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
- These pumps 21 may be constituted by, for example, pumps capable of capacity control.
- the pump 21 a may be provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 a and the first heat medium flow switching device 22.
- the pump 21b may be provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15b and the first heat medium flow switching device 22.
- the heat medium converter 3 includes various detection means (two first temperature sensors 31 (31a and 31b) which are inflow temperature sensors, four third temperature sensors 35 (35a to 35d), and two pressure sensors 36. (36a, 36b)) is provided. Information (for example, temperature information, pressure information, and heat source side refrigerant concentration information) detected by these detection means is sent to a control device 50 that controls the overall operation of the air conditioning apparatus 100.
- Each detection information includes the driving frequency of the compressor 10, the rotation speed of a blower (not shown) provided near the heat source side heat exchanger 12 and the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, Drive frequency of pump 21, switching of second refrigerant flow switching device 18, switching of first heat medium flow switching device 22, switching of second heat medium flow switching device 23, opening degree of heat medium flow control device 25 It will be used for control.
- the two first temperature sensors 31a and 31b detect the temperature of the heat medium that has flowed out of the heat exchanger related to heat medium 15, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 15, such as a thermistor. It is good to comprise.
- the first temperature sensor 31a is provided in the heat medium pipe 5 on the inlet side of the pump 21a.
- the first temperature sensor 31b is provided in the heat medium pipe 5 on the inlet side of the pump 21b. Further, the first temperature sensor 31 may be provided in the heat medium pipe 5 on the side where the heat medium flows into the use side heat exchanger 26 in the branch unit 40 described later.
- the four third temperature sensors 35a to 35d are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the temperature or heat medium of the heat source side refrigerant flowing into the heat exchanger related to heat medium 15
- the temperature of the heat source side refrigerant that has flowed out of the intermediate heat exchanger 15 is detected, and it may be constituted by a thermistor or the like.
- the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
- the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
- the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
- the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
- the two pressure sensors 36a and 36b are for detecting the pressure of the refrigerant.
- the pressure sensor 36a detects the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a, similarly to the installation position of the third temperature sensor 35a.
- the pressure sensor 36b is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the heat source side refrigerant flowing between them is detected.
- the branch unit 40 is provided with a first heat medium flow control device and a second heat medium flow control device.
- first heat medium flow control device four first heat medium flow switching devices 22 (22a to 22d) connected to one of the heat medium pipes 5 and the first heat medium flow switching device 22 are connected.
- the four heat medium flow control devices 25 (25a to 25d) are connected to the other heat medium pipe 5.
- the second heat medium flow control device includes four second heat medium flow switching devices 23 (23a to 23d) connected to the other of the heat medium pipes 5.
- Each of the first heat medium flow control device and the second heat medium flow control device may be configured by using the following (1) or (2), or may be configured by (3).
- One of the first heat medium flow control device and the second heat medium flow control device has three or more flow paths One or more valves each with one or more channels, and at least one valve with three or more channels on the other
- the first heat medium flow switching device 22 composed of the four first heat medium flow switching devices 22a to 22d is composed of a three-way valve or the like, and switches the flow path of the heat medium.
- the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed.
- one of the three sides is in the heat exchanger 15a
- one of the three is in the heat exchanger 15b
- one of the three is in the heat medium flow rate.
- Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
- the first heat medium flow switching device 22a, the first heat medium flow switching device 22b, the first heat medium flow switching device 22c, and the first heat medium flow from the lower side of the drawing. This is illustrated as a switching device 22d.
- the first heat medium flow switching device 22 does not have to be a three-way valve.
- a two-way valve or a solenoid valve may be used in combination, and a valve having a larger number of flow paths than a three-way valve such as a four-way valve. The excess flow path may be closed and used.
- the four second heat medium flow switching devices 23a to 23d are constituted by three-way valves or the like, and switch the heat medium flow paths.
- the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
- the second heat medium flow switching device 23 one of the three heat transfer medium heat exchangers 15a, one of the three heat transfer medium heat exchangers 15b, and one of the three heat transfer side heats.
- the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
- the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
- the second heat medium flow switching device 23 does not have to be a three-way valve.
- a two-way valve or a solenoid valve may be used in combination, and a valve having a larger number of flow paths than a three-way valve such as a four-way valve. The excess flow path may be closed and used.
- the four heat medium flow control devices 25a to 25d are constituted by two-way valves or the like that can control the opening area, and adjust the flow rate of the heat medium flowing through the heat medium pipe 5.
- the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
- One of the heat medium flow control devices 25 is connected to the use-side heat exchanger 26, and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use-side heat exchanger 26. Is provided.
- the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
- a first heat medium flow control device including a first heat medium flow switching device 22 (22a to 22d) and a heat medium flow control device 25 (25a to 25d), and a second heat medium flow
- the second heat medium flow control device composed of the path switching device 23 (23a to 23d) is shown as an example installed separately from each other, but the present invention is not limited to this and has the same function. If it is, the first heat medium flow control device and the second heat medium flow control device may be integrally formed (blocked). Specifically, for example, each of the first heat medium flow switching device 22 (22a to 22d), the heat medium flow control device 25 (25a to 25d), and the second heat medium flow switching device 23 (23a to 23d). It is good also as a structure which has the block structure of the international publication 2014/1288961 provided with the function, for example.
- the branch unit 40 is provided with four second temperature sensors 34 (34a to 34d) which are outflow temperature sensors.
- Information (for example, temperature information) detected by these detection means is sent to a control device 50 that performs overall control of the operation of the air conditioning apparatus 100.
- the information sent to the control device 50 includes the drive frequency of the compressor 10, the rotation speed of a blower (not shown) provided near the heat source side heat exchanger 12 and the use side heat exchanger 26, and the first refrigerant flow switching.
- Device 11 switching, pump 21 drive frequency, second refrigerant flow switching device 18 switching, first heat medium flow switching device 22 switching, second heat medium flow switching device 23 switching, heat medium flow rate adjustment This is used for controlling the opening degree of the device 25 and the like.
- the four second temperature sensors 34a to 34d are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and detect the temperature of the heat medium flowing out from the use side heat exchanger 26. It is good that it is composed of a thermistor or the like.
- the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing. Further, the four second temperature sensors 34 a to 34 d may be provided between the heat medium flow control device 25 and the use side heat exchanger 26.
- the two first temperature sensors 31 a and 31 b provided in the heat medium relay unit 3 are the heat medium flowing out from the heat exchanger related to heat medium 15, that is, at the outlet of the heat exchanger related to heat medium 15.
- the temperature of the heat medium is detected. It can be said that the first temperature sensors 31a and 31b detect the temperature of the heat medium flowing into the use side heat exchanger 26.
- the first temperature sensors 31 a and 31 b may be provided in the heat medium pipe 5 on the side where the heat medium flows into the use side heat exchanger 26 in the branch unit 40.
- the first temperature sensor 31 includes the second heat medium flow switching devices 23a to 23d and the use side heat exchangers 26a. Is provided in the heat medium pipe 5 between ⁇ 26d, and is provided in the heat medium pipe 5 on the inlet side of the pump 21b.
- the control device 50 is configured by a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant Switching of the flow switching device 11, driving of the pump 21, opening of the expansion device 16, opening / closing of the switching device 17, switching of the second refrigerant flow switching device 18, switching of the first heat medium flow switching device 22, (2)
- the switching of the heat medium flow switching device 23 and the opening degree of the heat medium flow control device 25 are controlled. That is, the control device 50 performs overall control of various devices and executes a defrost operation and each operation mode described later.
- FIG. 2 illustrates an example in which the control device 50 is provided in the outdoor unit 1, but is not limited thereto. That is, the control device 50 may be provided for each unit of the indoor unit 2, may be provided in the heat medium relay unit 3, or may be provided in the branch unit 40. Moreover, you may comprise the some control apparatus 50 in the outdoor unit 1, the indoor unit 2, the heat medium converter 3, and the branch unit 40 so that cooperation control can be performed by communication.
- the heat medium pipe 5 for circulating the heat medium has one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b.
- Four heat medium pipes 5 are used between the heat medium converter 3 and the branch unit 40 to connect the two.
- the heat medium pipe 5 is branched (here, four branches) according to the number of indoor units 2 connected to the branch unit 40, and the heat medium pipe 5 between the branch unit 40 and the indoor unit 2 is The first heat medium flow switching device 22 and the second heat medium flow switching device 23 are connected.
- the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
- FIG. 2 shows an example in which the heat medium relay unit 3 and the branch unit 40 are connected by four heat medium pipes 5, but the indoor unit 2 does not require simultaneous operation of cooling and heating. May be as follows. That is, the outlet side heat medium pipes 5 and the inlet side heat medium pipes 5 of each heat exchanger 15 are aggregated, and the outlet side and the inlet of each heat medium pipe 5 of each branch unit. It is good also as a structure integrated with the heat-medium piping 5 of the side, and connecting with the two heat-medium piping 5.
- the refrigerant of the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switchgear 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15 is used.
- the flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
- the switching device 23 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of use side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
- the outdoor unit 1 and the heat medium converter 3 are connected via the heat exchanger related to heat medium 15 provided in the heat medium converter 3, so that the heat medium converter 3 and the indoor unit
- the machine 2 is also connected via the heat exchanger related to heat medium 15 and the branch unit 40. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is supposed to be.
- the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
- the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
- FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
- the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
- the piping represented with the thick line has shown the piping through which a refrigerant
- the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
- the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
- the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
- the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
- a low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
- the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the backflow prevention device 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
- the high-pressure refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a, and each of the branched refrigerants is expanded by the expansion device 16a and the expansion device 16b to form a low-temperature and low-pressure two-phase refrigerant. Become.
- the opening / closing device 17b is closed.
- This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature and low-pressure gas refrigerant while cooling.
- the gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and then from the heat medium converter 3. It flows out and flows into the outdoor unit 1 again through the refrigerant pipe 4.
- the refrigerant that has flowed into the outdoor unit 1 passes through the backflow prevention device 13d, and is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
- the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are communicated with the low pressure pipe. Further, the opening degree of the expansion device 16a is controlled so that the superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. Is done. Similarly, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
- the flow of the heat medium in the heat medium circuit B will be described.
- the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium is heated by the pump 21a and the pump 21b.
- the inside of the pipe 5 is allowed to flow.
- the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the heat medium pipe 5 and the second heat medium flow switching device 23a and the second heat medium flow switching device 23b in the branch unit 40. It flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
- the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
- the heat medium flow control device 25a and the heat medium flow control device 25b are configured to detect the detection value of the second temperature sensor 34 and the detection value of the first temperature sensor 31 in order to cover the air conditioning load required indoors.
- the opening degree is adjusted so that the temperature difference becomes a predetermined value (for example, about 5 ° C. to 10 ° C.).
- the opening degree of the heat medium flow control device 25a and the heat medium flow control device 25b is adjusted in the closing direction, and when the temperature difference is larger than the predetermined value, the opening degree is opened. Adjusted in direction.
- the heat medium is controlled to a necessary flow rate according to the air conditioning load required in the room and flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b flows out from the branch unit 40 through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and heat It flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b via the medium pipe 5, and is sucked into the pump 21a and the pump 21b again.
- heat is generated in a direction from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
- the medium is flowing.
- the air conditioning load required in the indoor space 7 is the difference between the detected value of the first temperature sensor 31a or the temperature detected by the first temperature sensor 31b and the temperature detected by the second temperature sensor 34. This can be covered by controlling to maintain a predetermined value (for example, about 5 ° C. to 10 ° C.).
- a predetermined value for example, about 5 ° C. to 10 ° C.
- the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
- the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
- the intermediate opening is set.
- FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
- the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
- the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
- the flow direction of the heat source side refrigerant is indicated by solid line arrows
- the flow direction of the heat medium is indicated by broken line arrows.
- the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
- the pump 21a and the pump 21b are driven, and in the branch unit 40, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device are opened.
- 25d is fully closed so that the heat medium circulates between each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
- a low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the backflow prevention device 13b.
- the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
- the high-temperature and high-pressure gas refrigerant flowing into the heat medium relay unit 3 is branched, and each of the branched refrigerants passes between the heat medium through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b. It flows into each of the heat exchanger 15a and the heat exchanger related to heat medium 15b.
- the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b becomes a high-pressure liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
- the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature and low-pressure two-phase refrigerant.
- the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
- the opening / closing device 17a is closed.
- the refrigerant that has flowed into the outdoor unit 1 passes through the backflow prevention device 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
- the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are in communication with the high-pressure pipe.
- the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36a into a saturation temperature and a temperature detected by the third temperature sensor 35b. The opening degree is controlled.
- the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
- the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
- the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is heated by the pump 21a and the pump 21b.
- the inside of the pipe 5 is allowed to flow.
- the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the heat medium pipe 5 and the second heat medium flow switching device 23a and the second heat medium flow switching device 23b in the branch unit 40. It flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
- the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
- the heat medium flow control device 25a and the heat medium flow control device 25b are configured to detect the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 34 in order to cover the air conditioning load required indoors.
- the opening degree is adjusted so that the temperature difference becomes a predetermined value (for example, about 5 ° C. to 10 ° C.).
- the opening degree of the heat medium flow control device 25a and the heat medium flow control device 25b is adjusted in the closing direction, and when the temperature difference is larger than the predetermined value, the opening degree is opened. Adjusted in direction.
- the heat medium is controlled to a necessary flow rate according to the air conditioning load required in the room and flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium that has flowed out of the first heat medium flow switching device 22a and the first heat medium flow switching device 22b flows out of the branch unit 40, and is connected to the heat exchanger related to heat medium 15a and heat via the heat medium pipe 5. It flows into the inter-medium heat exchanger 15b and is sucked into the pump 21a and the pump 21b again.
- the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. This difference can be covered by controlling so as to keep the difference between the predetermined values (for example, about 5 ° C. to 10 ° C.).
- the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
- the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
- the intermediate opening is set.
- the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b.
- the first temperature sensor 31b By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
- FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
- the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
- a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
- the flow direction of the heat source side refrigerant is indicated by solid line arrows
- the flow direction of the heat medium is indicated by broken line arrows.
- the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
- the pump 21a and the pump 21b are driven, and in the branch unit 40, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device are opened.
- 25d is fully closed, and the heat medium circulates between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b, respectively.
- a low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12.
- the refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1, and flows into the heat medium relay unit 3 through the backflow prevention device 13 a and the refrigerant pipe 4.
- the refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
- the refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B.
- the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
- This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
- the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
- the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
- the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the backflow prevention device 13d, the first refrigerant flow switching device 11, and the accumulator 19.
- the second refrigerant flow switching device 18a is in communication with the low pressure pipe, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping.
- the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
- the expansion device 16a is fully opened and the opening / closing device 17b is closed.
- the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
- the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
- the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
- the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
- the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the heat medium pipe 5 and the second heat medium flow switching device 23a and the second heat medium flow switching device 23b in the branch unit 40. It flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
- the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
- the heat medium flow control device 25a and the heat medium flow control device 25b are configured to detect the detected value of the second temperature sensor 34a and the detected value of the first temperature sensor 31a in order to cover the air conditioning load required indoors.
- the opening degree is adjusted so that the temperature difference becomes a predetermined value (for example, about 5 ° C. to 10 ° C.).
- the heat medium flow control device 25a and the heat medium flow control device 25b are opened.
- the degree is adjusted in the closing direction, and when the temperature difference is larger than a predetermined value, the opening degree is adjusted in the opening direction.
- the heat medium is controlled so that the flow rate of the heat medium is required according to the air conditioning load required in the room, and flows into the use side heat exchanger 26a and the use side heat exchanger 26b. It has become.
- the heat medium that has passed through the use-side heat exchanger 26b and has slightly decreased in temperature flows out of the branch unit 40 through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and passes through the heat medium pipe 5. Then, it flows into the heat exchanger related to heat medium 15b and is sucked into the pump 21b again.
- the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows out of the branch unit 40 through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and passes through the heat medium pipe 5. Then, it flows into the heat exchanger related to heat medium 15a and is sucked into the pump 21a again.
- the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
- the first heat medium flow switching is performed from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
- a heat medium flows in the direction to the device 22.
- the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34b on the heating side. This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34b and the temperature detected by the first temperature sensor 31a to be a predetermined value (for example, about 5 ° C. to 10 ° C.).
- FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
- the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
- the piping represented with the thick line has shown the piping through which a refrigerant
- coolant a heat-source side refrigerant
- the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
- the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
- the pump 21a and the pump 21b are driven, and in the branch unit 40, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device are opened.
- 25d is fully closed, and the heat medium circulates between the heat exchanger related to heat medium 15a and the use side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26a, respectively.
- the heat medium circulates between the heat exchanger related to heat medium 15a and the use side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26a, respectively.
- a low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the backflow prevention device 13b.
- the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
- the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
- the gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
- the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
- This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
- the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
- the low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again.
- the refrigerant that has flowed into the outdoor unit 1 passes through the backflow prevention device 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
- the second refrigerant flow switching device 18a is in communication with the low pressure side piping, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the opening of the expansion device 16b is controlled so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Is done. Further, the expansion device 16a is fully opened, and the opening / closing device 17a is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
- the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
- the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
- the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the heat medium pipe 5 and the second heat medium flow switching device 23a and the second heat medium flow switching device 23b in the branch unit 40. It flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
- the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
- the heat medium flow control device 25a and the heat medium flow control device 25b are configured to detect the detection value of the second temperature sensor 34b and the detection value of the first temperature sensor 31a in order to cover the air conditioning load required indoors.
- the opening degree is adjusted so that the temperature difference becomes a predetermined value (for example, about 5 ° C. to 10 ° C.).
- the heat medium flow control device 25a and the heat medium flow control device 25b are opened.
- the degree is adjusted in the closing direction, and when the temperature difference is larger than a predetermined value, the opening degree is adjusted in the opening direction.
- the heat medium is controlled to a necessary flow rate according to the air conditioning load required in the room and flows into the use side heat exchanger 26a and the use side heat exchanger 26b.
- the heat medium that has passed through the use-side heat exchanger 26a and has a slight drop in temperature flows out of the branch unit 40 through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and passes through the heat medium pipe 5. Then, it flows into the heat exchanger related to heat medium 15b and is sucked into the pump 21b again.
- the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows out of the branch unit 40 through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and passes through the heat medium pipe 5. Then, it flows into the heat exchanger related to heat medium 15a and is sucked into the pump 21a again.
- the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
- the first heat medium flow switching is performed from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the device 22.
- the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a to be a predetermined value (for example, about 5 ° C. to 10 ° C.).
- the heating main operation mode When the heating main operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without the heat load.
- the heat medium is prevented from flowing to the use side heat exchanger 26 having no air.
- FIG. 6 since there is a heat load in the use-side heat exchanger 26a and the use-side heat exchanger 26b, a heat medium is flowing, but in the use-side heat exchanger 26c and the use-side heat exchanger 26d, the heat load is passed.
- the corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened, and the heat medium can be circulated. That's fine.
- the outdoor unit 1, the indoor unit 2, the heat medium relay unit 3, and the branch unit 40 are provided as separate housings.
- a space separated from the indoor space 7 (for example, the outdoor space 6 or a ventilation opening) is installed between the outdoor unit 1 and the heat medium converter 3 that are connected by the refrigerant pipes 4 and through which the refrigerant passes.
- the branch unit 40 connected to the heat medium relay unit 3 by the heat medium pipe 5 is installed in a space 8 such as the back of the ceiling inside the building 9.
- the indoor unit 2 connected to the branch unit 40 by the heat medium pipe 5 is installed in the indoor space 7.
- the apparatus and piping through which the refrigerant passes are installed in a space separated from the indoor space 7, in other words, the refrigerant circuit A is installed in a space separated from the indoor space 7.
- the refrigerant circuit A is installed in a space separated from the indoor space 7.
- coolant leak arises from the refrigerant circuit A the structure which installs the whole heat medium converter of patent document 1 in the outdoor space 6, for example. Conceivable.
- the distance between the heat medium converter and the indoor unit becomes long, and the influence of this may complicate the handling of the heat medium pipe.
- the part through which both the refrigerant and the heat medium pass (heat medium converter 3) and the part through which only the heat medium passes (branch unit 40) are separated and configured separately.
- the heat medium relay unit 3 can be disposed in the outdoor space 6, and the branch unit 40 can be disposed at a position closer to the indoor unit 2 than the heat medium relay unit 3, and the handling of the heat medium pipe is complicated. Inconvenience to be reduced can be reduced.
- the branch unit 40 with simple heat medium pipe connection between the heat medium relay unit 3 and the plurality of indoor units 2, the distance between the heat exchanger related to heat medium 15 and the indoor unit 2 is increased. It is possible to simplify the heat medium pipe 5 that may be complicated due to the influence. That is, when the heat medium pipe 5 is branched to a plurality of indoor units 2 that may be installed at positions away from the heat medium converter 3 and connected to the heat medium converter 3, for example, a plurality of branch units 40 are provided. Since the indoor unit 2 can be arranged at an intermediate point between the locations where the indoor unit 2 is located, the heat medium pipe 5 that connects the branch unit 40 and the indoor unit 2 can be shortened, and the degree of freedom in handling can be improved. Simplification of the heat medium pipe 5 can be achieved.
- the branch unit 40 by supplying the heat medium to each indoor unit 2 using the branch unit 40, the refrigerant is reliably prevented from flowing into the living space, the heat medium converter 3 or the branch unit 40 is made compact, and the branch unit 40 The degree of freedom of installation can be improved.
- the heat exchanger related to heat medium 15 has a structure in which the refrigerant in the refrigerant channel and the heat medium in the heat medium channel do not mix, such as a double wall plate heat exchanger as described above. For this reason, even when the refrigerant leaks from the refrigerant pipe of the heat exchanger related to heat medium 15, the leaked refrigerant does not flow out into the heat medium pipe, and the refrigerant can be prevented from flowing into the indoor space 7. .
- the air conditioning load required in the room is processed. Can do.
- the absolute value of the temperature difference between the detected value of the first temperature sensor 31 and the detected value of the second temperature sensor 34 is set to a predetermined value (for example, about 5 ° C. to 10 ° C.). Since it is performed by adjusting the opening degree of the heat medium flow control device 25 (25a to 25d), the air conditioning load required indoors can be processed.
- the installation space can be reduced.
- the outdoor unit 1 and the heat medium relay unit 3 are both arranged outside the room, and the length of the refrigerant pipe 4 is shortened by approaching each other, so that the amount of refrigerant in the refrigerant pipe 4 can be reduced.
- the length of the refrigerant pipe 4 is shortened by about 100 m in an 8HP to 20HP building multi-air conditioner using R410A as the refrigerant, the amount of refrigerant can be reduced by about 11 kg to 23 kg. For this reason, the influence on global warming when a refrigerant
- the global warming potential GWP which is a value indicating the degree of influence of the refrigerant gas or the like on the rise in global temperature
- CO 2 as the standard 1
- R410A the refrigerant amount of about 11 kg to 23 kg
- the converted value of the CO 2 amount calculated by multiplying the GWP and the refrigerant amount is reduced by about 22.99 ton to 48.07 ton.
- FIG. 7 is a diagram illustrating another installation example of the air-conditioning apparatus according to Embodiment 1 of the present invention.
- one heat medium converter 3 is installed in a space 41 (for example, a machine room in which a ventilation port (not shown) is installed) separated from an indoor space 7 and a space 8 such as a ceiling.
- a total of four indoor units 2 are installed on the first floor and the second floor, and a total of two branch units 40 are installed in the space 8 on each floor.
- One heat medium converter 3 and branch units 40 on each floor are connected by branched heat medium pipes 5, and indoor units on each floor are connected to branch units 40 on the respective floors by heat medium pipes 5.
- the example of installation of 1 heat-medium conversion machine 3, 2 branch units 40, and 4 indoor units 2 is shown, it is not limited to this and depends on the building 9 where the air conditioner is installed. What is necessary is just to determine the number.
- FIG. FIG. 8 is a diagram illustrating a refrigerant circuit configuration example of the air-conditioning apparatus according to Embodiment 2 of the present invention.
- the air conditioning apparatus 200 will be described with reference to FIG.
- parts having the same configuration as the air conditioner 100 of FIG. 2 are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.
- the second embodiment will be described focusing on the differences from the first embodiment.
- the branch unit 40 is provided with an auxiliary pump 21c and an auxiliary pump 21d that assist the heat transfer power in addition to the pump 21a and the pump 21b in the heat transfer medium converter 3.
- the auxiliary pump 21c includes a connection port into which the heat medium from the pump 21a of the heat medium converter 3 flows out of the connection port 40a of the branch unit 40 to the heat medium converter 3, and the second heat medium flow switching device 23. It is installed in the heat medium piping 5 part between.
- the auxiliary pump 21d includes a connection port into which the heat medium from the pump 21b of the heat medium relay unit 3 flows and a second heat medium flow switching device among the connection ports 40a of the branch unit 40 to the heat medium relay unit 3. It is installed in the heat medium piping 5 part between 23.
- the heat medium bypass valve 27a is connected in parallel to the auxiliary pump 21c, and the heat medium bypass valve 27b is connected in parallel to the auxiliary pump 21d.
- the heat medium bypass valve 27a and the heat medium bypass valve 27b may be configured to be capable of opening and closing a flow path such as a two-way valve or an electromagnetic valve.
- the auxiliary pump 21c and the auxiliary pump 21d may be driven.
- the determination of the shortage of the heat transfer power may be performed as follows. That is, the temperature difference between the detection value of the second temperature sensor 34 and the detection value of the first temperature sensor 31 is used for cooling, and the temperature difference between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 34 is used for heating. If it is larger than a predetermined value (for example, about 5 ° C. to 10 ° C.), it is determined that the heat transfer power is insufficient.
- a predetermined value for example, about 5 ° C. to 10 ° C.
- the auxiliary pump 21c and the auxiliary pump 21d are stopped, and the heat medium bypass valve 27a and the heat medium The medium bypass valve 27b is opened. Thereby, the pressure loss when the heat medium flowing out from the pump 21b and the pump 21a passes through the auxiliary pump 21c and the auxiliary pump 21d can be reduced, and the reduction of the flow rates of the pump 21b and the pump 21a can be suppressed.
- a predetermined value for example, about 5 ° C. to 10 ° C.
- the auxiliary pump 21c and the auxiliary pump 21d are wasted in a region where the heat transfer power is not insufficient when the auxiliary pump 21c and the auxiliary pump 21d are not provided. This eliminates the need to drive the battery and saves energy.
- the heat medium converter 3 is installed in the space 41 or the outdoor space 6 at the end inside the building 9, and the heat medium converter 3 and the indoor unit 2 are installed.
- the distance of the heat medium pipe 5 between the pipe and the pipe becomes longer (for example, the pipe length after branching of 40 m or more, which is the installation restriction of a general multi-air conditioner for a building of Mitsubishi Electric) 15 m or more)
- the heat transfer power of the pump 21b and the pump 21a installed in the heat transfer medium converter 3 is insufficient, the heat transfer power can be supplemented.
- the indoor unit 2 can be installed at a position away from the heat medium converter 3 by installing the auxiliary pump 21c and the auxiliary pump 21d to supplement the heat medium transport power. Furthermore, since the number of indoor units 2 that can be connected can be increased, the degree of freedom of installation of the indoor units 2 is improved, and a simplified air conditioning system can be constructed.
- auxiliary pump 21c the auxiliary pump 21d, the heat medium bypass valve 27a, and the heat medium bypass valve 27b are each described as an example, the configuration is not limited to this, and a plurality of them may be used.
- the air conditioner 100 and the air conditioner 200 have several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
- Heat medium piping 5 In some operation modes executed by the air conditioner 100 and the air conditioner 200, water, antifreeze, or the like is provided in each of the heat medium relay unit 3, the branch unit 40, and the heat medium pipe 5 connecting the indoor unit 2. The heat medium is flowing.
- Heat source side refrigerant for example, a mixed refrigerant including HFO1234yf, HFO1234ze, R32, HC, R32 and HFO1234yf, or a refrigerant using a mixed refrigerant including at least one component of the aforementioned refrigerant can be used as the heat source side refrigerant.
- These refrigerants are all flammable refrigerants. If the plate heat exchanger is damaged due to freezing or the like, these refrigerants may flow into the heat medium. However, the air conditioner 100 and the air conditioner 200 are not easily damaged because the heat exchangers 15a and 15b are not easily frozen.
- the heat exchangers between heat mediums 15a and 15b have a structure in which the refrigerant and the heat medium are not mixed, such as a double wall plate heat exchanger. That is, even if a combustible refrigerant is employed, the possibility that the refrigerant leaks into the air-conditioning target space can be reduced.
- Heat medium for example, brine (antifreeze) or water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100 and the air conditioning apparatus 200, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, the use of a highly safe heat medium improves the safety. Will contribute.
- the state (heating or cooling) between the heat exchanger related to heat medium 15b and the heat exchanger related to heat medium 15a changes between the cooling main operation mode and the heating main operation mode, the water that has been hot water until now is cooled. It becomes cold water, and what was cold water is heated to become hot water, and waste of energy is generated. Therefore, in the air conditioning apparatus 100 and the air conditioning apparatus 200, the heat exchanger related to heat medium 15b is always on the heating side and the heat exchanger related to heat medium 15a is on the cooling side in both the cooling main operation mode and the heating main operation mode. It is comprised so that.
- the heating operation and cooling operation can be freely performed in each indoor unit 2 by the following control. That is, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 corresponding to the use side heat exchanger 26 performing the heating operation are connected to the heat exchanger related to heat medium 15b for heating. Switch to the flow path. Further, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 corresponding to the use side heat exchanger 26 performing the cooling operation are connected to the heat exchanger related to heat medium 15a for cooling. Switch to the flow path.
- the same effect as in the first embodiment can be obtained, and the heat pump 5 can be lengthened by further including the auxiliary pump 21c and the auxiliary pump 21d. It is possible to supplement the heat transfer power of the heat medium.
- the air conditioning apparatus 100 and the air conditioning apparatus 200 have been described as being capable of cooling and heating mixed operation, the present invention is not limited to this.
- the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
- a blower for example, as the use side heat exchanger 26, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type in which heat is transferred by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating or absorbing heat.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Other Air-Conditioning Systems (AREA)
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
- Air Conditioning Control Device (AREA)
Abstract
圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、絞り装置16、熱媒体間熱交換器15の冷媒流路、及び第2冷媒流路切替装置18が冷媒配管4で接続されて冷媒が循環する冷媒循環回路Aを有する。また、熱媒体間熱交換器15の熱媒体流路、分岐ユニット40、及び利用側熱交換器26が熱媒体配管5で接続されて冷媒と異なる熱媒体が循環する熱媒体循環回路Bを有する。そして、冷媒循環回路Aを構成する室外機1及び熱媒体変換機3が分岐ユニット40及び室内機2とは別体に構成され、空調対象空間から分離された空間に設置可能とした。
Description
本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
空気調和装置には、ビル用マルチエアコンなどのように、熱源機(室外機)が建物外に配置され、室内機が建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内機の熱交換器に供給される空気に放熱(吸熱)して、当該空気を加温又は冷却する。そして、加温又は冷却された空気が、空調対象空間に送り込まれて暖房又は冷房が行われるようになっている。
このような空気調和装置は、通常ビルが室内空間を複数有しているので、それに応じて室内機も複数からなる。また、ビルの規模が大きい場合には、室外機と室内機とを接続する冷媒配管が100mになる場合がある。室外機と室内機とを接続する配管長が長いと、その分だけ冷媒回路に充填される冷媒量が増加する。
このようなビル用マルチエアコンの室内機は、人が居る室内空間(たとえば、オフィス空間、居室、又は店舗等)に配置されて利用されることが通常である。何らかの原因によって、室内空間に配置された室内機から冷媒が漏れた場合、冷媒の種類によっては引火性、有毒性を有しており、人体への影響及び安全性の観点から問題となる可能性がある。また、人体に有害ではない冷媒であったとしても、冷媒漏れによって、室内空間での酸素濃度が低下し、人体に影響を及ぼすことも想定される。
このような課題に対応するために、2次ループ方式を採用し、1次側ループ(冷媒循環回路)には冷媒を循環させ、また、2次側ループ(熱媒体循環回路)には有害でない水又はブラインなどの熱媒体を循環させ、冷媒の温熱又は冷熱を熱媒体に伝達させる方法がある(たとえば、特許文献1参照)。
特許文献1に記載の技術は、1次側ループで生成された温熱又は冷熱を、プレート式熱交換器又は二重管などの熱媒体間熱交換器を介して、2次側ループに伝達し、2次側ループにより、室内機に温熱又は冷熱を供給するものである。また、特許文献1に記載の技術は、この有害でない熱媒体が循環する2次側ループに対応する配管が人の居る空間の近傍に配設されるので、冷媒漏れによる人体への影響を抑制することができ、また引火性がある冷媒を使用した場合の冷媒漏れ時は、人の居る空間への冷媒滞留を抑制できるものである。
特許文献1に記載の技術では、冷媒が流れる一次側ループの冷媒配管が繋がった熱媒体間熱交換器を、室内空間とは別の空間である天井裏等の空間に設置する構成となっている。天井裏でも、居住空間又は廊下等と網目状のメッシュ部材等で仕切られているシステム天井等の場合、1次側ループから冷媒が漏れた場合にメッシュ部材を介して冷媒が室内空間に侵入する可能性があり、室内空間への冷媒漏れを確実に防ぐことは難しく、改善が求められていた。
また、冷媒漏れが生じた場合の室内空間への悪影響を防止するにあたり、配管接続を複雑化することなく実現することが求められる。
本発明はこのような点を鑑みなされたもので、配管接続を複雑化することなく、冷媒漏洩時に室内空間に冷媒が漏洩することを防ぎ、冷媒漏洩の室内の安全性を高めることが可能な空気調和装置を得ることを目的とする。
本発明に係る空気調和装置は、圧縮機、第1冷媒流路切替装置、及び熱源側熱交換器が搭載された室外機と、熱媒体間熱交換器、絞り装置、第2冷媒流路切替装置、及びポンプが搭載された熱媒体変換機と、熱媒体流れ調節装置が搭載された分岐ユニットと、利用側熱交換器が搭載された少なくとも1つの室内機とを備え、圧縮機、第1冷媒流路切替装置、熱源側熱交換器、絞り装置、熱媒体間熱交換器の冷媒流路、及び第2冷媒流路切替装置が冷媒配管で接続されて冷媒が循環する冷媒循環回路が構成され、熱媒体間熱交換器の熱媒体流路、分岐ユニット、及び利用側熱交換器が熱媒体配管で接続されて冷媒と異なる熱媒体が循環する熱媒体循環回路が構成され、冷媒循環回路を構成する室外機及び熱媒体変換機は、空調対象空間から分離された空間に設置されて、分岐ユニット及び室内機とは別体に構成されているものである。
本発明によれば、冷媒循環回路を構成する室外機及び熱媒体変換機が、空調対象空間から分離された空間に設置できるように分岐ユニット及び室内機とは別体に構成されているので、室外機及び熱媒体変換機を空調対象空間から分離された空間に設置することで、冷媒漏洩時に空調対象空間に冷媒が漏洩することを防止でき、冷媒漏洩時の空調対象空間の安全性を向上させることができる。また、熱媒体変換機を空調対象空間から分離された空間に配置することで、熱媒体変換機を空調対象空間から分離されない空間に設置する場合に比べて熱媒体変換機については室内機からの距離が遠くなるが、分岐ユニットは熱媒体変換機とは別体に構成されており、室内機に近づけて設置可能であるため、分岐ユニットと室内機とを接続する熱媒体配管の配管接続が複雑化するのを抑制できる。
実施の形態1.
以下、図面に基づいて本発明の実施の形態1について説明する。
図1は、本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。この空気調和装置は、冷媒(熱源側冷媒)を循環させる冷媒循環回路Aと、熱媒体を循環させる熱媒体循環回路Bとを有しており、室内機2が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。
以下、図面に基づいて本発明の実施の形態1について説明する。
図1は、本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。この空気調和装置は、冷媒(熱源側冷媒)を循環させる冷媒循環回路Aと、熱媒体を循環させる熱媒体循環回路Bとを有しており、室内機2が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。
空気調和装置は、冷媒を間接的に利用する方式(間接方式)を採用している。すなわち、熱源側冷媒に貯えた冷熱又は温熱を、熱源側冷媒とは異なる冷媒(以下、熱媒体と称する)に伝達し、熱媒体に貯えた冷熱又は温熱で空調対象空間を冷房又は暖房する。
図1に図示されるように、本実施の形態1に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、室内機2と熱媒体変換機3との間に介在する分岐ユニット40とを有している。
熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。分岐ユニット40は熱媒体循環回路Bにおいて室内機2に循環させる冷熱又は温熱を貯えた熱媒体の流量を調整するものである。室外機1と熱媒体変換機3とは、熱源側冷媒を循環させるための冷媒配管4で接続されている。熱媒体変換機3と、分岐ユニット40とは、熱媒体を循環させるための配管(熱媒体配管)5で接続されている。分岐ユニット40と、室内機2とは、熱媒体を循環させるための配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3及び分岐ユニット40を介して室内機2に配送されるようになっている。
室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3及び分岐ユニット40を介して室内機2に冷熱又は温熱を供給するものである。
室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気、あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
熱媒体変換機3は、室外機1、分岐ユニット40及び室内機2とは別筐体として、室外空間6に設置され、この熱媒体変換機3は、室外機1及び分岐ユニット40と、冷媒配管4及び熱媒体配管5を介してそれぞれ接続され、室外機1から供給される冷熱、又は温熱を分岐ユニット40を介して、室内機2に伝達するものである。
分岐ユニット40は建物9の内部の室内空間7とは別の空間8(たとえば、天井裏等)に設置され、熱媒体変換機3から搬送される冷熱又は温熱を貯えた熱媒体の流路と流量を調節し、各室内機2に分配させるものである。
図1に図示されるように、本実施の形態1に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を介して接続され、熱媒体変換機3と分岐ユニット40とが4本の熱媒体配管5を介して接続され、各室内機2と分岐ユニット40とがそれぞれ2本の熱媒体配管5を介して接続されている。
なお、図1においては、熱媒体変換機3が、室外空間6に設置されている状態を例として図示しているが、熱媒体変換機3の設置位置は室外空間6に限られず、屋外などの自然の風が通る非居住空間などでもよく、要は空調対象空間である室内空間7から分離された空間であればよい。よって、室内空間7から分離された空間であれば建物9の内部でもよく、建物9の内部で室内空間7から分離された空間としては、たとえば、換気口が設置された機械室、建物9に隣接し室外空間6と連通した換気口がある倉庫などが該当する。以下、建物9の内部で室内空間7から分離された空間を単に空間41と称する。
また、図1においては、分岐ユニット40が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(たとえば、建物9における天井裏などのスペース、以下、単に空間8と称する)に設置されている状態を例として図示している。分岐ユニット40は、その他、エレベーター等がある共用空間又は熱媒体変換機3が設置されている空間等に設置してもよい。
また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定されるものではない。すなわち、本実施の形態1に係る空気調和装置は、天井埋込型、天井吊下式、室内空間7に直接又はダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていれば、どんな種類のものでもよい。
また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間41に設置してもよい。また、水冷式の室外機1を用いる場合においても、空間41に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
なお、空間41に機械式の換気装置を設ける場合は、空間41内の空気を1時間に4回入れ換えできる風量以上の換気能力を有する換気装置を設置するとよい(参考規格:国際規格 ISO5149)。
また、熱媒体変換機3及び分岐ユニット40は、室外機1の近傍に設置することもできる。ただし、分岐ユニット40から室内機2までの距離が長すぎると、熱媒体の搬送動力をかなり大きくする必要があるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2、熱媒体変換機3及び分岐ユニット40の接続台数を図1に図示された台数に限定するものではなく、たとえば、本実施の形態1に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
図2は、本発明の実施の形態1に係る空気調和装置(以下、空気調和装置100と称する)の冷媒回路構成例を示す図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に図示されるように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と分岐ユニット40とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して熱媒体配管5で接続されている。また、分岐ユニット40と室内機2とが、熱媒体配管5で接続されている。なお、冷媒配管4については後段で詳述するものとする。
本実施の形態1の空気調和装置100は、いわば特許文献1の熱媒体変換機において熱媒体が通過する部分を、熱媒体変換機とは別体のユニット(分岐ユニット)として独立させ、冷媒及び熱媒体の両方が通過する部分(熱媒体変換機)と熱媒体のみが通過する部分(分岐ユニット)とを互いに離れた場所に設置可能な構成としたことに特徴を有している。
具体的な構成としては、熱媒体変換機3は分岐ユニット40を接続するための接続口3aを備えており、この接続口3aに熱媒体配管5を介して分岐ユニット40が接続されている。分岐ユニット40は、熱媒体変換機3との接続口として接続口40aを備えており、この接続口40aと熱媒体変換機3側の接続口3aとが熱媒体配管5で接続されている。分岐ユニット40はさらに、各室内機2と接続するための接続口40bを備えており、この接続口40bに熱媒体配管5を介して室内機2が接続されている。
このように、冷媒及び熱媒体の両方が通過する熱媒体変換機3と熱媒体のみが通過する分岐ユニット40とを別々の空間に設置可能な構成とし、熱媒体変換機3を空調対象空間である室内空間7から分離された空間に設置した。これにより、冷媒循環回路Aを構成する各機器及び冷媒配管は全て、室内空間7から分離された空間に設置されることになる。よって、冷媒循環回路Aから冷媒漏れが生じても、室内空間7に冷媒が流入することを防ぐことができる。
また、特許文献1の熱媒体変換機では、熱媒体変換機と複数の室内機とを直接熱媒体配管を用いて接続する構成であるため、複数の室内機の台数に応じて、それぞれの室内機と熱媒体変換機とを接続するための往復の2本の熱媒体配管5が必要であった(たとえば室内機が4台接続の場合は8本の熱媒体配管5が必要)。また、建物の内部にある複数の室内機と、建物の外部もしくは機械室にある熱媒体変換機とを直接接続させるための長尺な複数の熱媒体配管5が必要であった。
これに対し、本実施の形態1に係る空気調和装置100では、建物の外部もしくは機械室に位置する熱媒体変換機3と、建物の内部に位置する分岐ユニット40とを本数が決まった(4本)の熱媒体配管5により接続する構成である。このため、建物の外部もしくは機械室から、建物の内部までの熱媒体配管5の本数が、室内機2の台数に応じて変化することがない。よって、熱媒体変換機3から建物の内部までに接続される熱媒体配管5の本数を特許文献1に比べて少なくできる。さらに、複数の室内機2それぞれに接続される往復の2本の熱媒体配管5は分岐ユニット40までの長さで済むため、熱媒体変換機3まで延ばす必要のあった特許文献1に比べて長さを短くできる。したがって、複数の室内機2それぞれと、分岐ユニット40までの位置合わせが容易になるといった、施工性の改善が図れる。
以下、室外機1、室内機2及び分岐ユニット40について順次説明する。
[室外機1]
室外機1には、冷媒を圧縮する圧縮機10、四方弁等で構成される第1冷媒流路切替装置11、蒸発器又は凝縮器として機能する熱源側熱交換器12、及び余剰冷媒を貯留するアキュムレーター19が冷媒配管4に接続されて搭載されている。第1冷媒流路切替装置11は四方弁でなくともよく、たとえば三方弁、二方弁、及び電磁弁を組み合わせて構成してもよい。
室外機1には、冷媒を圧縮する圧縮機10、四方弁等で構成される第1冷媒流路切替装置11、蒸発器又は凝縮器として機能する熱源側熱交換器12、及び余剰冷媒を貯留するアキュムレーター19が冷媒配管4に接続されて搭載されている。第1冷媒流路切替装置11は四方弁でなくともよく、たとえば三方弁、二方弁、及び電磁弁を組み合わせて構成してもよい。
また、室外機1には、第1接続配管4a、第2接続配管4b、逆流防止装置13a、逆流防止装置13b、逆流防止装置13c、及び逆流防止装置13dが設けられている。第1接続配管4a、第2接続配管4b、逆流防止装置13a、逆流防止装置13b、逆流防止装置13c、及び逆流防止装置13dを設けることで、室内機2の要求する運転に関わらず、室外機1から熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。すなわち、室外機1から流出する冷媒は逆流防止装置13a、13bに接続された方の冷媒配管4(第1の冷媒配管)を介して室外機1から流出し、熱媒体変換機3から室外機1に流入する冷媒は逆流防止装置13c、13dに接続された方の冷媒配管4(第2の冷媒配管)を介して室外機1に流入する。逆流防止装置13a~13dは逆止弁等で構成するとよい。
圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温且つ高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。
第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。
第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。
熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(ガスクーラー)として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行なうものである。
アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内機2の運転台数の変化)又は負荷条件の変化によって発生した余剰冷媒を貯留するものである。
アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内機2の運転台数の変化)又は負荷条件の変化によって発生した余剰冷媒を貯留するものである。
[室内機2]
室内機2には、利用側熱交換器26が搭載されている。この利用側熱交換器26は、熱媒体配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23とに接続されている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
室内機2には、利用側熱交換器26が搭載されている。この利用側熱交換器26は、熱媒体配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23とに接続されている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下側から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、室内機2の接続台数は、図2に図示されるように4台に限定されるものではない。
[熱媒体変換機3]
熱媒体変換機3には、冷媒と熱媒体とが熱交換する2つの熱媒体間熱交換器15(15a、15b)と、冷媒を減圧させる2つの絞り装置16(16a、16b)と、冷媒配管4の流路を開閉する2つの開閉装置17(17a、17b)と、冷媒流路を切り替える2つの第2冷媒流路切替装置18(18a、18b)、熱媒体を循環させる2つのポンプ21(21a、21b)が設けられている。
熱媒体変換機3には、冷媒と熱媒体とが熱交換する2つの熱媒体間熱交換器15(15a、15b)と、冷媒を減圧させる2つの絞り装置16(16a、16b)と、冷媒配管4の流路を開閉する2つの開閉装置17(17a、17b)と、冷媒流路を切り替える2つの第2冷媒流路切替装置18(18a、18b)、熱媒体を循環させる2つのポンプ21(21a、21b)が設けられている。
2つの熱媒体間熱交換器15a、15bは、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。
なお、2つの熱媒体間熱交換器15a、15bは、冷媒側伝熱管から冷媒が漏れたとしても、冷媒と熱媒体が混合しないように以下のように構成されている。すなわち、たとえば2つの熱媒体間熱交換器15a、15bは、ダブルウォールのプレート式熱交換器又は冷媒が流れる伝熱管と熱媒体が流れる伝熱管とを別々に設けそれぞれをロウ付け等で張り合わせて構成される熱交換器等で構成されている。
2つの絞り装置16a、16bは、減圧弁又は膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
2つの開閉装置17a、17bは、二方弁等で構成されており、冷媒配管4を開閉するものである。すなわち、2つの開閉装置17a、17bは、冷媒配管4(第1の冷媒配管)から供給された冷媒の流れを調整するために、後述する運転モードに応じて開閉が制御される。
2つの第2冷媒流路切替装置18a、18bは、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。なお、第2冷媒流路切替装置18は、四方弁でなくともよく、たとえば三方弁、二方弁、及び電磁弁を組み合わせて構成してもよい。
2つのポンプ21a、21bは、熱媒体配管5内の熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における熱媒体配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における熱媒体配管5に設けられている。これらのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における熱媒体配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における熱媒体配管5に設けてもよい。
また、熱媒体変換機3には、各種検出手段(流入温度センサーである2つの第1温度センサー31(31a、31b)、4つの第3温度センサー35(35a~35d)、2つの圧力センサー36(36a、36b))が設けられている。これらの検出手段で検出された情報(たとえば、温度情報や圧力情報、熱源側冷媒の濃度情報)は、空気調和装置100の動作を統括制御する制御装置50に送られる。そして、各検出情報は、圧縮機10の駆動周波数、熱源側熱交換器12及び利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、熱媒体流量調整装置25の開度等の制御に利用されることになる。
2つの第1温度センサー31a、31bは、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における熱媒体配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における熱媒体配管5に設けられている。また、第1温度センサー31は、後述の分岐ユニット40において、利用側熱交換器26に熱媒体が流入する側の熱媒体配管5に設けてもよい。
4つの第3温度センサー35a~35dは、熱媒体間熱交換器15の熱源側冷媒の入口側又は出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度又は熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
2つの圧力センサー36a、36bは、冷媒の圧力を検出するものである。圧力センサー36aは、第3温度センサー35aの設置位置と同様に、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間を流れる熱源側冷媒の圧力を検出するものである。また、圧力センサー36bは、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
[分岐ユニット40]
分岐ユニット40には、第1熱媒体流れ調節装置と第2熱媒体流れ調節装置とが設けられている。第1熱媒体流れ調節装置は、熱媒体配管5の一方に接続される4つの第1熱媒体流路切替装置22(22a~22d)と、第1熱媒体流路切替装置22が接続される方の熱媒体配管5に接続される4つの熱媒体流量調整装置25(25a~25d)とから構成されている。第2熱媒体流れ調節装置は、熱媒体配管5の他方に接続される4つの第2熱媒体流路切替装置23(23a~23d)から構成されている。
分岐ユニット40には、第1熱媒体流れ調節装置と第2熱媒体流れ調節装置とが設けられている。第1熱媒体流れ調節装置は、熱媒体配管5の一方に接続される4つの第1熱媒体流路切替装置22(22a~22d)と、第1熱媒体流路切替装置22が接続される方の熱媒体配管5に接続される4つの熱媒体流量調整装置25(25a~25d)とから構成されている。第2熱媒体流れ調節装置は、熱媒体配管5の他方に接続される4つの第2熱媒体流路切替装置23(23a~23d)から構成されている。
第1熱媒体流れ調節装置及び第2熱媒体流れ調節装置は、それぞれが以下の(1)若しくは(2)を用いて構成するか、又は(3)で構成できる。
(1)三流路以上ある弁を少なくとも1つ
(2)二流路以上ある弁を少なくとも2つ
(3)第1熱媒体流れ調節装置と第2熱媒体流れ調節装置とのうち一方が三流路以上ある弁若しくは二流路以上ある弁をそれぞれ1つ以上、他方が三流路以上ある弁を少なくとも1つ
(1)三流路以上ある弁を少なくとも1つ
(2)二流路以上ある弁を少なくとも2つ
(3)第1熱媒体流れ調節装置と第2熱媒体流れ調節装置とのうち一方が三流路以上ある弁若しくは二流路以上ある弁をそれぞれ1つ以上、他方が三流路以上ある弁を少なくとも1つ
4つの第1熱媒体流路切替装置22a~22dから構成される第1熱媒体流路切替装置22は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
なお、第1熱媒体流路切替装置22は、三方弁でなくともよく、たとえば二方弁、電磁弁などを組み合わせて使用してもよく、四方弁などの三方弁よりも流路が多い弁の余分な流路を塞いで使用してもよい。
4つの第2熱媒体流路切替装置23a~23dは、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
なお、第2熱媒体流路切替装置23は、三方弁でなくともよく、たとえば二方弁、電磁弁などを組み合わせて使用してもよく、四方弁などの三方弁よりも流路が多い弁の余分な流路を塞いで使用してもよい。
4つの熱媒体流量調整装置25a~25dは、開口面積を制御できる二方弁等で構成されており、熱媒体配管5に流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
なお、図2において、第1熱媒体流路切替装置22(22a~22d)及び熱媒体流量調整装置25(25a~25d)から構成される第1熱媒体流れ調節装置と、第2熱媒体流路切替装置23(23a~23d)から構成される第2熱媒体流れ調節装置とが、それぞれ別体にて設置されている例を示しているが、これに限らず、同様の機能を有すものであれば、第1熱媒体流れ調節装置と第2熱媒体流れ調節装置とを一体で形成(ブロック化)したものとしてもよい。具体的にはたとえば、第1熱媒体流路切替装置22(22a~22d)、熱媒体流量調整装置25(25a~25d)及び第2熱媒体流路切替装置23(23a~23d)のそれぞれの機能を備えたたとえば国際公開第2014/128961号に記載のブロック構造を有する構成としてもよい。
また、分岐ユニット40には、流出温度センサーである4つの第2温度センサー34(34a~34d)が設けられている。これらの検出手段で検出された情報(たとえば、温度情報)は、空気調和装置100の動作を統括制御する制御装置50に送られる。そして、制御装置50に送られた情報は、圧縮機10の駆動周波数、熱源側熱交換器12及び利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、熱媒体流量調整装置25の開度等の制御に利用されることになる。
4つの第2温度センサー34a~34dは、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。また、4つの第2温度センサー34a~34dは、熱媒体流量調整装置25と利用側熱交換器26との間に設けてもよい。
なお、図2において、熱媒体変換機3に設けてある2つの第1温度センサー31a、31bは、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものである。第1温度センサー31a、31bは、利用側熱交換器26に流入する熱媒体の温度を検出するものであるともいえる。第1温度センサー31a、31bは、分岐ユニット40において、利用側熱交換器26に熱媒体が流入する側の熱媒体配管5に設けてもよい。利用側熱交換器26に熱媒体が流入する側の熱媒体配管5に設ける場合は、第1温度センサー31は、各第2熱媒体流路切替装置23a~23dと各利用側熱交換器26a~26dとの間の熱媒体配管5に設けられ、ポンプ21bの入口側における熱媒体配管5に設けられている。
制御装置50は、マイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御するものである。すなわち、制御装置50は、各種機器を統括制御して、後述するデフロスト運転、及び各運転モードを実行するものである。
図2では、制御装置50が室外機1に設けられた例を図示しているが、それに限定されるものではない。すなわち、制御装置50は、室内機2のユニット毎に設けられていてもよいし熱媒体変換機3に設けられていてもよいし、分岐ユニット40に設けてもよい。また、複数の制御装置50を、室外機1、室内機2、熱媒体変換機3及び分岐ユニット40に設け、通信で連携制御をできるように構成してもよい。
熱媒体を循環させるための熱媒体配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、を有している。熱媒体配管5は熱媒体変換機3と分岐ユニット40との間に4本用いられて両者を接続している。また、熱媒体配管5は分岐ユニット40に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されており、分岐ユニット40と室内機2の間の熱媒体配管5は、第1熱媒体流路切替装置22、及び第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるか、が決定されるようになっている。
なお、図2において、熱媒体変換機3と分岐ユニット40とを4本の熱媒体配管5で接続されている例を示しているが、室内機2で冷房と暖房の同時運転が不要な場合は以下のようにしてもよい。すなわち、各熱媒体間熱交換器15のそれぞれの出口側の熱媒体配管5と入口側の熱媒体配管5とを集約させ、さらに、各分岐ユニットのそれぞれの熱媒体配管5の出口側と入口側の熱媒体配管5と集約させ、2本の熱媒体配管5で接続する構成としてもよい。
そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15の冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15の熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続されることになり、熱媒体循環回路Bを複数系統としているのである。
よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15を介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15と分岐ユニット40とを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで、冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
[運転モードの説明]
次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。
以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、逆流防止装置13aを通って、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧冷媒は、開閉装置17aを経由した後に分岐され、分岐した冷媒のそれぞれは、絞り装置16a及び絞り装置16bで膨張させられて、低温且つ低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、逆流防止装置13aを通って、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧冷媒は、開閉装置17aを経由した後に分岐され、分岐した冷媒のそれぞれは、絞り装置16a及び絞り装置16bで膨張させられて、低温且つ低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温且つ低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a、第2冷媒流路切替装置18bを通過した後、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆流防止装置13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは低圧配管と連通されている。また、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bは、室内にて必要とされる空調負荷を賄うために、第2温度センサー34の検出値と第1温度センサー31の検出値との温度差が所定値(たとえば約5℃~10℃)になるように開度が調整されている。具体的には、所定値より温度差が小さい場合、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの開度は閉方向に調整され、所定値より温度差が大きい場合、開度は開方向に調整される。このように、熱媒体は、室内にて必要とされる空調負荷に応じて必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。
熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って分岐ユニット40から流出し、熱媒体配管5を介して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の熱媒体配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aの検出値あるいは第1温度センサー31bで検出された温度と、第2温度センサー34で検出された温度との差を所定値(たとえば約5℃~10℃)に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31a又は第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、熱負荷のない利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、分岐ユニット40では、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11、逆流防止装置13bを通り、室外機1から流出する。室外機1から流出した高温且つ高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温且つ高圧のガス冷媒は分岐され、分岐された冷媒のそれぞれは、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11、逆流防止装置13bを通り、室外機1から流出する。室外機1から流出した高温且つ高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温且つ高圧のガス冷媒は分岐され、分岐された冷媒のそれぞれは、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温且つ高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温且つ低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。なお、開閉装置17aは閉となっている。
室外機1に流入した冷媒は、逆流防止装置13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温且つ低圧のガス冷媒となる。熱源側熱交換器12から流出した低温且つ低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは高圧配管と連通されている。また、絞り装置16aは、圧力センサー36aで検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36bで検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bは、室内にて必要とされる空調負荷を賄うために、第1温度センサー31の検出値と第2温度センサー34の検出値との温度差が所定値(たとえば約5℃~10℃)になるように開度が調整されている。
具体的には、所定値より温度差が小さい場合、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの開度は閉方向に調整され、所定値より温度差が大きい場合、開度は開方向に調整される。このように、熱媒体は、室内にて必要とされる空調負荷に応じて必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを流出した熱媒体は、分岐ユニット40から流出し、熱媒体配管5を介して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の熱媒体配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を所定値(たとえば約5℃~10℃)に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31a又は第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、熱負荷のない利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、分岐ユニット40では、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間と、熱媒体間熱交換器15bと利用側熱交換器26bとの間とを、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した冷媒は、室外機1から流出し、逆流防止装置13a、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した冷媒は、室外機1から流出し、逆流防止装置13a、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら、さらに温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆流防止装置13d、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18aは低圧配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36bで検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒート又はサブクールを制御するようにしてもよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bは、室内にて必要とされる空調負荷を賄うために、第2温度センサー34aの検出値と第1温度センサー31aの検出値との温度差が所定値(たとえば約5℃~10℃)になるように開度が調整されている。
具体的には、第1温度センサー31bと第2温度センサー34bの温度差が所定値(たとえば約5℃~10℃)より小さい場合、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの開度は閉方向に調整され、所定値より温度差が大きい場合、開度は開方向に調整される。このように、熱媒体は、熱媒体の流量が室内にて必要とされる空調負荷に応じて必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。
利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、分岐ユニット40から流出し、熱媒体配管5を介して、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、分岐ユニット40から流出し、熱媒体配管5を介して、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34bで検出された温度との差を、冷房側においては第2温度センサー34bで検出された温度と第1温度センサー31aで検出された温度との差を所定値(たとえば約5℃~10℃)に保つように制御することにより、賄うことができる。
冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、熱負荷のない利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、分岐ユニット40では、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間と、熱媒体間熱交換器15bと利用側熱交換器26aとの間とを、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11、逆流防止装置13bを通り、室外機1から流出する。室外機1から流出した高温且つ高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温且つ高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
低温且つ低圧の冷媒が圧縮機10によって圧縮され、高温且つ高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温且つ高圧のガス冷媒は、第1冷媒流路切替装置11、逆流防止装置13bを通り、室外機1から流出する。室外機1から流出した高温且つ高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温且つ高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら液冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介し、熱媒体変換機3から流出し、再び室外機1へ流入する。
室外機1に流入した冷媒は、逆流防止装置13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温且つ低圧のガス冷媒となる。熱源側熱交換器12から流出した低温且つ低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18aは低圧側配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、圧力センサー36bで検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、熱媒体配管5、分岐ユニット40内にある第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bは、室内にて必要とされる空調負荷を賄うために、第2温度センサー34bの検出値と第1温度センサー31aの検出値との温度差が所定値(たとえば約5℃~10℃)になるように開度が調整されている。
具体的には、第1温度センサー31bと第2温度センサー34aの温度差が所定値(たとえば約5℃~10℃)より小さい場合、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの開度は閉方向に調整され、所定値より温度差が大きい場合、開度は開方向に調整される。このように、熱媒体は、室内にて必要とされる空調負荷に応じて必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。
利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、分岐ユニット40から流出し、熱媒体配管5を介して、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、分岐ユニット40から流出し、熱媒体配管5を介して、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を所定値(たとえば約5℃~10℃)に保つように制御することにより、賄うことができる。
暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、熱負荷のない利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
以上説明したように、本実施の形態1によれば、室外機1、室内機2、熱媒体変換機3、分岐ユニット40を別筐体としている。そして、それぞれ冷媒配管4で接続されて冷媒が通過する部分である室外機1と熱媒体変換機3とを、室内空間7とは分離された空間(たとえば室外空間6、又は、換気口が設置された機械室等の空間41)に設置する。また、熱媒体変換機3に対して熱媒体配管5で接続された分岐ユニット40を、建物9の内部である天井裏等の空間8に設置する。また、分岐ユニット40に対して熱媒体配管5で接続された室内機2を、室内空間7に設置する。
このように冷媒が通過する機器及び配管を室内空間7とは分離された空間に設置するようにしたことで、言い換えれば冷媒循環回路Aを室内空間7とは分離された空間に設置するようにしたことで、冷媒循環回路Aから冷媒漏れが生じても、室内空間7に直接冷媒が流入することがない。よって、室外機1、熱媒体変換機3及び冷媒配管4のそれぞれにおいて冷媒が漏洩した場合に、室内空間7に冷媒が流入することを防ぐことができ、室内空間7の人体への影響、及び、引火に対する安全性を確保できる。
なお、冷媒循環回路Aから冷媒漏れが生じた場合に、室内空間7に冷媒が流入することを防ぐ構成を得るにあたり、たとえば特許文献1の熱媒体変換機全体を室外空間6に設置する構成が考えられる。しかし、この構成とした場合、熱媒体変換機と室内機との距離が長くなり、その影響で熱媒体配管の取り回しが複雑化する可能性がある。これに対し、本実施の形態1では、冷媒及び熱媒体の両方が通過する部分(熱媒体変換機3)と熱媒体のみが通過する部分(分岐ユニット40)とを分けて別体に構成したことで、熱媒体変換機3のみを室外空間6に配置し、分岐ユニット40は熱媒体変換機3よりも室内機2に近い位置に配置することが可能となり、熱媒体配管の取り回しが複雑化する不都合を低減できる。
また、熱媒体変換機3と複数の室内機2との間に、熱媒体配管接続が単純な分岐ユニット40を設けることで、熱媒体間熱交換器15と室内機2との距離が長くなった影響で複雑化する可能性のある熱媒体配管5の簡素化を図ることができる。すなわち、熱媒体変換機3から離れた位置に設置される可能性がある複数の室内機2に熱媒体配管5を分岐させて熱媒体変換機3と接続するときに、たとえば分岐ユニット40を複数の室内機2がそれぞれ位置する場所の中間地点に配置することなどができるため、分岐ユニット40と室内機2との間を接続させる熱媒体配管5の短尺化、取り回し自由度の向上が図れ、熱媒体配管5の簡素化を図ることができる。
また、分岐ユニット40を用いて各室内機2に熱媒体を供給することで、冷媒が居住空間に流れることを確実に防ぎ、熱媒体変換機3又は分岐ユニット40をコンパクト化し、分岐ユニット40の設置の自由度を向上することができる。
また、熱媒体間熱交換器15は、上述したようにダブルウォール式プレート熱交換器などの、冷媒流路の冷媒と熱媒体流路の熱媒体とが混合しない構造を有している。このため、熱媒体間熱交換器15の冷媒配管から冷媒が漏れた場合も、漏れた冷媒が熱媒体配管内に流出することはなく、室内空間7に冷媒が流入することを防ぐことができる。
また、熱媒体流量調整装置25(25a~25d)を用いて利用側熱交換器26に供給する熱媒体の流量を調節するようにしたので、室内にて必要とされる空調負荷を処理することができる。
熱媒体の流量を調節するにあたっては、第1温度センサー31の検出値と第2温度センサー34の検出値との温度差の絶対値が所定値(たとえば約5℃~10℃)となるように熱媒体流量調整装置25(25a~25d)の開度を調整することで行うので、室内にて必要とされる空調負荷を処理することができる。
また、上述したように第1熱媒体流れ調節装置と第2熱媒体流れ調節装置とを一体で形成(ブロック化)したものした場合、設置スペースの縮小化を図ることができる。
また、室外機1及び熱媒体変換機3は共に室外等に配置され、互いの位置が近づくことにより、冷媒配管4の長さが短縮され、冷媒配管4分の冷媒量を削減することができる。たとえば、冷媒としてR410Aを使用した8HP~20HPのビル用マルチエアコンで、冷媒配管4の長さが100mほど短くなるとすると、約11kg~23kgほど冷媒量を削減できる。このため、配管折れなどの事故が起きた際に冷媒が漏洩したときの、地球温暖化への影響を低減できる。
CO2を基準1として、冷媒ガス等の地球温度上昇への影響度合いを示す値である地球温暖化係数GWPが、たとえばR410Aは2090であり、約11kg~23kgの冷媒量を削減できるとすると、GWPと冷媒量を乗じて算出されるCO2量の換算値は、約22.99ton~48.07ton削減されることになる。
CO2を基準1として、冷媒ガス等の地球温度上昇への影響度合いを示す値である地球温暖化係数GWPが、たとえばR410Aは2090であり、約11kg~23kgの冷媒量を削減できるとすると、GWPと冷媒量を乗じて算出されるCO2量の換算値は、約22.99ton~48.07ton削減されることになる。
(実施の形態1の別設置例1)
図7は、本発明の実施の形態1における空気調和装置のその他の設置例を示す図である。図7において、1台の熱媒体変換機3は、室内空間7及び天井裏などの空間8から分離された空間41(たとえば、図示省略の換気口が設置された機械室など)に設置されている。また、室内機2が1階及び2階に合計4台設置されており、各階の空間8に分岐ユニット40が合計2台設置されている。1台の熱媒体変換機3と各階の分岐ユニット40とを分岐された熱媒体配管5で接続し、各階の室内機はそれぞれの階にある分岐ユニット40に対して熱媒体配管5で接続されている。なお、熱媒体変換機3は1台、分岐ユニット40は2台、室内機2は4台設置の例を示しているが、これに限らず、空気調和装置が設置される建物9に応じて台数を決定すればよい。
図7は、本発明の実施の形態1における空気調和装置のその他の設置例を示す図である。図7において、1台の熱媒体変換機3は、室内空間7及び天井裏などの空間8から分離された空間41(たとえば、図示省略の換気口が設置された機械室など)に設置されている。また、室内機2が1階及び2階に合計4台設置されており、各階の空間8に分岐ユニット40が合計2台設置されている。1台の熱媒体変換機3と各階の分岐ユニット40とを分岐された熱媒体配管5で接続し、各階の室内機はそれぞれの階にある分岐ユニット40に対して熱媒体配管5で接続されている。なお、熱媒体変換機3は1台、分岐ユニット40は2台、室内機2は4台設置の例を示しているが、これに限らず、空気調和装置が設置される建物9に応じて台数を決定すればよい。
このように、熱媒体変換機3を建物9内の室内空間7及び空間8から分離された空間41に設置するような構成としても、図1と同様に、室外機1、熱媒体変換機3及び冷媒配管4のそれぞれにおいて冷媒が漏洩した場合に、室内空間7に冷媒が流入することを防ぐことができ、室内空間7の人体への影響、及び、引火に対する安全性を確保できる。
また、各階で室内機2の数が多い場合などに、各階に分岐ユニット40を設置することで、異なる階同士での分岐ユニット40と室内機2との接続がなくなり、熱媒体配管5の施行が容易になる。
実施の形態2.
図8は、本発明の実施の形態2に係る空気調和装置の冷媒回路構成例を示す図である。図8を参照して空気調和装置200について説明する。なお、図8において、図2の空気調和装置100と同一の構成を有する部位には同一の符号を付しており、その説明を省略し、異なる部分のみ説明する。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。
図8は、本発明の実施の形態2に係る空気調和装置の冷媒回路構成例を示す図である。図8を参照して空気調和装置200について説明する。なお、図8において、図2の空気調和装置100と同一の構成を有する部位には同一の符号を付しており、その説明を省略し、異なる部分のみ説明する。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。
図8の空気調和装置200において分岐ユニット40には、熱媒体変換機3内のポンプ21a及びポンプ21bとは別に熱媒体搬送動力を補助する補助ポンプ21c及び補助ポンプ21dを備えている。補助ポンプ21cは、分岐ユニット40の熱媒体変換機3との接続口40aのうち、熱媒体変換機3のポンプ21aからの熱媒体が流入する接続口と第2熱媒体流路切替装置23との間の熱媒体配管5部分に設置されている。また、補助ポンプ21dは、分岐ユニット40の熱媒体変換機3との接続口40aのうち、熱媒体変換機3のポンプ21bからの熱媒体が流入する接続口と第2熱媒体流路切替装置23との間の熱媒体配管5部分に設置されている。
そして、補助ポンプ21cには熱媒体バイパス弁27aが並列に接続され、補助ポンプ21dには熱媒体バイパス弁27bが並列に接続されている。熱媒体バイパス弁27a及び熱媒体バイパス弁27bは二方弁又は電磁弁等の流路を開閉できるもので構成するとよい。
各運転モードにおいて、冷房運転、若しくは暖房運転している室内機2に搭載されている利用側熱交換器26の出入口熱媒体の温度差に基づいて熱媒体搬送動力が不足していると判断した場合、補助ポンプ21c及び補助ポンプ21dを駆動させるとよい。熱媒体搬送動力の不足の判断は以下のようにして行えばよい。すなわち、冷房では第2温度センサー34の検出値と第1温度センサー31の検出値との温度差、暖房では第1温度センサー31の検出値と第2温度センサー34の検出値との温度差が、所定値(たとえば約5℃~10℃)より大きい場合に、熱媒体搬送動力が不足していると判断する。言い換えれば、第1温度センサー31の検出値と第2温度センサー34の検出値との温度差の絶対値が所定値(たとえば約5℃~10℃)より大きい場合に、熱媒体搬送動力が不足していると判断する。なお、補助ポンプ21cと補助ポンプ21dとが駆動しているときは、熱媒体バイパス弁27aと熱媒体バイパス弁27bとは閉となっている。
また、利用側熱交換器26の出入口熱媒体の温度差が所定値(たとえば約5℃~10℃)よりも小さい場合、補助ポンプ21c及び補助ポンプ21dは停止させ、熱媒体バイパス弁27a及び熱媒体バイパス弁27bを開く。これによりポンプ21b及びポンプ21aから流出した熱媒体が補助ポンプ21c及び補助ポンプ21dを通るときの圧力損失を低減することができ、ポンプ21b及びポンプ21aの流量の低減を抑制することができる。このようにポンプ21b及びポンプ21aの流量の低減を抑制することで、本来、補助ポンプ21c及び補助ポンプ21dが無い場合に熱媒体搬送動力が不足しない領域において、補助ポンプ21c及び補助ポンプ21dを無駄に駆動させる必要がなくなり、省エネが図れる。
分岐ユニット40内に補助ポンプ21c及び補助ポンプ21dを設置することで、熱媒体変換機3が建物9内部の端にある空間41又は室外空間6に設置され、熱媒体変換機3と室内機2との間の熱媒体配管5の距離が長くなるときに(たとえば、三菱電機の一般的なビル用マルチエアコンでの設置制約である分岐以降の配管長40m以上、2台の室内機間の高さ15m以上)、熱媒体変換機3に設置されているポンプ21b及びポンプ21aの熱媒体搬送動力が不足した場合に、熱媒体搬送動力を補うことが可能となる。このように、補助ポンプ21c及び補助ポンプ21dを設置して熱媒体搬送動力を補うことで、熱媒体変換機3から離れた位置に室内機2を設置できるようになる。さらに、接続可能となる室内機2の数量を増やすこともできるようになるため、室内機2の設置の自由度が向上し、簡素化された空気調和システムを構築することができる。
なお、補助ポンプ21c、補助ポンプ21d、熱媒体バイパス弁27a、熱媒体バイパス弁27bは、それぞれ1台の構成を例に説明しているが、これに限らず複数台使用してもよい。
[冷媒配管4]
以上説明したように空気調和装置100と空気調和装置200は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
以上説明したように空気調和装置100と空気調和装置200は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[熱媒体配管5]
空気調和装置100と空気調和装置200が実行する幾つかの運転モードにおいては、熱媒体変換機3と分岐ユニット40と室内機2を接続する熱媒体配管5とのそれぞれには、水又は不凍液等の熱媒体が流れている。
空気調和装置100と空気調和装置200が実行する幾つかの運転モードにおいては、熱媒体変換機3と分岐ユニット40と室内機2を接続する熱媒体配管5とのそれぞれには、水又は不凍液等の熱媒体が流れている。
[熱源側冷媒]
熱源側冷媒としては、たとえばHFO1234yf、HFO1234ze、R32、HC、R32とHFO1234yfとを含む混合冷媒、前述冷媒が少なくとも一成分含む混合冷媒を用いた冷媒を、熱源側冷媒として用いることができる。
これらの冷媒は、何れも可燃性を有する冷媒である。凍結などによりプレート式熱交換器が損傷すると、これらの冷媒が熱媒体に流れ込む可能性がある。しかし、空気調和装置100と空気調和装置200は、熱媒体間熱交換器15a、15bが凍結しにくいため損傷しにくい。また、熱媒体間熱交換器15a、15bはダブルウォール式プレート熱交換器などの、冷媒と熱媒体が混合しない構造を有している。すなわち、可燃性冷媒を採用したとしても、冷媒が空調対象空間に漏洩する可能性を低減できる。
熱源側冷媒としては、たとえばHFO1234yf、HFO1234ze、R32、HC、R32とHFO1234yfとを含む混合冷媒、前述冷媒が少なくとも一成分含む混合冷媒を用いた冷媒を、熱源側冷媒として用いることができる。
これらの冷媒は、何れも可燃性を有する冷媒である。凍結などによりプレート式熱交換器が損傷すると、これらの冷媒が熱媒体に流れ込む可能性がある。しかし、空気調和装置100と空気調和装置200は、熱媒体間熱交換器15a、15bが凍結しにくいため損傷しにくい。また、熱媒体間熱交換器15a、15bはダブルウォール式プレート熱交換器などの、冷媒と熱媒体が混合しない構造を有している。すなわち、可燃性冷媒を採用したとしても、冷媒が空調対象空間に漏洩する可能性を低減できる。
[熱媒体]
熱媒体としては、たとえばブライン(不凍液)又は水、ブラインと水の混合液、水と防食効果が高い添加剤との混合液等を用いることができる。したがって、空気調和装置100と空気調和装置200においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
熱媒体としては、たとえばブライン(不凍液)又は水、ブラインと水の混合液、水と防食効果が高い添加剤との混合液等を用いることができる。したがって、空気調和装置100と空気調和装置200においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
また、冷房主体運転モードと暖房主体運転モードとにおいて、熱媒体間熱交換器15bと熱媒体間熱交換器15aとの状態(加熱又は冷却)が変化すると、今まで温水だったものが冷やされて冷水になり、冷水だったものが温められて温水になり、エネルギーの無駄が発生する。そこで、空気調和装置100と空気調和装置200では、冷房主体運転モード及び暖房主体運転モードの何れにおいても、常に、熱媒体間熱交換器15bが暖房側、熱媒体間熱交換器15aが冷房側となるように構成している。
さらに、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、以下の制御により、各室内機2にて暖房運転冷房運転を自由に行なうことができる。すなわち、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を、加熱用の熱媒体間熱交換器15bに接続される流路へ切り替える。また、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を、冷却用の熱媒体間熱交換器15aに接続される流路へ切り替える。
以上説明したように、本実施の形態2によれば、実施の形態1と同様の効果が得られるとともに、補助ポンプ21c及び補助ポンプ21dをさらに備えたことで、熱媒体配管5が長くなる分の熱媒体搬送動力を補うことができる。
なお、空気調和装置100と空気調和装置200は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。たとえば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転の何れかしか行なえない構成であっても同様の効果を奏する。
また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水又は不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
1 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、3a 接続口、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆流防止装置、13b 逆流防止装置、13c 逆流防止装置、13d 逆流防止装置、15 熱媒体間熱交換器、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a ポンプ、21b ポンプ、21c 補助ポンプ、21d 補助ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、27a 熱媒体バイパス弁、27b 熱媒体バイパス弁、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、36a 圧力センサー、36b 圧力センサー、40 分岐ユニット、40a 接続口、40b 接続口、41 空間、50 制御装置、100 空気調和装置、200 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。
Claims (11)
- 圧縮機、第1冷媒流路切替装置、及び熱源側熱交換器が搭載された室外機と、
熱媒体間熱交換器、絞り装置、第2冷媒流路切替装置、及びポンプが搭載された熱媒体変換機と、
熱媒体流れ調節装置が搭載された分岐ユニットと、
利用側熱交換器が搭載された少なくとも1つの室内機と、を備え、
前記圧縮機、前記第1冷媒流路切替装置、前記熱源側熱交換器、前記絞り装置、前記熱媒体間熱交換器の冷媒流路、及び前記第2冷媒流路切替装置が冷媒配管で接続されて冷媒が循環する冷媒循環回路が構成され、
前記熱媒体間熱交換器の熱媒体流路、前記分岐ユニット、及び利用側熱交換器が熱媒体配管で接続されて前記冷媒と異なる熱媒体が循環する熱媒体循環回路が構成され、
前記冷媒循環回路を構成する前記室外機及び前記熱媒体変換機は、空調対象空間から分離された空間に設置されて、前記分岐ユニット及び前記室内機とは別体に構成されている空気調和装置。 - 前記熱媒体間熱交換器は、前記冷媒流路の冷媒と前記熱媒体流路の熱媒体とが混合しない構造を有する請求項1記載の空気調和装置。
- 前記熱媒体流れ調節装置は、前記利用側熱交換器に供給する前記熱媒体の流量を調節する請求項1又は請求項2記載の空気調和装置。
- 前記分岐ユニットは前記熱媒体流れ調節装置として、前記熱媒体が前記利用側熱交換器から流出する側の流路に配置された第1熱媒体流れ調節装置と、前記熱媒体が前記利用側熱交換器から流入する側の流路に配置された第2熱媒体流れ調節装置とを少なくとも有し、
前記利用側熱交換器から流出した前記熱媒体の温度を検出する流出温度センサーと、
前記利用側熱交換器に流入する前記熱媒体の温度を検出する流入温度センサーと、
前記流入温度センサーの検出値と前記流出温度センサーの検出値との差が、所定値になるように前記熱媒体流れ調節装置の開度を調整する制御装置と、を備えた請求項1~請求項3の何れか一項に記載の空気調和装置。 - 前記流出温度センサーは、前記第1熱媒体流れ調節装置と前記利用側熱交換器との間の、前記分岐ユニット内に位置する前記熱媒体配管に設けられ、
前記流入温度センサーは、前記第2熱媒体流れ調節装置と前記熱媒体間熱交換器との間の、前記熱媒体変換機内に位置する前記熱媒体配管、又は、前記第2熱媒体流れ調節装置と前記利用側熱交換器との間の、前記分岐ユニット内にある前記熱媒体配管に設けられている請求項4記載の空気調和装置。 - 前記分岐ユニットは、前記熱媒体変換機内の前記ポンプとは別に熱媒体搬送動力を補助する補助ポンプを備えた請求項1~請求項5の何れか一項に記載の空気調和装置。
- 前記補助ポンプに対して並列に設置され、前記補助ポンプが停止したときに開、前記補助ポンプが運転したときに閉とされる熱媒体バイパス弁を備えた請求項6記載の空気調和装置。
- 前記補助ポンプは、前記利用側熱交換器から流出した前記熱媒体の温度を検出する流出温度センサーの検出値と前記利用側熱交換器に流入する前記熱媒体の温度を検出する流入温度センサーの検出値との温度差が所定値よりも大きいときに運転し、前記温度差が前記所定値よりも小さいときに停止する請求項6又は請求項7記載の空気調和装置。
- 前記第1熱媒体流れ調節装置及び前記第2熱媒体流れ調節装置は、それぞれ三流路以上ある弁を少なくとも1つ若しくは二流路以上ある弁を少なくとも2つ、を用いて構成されるか、
又は、
前記第1熱媒体流れ調節装置と前記第2熱媒体流れ調節装置とのうち一方が三流路以上ある弁若しくは二流路以上ある弁をそれぞれ1つ以上用いて構成され、他方が三流路以上ある弁を少なくとも1つ用いて構成された請求項4又は請求項5記載の空気調和装置。 - 前記第1熱媒体流れ調節装置と前記第2熱媒体流れ調節装置とが一体で形成されて前記熱媒体流れ調節装置が構成されている請求項9記載の空気調和装置。
- 前記室外機と前記熱媒体変換機とが2本の前記冷媒配管で接続され、
前記熱媒体変換機と前記分岐ユニットとが4本の前記熱媒体配管で接続され、
前記熱媒体間熱交換器における冷媒との熱交換により冷却又は加熱された熱媒体の一方又は両方が前記分岐ユニットを介して複数の前記利用側熱交換器に供給される請求項1~請求項10の何れか一項に記載の空気調和装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15894179.9A EP3306215B1 (en) | 2015-06-02 | 2015-06-02 | Air-conditioning device |
PCT/JP2015/065924 WO2016194145A1 (ja) | 2015-06-02 | 2015-06-02 | 空気調和装置 |
JP2017521398A JPWO2016194145A1 (ja) | 2015-06-02 | 2015-06-02 | 空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/065924 WO2016194145A1 (ja) | 2015-06-02 | 2015-06-02 | 空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194145A1 true WO2016194145A1 (ja) | 2016-12-08 |
Family
ID=57440853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065924 WO2016194145A1 (ja) | 2015-06-02 | 2015-06-02 | 空気調和装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3306215B1 (ja) |
JP (1) | JPWO2016194145A1 (ja) |
WO (1) | WO2016194145A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109302829A (zh) * | 2018-09-25 | 2019-02-01 | 深圳市艾特网能技术有限公司 | 下送风式机房空调 |
WO2021049435A1 (ja) * | 2019-09-13 | 2021-03-18 | 株式会社デンソー | 接続モジュール |
JP2021047000A (ja) * | 2019-09-13 | 2021-03-25 | 株式会社デンソー | 接続モジュール |
JPWO2021053924A1 (ja) * | 2019-09-17 | 2021-03-25 | ||
JP2021046953A (ja) * | 2019-09-17 | 2021-03-25 | 東芝キヤリア株式会社 | 空気調和機 |
US11512881B2 (en) * | 2020-02-03 | 2022-11-29 | Lg Electronics Inc. | Air conditioning apparatus |
US11519640B2 (en) * | 2019-12-26 | 2022-12-06 | Lg Electronics Inc. | Air conditioner |
US11725855B2 (en) | 2019-12-30 | 2023-08-15 | Lg Electronics Inc. | Air conditioning apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011101889A1 (ja) * | 2010-02-17 | 2011-08-25 | 三菱電機株式会社 | 空気調和装置 |
WO2014128961A1 (ja) * | 2013-02-25 | 2014-08-28 | 三菱電機株式会社 | 空気調和装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1082566A (ja) * | 1996-09-06 | 1998-03-31 | N T T Facilities:Kk | 空冷パッケージ空調機 |
WO2010050006A1 (ja) * | 2008-10-29 | 2010-05-06 | 三菱電機株式会社 | 空気調和装置 |
WO2010131335A1 (ja) * | 2009-05-13 | 2010-11-18 | 三菱電機株式会社 | 空気調和装置 |
CN103733002B (zh) * | 2011-08-19 | 2015-11-25 | 三菱电机株式会社 | 空气调节装置 |
EP2899477B1 (en) * | 2012-09-20 | 2020-08-05 | Mitsubishi Electric Corporation | Air conditioner device |
-
2015
- 2015-06-02 WO PCT/JP2015/065924 patent/WO2016194145A1/ja active Application Filing
- 2015-06-02 JP JP2017521398A patent/JPWO2016194145A1/ja active Pending
- 2015-06-02 EP EP15894179.9A patent/EP3306215B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011101889A1 (ja) * | 2010-02-17 | 2011-08-25 | 三菱電機株式会社 | 空気調和装置 |
WO2014128961A1 (ja) * | 2013-02-25 | 2014-08-28 | 三菱電機株式会社 | 空気調和装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3306215A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109302829A (zh) * | 2018-09-25 | 2019-02-01 | 深圳市艾特网能技术有限公司 | 下送风式机房空调 |
CN109302829B (zh) * | 2018-09-25 | 2024-02-06 | 深圳市艾特网能技术有限公司 | 下送风式机房空调 |
WO2021049435A1 (ja) * | 2019-09-13 | 2021-03-18 | 株式会社デンソー | 接続モジュール |
JP2021047000A (ja) * | 2019-09-13 | 2021-03-25 | 株式会社デンソー | 接続モジュール |
CN114466995A (zh) * | 2019-09-17 | 2022-05-10 | 东芝开利株式会社 | 空调机 |
JP2021046953A (ja) * | 2019-09-17 | 2021-03-25 | 東芝キヤリア株式会社 | 空気調和機 |
WO2021053924A1 (ja) * | 2019-09-17 | 2021-03-25 | 東芝キヤリア株式会社 | 空気調和機 |
CN114466995B (zh) * | 2019-09-17 | 2023-08-15 | 东芝开利株式会社 | 空调机 |
JP7356506B2 (ja) | 2019-09-17 | 2023-10-04 | 東芝キヤリア株式会社 | 空気調和機 |
JP7360285B2 (ja) | 2019-09-17 | 2023-10-12 | 東芝キヤリア株式会社 | 空気調和機 |
JPWO2021053924A1 (ja) * | 2019-09-17 | 2021-03-25 | ||
US11519640B2 (en) * | 2019-12-26 | 2022-12-06 | Lg Electronics Inc. | Air conditioner |
US11725855B2 (en) | 2019-12-30 | 2023-08-15 | Lg Electronics Inc. | Air conditioning apparatus |
US11512881B2 (en) * | 2020-02-03 | 2022-11-29 | Lg Electronics Inc. | Air conditioning apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP3306215B1 (en) | 2023-12-27 |
JPWO2016194145A1 (ja) | 2018-01-25 |
EP3306215A1 (en) | 2018-04-11 |
EP3306215A4 (en) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5611376B2 (ja) | 空気調和装置 | |
WO2016194145A1 (ja) | 空気調和装置 | |
JP5452629B2 (ja) | 空気調和装置 | |
JP5436575B2 (ja) | 空気調和装置 | |
JP5236080B2 (ja) | 空気調和装置 | |
WO2012073293A1 (ja) | 空気調和装置 | |
WO2013008278A1 (ja) | 空気調和装置 | |
US9335075B2 (en) | Air-conditioning apparatus | |
JPWO2014128970A1 (ja) | 空気調和装置 | |
JPWO2011048679A1 (ja) | 空気調和装置 | |
JP5420057B2 (ja) | 空気調和装置 | |
WO2011064830A1 (ja) | 空気調和装置 | |
WO2017119137A1 (ja) | 空気調和装置 | |
CN102770724B (zh) | 空调装置 | |
WO2012049704A1 (ja) | 熱媒体変換機及びそれを搭載した空気調和装置 | |
JPWO2011117922A1 (ja) | 空気調和装置 | |
JP6537603B2 (ja) | 空気調和装置 | |
JP5791717B2 (ja) | 空気調和装置 | |
WO2023007803A1 (ja) | 空気調和装置 | |
WO2011030420A1 (ja) | 空気調和装置 | |
JP5885753B2 (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15894179 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017521398 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015894179 Country of ref document: EP |