WO2022162864A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022162864A1
WO2022162864A1 PCT/JP2021/003207 JP2021003207W WO2022162864A1 WO 2022162864 A1 WO2022162864 A1 WO 2022162864A1 JP 2021003207 W JP2021003207 W JP 2021003207W WO 2022162864 A1 WO2022162864 A1 WO 2022162864A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
heat exchanger
refrigerant
heating
Prior art date
Application number
PCT/JP2021/003207
Other languages
English (en)
French (fr)
Inventor
アレックサンダー ジョン バグナル
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/003207 priority Critical patent/WO2022162864A1/ja
Publication of WO2022162864A1 publication Critical patent/WO2022162864A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Definitions

  • the present disclosure relates to an air conditioner that includes a refrigerant circuit, a heat medium circuit, and an auxiliary circuit.
  • an air conditioner for example, a multi-type air conditioner is known in which an outdoor unit as a heat source unit is arranged outdoors and a plurality of indoor units are arranged indoors.
  • the refrigerant flowing through the refrigerant circuit supplies heat to the air supplied to the indoor heat exchanger or absorbs heat from the air to heat or cool the air.
  • the air-conditioned space is heated or cooled by conveying the heated or cooled air to the air-conditioned space.
  • an HFC (hydrofluorocarbon)-based refrigerant is used as the refrigerant on the heat source side.
  • a natural refrigerant such as carbon dioxide (CO 2 ) is used as the refrigerant on the heat source side.
  • An air conditioner called a chiller has also been proposed, in which cold or hot heat is generated by a heat source installed outdoors.
  • the heat source device heats or cools a heat medium such as water or antifreeze liquid, and the heat medium is conveyed to the indoor unit to cool or heat the room.
  • the indoor unit is, for example, a fan coil or panel heater.
  • a heat recovery chiller is configured such that water, which is a heated or cooled heat medium, is simultaneously supplied from a heat source device to a plurality of indoor units.
  • a heat recovery chiller it is possible to select heating operation or cooling operation for each indoor unit in a plurality of indoor units.
  • Patent Document 1 proposes an air conditioner having a heat exchanger that is provided close to an indoor unit and exchanges heat between a primary refrigerant and a secondary refrigerant.
  • the heat source side refrigerant heated or cooled in the heat source equipment is supplied to the heat exchanger of the branch unit, and the heat or cold heat is transferred from the heat source side refrigerant to the heat medium in the heat exchanger.
  • the branch unit is connected to each indoor unit by two pipes.
  • an air conditioner called a multi air conditioner is used in buildings, etc., and has a configuration in which a refrigerant circulates between a heat source unit and a repeater, and a heat medium circulates between the repeater and each of a plurality of indoor units. I have a device.
  • multi-air conditioners it has been proposed to limit the energy required for transporting the heat medium when the heat medium is circulated to the indoor units.
  • the air supplied to the air-conditioned space is directly cooled or heated by the refrigerant, or indirectly by the refrigerant through a heat medium such as water. Cooled or heated air.
  • a heat medium such as water. Cooled or heated air.
  • the air-conditioned space is cooled to 20°C.
  • the ambient temperature of the heat source side heat exchanger is lower than that of the air-conditioned space, work must be done on the refrigerant when heating the air-conditioned space.
  • the work in this case is all performed by the compressor.
  • the heat source of the air conditioner must use the compressor to perform work on the refrigerant, increasing the energy consumed by the compressor. Therefore, it is desired to reduce the energy consumed by the compressor and efficiently operate the air conditioner.
  • the present disclosure has been made to solve the above problems, and aims to provide an air conditioner capable of efficient operation by suppressing the energy of the compressor.
  • An air conditioner includes a compressor, a flow path switching device, a heat source side heat exchanger, at least one intermediate heat exchanger, and an expansion device corresponding to each of the intermediate heat exchangers.
  • a refrigerant circuit for circulating refrigerant between the compressor, the heat source side heat exchanger, and at least one intermediate heat exchanger; at least one intermediate heat exchanger; and each of the intermediate heat exchangers and a plurality of use-side heat exchangers, and circulating the heat medium between at least one of the intermediate heat exchangers and at least one of the plurality of use-side heat exchangers.
  • an auxiliary circuit connected to the heat medium circuit and having an auxiliary heat exchanger, wherein the auxiliary heat exchanger converts the heat medium flowing into the auxiliary circuit into heat with a secondary heat medium. It heats or cools by exchange.
  • the heat or cold heat of the heat medium heated or cooled by the secondary heat medium in the auxiliary device is supplied to the utilization side heat exchanger, so the energy of the compressor is excessively consumed.
  • the air conditioner can be efficiently operated without
  • FIG. 1 is a schematic diagram of a facility provided with an air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a circuit configuration of an air conditioner according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing the flow of water in the single cooling only cooling operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing circulation of refrigerant and water in the auxiliary cooling only cooling operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing circulation of refrigerant and water in the auxiliary cooling only cooling operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water in the single cooling/heating main operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing circulation of refrigerant and water in auxiliary cooling/heating main operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water in the single cooling/cooling main operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water in the auxiliary cooling/cooling main operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing circulation of refrigerant and water in heating only operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water in the heating-main operation of the air conditioner according to Embodiment 1 when the operation mode using the auxiliary device is not performed.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water when the air-conditioning apparatus according to Embodiment 1 is in cooling only operation and does not operate in an operation mode using an auxiliary device.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water in the heating-main operation of the air conditioner according to Embodiment 1 when the operation mode using the auxiliary device is not performed.
  • FIG. 4 is a schematic diagram showing the circulation of refrigerant and water when the air-conditioning apparatus according to Embodiment 1 is in cooling only operation and does not operate in an operation mode using an auxiliary device.
  • FIG. 2 is a schematic diagram showing the circulation of refrigerant and water when the air-conditioning apparatus according to Embodiment 1 is in cooling-main operation and does not operate in an operation mode using an auxiliary device;
  • 4 is a graph showing the relationship between the temperature of the air-conditioned space of the air conditioner according to Embodiment 1, the temperature of the secondary heat medium from which heat is to be dissipated, and the operation of the auxiliary device.
  • 4 is a schematic diagram of a circuit including an auxiliary device of the air conditioner according to Modification 1 of Embodiment 1.
  • FIG. FIG. 4 is a schematic diagram of a circuit including an auxiliary device of an air conditioner according to Modification 2 of Embodiment 1;
  • FIG. 9 is a schematic diagram of a circuit including an auxiliary device of an air conditioner according to Modification 3 of Embodiment 1;
  • FIG. 10 is a schematic diagram of a circuit including an auxiliary device of an air conditioner according to Modification 4 of Embodiment 1;
  • 2 is a schematic diagram of an air conditioner according to Embodiment 2.
  • FIG. 10 is a schematic diagram showing the flow of water in the independent cooling operation of the air conditioner according to Embodiment 2;
  • FIG. 10 is a schematic diagram showing flows of refrigerant and water in the auxiliary cooling operation of the air conditioner according to Embodiment 2;
  • FIG. 7 is a schematic diagram showing the flow of refrigerant and water in the cooling only operation of the air conditioner according to Embodiment 2;
  • FIG. 10 is a schematic diagram showing flows of refrigerant and water in heating only operation of the air conditioner according to Embodiment 2;
  • FIG. 9 is a schematic diagram showing circulation of refrigerant and water in cooling/heating operation of the air conditioner according to Embodiment 2;
  • FIG. 9 is a schematic diagram of an air conditioner according to a modification of Embodiment 2;
  • FIG. 10 is a schematic diagram showing a circuit configuration of an air conditioner according to Embodiment 3;
  • FIG. 10 is a diagram showing the flow of water in the single heating only heating operation of the air conditioner according to Embodiment 3;
  • FIG. 10 is a diagram showing the circulation of refrigerant and water in the auxiliary heating only heating operation of the air conditioner according to Embodiment 3;
  • FIG. 10 is a diagram showing the circulation of refrigerant and water in the single heating/heating main operation of the air conditioner according to Embodiment 3;
  • FIG. 10 is a diagram showing the circulation of refrigerant and water in the auxiliary heating/cooling main operation of the air conditioner according to Embodiment 3;
  • FIG. 10 is a diagram showing the circulation of refrigerant and water in the auxiliary heating/heating main operation of the air conditioner according to Embodiment 3;
  • 10 is a graph showing the relationship between the temperature of the air-conditioned space of the air conditioner according to Embodiment 3, the temperature of the secondary heat medium that receives heat, and the operation of the heating device.
  • FIG. 10 is a schematic diagram of an air conditioner according to Modification 1 of Embodiment 3;
  • FIG. 10 is a schematic diagram of an air conditioner according to Modification 2 of Embodiment 3;
  • FIG. 11 is a schematic diagram of an air conditioner according to Modification 3 of Embodiment 3;
  • FIG. 11 is a schematic diagram of an air conditioner according to Modification 4 of Embodiment 3;
  • FIG. 10 is a circuit configuration diagram of an air conditioner according to Embodiment 4;
  • FIG. 12 is a diagram showing the flow of water in the auxiliary heating only heating operation of the air conditioner according to Embodiment 4;
  • FIG. 12 is a diagram showing the flow of water in the single heating/cooling operation of the air conditioner according to Embodiment 4;
  • FIG. 11 is a schematic diagram of an air conditioner according to a modification of Embodiment 4;
  • FIG. 1 is a schematic diagram of a facility provided with an air conditioner 100 according to Embodiment 1.
  • FIG. 1 is a schematic diagram of a facility provided with an air conditioner 100 according to Embodiment 1.
  • FIG. 1 when the indoor temperature in any of the plurality of rooms reaches a predetermined value, the user-side heat exchangers 35a to 35d provided in the indoor units 3 arranged in the room (See FIG. 2) is configured to stop the supply of the heat medium. That is, each indoor unit 3 stops the supply of the heat medium by the thermostat of the indoor unit 3 .
  • the air-conditioning apparatus 100 according to Embodiment 1 for example, not only supplies the heat medium but also It is configured such that the provided air blower (not shown) is stopped. Therefore, in the air conditioner 100 according to Embodiment 1, when the temperature of any indoor air reaches a predetermined value, the thermostat of the indoor unit 3 arranged in the room is stopped.
  • the air conditioner 100 according to Embodiment 1 is configured to shift to the stop mode, for example, in response to a user's stop instruction. Further, when the temperature on the heat source side is lower than the temperature of the indoor space for which the cooling operation is required, the air conditioner 100 according to Embodiment 1 uses the cooling device as the auxiliary device 15 to perform the cooling operation. It has a function to suppress the power consumption of
  • the air conditioner 100 is connected to a refrigerant circuit A through which a refrigerant flows and constitutes a refrigerating cycle as a refrigerant circuit on the heat source side, a heat medium circuit B through which a heat medium flows, and the heat medium circuit B, which is connected to the heat medium circuit.
  • a cooling auxiliary circuit C (see FIG. 2).
  • the air conditioner 100 can select cooling operation and heating operation for each indoor unit 3 as an operation mode.
  • the case where all the indoor units 3 are performing the cooling operation is referred to as the cooling only operation mode.
  • the case where all the indoor units 3 are performing the heating operation is referred to as a heating only operation mode.
  • the cooling/heating mixed operation mode further includes a cooling-main operation mode in which the cooling load is greater than the heating load, and a heating-main operation mode in which the heating load is greater than the cooling load.
  • the air conditioner 100 includes an outdoor unit 1, an indoor unit 3, and a repeater 2 arranged between the outdoor unit 1 and the indoor unit 3. .
  • the outdoor unit 1 functions as a heat source unit.
  • heat is exchanged between the refrigerant on the heat source side and the heat medium.
  • the outdoor unit 1 and the repeater 2 are connected by a refrigerant pipe 4 through which refrigerant flows.
  • the relay unit 2 and each of the indoor units 3 are connected by heat medium pipes 5 through which heat medium flows. Heat and cold heat generated by the outdoor unit 1 are transferred to the indoor unit 3 via the repeater 2 .
  • the outdoor unit 1 is arranged outside 6.
  • the exterior 6 is, for example, the exterior 6 of a building 9 such as a facility, such as the roof of the building 9 .
  • the outdoor unit 1 supplies heat or cold heat to each of the plurality of indoor units 3 via the repeater 2 .
  • the repeater 2 transmits cold heat or heat generated by the outdoor unit 1 to each of the plurality of indoor units 3 .
  • the repeater 2 is configured separately from the outdoor unit 1 and the indoor unit 3 .
  • the repeater 2 is arranged in a space 8 different from the outside 6 where the outdoor unit 1 is arranged and the indoor 7 where the plurality of indoor units 3 are arranged.
  • the repeater 2 is connected to the outdoor unit 1 by refrigerant pipes 4 and is connected to each of the indoor units 3 by heat medium pipes 5 .
  • the indoor unit 3 supplies heated air or cooled air to the room 7, which is an air-conditioned space.
  • the indoor unit 3 is arranged in a place where it is possible to supply heated air or cooled air to the room 7 which is an air-conditioned space, for example, a room inside the building 9 .
  • FIG. 1 shows the ceiling cassette type indoor unit 3, but the manner of installation of the indoor unit 3 is not limited to this.
  • the auxiliary device 15 is arranged on the exterior 6 .
  • the exterior 6 is, for example, the exterior 6 of the building 9 such as a facility, such as the roof of the building 9, as described above.
  • the auxiliary device 15 supplies cold heat to the indoor unit 3 via the repeater 2 .
  • the auxiliary device 15 is connected to the repeater 2 by a heat medium pipe 61a and a heat medium pipe 61b.
  • the auxiliary device 15 may be provided inside the building 9 .
  • the auxiliary device 15 may be configured to supply cold heat using water, air, or the like as a heat source.
  • the auxiliary device 15 may be provided as part of the configuration of the outdoor unit 1 .
  • the auxiliary device 15 is, for example, configured to supply cold energy by radiating heat to the following heat radiation target as the outside 6 .
  • ⁇ Dissipate heat to a river or swamp • Dissipate heat into the energy loop of the building. ⁇ Dissipate heat to tap water. ⁇ Dissipate heat to sewage. ⁇ Dissipate heat to the boring hole. - Dissipate heat to the land (geothermal).
  • the refrigerant on the heat source side flows from the outdoor unit 1 to the repeater 2 through the refrigerant pipe 4 .
  • the refrigerant on the heat source side exchanges heat with a heat medium in intermediate heat exchangers 25a and 25b (see FIG. 2) provided in the repeater 2, which will be described later.
  • a refrigerant obtained by mixing any of these refrigerants, or a natural refrigerant such as CO 2 or propane can be employed as the refrigerant on the heat source side.
  • the heat medium may be water, antifreeze, a mixture of water and antifreeze, or a mixture of water and a corrosion-resistant additive.
  • the air-conditioning apparatus 100 of Embodiment 1 the case where water is used as the heat medium is described as an example.
  • the outdoor unit 1 and the repeater 2 are connected by two refrigerant pipes 4 . Further, each of the repeater 2 and the indoor unit 3 is connected by two heat medium pipes 5 . Therefore, since the air conditioner 100 has a configuration in which each unit of the outdoor unit 1, the relay unit 2, and the indoor unit 3 is connected by two types of pipes, the refrigerant pipe 4 and the heat medium pipe 5, construction is easy.
  • FIG. 1 illustrates a configuration in which the repeater 2 is arranged in the space 8 above the ceiling.
  • the space 8 is inside the building 9 and is a space 8 separate from the room 7 .
  • the repeater 2 can also be installed in a shared space where an elevator or the like is arranged instead of in the ceiling space.
  • FIG. 1 illustrates the indoor unit 3 as a ceiling cassette type, the configuration of the indoor unit 3 is not limited to this.
  • the indoor unit 3 may be, for example, a ceiling-mounted type or a ceiling-suspended type, and can supply heating air or cooling air directly or indirectly to the room 7 via a duct or the like. I wish I could.
  • FIG. 1 illustrates a configuration in which the outdoor unit 1 is arranged outside 6, the outdoor unit 1 may be arranged in a closed space having a ventilation function, such as a machine room.
  • the outdoor unit 1 may be provided inside the building 9 as long as the exhaust heat can be discharged to the outside 6 through an exhaust duct or the like. If the outdoor unit 1 is of a water cooling type, the outdoor unit 1 may be arranged inside the building 9 . Even if it is arranged in such a place, no particular problem arises.
  • the repeater 2 may be placed near the outdoor unit 1.
  • the length of the heat medium pipe 5 connecting the repeater 2 and the indoor unit 3 should be considered.
  • the number of indoor units 3 increases, if the distance between the repeater 2 and the indoor units 3 is reduced, the force required to convey the heat medium can be reduced, resulting in an energy saving effect.
  • the number of outdoor units 1, repeaters 2, and indoor units 3 is not limited to the number illustrated in FIG. 1, and may be determined according to the building 9 in which the indoor units 3 are installed.
  • the plurality of repeaters 2 When a plurality of repeaters 2 are connected to the outdoor unit 1, the plurality of repeaters 2 may be arranged in different places, such as a shared space in an office or in the ceiling space. By dividing the indoor units 3 corresponding to the respective repeaters 2 by the plurality of repeaters 2, the air conditioning load can be shared.
  • the indoor unit 3 may be arranged at a distance or on a floor where the heat medium can be conveyed by the pumps 31a and 31b (see FIG. 2) of the relay unit 2. Therefore, the indoor unit 3 can be arranged at all places in the office.
  • FIG. 2 is a schematic diagram showing the circuit configuration of the air conditioner 100 according to Embodiment 1.
  • the outdoor unit 1 and the repeater 2 are connected by the refrigerant pipe 4 via the intermediate heat exchangers 25 a and 25 b of the repeater 2 .
  • the operation of the air conditioner 100 is controlled by the controller 50 .
  • the relay unit 2 and the plurality of indoor units 3a to 3d are connected by the heat medium pipe 5 in which the heat medium pipe 5a through the intermediate heat exchanger 25a and the heat medium pipe 5b through the intermediate heat exchanger 25b join together.
  • the auxiliary device 15 is connected to the heat medium pipe 5a of the repeater 2 by the heat medium pipe 61a and the heat medium pipe 61b via the auxiliary heat exchanger 25c.
  • the intermediate heat exchanger 25a and the intermediate heat exchanger 25b exchange heat between the heat source side refrigerant conveyed by the refrigerant pipe 4 and the heat medium conveyed by the heat medium pipes 5a and 5b.
  • the auxiliary heat exchanger 25c of the auxiliary device 15 exchanges heat between the heat medium flowing through the heat medium pipes 61a and 61b and another secondary heat medium.
  • the outdoor unit 1 has a compressor 10 , a first flow path switching device 11 , a heat source side heat exchanger 12 , and an accumulator 19 , each housed in a housing and connected by refrigerant pipes 4 .
  • the first flow switching device 11 is, for example, a four-way valve.
  • the outdoor unit 1 has check valves 13a to 13d.
  • the refrigerant pipe 4 includes a first connection refrigerant pipe 4a and a second connection refrigerant pipe 4b.
  • the refrigerant on the heat source side flows from the outdoor unit 1 to the repeater 2 regardless of the operating mode of the air conditioner 100. , flowing in a particular direction.
  • the compressor 10 sucks and compresses the refrigerant, discharges high-temperature and high-pressure refrigerant, and circulates the refrigerant in the refrigerant circuit A.
  • the compressor 10 has a discharge side connected to the first flow path switching device 11 and a suction side connected to the accumulator 19 .
  • the compressor 10 is, for example, a variable capacity inverter compressor.
  • the first flow switching device 11 is connected to the discharge side of the compressor 10 and the check valve 13d, and is connected to the heat source side heat exchanger 12 and the accumulator 19. The flow path of the refrigerant is switched so that the suction side is connected.
  • the first flow switching device 11 is connected to the discharge side of the compressor 10 and the heat source side heat exchanger 12, and the check valve 13c and the accumulator 19 are connected.
  • the flow path of the refrigerant is switched so that the suction side is connected.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the heat source side heat exchanger 12 exchanges heat between air as a fluid supplied by an air blower (not shown) and a refrigerant on the heat source side.
  • a heat source side refrigerant flows through the heat source side heat exchanger 12 .
  • the heat source side refrigerant evaporates and liquefies, or condenses and liquefies.
  • the heat source side heat exchanger 12 is connected between the check valve 13b and the accumulator 19 during heating operation.
  • the heat source side heat exchanger 12 is connected between the compressor 10 and the check valve 13a during cooling operation.
  • the heat source side heat exchanger 12 may employ, for example, a plate-fin tube heat exchanger having heat transfer tubes through which refrigerant flows and fins through which air flows.
  • the accumulator 19 stores excess refrigerant generated in the refrigerant circuit A. Excess refrigerant is produced, for example, by a difference in refrigerant state between heating operation and cooling operation. In addition, surplus refrigerant is produced by changes in operating conditions due to transitions in operating modes, for example, changes in the number of indoor units 3a to 3d that are in heating operation.
  • the accumulator 19 In heating operation, the accumulator 19 is connected between the heat source side heat exchanger 12 and the suction side of the compressor 10 . In cooling operation, the accumulator 19 is connected between the check valve 13 c and the suction side of the compressor 10 .
  • the check valve 13 a is provided in the refrigerant pipe 4 that connects the heat source side heat exchanger 12 and the repeater 2 .
  • the check valve 13 a allows the refrigerant on the heat source side to flow only in a predetermined direction, that is, in the direction from the outdoor unit 1 to the repeater 2 .
  • the check valve 13 c is provided in the refrigerant pipe 4 that connects the repeater 2 and the first flow switching device 11 .
  • the check valve 13 c allows the refrigerant on the heat source side to flow only in a predetermined direction, that is, in the direction from the repeater 2 to the outdoor unit 1 .
  • the check valve 13b is provided in the second connecting refrigerant pipe 4b.
  • the check valve 13b causes the refrigerant on the heat source side that has flowed back from the repeater 2 to flow into the suction side of the compressor 10 in the heating operation.
  • the check valve 13d is provided in the first connecting refrigerant pipe 4a. The check valve 13d allows the heat source-side refrigerant discharged from the compressor 10 to flow into the repeater 2 in the heating operation.
  • first connection refrigerant pipe 4a One end of the first connection refrigerant pipe 4a is connected to the refrigerant pipe 4 that connects the first flow path switching device 11 and the check valve 13c. The other end of the first connection refrigerant pipe 4 a is connected to the refrigerant pipe 4 that connects the check valve 13 a and the repeater 2 .
  • One end of the second connection refrigerant pipe 4 b is connected to the refrigerant pipe 4 that connects the check valve 13 c and the repeater 2 .
  • the other end of the second connection refrigerant pipe 4b is connected to the refrigerant pipe 4 that connects the heat source side heat exchanger 12 and the check valve 13a.
  • the configuration shown in FIG. 2 shows an example in which the first connecting refrigerant pipe 4a, the second connecting refrigerant pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the first connecting refrigerant pipe 4a, the second connecting refrigerant pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are not essential components.
  • the indoor units 3a to 3d respectively have utilization side heat exchangers 35a to 35d in their housings.
  • the use-side heat exchangers 35a to 35d are connected to the heat medium flow control devices 34a to 34d through the heat medium pipes 5, respectively, and are connected to the second heat medium flow switching devices 33a to 33d through the heat medium pipes 5.
  • the utilization-side heat exchangers 35 a to 35 d exchange heat between air blown from a blower (not shown) and a heat medium to generate heating air or cooling air and supply it to the room 7 .
  • the repeater 2 includes intermediate heat exchangers 25a and 25b, expansion devices 26a and 26b, an opening/closing device 27, an opening/closing device 29, second flow switching devices 28a and 28b, pumps 31a and 31b, and a first heat medium flow switching device. 32a to 32d, second heat medium flow switching devices 33a to 33d, and heat medium flow control devices 34a to 34d are provided in the housing.
  • the intermediate heat exchanger 25a is an example of a first intermediate heat exchanger
  • the intermediate heat exchanger 25b is an example of a second intermediate heat exchanger.
  • the pump 31a is an example of a first pump
  • the pump 31b is an example of a second pump.
  • the intermediate heat exchangers 25a, 25b function as condensers or evaporators.
  • the intermediate heat exchangers 25a and 25b have a refrigerant flow path through which the heat source side refrigerant flows and a heat medium flow path through which the heat medium flows, and perform heat exchange between the heat source side refrigerant and the heat medium. conduct.
  • the intermediate heat exchangers 25a and 25b transfer thermal energy or cold energy generated in the outdoor unit 1 and stored in the refrigerant on the heat source side to the heat medium.
  • the intermediate heat exchanger 25a is provided between the expansion device 26a and the second flow switching device 28a. The intermediate heat exchanger 25a cools the heat medium in the cooling/heating mixed operation.
  • the intermediate heat exchanger 25a functions as an evaporator and transfers cold energy of the refrigerant on the heat source side to the heat medium.
  • the intermediate heat exchanger 25b is provided between the expansion device 26b and the second flow switching device 28b.
  • the intermediate heat exchanger 25b heats the heat medium in the cooling/heating mixed operation. Therefore, in the heating operation by the outdoor unit 1, the intermediate heat exchanger 25b functions as a condenser and transfers the thermal energy of the refrigerant on the heat source side to the heat medium.
  • the expansion devices 26a and 26b respectively function as pressure reducing valves or expansion valves to expand the refrigerant on the heat source side.
  • the expansion device 26a is arranged upstream of the intermediate heat exchanger 25a in the flow direction of the refrigerant on the heat source side during the cooling operation.
  • the expansion device 26b is arranged upstream of the intermediate heat exchanger 25b in the flow direction of the refrigerant on the heat source side during the cooling operation.
  • the expansion devices 26a and 26b may be variable opening expansion devices 26a and 26b such as electromagnetic expansion valves.
  • the opening/closing device 27 and the opening/closing device 29 are, for example, electromagnetic valves that open and close when energized.
  • the switchgear 27 and the switchgear 29 open and close the circuits in which they are provided.
  • the opening and closing of the opening/closing device 27 and the opening/closing device 29 are controlled based on the operation mode. By controlling the opening/closing device 27 and the opening/closing device 29, the flow direction of the refrigerant on the heat source side is changed.
  • the switching device 27 is the refrigerant pipe 4 that connects the outdoor unit 1 and the repeater 2, and is provided on the side into which the refrigerant flows from the heat source side.
  • the opening/closing device 29 is provided in the bypass refrigerant pipe 20 that connects the refrigerant pipe 4 on the heat source side refrigerant inflow side and the refrigerant pipe 4 on the heat source side refrigerant outflow side.
  • the opening/closing device 27 and the opening/closing device 29 only need to be able to open and close the refrigerant pipes 4 in which they are provided, and may be, for example, electronic expansion valves capable of opening/closing control.
  • the second flow switching devices 28a and 28b are, for example, four-way valves.
  • the second flow switching devices 28a, 28b change the flow direction of the refrigerant on the heat source side, and cause the intermediate heat exchangers 25a, 25b to function as condensers or evaporators depending on the operation mode.
  • the second flow switching device 28a is arranged downstream of the intermediate heat exchanger 25a in the flow direction of the refrigerant on the heat source side during the cooling operation.
  • the second flow switching device 28b is arranged downstream of the intermediate heat exchanger 25b in the flow direction of the refrigerant on the heat source side during the cooling operation.
  • the pumps 31a and 31b circulate the heat medium through the heat medium circuit B.
  • the pump 31a is provided in the heat medium pipe 5 connecting the intermediate heat exchanger 25a and the second heat medium flow switching devices 33a to 33d.
  • the pump 31b is provided in the heat medium pipe 5 connecting the intermediate heat exchanger 25a and the second heat medium flow switching devices 33a to 33d.
  • the pumps 31a and 31b can adjust the flow rate of the heat medium according to the air conditioning load of the indoor units 3a to 3d, and are pumps 31a and 31b whose capacity can be controlled, for example.
  • the heat medium pipe 5 through which the heat medium flows includes the heat medium pipe 5a connected to the intermediate heat exchanger 25a and the heat medium pipe 5b connected to the intermediate heat exchanger 25b.
  • the heat medium pipes 5a and 5b are branched in numbers corresponding to the number of the indoor units 3a to 3d connected to the repeater 2, respectively.
  • the heat medium pipe 5a connected to the intermediate heat exchanger 25a and the heat medium pipe 5b connected to the intermediate heat exchanger 25b are connected to the first heat medium flow switching devices 32a to 32d and the second heat medium flow switching devices 32a to 32d. They merge at devices 33a-33d.
  • the first heat medium flow switching devices 32a to 32d and the second heat medium flow switching devices 33a to 33d are controlled by a control device 50, which will be described later. As a result, it is determined from which of the intermediate heat exchanger 25a or the intermediate heat exchanger 25b the heat medium is to flow into each of the utilization side heat exchangers 35a to 35d.
  • the outflow side of the corresponding utilization side heat exchangers 35a to 35d is either the inflow side of the intermediate heat exchanger 25a or the inflow side of the intermediate heat exchanger 25b.
  • the flow path of the heat medium is switched so as to be connected.
  • the number of the first heat medium flow switching devices 32a-32d corresponds to the number of the utilization side heat exchangers 35a-35d. That is, if the number of use-side heat exchangers 35a to 35d is four, the number of first heat medium flow switching devices 32a to 32d is four.
  • the first heat medium flow switching devices 32a to 32d are configured so that the heat medium flow paths reach the intermediate heat exchanger 25a, the intermediate heat exchanger 25b, and the heat medium flow rate adjusting devices 34a to 34d, respectively.
  • Directionally connected for example a three-way valve.
  • the first heat medium flow switching devices 32a to 32d are arranged in heat medium flow paths on the outflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow switching device 32d are arranged on the outflow side of the corresponding utilization side heat exchangers 35a to 35d in this order from top to bottom.
  • the first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow switching device 32d each have a corresponding usage. They are housed in indoor units 3a-3d provided with side heat exchangers 35a-35d. The flow path of each heat medium may be completely switched or partially switched.
  • the inflow side of the corresponding utilization side heat exchangers 35a to 35d is either the outflow side of the intermediate heat exchanger 25a or the outflow side of the intermediate heat exchanger 25b.
  • the flow path of the heat medium is switched so as to be connected.
  • the number of the second heat medium flow switching devices 33a-33d corresponds to the number of the utilization side heat exchangers 35a-35d. That is, if the number of use-side heat exchangers 35a to 35d is four, the number of second heat medium flow switching devices 33a to 33d is four.
  • the second heat medium flow switching devices 33a to 33d are configured so that the heat medium flow paths reach the intermediate heat exchanger 25a, the intermediate heat exchanger 25b, and the corresponding utilization side heat exchangers 35a to 35d, respectively.
  • a three-way valve connected in three ways to the The second heat medium flow switching devices 33a to 33d are arranged in heat medium flow paths on the inflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching device 33d are are arranged on the inflow side of the corresponding utilization side heat exchangers 35a to 35d in this order from top to bottom.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching device 33d each have a corresponding usage. They are housed in indoor units 3a-3d provided with side heat exchangers 35a-35d. The flow path of each heat medium may be completely switched or partially switched.
  • the heat medium flow rate adjusting devices 34a to 34d are, for example, two-way valves capable of controlling the flow rate, and adjust the flow rate of the heat medium in the corresponding heat medium pipes 5.
  • the number of heat medium flow control devices 34a to 34d corresponds to the number of use side heat exchangers 35a to 35d. If the number of utilization side heat exchangers 35a to 35d is four, the number of heat medium flow control devices 34a to 34d is four.
  • One of the heat medium flow control devices 34a to 34d is connected to the corresponding utilization side heat exchangers 35a to 35d, and the other is connected to the corresponding first heat medium flow switching device 32a to 32d. .
  • the heat medium flow control devices 34a to 34d are provided in flow paths of the heat medium on the outflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the heat medium flow rate adjusting devices 34a to 34d adjust the flow rate of the heat medium based on the temperature of the heat medium flowing into the indoor units 3a to 3d and the temperature of the heat medium flowing out of the indoor units 3a to 3d. It is configured to be adjusted so as to be optimal for air conditioning loads 3a to 3d.
  • the heat medium flow rate adjusting device 34a, the heat medium flow rate adjusting device 34b, the heat medium flow rate adjusting device 34c, and the heat medium flow rate adjusting device 34d are arranged in this order from the top to the bottom of the paper surface. Housed in ⁇ 3d.
  • the heat medium flow control devices 34a to 34d may be arranged on the inflow side of the corresponding utilization side heat exchangers 35a to 35d instead of on the outflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the heat medium flow rate adjusting devices 34a to 34d are on the inflow side of the corresponding use side heat exchangers 35a to 35d, and the corresponding use side heat exchangers 35a to 35d and the second heat medium flow switching devices 33a to 33d. may be placed between When the air conditioning load is not requested, for example, when the indoor units 3a to 3d are in the stop mode, or when the thermostats of the indoor units 3a to 3d are turned off, the heat medium flow control devices 34a to 34d is fully closed. With such a configuration, the supply of the heat medium to the indoor units 3a to 3d can be stopped.
  • the first heat medium flow switching devices 32a to 32d or the second heat medium flow switching devices 33a to 33d may have the same functions as the heat medium flow control devices 34a to 34d. In this case, the heat medium flow control devices 34a to 34d may be excluded from the configuration.
  • the repeater 2 has temperature sensors 40a, 40b that detect the temperature of the heat medium at the outlets of the corresponding intermediate heat exchangers 25a, 25b. Temperature information detected by the temperature sensors 40 a and 40 b is transmitted to the control device 50 .
  • the temperature information includes the operating frequency of the compressor 10, the rotation speed of the blower (not shown), the switching operation of the first flow switching device 11, the operating frequency of the pumps 31a and 31b, and the switching of the second flow switching devices 28a and 28b. It is used for operation, switching operation of the flow path of the heat medium, control of the flow rate of the heat medium in the indoor units 3a to 3d, and the like.
  • the switching operation of the heat medium flow path is the switching operation of the first heat medium flow path switching devices 32a to 32d and the second heat medium flow path switching devices 33a to 33d.
  • the temperature sensors 40a, 40b detect the temperature of the heat medium flowing out from the corresponding intermediate heat exchangers 25a, 25b. That is, the temperature sensors 40a, 40b detect the temperature of the heat medium at the outlets of the corresponding intermediate heat exchangers 25a, 25b.
  • the temperature sensor 40a is provided in the heat medium pipe 5a connected to the heat medium intake side of the pump 31a.
  • the temperature sensor 40b is provided in the heat medium pipe 5b of the heat medium pipe 5, which is connected to the heat medium intake side of the pump 31b.
  • the temperature sensors 40a, 40b are, for example, thermistors.
  • the control device 50 is arranged in the repeater 2, for example.
  • the arrangement position of the control device 50 is not limited to the repeater 2 .
  • the control device 50 may be arranged in any one of the outdoor unit 1, the repeater 2, or the indoor units 3a to 3d, and is arranged in the outdoor unit 1, the repeater 2, and all the indoor units 3a to 3d. may have been
  • the controller 50 provided in the outdoor unit 1, the repeater 2, or the indoor units 3a to 3d communicates with the controller 50 provided in the other outdoor unit 1, the repeater 2, or the indoor units 3a to 3d. It may be a possible configuration.
  • the control device 50 is composed of, for example, a CPU (Central Processing Unit, also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor)).
  • the control device 50 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory, non-volatile memory such as a non-volatile or Read Only Memory).
  • semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), etc.
  • the control device 50 realizes processing by a program stored in memory.
  • the control device 50 performs the following controls based on detection results from detection devices provided in the air conditioner 100, such as the temperature sensors 40a and 40b, and instructions from the remote controller.
  • ⁇ Operating frequency of the compressor 10 ⁇ Rotational speed including ON and OFF states of the air blower (not shown)
  • ⁇ Switching operation of the first flow path switching device 11 ⁇ Operating frequency of the pumps 31a and 31b ⁇ Opening of the expansion devices 26a and 26b Degree ⁇ Switching operation of the second flow path switching devices 28a and 28b ⁇ Switching operation of the first heat medium flow path switching devices 32a to 32d ⁇ Switching operation of the second heat medium flow path switching devices 33a to 33d ⁇ Heat medium flow rate adjusting device Operations of 34a to 34d ⁇ Opening/closing operation of the opening/closing device 27 and the opening/closing device 29 ⁇ Opening/closing operation of the heat medium flow path opening/closing device 36, which will be described later Based on instructions from
  • the auxiliary device 15 has an auxiliary heat exchanger 25c in its housing.
  • the auxiliary heat exchanger 25c is provided between the heat medium flowing from the heat medium pipe 5a through the heat medium pipe 61b and the secondary heat medium around the auxiliary heat exchanger 25c in the auxiliary device 15 from which heat is to be dissipated. , heat is radiated from the heat medium flowing through the heat medium pipe 61b. That is, the auxiliary device 15 cools the heat medium with the secondary heat medium without using the refrigerant.
  • the auxiliary heat exchanger 25c is, for example, a plate-fin tube heat exchanger having heat transfer tubes through which a heat medium flows and fins through which air flows.
  • the secondary heat medium from which heat is to be dissipated is the air in the space in which the auxiliary device 15 is arranged, such as outside air.
  • the auxiliary device 15 may include a blower device (not shown).
  • the auxiliary heat exchanger 25c may be a water-cooled heat exchanger when the secondary heat medium to be radiated is not air.
  • the auxiliary device 15 may include an auxiliary temperature sensor 40c.
  • a detection value of the auxiliary temperature sensor 40 c is transmitted to the control device 50 .
  • the auxiliary temperature sensor 40c is preferably arranged on the outlet side of the auxiliary heat exchanger 25c.
  • the amount of heat released by the auxiliary device 15 can be controlled using the detection value of the auxiliary temperature sensor 40c or the temperature sensor 40a.
  • the amount of heat radiation can be controlled, for example, by controlling the air volume from the air blower according to the operation mode, the flow rate control by the heat medium flow path opening/closing device 36 or the pump 31a, or a combination thereof.
  • a method for controlling the amount of heat release is not particularly limited, and other known methods can also be adopted.
  • the auxiliary device 15 is connected to the heat medium circuit B by the heat medium pipes 61a and 61b that constitute the auxiliary circuit C.
  • One end of the heat medium pipe 61b is connected to the upstream side of the auxiliary heat exchanger 25c, and the other end connects the heat medium flow opening/closing device 36 and the first heat medium flow switching devices 32a to 32d. It is connected to the pipe 5a.
  • One end of the heat medium pipe 61a is connected to the downstream side of the auxiliary heat exchanger 25c, and the other end is connected to the heat medium pipe 5a connecting the heat medium flow path opening/closing device 36 and the intermediate heat exchanger 25a.
  • the heat medium pipe 5a connecting between the position where the other end of the heat medium pipe 61a is connected and the position where the other end of the heat medium pipe 61b is connected serves as a bypass heat medium circuit 60 that bypasses the auxiliary circuit C. Function.
  • the bypass heat medium circuit 60 is part of the heat medium circuit B.
  • a heat medium flow opening/closing device 36 is provided in the bypass heat medium circuit 60 .
  • the heat medium flow path opening/closing device 36 is arranged in the heat medium circuit B of the repeater 2 .
  • the heat medium channel opening/closing device 36 is, for example, a two-way valve that opens and closes the bypass heat medium circuit 60 .
  • the heat medium flow opening/closing device 36 has a configuration of a three-way valve that allows the heat medium flowing from the first heat medium flow switching devices 32a to 32d to flow in the direction of the auxiliary device 15 or the intermediate heat exchanger 25a. good too.
  • the heat medium flow opening/closing device 36 may be a three-way valve that allows the heat medium flowing from the first heat medium flow switching devices 32a to 32d or the auxiliary device 15 to flow into the intermediate heat exchanger 25a. If the heat medium flow opening/closing device 36 is, for example, a three-way valve, two of the connecting portions are connected to the bypass heat medium circuit 60 and the heat medium pipe 5a. Another one of the connecting portions is connected to the other end of the heat medium pipe 61a or the other end of the heat medium pipe 61b.
  • Compressor 10 first flow switching device 11, heat source side heat exchanger 12, opening/closing device 27, opening/closing device 29, second flow switching devices 28a, 28b, refrigerant flow paths of intermediate heat exchangers 25a, 25b, expansion Devices 26 a , 26 b and accumulator 19 are connected by refrigerant pipe 4 .
  • a refrigerant circuit A is configured by the refrigerant pipe 4 .
  • the second heat medium flow switching devices 33 a to 33 d are connected by heat medium pipes 5 .
  • a heat medium circuit B is configured by the heat medium pipes 5 .
  • the heat medium circuit B includes a plurality of systems by connecting a plurality of use side heat exchangers 35a to 35d in parallel to the intermediate heat exchangers 25a and 25b.
  • the auxiliary circuit C is connected to the heat medium circuit B, and the auxiliary heat exchanger 25c is connected in series with the heat medium pipe 5a to which the intermediate heat exchanger 25a is connected.
  • the outdoor unit 1 and the relay unit 2 are connected by the refrigerant circuit A via the intermediate heat exchangers 25a and 25b of the relay unit 2, and the relay unit 2 and the indoor units 3a to 3d It is connected by the heat medium circuit B through the intermediate heat exchangers 25a and 25b of the machine 2.
  • the air conditioner 100 has a configuration in which the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchangers 25a and 25b. With such a configuration, the air conditioner 100 realizes cooling operation or heating operation according to the air conditioning load.
  • the auxiliary device 15 is a cooling device that dissipates heat to the secondary heat medium. good too. That is, when the auxiliary device 15 is the heating device 16, the auxiliary device 15 may be configured such that the heat medium flowing through the auxiliary heat exchanger 25c receives heat from the surrounding secondary heat medium. Further, the auxiliary device 15 may be, for example, a heating device 16 such as a gas boiler that receives hot water as a heat source. Further, the air conditioner 100 may be configured to include the auxiliary device 15 in the auxiliary circuit C and the heating device 16 (see FIG. 36) that heats the heat medium.
  • the cold heat generated by the cooling device as the auxiliary device 15 performs the cooling operation
  • the heat generated by the heating device 16 performs the heating operation.
  • a configuration in which the auxiliary device 15 of the auxiliary circuit C radiates heat to air as a secondary heat medium will be described as an example.
  • the operation modes implemented in the air conditioner 100 include heating only operation, cooling only operation, heating main operation, and cooling main operation.
  • the heating only operation is a mode in which all the indoor units 3a to 3d perform the heating operation.
  • the cooling only operation is a mode in which all of the indoor units 3a to 3d are in cooling operation.
  • the heating-dominant operation is a mode in which heating operation and cooling operation are performed, and is a mode when the heating load is greater than the cooling load.
  • Cooling-dominant operation is a mode in which heating operation and cooling operation are performed, and is a mode when the cooling load is greater than the heating load.
  • These operation modes are the first flow switching device 11, the second flow switching devices 28a and 28b, the first heat medium flow switching devices 32a to 32d, and the second heat medium flow switching devices 33a to 33d. It is realized by a combination of switching and opening and closing of the switchgear 27 and the switchgear 29 .
  • operation modes using the auxiliary device 15 include independent cooling and auxiliary cooling.
  • the operation mode using the auxiliary device 15 is implemented under the control of the control device 50 .
  • the operation mode using the auxiliary device 15 is a mode that is implemented when a cooling operation is requested in any of the user-side heat exchangers 35a to 35d.
  • the auxiliary circuit C is connected to the user-side heat exchangers 35a-35d for which the cooling operation is requested, among the user-side heat exchangers 35a-35d.
  • the heat medium cooled by the auxiliary heat exchanger 25c is supplied to the user-side heat exchangers 35a-35d that require cooling operation among the user-side heat exchangers 35a-35d. influx.
  • the independent cooling is performed by transferring cold heat generated by heat radiation in the auxiliary heat exchanger 25c to the utilization side heat exchangers 35a to 35d of the indoor units 3a to 3d.
  • This is the mode in which That is, in independent cooling, the heat medium cooled in the auxiliary heat exchanger 25c is supplied to the utilization side heat exchangers 35a to 35d that require cooling operation.
  • cold heat is not added in the intermediate heat exchanger 25a. That is, in the independent cooling, no refrigerant is used in the auxiliary heat exchanger 25, and the heat medium cooled by the secondary heat medium is supplied to the utilization side heat exchangers 35a to 35d.
  • the auxiliary cooling includes the cold generated by the intermediate heat exchanger 25a or the intermediate heat exchanger 25a and the intermediate heat exchanger 25b.
  • This mode is implemented by transferring the heat to the utilization side heat exchangers 35a to 35d. That is, in auxiliary cooling, the heat medium cooled by the secondary heat medium without using the refrigerant in the auxiliary heat exchanger 25c flows into the intermediate heat exchanger 25a, or the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. It is a configuration that Then, the heat medium is further cooled by the refrigerant flowing through the refrigerant circuit A in the intermediate heat exchanger 25a, or in the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. It is supplied to exchangers 35a-35d.
  • the operation mode by the auxiliary device 15 can be used in combination with any of the cooling-only operation, cooling-main operation, or heating-main operation of the air conditioner 100. Therefore, the air conditioner 100 performs the independent cooling only cooling operation, the auxiliary cooling only cooling operation, the heating only operation, the independent cooling/heating main operation, the auxiliary cooling/heating main operation, or the auxiliary cooling/cooling main operation. In addition, the air conditioner 100 performs a heating-only operation, a cooling-only operation, a heating-dominant operation, and a cooling-dominant operation in which cooling by the auxiliary device 15 is not performed.
  • FIG. 3 is a schematic diagram showing the flow of water in the single cooling only cooling operation of the air conditioner 100 according to Embodiment 1.
  • FIG. 3 dashed arrows indicate the flow direction of the heat medium.
  • the utilization side heat exchangers 35a to 35d all have cooling loads. That is, all of the indoor units 3a to 3d are performing the cooling operation.
  • the independent cooling only cooling operation all of the user-side heat exchangers 35a to 35d that require cooling operation are connected to the auxiliary circuit C, and all cold heat generated by the auxiliary device 15 is transmitted to the user-side heat exchangers 35a to 35d. 35d.
  • the refrigerant circuit A is not used to generate cold heat. Therefore, the operation of the elements in refrigerant circuit A, including compressor 10, is optional.
  • the pump 31a is operated under the control of the control device 50, the heat medium flow rate adjusting devices 34a to 34d are opened, and the heat medium flows through the intermediate heat exchanger 25a and the utilization side heat exchangers 35a to 34d. 35d.
  • the heat medium flow opening/closing device 36 is closed under the control of the control device 50 , and the heat medium does not flow through the bypass heat medium circuit 60 . Therefore, the heat medium conveyed by the pump 31a circulates through the auxiliary circuit C. As shown in FIG.
  • the flow of the heat medium in heat medium circuit B will be explained.
  • the heat medium flows through the auxiliary circuit C, is cooled in the auxiliary device 15, and flows into the heat medium pipe 5 forming the heat medium circuit B by driving the pump 31a. Due to the pressure from the pump 31a, the heat medium passes through the second heat medium flow switching devices 33a to 33d and reaches the utilization side heat exchangers 35a to 35d for which the cooling operation is requested. Then, the heat medium transfers cold heat to the room air in the second heat medium flow switching devices 33a to 33d, thereby cooling the room .
  • the heat medium flows out from the utilization side heat exchangers 35a to 35d and flows into the heat medium flow control devices 34a to 34d.
  • the heat medium flow control devices 34a to 34d control the flow rate of the heat medium so that the heat medium flows at a flow rate corresponding to the air conditioning load required in each room.
  • the heat medium flowing out from the heat medium flow control devices 34a to 34d flows through the first heat medium flow switching devices 32a to 32d, and then branches to flow into the auxiliary device 15.
  • the heat medium that has flowed through the heat medium pipe 61b is cooled in the auxiliary heat exchanger 25c, flows into the intermediate heat exchanger 25a, and is sucked into the pump 31a again.
  • the user-side heat exchangers 35a to 35d that require cooling operation are connected to the auxiliary circuit C via the heat medium circuit B.
  • cold heat generated in the auxiliary heat exchanger 25c of the auxiliary device 15 without using a refrigerant is supplied to the utilization side heat exchangers 35a to 35d to perform the cooling operation. Therefore, it becomes unnecessary to generate cold heat in the refrigerant circuit A, and the required cooling can be performed without operating the outdoor unit 1 .
  • FIGS. 4 and 5 are schematic diagrams showing the circulation of refrigerant and water in the auxiliary cooling only cooling operation of the air conditioner 100 according to Embodiment 1.
  • FIG. 4 and 5 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the utilization side heat exchangers 35a-35d all have cooling loads. That is, all of the indoor units 3a to 3d are performing the cooling operation.
  • the flow of refrigerant on the heat source side in refrigerant circuit A will be explained.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the first flow switching device 11, flows into the heat source side heat exchanger 12, exchanges heat with the outside air, and becomes a high-temperature and high-pressure liquid refrigerant, or It becomes a two-phase refrigerant.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 1 through the check valve 13a.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flowing out from the outdoor unit 1 flows into the refrigerant pipe 4 of the repeater 2 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant passes through the switching device 27, is expanded by the expansion device 26a, becomes low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25a.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the intermediate heat exchanger 25a receives heat from the heat medium and vaporizes to become a low-temperature gas refrigerant.
  • the gas refrigerant passes through the second flow switching device 28a and the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • cold heat is supplied from the auxiliary device 15 and the intermediate heat exchanger 25a, and is also supplied from the intermediate heat exchanger 25b. Cold heat may also be supplied only from the auxiliary device 15 and the intermediate heat exchanger 25a, as shown in FIG. In this case, the expansion device 26b is fully closed, and the intermediate heat exchanger 25b does not pass the refrigerant and the heat medium.
  • the pump 31a is driven under the control of the control device 50, the heat medium flow rate adjusting devices 34a to 34d are opened, and the heat medium flows through the intermediate heat exchanger 24a and the intermediate heat exchanger 25b to the user side. It flows between the heat exchangers 35a to 35d. Pump 31b may not be driven.
  • the heat medium flow path opening/closing device 36 is closed under the control of the control device 50 , and no heat flows through the bypass heat medium circuit 60 .
  • the heat medium conveyed by the pump 31 a circulates through the auxiliary device 15 .
  • the flow of heat medium in heat medium circuit B will be explained.
  • the heat medium flows into the auxiliary device 15 by closing the heat medium flow path opening/closing device 36 .
  • the heat medium flows through the auxiliary circuit C, is cooled in the auxiliary device 15, and flows into the heat medium pipes 5 forming the heat medium circuit B by driving the pump 31a.
  • the heat medium that has circulated through the auxiliary circuit C is transported by the pump 31a and flows into the intermediate heat exchanger 25a, where it is supplied with cold energy from the expanded refrigerant and further cooled.
  • the heat medium flows out from the intermediate heat exchanger 25a, flows into the second heat medium flow switching devices 33a-33d, and flows into the utilization side heat exchangers 35a-35d having cooling loads. Since all of the indoor units 3a to 3d are performing cooling operation, the pump 31a is driven and the heat medium flow control devices 34a to 34d are opened.
  • the second heat medium flow switching devices 33a to 33d are switched so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchangers 35a to 35d.
  • the first heat medium flow switching devices 32 a to 32 d are switched so that the heat medium conveyed from the heat medium flow rate adjusting devices 34 a to 34 d flows into the auxiliary device 15 . Therefore, the heat medium circulates between the auxiliary device 15, the intermediate heat exchanger 25a, and the utilization side heat exchangers 35a to 35d.
  • the heat medium cooled by the secondary heat medium in the auxiliary device 15 without using refrigerant is supplied to the utilization side heat exchangers 35a to 35d that require cooling operation in the intermediate heat exchanger 25b. , is configured to be supplied after being further cooled using a refrigerant. Therefore, cold heat is generated in both the auxiliary circuit C and the refrigerant circuit A, and cooling operation is performed.
  • FIG. 6 is a schematic diagram showing the circulation of refrigerant and water in the single cooling/heating main operation of the air conditioner 100 according to Embodiment 1.
  • the pipe through which the coolant on the heat source side flows is indicated by a thick line.
  • the direction of flow of the refrigerant is indicated by solid line arrows
  • the direction of flow of the heat medium is indicated by broken line arrows.
  • usage-side heat exchangers 35a, 35b, and 35d have a heating load
  • usage-side heat exchanger 35c has a cooling load. That is, the indoor units 3a, 3b, and 3d are performing heating operation, and the indoor unit 3c is performing cooling operation.
  • the first flow switching device 11 of the outdoor unit 1 causes the heat source side refrigerant discharged from the compressor 10 to flow into the relay device 2 without flowing into the heat source side heat exchanger 12. .
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is discharged from the compressor 10, it flows out of the outdoor unit 1 from the first flow switching device 11 through the first connection refrigerant pipe 4a.
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 into the refrigerant pipe 4 of the repeater 2 .
  • the high-temperature and high-pressure gas refrigerant that has flowed into the repeater 2 passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant is condensed by transferring heat to the heat medium circulating in the heat medium circuit B, liquefied, and turned into a liquid refrigerant.
  • the liquid refrigerant is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • Switching device 27 is closed, switching device 29 is open, and expansion device 26a is closed.
  • the low-pressure two-phase refrigerant flows through the switching device 29, passes through the refrigerant pipe 4, and flows into the outdoor unit 1 again.
  • the low-pressure two-phase refrigerant flows into the heat source side heat exchanger 12 functioning as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 exchanges heat with the outside air of the heat source side heat exchanger 12 and changes to a low temperature and low pressure refrigerant.
  • the low-temperature and low-pressure refrigerant flows out of the heat source side heat exchanger 12, passes through the first flow switching device 11 and the accumulator 19, and is sucked into the compressor 10 again.
  • Part of the heat medium is used for heating operation.
  • one of the indoor units 3a to 3d performs the heating operation, so the controller 50 drives the pump 31b, the heat medium flow rate adjusting devices 34a, 34b, and 33d is opened.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched by the control device 50 so that the heat medium is supplied from the pump 31b to the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32a, 32b, and 32d are controlled by the control device 50 so that the heat medium flowing out of the heat medium flow rate adjusting devices 34a, 34b, and 34d flows into the intermediate heat exchanger 25b. can be switched.
  • the thermal energy supplied from the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25b, thereby heating the heat medium and circulating through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium flowing out of the pump 31b flows through the second heat medium flow switching devices 33a, 33b, and 33d into the use-side heat exchangers 35a, 35b, and 35d having heating loads. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchangers 35a, 35b, and 35d.
  • the other portion of the heat medium is used for independent cooling.
  • the control device 50 drives the pump 31a and opens the heat medium flow control device 34b.
  • the second heat medium flow switching device 33b is switched by the control device 50 so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchanger 35b.
  • the first heat medium flow switching device 32 b is switched by the control device 50 so that the heat medium conveyed from the heat medium flow rate adjusting device 34 b flows into the auxiliary device 15 .
  • the heat medium flows into the auxiliary device 15 by closing the heat medium flow path opening/closing device 36 .
  • the heat medium is cooled by the cold energy of the medium to be radiated in the auxiliary heat exchanger 25c.
  • the cooled heat medium flows through the heat medium pipe 5a through the heat medium pipe 61b by driving the pump 31a.
  • the heat medium flows through the second heat medium flow switching device 33b into the utilization side heat exchanger 35b having a cooling load. Therefore, the heat medium circulates between the auxiliary device 15 and the utilization side heat exchanger 35b.
  • the heat medium cooled by the secondary heat medium is supplied to the utilization side heat exchanger 35b without using the refrigerant in the auxiliary heat exchanger 25c, and the cooling operation is performed. Also, the heat medium heated by the refrigerant in the refrigerant circuit A is supplied to the user-side heat exchangers 35a, 35b, and 35d to perform the heating operation. Thereby, the heating operation by the outdoor unit 1 and the cooling operation by the auxiliary device 15 are realized.
  • FIG. 7 is a schematic diagram showing the circulation of refrigerant and water in the auxiliary cooling/heating main operation of the air conditioner 100 according to Embodiment 1.
  • the pipe through which the coolant on the heat source side flows is indicated by a thick line.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • usage-side heat exchangers 35a, 35b, and 35d have heating loads
  • usage-side heat exchanger 35c has a cooling load. That is, the indoor units 3a, 3b, and 3d are performing heating operation, and the indoor unit 3c is performing cooling operation.
  • the first flow switching device 11 of the outdoor unit 1 causes the heat source side refrigerant discharged from the compressor 10 to flow into the relay device 2 without flowing into the heat source side heat exchanger 12. .
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is discharged from the compressor 10, it flows out of the outdoor unit 1 from the first flow switching device 11 through the first connection refrigerant pipe 4a.
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 into the refrigerant pipe 4 of the repeater 2 .
  • the high-temperature and high-pressure gas refrigerant that has flowed into the repeater 2 passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant flows into the intermediate heat exchanger 25b, it transfers heat to the heat medium circulating in the heat medium circuit B, condenses, liquefies, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the intermediate heat exchanger 25b is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • Switching device 27 is closed, switching device 29 is open, and expansion device 26a is closed. After flowing out of the expansion device 26b, the low-pressure two-phase refrigerant flows through the expansion device 26a and into the intermediate heat exchanger 25a functioning as an evaporator.
  • the low-pressure two-phase refrigerant that has flowed into the intermediate heat exchanger 25a receives heat from the heat medium circulating in the heat medium circuit B and evaporates. This cools the heat medium.
  • the low-temperature and low-pressure two-phase refrigerant flows out of the intermediate heat exchanger 25a, passes through the second flow switching device 28a, and flows out of the repeater 2.
  • the low-temperature and low-pressure two-phase refrigerant flowing out of the repeater 2 passes through the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • the low-temperature and low-pressure two-phase refrigerant flows into the outdoor unit 1, it flows through the second connecting refrigerant pipe 4b into the heat source side heat exchanger 12 functioning as an evaporator.
  • the low-temperature and low-pressure two-phase refrigerant receives heat from the outside air of the heat source-side heat exchanger 12 in the heat source-side heat exchanger 12 and becomes low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant in the heat source side heat exchanger 12 passes through the first flow switching device 11 and the accumulator 19 and is sucked into the compressor 10 again.
  • the flow of the heat medium in heat medium circuit B will be explained.
  • the controller 50 drives the pump 31b and opens the heat medium flow control devices 34a, 34b, and 33d.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched by the control device 50 so that the heat medium is supplied from the pump 31b to the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32a, 32b, and 32d are controlled by the control device 50 so that the heat medium flowing out of the heat medium flow rate adjusting devices 34a, 34b, and 33d flows into the intermediate heat exchanger 25b. can be switched.
  • Part of the heat medium is used for heating operation.
  • the thermal energy supplied from the refrigerant on the heat source side is transferred to the heat medium in the intermediate heat exchanger 25b, thereby heating the heat medium and flowing through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium flowing out of the pump 31b flows through the second heat medium flow switching devices 33a, 33b, and 33d into the use-side heat exchangers 35a, 35b, and 35d having heating loads. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchangers 35a, 35b, and 35d.
  • the other part of the heat medium is used for auxiliary cooling.
  • cold heat is transmitted to the heat medium in the auxiliary heat exchanger 25c of the auxiliary device 15 to cool the heat medium.
  • the cooled heat medium flows through the heat medium pipe 5a by driving the pump 31a.
  • the heat medium flows into the auxiliary device 15 by closing the heat medium flow path opening/closing device 36 .
  • the heat medium is conveyed by the pump 31a and flows into the intermediate heat exchanger 25a.
  • the heat medium flows through the second heat medium flow switching device 33b. and flows into the utilization-side heat exchanger 35b having a cooling load.
  • the pump 31a Since one of the indoor units 3a to 3d is performing cooling operation, the pump 31a is driven and the heat medium flow rate adjusting device 34b is opened.
  • the second heat medium flow switching device 33b is switched so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchanger 35b.
  • the first heat medium flow switching device 32 b is switched such that the heat medium conveyed from the heat medium flow rate adjusting device 34 b flows into the auxiliary device 15 . Therefore, the heat medium circulates between the auxiliary device 15 and the utilization side heat exchanger 35b.
  • the heat medium cooled by the secondary heat medium without using the refrigerant in the auxiliary heat exchanger 25c and further cooled by using the refrigerant in the intermediate heat exchanger 25a is supplied to the utilization side heat exchanger 35b. cooling operation is performed. Also, the heat medium heated by the refrigerant in the refrigerant circuit A is supplied to the user-side heat exchangers 35a, 35b, and 35d, and the heating operation is performed. Thereby, the heating operation by the outdoor unit 1 and the cooling operation by the outdoor unit 1 and the auxiliary device 15 are realized.
  • FIG. 8 is a schematic diagram showing the circulation of refrigerant and water in the single cooling/cooling main operation of the air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG. Circulation of the refrigerant and water in the independent cooling/cooling main operation is the same as in the individual cooling/heating main operation, so the explanation is omitted. However, the difference is that the cooling load in the room 7 is greater than the heating load in the room 7 .
  • FIG. 9 is a schematic diagram showing the circulation of refrigerant and water in the auxiliary cooling/cooling main operation of the air conditioner 100 according to Embodiment 1.
  • FIG. 9 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the usage-side heat exchanger 35b has a heating load, and the usage-side heat exchangers 35a, 35c, and 35d have a cooling load. That is, the indoor unit 3b is performing heating operation, and the indoor units 3a, 3c, and 3d are performing cooling operation.
  • the gas refrigerant compressed by the compressor 10 to become high temperature and high pressure flows into the heat source side heat exchanger 12 via the first flow path switching device 11, and the heat source side heat exchanger 12 It exchanges heat with the outside air and becomes a high-temperature and high-pressure liquid refrigerant or a two-phase refrigerant.
  • a high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out from the outdoor unit 1 and flows into the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows into the repeater 2, it passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant transfers heat to the heat medium flowing through the heat medium circuit B in the intermediate heat exchanger 25b, condenses and liquefies to become liquid refrigerant.
  • the liquid refrigerant that has flowed out of the intermediate heat exchanger 25b is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the opening/closing device 27 and the opening/closing device 29 are closed, and the expansion device 26a is opened. After flowing out of the expansion device 26b, the low-pressure two-phase refrigerant flows through the expansion device 26a and into the intermediate heat exchanger 25a functioning as an evaporator.
  • the low-pressure two-phase refrigerant that has flowed into the intermediate heat exchanger 25a receives heat from the heat medium circulating in the heat medium circuit B and evaporates. This cools the heat medium.
  • the gas refrigerant that has become low temperature and low pressure in the intermediate heat exchanger 25 a flows out from the repeater 2 through the second flow switching device 28 a.
  • the low-temperature and low-pressure gas refrigerant flowing out of the repeater 2 passes through the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • the low-temperature and low-pressure gas refrigerant that has flowed in from the repeater 2 passes through the first flow switching device 11 and the accumulator 19 and is sucked into the compressor 10 again.
  • Part of the heat medium is used for heating operation.
  • one of the indoor units 3a to 3d performs the heating operation, so the control device 50 drives the pump 31b and opens the heat medium flow rate adjusting device 34b.
  • the first heat medium flow switching device 32b is switched by the control device 50 so that the heat medium flowing out of the heat medium flow rate adjusting device 34b flows into the intermediate heat exchanger 25b.
  • the thermal energy supplied from the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25b, thereby heating the heat medium and flowing through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching device 33b into the utilization side heat exchanger 35b having a heating load. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchanger 35b.
  • the other part of the heat medium is used for auxiliary cooling.
  • the controller 50 drives the pump 31a and opens the heat medium flow control devices 34a, 34c, and 34d.
  • the second heat medium flow switching devices 33a, 33c, and 33d are switched by the control device 50 so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchangers 35a, 35c, and 35d.
  • the first heat medium flow switching devices 32a, 32c, and 32d are controlled by the control device 50 so that the heat medium conveyed from the heat medium flow rate adjusting devices 34a, 34c, and 34d flows into the auxiliary device 15. can be switched.
  • auxiliary cooling In the auxiliary cooling during the cooling-main operation, cold heat is transferred to the heat medium in the auxiliary heat exchanger 25c of the auxiliary device 15, and the heat medium is cooled by the secondary heat medium without using refrigerant.
  • the cooled heat medium flows through the heat medium pipe 5 by driving the pump 31a.
  • the heat medium flows into the auxiliary device 15 by closing the heat medium flow path opening/closing device 36 .
  • the heat medium is conveyed by the pump 31a and flows into the intermediate heat exchanger 25a, where cold energy is supplied from the expanded refrigerant.
  • the heat medium flows through the second heat medium flow switching devices 33a, 33c, and 33d into the utilization side heat exchangers 35a, 35c, and 35d having heating loads. Therefore, the heat medium circulates between the auxiliary device 15 and the utilization side heat exchanger 35b.
  • FIG. 10 is a schematic diagram showing the circulation of refrigerant and water in the heating only operation of the air conditioner 100 according to Embodiment 1.
  • FIG. 10 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the utilization side heat exchangers 35a to 35d all have heating loads. That is, all of the indoor units 3a to 3d are performing the heating operation, and the operation mode using the auxiliary device 15 is not performed.
  • the first flow switching device 11 of the outdoor unit 1 causes the heat source side refrigerant discharged from the compressor 10 to flow into the repeater 2 without flowing into the heat source side heat exchanger 12 .
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is discharged from the compressor 10 , it flows through the first flow switching device 11 and the first connection refrigerant pipe 4 a to flow out of the outdoor unit 1 .
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 into the refrigerant pipe 4 of the repeater 2 .
  • the high-temperature and high-pressure gas refrigerant that has flowed into the repeater 2 passes through the second flow switching devices 28a and 28b and flows into the intermediate heat exchangers 25a and 25b functioning as condensers.
  • the gas refrigerant is condensed by transferring heat to the heat medium circulating in the heat medium circuit B and liquefied to become liquid refrigerant.
  • the liquid refrigerant is expanded in the expansion devices 26a and 26b to become a low-pressure two-phase refrigerant.
  • Switching device 27 is closed and switching device 29 is open.
  • the low-pressure two-phase refrigerant flows through the opening/closing device 29, passes through the refrigerant pipe 4, and flows into the outdoor unit 1 again.
  • the low-pressure two-phase refrigerant flows into the heat source side heat exchanger 12 functioning as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 exchanges heat with the outside air of the heat source side heat exchanger 12 and changes to a low temperature and low pressure refrigerant.
  • the low-temperature and low-pressure refrigerant flows out of the heat source side heat exchanger 12, passes through the first flow switching device 11 and the accumulator 19, and is sucked into the compressor 10 again.
  • the heat medium is used for heating operation.
  • all the indoor units 3a to 3d perform the heating operation, so the controller 50 drives the pumps 31a and 31b and opens the heat medium flow control devices 34a to 33d.
  • the second heat medium flow switching devices 33a to 33d are switched by the control device 50 so that the heat medium is supplied from the pumps 31a and 31b to the utilization side heat exchangers 35a to 35d.
  • the first heat medium flow switching devices 32a to 32d are switched by the control device 50 so that the heat medium flowing out of the heat medium flow control devices 34a to 33d flows into the intermediate heat exchangers 25a and 25b.
  • the thermal energy supplied from the refrigerant on the heat source side is transmitted to the heat medium at least in the intermediate heat exchangers 25a and 25b, whereby the heat medium is heated and circulated through the heat medium pipe 5 by driving the pump 31b. .
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching devices 33a to 33d into the utilization side heat exchangers 35a to 35d having heating loads. Therefore, the heat medium circulates between the intermediate heat exchanger 25a and the utilization side heat exchangers 35-35d.
  • a part of the thermal energy supplied from the refrigerant on the heat source side may be transmitted to the heat medium in the intermediate heat exchanger 25a and circulated through the heat medium pipe 5 by driving the pump 31a. In this case, the heat medium circulates between the intermediate heat exchangers 25a and 25b and the utilization side heat exchangers 35a to 35d.
  • the heating operation by the outdoor unit 1 is performed in all the indoor units 3a to 3d.
  • FIG. 11 is a schematic diagram showing circulation of refrigerant and water when the air-conditioning apparatus 100 according to Embodiment 1 is in the heating-main operation and the operation mode using the auxiliary device 15 is not performed.
  • the pipe through which the coolant on the heat source side flows is indicated by a thick line.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • usage-side heat exchangers 35a, 35b, and 35d have heating loads
  • usage-side heat exchanger 35c has a cooling load. That is, the indoor units 3a, 3b, and 3d are performing heating operation, and the indoor unit 3c is performing cooling operation, but the operation mode using the auxiliary device 15 is not performed.
  • the flow of the refrigerant on the heat medium side in the refrigerant circuit A will be explained.
  • the low temperature and low pressure refrigerant is compressed by the compressor 10 to become a high temperature and high pressure gas refrigerant.
  • the gas refrigerant is discharged from the compressor 10 and flows into the repeater 2 by the first flow switching device 11 of the outdoor unit 1 without passing through the heat source side heat exchanger 12 .
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 to the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure gas refrigerant flows into the repeater 2, it passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant flows into the intermediate heat exchanger 25b, it transfers heat to the heat medium circulating in the heat medium circuit B, condenses, liquefies, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the intermediate heat exchanger 25b is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the opening/closing device 27 and the opening/closing device 29 are closed, and the expansion device 26a is opened. After flowing out of the expansion device 26b, the low-pressure two-phase refrigerant flows through the expansion device 26a and into the intermediate heat exchanger 25a functioning as an evaporator.
  • the low-pressure two-phase refrigerant that has flowed into the intermediate heat exchanger 25a receives heat from the heat medium circulating in the heat medium circuit B and evaporates. This cools the heat medium.
  • the low-temperature and low-pressure two-phase refrigerant flows out of the intermediate heat exchanger 25a, passes through the second flow switching device 28a, and flows out of the repeater 2.
  • the low-temperature and low-pressure two-phase refrigerant flowing out of the repeater 2 passes through the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • the low-temperature and low-pressure two-phase refrigerant flows into the outdoor unit 1, it flows through the second connecting refrigerant pipe 4b into the heat source side heat exchanger 12 functioning as an evaporator.
  • the low-temperature and low-pressure two-phase refrigerant receives heat from the outside air of the heat source-side heat exchanger 12 in the heat source-side heat exchanger 12 and becomes low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant in the heat source side heat exchanger 12 passes through the first flow switching device 11 and the accumulator 19 and is sucked into the compressor 10 again.
  • Part of the heat medium is used for heating operation.
  • the thermal energy supplied from the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25b, whereby the heat medium heated by the refrigerant is used to drive the pump 31b.
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching devices 33a, 33b, and 33d into the use-side heat exchangers 35a, 35b, and 35d having heating loads.
  • one of the indoor units 3a to 3d performs the heating operation, so the pump 31b is driven and the heat medium flow control devices 34a, 34b, and 33d are opened.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched so that the heat medium is supplied from the pump 31b to the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32a, 32b, and 32d are switched so that the heat medium flowing out from the heat medium flow rate adjusting devices 34a, 34b, and 33d flows into the intermediate heat exchanger 25b. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchangers 35a, 35b, and 35d.
  • the other portion of the heat medium is used for cooling operation.
  • the heat medium flows through the heat medium pipe 5 by driving the pump 31a.
  • the heat medium passes through the closed heat medium flow path opening/closing device 36, is conveyed by the pump 31a, and flows into the intermediate heat exchanger 25a.
  • the heat medium flows through the second heat medium flow switching device 33b into the utilization side heat exchanger 35b having a heating load.
  • the pump 31a is driven and the heat medium flow rate adjusting device 34b is opened.
  • the second heat medium flow switching device 33b is switched so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchanger 35b.
  • the first heat medium flow switching device 32 b is switched such that the heat medium conveyed from the heat medium flow rate adjusting device 34 b flows into the auxiliary device 15 . Therefore, the heat medium cooled by the refrigerant circulates between the intermediate heat exchanger 25a and the utilization side heat exchanger 35b.
  • FIG. 12 is a schematic diagram showing circulation of refrigerant and water when the air-conditioning apparatus 100 according to Embodiment 1 is in cooling only operation and the operation mode using the auxiliary device 15 is not performed.
  • the pipe through which the coolant on the heat source side flows is indicated by a thick line.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the utilization side heat exchangers 35a to 35d all have cooling loads. In other words, the indoor units 3a to 3d are all performing the cooling operation, but the operation mode using the auxiliary device 15 is not performed.
  • the flow of the heat source side refrigerant circulating in the refrigerant circuit A in FIG. 12 is the same as in FIG. 4 showing the auxiliary cooling only cooling operation.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the first flow switching device 11, flows into the heat source side heat exchanger 12, exchanges heat with the outside air, and becomes a high-temperature and high-pressure liquid refrigerant, or It becomes a two-phase refrigerant. After that, the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 1 through the check valve 13a. The high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flowing out from the outdoor unit 1 flows into the refrigerant pipe 4 of the repeater 2 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant passes through the switching device 27, is expanded by the expansion device 26a, becomes low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25a.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the intermediate heat exchanger 25a receives heat from the heat medium and vaporizes to become a low-temperature gas refrigerant.
  • the gas refrigerant passes through the second flow switching device 28a and the refrigerant pipe 4 and is sucked into the outdoor unit 1 again. If cold is supplied only from the intermediate heat exchanger 25a, the expansion device 26b may be fully closed.
  • the utilization side heat exchangers 35a to 35d all have cooling loads. That is, all of the indoor units 3a to 3d are performing cooling operation.
  • the flow of heat medium in heat medium circuit B will be explained.
  • the controller 50 drives the pump 31a and opens the heat medium flow control devices 34a to 34d.
  • the second heat medium flow switching devices 33a to 33d are switched by the control device 50 so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchanger 35b.
  • the first heat medium flow switching devices 32a to 32d are switched by the control device 50 so that the heat medium conveyed from the heat medium flow control devices 34a to 34d flows into the intermediate heat exchanger 25a.
  • the pump 31b does not have to be driven. Since the heat medium channel opening/closing device 36 is open, the heat medium conveyed by the pump 31 a does not circulate through the auxiliary device 15 .
  • the heat medium is conveyed by the pump 31a and flows into the intermediate heat exchanger 25a, where cold energy is supplied from the expanded refrigerant. After flowing out of the intermediate heat exchanger 25a, the heat medium flows through the second heat medium flow switching devices 33a to 33d into the utilization side heat exchanger 35b having a cooling load. Therefore, the heat medium cooled using the refrigerant circulates between the intermediate heat exchanger 25a and the utilization side heat exchanger 35b.
  • FIG. 13 is a schematic diagram showing circulation of refrigerant and water when the air-conditioning apparatus 100 according to Embodiment 1 is in the cooling-main operation and the operation mode using the auxiliary device 15 is not performed.
  • the pipe through which the coolant on the heat source side flows is indicated by a thick line.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the usage-side heat exchanger 35b has a heating load
  • the usage-side heat exchangers 35a, 35c, and 35d have a cooling load. That is, the indoor unit 3b is performing heating operation, and the indoor units 3a, 3c, and 3d are performing cooling operation.
  • the flow of the refrigerant on the heat medium side in the refrigerant circuit A will be explained.
  • the gas refrigerant compressed by the compressor 10 to high temperature and high pressure flows through the first flow switching device 11 into the heat source side heat exchanger 12 and exchanges heat with the outside air of the heat source side heat exchanger 12. It becomes a high-temperature and high-pressure liquid refrigerant or a two-phase refrigerant.
  • a high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out from the outdoor unit 1 and flows into the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows into the repeater 2, it passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant transfers heat to the heat medium flowing through the heat medium circuit B in the intermediate heat exchanger 25b, condenses and liquefies to become liquid refrigerant.
  • the liquid refrigerant that has flowed out of the intermediate heat exchanger 25b is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the opening/closing device 27 and the opening/closing device 29 are closed, and the expansion device 26a is opened. After flowing out of the expansion device 26b, the low-pressure two-phase refrigerant flows through the expansion device 26a and into the intermediate heat exchanger 25a functioning as an evaporator.
  • the low-pressure two-phase refrigerant that has flowed into the intermediate heat exchanger 25a receives heat from the heat medium circulating in the heat medium circuit B and evaporates. This cools the heat medium.
  • the gas refrigerant that has become low temperature and low pressure in the intermediate heat exchanger 25 a flows out from the repeater 2 through the second flow switching device 28 a.
  • the low-temperature and low-pressure gas refrigerant flowing out of the repeater 2 passes through the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • the low-temperature and low-pressure gas refrigerant that has flowed in from the repeater 2 passes through the first flow switching device 11 and the accumulator 19 and is sucked into the compressor 10 again.
  • Part of the heat medium is used for heating operation.
  • one of the indoor units 3a to 3d in the repeater 2 performs heating operation, so the controller 50 drives the pump 31b and opens the heat medium flow rate adjusting device 34b.
  • the first heat medium flow switching device 32b is switched by the control device 50 so that the heat medium flowing out of the heat medium flow rate adjusting device 34b flows into the intermediate heat exchanger 25b.
  • the thermal energy supplied from the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25b, whereby the heat medium is heated using the refrigerant and circulated through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching device 33b into the utilization side heat exchanger 35b having a heating load. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchanger 35b.
  • the other portion of the heat medium is used for cooling operation.
  • one of the indoor units 3a to 3d is performing cooling operation, so the control device 50 drives the pump 31a and opens the heat medium flow control devices 34a, 34c, and 34d.
  • the second heat medium flow switching devices 33a, 33c, and 33d are switched by the control device 50 so that the heat medium conveyed by the pump 31a flows into the utilization side heat exchangers 35a, 35c, and 35d. .
  • the first heat medium flow switching devices 32a, 32c, and 32d are controlled by the control device 50 so that the heat medium conveyed from the heat medium flow rate adjusting devices 34a, 34c, and 34d flows into the auxiliary device 15. can be switched.
  • the heat medium flows through the heat medium pipe 5 by driving the pump 31a.
  • the heat medium conveyed by the pump 31a flows into the intermediate heat exchanger 25a without flowing into the auxiliary device 15 because the heat medium flow opening/closing device 36 is open, and is expanded in the intermediate heat exchanger 25a.
  • Cold energy is supplied from the refrigerant.
  • the heat medium cooled by the refrigerant flows through the second heat medium flow switching devices 33a, 33c, and 33d into the use-side heat exchangers 35a, 35c, and 35d having heating loads. Therefore, the heat medium circulates between the intermediate heat exchanger 25a and the utilization side heat exchanger 35b.
  • FIG. 14 is a graph showing the relationship between the temperature of the air-conditioned space of the air-conditioning apparatus 100 according to Embodiment 1, the temperature of the secondary heat medium to be dissipated, and the operation of the auxiliary device 15 .
  • the horizontal axis indicates the temperature of the secondary heat medium to be dissipated in the auxiliary device 15, and the vertical axis indicates the temperature of the air-conditioned space.
  • FIG. 14 illustrates a case where the medium from which heat is dissipated in the auxiliary device 15 is the outdoor air, but the medium from which heat is dissipated is not limited to the outdoor air.
  • the air-conditioned space temperature is, for example, the temperature in the room 7 .
  • Line d indicates the case where the temperature of the air-conditioned space requiring cooling operation and the temperature of the secondary heat medium in the auxiliary device 15 are the same.
  • the temperature of the secondary heat medium is the same as the outside air temperature.
  • the outside air temperature is, for example, 20° C. and is equal to or higher than the temperature of the air-conditioned space, which is the temperature of the room 7, heat cannot be dissipated from the room 7, which is the air-conditioned space where cooling operation is required.
  • the auxiliary device 15 when the temperature of the air-conditioned space is on the line d or to the right of the line d, that is, when it is lower than the line d, the auxiliary device 15 is turned off, the heat is not dissipated by the auxiliary device 15, and the cooling load is It must be covered by the drive of machine 1.
  • Line a indicates the case where the secondary heat medium temperature in the auxiliary device 15 is lower than the air-conditioned space temperature for which the cooling operation is requested by the first temperature difference ⁇ T1.
  • the air-conditioned space temperature for example, 10° C.
  • the air-conditioned space temperature is, for example, 20° C.
  • heat is dissipated from the room 7, which is the air-conditioned space where the cooling operation is required. can be done.
  • the first temperature difference ⁇ T1 is 10°C. Therefore, when the temperature of the air-conditioned space is on line a or higher than line a, heat can be radiated from the room 7 to the outside 6 .
  • Line b indicates the case where the secondary heat medium temperature is higher than the air-conditioned space temperature at which the cooling operation is requested by the second temperature difference ⁇ T2.
  • the second temperature difference ⁇ T2 is smaller than the first temperature difference ⁇ T1.
  • the second temperature difference ⁇ T2 is 5°C.
  • the temperature of the air-conditioned space is to the right of line b, that is, when it is lower than line b, there is a temperature difference between the air-conditioned space and the secondary heat medium from which heat is to be dissipated, but the auxiliary device 15 cannot discharge all the heat in the room 7 with the ability of .
  • the air-conditioned space temperature is on the right side of line b or lower than line b, the temperature difference between the air-conditioned space and the secondary heat medium from which heat is dissipated is less than the second temperature difference ⁇ T2. is the case.
  • the line b By improving the heat dissipation performance of the auxiliary device 15, the line b can be moved further to the right, and the range in which the system can be operated with independent cooling can be increased.
  • the heat dissipation performance of the auxiliary device 15 is usually determined based on price and performance, but can be improved, for example, by increasing the size of the auxiliary heat exchanger 25c.
  • the line b also moves more to the right if the cooling load required in the room 7 is smaller compared to the heat dissipation performance of the auxiliary device 15, and vice versa.
  • the temperature of the secondary heat medium to be dissipated is lower than the temperature of room 7. This is a region in which the secondary heat medium cannot sufficiently radiate heat in the auxiliary device 15 even though it is lower than .
  • the line c moves further to the right. The area in which supplementary cooling can be performed can be increased.
  • the controller 50 of the air conditioner 100 determines that the temperature of the air-conditioned space for which the cooling operation is requested is higher than the temperature of the secondary heat medium in the auxiliary device 15 by the first temperature difference ⁇ T1
  • Controls independent cooling For example, when the control device 50 of the air conditioner 100 determines that the temperature of the air-conditioned space for which the cooling operation is requested is higher than the temperature of the secondary heat medium by the second temperature difference ⁇ T2, the control device 50 controls auxiliary cooling. I do.
  • the first temperature difference ⁇ T1 and the second temperature difference ⁇ T2 can be obtained based on the temperature of the air-conditioned space, the performance of the air conditioner 100, and the like.
  • the second temperature difference ⁇ T2 is a value smaller than the first temperature difference ⁇ T1.
  • Equation 1 ⁇ Calculation method of ⁇ T1 and ⁇ T2 in auxiliary device 15> Heat exchange between the air-conditioned space and the outside 6 or heat exchange between the air-conditioned space and a heat medium such as other liquid such as water can be represented by the following Equation 1, for example.
  • Q is the total amount of heat transferred from the cooled air-conditioned space to the outside 6.
  • A is the heat exchange area in the auxiliary device 15;
  • ⁇ T is the temperature difference between the air-conditioned space and the outside 6 .
  • U is the heat transfer coefficient from the conditioned space to the outside 6;
  • the heat exchange between the air-conditioned space and the outside 6 can also be represented by the following formula 2.
  • R is the heat transfer resistance from the air-conditioned space to the outside 6, which can be expressed by Equation 3 below.
  • Equation 4 The maximum design cooling capacity Qpeak of the indoor unit 3 can be expressed by Equation 4 below.
  • the cooling demand Qload in the indoor unit 3 can be expressed by Equation 6 below.
  • the cold heat that can be supplied by the auxiliary device 15 increases among the cooling capacity required for the indoor unit 3, and the line b in FIG. 14 shifts to the right.
  • the line b in FIG. 14 moves to the right in the following cases.
  • - Decrease in the maximum design cooling capacity Qpeak of the indoor unit 3 • an increase in the heat exchange area A in the auxiliary device 15; • an increase in the heat transfer coefficient U of the auxiliary device 15;
  • the heat transfer coefficient U of the heat exchanger can be increased by increasing the speed of the heat exchange medium, for example by changing the heat exchange medium, increasing the blowing speed or conveying speed.
  • lines a, b, c and d are shown as straight lines in FIG. 14, they may not be straight lines depending on the capacity of the indoor heat exchanger or the environmental temperature of the auxiliary heat exchanger 25c. obtain.
  • the air conditioner 100 when the temperature of the air-conditioned space cooled by the cooling operation is higher than the temperature of the secondary heat medium, which is the heat-dissipating target medium in the auxiliary device 15, the secondary heat medium flows through the auxiliary heat exchanger 25c.
  • the heat transfer medium is cooled without refrigerant in the auxiliary device 15 .
  • the cooled heat medium is conveyed to the repeater 2, and if the cold heat is sufficient, the cold heat is added directly, or if the cold heat is not enough, the cold heat is added by the intermediate heat exchanger 25a, and the cooling operation is requested. are conveyed to the heat exchangers 35a to 35d on the utilization side. Therefore, the operation of opening the refrigerant circuit can be stopped or the amount of work caused by using the refrigerant and the compressor 10 can be reduced, so the power consumption of the air conditioner 100 can be reduced.
  • the air conditioner 100 when cooling is required in all air-conditioned spaces and the cooling requirement is limited to high temperatures, the air conditioner 100 can be further simplified and reduced in cost.
  • ⁇ Modification 1 of Embodiment 1> 15 is a schematic diagram of a circuit including the auxiliary device 15 of the air conditioner 100 according to Modification 1 of Embodiment 1.
  • FIG. 15 the air conditioner 100 according to Modification 1 does not include the bypass heat medium circuit 60 that bypasses the auxiliary circuit C, and does not include the heat medium flow path opening/closing device 36 .
  • the auxiliary device 15 when the auxiliary device 15 is turned off, heat is not dissipated in the auxiliary heat exchanger 25c even if the pump 31a is driven.
  • FIG. 16 is a schematic diagram of a circuit including the auxiliary device 15 of the air conditioner 100 according to Modification 2 of Embodiment 1.
  • the air conditioner 100 according to Modification 2 includes the cooling pump 30 in the heat medium pipe 61a and the check valve 37 in the heat medium pipe 61b.
  • Cooling pump 30 is an example of a third pump.
  • the bypass heat medium circuit 60 that bypasses the auxiliary circuit C is not provided with the heat medium flow path opening/closing device 36 .
  • the heat medium flow in the auxiliary circuit C is controlled by the cooling pump 30 and the check valve 37 .
  • the check valve 37 is provided to prevent reverse flow from the auxiliary heat exchanger 25c when the cooling pump 30 is stopped.
  • FIG. 17 is a schematic diagram of a circuit including the auxiliary device 15 of the air conditioner 100 according to Modification 3 of Embodiment 1.
  • FIG. 17 in the air conditioner 100 according to Modification 3, one end of the heat medium pipe 61a is connected to the auxiliary heat exchanger 25c, and the other end is connected to the downstream side of the intermediate heat exchanger 25a and the pump 31a. is connected to the heat medium pipe 5 connecting the .
  • the auxiliary device 15 and the intermediate heat exchanger 25b are connected in parallel with the utilization side heat exchangers 35a-35b. Therefore, cooling operation by only the auxiliary circuit C and cooling operation by only the refrigerant circuit A can be selected.
  • FIG. 18 is a schematic diagram of a circuit including the auxiliary device 15 of the air conditioner 100 according to Modification 4 of Embodiment 1.
  • an air conditioner 100 according to Modification 4 includes a heat medium channel opening/closing device 36 in a bypass heat medium circuit 60 that bypasses the auxiliary circuit C, and a cooling pump 30 are connected. In such a configuration, the heat medium is transported by the power of the cooling pump 30 as well as the power of the pump 31a.
  • the air conditioner 100 is configured such that, in the independent cooling operation, the energy for performing the cooling operation of the indoor units 3a to 3d is supplied from the heat medium on the heat source side. Therefore, the operation of the outdoor unit 1 becomes unnecessary, and energy consumption is suppressed.
  • the air conditioner 100 uses part of the energy used for the cooling operation of the indoor units 3a to 3d as heat on the heat source side. Sourced from the medium. Therefore, the outdoor unit 1 can limit the cooling capacity and reduce energy consumption.
  • the air conditioner 100 does not require energy for the cooling operation in the auxiliary cooling/heating main operation. Therefore, the energy required by the outdoor unit 1 is only the energy required for the heating operation.
  • the space to be cooled is, for example, 20°C, and the ambient temperature of the heat source side heat exchanger 12 is lower than that, for example, 15°C. think.
  • the compressor 10 will start the refrigerant compression cycle to cool the air-conditioned space. will be implemented.
  • the air on the heat source side can be used directly or indirectly to cool the air-conditioned space, the compressor 10 does work, and energy is excessively consumed by the compressor 10. put away.
  • simultaneous cooling and heating operation without heat recovery is a configuration that can simultaneously supply hot or cold heat to different air-conditioned spaces without heat recovery. It must be configured to generate and simultaneously supply hot and cold heat on the other hand.
  • a heat source that supplies cold heat is usually a refrigerant
  • a heat source that supplies warm heat is a refrigerant or a heat source other than a refrigerant, such as combustion gas.
  • the compressor 10 A cycle in which the evaporated refrigerant is compressed will be used to cool the conditioned space. Therefore, work is done by the compressor 10, resulting in excessive power consumption.
  • a system that performs heat recovery cooling and heating simultaneously may exist as a heat recovery system that performs heating and cooling at the same time and uses energy most efficiently. Even in a system that performs heat recovery simultaneous cooling and heating operation, when the auxiliary circuit C is not provided, the simultaneous cooling and heating operation is usually realized by using the compressor 10 and refrigerant. Therefore, if the cooling and heating energies supplied by the refrigerant do not perfectly match, there will be excess energy, either hot or cold.
  • the outdoor unit 1 when the cooling load is greater than the heating load, the outdoor unit 1 must generate enough energy to cover both the heating load and the cooling load. Even in such a case, since the air conditioner 100 according to Embodiment 1 can apply the independent cooling operation using the auxiliary circuit C, the heating load can be covered even if the capacity of the outdoor unit 1 is reduced. , energy consumption can be reduced.
  • the outdoor unit 1 when a heat medium having a temperature equal to or lower than the temperature of the air-conditioned space in which cooling is always required is used as the heat medium on the heat source side, the outdoor unit 1 Simultaneous cooling and heating operation can be performed without heat recovery in.
  • a heat medium on the heat source side is, for example, groundwater, and the temperature of the heat medium is 15° C. throughout the year.
  • the capacity of the outdoor unit 1 can be reduced, and energy costs can be reduced.
  • the air conditioner 100 there is a period in which the temperature of the heat medium on the heat source side is lower than the temperature of the air-conditioned space in which cooling is required, and it is determined that the heating operation of the indoor units 3a to 3d is unnecessary. In this case, simultaneous cooling and heating operation can be performed without the heat recovery operation by the outdoor unit 1 .
  • Periods when the temperature is lower than the temperature of the air-conditioned space in which cooling is required are, for example, October and March, and the temperature of the heat medium is, for example, 15°C.
  • the air conditioner 100 is independently heated by the heat from the auxiliary device 15. A heating operation can also be performed.
  • the temperature of the heat medium on the heat source side which is higher than the temperature of the air-conditioned space, is 30° C., for example. This eliminates the need to drive the compressor 10 for the heating operation of the indoor units 3a to 3d, thereby reducing energy consumption.
  • any one of the user-side heat exchangers 35a to 35d for which the cooling operation is requested is connected to the auxiliary circuit C via the heat medium circuit B. Connected.
  • cold heat generated by the auxiliary device 15 is supplied, so it becomes unnecessary to generate cold heat in the refrigerant circuit A, and the energy consumed by the compressor 10 can be suppressed.
  • the heat medium cooled in the auxiliary heat exchanger 25c is further cooled by the refrigerant flowing through the refrigerant circuit A in the intermediate heat exchanger 25a.
  • the heat medium precooled by the cold generated in the auxiliary circuit C is cooled by the cold generated in the refrigerant circuit A. Therefore, even when the cooling load increases, the energy consumed by the compressor 10 can be reduced. can be suppressed.
  • the cooling operation is performed with the heat medium cooled in the auxiliary heat exchanger 25c, and at the same time, the heating operation is performed with the heat medium heated in the refrigerant circuit A.
  • the cooling operation is performed with cold heat generated in the auxiliary circuit C, and the refrigerant circuit A only needs to be driven to generate hot heat, so the energy consumed by the compressor 10 can be reduced. can be done.
  • the cooling operation is performed by the heat medium cooled by the auxiliary device 15, and at the same time, the heating operation is performed by the heat medium heated by the heating device 16.
  • the cooling operation can be performed using the cold heat generated by the auxiliary device 15, and the heating operation can be performed using the heat generated by the heating device 16. Consumed energy can be reduced.
  • the cooling operation is performed by the heat medium cooled in the auxiliary device 15, and at the same time, the heating operation is performed by the heat medium heated by the heating device 16 and the intermediate heat exchanger 25a.
  • cold heat is generated by the auxiliary device 15 and the heat medium preheated by the heating device 16 is heated by the hot heat generated by the refrigerant circuit A. Therefore, even if the heating load increases, the compressor 10 Consumed energy can be suppressed.
  • auxiliary heat exchanger 25 c and the heat source side heat exchanger 12 are arranged outside 6 . Therefore, when the temperature of the air-conditioned space for which the cooling operation is required is higher than the temperature of the heat medium in the auxiliary device 15, cold heat can be supplied by the auxiliary circuit C without using the refrigerant circuit A.
  • intermediate heat exchangers 25a and 25b are connected in parallel with the utilization side heat exchangers 35a to 35b, cooling operation and heating operation can be performed simultaneously.
  • intermediate heat exchanger 25a and the auxiliary heat exchanger 25c are connected in series, independent cooling and heating operation, and auxiliary cooling and heating operation can be performed simultaneously.
  • the heat medium circuit B has the bypass heat medium circuit 60 that bypasses the auxiliary circuit C, heat dissipation via the auxiliary circuit C can be suppressed during the heating only operation without using the auxiliary circuit C.
  • bypass heat medium circuit 60 has the heat medium flow opening/closing device 36, the heat medium can flow into the auxiliary circuit C, so that the supply of cold heat by the auxiliary circuit C can be improved.
  • the cooling pump 30 in the auxiliary circuit C by having the cooling pump 30 in the auxiliary circuit C, the flow rate of the heat medium flowing through the auxiliary circuit C can be adjusted, and the amount of heat released by the auxiliary circuit C can be adjusted.
  • the intermediate heat exchanger 25a and the auxiliary heat exchanger 25c are connected in parallel to the utilization side heat exchangers 35a to 35d, the cooling operation by only the auxiliary circuit C and the cooling operation by only the refrigerant circuit A Cooling operation can be selected.
  • the indoor units 3a to 3d are connected to the relay unit 2 instead of the outdoor unit 1 by the heat medium pipes 5. That is, since the heat medium pipe 5 does not connect between the outdoor unit 1 and the repeater 2, the total length of the heat medium pipe 5 can be reduced. As a result, the transfer distance of the heat medium whose transfer efficiency is lower than that of the refrigerant can be reduced, and energy consumption can be reduced.
  • the outdoor unit 1 and the repeater 2 are connected by two refrigerant pipes 4, and the repeater 2 and the indoor units 3a to 3d are arranged so that the number of the indoor units 3a to 3d is two. are connected by the number of heat medium pipes 5 multiplied by . Therefore, the number of refrigerant pipes 4 connecting the outdoor unit 1 and the repeater 2 and the number of the heat medium pipes 5 connecting the repeater 2 and the indoor units 3a to 3d can be reduced. is facilitated, and the workability of installing the air conditioner 100 is improved.
  • the air conditioner 100 does not include the pump 31b for conveying the heat medium to each of the indoor units 3a to 3d. That is, since the air conditioner 100 only needs to have one pump 31b, noise is reduced and costs are reduced.
  • the air conditioner 100 does not have a configuration in which the refrigerant pipe 4 and the indoor units 3a to 3d are arranged close to each other. Therefore, for example, leakage of refrigerant from the heat source side in the room 7 is suppressed.
  • the heat medium flow rate adjusting devices 34a to 34d are described above as two-way valves, the configuration of the heat medium flow rate adjusting devices 34a to 34d is not limited.
  • the heat medium flow control devices 34a to 34d may be, for example, control valves having flow paths in three-way valves, and may be connected to piping bypassing the heat exchangers 35a to 3dd on the user side.
  • the heat medium flow rate adjusting devices 34a to 34d may be of a step motor drive type and capable of controlling the flow rate adjustment.
  • Each of the heat medium flow control devices 34a to 34d may be a two-way valve or a three-way valve, one of which is closed.
  • the heat medium flow regulators 34a-34d may be, for example, on-off valves with open and closed circuits, in which case the flow rate can be maintained relatively constant by repeated on-off action.
  • the intermediate heat exchanger 25b and the expansion device 26b a plurality of configurations that realize the operations of the intermediate heat exchanger 25b and the expansion device 26b may be used.
  • the heat medium flow control devices 34a-34d may be included in the configuration of the indoor units 3a-3d, and it is not essential to be included in either the repeater 2 or the indoor units 3a-3d.
  • the air conditioner 100 may not include the accumulator 19 .
  • the configuration in which the heat source side heat exchanger 12 and the utilization side heat exchangers 35a to 35d are provided with air blowers in order to promote condensation or evaporation during heat exchange is described.
  • the user-side heat exchangers 35a to 35d may be configured to radiate heat from, for example, panel heaters, and the type thereof is not limited.
  • the heat source side heat exchanger 12 is a water cooling device, and may be one that transfers heat by water or antifreeze, and the type is not limited. That is, the heat source side heat exchanger 12 and the utilization side heat exchangers 35a to 35d may be of any type as long as heat is transferred and exchanged.
  • a configuration having four use-side heat exchangers 35a to 35d and four heat medium flow rate adjusting devices 34a to 34d is described.
  • the number of adjusting devices 34a-34d is not limited. At least one use-side heat exchangers 35a to 35d and one heat medium flow control device 34a to 34d are required.
  • the configuration having one intermediate heat exchanger 25b is described above, the number of intermediate heat exchangers 25b is not limited as long as it has at least the ability to cool or heat the heat medium.
  • the number of pumps 31b is not limited, and a plurality of small-capacity pumps 31b provided in parallel may be used.
  • the heat medium may be, for example, brine or antifreeze, water, a mixture of brine and water, or a mixture of water and a corrosion-resistant additive. Employing these heat mediums improves safety against leakage of the heat medium into the room 7 .
  • FIG. 19 is a schematic diagram of the air conditioner 100 according to Embodiment 2.
  • an air conditioner 100 according to Embodiment 2 includes an outdoor unit 1 and a repeater 2 .
  • the air conditioner 100 according to Embodiment 2 is a channel-switching heat pump type air conditioner 100 that cannot perform heating-main operation or cooling-main operation.
  • the outdoor unit 1 is described below as a type that uses the air of the outside 6 as a heat source, the heat source of the outdoor unit 1 is not limited to the air of the outside 6 .
  • the outdoor unit 1 includes a compressor 10 , a first flow switching device 11 , a heat source side heat exchanger 12 and an accumulator 19 .
  • Compressor 10 , first flow switching device 11 , heat source side heat exchanger 12 , and accumulator 19 are connected by refrigerant pipe 4 .
  • the first flow switching device 11 is, for example, a four-way valve. By switching the first flow path switching device 11, the air conditioner 100 performs cooling operation with the flow of the refrigerant on the heat source side from the outdoor unit 1 to the relay unit 2 in one direction, and performs heating operation in the other direction. to implement.
  • the compressor 10 sucks in the refrigerant, compresses it, discharges the high-temperature and high-pressure refrigerant, and circulates it in the refrigerant circuit A.
  • the compressor 10 has a discharge side connected to the first flow path switching device 11 and a suction side connected to the accumulator 19 .
  • the compressor 10 is, for example, a variable capacity inverter compressor.
  • the first flow switching device 11 connects the discharge side of the compressor 10 and the gas pipe 42 of the outdoor unit 1, and connects the heat source side heat exchanger 12 and the suction side of the accumulator 19. .
  • the first flow switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12 and connects the gas pipe 42 of the outdoor unit 1 and the suction side of the accumulator 19 .
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the heat source side heat exchanger 12 exchanges heat between air, which is a fluid supplied by an air blower (not shown), and the refrigerant on the heat source side, and evaporates and liquefies the refrigerant. .
  • the heat source side heat exchanger 12 is connected between the liquid pipe 41 and the accumulator 19 during heating operation.
  • the heat source side heat exchanger 12 is connected between the discharge side of the compressor 10 and the liquid pipe 41 during cooling operation.
  • the heat source side heat exchanger 12 may be a heat exchanger on the plate-fin tube side as long as it can exchange heat between the refrigerant flowing through the pipes and the air flowing between the fins.
  • the accumulator 19 stores excess refrigerant generated in the refrigerant circuit A. Surplus refrigerant is generated by, for example, a difference in refrigerant state between the heating operation mode and the cooling operation mode, or a change in operation mode transition such as the number of operating indoor units 3a to 3d.
  • the accumulator 19 is connected between the heat source side heat exchanger 12 and the suction side of the compressor 10 during heating operation.
  • the accumulator 19 is connected between the gas pipe 42 and the compressor 10 during cooling operation.
  • FIG. 19 is an example, and not all configurations are essential.
  • the repeater 2 includes an intermediate heat exchanger 25b, an expansion device 26b, pumps 31a and 31b, first heat medium flow switching devices 32a to 32d, second heat medium flow switching devices 33a to 33d, and heat medium flow rate adjustment.
  • Devices 34a-34d are provided.
  • the intermediate heat exchanger 25b functions as a condenser or an evaporator, performs heat exchange between the refrigerant on the heat source side and the heat medium, and transfers cold or thermal energy generated by the outdoor unit 1.
  • the intermediate heat exchanger 25b functions as a condenser and transfers the thermal energy of the refrigerant on the heat source side to the heat medium.
  • the intermediate heat exchanger 25b functions as an evaporator and transfers cold energy of the refrigerant on the heat source side to the heat medium.
  • the intermediate heat exchanger 25 b is provided between the expansion device 26 b of the refrigerant circuit A and the gas pipe 42 .
  • the intermediate heat exchanger 25b is used to cool the refrigerant during refrigerant operation.
  • the expansion device 26b has the function of a pressure reducing valve or an expansion valve, reduces the pressure of the refrigerant on the heat source side, and expands the refrigerant on the heat source side.
  • the expansion device 26b is arranged upstream of the intermediate heat exchanger 25b in the flow of refrigerant on the heat source side in cooling operation.
  • the expansion device 26b is, for example, an electronic expansion valve whose opening can be controlled.
  • the pump 31a circulates the heat medium to the auxiliary circuit C.
  • the pump 31a is provided in the heat medium pipe 5a extending between the heat medium pipe 61a of the auxiliary device 15 and the second heat medium flow switching devices 33a to 33d.
  • the pump 31a is connected in series with the auxiliary heat exchanger 25c of the auxiliary circuit C.
  • the pump 31b circulates the heat medium through the heat medium circuit B.
  • the pump 31b is provided in the heat medium pipe 5b extending between the intermediate heat exchanger 25b and the second heat medium flow switching devices 33a to 33d.
  • the pump 31b and the intermediate heat exchanger 25b are connected in series.
  • the pumps 31a and 31b can adjust the flow rate of the heat medium according to the air conditioning load of the indoor units 3a to 3d, and are, for example, the pumps 31a and 31b whose capacity can be controlled.
  • the first heat medium flow switching devices 32a to 32d switch the heat medium flow path between the outflow side of the corresponding utilization side heat exchangers 35a to 35d and the inflow port of the intermediate heat exchanger 25b. It is.
  • the number of the first heat medium flow switching devices 32a-32d corresponds to the number of the utilization side heat exchangers 35a-35d. For example, if the number of use-side heat exchangers 35a to 35d is four, the number of first heat medium flow switching devices 32a to 32d is four.
  • the first heat medium flow switching devices 32a to 32d extend and connect to the intermediate heat exchanger 25b, the auxiliary device 15, and the heat medium flow control devices 34a to 34d, respectively.
  • the first heat medium flow switching devices 32a to 32d are arranged in heat medium flow paths on the outflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow switching device 32d correspond in this order. It is arranged on the outflow side of the utilization side heat exchangers 35a to 35d.
  • the first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow switching device 32d each have a corresponding usage. They are housed in indoor units 3a-3d provided with side heat exchangers 35a-35d. Each heat medium flow path may be completely switched between the outflow side of the corresponding utilization side heat exchangers 35a to 35d and the inflow port of the intermediate heat exchanger 25b. It may be a switchable configuration.
  • the first heat medium flow switching devices 32a to 32d are, for example, three-way valves.
  • the second heat medium flow switching devices 33a to 33d switch the heat medium flow path between the inflow side of the corresponding use side heat exchangers 35a to 35d and the outflow port of the intermediate heat exchanger 25b. It is.
  • the number of the second heat medium flow switching devices 33a-33d corresponds to the number of the utilization side heat exchangers 35a-35d. If the number of utilization side heat exchangers 35a to 35d is four, the number of second heat medium flow switching devices 33a to 33d is four.
  • the second heat medium flow switching devices 33a to 33d extend and are connected to the intermediate heat exchanger 25a, the intermediate heat exchanger 25b, and the corresponding utilization side heat exchangers 35a to 35d, respectively. there is
  • the second heat medium flow switching devices 33a to 33d are arranged in heat medium flow paths on the inflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching device 33d correspond in this order. It is arranged on the inflow side of the utilization side heat exchangers 35a to 35d.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching device 33d correspond to the corresponding utilization side heat transfer device. They are housed in indoor units 3a-3d provided with exchangers 35a-35d. The flow path of each heat medium may be completely switched or partially switched.
  • the second heat medium flow switching devices 33a to 33d are, for example, three-way valves.
  • the heat medium flow rate adjusting devices 34a to 34d are, for example, two-way valves capable of controlling the flow rate, and adjust the flow rate of the heat medium in the corresponding heat medium pipes 5.
  • the number of heat medium flow control devices 34a to 34d corresponds to the number of use side heat exchangers 35a to 35d. In other words, if the number of utilization side heat exchangers 35a to 35d is four, the number of heat medium flow control devices 34a to 34d is four.
  • One of the heat medium flow control devices 34a to 34d is connected to the corresponding utilization side heat exchangers 35a to 35d, and the other is connected to the corresponding first heat medium flow switching device 32a to 32d. .
  • the heat medium flow control devices 34a to 34d are provided in flow paths of the heat medium on the outflow side of the corresponding utilization side heat exchangers 35a to 35d. That is, the heat medium flow rate adjusting devices 34a to 34d are adjusted by the control device 50 based on the temperature of the heat medium flowing into the indoor units 3a to 3d and the temperature of the heat medium flowing out from the indoor units 3a to 3d. . As a result, the flow rate of the heat medium flowing into the corresponding indoor units 3a to 3d becomes the optimum flow rate for the air conditioning load of the indoor units 3a to 3d.
  • the heat medium flow rate adjusting device 34a, the heat medium flow rate adjusting device 34b, the heat medium flow rate adjusting device 34c, and the heat medium flow rate adjusting device 34d are installed in the respective indoor units 3a to 3d in this order from the top of the paper surface. Contained.
  • the heat medium flow control devices 34a to 34d may be arranged on the inflow side of the corresponding utilization side heat exchangers 35a to 35d instead of on the outflow side of the corresponding utilization side heat exchangers 35a to 35d.
  • the heat medium flow rate adjusting devices 34a to 34d are on the inflow side of the corresponding use side heat exchangers 35a to 35d, and the corresponding use side heat exchangers 35a to 35d and the second heat medium flow switching devices 33a to 33d. may be placed between
  • the air conditioning load is not required, if the heat medium flow control devices 34a to 34d are configured to be fully closed, the supply of the heat medium to the indoor units 3a to 3d can be stopped.
  • a case where the air conditioning load is not requested is, for example, a case where the indoor units 3a to 3d are in the stop mode, or a case where the thermostats of the indoor units 3a to 3d are turned off.
  • the first heat medium flow switching devices 32a to 32d or the second heat medium flow switching devices 33a to 33d may have the same functions as the heat medium flow control devices 34a to 34d. In this case, the heat medium flow control devices 34a to 34d may be excluded from the configuration.
  • the repeater 2 has temperature sensors 40a and 40b that detect the temperature of the heat medium at the outlet of the intermediate heat exchanger 25b and the auxiliary device 15.
  • the temperature sensor 40 a detects the temperature of the heat medium flowing out from the auxiliary device 15 .
  • the temperature sensor 40b detects the temperature of the heat medium flowing out from the intermediate heat exchanger 25b. Temperature information detected by the temperature sensors 40 a and 40 b is transmitted to the control device 50 that controls the operation of the air conditioner 100 .
  • the temperature sensors 40a and 40b detect the temperature of the heat medium discharged from the intermediate heat exchanger 25b and the auxiliary device 15, respectively. That is, the temperature sensors 40a and 40b detect the temperatures of the heat medium at the exits of the intermediate heat exchanger 25b and the auxiliary device 15, respectively.
  • the temperature sensor 40a is provided in the heat medium pipe 61a connected to the suction side of the pump 31a.
  • the temperature sensor 40b is provided on the heat medium pipe 5 connected to the suction side of the pump 31b.
  • the temperature sensors 40a, 40b are, for example, thermistors.
  • the control device 50 is a microprocessor or the like, controls actuators and the like provided in the components of the air conditioner 100, and realizes different operation modes described below. .
  • the arrangement position of the control device 50 is not limited to the repeater 2 .
  • the control device 50 may be arranged in the outdoor unit 1 or the indoor units 3a to 3d, or may be arranged in all of the outdoor unit 1 and the indoor units 3a to 3d.
  • the control device 50 may be capable of communicating between any one of the outdoor unit 1, the repeater 2, or the indoor units 3a to 32d, and the outdoor unit 1, the repeater 2, and the indoor units 3a to 32d. 32d may be provided so as to be communicable with each other.
  • the auxiliary device 15 comprises an auxiliary heat exchanger 25c connected to the auxiliary circuit C.
  • the auxiliary heat exchanger 25c circulates the heat medium that has flowed in from the heat medium pipe 5a, and radiates heat from the heat medium to the secondary heat medium from which heat is to be radiated.
  • the auxiliary heat exchanger 25c is connected in series with the pump 31a.
  • the auxiliary heat exchanger 25c is connected in parallel to the intermediate heat exchanger 25b and the utilization side heat exchangers 35a to 35b.
  • the auxiliary heat exchanger 25c is, for example, a plate-fin tube heat exchanger having heat transfer tubes through which refrigerant flows and fins through which air flows.
  • the auxiliary device 15 may include a blower device (not shown). If the medium for heat dissipation is not air, the auxiliary heat exchanger 25c may be a water-cooled heat exchanger. In the auxiliary heat exchanger 25c, heat is radiated from the heat medium pipe 61a to the secondary heat medium to be radiated. Therefore, the auxiliary circuit C cools the heat medium with the secondary heat medium without using the refrigerant.
  • the temperature sensor 40 a provided in the repeater 2 may be arranged inside the auxiliary device 15 or may be arranged between the repeater 2 and the auxiliary device 15 .
  • the temperature sensor 40a may be provided in the heat medium pipe 61a leading to the heat medium pipe 5a to which the pump 31a is connected.
  • a value detected by the temperature sensor 40a can be used to control the heat release amount.
  • the amount of heat released by the auxiliary heat exchanger 25c is controlled by, for example, adjusting the flow rate of the heat medium of the auxiliary heat exchanger 25c by controlling the air volume from the blower according to the operation mode and the opening degree of the pump 31a. can be done.
  • a method for controlling the amount of heat release is not particularly limited, and other known methods can also be adopted.
  • the auxiliary device 15 is connected to the second heat medium flow switching devices 33a to 33d through a heat medium pipe 61a, and is connected to the first heat medium flow switching devices 32a to 32d through a heat medium pipe 61b.
  • the compressor 10, the first flow switching device 11, the heat source side heat exchanger 12, the refrigerant flow path of the intermediate heat exchanger 25b, the expansion device 26b, and the accumulator 19 are connected by the refrigerant piping 4. configuration.
  • a refrigerant circuit A is configured by the refrigerant pipe 4 .
  • the air conditioner 100 includes the heat medium flow path of the intermediate heat exchanger 25b, the pump 31b, the first heat medium flow switching devices 32a to 32d, the heat medium flow rate adjusting devices 34a to 34d, the use side heat exchangers 35a to 35d and the second heat medium flow switching devices 33a to 33d are connected by heat medium pipes 5b.
  • the heat medium pipe 5b constitutes a part of the heat medium circuit B.
  • the auxiliary device 15 is connected to the first heat medium flow switching devices 32a to 32d by the heat medium piping 61a, and is connected to the second heat medium flow switching devices 33a to 33d by the heat medium piping 61b.
  • An auxiliary circuit C is configured by the heat medium pipe 61a and the heat medium pipe 61b.
  • the heat medium circuit B is configured to include a plurality of systems by connecting the utilization side heat exchangers 35a to 35d in parallel to the intermediate heat exchanger 25b.
  • the air conditioner 100 has a configuration in which the heat source-side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 25b.
  • the heat medium circuit B exchanges heat in the auxiliary device 15 . With this configuration, the air conditioner 100 achieves cooling operation or heating operation according to the air conditioning load.
  • the air-conditioning apparatus 100 executes one of the heating only operation, the cooling only operation, the independent cooling operation, the auxiliary cooling/cooling operation, and the independent cooling/heating operation. Switching of the operation mode is performed under the control of the control device 50 .
  • the heating only operation is a mode in which all of the indoor units 3a to 3d in operation perform the heating operation.
  • the cooling-only operation is a mode in which all of the indoor units 3a to 3d in operation perform the cooling operation.
  • the independent cooling operation is performed when all of the indoor units 3a to 3d in operation are performing cooling operation, and the temperature of the air-conditioned space is higher than the temperature of the secondary heat medium, which is the heat source, by a first temperature difference ⁇ T1. mode.
  • auxiliary cooling operation all of the indoor units 3a to 3d in operation are performing cooling operation, and the temperature of the air-conditioned space is higher than the temperature of the secondary heat medium, which is the heat source, by a second temperature difference ⁇ T2.
  • the second temperature difference ⁇ T2 is smaller than the first temperature difference ⁇ T1.
  • one of the operating indoor units 3a to 3d is in the cooling operation and the other is in the heating operation, and the temperature of the air-conditioned space is is lower than the temperature of the secondary heat medium, which is the heat source.
  • These operation modes are combinations of switching of the first flow path switching device 11, the first heat medium flow path switching devices 32a to 32d, and the second heat medium flow path switching devices 33a to 33d under the control of the control device 50, And it is realized by driving the pumps 31a and 31b.
  • FIG. 20 is a schematic diagram showing the flow of water in the independent cooling operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 20 dashed arrows indicate the flow direction of the heat medium.
  • the operation of the elements in refrigerant circuit A is optional since all the cold is generated in the auxiliary device 15 and refrigerant circuit A is not utilized.
  • the utilization side heat exchangers 35a to 35d all have cooling loads. That is, all of the indoor units 3a to 3d are performing the cooling operation.
  • the pump 31a In the independent cooling operation, in the repeater 2, the pump 31a is operated by the control device 50, and the heat medium flow control devices 34a to 34d are opened.
  • the heat medium circulates between the auxiliary device 15 and the utilization side heat exchangers 35a-35d. Therefore, the heat medium compressed and conveyed by the pump 31a flows into the utilization side heat exchangers 35a to 35d via the second heat medium flow switching devices 33a to 33d. Then, the heat medium transfers cold heat to the air in the room 7 in the utilization side heat exchangers 35a to 35d, thereby cooling the room 7. As shown in FIG.
  • the heat medium flowing out from the utilization side heat exchangers 35a to 35d flows into the heat medium flow control devices 34a to 34d.
  • the heat medium flow rate adjusting devices 34a to 34d control the flow rate of the heat medium so that the flow rate of the heat medium corresponds to the air conditioning load required by each of the user side heat exchangers 35a to 35d.
  • the heat medium flowing out from the heat medium flow rate adjusting devices 34a to 34d flows into the auxiliary device 15 after flowing through the first heat medium flow switching devices 32a to 32d.
  • the heat medium flows into the auxiliary heat exchanger 25c of the auxiliary device 15 through the heat medium pipe 61b, and is cooled by the secondary heat medium without using refrigerant in the auxiliary heat exchanger 25c. Thereafter, the heat medium flows through the heat medium pipe 61a, flows into the repeater 2 again, and is sucked into the pump 31a. Thereby, the cooling operation is realized without operating the outdoor unit 1 .
  • FIG. 21 is a schematic diagram showing flows of refrigerant and water in the auxiliary cooling operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 21 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the user side heat exchangers 35a-35d all have a cooling load. That is, all of the indoor units 3a to 3d are performing the cooling operation.
  • the flow of the refrigerant on the heat source side of the refrigerant circuit A in the auxiliary cooling operation will be explained.
  • the refrigerant becomes a high-temperature and high-pressure gas refrigerant in the compressor 10 , is discharged from the compressor 10 , and flows into the heat source side heat exchanger 12 via the first flow path switching device 11 .
  • the refrigerant exchanges heat with the air outside 6 of the heat source side heat exchanger 12, and becomes a high-temperature and high-pressure liquid refrigerant or a two-phase refrigerant.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows from the heat source side heat exchanger 12 through the refrigerant pipe 4 , flows out of the outdoor unit 1 , and flows into the relay device 2 .
  • the high-temperature and high-pressure liquid refrigerant or the two-phase refrigerant that has flowed into the repeater 2 is expanded in the expansion device 26b, becomes a low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25b.
  • the two-phase refrigerant receives heat from the heat medium in the intermediate heat exchanger 25b, evaporates, liquefies, and becomes a low-temperature gas refrigerant.
  • the gas refrigerant flows through the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • the refrigerant that has flowed through the gas pipe 42 of the outdoor unit 1 flows through the first flow switching device 11 and the accumulator 19, and then is sucked into the compressor 10 again.
  • the pumps 31a and 31b are driven by the control device 50, and the heat medium flow control devices 34a to 34d are opened. Thereby, the heat medium circulates between the pump 31 a and the auxiliary device 15 . Also, the heat medium circulates between the pump 31b and the intermediate heat exchanger 25b.
  • the flow of heat medium in heat medium circuit B will be explained.
  • the heat medium cooled by the auxiliary device 15 flows through the heat medium pipe 61a by driving the pump 31a. Further, the heat medium cooled by the intermediate heat exchanger 25b flows through the heat medium pipe 5 by driving the pump 31b. Then, the heat medium conveyed by the pumps 31a and 31b passes through the second heat medium flow switching device 33a to the second heat medium flow switching device 33d to the usage side heat exchangers 35a to 35d. influx.
  • the heat medium transfers cold energy to the air-conditioned space in the use-side heat exchangers 35a to 35d, thereby cooling the room 7.
  • the heat medium flows out from the utilization side heat exchangers 35a to 35d and flows into the heat medium flow control devices 34a to 34d.
  • the heat medium flow rate adjusting devices 34a to 34d control the flow rate of the heat medium so that the flow rate of the heat medium corresponds to the air conditioning load required by each of the user side heat exchangers 35a to 35d.
  • the heat medium flowing out of the heat medium flow rate adjusting devices 34a to 34d branches and flows into the auxiliary device 15 and the intermediate heat exchanger 25b.
  • the heat medium that has flowed into the auxiliary device 15 flows from the heat medium pipe 61b into the auxiliary heat exchanger 25c of the auxiliary device 15, is cooled in the auxiliary heat exchanger 25c without using refrigerant, and then flows through the heat medium pipe 61a. Then, it flows into the repeater 2 again and is sucked into the pump 31a. Also, the heat medium that has flowed into the intermediate heat exchanger 25b flows through the intermediate heat exchanger 25b and is sucked into the pump 31b again.
  • FIG. 22 is a schematic diagram showing flows of refrigerant and water in the cooling only operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 22 the cooling assistance operation by the auxiliary device 15 is not performed.
  • the pipe through which the coolant on the heat source side flows is indicated by a thick line.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the utilization side heat exchangers 35a-35d all have a cooling load. That is, all of the indoor units 3a to 3d are performing the cooling operation.
  • the flow of the refrigerant on the heat source side of the refrigerant circuit A in the cooling only operation will be explained.
  • the refrigerant becomes a high-temperature and high-pressure gas refrigerant in the compressor 10 , is discharged from the compressor 10 , and flows into the heat source side heat exchanger 12 via the first flow path switching device 11 .
  • the refrigerant exchanges heat with the air outside 6 of the heat source side heat exchanger 12, and becomes a high-temperature and high-pressure liquid refrigerant or a two-phase refrigerant.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows from the heat source side heat exchanger 12 through the refrigerant pipe 4 , flows out of the outdoor unit 1 , and flows into the relay device 2 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant that has flowed into the repeater 2 is expanded in the expansion device 26b, becomes a low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25b.
  • the two-phase refrigerant receives heat from the heat medium in the intermediate heat exchanger 25b, evaporates, liquefies, and becomes a low-temperature gas refrigerant.
  • the gas refrigerant flows through the refrigerant pipe 4 and flows into the outdoor unit 1 again.
  • the refrigerant that has flowed through the gas pipe 42 of the outdoor unit 1 flows through the first flow switching device 11 and the accumulator 19, and then is sucked into the compressor 10 again.
  • the pump 31b is driven by the control device 50, and the heat medium flow control devices 34a to 34d are opened. Thereby, the heat medium circulates between the intermediate heat exchangers 25b.
  • the heat medium cooled by the intermediate heat exchanger 25b flows through the heat medium pipe 5 by driving the pump 31b. Therefore, the heat medium compressed and conveyed by the pump 31b passes through the second heat medium flow switching device 33a to the second heat medium flow switching device 33d, and is transferred to the use side heat exchangers 35a to 35d. flow into The heat medium transfers cold energy to the air-conditioned space in the use-side heat exchangers 35a to 35d, thereby cooling the room 7.
  • the heat medium flows out from the utilization side heat exchangers 35a-35d and flows into the heat medium flow control devices 34-34d.
  • the heat medium flow rate adjusting devices 34a to 34d control the flow rate of the heat medium so that the flow rate of the heat medium corresponds to the air conditioning load required by each of the user side heat exchangers 35a to 35d.
  • the heat medium flowing out from the heat medium flow control devices 34a to 34d flows through the first heat medium flow switching devices 32a to 32d, and then branches to flow into the intermediate heat exchanger 25b.
  • the heat medium that has passed through the intermediate heat exchanger 25b is sucked into the pump 31b again.
  • FIG. 23 is a schematic diagram showing flows of refrigerant and water in the heating only operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 23 the pipe through which the coolant on the heat source side flows is indicated by a thick line. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows. All of the indoor units 3a to 3d are performing heating operation.
  • the first flow switching device 11 of the outdoor unit 1 is switched so that the refrigerant discharged from the compressor 10 flows into the repeater 2 without passing through the heat source side heat exchanger 12 .
  • the low temperature and low pressure refrigerant is compressed by the compressor 10 to become a high temperature and high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is discharged from the compressor 10 , passes through the first flow path switching device 11 of the outdoor unit 1 , passes through the gas pipe 42 , and flows out of the outdoor unit 1 .
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 through the refrigerant pipe 4 and into the repeater 2 .
  • the high-temperature and high-pressure gas refrigerant flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant transfers heat to the heat medium flowing through the heat medium circuit B, is condensed and liquefied, and becomes liquid refrigerant.
  • the gas refrigerant is expanded by the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows out of the expansion device 26 b and flows into the outdoor unit 1 again through the refrigerant pipe 4 .
  • the low-pressure two-phase refrigerant flows through the liquid pipe 41 of the outdoor unit 1 into the heat source side heat exchanger 12 that functions as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 becomes low-temperature and low-pressure gas refrigerant due to thermal energy from the outside air of the heat source side heat exchanger 12 .
  • the low-temperature and low-pressure gas refrigerant flows out of the heat source side heat exchanger 12 , it flows through the first flow switching device 11 and the accumulator 19 , and then is sucked into the compressor 10 again.
  • the flow of the heat medium in heat medium circuit B will be explained.
  • one of the indoor units 3a to 3d in the repeater 2 performs the heating operation, so the controller 50 drives the pump 31b, the heat medium flow rate adjusting devices 34a, 34b, 34c, and 34d is opened.
  • the second heat medium flow switching devices 33a, 33b, 33c, and 33d are controlled by the control device 50 so that the heat medium is supplied from the pump 31b to the utilization side heat exchangers 35a, 35b, 35c, and 35d. switched.
  • the first heat medium flow switching devices 32a, 32b, 32c, and 32d are controlled by the control device 50 so that the heat medium flowing out of the heat medium flow rate adjusting devices 34a, 34b, 34c, and 33d is transferred to the intermediate heat exchanger 25b. Switched to inflow.
  • the thermal energy of the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25b, thereby heating the heat medium and flowing through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching devices 33a, 33b, 33c, and 33d into the utilization side heat exchangers 35a, 35b, 35c, and 35d having heating loads. do. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchangers 35a, 35b, 35c, and 35d.
  • FIG. 24 is a schematic diagram showing the circulation of refrigerant and water in the cooling/heating operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 24 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the indoor units 3a and 3b are performing heating operation.
  • the indoor units 3c and 3d are performing cooling operation.
  • the first flow switching device 11 of the outdoor unit 1 is switched so that the refrigerant discharged from the compressor 10 flows into the repeater 2 without passing through the heat source side heat exchanger 12 .
  • the low temperature and low pressure refrigerant is compressed by the compressor 10 to become a high temperature and high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is discharged from the compressor 10 , passes through the first flow path switching device 11 of the outdoor unit 1 , passes through the gas pipe 42 , and flows out of the outdoor unit 1 .
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 through the refrigerant pipe 4 and into the repeater 2 .
  • the high-temperature and high-pressure gas refrigerant flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant transfers heat to the heat medium flowing through the heat medium circuit B, is condensed and liquefied, and becomes liquid refrigerant.
  • the gas refrigerant is expanded by the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows out of the expansion device 26 b and flows into the outdoor unit 1 again through the refrigerant pipe 4 .
  • the low-pressure two-phase refrigerant flows through the liquid pipe 41 of the outdoor unit 1 into the heat source side heat exchanger 12 that functions as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 becomes low-temperature and low-pressure gas refrigerant due to thermal energy from the outside air of the heat source side heat exchanger 12 .
  • the low-temperature and low-pressure gas refrigerant flows out of the heat source side heat exchanger 12 , it flows through the first flow switching device 11 and the accumulator 19 , and then is sucked into the compressor 10 again.
  • the control device 50 drives the pump 31b and opens the heat medium flow control devices 34a and 34b.
  • the second heat medium flow switching devices 33a and 33b are switched by the control device 50 so that the heat medium is supplied from the pump 31b to the utilization side heat exchangers 35a and 35b.
  • the first heat medium flow switching devices 32a and 32b are switched by the control device 50 so that the heat medium flowing out from the heat medium flow rate adjusting devices 34a and 34b flows into the intermediate heat exchanger 25b.
  • the thermal energy of the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25b, whereby the heat medium is heated using the refrigerant and circulated through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching devices 33a and 33b into the use side heat exchangers 35a and 35b having heating loads. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchangers 35a and 35b.
  • the pump 31b is driven by the control device 50, and the other part of the heat medium is supplied by the auxiliary device 15. Used for cooling operation.
  • the heat medium is cooled in the auxiliary device 15 and flows through the heat medium pipe 61b by driving the pump 31a. Therefore, the heat medium compressed and conveyed by the pump 31a passes through the second heat medium flow switching devices 33c and 33d and flows into the use side heat exchangers 35c and 35d.
  • the heat medium transfers cold energy to the air-conditioned space in the use-side heat exchangers 35c and 35d, thereby cooling the room 7. As shown in FIG.
  • FIG. 25 is a schematic diagram of an air conditioner 100 according to a modification of Embodiment 2.
  • an air conditioner 100 according to the modification of Embodiment 2 includes an outdoor unit 1 and a repeater 2 , and the repeater 2 has a heat medium flow path opening/closing device 36 .
  • the outdoor unit 1 is a reverse flow heat pump type unit that cannot perform heating-main or cooling-main operation. Therefore, the outdoor unit 1 can perform only one of the heating operation and the cooling operation.
  • the outdoor unit 1 is described below as a type that uses the outdoor air as a heat source, the heat source of the outdoor unit 1 is not limited to the outdoor air.
  • the repeater 2 of the air conditioner 100 has a pump 31a and an intermediate heat exchanger 25b.
  • An auxiliary device 15 is also connected to the heat medium circuit B.
  • a heat medium flow path opening/closing device 36 is provided in a flow path that bypasses the auxiliary device 15 .
  • the heat medium flow path opening/closing device 36 may be provided inside the repeater 2 or may be provided outside the repeater 2 .
  • the indoor units 3a to 3d do not perform the cooling/heating operation using the refrigerant circuit A, but perform the heating only operation, the cooling only operation, the independent cooling operation, or the auxiliary cooling operation using the auxiliary circuit C. becomes.
  • the first heat medium flow switching devices 32a-32d and the second heat medium flow switching devices 33a-33d are not provided. This is because the air conditioner 100 according to the modification of the second embodiment does not have a configuration in which the heating operation and the cooling operation are switched for each of the indoor units 3a to 3d.
  • the simplification and price reduction of the air conditioner 100 can be realized. .
  • FIG. 26 is a schematic diagram showing the circuit configuration of the air conditioner 100 according to Embodiment 3. As shown in FIG. As shown in FIG. 26, an air conditioner 100 according to Embodiment 3 differs from Embodiment 1 in that it includes a heating device 16 that receives heat from a secondary heat medium. Since other configurations are the same as those of the first embodiment, the same reference numerals as those of the first embodiment are used for explanation.
  • the heating device 16 as an auxiliary device includes a heating heat exchanger 25d as an auxiliary heat exchanger in the housing.
  • the heating heat exchanger 25d contains the heat medium flowing from the heat medium pipe 5b through the heat medium pipe 61d and the secondary heat medium around the heat receiving heat exchanger 25d in the heating device 16. and receive heat from the heat medium flowing through the heat medium pipe 61d. That is, the heating device 16 heats the heat medium with the secondary heat medium without using the refrigerant.
  • the heating heat exchanger 25d is, for example, a plate-fin tube heat exchanger having heat transfer tubes through which a heat medium flows and fins through which air flows.
  • the secondary heat medium from which heat is to be dissipated is the air in the space in which the heating device 16 is arranged, such as outside air.
  • the heating device 16 may include a blower (not shown). If the medium that absorbs heat is not air, the heating heat exchanger 25d may be a water heat exchanger.
  • the heat exchanger 25d for heating receives heat of the heat medium supplied to the heat medium pipe 5b from the secondary heat medium which is a heat receiving target.
  • the heating device 16 may include a heating temperature sensor 40d.
  • the heating temperature sensor 40d may have the same configuration as the auxiliary temperature sensor 40c.
  • a detection value of the heating temperature sensor 40 d is transmitted to the control device 50 .
  • the heating temperature sensor 40d is preferably arranged on the outlet side of the heating heat exchanger 25d.
  • the amount of heat received by the heating device 16 can be controlled using the detected value of the heating temperature sensor 40d or the temperature sensor 40b.
  • the amount of heat received can be controlled, for example, by controlling the air volume from the air blower according to the operation mode, controlling the flow rate by the heat medium flow path opening/closing device 39 or the pump 31b, or by combining them.
  • a method for controlling the amount of heat received is not particularly limited, and other known methods can also be adopted.
  • the heating device 16 is connected to the heat medium circuit B by heat medium pipes 61c and 61d.
  • One end of the heat medium pipe 61d is connected to the upstream side of the heating heat exchanger 25d, and the other end connects the heat medium flow opening/closing device 39 and the first heat medium flow switching devices 32a to 32d. It is connected to the medium pipe 5b.
  • One end of the heat medium pipe 61c is connected to the downstream side of the heating heat exchanger 25d, and the other end is connected to the heat medium pipe 5b connecting the heat medium flow path opening/closing device 39 and the intermediate heat exchanger 25b. ing.
  • the heat medium pipe 5b connecting between the position where the other end of the heat medium pipe 61c is connected and the position where the other end of the heat medium pipe 61d is connected serves as a bypass heat medium circuit 60 that bypasses the auxiliary circuit C. Function.
  • the bypass heat medium circuit 60 is part of the heat medium circuit B.
  • a heat medium channel opening/closing device 39 is provided in the bypass heat medium circuit 60 in the heat medium pipe 5b.
  • the heat medium channel opening/closing device 39 is arranged between a position where the other end of the heat medium pipe 61c is connected and a position where the other end of the heat medium pipe 61d is connected.
  • the heat medium flow opening/closing device 39 instead of opening and closing, circulates the heat medium flowing from the first heat medium flow switching devices 32a to 32d in the direction of the heating device 16 or the intermediate heat exchanger 25b. It may be a configuration of a direction valve.
  • the heat medium flow opening/closing device 39 may be a three-way valve that allows the heat medium flowing from the first heat medium flow switching devices 32a to 32d or the heating device 16 to flow into the intermediate heat exchanger 25b.
  • the heat medium channel opening/closing device 39 may be, for example, a two-way valve configured to open and close the corresponding channel. If the heat medium flow path opening/closing device 39 is a three-way valve, the two connection ports may be connected to the heat medium pipes 5b respectively.
  • the other end of the heat medium pipe 61c or the other end of the heat medium pipe 61d may be connected to the remaining connection ports of the three-way valve.
  • the heat medium flow path opening/closing device 39 may have the same configuration as the heat medium flow path opening/closing device 36 in the heat medium pipe 5a.
  • Compressor 10 first flow switching device 11, heat source side heat exchanger 12, opening/closing device 27, opening/closing device 29, second flow switching devices 28a, 28b, refrigerant flow paths of intermediate heat exchangers 25a, 25b, expansion Devices 26 a , 26 b and accumulator 19 are connected by refrigerant pipe 4 .
  • a refrigerant circuit A is configured by the refrigerant pipe 4 .
  • the second heat medium flow switching devices 33a to 33d are connected by heat medium pipes 5a and 5b.
  • a heat medium circuit B is configured by the heat medium pipes 5a and 5b.
  • the heat medium circuit B includes a plurality of systems by connecting a plurality of use side heat exchangers 35a to 35d in parallel to the intermediate heat exchangers 25a and 25b.
  • the auxiliary circuit C is connected to the heat medium circuit B, and the heating heat exchanger 25d is connected in series with the heat medium pipe 5b to which the intermediate heat exchanger 25b is connected.
  • the outdoor unit 1 and the relay unit 2 are connected by the refrigerant circuit A via the intermediate heat exchangers 25a and 25b of the relay unit 2, and the relay unit 2 and the indoor units 3a to 3d It is connected by the heat medium circuit B through the intermediate heat exchangers 25a and 25b of the machine 2.
  • the air conditioner 100 has a configuration in which the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchangers 25a and 25b. With such a configuration, the air conditioner 100 realizes cooling operation or heating operation according to the air conditioning load.
  • the heating device 16 is configured such that heat is supplied using, for example, a water source such as a river, exhaust heat from a data center, or a local energy loop.
  • the heating device 16 is configured, for example, to receive heat from the following heat receiving object as the outside 6 and supply heat.
  • ⁇ It receives heat from a boiler, etc. Receives heat from rivers, swamps, etc. ⁇ Receiving heat by recovering heat from the data center. • Receive heat from industry through the energy loop. Receive heat from the energy loop of the building. Receives heat from sewage. Receive heat from boring holes. ⁇ It receives heat from the land (geothermal).
  • the operation modes implemented in the air conditioner 100 include heating only operation, cooling only operation, heating main operation, and cooling main operation.
  • the heating only operation is a mode in which all the indoor units 3a to 3d perform the heating operation.
  • the cooling only operation is a mode in which all of the indoor units 3a to 3d are in cooling operation.
  • the heating-dominant operation is a mode in which heating operation and cooling operation are performed, and is a mode when the heating load is greater than the cooling load.
  • Cooling-dominant operation is a mode in which heating operation and cooling operation are performed, and is a mode when the cooling load is greater than the heating load.
  • These operation modes are the first flow switching device 11, the second flow switching devices 28a and 28b, the first heat medium flow switching devices 32a to 32d, and the second heat medium flow switching devices 33a to 33d. It is realized by a combination of switching and opening and closing of the switchgear 27 and the switchgear 29 .
  • operation modes using the heating device 16 as the auxiliary device 15 include independent heating and auxiliary heating.
  • the operation mode using the heating device 16 is implemented under the control of the control device 50 .
  • the operation mode using the heating device 16 is a mode that is implemented when a heating operation is requested in any of the user-side heat exchangers 35a to 35d.
  • single heating is a mode in which the heat generated by the heat radiation in the heating heat exchanger 25d is transferred to the utilization side heat exchangers 35a to 35d of the indoor units 3a to 3d. be.
  • heat is not added to the heat medium in the intermediate heat exchanger 25b.
  • the heat generated by the intermediate heat exchanger 25b or the intermediate heat exchanger 25a and the intermediate heat exchanger 25b is supplied to the user side of the indoor unit 3. In this mode, the heat is transferred to the heat exchangers 35a to 35d.
  • the heat medium heated by the secondary heat medium in the heating heat exchanger 25d flows into the intermediate heat exchanger 25b, or the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. . Then, the heat medium is further heated by the refrigerant flowing through the refrigerant circuit A in the intermediate heat exchanger 25b, or in the intermediate heat exchanger 25a and the intermediate heat exchanger 25b, and is used-side heat required for the heating operation. It is supplied to exchangers 35a-35d.
  • the operation mode of the heating device 16 can be used in combination with any of the heating-only operation, cooling-main operation, or heating-main operation of the air conditioner 100 .
  • the air conditioner 100 performs an independent heating and heating operation, an auxiliary heating and heating operation, an independent heating and heating main operation, an auxiliary heating and heating main operation, an independent heating and cooling main operation, or an auxiliary cooling and cooling main operation.
  • FIG. 27 is a diagram showing the flow of water in the single heating only heating operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 27 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the utilization side heat exchangers 35a to 35d all have heating loads. That is, all of the indoor units 3a to 3d are performing the heating operation.
  • the operation of the elements in refrigerant circuit A is optional because all the cold is generated in heating device 16 and refrigerant circuit A is not utilized.
  • the pump 31a is operated under the control of the control device 50, the heat medium flow rate adjusting devices 34a to 34d are opened, and the heat medium flows through the intermediate heat exchanger 25b and the utilization side heat exchangers 35a to 34d. 35d.
  • the heat medium flow path opening/closing device 39 is closed under the control of the control device 50 , and the heat medium does not flow through the bypass heat medium circuit 60 . Therefore, the heat medium conveyed by the pump 31b circulates through the heating device 16 of the auxiliary circuit C. As shown in FIG.
  • the flow of the heat medium in heat medium circuit B will be explained.
  • the heat medium is heated in the heating device 16 and flows into the heat medium pipe 5b that constitutes the heat medium circuit B by driving the pump 31b.
  • the heat medium passes through the second heat medium flow switching devices 33a to 33d by the pressure from the pump 31b and reaches the utilization side heat exchangers 35a to 25d for which the heating operation is requested. Then, the heat medium transfers heat to the room air in the second heat medium flow switching devices 33a to 33d, thereby heating the room 7. As shown in FIG.
  • the heat medium flows out from the utilization side heat exchangers 35a to 35d and flows into the heat medium flow control devices 34a to 34d.
  • the heat medium flow control devices 34a to 34d control the flow rate of the heat medium so that the heat medium flows at a flow rate corresponding to the air conditioning load required in each room.
  • the heat medium flowing out from the heat medium flow rate adjusting devices 34 a to 34 d flows through the first heat medium flow switching devices 32 a to 32 d and then branches to flow into the heating device 16 .
  • the heat medium that has flowed through the heat medium pipe 61d is cooled in the heating heat exchanger 25d, flows into the intermediate heat exchanger 25b of the repeater 2, and is sucked into the pump 31b again. As a result, the requested heating can be performed without operating the outdoor unit 1 .
  • FIG. 28 is a diagram showing the circulation of refrigerant and water in the auxiliary heating only heating operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 28 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the utilization side heat exchangers 35a to 35d all have heating loads. That is, all of the indoor units 3a to 3d are performing the heating operation.
  • the refrigerant on the heat source side circulates through the refrigerant circuit A in the auxiliary heating only heating operation.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the repeater 2 without passing through the heat source side heat exchanger 12 of the outdoor unit 1 due to the first flow switching device 11 of the outdoor unit 1 .
  • the low temperature and low pressure refrigerant is compressed by the compressor 10 to become a high temperature and high pressure gas refrigerant.
  • a high-temperature and high-pressure gas refrigerant is discharged from the compressor 10, passes through the refrigerant pipe 4, and flows out of the outdoor unit 1 from the first flow switching device 11 via the first connection refrigerant pipe 4a.
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 to the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure gas refrigerant flows into the repeater 2, it passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant flows into the intermediate heat exchanger 25b, it transfers heat to the heat medium circulating in the heat medium circuit B, condenses, liquefies, and becomes liquid refrigerant.
  • the liquid refrigerant flows out of the intermediate heat exchanger 25b and is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the switchgear 27 is closed and the switchgear 29 is open. Therefore, when the low-pressure two-phase refrigerant flows out of the intermediate heat exchanger 25b, it flows through the switching device 29, passes through the refrigerant pipe 4, and flows into the outdoor unit 1 again.
  • the low-pressure two-phase refrigerant passes through the first connecting refrigerant pipe 4a of the outdoor unit 1 and flows into the heat source side heat exchanger 12 functioning as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 exchanges heat with the outside air of the heat source side heat exchanger 12 and changes to a low temperature and low pressure refrigerant.
  • the low-temperature and low-pressure refrigerant flows out of the heat source side heat exchanger 12, passes through the first flow switching device 11 and the accumulator 19, and is sucked into the compressor 10 again.
  • the pump 31b is driven under the control of the control device 50, the heat medium flow rate adjusting devices 34a to 34d are opened, and the heat medium is supplied to the intermediate heat exchangers 24a and 25b, and to the user side. It flows between the heat exchangers 35a to 35d. At this time, the pump 31a does not have to be driven.
  • the heat medium channel opening/closing device 39 is closed under the control of the control device 50 , and the heat medium conveyed by the pump 31 b circulates through the heating device 16 .
  • the flow of heat medium in heat medium circuit B will be explained.
  • the heat medium is heated in the heating device 16 and flows through the heat medium pipe 5b by the pump 31b.
  • the heat medium is pressurized and discharged by the pump 31b, passes through the second heat medium flow switching devices 33a to 33d, and flows through the use side heat exchangers 35a to 35b.
  • the heat medium supplies heat to the room air, and the room 7 is heated.
  • the heat medium flows out from the utilization-side heat exchangers 35a-35b and flows into the heat-medium flow control devices 34a-34d.
  • the heat medium flow control devices 34a-34d control the flow rate of the heat medium so that the flow rate of the heat medium corresponds to the air conditioning load required by each of the user-side heat exchangers 35a-35b.
  • the heat medium flowing out from the heat medium flow rate adjusting devices 34a to 34d passes through the first heat medium flow switching devices 32a to 32d, is branched, and flows through the flow path toward the heating device 16 by the heat medium flow path opening/closing device 39. .
  • the heat medium flowing through the heat medium pipe 61d of the heating device 16 is heated in the heating heat exchanger 25d, flows through the heat medium pipe 61c, returns to the repeater 2, and flows through the intermediate heat exchanger 25b. Then, it is sucked into the pump 31b again. Thereby, the heating operation is realized by both the outdoor unit 1 and the heating device 16 .
  • FIG. 29 is a diagram showing the circulation of refrigerant and water in the single heating/heating main operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 29 the pipes through which the coolant on the heat source side flows are indicated by thick lines. Further, the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the user-side heat exchanger 35c has a cooling load, and the user-side heat exchangers 35a, 35b, and 35d have a heating load. That is, the indoor unit 3c is performing cooling operation, and the indoor units 3a, 3b, and 3d are performing heating operation.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged from the compressor 10 as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the first flow switching device 11 of the outdoor unit 1, and flows from the compressor 10 into the heat source side heat exchanger 12 by the first flow switching device 11.
  • the flow path is switched so that The high-temperature and high-pressure gas refrigerant passes through the first flow switching device 11, flows from the first flow switching device 11 toward the heat source side heat exchanger 12, and exchanges heat with the outside air in the heat source side heat exchanger 12.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 1 through the check valve 13 a and flows into the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant that has flowed into the repeater 2 passes through the switching device 27, is expanded in the expansion device 26a, becomes a low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25a.
  • the two-phase refrigerant evaporates in the intermediate heat exchanger 25a by the supply of warm heat from the heat medium, and becomes a low-temperature gas refrigerant.
  • the gas refrigerant passes through the second flow switching device 28b and flows into the outdoor unit 1 from the refrigerant pipe 4 again.
  • the gas refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 again from the check valve 13 c via the first flow switching device 11 and the accumulator 19 .
  • all cold heat is supplied by the intermediate heat exchanger 25a, so the expansion device 26b of the repeater 2 may be fully closed.
  • the flow of the heat medium in heat medium circuit B will be explained. Part of the heat transfer medium is used for cooling operation. In the independent heating/heating main operation, the cold energy supplied from the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25a, thereby cooling the heat medium, and the heat medium pipe 5 is driven by the pump 31a. circulate. The heat medium discharged from the pump 31a flows through the second heat medium flow switching device 33c into the utilization side heat exchanger 35c having a cooling load.
  • the pump 31a is driven and the heat medium flow control device 34c is opened.
  • the second heat medium flow switching device 33c is switched so that the heat medium is supplied from the pump 31a to the use side heat exchanger 35c.
  • the first heat medium flow switching device 32c is switched such that the heat medium flowing out from the heat medium flow rate adjusting device 34c flows into the intermediate heat exchanger 25a. Therefore, the heat medium circulates between the intermediate heat exchanger 25a and the utilization side heat exchanger 35c.
  • the other part of the heat medium is used for single heating.
  • the heat is transmitted to the heat medium in the heating heat exchanger 25d of the heating device 16, and the heat medium is heated.
  • the heated heat medium flows through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium flows into the heating device 16 by closing the heat medium flow path opening/closing device 39 .
  • the heat medium is conveyed by the pump 31b, flows into the intermediate heat exchanger 25b, and passes through the second heat medium flow switching devices 33a, 33b, and 33d to the utilization side heat exchangers 35a, 35b having heating loads, and flows into 35d.
  • the pump 31b is driven, and the heat medium flow control devices 34a, 34b, and 34d are opened.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched so that the heat medium conveyed by the pump 31b flows into the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32 a , 32 b and 32 d are switched such that the heat medium conveyed from the heat medium flow rate adjusting devices 34 a , 34 b and 34 d flows into the heating device 16 .
  • the heat medium channel opening/closing device 39 is closed. Therefore, the heat medium circulates between the heating device 16 and the utilization side heat exchangers 35a, 35b, and 35d.
  • ⁇ Single heating/heating main operation> A diagram showing the circulation of refrigerant and water in the single heating/cooling main operation is the same as FIG. First, the flow of refrigerant on the heat source side in the refrigerant circuit A will be described.
  • the user-side heat exchangers 35a, 35b, and 35d have a cooling load
  • the user-side heat exchanger 35c has a heating load. That is, the indoor units 3a, 3b, and 3d are performing the cooling operation, and the indoor unit 3c is performing the heating operation.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged from the compressor 10 as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the first flow switching device 11 of the outdoor unit 1, and flows from the compressor 10 into the heat source side heat exchanger 12 by the first flow switching device 11.
  • the flow path is switched so that The high-temperature and high-pressure gas refrigerant passes through the first flow switching device 11, flows from the first flow switching device 11 toward the heat source side heat exchanger 12, and exchanges heat with the outside air in the heat source side heat exchanger 12. By doing so, it becomes a high-temperature and high-pressure liquid refrigerant or two-phase refrigerant.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 1 through the check valve 13 a and flows into the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant that has flowed into the repeater 2 passes through the switching device 27, is expanded in the expansion device 26a, becomes a low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25a.
  • the two-phase refrigerant evaporates in the intermediate heat exchanger 25a by the supply of warm heat from the heat medium, and becomes a low-temperature gas refrigerant.
  • the gas refrigerant passes through the second flow switching device 28b and flows into the outdoor unit 1 from the refrigerant pipe 4 again.
  • the gas refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 again from the check valve 13 c via the first flow switching device 11 and the accumulator 19 . Since the repeater 2 supplies only cold heat from the intermediate heat exchanger 25a, the expansion device 26b of the repeater 2 may be fully closed.
  • the flow of the heat medium in heat medium circuit B will be explained. Part of the heat transfer medium is used for cooling operation. In the independent heating/cooling main operation, the cold energy supplied from the refrigerant on the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25a, thereby cooling the heat medium, and the heat medium pipe 5 is driven by the pump 31a. circulate. The heat medium discharged from the pump 31a flows through the second heat medium flow switching devices 33a, 33b, and 33d into the use-side heat exchangers 35a, 35b, and 35d having cooling loads.
  • the pump 31a is driven and the heat medium flow control devices 34a, 34b, and 34d are opened.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched so that the heat medium is supplied from the pump 31a to the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32a, 32b, and 32d are switched so that the heat medium flowing out from the heat medium flow control devices 34a, 34b, and 34d flows into the intermediate heat exchanger 25a. Therefore, the heat medium circulates between the intermediate heat exchanger 25a and the utilization side heat exchangers 35a, 35b, and 35d.
  • the other part of the heat medium is used for single heating.
  • the heat is transmitted to the heat medium in the heating heat exchanger 25d of the heating device 16, and the heat medium is heated.
  • the heated heat medium flows through the heat medium pipe 5 by driving the pump 31b.
  • the heat medium flows into the heating device 16 by closing the heat medium flow path opening/closing device 39 .
  • the heat medium is conveyed by the pump 31b, flows into the intermediate heat exchanger 25b, and flows through the second heat medium flow switching device 33c into the utilization side heat exchanger 35c having a heating load.
  • the pump 31b is driven and the heat medium flow rate adjusting device 34c is opened.
  • the second heat medium flow switching device 33c is switched so that the heat medium conveyed by the pump 31b flows into the utilization side heat exchanger 35c.
  • the first heat medium flow switching device 32 c is switched so that the heat medium conveyed from the heat medium flow rate adjusting device 34 c flows into the heating device 16 .
  • the heat medium channel opening/closing device 39 is closed. Therefore, the heat medium circulates between the heating device 16 and the utilization side heat exchanger 35c. Thereby, the cooling operation by the outdoor unit 1 and the heating operation by the heating device 16 are realized.
  • FIG. 30 is a diagram showing the circulation of refrigerant and water in the auxiliary heating/cooling main operation of the air conditioner 100 according to Embodiment 3.
  • the pipes through which the coolant on the heat source side flows are indicated by thick lines.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • usage-side heat exchangers 35a, 35b, and 35d have cooling loads
  • usage-side heat exchanger 35c has heating loads. That is, the indoor units 3a, 3b, and 3d are performing cooling operation, and the indoor unit 3c is performing heating operation.
  • the flow of the refrigerant on the heat medium side in the refrigerant circuit A will be explained.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged from the compressor 10 as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the first flow switching device 11 of the outdoor unit 1, and flows from the compressor 10 into the heat source side heat exchanger 12 by the first flow switching device 11.
  • the flow path is switched so that The high-temperature and high-pressure gas refrigerant passes through the first flow switching device 11, flows from the first flow switching device 11 toward the heat source side heat exchanger 12, and exchanges heat with the outside air in the heat source side heat exchanger 12.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 1 through the check valve 13 a and flows into the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant that has flowed into the repeater 2 passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant is condensed by transferring heat to the heat medium circulating in the heat medium circuit B in the intermediate heat exchanger 25b, and liquefied to become liquid refrigerant.
  • the liquid refrigerant After flowing out of the intermediate heat exchanger 25b, the liquid refrigerant is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the switchgear 27 and the switchgear 29 are closed and the expansion device 26a is open.
  • the low pressure two-phase refrigerant passes through expansion device 26a and enters intermediate heat exchanger 25a, which functions as an evaporator.
  • the low-pressure two-phase refrigerant is heated by thermal energy from the heat medium flowing through the heat medium circuit B in the intermediate heat exchanger 25a and evaporated.
  • the low-temperature and low-pressure two-phase refrigerant flows out from the intermediate heat exchanger 25a, passes through the second flow switching device 28a, and flows out from the repeater 2.
  • the low-temperature and low-pressure two-phase refrigerant flows out of the repeater 2 , it flows into the outdoor unit 1 again through the refrigerant pipe 4 .
  • the low-temperature and low-pressure two-phase refrigerant that has flowed out of the repeater 2 is sucked into the compressor 10 again via the first flow path switching device 11 and the accumulator 19 of the outdoor unit 1 .
  • the flow of heat medium in heat medium circuit B will be explained. Part of the heat transfer medium is used for cooling operation.
  • the cold energy supplied from the refrigerant on the heat source side is supplied to the heat medium in the intermediate heat exchanger 25a, whereby the heat medium is cooled, and the heat medium pipe 5 is driven by the pump 31a. circulate.
  • the heat medium discharged from the pump 31b flows through the second heat medium flow switching devices 33a, 33b, and 33d into the use-side heat exchangers 35a, 35b, and 35d having cooling loads.
  • the pump 31a is driven and the heat medium flow control devices 34a, 34b, and 34d are opened.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched so that the heat medium is supplied from the pump 31a to the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32a, 32b, and 32d are switched so that the heat medium flowing out from the heat medium flow control devices 34a, 34b, and 33d flows into the intermediate heat exchanger 25a. Therefore, the heat medium circulates between the intermediate heat exchanger 25a and the utilization side heat exchangers 35a, 35b, and 35d.
  • the other part of the heat medium is used for auxiliary heating.
  • the heat medium flows into the heating device 16 because the heat medium flow path opening/closing device 39 is closed.
  • the heat medium flowing out from the pump 31b passes through the intermediate heat exchanger 25b, passes through the second heat medium flow switching device 33c, and flows into the utilization side heat exchanger 35c having a heating load.
  • the pump 31b is driven and the heat medium flow control device 34c is opened.
  • the second heat medium flow switching device 33c is switched so that the heat medium is supplied from the pump 31b to the use side heat exchanger 35c.
  • the first heat medium flow switching device 32c is configured such that the heat medium flowing out of the heat medium flow rate adjusting device 34c flows into the heating device 16 and the intermediate heat exchanger 25b by the closed heat medium flow opening/closing device 39. can be switched. Therefore, the heat medium circulates between the heating device 16 and the utilization side heat exchanger 35c. Thereby, the cooling operation by the outdoor unit 1 and the heating operation by the outdoor unit 1 and the heating device 16 are realized.
  • FIG. 31 is a diagram showing the circulation of refrigerant and water in the auxiliary heating/heating main operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • the pipes through which the coolant on the heat source side flows are indicated by thick lines.
  • the direction of flow of the refrigerant is indicated by solid line arrows, and the direction of flow of the heat medium is indicated by broken line arrows.
  • the usage-side heat exchanger 35c has a cooling load
  • the usage-side heat exchangers 35a, 35b, and 35d have a heating load. That is, the indoor unit 3c is performing cooling operation, and the indoor units 3a, 3b, and 3d are performing heating operation.
  • the flow of the refrigerant on the heat medium side in the refrigerant circuit A will be explained.
  • the low temperature and low pressure refrigerant is compressed by the compressor 10 to become a high temperature and high pressure gas refrigerant.
  • the gas refrigerant is discharged from the compressor 10 , passes through the first connection refrigerant pipe 4 a from the first flow switching device 11 of the outdoor unit 1 , and flows out of the outdoor unit 1 .
  • High-temperature and high-pressure gas refrigerant flows from the outdoor unit 1 to the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure gas refrigerant flows into the repeater 2, it passes through the second flow switching device 28b and flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant flows into the intermediate heat exchanger 25b, it transfers heat to the heat medium circulating in the heat medium circuit B, condenses, liquefies, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the intermediate heat exchanger 25b is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the opening/closing device 27 and the opening/closing device 29 are closed, and the expansion device 26a is opened. After flowing out of the expansion device 26b, the low-pressure two-phase refrigerant flows through the expansion device 26a and into the intermediate heat exchanger 25a functioning as an evaporator.
  • the low-pressure two-phase refrigerant is supplied with hot heat from the heat medium flowing through the heat medium circuit B and evaporated, thereby cooling the heat medium.
  • the low-temperature and low-pressure two-phase refrigerant flows out from the intermediate heat exchanger 25a and flows into the repeater 2 from the second flow switching device 28a.
  • the low-temperature and low-pressure two-phase refrigerant flows out from the repeater 2 and flows into the outdoor unit 1 again through the refrigerant pipe 4 .
  • the low-temperature and low-pressure two-phase refrigerant flows into the outdoor unit 1, it flows through the second connecting refrigerant pipe 4b into the heat source side heat exchanger 12 functioning as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 becomes low-temperature and low-pressure gas refrigerant due to the supply of heat from the outside air.
  • the low-temperature and low-pressure gas refrigerant is sucked into the compressor 10 again via the first flow switching device 11 and the accumulator 19 .
  • the flow of the heat medium in heat medium circuit B will be explained. Part of the heat transfer medium is used for cooling operation. In the auxiliary heating/heating main operation, cold energy supplied from the heat source side is transmitted to the heat medium in the intermediate heat exchanger 25a, thereby cooling the heat medium and circulating it through the heat medium pipe 5 by the pump 31a. The heat medium discharged from the pump 31a flows through the second heat medium flow switching device 33c into the utilization side heat exchanger 35c having a cooling load.
  • the second heat medium flow switching devices 33a, 33b, and 33d are switched so that the heat medium is supplied from the pump 31b to the utilization side heat exchangers 35a, 35b, and 35d.
  • the first heat medium flow switching devices 32a, 32b, and 32d allow the heat medium flowing out of the heat medium flow rate adjusting devices 34a, 34b, and 33d to flow through the closed heat medium flow switching device 39 to the heating device. 16 and intermediate heat exchanger 25b. Therefore, the heat medium circulates between the heating device 16 and the utilization side heat exchangers 35a, 35b, and 35d.
  • the heat medium flowing through the heat medium pipe 61d of the heating device 16 is heated in the heating heat exchanger 25d, flows through the heat medium pipe 61c, flows into the repeater 2 again, and is sucked into the pump 31a again. .
  • the heating operation is realized by both the outdoor unit 1 and the heating device 16 .
  • the cooling operation by the outdoor unit 1 and the heating operation by the outdoor unit 1 and the heating device 16 are realized.
  • FIG. 32 is a graph showing the relationship between the temperature of the air-conditioned space of the air-conditioning apparatus 100 according to Embodiment 1, the temperature of the secondary heat medium that receives heat, and the operation of the heating device 16 .
  • the horizontal axis indicates the temperature of the secondary heat medium that receives heat in the heating device 16
  • the vertical axis indicates the temperature of the air-conditioned space.
  • FIG. 32 illustrates an example in which the medium from which heat is received by the heating device 16 is the outdoor air, but the medium from which heat is received is not limited to the outdoor air.
  • the air-conditioned space temperature is, for example, the temperature in the room 7 .
  • Line dh indicates the case where the temperature of the air-conditioned space for which the heating operation is requested and the temperature of the secondary heat medium in the heating device 16 are the same.
  • the secondary heat medium temperature is the same as the outside air temperature.
  • the outside air temperature is, for example, 20° C.
  • the point zh is the same as or lower than the temperature of the air-conditioned space, which is the temperature of the room 7, heat cannot be received from the room 7, which is the air-conditioned space where the heating operation is required. .
  • the heating device 16 when the air-conditioned space temperature is on the line dh or to the left of the line dh, that is, when it is higher than the line dh, the heating device 16 is turned off, the heating device 16 does not receive heat, and the heating load is It must be covered by the drive of machine 1.
  • Line ah indicates the case where the secondary heat medium temperature in the heating device 16 is higher than the air-conditioned space temperature at which the heating operation is requested by the third temperature difference ⁇ T3.
  • the air-conditioned space temperature At the point wh where the outside air temperature is higher than the air-conditioned space temperature, for example, 30° C., and the air-conditioned space temperature is, for example, 20° C., heat is dissipated from the room 7, which is the air-conditioned space for which the cooling operation is required. can be done.
  • the third temperature difference ⁇ T3 is 10°C. Therefore, when the temperature of the air-conditioned space is on line ah or lower than line ah, the room 7 can receive heat from the outside 6 .
  • the line bh indicates the case where the secondary heat medium temperature is lower than the air-conditioned space temperature at which the heating operation is requested by the fourth temperature difference ⁇ T4.
  • the fourth temperature difference ⁇ T4 is smaller than the third temperature difference ⁇ T3.
  • the room 7, which is the air-conditioned space can receive heat.
  • the fourth temperature difference ⁇ T4 is 5°C.
  • the controller 50 of the air conditioner 100 determines that the temperature of the air-conditioned space for which the heating operation is requested is lower than the temperature of the secondary heat medium in the heating device 16 by the third temperature difference ⁇ T3, Control single heating.
  • the control device 50 of the air conditioner 100 determines that the temperature of the air-conditioned space for which the heating operation is requested is lower than the temperature of the secondary heat medium by the fourth temperature difference ⁇ T4, the control device 50 controls auxiliary heating. I do.
  • the third temperature difference ⁇ T3 and the fourth temperature difference ⁇ T4 can be obtained based on the temperature of the air-conditioned space, the capacity of the air conditioner 100, and the like.
  • the fourth temperature difference ⁇ T4 is a value smaller than the third temperature difference ⁇ T3.
  • Equation 8 The heat exchange between the conditioned space and a heat source medium, such as water from the district energy loop, can be represented, for example, by Equation 8 below.
  • R is the heat transfer resistance from the medium that is the heat source to the air-conditioned space, and can be expressed by Equation 10 below.
  • the maximum design heating capacity Qpeakh of the indoor unit 3 can be expressed by Equation 11 below.
  • the lines ah, bh, ch and dh are shown as straight lines, but they may not be straight lines depending on the capacity of the indoor heat exchanger or the environmental temperature of the heating heat exchanger 25d. could be.
  • ⁇ Modification 1 of Embodiment 3> 33 is a schematic diagram of an air conditioner 100 according to Modification 1 of Embodiment 3.
  • FIG. 33 the air conditioner 100 according to Modification 1 does not include the heat medium flow path opening/closing device 39, and the other end of the heat medium pipe 61c and the other end of the heat medium pipe 61d are separated from each other.
  • the configuration does not include a heat medium pipe 5 to be connected.
  • the heating device 16 when the heating device 16 is turned off, heat is not absorbed in the heating heat exchanger 25d even if the pump 31b is driven.
  • ⁇ Modification 2 of Embodiment 3> 34 is a schematic diagram of an air conditioner 100 according to Modification 2 of Embodiment 3.
  • the air conditioner 100 according to Modification 2 does not include the heat medium flow path opening/closing device 39, and also includes a three-way valve that switches the flow path from the heat medium circuit B to the heating device 16. not configured.
  • a check valve 38 is provided to prevent the heat medium from flowing back to the heating heat exchanger 25d when the pump 31b is stopped.
  • ⁇ Modification 4 of Embodiment 3> 36 is a schematic diagram of an air conditioner 100 according to Modification 4 of Embodiment 3.
  • FIG. 36 in the air conditioner 100 according to Modification 4, the auxiliary device 15 and the heating device 16 are connected to the heat medium pipe 5 .
  • the air conditioner 100 can operate in a single cooling and heating mode, an auxiliary cooling and heating mode, a heating and cooling mode, or any combination of these and the above-described operation modes. .
  • the heating device 16 has a heating temperature sensor 40d inside.
  • the heating temperature sensor 40 d may be provided inside the repeater 2 .
  • a detection value of the heating temperature sensor 40 d is transmitted to the control device 50 .
  • a value detected by the heating temperature sensor 40d can be used to control the amount of heating.
  • the amount of heating can be controlled, for example, by controlling the flow rate of the heat medium in the auxiliary heat exchanger 25c by controlling the air volume from the air blower according to the operation mode and the opening degree of the pump 31b.
  • a method for controlling the amount of heat release is not particularly limited, and other known methods can also be adopted.
  • the compressor 10, the first flow switching device 11, the heat source side heat exchanger 12, the refrigerant flow path of the intermediate heat exchanger 25b, the expansion devices 26a and 26b, and the accumulator 19 are connected to the refrigerant piping 4. It is a configuration connected by A refrigerant circuit A is configured by the refrigerant pipe 4 .
  • the air conditioner 100 includes the heat medium flow path of the intermediate heat exchanger 25b, the pump 31b, the first heat medium flow switching devices 32a to 32d, the heat medium flow rate adjusting devices 34a to 34d, the use side heat exchangers 35a to 35d and the second heat medium flow switching devices 33a to 33d are connected by heat medium pipes 5b.
  • the heat medium pipe 5a constitutes a part of the heat medium circuit B. As shown in FIG.
  • the heating device 16 is connected to the heat medium pipe 5a by a heat medium pipe 61c and a heat medium pipe 61d.
  • the heat medium circuit B includes a plurality of systems by connecting a plurality of use side heat exchangers 35a to 35d in parallel to the intermediate heat exchanger 25b and the heating device 16, respectively.
  • the air conditioner 100 has a configuration in which the heat source-side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 25b. Also, the heat medium circuit B performs heat exchange in the heating device 16 . With such a configuration, the air conditioner 100 realizes cooling operation or heating operation according to the air conditioning load.
  • auxiliary heating only heating operation all of the operating indoor units 3a to 3d are performing the heating operation, and the temperature of the heat medium serving as the heat source is higher than the temperature of the air-conditioned space by a fourth temperature difference ⁇ T4.
  • some of the indoor units 3a to 3d in operation are performing cooling operation, and some of the others are performing heating operation. This is the mode when the temperature is higher than the temperature of the air-conditioned space.
  • These operation modes are a combination of switching of the first flow path switching device 11, the first heat medium flow path switching devices 32a to 32d, and the second heat medium flow path switching devices 33a to 33d, and the operation of the heating device 16. It is realized by
  • Heating only operation Since the heating-only operation and the cooling-only operation are the same as those in FIGS. 23 and 22 described in the second embodiment, descriptions thereof are omitted.
  • the flow of heat medium in heat medium circuit B will be explained.
  • the pump 31a operates, the heat medium flow rate adjusting devices 34a-34d are opened, and the heat medium circulates between the heating device 16 and the utilization side heat exchangers 35a-35d.
  • the heat medium heated by the heating device 16 flows through the heat medium pipe 5a by driving the pump 31b. Therefore, the heat medium compressed and conveyed by the pump 31a flows into the utilization side heat exchangers 35a to 35d via the second heat medium flow switching devices 33a to 33d. Then, the heat medium transfers heat in the utilization side heat exchangers 35a to 35d to heat the room 7. As shown in FIG.
  • the heat medium flowing out from the utilization side heat exchangers 35a to 35d flows into the heat medium flow control devices 34a to 34d.
  • the heat medium flow rate adjusting devices 34a to 34d control the flow rate of the heat medium so that the flow rate of the heat medium corresponds to the air conditioning load required by each of the user side heat exchangers 35a to 35d.
  • the heat medium flowing out from the heat medium flow control devices 34a to 34d flows through the first heat medium flow switching devices 32a to 32d, and then branches and flows into the heating device 16.
  • the heat medium that has flowed into the heating device 16 through the heat medium pipe 61b is heated in the heating heat exchanger 25d of the heating device 16, flows through the heat medium pipe 61a, flows into the repeater 2 again, and is pumped. 31a is sucked again. Thereby, the heating operation is realized without operating the outdoor unit 1 .
  • the high-temperature and high-pressure gas refrigerant flows into the intermediate heat exchanger 25b functioning as a condenser.
  • the gas refrigerant is condensed by transferring heat to the heat medium flowing through the heat medium circuit B and liquefied to become liquid refrigerant.
  • the liquid refrigerant is expanded in the expansion device 26b to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows from the intermediate heat exchanger 25b through the refrigerant pipe 4, through the liquid pipe 41 of the outdoor unit 1, and flows into the outdoor unit 1 again.
  • the flow of heat medium in heat medium circuit B will be explained.
  • the pumps 31a and 31b are driven, and the heat medium flow control devices 34a to 34d are open.
  • the heat medium circulates between the intermediate heat exchanger 25 b and the heating device 16 .
  • the heat medium heated by the heating device 16 and the intermediate heat exchanger 25b flows through the heat medium pipes 5a and 5b by driving the pumps 31a and 31b. Therefore, the heat medium compressed and conveyed by the pumps 31a and 31b passes through the second heat medium flow switching devices 33a to 33d and flows into the use side heat exchangers 35a to 35d.
  • the heat medium transfers thermal energy to the air-conditioned space in the use-side heat exchangers 35a to 35d, thereby heating the room 7. As shown in FIG.
  • the heat medium that has flowed into the heating device 16 through the heat medium pipe 61d is heated in the heating heat exchanger 25d of the heating device 16, flows through the heat medium pipe 61c, flows into the repeater 2 again, and is pumped. 31a is sucked again. Also, the heat medium that has flowed through the intermediate heat exchanger 25b is sucked into the pump 31b again. Thereby, the heating operation using the outdoor unit 1 and the heating device 16 is performed.
  • a high-temperature and high-pressure gas refrigerant is discharged from the compressor 10 and flows into the heat source side heat exchanger 12 via the first flow switching device 11 .
  • the refrigerant exchanges heat with the air outside the heat source side heat exchanger 12 and becomes a high-temperature and high-pressure liquid refrigerant or a two-phase refrigerant.
  • the high-temperature and high-pressure liquid refrigerant or two-phase refrigerant flows from the heat source side heat exchanger 12 through the refrigerant pipe 4 and out of the outdoor unit 1 and flows into the repeater 2 through the refrigerant pipe 4 .
  • the high-temperature and high-pressure liquid refrigerant or the two-phase refrigerant that has flowed into the repeater 2 is expanded in the expansion device 26b, becomes a low-temperature and low-pressure two-phase refrigerant, and flows into the intermediate heat exchanger 25b.
  • the two-phase refrigerant receives heat from the heat medium in the intermediate heat exchanger 25b, evaporates, liquefies, and becomes a low-temperature gas refrigerant.
  • the pump 31a is driven and the heat medium flow control devices 34a and 43b are opened.
  • the second heat medium flow switching devices 33a and 33b are switched so that the heat medium is supplied from the pump 31 to the utilization side heat exchangers 35a and 35b.
  • the first heat medium flow switching devices 32a and 32b are switched so that the heat medium flowing out from the heat medium flow rate adjusting devices 34a and 34b flows into the intermediate heat exchanger 25b. Therefore, the heat medium circulates between the intermediate heat exchanger 25b and the utilization side heat exchangers 35a and 35b.
  • the heat medium is heated in the heating device 16 and flows through the heat medium pipe 5 by driving the pump 31a. Therefore, the heat medium compressed and conveyed by the pump 31a passes through the second heat medium flow switching devices 33c and 33d and flows into the use side heat exchangers 35c and 35d. The heat medium transfers thermal energy to the air-conditioned space in the use-side heat exchangers 35c and 35d, thereby heating the room 7. As shown in FIG.
  • the heat medium flows out from the utilization side heat exchangers 35c and 35d, and flows into the heat medium flow control devices 34c and 34d.
  • the heat medium flow rate adjusting devices 34c and 34d adjust the flow rate of the heat medium so that the flow rate of the heat medium becomes the flow rate corresponding to the air conditioning load required by the utilization side heat exchangers 35c and 35d, respectively. to control.
  • the heat medium flowing out from the heat medium flow control devices 34 c and 34 d flows through the first heat medium flow switching devices 32 c and 32 d and then branches to flow into the heating device 16 .
  • FIG. 40 is a schematic diagram of an air conditioner 100 according to a modification of Embodiment 4.
  • the air conditioner 100 according to the modification includes both the auxiliary device 15 and the heating device 16 .
  • the heating device 16 is connected in parallel with the auxiliary device 15 by three-way valves 37b, 37a.
  • the three-way valves 37a and 37b are used as devices for opening and closing the heat medium flow paths.
  • the three-way valves 37a and 37b as long as the heat medium flow path can be opened and closed.
  • a two-way valve or a three-way valve in which one of the three flow paths is closed can be used as the device for opening and closing the heat medium flow path.
  • a device for opening and closing the heat medium flow path may be an on-off valve, or may have two openable and closable flow paths. In this case, the flow rate can be kept constant by continuing the opening/closing operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

空気調和装置は、圧縮機と、流路切替装置と、熱源側熱交換器と、少なくとも1つの中間熱交換器と、中間熱交換器にそれぞれ対応した膨張装置と、を有し、圧縮機と熱源側熱交換器と少なくとも1つの中間熱交換器との間で冷媒を循環させる冷媒回路と、少なくとも1つの中間熱交換器と、中間熱交換器のそれぞれに対応したポンプと、複数の利用側熱交換器と、を有し、少なくとも1つの中間熱交換器と複数の利用側熱交換器の少なくとも1つとの間で熱媒体を循環させる熱媒体回路と、熱媒体回路に接続され、補助熱交換器を有する補助回路と、を有し、補助熱交換器は、補助回路に流入した熱媒体を、二次熱媒体との熱交換により加熱又は冷却するものである。

Description

空気調和装置
 本開示は、冷媒回路と熱媒体回路と補助回路とを備えた空気調和装置に関する。
 空気調和装置として、熱源機としての室外機が屋外に配置され、複数の室内機が屋内に配置された、例えば、マルチタイプの空気調和装置が知られている。このような空気調和装置では、冷媒回路に流通する冷媒が、室内熱交換器に供給される空気に熱を供給し、又は、空気から熱を吸収して、空気が加熱又は冷却されている。そして、加熱又は冷却された空気が、空調空間に搬送されることで、空調空間が加熱又は冷却されている。
 このような空気調和装置においては、熱源側の冷媒として、例えば、HFC(ハイドロフルオロカーボン)ベースの冷媒が採用されている。また、熱源側の冷媒として、二酸化炭素(CO)などの自然冷媒が採用されている場合もある。
 また、屋外に配置された熱源機で冷熱又は温熱が生成される、チラーと呼ばれる空気調和装置も提案されている。チラーでは、熱源装置で、水又は不凍液などの熱媒体が加熱又は冷却され、熱媒体が室内機に搬送されて室内の冷房又は暖房が実施される。室内機は、例えば、ファンコイル又はパネルヒータである。
 また、チラーのうち、熱源機と、複数の室内機のそれぞれとが、4本の配管で接続された構成の熱回収式チラーと呼ばれる空気調和装置も提案されている。熱回収式チラーでは、加熱又は冷却された熱媒体である水が、熱源機から複数の室内機に同時に供給される構成である。熱回収式チラーでは、複数の室内機において、室内機毎に暖房運転又は冷房運転を選択することが可能である。
 また、特許文献1では、室内機に近接して設けられ、一次冷媒と二次冷媒とが熱交換する熱交換器を有する空気調装置が提案されている。
 また、熱源機において加熱又は冷却された熱源側の冷媒が、分岐ユニットの熱交換器に供給され、当該熱交換器において熱源側の冷媒から熱媒体に温熱又は冷熱が移動する構成の空気調和装置も提案されている。この空気調和装置では、分岐ユニットは、それぞれの室内機と、2本の配管で接続された構成である。
 また、ビル等で使用され、冷媒が熱源機と中継機との間で循環し、熱媒体が、中継機と複数の室内機のそれぞれとの間で循環する構成の、マルチエアコンと呼ばれる空気調和装置がある。マルチエアコンでは、熱媒体を室内機に流通させるときに、熱媒体搬送に要するエネルギーを制限することが提案されている。
特開2001-289465号公報
 特許文献1などで提案されている上述の空気調和装置では、空調空間に供給される空気は、冷媒により直接冷却又は加熱された空気、又は、冷媒により水などの熱媒体を介して間接的に冷却または加熱された空気である。熱力学の第2法則によれば、熱源側熱交換器の環境温度が空調空間よりも高い場合に、空調空間を冷却する場合には、冷媒に対し仕事をしなければならない。例えば、熱源側の環境温度が35℃である場合に、空調空間を20℃に冷却する場合である。同様に、熱源側熱交換器の環境温度が空調空間よりも低い場合に、空調空間を加熱する場合にも、冷媒に対し仕事をしなければならない。特許文献1などで提案されている上述の空気調和装置では、この場合の仕事は、全て圧縮機が行うことになる。
 このように、空気調和装置の熱源機は、圧縮機により冷媒に対する仕事を行わなければならず圧縮機の消費するエネルギーが増大する。従って、圧縮機が消費するエネルギーを低減し、空気調和装置を効率よく運転することが望まれている。
 本開示は、上記課題を解決するためになされたものであり、圧縮機のエネルギーを抑制して効率のよい運転が可能な空気調和装置を提供することを目的とする。
 本開示に係る空気調和装置は、圧縮機と、流路切替装置と、熱源側熱交換器と、少なくとも1つの中間熱交換器と、前記中間熱交換器にそれぞれ対応した膨張装置と、を有し、前記圧縮機と前記熱源側熱交換器と少なくとも1つの前記中間熱交換器との間で冷媒を循環させる冷媒回路と、少なくとも1つの前記中間熱交換器と、前記中間熱交換器のそれぞれに対応したポンプと、複数の利用側熱交換器と、を有し、少なくとも1つの前記中間熱交換器と前記複数の利用側熱交換器の少なくとも1つとの間で熱媒体を循環させる熱媒体回路と、前記熱媒体回路に接続され、補助熱交換器を有する補助回路と、を有し、前記補助熱交換器は、前記補助回路に流入した前記熱媒体を、二次熱媒体との熱交換により加熱又は冷却するものである。
 本開示に係る空気調和装置によれば、補助装置において二次熱媒体により加熱又は冷却された熱媒体の温熱又は冷熱が利用側熱交換器に供給されるため、圧縮機のエネルギーを過剰に消費することなく空気調和装置を効率よく運転することができる。
実施の形態1に係る空気調和装置が設けられた施設の概略図である。 実施の形態1に係る空気調和装置の回路構成を示す概略図である。 実施の形態1に係る空気調和装置の単独冷却全冷房運転における水の流れを示す概略図である。 実施の形態1に係る空気調和装置の補助冷却全冷房運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の補助冷却全冷房運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の単独冷却暖房主体運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の補助冷却暖房主体運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の単独冷却冷房主体運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の補助冷却冷房主体運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の全暖房運転における冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の暖房主体運転であって、補助装置を用いた運転モードを実施しない場合の冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の全冷房運転であって、補助装置を用いた運転モードを実施しない場合の冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の冷房主体運転であって、補助装置を用いた運転モードを実施しない場合の冷媒及び水の循環を示す概略図である。 実施の形態1に係る空気調和装置の空調空間温度と、放熱対象となる二次熱媒体温度と、補助装置の動作との関係を示すグラフである。 実施の形態1の変形例1に係る空気調和装置の補助装置を含む回路の概略図である。 実施の形態1の変形例2に係る空気調和装置の補助装置を含む回路の概略図である。 実施の形態1の変形例3に係る空気調和装置の補助装置を含む回路の概略図である。 実施の形態1の変形例4に係る空気調和装置の補助装置を含む回路の概略図である。 実施の形態2に係る空気調和装置の概略図である。 実施の形態2に係る空気調和装置の単独冷却運転における水の流れを示す概略図である。 実施の形態2に係る空気調和装置の補助冷却冷房運転における冷媒及び水の流れを示す概略図である。 実施の形態2に係る空気調和装置の全冷房運転における冷媒及び水の流れを示す概略図である。 実施の形態2に係る空気調和装置の全暖房運転における冷媒及び水の流れを示す概略図である。 実施の形態2に係る空気調和装置の冷却暖房運転における冷媒及び水の循環を示す概略図である。 実施の形態2の変形例に係る空気調和装置の概略図である。 実施の形態3に係る空気調和装置の回路構成を示す概略図である。 実施の形態3に係る空気調和装置の単独加熱全暖房運転における水の流れを示す図である。 実施の形態3に係る空気調和装置の補助加熱全暖房運転における冷媒及び水の循環を示す図である。 実施の形態3に係る空気調和装置の単独加熱暖房主体運転における冷媒及び水の循環を示す図である。 実施の形態3に係る空気調和装置の補助加熱冷房主体運転における冷媒及び水の循環を示す図である。 実施の形態3に係る空気調和装置の補助加熱暖房主体運転における冷媒及び水の循環を示す図である。 実施の形態3に係る空気調和装置の空調空間温度と、受熱対象となる二次熱媒体温度と、加熱装置の動作との関係を示すグラフである。 実施の形態3の変形例1に係る空気調和装置の概略図である。 実施の形態3の変形例2に係る空気調和装置の概略図である。 実施の形態3の変形例3に係る空気調和装置の概略図である。 実施の形態3の変形例4に係る空気調和装置の概略図である。 実施の形態4に係る空気調和装置の回路構成図である。 実施の形態4に係る空気調和装置の補助加熱全暖房運転における水の流れを示す図である。 実施の形態4に係る空気調和装置の単独加熱冷房運転における水の流れを示す図である。 実施の形態4の変形例に係る空気調和装置の概略図である。
 以下、実施の形態に係る空気調和装置100について図面を参照しながら説明する。なお、以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一、又は、これに相当するものであり、このことは明細書の全文において共通することとする。また、図中の符号における数字の後のアルファベットは説明の中で省略する場合がある。また、理解を容易にするために方向を表す、例えば、「上」、「下」、「右」、「左」、「前」、又は、「後」の用語を適宜用いる。ただし、方向を表す用語は、説明の便宜上の記載であって、装置、又は、部品の配置、及び、向きを限定するものではない。
 実施の形態1.
<空気調和装置の概要>
 図1は、実施の形態1に係る空気調和装置100が設けられた施設の概略図である。実施の形態1に係る空気調和装置100は、複数の部屋の何れかにおける室内温度が所定の値に達すると、当該部屋に配置された室内機3に設けられた利用側熱交換器35a~35d(図2参照)への熱媒体の供給を停止する構成である。すなわち、各室内機3は、室内機3の有するサーモスタットにより熱媒体の供給が停止される。
 また、実施の形態1に係る空気調和装置100は、室内温度が所定の値に達していなくても、例えば、ユーザからの指示に応じて、熱媒体の供給のみならず、各室内機3に設けられた図示せぬ送風装置が停止するように構成されている。従って、実施の形態1に係る空気調和装置100では、何れかの室内空気の温度が所定の値に達すると、当該室内に配置された室内機3のサーモスタットが停止する構成である。
 更に、実施の形態1に係る空気調和装置100は、例えば、ユーザからの停止指示により、停止モードに移行する構成である。また、実施の形態1に係る空気調和装置100は、熱源側の温度が、冷房運転が要求されている室内空間の温度よりも低い場合、補助装置15としての冷却装置を用いることで冷房運転中の消費電力を抑制する機能を備えている。
 空気調和装置100は、冷媒が流通し、熱源側の冷媒回路としての冷凍サイクルを構成する冷媒回路Aと、熱媒体が流通する熱媒体回路Bと、熱媒体回路Bに接続され、熱媒体を冷却する補助回路Cと、を含む(図2参照)。空気調和装置100は、運転態様として、室内機3毎に冷房運転及び暖房運転を選択することができる。ここで、全ての室内機3が冷房運転を行っている場合を、全冷房運転モードと称する。また、全ての室内機3が暖房運転を行っている場合を、全暖房運転モードと称する。また、一部の室内機3が冷房運転を行っており、他の一部の室内機3が暖房運転を行っている場合を、冷暖混合運転モードと称する。冷暖混合運転モードは、更に、冷房負荷が暖房負荷よりも大きい冷房主体運転モード、及び、暖房負荷が冷房負荷よりも大きい暖房主体運転モードを含む。
 図1に示すように、実施の形態1に係る空気調和装置100は、室外機1、室内機3、及び、室外機1と室内機3との間に配置された中継機2と、を備える。室外機1は、熱源機として機能する。中継機2では、熱源側の冷媒と、熱媒体との間で熱交換が行われる。室外機1と、中継機2とは、冷媒が流通する冷媒配管4により接続されている。中継機2と、室内機3のそれぞれとは、熱媒体が流通する熱媒体配管5により接続されている。室外機1で生成された温熱及び冷熱は、中継機2を介し、室内機3に搬送される。
 室外機1は、外部6に配置されている。外部6とは、例えば、施設などの建物9の外部6であって、建物9の屋上などである。室外機1は、複数の室内機3のそれぞれに、温熱又は冷熱を、中継機2を介して供給する。中継機2は、室外機1で生成された冷熱又は温熱を、複数の室内機3のそれぞれに伝達させる。中継機2は、室外機1及び室内機3とは別個に構成されている。中継機2は、室外機1が配置された外部6、及び、複数の室内機3が配置された室内7とは異なる空間8に配置されている。中継機2は、冷媒配管4により室外機1に接続され、熱媒体配管5により室内機3それぞれに接続されている。室内機3は、空調空間である室内7に暖房空気又は冷房空気を供給する。室内機3は、空調空間である室内7に暖房空気又は冷房空気を供給し得る場所、例えば、建物9の内部の部屋に配置されている。図1では、天井カセット型の室内機3が図示されているが、室内機3の設置の態様は、これに限定されない。
 補助装置15は、外部6に配置されている。外部6とは、上述のように、例えば、施設などの建物9の外部6であって、建物9の屋上などである。補助装置15は、中継機2を介し、室内機3に冷熱を供給する。補助装置15は、熱媒体配管61a及び熱媒体配管61bにより、中継機2に接続されている。補助装置15は、建物9の内部に設けられていてもよい。補助装置15は、水、又は、空気などを熱源とした冷熱を供給する構成でよい。補助装置15は、室外機1の構成の一部として設けられていてもよい。補助装置15は、例えば、外部6として以下の放熱対象に放熱することで冷熱を供給する構成である。
 ・川又は沼などに放熱する。
 ・ビルのエネルギーループに放熱する。
 ・水道水に放熱する。
 ・下水に放熱する。
 ・ボーリング孔掘に放熱する。
 ・土地に放熱する(地熱)。
 熱源側の冷媒は、冷媒配管4により室外機1から中継機2に流れる。熱源側の冷媒は、中継機2に設けられた後述の中間熱交換器25a、25b(図2参照)において、熱媒体と熱交換を行う。これにより、熱媒体が加熱又は冷却される。つまり、中間熱交換器25a、25bにおいて、冷媒により加熱または冷却された熱媒体は、温水又は冷水になり、熱媒体配管5を通り、後述のポンプ31a、31b(図2参照)により室内機3に搬送される。室内機3では、温水又は冷水により、室内7の暖房運転又は冷房運転が実施される。
 熱源側の冷媒は、例えば、R-22、又は、R―134a、などの単一冷媒、R-410A又はR-404Aなどの共沸混合冷媒、R―407Cなどの非共沸混合冷媒、CF、又は、二重結合を有するCF=CHを有する冷媒であって、地球温暖化係数の小さい冷媒でよい。また、熱源側の冷媒としては、これらの冷媒のいずれかを混合した冷媒、又は、CO、プロパンなどの自然冷媒を採用することもできる。
 熱媒体は、水、不凍液、水と不凍液との混合液、又は、水と耐食性添加物との混液でよい。実施の形態1の空気調和装置100では、熱媒体として水を用いた場合を例に説明している。
 図1に示すように、実施の形態1に係る空気調和装置100は、室外機1及び中継機2が2本の冷媒配管4で接続されている。また、中継機2と室内機3のそれぞれとは、2本の熱媒体配管5により接続されている。従って、空気調和装置100は、室外機1、中継機2、及び、室内機3のそれぞれのユニットが、冷媒配管4及び熱媒体配管5の2種類の配管で接続された構成であるため、構築が容易である。
 図1は、中継機2が、天井裏の空間8に配置された構成を例示している。空間8は、建物9の内部であって、室内7とは別の空間8である。中継機2は、天井裏に代えて、エレベータ等が配置された共有スペースに設けることもできる。図1では、室内機3が、天井カセット型として図示されているが、室内機3の構成は、これに限定されない。室内機3は、例えば、天井埋込型、又は、天吊り型であってもよく、暖房空気、又は、冷房空気を直接、又は、ダクトなどを介して間接的に室内7に供給することができればよい。
 図1は、室外機1が外部6に配置された構成を例示しているが、室外機1は、例えば、機械室等、換気機能を有する閉じられた空間に配置されていてもよい。室外機1は、排気ダクトなどにより排熱を外部6に排出することができれば、建物9の内部に設けられていてもよい。室外機1が、水冷却型の場合には、室外機1を建物9の内部に配置してもよい。このような場所に配置しても、特に問題は生じない。
 中継機2は、室外機1の近くに配置してもよい。中継機2を室外機1の近くに配置する場合、中継機2と室内機3とを接続する熱媒体配管5の長さを考慮するべきである。室内機3の台数が増大した場合、中継機2と室内機3との距離を抑制すると、熱媒体の搬送に要する力が低減し省エネの効果が得られる。室外機1、中継機2、及び、室内機3の数は、図1に例示した数に限定されず、室内機3が配置される建物9に応じて決定すればよい。
 複数の中継機2が室外機1に接続されている場合、複数の中継機2は、異なる場所に、例えば、事務所の共有スペース、又は、天井裏などに配置されていてもよい。複数の中継機2により、それぞれの中継機2が対応する室内機3を分けることで空調負荷を分担することができる。室内機3は、中継機2のポンプ31a、31b(図2参照)で熱媒体を搬送し得る距離、又は、階に配置されていればよい。従って、室内機3は、事務所の全ての場所に配置することができる。
 <空気調和装置の構成>
 図2は、実施の形態1に係る空気調和装置100の回路構成を示す概略図である。図2に示すように、室外機1及び中継機2は、中継機2の中間熱交換器25a及び中間熱交換器25bを介し、冷媒配管4により接続されている。空気調和装置100は、制御装置50により運転が制御されている。中継機2及び複数の室内機3a~3dは、中間熱交換器25aを介した熱媒体配管5aと、中間熱交換器25bを介した熱媒体配管5bと、が合流した熱媒体配管5により接続されている。補助装置15は、補助熱交換器25cを介して熱媒体配管61a及び熱媒体配管61bにより中継機2の熱媒体配管5aに接続されている。
 すなわち、中間熱交換器25a及び中間熱交換器25bは、冷媒配管4により搬送された熱源側の冷媒と、熱媒体配管5a、5bにより搬送された熱媒体とを熱交換させるものである。また、補助装置15の補助熱交換器25cは、熱媒体配管61a及び61bを流通する熱媒体と他の二次熱媒体との間で熱交換を行うものである。
 <室外機1の構成>
 室外機1は、それぞれ筐体に収容され、それぞれ冷媒配管4で接続された圧縮機10、第1流路切替装置11、熱源側熱交換器12、及び、アキュムレータ19を有する。第1流路切替装置11は、例えば、4方弁である。室外機1は、逆止弁13a~13dを有する。冷媒配管4は、第1接続冷媒配管4a及び第2接続冷媒配管4bを含む。第1接続冷媒配管4a、第2接続冷媒配管4b、及び、逆止弁13a~13dにより、熱源側の冷媒が、空気調和装置100の運転態様に関わらず、室外機1から中継機2に向かい、特定の方向に流れる。
 圧縮機10は、冷媒を吸入して圧縮し、高温及び高圧の冷媒を吐出し、冷媒回路Aに冷媒を循環させる。圧縮機10は、吐出側が第1流路切替装置11に接続され、吸入側がアキュムレータ19に接続されている。圧縮機10は、例えば、容量可変のインバータ圧縮機である。第1流路切替装置11は、全暖房運転、及び、暖房主体運転において、圧縮機10の吐出側と、逆止弁13dとが接続され、且つ、熱源側熱交換器12と、アキュムレータ19の吸入側とが接続されるように冷媒の流路を切り替える。第1流路切替装置11は、全冷房運転、及び、冷房主体運転において、圧縮機10の吐出側と、熱源側熱交換器12とが接続され、且つ、逆止弁13cと、アキュムレータ19の吸入側とが接続されるように冷媒の流路を切り替える。
 熱源側熱交換器12は、暖房運転において、蒸発器として機能し、冷房運転において、凝縮器として機能するものである。熱源側熱交換器12は、図示せぬ送風装置により供給される流体としての空気と、熱源側の冷媒との熱交換を行う。熱源側熱交換器12には、熱源側の冷媒が流通する。熱源側熱交換器12において、熱源側の冷媒は、蒸発して気化し、又は、凝縮して液化する。熱源側熱交換器12は、暖房運転において、逆止弁13bと、アキュムレータ19との間に接続される。熱源側熱交換器12は、冷房運転において、圧縮機10と、逆止弁13aとの間に接続される。熱源側熱交換器12は、例えば、冷媒が流通する伝熱管と、空気が流通するフィンとを有するプレートフィンチューブ熱交換器を採用し得る。
 アキュムレータ19は、冷媒回路Aで生じる余剰冷媒を溜めるものである。余剰冷媒は、例えば、暖房運転及び冷房運転における冷媒状態の相違によって生じる。また、余剰冷媒は、運転モードの遷移による運転状態の変化、例えば、暖房運転をしている室内機3a~3dの数の変化によって生じる。暖房運転では、アキュムレータ19は、熱源側熱交換器12と、圧縮機10の吸入側との間に接続される。冷房運転では、アキュムレータ19は、逆止弁13cと、圧縮機10の吸入側との間に接続される。
 逆止弁13aは、熱源側熱交換器12と、中継機2とを接続している冷媒配管4に設けられている。逆止弁13aは、熱源側の冷媒を、所定の方向、すなわち、室外機1から中継機2に向かう方向にのみ冷媒を流通させる。逆止弁13cは、中継機2と、第1流路切替装置11とを接続している冷媒配管4に設けられている。逆止弁13cは、熱源側の冷媒を、所定の方向、すなわち、中継機2から室外機1に向かう方向にのみ冷媒を流通させる。逆止弁13bは、第2接続冷媒配管4bに設けられている。逆止弁13bは、暖房運転において、中継機2から還流した熱源側の冷媒を、圧縮機10の吸入側に流入させる。逆止弁13dは、第1接続冷媒配管4aに設けられている。逆止弁13dは、暖房運転において、圧縮機10から吐出された熱源側の冷媒を、中継機2に流入させる。
 第1接続冷媒配管4aは、一端が、第1流路切替装置11と、逆止弁13cとを接続している冷媒配管4に接続されている。第1接続冷媒配管4aの他端は、逆止弁13aと、中継機2とを接続している冷媒配管4に接続されている。第2接続冷媒配管4bは、一端が、逆止弁13cと、中継機2とを接続している冷媒配管4に接続されている。第2接続冷媒配管4bの他端は、熱源側熱交換器12と、逆止弁13aとを接続している冷媒配管4に接続されている。
 図2で示す構成では、第1接続冷媒配管4a、第2接続冷媒配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられた例を示している。なお、第1接続冷媒配管4a、第2接続冷媒配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dは、必須の構成ではない。
 <室内機3a~3dの構成>
 室内機3a~3dは、それぞれ、筐体に利用側熱交換器35a~35dを有する。利用側熱交換器35a~35dは、それぞれ、熱媒体配管5を介し、熱媒体流量調整装置34a~34dに接続されるとともに、熱媒体配管5を介し、第2熱媒体流路切替装置33a~33dに接続されている。利用側熱交換器35a~35dは、それぞれ、図示せぬ送風装置から送風された空気と、熱媒体との熱交換を行い、暖房空気又は冷房空気を生成し、室内7に供給する。
 <中継機2の構成>
 中継機2は、中間熱交換器25a、25b、膨張装置26a、26b、開閉装置27、開閉装置29、第2流路切替装置28a、28b、ポンプ31a、31b、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33d、及び、熱媒体流量調整装置34a~34dを筐体に備える。中間熱交換器25aは、第1中間熱交換器の一例であり、中間熱交換器25bは、第2中間熱交換器の一例である。ポンプ31aは、第1ポンプの一例であり、ポンプ31bは、第2ポンプの一例である。
 中間熱交換器25a、25bは、凝縮器、又は、蒸発器として機能する。中間熱交換器25a、25bは、熱源側の冷媒が流通する冷媒流路と、熱媒体が流通する熱媒体流路とを有し、熱源側の冷媒と、熱媒体との間の熱交換を行う。中間熱交換器25a、25bは、室外機1において生成され、熱源側の冷媒に貯蓄された温熱エネルギー又は冷熱エネルギーを熱媒体に伝達させる。中間熱交換器25aは、膨張装置26aと、第2流路切替装置28aとの間に設けられている。中間熱交換器25aは、冷暖混合運転において、熱媒体を冷却する。従って、室外機1による冷房運転においては、中間熱交換器25aが蒸発器として機能し、熱源側の冷媒の冷熱エネルギーを熱媒体に伝達させる。中間熱交換器25bは、膨張装置26bと、第2流路切替装置28bとの間に設けられている。中間熱交換器25bは、冷暖混合運転において、熱媒体を加熱する。従って、室外機1による暖房運転においては、中間熱交換器25bが凝縮器として機能し、熱源側の冷媒の温熱エネルギーを熱媒体に伝達させる。
 膨張装置26a、26bは、それぞれ、減圧弁又は膨張弁として機能し、熱源側の冷媒を膨張させるものである。膨張装置26aは、中間熱交換器25aに対し、冷房運転時における熱源側の冷媒の流れ方向の上流側に配置されている。膨張装置26bは、中間熱交換器25bに対し、冷房運転時における熱源側の冷媒の流れ方向の上流側に配置されている。膨張装置26a、26bは、例えば、電磁膨張弁など、開度可変の膨張装置26a、26bでよい。
 開閉装置27及び開閉装置29は、例えば、通電により開閉する電磁弁などである。開閉装置27及び開閉装置29は、それぞれが設けられた回路を開閉する。開閉装置27及び開閉装置29は、運転モードに基づき開閉制御される。開閉装置27及び開閉装置29が制御されることで、熱源側の冷媒の流れ方向が変更される。開閉装置27は、室外機1と、中継機2とを接続している冷媒配管4であって、熱源側の冷媒が流入する側に設けられている。開閉装置29は、熱源側の冷媒が流入する側の冷媒配管4と、熱源側の冷媒が流出する側の冷媒配管4と、を接続しているバイパス冷媒配管20に設けられている。開閉装置27及び開閉装置29は、それぞれが設けられた冷媒配管4を開閉することができればよく、例えば、開閉制御が可能な電子膨張弁などでよい。
 第2流路切替装置28a、28bは、例えば、4方弁である。第2流路切替装置28a、28bは、熱源側の冷媒の流れ方向を変更し、中間熱交換器25a、25bを、運転モードに応じて凝縮器又は蒸発器として機能させる。第2流路切替装置28aは、中間熱交換器25aに対し、冷房運転時における熱源側の冷媒の流れ方向の下流側に配置されている。第2流路切替装置28bは、中間熱交換器25bに対し、冷房運転時における熱源側の冷媒の流れ方向の下流側に配置されている。
 ポンプ31a、31bは、熱媒体を熱媒体回路Bに循環させるものである。ポンプ31aは、中間熱交換器25aと、第2熱媒体流路切替装置33a~33dとを接続している熱媒体配管5に設けられている。ポンプ31bは、中間熱交換器25aと、第2熱媒体流路切替装置33a~33dとを接続している熱媒体配管5に設けられている。ポンプ31a、31bは、熱媒体の流量を室内機3a~3dの空調負荷に応じた流量にできるものであって、例えば、容量制御可能なポンプ31a、31bである。
 熱媒体が流通する熱媒体配管5は、中間熱交換器25aに接続された熱媒体配管5aと、中間熱交換器25bに接続された熱媒体配管5bとを含む。熱媒体配管5a、5bは、それぞれ、中継機2に接続された室内機3a~3dの数に応じた数に分岐している。中間熱交換器25aに接続された熱媒体配管5aと、中間熱交換器25bに接続された熱媒体配管5bとは、第1熱媒体流路切替装置32a~32d及び第2熱媒体流路切替装置33a~33dにおいて合流する。第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dは、後述の制御装置50により制御される。これにより、中間熱交換器25a、又は、中間熱交換器25bのいずれから利用側熱交換器35a~35dのそれぞれに熱媒体を流入させるかが決定される。
 第1熱媒体流路切替装置32a~32dは、対応する利用側熱交換器35a~35dの流出側が、中間熱交換器25aの流入側、又は、中間熱交換器25bの流入側のいずれかに接続されるように熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置32a~32dの数は、利用側熱交換器35a~35dの数に対応している。つまり、利用側熱交換器35a~35dの数が4であれば、第1熱媒体流路切替装置32a~32dの数は4である。第1熱媒体流路切替装置32a~32dは、熱媒体の流路がそれぞれ、中間熱交換器25aと、中間熱交換器25bと、熱媒体流量調整装置34a~34dと、に至るように三方向に接続された、例えば、三方弁である。第1熱媒体流路切替装置32a~32dは、対応する利用側熱交換器35a~35dの流出側の熱媒体の流路に配置されている。
 図2において、第1熱媒体流路切替装置32aと、第1熱媒体流路切替装置32bと、第1熱媒体流路切替装置32cと、第1熱媒体流路切替装置32dとは、紙面の上から下側にこの順番で対応する利用側熱交換器35a~35dの流出側に配置されている。第1熱媒体流路切替装置32aと、第1熱媒体流路切替装置32bと、第1熱媒体流路切替装置32cと、第1熱媒体流路切替装置32dとは、それぞれ、対応する利用側熱交換器35a~35dが設けられた室内機3a~3dに収容されている。それぞれの熱媒体の流路は、完全に切り替えられる構成であってもよく、部分的に切り替えられる構成であってもよい。
 第2熱媒体流路切替装置33a~33dは、対応する利用側熱交換器35a~35dの流入側が、中間熱交換器25aの流出側、又は、中間熱交換器25bの流出側のいずれかに接続されるように熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置33a~33dの数は、利用側熱交換器35a~35dの数に対応している。つまり、利用側熱交換器35a~35dの数が4であれば、第2熱媒体流路切替装置33a~33dの数は4である。第2熱媒体流路切替装置33a~33dは、熱媒体の流路がそれぞれ、中間熱交換器25aと、中間熱交換器25bと、対応する利用側熱交換器35a~35dと、に至るように三方向に接続された、例えば、三方弁である。第2熱媒体流路切替装置33a~33dは、対応する利用側熱交換器35a~35dの流入側の熱媒体の流路に配置されている。
 図2において、第2熱媒体流路切替装置33aと、第2熱媒体流路切替装置33bと、第2熱媒体流路切替装置33cと、第2熱媒体流路切替装置33dとは、紙面の上から下側にこの順番で対応する利用側熱交換器35a~35dの流入側に配置されている。第2熱媒体流路切替装置33aと、第2熱媒体流路切替装置33bと、第2熱媒体流路切替装置33cと、第2熱媒体流路切替装置33dとは、それぞれ、対応する利用側熱交換器35a~35dが設けられた室内機3a~3dに収容されている。それぞれの熱媒体の流路は、完全に切り替えられる構成であってもよく、部分的に切り替えられる構成であってもよい。
 熱媒体流量調整装置34a~34dは、流量制御が可能な、例えば、2方弁であり、対応する熱媒体配管5における熱媒体の流量を調整するものである。熱媒体流量調整装置34a~34dの数は、利用側熱交換器35a~35dの数に対応している。利用側熱交換器35a~35dの数が4であれば、熱媒体流量調整装置34a~34dの数は4である。熱媒体流量調整装置34a~34dは、一方が、対応する利用側熱交換器35a~35dに接続されており、他方が、対応する第1熱媒体流路切替装置32a~32dに接続されている。熱媒体流量調整装置34a~34dは、対応する利用側熱交換器35a~35dの流出側の熱媒体の流路に設けられている。熱媒体流量調整装置34a~34dは、室内機3a~3dに流入する熱媒体の温度と、室内機3a~3dから流出する熱媒体の温度と、に基づき熱媒体の流量を、対応する室内機3a~3dの空調負荷に最適となるように調整するように構成されている。
 図2において、熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34c、及び、熱媒体流量調整装置34dは、紙面の上から下側にこの順番でそれぞれの室内機3a~3dに収容されている。熱媒体流量調整装置34a~34dは、対応する利用側熱交換器35a~35dの流出側に代えて、対応する利用側熱交換器35a~35dの流入側に配置されていてもよい。熱媒体流量調整装置34a~34dは、対応する利用側熱交換器35a~35dの流入側であって、対応する利用側熱交換器35a~35dと、第2熱媒体流路切替装置33a~33dとの間に配置されていてもよい。空調負荷が要求されていない場合、例えば、室内機3a~3dが停止モードである場合、又は、室内機3a~3dのサーモスタットがオフになっている場合には、熱媒体流量調整装置34a~34dが全閉となる構成であるとよい。そのような構成であると、室内機3a~3dへの熱媒体の供給を停止することができる。
 第1熱媒体流路切替装置32a~32d、又は、第2熱媒体流路切替装置33a~33dは、熱媒体流量調整装置34a~34dと同様の機能を有する構成であってもよい。この場合、熱媒体流量調整装置34a~34dを構成から除外してもよい。
 中継機2は、対応する中間熱交換器25a、25bの出口における熱媒体の温度を検出する温度センサ40a、40bを有する。温度センサ40a、40bにより検出された温度情報は、制御装置50に送信される。温度情報は、圧縮機10の運転周波数、図示せぬ送風装置の回転数、第1流路切替装置11の切替動作、ポンプ31a、31bの運転周波数、第2流路切替装置28a、28bの切替動作、熱媒体の流路の切替動作、及び、室内機3a~3dにおける熱媒体の流量の制御などに用いられる。熱媒体の流路の切替動作は、すなわち、第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dの切替動作である。
 温度センサ40a、40bは、それぞれ対応する中間熱交換器25a、25bから流出した熱媒体の温度を検出する。つまり、温度センサ40a、40bは、それぞれ対応する中間熱交換器25a、25bの出口における熱媒体の温度を検出する。温度センサ40aは、熱媒体配管5のうち、ポンプ31aの熱媒体吸入側に接続された熱媒体配管5aに設けられている。温度センサ40bは、熱媒体配管5のうち、ポンプ31bの熱媒体吸入側に接続された熱媒体配管5bに設けられている。温度センサ40a、40bは、例えば、サーミスタである。
 制御装置50は、例えば、中継機2に配置されている。制御装置50の配置位置は、中継機2に限定されない。制御装置50は、室外機1、中継機2、又は、室内機3a~3dのいずれかに配置されていればよく、室外機1、中継機2、及び、全ての室内機3a~3dに配置されていてもよい。室外機1、中継機2、又は、室内機3a~3dに設けられた制御装置50は、他の室外機1、中継機2、又は、室内機3a~3dに設けられた制御装置50と通信可能な構成であってもよい。
 制御装置50は、例えば、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)により構成されている。制御装置50は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)等により構成されたメモリを有している。制御装置50は、メモリ格納されたプログラムにより処理を実現する。
 制御装置50は、空気調和装置100に設けられた検出装置、例えば、温度センサ40a、40bによる検出結果及びリモコンからの指示に基づき、以下の制御を行う。
 ・圧縮機10の運転周波数
 ・図示せぬ送風装置のオン状態及びオフ状態を含む回転数
 ・第1流路切替装置11の切替動作
 ・ポンプ31a、31bの運転周波数
 ・膨張装置26a、26bの開度
 ・第2流路切替装置28a、28bの切替動作
 ・第1熱媒体流路切替装置32a~32dの切替動作
 ・第2熱媒体流路切替装置33a~33dの切替動作
 ・熱媒体流量調整装置34a~34dの動作
 ・開閉装置27及び開閉装置29の開閉動作
 ・後述する熱媒体流路開閉装置36の開閉動作
 すなわち、制御装置50は、空気調和装置100の構成要素に設けられた検出装置又はリモコンからの指示に基づき、各種アクチュエータを制御し、冷媒の流路、及び、熱媒体の流路の接続を切替えて、異なる動作態様を実現する。
 <補助装置15の構成>
 補助装置15は、筐体に補助熱交換器25cを備える。補助熱交換器25cは、熱媒体配管5aから熱媒体配管61bを介して流入した熱媒体と、補助装置15内であって放熱対象となる補助熱交換器25c周囲の二次熱媒体との間での熱交換を行い、熱媒体配管61bを流通する熱媒体から放熱する。つまり、補助装置15は、冷媒を用いず、二次熱媒体により熱媒体を冷却するものである。補助熱交換器25cは、例えば、熱媒体が流通する伝熱管と、空気が流通するフィンとを有するプレートフィンチューブ熱交換器である。この場合、放熱対象となる二次熱媒体は、補助装置15が配置された空間の空気、例えば、外気である。補助装置15は、図示せぬ送風装置を備えていてもよい。補助熱交換器25cは、放熱対象となる二次熱媒体が空気でない場合、水冷式熱交換器であってもよい。
 補助装置15は、補助温度センサ40cを備えていてもよい。補助温度センサ40cの検出値は、制御装置50に送信される。補助温度センサ40cは、補助熱交換器25cの出口側に配置されているとよい。補助装置15における放熱量は、補助温度センサ40c、又は、温度センサ40aの検出値を用いて制御することができる。放熱量は、例えば、動作モードに応じた送風装置からの風量、熱媒体流路開閉装置36又はポンプ31aによる流量制御、又は、それらの組み合わせにより制御することができる。放熱量の制御方法は、特に限定されず、他の公知の方法も採用できる。
 補助装置15は、補助回路Cを構成する熱媒体配管61a及び61bにより熱媒体回路Bに接続されている。熱媒体配管61bは、一端が補助熱交換器25cの上流側に接続され、他端が熱媒体流路開閉装置36と第1熱媒体流路切替装置32a~32dとを接続している熱媒体配管5aに接続されている。熱媒体配管61aは、一端が補助熱交換器25cの下流側に接続され、他端が熱媒体流路開閉装置36と中間熱交換器25aとを接続している熱媒体配管5aに接続されている。
 熱媒体配管61aの他端が接続された位置と、熱媒体配管61bの他端が接続された位置との間を接続する熱媒体配管5aは、補助回路Cをバイパスするバイパス熱媒体回路60として機能する。バイパス熱媒体回路60は、熱媒体回路Bの一部である。バイパス熱媒体回路60には、熱媒体流路開閉装置36が設けられている。熱媒体流路開閉装置36は、中継機2の熱媒体回路Bに配置されている。熱媒体流路開閉装置36は、例えば、2方弁であって、バイパス熱媒体回路60を開閉するものである。熱媒体流路開閉装置36は、第1熱媒体流路切替装置32a~32dから流れる熱媒体を、補助装置15、又は、中間熱交換器25aの方向に流通させる3方弁の構成であってもよい。熱媒体流路開閉装置36は、第1熱媒体流路切替装置32a~32d、又は、補助装置15から流れる熱媒体を、中間熱交換器25aに流入させる3方弁であってもよい。熱媒体流路開閉装置36は、例えば、3方弁である場合、接続部分のうちの2つは、バイパス熱媒体回路60及び熱媒体配管5aに接続される。接続部分のうちの他の1つは、熱媒体配管61aの他端、又は、熱媒体配管61bの他端に接続される。
 圧縮機10、第1流路切替装置11、熱源側熱交換器12、開閉装置27、開閉装置29、第2流路切替装置28a、28b、中間熱交換器25a、25bの冷媒流路、膨張装置26a、26b、及び、アキュムレータ19は、冷媒配管4により接続されている。冷媒配管4により、冷媒回路Aが構成されている。中間熱交換器25a、25bの熱媒体流路、ポンプ31a、31b、第1熱媒体流路切替装置32a~32d、熱媒体流量調整装置34a~34d、利用側熱交換器35a~35d、及び、第2熱媒体流路切替装置33a~33dは、熱媒体配管5で接続されている。熱媒体配管5により、熱媒体回路Bが構成されている。熱媒体回路Bは、複数の利用側熱交換器35a~35dがそれぞれ、中間熱交換器25a、25bに並列に接続されることで、複数のシステムを含む構成になっている。更に、熱媒体回路Bには、補助回路Cが接続され、補助熱交換器25cが、中間熱交換器25aが接続された熱媒体配管5aに直列に接続されている。
 空気調和装置100においては、室外機1及び中継機2が、中継機2の中間熱交換器25a、25bを介し冷媒回路Aにより接続され、且つ、中継機2及び室内機3a~3dが、中継機2の中間熱交換器25a、25bを介し熱媒体回路Bにより接続されている。空気調和装置100は、中間熱交換器25a、25bにおいて、冷媒回路Aを循環する熱源側の冷媒と、熱媒体回路Bを循環する熱媒体とが熱交換を行う構成である。空気調和装置100は、このような構成により、空調負荷に応じた冷房運転又は暖房運転を実現している。
 なお、上記では補助装置 15として二次熱媒体に放熱する冷却装置である場合について説明しているが、補助装置15は、二次熱媒体から受熱する加熱装置16(図26参照)であってもよい。つまり、補助装置15が加熱装置16である場合、補助装置15は、補助熱交換器25cを流通する熱媒体が、周囲の二次熱媒体から受熱する構成であってもよい。また、補助装置15は、例えば、ガスボイラーなど熱湯を熱源として受熱する加熱装置16であってもよい。また、空気調和装置100は、補助回路Cに補助装置15を備えるとともに、熱媒体を加熱する加熱装置16(図36参照)を備えた構成であってもよい。これにより、補助装置15としての冷却装置で生成された冷熱により冷却運転が実施され、加熱装置16で生成された熱により加熱運転が実施される。以下では、補助回路Cの補助装置15により二次熱媒体としての空気に放熱する構成を例に説明する。
 <空気調和装置の運転態様>
 空気調和装置100において実施される運転モードは、全暖房運転、全冷房運転、暖房主体運転、及び、冷房主体運転を含む。全暖房運転は、全ての室内機3a~3dが暖房運転を行うモードである。全冷房運転は、全ての室内機3a~3dが冷房運転を行うモードである。暖房主体運転は、暖房運転及び冷房運転を行うモードであって、暖房負荷が冷房負荷よりも大きい場合のモードである。冷房主体運転は、暖房運転及び冷房運転を行うモードであって、冷房負荷が暖房負荷よりも大きい場合のモードである。これらの運転モードは、例えば、制御装置50の制御により実施される。これらの運転モードは、第1流路切替装置11、第2流路切替装置28a、28b、第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dの切り替え、及び、開閉装置27及び開閉装置29の開閉の組み合わせにより実現される。
 <補助装置15の運転態様>
 空気調和装置100において、補助装置15を用いた運転モードは、単独冷却及び補助冷却を含む。補助装置15を用いた運転モードは、制御装置50の制御により実施される。補助装置15を用いた運転モードは、利用側熱交換器35a~35dの何れかにおいて冷房運転が要求されている場合に実施されるモードである。補助装置15を用いた運転モードでは、補助回路Cが、利用側熱交換器35a~35dのうち、冷房運転が要求されている利用側熱交換器35a~35dに接続される。補助装置15を用いた運転モードでは、補助熱交換器25cで冷却された熱媒体が、利用側熱交換器35a~35dのうち、冷房運転が要求されている利用側熱交換器35a~35dに流入する。
 補助装置15を用いた運転モードのうち、単独冷却は、補助熱交換器25cにおける放熱により生成された冷熱が、室内機3a~3dの利用側熱交換器35a~35dに移送されることで実施されるモードである。すなわち、単独冷却では、補助熱交換器25cにおいて冷却された熱媒体が、冷房運転が要求されている利用側熱交換器35a~35dに供給される。単独冷却では、中間熱交換器25aにおいて冷熱の追加が行われない。つまり、単独冷却では、補助熱交換器25において冷媒を用いず、二次熱媒体により冷却された熱媒体が利用側熱交換器35a~35dに供給される。また、補助冷却は、補助熱交換器25cで生成された冷熱に加え、中間熱交換器25a、又は、中間熱交換器25a及び中間熱交換器25bで生成された冷熱が、室内機3a~3dの利用側熱交換器35a~35dに移送されることで実施されるモードである。すなわち、補助冷却では、補助熱交換器25cにおいて冷媒を用いず、二次熱媒体により冷却された熱媒体が、中間熱交換器25a、又は、中間熱交換器25a及び中間熱交換器25bに流入する構成である。そして、熱媒体は、中間熱交換器25a、又は、中間熱交換器25a及び中間熱交換器25bにおいて冷媒回路Aを流通する冷媒により、更に冷却されて、冷房運転が要求されている利用側熱交換器35a~35dに供給される。
 補助装置15による運転モードは、空気調和装置100の全冷房運転、冷房主体運転、又は、暖房主体運転のいずれかと組み合わせて用いることができる。従って、空気調和装置100は、単独冷却全冷房運転、補助冷却全冷房運転、全暖房運転、単独冷却暖房主体運転、補助冷却暖房主体運転、又は、補助冷却冷房主体運転を実施する。また、空気調和装置100は、補助装置15による冷却を行わない全暖房運転、全冷房運転、暖房主体運転、及び、冷房主体運転を実施する。
 <単独冷却全冷房運転>
 図3は、実施の形態1に係る空気調和装置100の単独冷却全冷房運転における水の流れを示す概略図である。図3において、破線矢印は、熱媒体の流れ方向を示している。図3において、利用側熱交換器35a~35dは、全て、冷房負荷を有する。つまり、室内機3a~3dは、全て、冷房運転を実施している。単独冷却全冷房運転では、冷房運転が要求されている利用側熱交換器35a~35dの全てが補助回路Cに接続され、補助装置15で生成された全ての冷熱が利用側熱交換器35a~35dに供給される。単独冷却全冷房運転では、冷熱の生成に冷媒回路Aが利用されない。そのため、冷媒回路Aにおける圧縮機10を含む要素の動作は任意である。
 中継機2において、制御装置50の制御により、ポンプ31aが動作し、熱媒体流量調整装置34a~34dが開となって、熱媒体が、中間熱交換器25aと、利用側熱交換器35a~35dとの間を循環する。熱媒体流路開閉装置36は、制御装置50の制御により、閉となり、熱媒体がバイパス熱媒体回路60を流れない。従って、ポンプ31aにより搬送された熱媒体は、補助回路Cを循環する。
 熱媒体回路Bにおける熱媒体の流れについて説明する。単独冷却全冷房運転において、熱媒体は、補助回路Cを流通して補助装置15において冷却され、ポンプ31aの駆動により、熱媒体回路Bを構成する熱媒体配管5に流入する。熱媒体は、ポンプ31aからの圧力により、第2熱媒体流路切替装置33a~33dを通って、冷房運転が要求されている利用側熱交換器35a~35dに到達する。そして、熱媒体は、第2熱媒体流路切替装置33a~33dにおいて室内空気に冷熱を伝達し、室内7を冷却する。
 その後、熱媒体は、利用側熱交換器35a~35dから流出し、熱媒体流量調整装置34a~34dに流入する。熱媒体流量調整装置34a~34dは、それぞれの部屋で要求された空調負荷に応じた流量で熱媒体が流れるよう、熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、分岐して補助装置15に流入する。熱媒体配管61bを流通した熱媒体は、補助熱交換器25cにおいて冷却され、中間熱交換器25aに流入し、再びポンプ31aに吸い込まれる。
 このように、冷房運転が要求されている利用側熱交換器35a~35dは、熱媒体回路Bを介して、補助回路Cに接続される。これにより、補助装置15の補助熱交換器25cで、冷媒を用いずに生成された冷熱が利用側熱交換器35a~35dに供給されて、冷房運転が実施される。そのため、冷媒回路Aで冷熱を生成することが不要となり、室外機1を動作させることなく要求された冷却を行うことができる。
 <補助冷却全冷房運転>
 図4及び図5は、実施の形態1に係る空気調和装置100の補助冷却全冷房運転における冷媒及び水の循環を示す概略図である。図4及び図5において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図4及び図5において、利用側熱交換器35a~35dは、全て、冷房負荷を有する。つまり、室内機3a~3dは、全て、冷房運転を実施している。
 冷媒回路Aにおける熱源側の冷媒の流れを説明する。圧縮機10から吐出された高温及び高圧の冷媒は、第1流路切替装置11を通り、熱源側熱交換器12に流入し、外気と熱交換を行い、高温及び高圧の液冷媒、又は、二相冷媒となる。その後、高温及び高圧の液冷媒、又は、二相冷媒は、逆止弁13aを通り、室外機1から流出する。室外機1から流出した高温及び高圧の液冷媒、又は、二相冷媒は、中継機2の冷媒配管4に流入する。高温及び高圧の液冷媒、又は、二相冷媒は、開閉装置27を通り、膨張装置26aにより膨張され、低温及び低圧の二相冷媒となって、中間熱交換器25aに流入する。中間熱交換器25aに流入した低温及び低圧の二相冷媒は、熱媒体から受熱して気化し、低温のガス冷媒となる。ガス冷媒は、第2流路切替装置28a及び冷媒配管4を通り、再び、室外機1に流入する。図4において、冷熱は、補助装置15及び中間熱交換器25aから供給されるとともに、中間熱交換器25bからも供給される構成である。また、冷熱は、図5に示すように、補助装置15及び中間熱交換器25aから供給されるだけでもよい。この場合、膨張装置26bは、全閉であり、中間熱交換器25bに冷媒及び熱媒体が通っていない。
 中継機2では、制御装置50の制御により、ポンプ31aが駆動し、熱媒体流量調整装置34a~34dが開となって、熱媒体が中間熱交換器24a及び中間熱交換器25bと、利用側熱交換器35a~35dと、の間を流通する。ポンプ31bは、駆動していなくてもよい。熱媒体流路開閉装置36は、制御装置50の制御により、閉となっており、バイパス熱媒体回路60を流れない。ポンプ31aにより搬送された熱媒体は、補助装置15を循環する。
 熱媒体回路Bにおける熱媒体の流れを説明する。補助冷却冷房運転では、熱媒体は、熱媒体流路開閉装置36が閉となることで、補助装置15に流入する。熱媒体は、補助回路Cを流通し、補助装置15において冷却され、ポンプ31aの駆動により、熱媒体回路Bを構成する熱媒体配管5に流入する。
 補助回路Cを流通した熱媒体は、ポンプ31aにより搬送されて中間熱交換器25aに流入し、中間熱交換器25aにおいて、膨張された冷媒から冷熱エネルギーの供給を受け、更に冷却される。熱媒体は、中間熱交換器25aから流出し、第2熱媒体流路切替装置33a~33dに流入し、冷房負荷を有する利用側熱交換器35a~35dに流入する。室内機3a~3dの全てが冷房運転を行っているため、ポンプ31aが駆動し、熱媒体流量調整装置34a~34dが開となる。第2熱媒体流路切替装置33a~33dは、ポンプ31aにより搬送された熱媒体が利用側熱交換器35a~35dに流入するように切り替えられる。第1熱媒体流路切替装置32a~32dは、熱媒体流量調整装置34a~34dから搬送された熱媒体が、補助装置15に流入するように切り替えられる。従って、熱媒体は、補助装置15と、中間熱交換器25aと、利用側熱交換器35a~35dとの間を循環する。
 このように、冷房運転が要求されている利用側熱交換器35a~35dには、補助装置15で、冷媒を用いず、二次熱媒体により冷却された熱媒体が、中間熱交換器25bで、冷媒を用いて更に冷却されて供給されるように構成されている。そのため、補助回路Cと、冷媒回路Aとの双方で冷熱が生成され、冷房運転が実施される。
 <単独冷却暖房主体運転>
 図6は、実施の形態1に係る空気調和装置100の単独冷却暖房主体運転における冷媒及び水の循環を示す概略図である。図6において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図6において、利用側熱交換器35a、35b、及び、35dは、暖房負荷を有し、利用側熱交換器35cは、冷房負荷を有する。つまり、室内機3a、3b、及び、3dは、暖房運転を実施し、室内機3cは、冷房運転を実施している。
 冷媒回路Aにおける熱媒体側の冷媒の流れについて説明する。単独冷却暖房主体運転では、室外機1の第1流路切替装置11は、圧縮機10から吐出された熱源側の冷媒は、熱源側熱交換器12に流入することなく中継機2に流入する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となって吐出される。高温及び高圧のガス冷媒は、圧縮機10から吐出されると、第1流路切替装置11から第1接続冷媒配管4aを通って、室外機1から流出する。高温及び高圧のガス冷媒は、室外機1から中継機2の冷媒配管4に流入する。中継機2に流入した高温及び高圧のガス冷媒は、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。液冷媒は、中間熱交換器25bを流出すると、膨張装置26bにおいて膨張されて低圧の二相冷媒となる。開閉装置27は、閉であり、開閉装置29は、開であって、膨張装置26aは、閉になっている。低圧の二相冷媒は、膨張装置26bから流出すると、開閉装置29を流通し、冷媒配管4を通り、室外機1に再度流入する。
 室外機1において、低圧の二相冷媒は、蒸発器として機能している熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12の外気と熱交換し、低温及び低圧の冷媒に変化する。低温及び低圧となった冷媒は、熱源側熱交換器12から流出し、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れを説明する。
 熱媒体の一部は、暖房運転に使用される。単独冷却を暖房運転とともに行う単独冷却暖房運転では、室内機3a~3dのいずれかが暖房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体流量調整装置34a、34b、及び、33dが開となる。第2熱媒体流路切替装置33a、33b、及び、33dは、制御装置50により、熱媒体がポンプ31bから利用側熱交換器35a、35b、及び、35dに供給されるように切り替えられる。第1熱媒体流路切替装置32a、32b、及び、32dは、制御装置50により、熱媒体流量調整装置34a、34b、及び、34dから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。
 熱源側の冷媒から供給される温熱ネルギーは、中間熱交換器25bにおいて熱媒体に伝達され、これにより、熱媒体が加熱され、ポンプ31bの駆動によって熱媒体配管5を流通する。ポンプ31bから流出した熱媒体は、第2熱媒体流路切替装置33a、33b、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35a、35b、及び、35dとの間を循環する。
 熱媒体の他の一部は、単独冷却に使用される。単独冷却暖房運転では、室内機3a~3dのいずれかが冷房運転を行うため、制御装置50により、ポンプ31aが駆動し、熱媒体流量調整装置34bが開となる。第2熱媒体流路切替装置33bは、制御装置50により、ポンプ31aにより搬送された熱媒体が利用側熱交換器35bに流入するように切り替えられる。第1熱媒体流路切替装置32bは、制御装置50により、熱媒体流量調整装置34bから搬送された熱媒体が、補助装置15に流入するように切り替えられる。
 熱媒体は、熱媒体流路開閉装置36が閉となることで、補助装置15に流入する。熱媒体は、補助熱交換器25cにおいて放熱の対象となる媒体の冷熱エネルギーにより冷却される。冷却された熱媒体は、ポンプ31aの駆動により熱媒体配管61bを介し、熱媒体配管5aを流通する。熱媒体は、第2熱媒体流路切替装置33bを介し、冷房負荷を有する利用側熱交換器35bに流入する。従って、熱媒体は、補助装置15と、利用側熱交換器35bとの間を循環する。
 このように、補助熱交換器25cにおいて冷媒を用いず、二次熱媒体により冷却された熱媒体が、利用側熱交換器35bに供給されて冷房運転が実施される。また、冷媒回路Aで冷媒を用いて加熱された熱媒体が、利用側熱交換器35a、35b、及び、35dに供給されて暖房運転が実施される。これにより、室外機1による暖房運転と、補助装置15による冷房運転とが実現される。
 <補助冷却暖房主体運転>
 図7は、実施の形態1に係る空気調和装置100の補助冷却暖房主体運転における冷媒及び水の循環を示す概略図である。図7において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図7において、利用側熱交換器35a、35b、及び、35dは、暖房負荷を有し、利用側熱交換器35cは、冷房負荷を有する。つまり、室内機3a、3b、及び、3dは、暖房運転を実施し、室内機3cは、冷房運転を実施している。
 冷媒回路Aにおける熱源側の冷媒の流れについて説明する。単独冷却暖房主体運転では、室外機1の第1流路切替装置11は、圧縮機10から吐出された熱源側の冷媒は、熱源側熱交換器12に流入することなく中継機2に流入する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となって吐出される。高温及び高圧のガス冷媒は、圧縮機10から吐出されると、第1流路切替装置11から第1接続冷媒配管4aを通って、室外機1から流出する。高温及び高圧のガス冷媒は、室外機1から中継機2の冷媒配管4に流入する。中継機2に流入した高温及び高圧のガス冷媒は、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bに流入すると、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。中間熱交換器25bから流出した液冷媒は、膨張装置26bにおいて膨張されて低圧の二相冷媒となる。開閉装置27は、閉であり、開閉装置29は、開であって、膨張装置26aは、閉になっている。低圧の二相冷媒は、膨張装置26bから流出すると、膨張装置26aを流通し、蒸発器として機能している中間熱交換器25aに流入する。中間熱交換器25aに流入した低圧の二相冷媒は、熱媒体回路Bを循環する熱媒体から受熱し、蒸発する。これにより、熱媒体が冷却される。低温及び低圧となった二相冷媒は、中間熱交換器25aから流出し、第2流路切替装置28aを通り、中継機2から流出する。中継機2から流出した低温及び低圧となった二相冷媒は、冷媒配管4を通り、室外機1に再び流入する。
 低温及び低圧となった二相冷媒は、室外機1に流入すると、第2接続冷媒配管4bを介し、蒸発器として機能する熱源側熱交換器12に流入する。低温及び低圧となった二相冷媒は、熱源側熱交換器12において、熱源側熱交換器12の外気から受熱し、低温及び低圧のガス冷媒となる。熱源側熱交換器12において低温及び低圧のガス冷媒は、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。補助冷却暖房主体運転では、室内機3a~3dのいずれかが暖房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体流量調整装置34a、34b、及び、33dが開となる。第2熱媒体流路切替装置33a、33b、及び、33dは、制御装置50により、熱媒体がポンプ31bから利用側熱交換器35a、35b、及び、35dに供給されるように切替られる。第1熱媒体流路切替装置32a、32b、及び、32dは、制御装置50により、熱媒体流量調整装置34a、34b、及び、33dから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。
 熱媒体の一部は、暖房運転に使用される。熱源側の冷媒から供給される温熱エネルギーが、中間熱交換器25bにおいて、熱媒体に伝達され、これにより熱媒体が加熱され、ポンプ31bの駆動によって熱媒体配管5を流通する。ポンプ31bから流出した熱媒体は、第2熱媒体流路切替装置33a、33b、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35a、35b、及び、35dとの間を循環する。
 熱媒体の他の一部は、補助冷却に使用される。補助冷却暖房主体運転では、冷熱は、補助装置15の補助熱交換器25cにおいて熱媒体に伝達されて熱媒体が冷却される。冷却された熱媒体は、ポンプ31aの駆動により、熱媒体配管5aを流通する。熱媒体は、熱媒体流路開閉装置36が閉となることで、補助装置15に流入する。熱媒体は、ポンプ31aにより搬送されて中間熱交換器25aに流入し、中間熱交換器25aにおいて、膨張された冷媒から冷熱エネルギーの供給を受けた後、第2熱媒体流路切替装置33bを介し、冷房負荷を有する利用側熱交換器35bに流入する。室内機3a~3dのいずれかが冷房運転を行っているため、ポンプ31aが駆動し、熱媒体流量調整装置34bが開となる。第2熱媒体流路切替装置33bは、ポンプ31aにより搬送された熱媒体が利用側熱交換器35bに流入するように切り替えられる。第1熱媒体流路切替装置32bは、熱媒体流量調整装置34bから搬送された熱媒体が、補助装置15に流入するように切り替えられる。従って、熱媒体は、補助装置15と、利用側熱交換器35bとの間を循環する。
 このように、補助熱交換器25cにおいて冷媒を用いず、二次熱媒体により冷却され、更に、中間熱交換器25aにおいて冷媒を用いて冷却された熱媒体は、利用側熱交換器35bに供給されて冷房運転が実施される。また、冷媒回路Aで冷媒を用いて加熱された熱媒体は、利用側熱交換器35a、35b、及び、35dに供給され、暖房運転が実施される。これにより、室外機1による暖房運転と、室外機1、及び、補助装置15による冷房運転とが実現される。
 <単独冷却冷房主体運転>
 図8は、実施の形態1に係る空気調和装置100の単独冷却冷房主体運転における冷媒及び水の循環を示す概略図である。単独冷却冷房主体運転における冷媒及び水の循環は、単独冷却暖房主体運転と同じであるため、説明を割愛する。ただし、室内7における冷房負荷が、室内7における暖房負荷よりも大きい点で相違している。
 これにより、室外機1による暖房運転と、補助装置15による冷房運転とが実現される。
 <補助冷却冷房主体運転>
 図9は、実施の形態1に係る空気調和装置100の補助冷却冷房主体運転における冷媒及び水の循環を示す概略図である。図9において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図9において、利用側熱交換器35bは、暖房負荷を有し、利用側熱交換器35a、35c、及び、35dは、冷房負荷を有する。つまり、室内機3bは、暖房運転を実施し、室内機3a、3c、及び、3dは、冷房運転を実施している。
 冷媒回路Aにおける熱源側の冷媒の流れについて説明する。補助冷却冷房主体運転では、圧縮機10で圧縮され、高温及び高圧となったガス冷媒が、第1流路切替装置11を介し、熱源側熱交換器12に流入し、熱源側熱交換器12の外気と熱交換して高温及び高圧の液冷媒、又は、二相冷媒となる。高温及び高圧の液冷媒、又は、二相冷媒は、室外機1から流出し、冷媒配管4を通って中継機2に流入する。高温及び高圧の液冷媒、又は、二相冷媒は、中継機2に流入すると、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 高温及び高圧の液冷媒、又は、二相冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを流通する熱媒体に熱を伝達し、凝縮して液化し、液冷媒となる。中間熱交換器25bから流出した液冷媒は、膨張装置26bにおいて膨張され、低圧の二相冷媒となる。開閉装置27、及び、開閉装置29は、閉であって、膨張装置26aは、開になっている。低圧の二相冷媒は、膨張装置26bから流出すると、膨張装置26aを流通し、蒸発器として機能している中間熱交換器25aに流入する。中間熱交換器25aに流入した低圧の二相冷媒は、熱媒体回路Bを循環する熱媒体から受熱し、蒸発する。これにより、熱媒体が冷却される。中間熱交換器25aにおいて低温及び低圧となったガス冷媒は、第2流路切替装置28aを通り、中継機2から流出する。中継機2から流出した低温及び低圧となったガス冷媒は、冷媒配管4を通り、室外機1に再び流入する。中継機2から流入した低温及び低圧のガス冷媒は、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。
 熱媒体の一部は、暖房運転に使用される。補助冷却冷房主体運転では、室内機3a~3dのいずれかが暖房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体流量調整装置34bが開となる。第1熱媒体流路切替装置32bは、制御装置50により、熱媒体流量調整装置34bから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。
 熱源側の冷媒から供給される温熱エネルギーは、中間熱交換器25bにおいて、熱媒体に伝達され、これにより熱媒体が加熱され、ポンプ31bの駆動によって熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33bを介し、暖房負荷を有する利用側熱交換器35bに流入する。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35bとの間を循環する。
 熱媒体の他の一部は、補助冷却に使用される。補助冷却冷房主体運転では、室内機3a~3dのいずれかが冷房運転を行っているため、制御装置50により、ポンプ31aが駆動し、熱媒体流量調整装置34a、34c、及び、34dが開となる。第2熱媒体流路切替装置33a、33c、及び、33dは、制御装置50により、ポンプ31aにより搬送された熱媒体が利用側熱交換器35a、35c、及び、35dに流入するように切り替えられる。第1熱媒体流路切替装置32a、32c、及び、32dは、制御装置50により、熱媒体流量調整装置34a、34c、及び、34dから搬送された熱媒体が、補助装置15に流入するように切り替えられる。
 冷房主体運転時の補助冷却では、冷熱は、補助装置15の補助熱交換器25cにおいて熱媒体に伝達されて、熱媒体が冷媒を用いず、二次熱媒体により冷却される。冷却された熱媒体は、ポンプ31aの駆動により、熱媒体配管5を流通する。熱媒体は、熱媒体流路開閉装置36が閉となることで、補助装置15に流入する。熱媒体は、ポンプ31aにより搬送されて中間熱交換器25aに流入し、中間熱交換器25aにおいて、膨張された冷媒から冷熱エネルギーの供給を受ける。その後、熱媒体は、第2熱媒体流路切替装置33a、33c、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35c、及び35dに流入する。従って、熱媒体は、補助装置15と、利用側熱交換器35bとの間を循環する。
 これにより、室外機1による暖房運転と、室外機1、及び、補助装置15による冷房運転とが実現される。
 <全暖房運転>
 図10は、実施の形態1に係る空気調和装置100の全暖房運転における冷媒及び水の循環を示す概略図である。図10において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図10において、利用側熱交換器35a~35dは、全て、暖房負荷を有する。つまり、室内機3a~3dは、全て、暖房運転を実施しており、補助装置15を用いた運転モードは実施されない。
 冷媒回路Aにおける熱源側の冷媒の流れについて説明する。全暖房運転では、室外機1の第1流路切替装置11は、圧縮機10から吐出された熱源側の冷媒は、熱源側熱交換器12に流入することなく中継機2に流入する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となって吐出される。高温及び高圧のガス冷媒は、圧縮機10から吐出されると、第1流路切替装置11を通り、第1接続冷媒配管4aを通り、室外機1から流出する。高温及び高圧のガス冷媒は、室外機1から中継機2の冷媒配管4に流入する。中継機2に流入した高温及び高圧のガス冷媒は、第2流路切替装置28a、及び、28bを通り、凝縮器として機能している中間熱交換器25a、及び、25bに流入する。
 ガス冷媒は、中間熱交換器25a、及び、25bにおいて、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。液冷媒は、中間熱交換器25a、及び、25bを流出すると、膨張装置26a、及び、26bにおいて膨張されて低圧の二相冷媒となる。開閉装置27は、閉であり、開閉装置29は、開になっている。低圧の二相冷媒は、膨張装置26a、及び、26bから流出すると、開閉装置29を流通し、冷媒配管4を通り、室外機1に再度流入する。
 室外機1において、低圧の二相冷媒は、蒸発器として機能している熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12の外気と熱交換し、低温及び低圧の冷媒に変化する。低温及び低圧となった冷媒は、熱源側熱交換器12から流出し、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れを説明する。
 熱媒体は、暖房運転に使用される。全暖房運転では、全ての室内機3a~3dが暖房運転を行うため、制御装置50により、ポンプ31a、及び、31bが駆動され、熱媒体流量調整装置34a~33dが開となる。第2熱媒体流路切替装置33a~33dは、制御装置50により、熱媒体がポンプ31a、及び、31bから利用側熱交換器35a~35dに供給されるように切り替えられる。第1熱媒体流路切替装置32a~32dは、制御装置50により、熱媒体流量調整装置34a~33dから流出した熱媒体が中間熱交換器25a、及び、25bに流入するように切り替えられる。
 熱源側の冷媒から供給される温熱ネルギーは、少なくとも中間熱交換器25a、及び、25bにおいて熱媒体に伝達され、これにより、熱媒体が加熱され、ポンプ31bの駆動によって熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33a~33dを介し、暖房負荷を有する利用側熱交換器35a~35dに流入する。従って、熱媒体は、中間熱交換器25aと、利用側熱交換器35~35dとの間を循環する。なお、熱源側の冷媒から供給される温熱ネルギーは、一部が中間熱交換器25aにおいて熱媒体に伝達され、ポンプ31aの駆動によって熱媒体配管5を流通する構成であってもよい。この場合、熱媒体は、中間熱交換器25a、及び、25bと、利用側熱交換器35a~35dとの間を循環する。
 これにより、全ての室内機3a~3dにおいて、室外機1による暖房運転が実施される。
 <暖房主体運転(補助装置を利用した冷却なし)>
 図11は、実施の形態1に係る空気調和装置100の暖房主体運転であって、補助装置15を用いた運転モードを実施しない場合の冷媒及び水の循環を示す概略図である。図11において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図11において、利用側熱交換器35a、35b、及び、35dは、暖房負荷を有し、利用側熱交換器35cは、冷房負荷を有する。つまり、室内機3a、3b、及び、3dは、暖房運転を実施しており、室内機3cは、冷房運転を実施しているが、補助装置15を用いた運転モードは実施されない。
 冷媒回路Aにおける熱媒体側の冷媒の流れについて説明する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となる。ガス冷媒は、圧縮機10から吐出され、室外機1の第1流路切替装置11により、熱源側熱交換器12を通ることなく中継機2に流入する。高温及び高圧のガス冷媒は、冷媒配管4を通り、室外機1から中継機2に向かい流れる。高温及び高圧のガス冷媒は、中継機2に流入すると、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bに流入すると、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。中間熱交換器25bから流出した液冷媒は、膨張装置26bにおいて膨張されて低圧の二相冷媒となる。開閉装置27、及び、開閉装置29は、閉であって、膨張装置26aは、開になっている。低圧の二相冷媒は、膨張装置26bから流出すると、膨張装置26aを流通し、蒸発器として機能している中間熱交換器25aに流入する。中間熱交換器25aに流入した低圧の二相冷媒は、熱媒体回路Bを循環する熱媒体から受熱し、蒸発する。これにより、熱媒体が冷却される。低温及び低圧となった二相冷媒は、中間熱交換器25aから流出し、第2流路切替装置28aを通り、中継機2から流出する。中継機2から流出した低温及び低圧となった二相冷媒は、冷媒配管4を通り、室外機1に再び流入する。
 低温及び低圧となった二相冷媒は、室外機1に流入すると、第2接続冷媒配管4bを介し、蒸発器として機能する熱源側熱交換器12に流入する。低温及び低圧となった二相冷媒は、熱源側熱交換器12において、熱源側熱交換器12の外気から受熱し、低温及び低圧のガス冷媒となる。熱源側熱交換器12において低温及び低圧のガス冷媒は、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。
 熱媒体の一部は、暖房運転に使用される。補助冷却暖房主体運転では、熱源側の冷媒から供給される温熱エネルギーが、中間熱交換器25bにおいて、熱媒体に伝達され、これにより、冷媒を用いて加熱された熱媒体が、ポンプ31bの駆動によって熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33a、33b、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。中継機2において、室内機3a~3dのいずれかが暖房運転を行うため、ポンプ31bが駆動され、熱媒体流量調整装置34a、34b、及び、33dが開となる。第2熱媒体流路切替装置33a、33b、及び、33dは、熱媒体がポンプ31bから利用側熱交換器35a、35b、及び、35dに供給されるように切替られる。第1熱媒体流路切替装置32a、32b、及び、32dは、熱媒体流量調整装置34a、34b、及び、33dから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35a、35b、及び、35dとの間を循環する。
 熱媒体の他の一部は、冷房運転に使用される。暖房主体運転時、熱媒体は、ポンプ31aの駆動により熱媒体配管5を流通する。熱媒体は、閉となった熱媒体流路開閉装置36を通り、ポンプ31aにより搬送されて中間熱交換器25aに流入する。熱媒体は、中間熱交換器25aにおいて、膨張された冷媒から冷熱エネルギーの供給を受けた後、第2熱媒体流路切替装置33bを介し、暖房負荷を有する利用側熱交換器35bに流入する。室内機3bが冷房運転を行っているため、ポンプ31aが駆動し、熱媒体流量調整装置34bが開となる。第2熱媒体流路切替装置33bは、ポンプ31aにより搬送された熱媒体が利用側熱交換器35bに流入するように切り替えられる。第1熱媒体流路切替装置32bは、熱媒体流量調整装置34bから搬送された熱媒体が、補助装置15に流入するように切り替えられる。従って、冷媒により冷却された熱媒体は、中間熱交換器25aと、利用側熱交換器35bとの間を循環する。
 これにより、室外機1による暖房運転と、室外機1による冷房運転とが実現される。
 <全冷房運転(補助装置を利用した冷却なし)>
 図12は、実施の形態1に係る空気調和装置100の全冷房運転であって、補助装置15を用いた運転モードを実施しない場合の冷媒及び水の循環を示す概略図である。図12において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図12において、利用側熱交換器35a~35dは、全て、冷房負荷を有する。つまり、室内機3a~3dは、全て、冷房運転を実施しているが、補助装置15を用いた運転モードは実施されない。図12における冷媒回路Aを循環する熱源側の冷媒の流れは、補助冷却全冷房運転を示す図4と同じである。
 圧縮機10から吐出された高温及び高圧の冷媒は、第1流路切替装置11を通り、熱源側熱交換器12に流入し、外気と熱交換を行い、高温及び高圧の液冷媒、又は、二相冷媒となる。その後、高温及び高圧の液冷媒、又は、二相冷媒は、逆止弁13aを通り、室外機1から流出する。室外機1から流出した高温及び高圧の液冷媒、又は、二相冷媒は、中継機2の冷媒配管4に流入する。高温及び高圧の液冷媒、又は、二相冷媒は、開閉装置27を通り、膨張装置26aにより膨張され、低温及び低圧の二相冷媒となって、中間熱交換器25aに流入する。中間熱交換器25aに流入した低温及び低圧の二相冷媒は、熱媒体から受熱して、気化して低温のガス冷媒となる。ガス冷媒は、第2流路切替装置28a及び冷媒配管4を通り、再び、室外機1に吸入される。冷熱が、中間熱交換器25aのみから供給されている場合、膨張装置26bは、全閉であってよい。図11においては、利用側熱交換器35a~35dは、全て冷却負荷を有する。つまり、室内機3a~3dは全て、冷房運転を行っている。
 熱媒体回路Bにおける熱媒体の流れを説明する。全冷房運転では、室内機3a~3dのいずれかが冷房運転を行っているため、制御装置50により、ポンプ31aが駆動し、熱媒体流量調整装置34a~34dが開となる。第2熱媒体流路切替装置33a~33dは、制御装置50により、ポンプ31aにより搬送された熱媒体が利用側熱交換器35bに流入するように切り替えられる。第1熱媒体流路切替装置32a~32dは、制御装置50により、熱媒体流量調整装置34a~34dから搬送された熱媒体が、中間熱交換器25aに流入するように切り替えられる。このとき、ポンプ31bは駆動していなくてもよい。熱媒体流路開閉装置36は開であるため、ポンプ31aにより搬送された熱媒体が、補助装置15を循環しない。
 熱媒体は、ポンプ31aにより搬送されて中間熱交換器25aに流入し、中間熱交換器25aにおいて、膨張された冷媒から冷熱エネルギーの供給を受ける。熱媒体は、中間熱交換器25aから流出した後、第2熱媒体流路切替装置33a~33dを介し、冷房負荷を有する利用側熱交換器35bに流入する。従って、冷媒を用いて冷却された熱媒体は、中間熱交換器25aと、利用側熱交換器35bとの間を循環する。
 これにより、室外機1による冷房運転が実現される。
 <冷房主体運転(補助装置を利用した冷却なし)>
 図13は、実施の形態1に係る空気調和装置100の冷房主体運転であって、補助装置15を用いた運転モードを実施しない場合の冷媒及び水の循環を示す概略図である。図13において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図13において、利用側熱交換器35bは、暖房負荷を有し、利用側熱交換器35a、35c、及び、35dは、冷房負荷を有する。つまり、室内機3bは、暖房運転を実施し、室内機3a、3c、及び、3dは、冷房運転を実施している。
 冷媒回路Aにおける熱媒体側の冷媒の流れについて説明する。圧縮機10で圧縮され、高温及び高圧となったガス冷媒は、第1流路切替装置11を介し、熱源側熱交換器12に流入し、熱源側熱交換器12の外気と熱交換して高温及び高圧の液冷媒、又は、二相冷媒となる。高温及び高圧の液冷媒、又は、二相冷媒は、室外機1から流出し、冷媒配管4を通って中継機2に流入する。高温及び高圧の液冷媒、又は、二相冷媒は、中継機2に流入すると、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 高温及び高圧の液冷媒、又は、二相冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを流通する熱媒体に熱を伝達し、凝縮して液化し、液冷媒となる。中間熱交換器25bから流出した液冷媒は、膨張装置26bにおいて膨張され、低圧の二相冷媒となる。開閉装置27、及び、開閉装置29は、閉であって、膨張装置26aは、開になっている。低圧の二相冷媒は、膨張装置26bから流出すると、膨張装置26aを流通し、蒸発器として機能している中間熱交換器25aに流入する。中間熱交換器25aに流入した低圧の二相冷媒は、熱媒体回路Bを循環する熱媒体から受熱し、蒸発する。これにより、熱媒体が冷却される。中間熱交換器25aにおいて低温及び低圧となったガス冷媒は、第2流路切替装置28aを通り、中継機2から流出する。中継機2から流出した低温及び低圧となったガス冷媒は、冷媒配管4を通り、室外機1に再び流入する。中継機2から流入した低温及び低圧のガス冷媒は、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。
 熱媒体の一部は、暖房運転に使用される。補助冷却冷房主体運転では、中継機2において、室内機3a~3dのいずれかが暖房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体流量調整装置34bが開となる。第1熱媒体流路切替装置32bは、制御装置50により、熱媒体流量調整装置34bから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。
 熱源側の冷媒から供給される温熱エネルギーは、中間熱交換器25bにおいて、熱媒体に伝達され、これにより熱媒体が冷媒を用いて加熱され、ポンプ31bの駆動によって熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33bを介し、暖房負荷を有する利用側熱交換器35bに流入する。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35bとの間を循環する。
 熱媒体の他の一部は、冷房運転に使用される。冷房主体運転時、室内機3a~3dのいずれかが冷房運転を行っているため、制御装置50により、ポンプ31aが駆動し、熱媒体流量調整装置34a、34c、及び、34dが開となる。第2熱媒体流路切替装置33a、33c、及び、33dは、制御装置50により、ポンプ31aにより搬送された熱媒体が利用側熱交換器35a、35c、及び、35dに流入するように切り替えられる。第1熱媒体流路切替装置32a、32c、及び、32dは、制御装置50により、熱媒体流量調整装置34a、34c、及び、34dから搬送された熱媒体が、補助装置15に流入するように切り替えられる。
 熱媒体は、ポンプ31aの駆動により、熱媒体配管5を流通する。ポンプ31aにより搬送された熱媒体は、熱媒体流路開閉装置36が開であるため、補助装置15に流入することなく中間熱交換器25aに流入し、中間熱交換器25aにおいて、膨張された冷媒から冷熱エネルギーの供給を受ける。その後、冷媒を用いて冷却された熱媒体は、第2熱媒体流路切替装置33a、33c、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35c、及び35dに流入する。従って、熱媒体は、中間熱交換器25aと、利用側熱交換器35bとの間を循環する。
 これにより、室外機1による暖房運転と、補助装置15による冷房運転とが実現される。
 <二次熱媒体温度と空調空間温度との関係>
 図14は、実施の形態1に係る空気調和装置100の空調空間温度と、放熱対象となる二次熱媒体温度と、補助装置15の動作との関係を示すグラフである。図14において、横軸は、補助装置15における放熱対象となる二次熱媒体温度を示し、縦軸は、空調空間温度を示している。図14では、補助装置15における放熱の対象となる媒体が屋外空気である場合を例に説明しているが、放熱の対象となる媒体は、屋外空気に限定されない。空調空間温度は、例えば、室内7の温度である。
 線dは、冷房運転が要求されている空調空間温度と、補助装置15における二次熱媒体温度とが同じ場合を示している。外部6が放熱の対象となる媒体である場合には、二次熱媒体温度は、外気温と同じである。外気温が、例えば、20℃であり、室内7の温度である空調空間温度と同じか、又は高い点zにおいては、冷房運転が要求されている空調空間である室内7から放熱することができない。そのため、空調空間温度が線d上、又は、線dよりも右側、すなわち、線dよりも低い場合には、補助装置15はオフとなり、補助装置15による放熱は行われず、冷房負荷が、室外機1の駆動により賄われなければならない。
 線aは、補助装置15における二次熱媒体温度が、冷房運転が要求されている空調空間温度よりも第1の温度差ΔT1だけ低い場合を示している。外気温が空調空間温度よりも低い、例えば、10℃であり、空調空間温度が、例えば、20℃である点wにおいては、冷房運転が要求されている空調空間である室内7から放熱することができる。この場合、第1の温度差ΔT1は、10℃である。従って、空調空間温度が、線a上、又は、線aよりも高い場合には、室内7から外部6に放熱することができる。
 線bは、二次熱媒体温度が、冷房運転が要求されている空調空間温度よりも第2の温度差ΔT2だけ高い場合を示している。第2の温度差ΔT2は、第1の温度差ΔT1よりも小さい。外気温が空調空間温度よりも低い、例えば、15℃であり、空調空間温度が、例えば、20℃である点xにおいては、空調空間である室内7から放熱することができる。この場合、第2の温度差ΔT2は、5℃である。空調空間温度が、線b上、又は、線bよりも高い場合には、室内7から外部6に放熱することができる。一方、空調空間温度が、線bよりも右側、すなわち、線bよりも低い場合には、空調空間と、放熱の対象となる二次熱媒体との間の温度差はあるが、補助装置15の能力では室内7の熱を全て放出することができない。空調空間温度が、線bよりも右側、又は、線bよりも低い場合とは、空調空間と、放熱の対象となる二次熱媒体との間の温度差が、第2の温度差ΔT2未満である場合である。そのため、室内7の熱は、空調空間温度と、二次熱媒体温度との温度差が、第2の温度差ΔT2以上であって、第1の温度差ΔT1以下である場合、一部が、補助冷却モードにより室外機1の運転により放熱される。
 線bは、補助装置15における放熱性能を向上させることで、より右側に移動し、単独冷却で運転可能な範囲を増大させることができる。補助装置15における放熱性能は、通常、価格と性能とに基づき決定されるが、例えば、補助熱交換器25cのサイズを増加させることで向上させることができる。線bは、また、室内7で要求される冷却負荷が、補助装置15の放熱性能と比較して小さければ、より右側に移動し、その逆の場合には、より左側に移動する。
 線cよりも右側で、線cよりも下であって、且つ、線dよりも左側で、線dよりも上の領域では、放熱の対象となる二次熱媒体温度が、室内7の温度よりも低いにもかかわらず、補助装置15において、二次熱媒体から十分な放熱ができない領域である。しかし、例えば、補助熱交換器25cのサイズを増加させ、補助装置15の冷却能力を向上させることで、線cはより右側に移動するので、補助熱交換器25cの選定により補助装置15を利用した補助冷却を行うことができる領域を増大させることができる。
 従って、空気調和装置100の制御装置50は、例えば、冷房運転が要求されている空調空間温度が、補助装置15における二次熱媒体温度よりも第1の温度差ΔT1だけ高いと判断した場合、単独冷却の制御を行う。また、空気調和装置100の制御装置50は、例えば、冷房運転が要求されている空調空間温度が、二次熱媒体温度よりも第2の温度差ΔT2だけ高いと判断した場合、補助冷却の制御を行う。第1の温度差ΔT1及び第2の温度差ΔT2は、空調空間の温度、及び、空気調和装置100の能力などに基づき求めることができる。また、第2の温度差ΔT2は、第1の温度差ΔT1よりも小さい値である。
 <補助装置15におけるΔT1及びΔT2の算出方法>
 空調空間と外部6との熱交換、又は、空調空間と水などその他の液体など熱媒体との熱交換は、例えば、以下の数式1で表すことができる。
  [数1]
   Q=U×A×ΔT
 ここで、Qは、冷却される空調空間から外部6に伝達される熱の総量である。Aは、補助装置15における熱交換面積である。ΔTは、空調空間と、外部6との温度差である。Uは、空調空間から外部6への熱伝達係数である。
 空調空間と外部6との熱交換は、次の数式2でも表すことができる。
  [数2]
   Q=1/R×ΔT
 ここで、Rは、空調空間から外部6への熱伝達抵抗であって、以下の数式3で表すことができる。
  [数3]
   R=1/(U×A)
 この数式3より、補助装置15における熱交換面積が増大すると、熱交換量が増大することがわかる。
 室内機3における最大設計冷却能力Qpeakは、以下の数式4で表すことができる。
  [数4]
   Qpeak=U×A×ΔT1
 この数式4を書き換えると以下の数式5のようになる。
  [数5]
   ΔT1=Qpeak/(U×A)
 ΔT1が低下すると、室内機3に要求される冷房能力全体のうち補助装置15が供給できる冷熱が増加し、図14における線aが右に移動する。図14における線aが右に移動するのは、例えば、以下の場合である。
 ・室内機3における最大設計冷却能力Qpeakの低下。
 ・補助装置15における熱交換面積Aの増大。
 ・補助装置15の熱伝達係数U。熱交換器の熱伝達係数Uは、例えば、熱交換する媒体の変更、送風速度又は搬送速度の増加などによる熱交換媒体の速度の増加により増加させることができる。
 室内機3における冷房要求Qlоadは、以下の数式6で表すことができる。
  [数6]
   Qlоad=U×A×ΔT2
 この数式6を書き換えると以下の数式7のようになる。
  [数7]
   ΔT2=Qlоad/(U×A)
 ΔT2が低下すると、室内機3に要求される冷房能力のうち補助装置15が供給できる冷熱が増加し、図14における線bが右に移動する。図14における線bが右に移動するのは、例えば、以下の場合である。
・室内機3における最大設計冷却能力Qpeakの低下。
・補助装置15における熱交換面積Aの増大。
・補助装置15の熱伝達係数Uの増大。熱交換器の熱伝達係数Uは、例えば、熱交換する媒体の変更、送風速度又は搬送速度の増加などによる熱交換媒体の速度の増加により増加させることができる。
 なお、図14において、線a、b、c及びdは、直線で示されているが、室内熱交換器の能力、又は、補助熱交換器25cの環境温度等に応じて直線でない場合もあり得る。
 このように、空気調和装置100では、冷房運転により冷却される空調空間の温度が、補助装置15内の放熱対象媒体となる二次熱媒体温度よりも高い場合、補助熱交換器25cを流通する熱媒体は、補助装置15において冷媒を用いずに冷却される。冷却された熱媒体は、中継機2に搬送され、冷熱が十分であれば直接、又は、冷熱が十分でなければ中間熱交換器25aで冷熱を用いた冷熱が追加されて、冷房運転が要求されている利用側熱交換器35a~35dに搬送される。このため、冷媒開路の動作を停止し、又は、冷媒及び圧縮機10の利用で生じる仕事量を低減できるため、空気調和装置100の消費電力を低減することができる。
 特に、空気調和装置100において、全ての空調空間で冷房が要求され、冷房要求が高温に限定される場合は、更に空気調和装置100の簡略化及び低価格化を実現できる。
 <実施の形態1の変形例1>
 図15は、実施の形態1の変形例1に係る空気調和装置100の補助装置15を含む回路の概略図である。図15に示すように、変形例1に係る空気調和装置100は、補助回路Cをバイパスするバイパス熱媒体回路60を備えておらず、熱媒体流路開閉装置36が設けられていない。このような構成においては、補助装置15がオフとなっている場合、ポンプ31aが駆動していても補助熱交換器25cにおいて放熱が行われない。
 <実施の形態1の変形例2>
 図16は、実施の形態1の変形例2に係る空気調和装置100の補助装置15を含む回路の概略図である。図16に示すように、変形例2に係る空気調和装置100は、熱媒体配管61aに冷却用ポンプ30を備え、熱媒体配管61bに逆止弁37を備えている。冷却用ポンプ30は、第3ポンプの一例である。また、補助回路Cをバイパスするバイパス熱媒体回路60には、熱媒体流路開閉装置36が設けられていない。このような構成においては、補助回路Cにおける熱媒体の流れは、冷却用ポンプ30と、逆止弁37とにより制御される。逆止弁37は、冷却用ポンプ30が停止しているときに補助熱交換器25cからの逆流を防止するために設けられている。
 <実施の形態1の変形例3>
 図17は、実施の形態1の変形例3に係る空気調和装置100の補助装置15を含む回路の概略図である。図17に示すように、変形例3に係る空気調和装置100は、熱媒体配管61aの一端が補助熱交換器25cに接続され、他端が中間熱交換器25aの下流側と、ポンプ31aとを接続している熱媒体配管5に接続された構成である。このような構成では、補助装置15と、中間熱交換器25bとが、利用側熱交換器35a~35bに対し、並列に接続される。このため、補助回路Cのみによる冷房運転と、冷媒回路Aのみによる冷房運転とを選択することができる。
 <実施の形態1の変形例4>
 図18は、実施の形態1の変形例4に係る空気調和装置100の補助装置15を含む回路の概略図である。図18に示すように、変形例4に係る空気調和装置100は、補助回路Cをバイパスするバイパス熱媒体回路60に熱媒体流路開閉装置36を備え、熱媒体配管61aには、冷却用ポンプ30が接続されている。このような構成では、ポンプ31aの動力のみならず、冷却用ポンプ30の動力によって熱媒体が搬送される。
 <空気調和装置100による効果>
 空気調和装置100は、単独冷却冷房運転において、室内機3a~3dの冷房運転を行うためのエネルギーが、熱源側の熱媒体から供給される構成である。そのため、室外機1の動作が不要となり、エネルギーの消費が抑制される。また、空気調和装置100は、補助冷却全冷房運転、補助冷却冷房主体運転、又は、補助冷却暖房主体運転において、室内機3a~3dの冷房運転に用いられるエネルギーの一部が、熱源側の熱媒体から供給される。そのため、室外機1は、冷房能力を制限し、消費エネルギーを低減することができる。更に、空気調和装置100は、補助冷却暖房主体運転では、冷房運転のためのエネルギーが不要である。そのため、室外機1で必要となるエネルギーは、暖房運転に必要なエネルギーのみでよい。
 ここで、補助回路Cを備えない全冷房運転において、冷却される空間が、例えば、20℃であり、熱源側熱交換器12の環境温度がそれよりも低い、例えば、15℃である状況を考える。この場合に、春先の事務所などで、存在する人、又は、電子機器などにより室内7に高い熱負荷が存在していると、空調空間を冷却するために圧縮機10により冷媒の圧縮サイクルが実施されることになる。つまり、熱源側の空気を直接、又は、間接的に用いて、空調空間を冷却できるにもかかわらず、圧縮機10が仕事をすることとなるため、圧縮機10によりエネルギーが過剰に消費されてしまう。
 また、熱回収なしの冷暖同時運転は、熱回収せず、異なる空調空間に温熱又は冷熱を同時に供給できる構成であるが、補助回路Cを備えない場合、2つの異なる熱源を有し、一方で温熱を、他方で冷熱を生成し、同時に供給する構成でなければならない。冷熱を供給する熱源は、通常冷媒であり、温熱を供給する熱源は、冷媒、又は、燃焼ガスなどの冷媒以外の熱源である。この場合にも、空調空間を冷却し、例えば、20℃にする場合であって、熱源側の温度が空調空間の冷房される温度よりも低い、例えば、15℃であると、圧縮機10により蒸発した冷媒が圧縮されるサイクルを用いて、空調空間が冷却されることになる。従って、圧縮機10による仕事がされて、消費電力が過剰になってしまう。
 また、熱回収冷暖同時運転を行うシステムは、暖房と冷房とを同時に実施し、エネルギーを最も効率よく使用できる熱回収システムとして存在する場合がある。熱回収冷暖同時運転を行うシステムにおいても、補助回路Cを備えない場合、冷暖同時運転は、通常、圧縮機10と冷媒とが用いられて実現される。そのため、冷媒により供給される冷房エネルギーと暖房エネルギーとが完全に一致しなければ、温熱エネルギー又は冷熱エネルギーのいずれかに超過のエネルギーが生じる。
 超過のエネルギーは、暖房要求が増大した場合には、熱源機の熱源側熱交換器12での吸熱により、冷房要求が増大した場合には、熱源機の熱源側熱交換器12での放熱により賄われる。冷房要求が増大した場合には、熱源機の熱源側熱交換器12で放熱しなければならないため、熱源、例えば、空気が、冷却される空調空気よりも低く、空気から冷熱を得られる可能性がある場合でも室外機1が仕事をする必要がある。また、熱源である外気の温度が、要求された空調空間の温度よりも常に低い場合でも、熱源機は、圧縮機10で仕事をし、冷熱を供給することになる。
 すなわち、熱回収システムなどでは、冷房負荷が暖房負荷よりも大きい場合、室外機1は、暖房負荷と冷房負荷との双方を賄うのに十分なエネルギーを生成しなければならない。このような場合においても、実施の形態1に係る空気調和装置100では、補助回路Cを利用した単独冷却運転を適用できるため、室外機1の能力を低減させても暖房負荷を賄うことができ、消費エネルギーを削減することができる。
 また、実施の形態1に係る空気調和装置100は、熱源側の熱媒体として、温度が常に冷房が要求されている空調空間の温度以下である熱媒体を使用した場合、年間を通して、室外機1における熱回復を伴わずに冷暖同時運転を行うことができる。そのような熱源側の熱媒体は、例えば、地下水であって、熱媒体の温度は年間を通して15℃などである。特に、最大設計冷房負荷が、最大設計暖房負荷よりも大幅に増大した場合、室外機1の能力を低減させることができ、エネルギー費用を削減できる。
 また、空気調和装置100は、熱源側の熱媒の温度が、冷房が要求されている空調空間の温度よりも温度が低い期間があり、室内機3a~3dの暖房運転が不要と判断される場合、室外機1による熱回復動作を伴わずに冷暖同時運転を実施することができる。冷房が要求されている空調空間の温度よりも低い期間は、例えば、10月及び3月であり、熱媒体の温度は、例えば、15℃である。
 なお、空気調和装置100は、熱源側の熱媒の温度が、暖房が要求されている空調空間の温度よりも温度が高い時期が年間の一部にある場合、補助装置15からの熱により単独暖房運転を行うこともできる。空調空間の温度よりも高い熱源側の熱媒の温度は、例えば、30℃である。これにより、室内機3a~3dの暖房運転のための圧縮機10の駆動が不要となりエネルギーの消費を抑制することができる。
 以上説明した、実施の形態1に係る空気調和装置100によれば、冷房運転が要求されている利用側熱交換器35a~35dのいずれかが、熱媒体回路Bを介して、補助回路Cに接続される。これにより、補助装置15で生成された冷熱が供給されるため、冷媒回路Aで冷熱を生成することが不要となり、圧縮機10で消費されるエネルギーを抑制することができる。
 また、補助熱交換器25cにおいて冷却された熱媒体が、中間熱交換器25aにおいて冷媒回路Aを流通する冷媒により、更に冷却される構成である。これにより、補助回路Cで生成された冷熱で予冷された熱媒体が、冷媒回路Aで生成された冷熱で冷却されるため、冷房負荷が増大した場合においても圧縮機10で消費されるエネルギーを抑制することができる。
 また、冷房運転が、補助熱交換器25cにおいて冷却された熱媒体により実施され、同時に、暖房運転が、冷媒回路Aで加熱された熱媒体により実施される。これにより、冷房運転は、補助回路Cで生成された冷熱で実施し、冷媒回路Aは、温熱を生成するためにのみ駆動させればよくなるため、圧縮機10で消費されるエネルギーを低減することができる。
 また、空気調和装置100が加熱装置16を有している場合、冷房運転が、補助装置15において冷却された熱媒体により実施され、同時に、暖房運転が、加熱装置16で加熱された熱媒体により実施される。これにより冷房運転は、補助装置15で生成された冷熱で実施し、暖房運転は、加熱装置16で生成された熱で実施すればよくなるため、冷媒回路Aの駆動が不要となり、圧縮機10で消費されるエネルギーを低減することができる。
 また、冷房運転が、補助装置15において冷却された熱媒体により実施され、同時に、暖房運転が、加熱装置16で加熱され、且つ、中間熱交換器25aで加熱された熱媒体により実施される。これにより、補助装置15で冷熱が生成され、且つ、加熱装置16で予熱された熱媒体が、冷媒回路Aで生成された温熱で加熱されるため、暖房負荷が増大した場合でも圧縮機10で消費されるエネルギーを抑制することができる。
 また、補助熱交換器25cと、熱源側熱交換器12とは、外部6に配置されている。そのため、冷房運転が要求されている空調空間温度が、補助装置15における熱媒体の温度よりも高い場合に、冷媒回路Aを用いることなく、補助回路Cにより冷熱を供給することができる。
 また、中間熱交換器25aと、中間熱交換器25bとは、利用側熱交換器35a~35bに対し、並列に接続されているため、冷房運転と暖房運転とを同時に行うことができる。
 また、中間熱交換器25aと、補助熱交換器25cとが直列に接続されているため、単独冷却と暖房運転と、及び、補助冷却と暖房運転とを同時に行うことができる。
 また、熱媒体回路Bは、補助回路Cをバイパスするバイパス熱媒体回路60を有するため、補助回路Cを用いない全暖房運転時に、補助回路Cを介した放熱を抑制することができる。
 また、バイパス熱媒体回路60には、熱媒体流路開閉装置36を有するため、熱媒体を補助回路Cに流入させることができるため、補助回路Cによる冷熱の供給を向上させることができる。
 また、補助回路Cに冷却用ポンプ30を有することで、補助回路Cを流通する熱媒体の流量を調節し、補助回路Cによる放熱量を調節することができる。
 また、中間熱交換器25aと、補助熱交換器25cとは、利用側熱交換器35a~35dに対し、並列に接続されているため、補助回路Cのみによる冷房運転と、冷媒回路Aのみによる冷房運転とを選択することができる。
 また、空気調和装置100は、室内機3a~3dが、熱媒体配管5により、室外機1ではなく、中継機2に接続されている。つまり、熱媒体配管5は、室外機1と中継機2との間を接続していないため、熱媒体配管5の全長を縮小することができる。これにより、冷媒よりも移送効率が低い熱媒体の移送距離を低減され、消費エネルギーを削減できる。
 また、空気調和装置100は、室外機1と中継機2とが2本の冷媒配管4で接続されており、中継機2と室内機3a~3dとが、室内機3a~3dの数に2を掛けた数の熱媒体配管5で接続されている。このため、室外機1と中継機2とを接続している冷媒配管4、及び、中継機2と室内機3a~3dとを接続している熱媒体配管5との本数が抑制され、配管工事が容易になり、空気調和装置100の設置の作業性が向上する。
 また、空気調和装置100は、室内機3a~3dのそれぞれに、熱媒体を搬送するためのポンプ31bを備えていない。つまり、空気調和装置100は、ポンプ31bを1つ有するだけで済むため、騒音が低減され、且つ、費用が削減される。空気調和装置100は、冷媒配管4と室内機3a~3dとが近接して配置された構成ではない。そのため、例えば、室内7における熱源側の冷媒の漏洩が抑制される。
 なお、上記では、熱媒体流量調整装置34a~34dが二方弁として説明しているが、熱媒体流量調整装置34a~34dの構成は限定されない。熱媒体流量調整装置34a~34dは、例えば、三方弁に流路を有する制御弁であって、利用側熱交換器35a~3ddをバイパスする配管に接続された構成であってもよい。熱媒体流量調整装置34a~34dは、ステップモータ駆動式であって、流量調整の制御を行えるものであってもよい。熱媒体流量調整装置34a~34dは、それぞれ、二方弁、又は、三方弁であってそのうちの一方向が閉となる構成であってもよい。熱媒体流量調整装置34a~34dは、開路及び閉路を備えた、例えば、オンオフ弁でもよく、この場合、オンオフ動作を繰り返すことで流量を比較的一定に維持できる。
 また、中間熱交換器25b及び膨張装置26bとしては、中間熱交換器25b及び膨張装置26bの動作を実現する構成が複数用いてられていてもよい。上記では、熱媒体流量調整装置34a~34dが中継機2に設けられた例について説明しているが、熱媒体流量調整装置34a~34dの配置位置はこれに限定されない。熱媒体流量調整装置34a~34dは、室内機3a~3dの構成に含まれていてもよく、中継機2又は室内機3a~3dのいずれかに含まれることは必須ではない。
 また、上記では、空気調和装置100がアキュムレータ19を含む例を説明しているが、空気調和装置100は、アキュムレータ19を含まなくてもよい。上記では、熱交換時の凝縮又は蒸発を促進させるため、熱源側熱交換器12及び利用側熱交換器35a~35dに送風装置が設けられた構成について説明している。利用側熱交換器35a~35dは、例えば、パネルヒータ等から放熱する構成であってもよく、形式は限定されない。また、熱源側熱交換器12は、水冷却装置であって、水または不凍液により熱を伝達させるものでよく、形式は限定されない。すなわち、熱源側熱交換器12、及び、利用側熱交換器35a~35dは、熱が移動し、交換されるものであれば、どのような形式のものであってもよい。
 また、上記では、4つの利用側熱交換器35a~35d、及び、4つの熱媒体流量調整装置34a~34dを有する構成について説明しているが、利用側熱交換器35a~35d及び熱媒体流量調整装置34a~34dの数は限定されない。利用側熱交換器35a~35d、及び、熱媒体流量調整装置34a~34dは、少なくとも1つあればよい。上記では、1つの中間熱交換器25bを有する構成について説明しているが、中間熱交換器25bの数は限定されず、少なくとも熱媒体を冷却又は加熱する能力があればよい。ポンプ31bの数は限定されず、複数並列に設けた小容量のポンプ31bを用いてもよい。
 また、熱媒体は、例えば、ブライン又は不凍液、水、ブライン戸水との混合液、又は、水と耐腐食性の添加物との混合液などでよい。これらの熱媒体を採用することで、室内7への熱媒体の漏れに対する安全性が向上する。
 実施の形態2.
 <空気調和装置の構成>
 図19は、実施の形態2に係る空気調和装置100の概略図である。図19に示すように、実施の形態2に係る空気調和装置100は、室外機1と中継機2とを備える。実施の形態2に係る空気調和装置100は、暖房主体運転又は冷房主体運転を行うことができない、流路切替式ヒートポンプタイプの空気調和装置100である。以下では、室外機1が、外部6の空気を熱源とするタイプのものとして説明されているが、室外機1の熱源は、外部6の空気に限定されない。
 <室外機1の構成>
 室外機1は、圧縮機10、第1流路切替装置11、熱源側熱交換器12、及び、アキュムレータ19を備える。圧縮機10、第1流路切替装置11、熱源側熱交換器12、及び、アキュムレータ19は、冷媒配管4により接続されている。第1流路切替装置11は、例えば、四方弁である。空気調和装置100は、第1流路切替装置11の切替により、室外機1から中継機2への熱源側の冷媒の流れを、一方の方向として冷房運転を実施し、他方の方向として暖房運転を実施する。
 圧縮機10は、冷媒を吸入し、圧縮して、高温及び高圧になった冷媒を吐出し、冷媒回路Aに循環させる。圧縮機10は、吐出側が第1流路切替装置11に接続されており、吸入側がアキュムレータ19に接続されている。圧縮機10は、例えば、容量可変のインバータ圧縮機である。
 第1流路切替装置11は、暖房運転時、圧縮機10の吐出側と、室外機1のガス配管42とを接続させ、熱源側熱交換器12と、アキュムレータ19の吸入側とを接続させる。第1流路切替装置11は、冷房運転時、圧縮機10の吐出側と、熱源側熱交換器12とを接続させ、室外機1のガス配管42とアキュムレータ19の吸入側とを接続させる。
 熱源側熱交換器12は、暖房運転時に蒸発器として機能し、冷房運転時に凝縮器として機能する。熱源側熱交換器12は、図示しない送風装置により供給された流体である空気と、熱源側の冷媒との間で熱交換を行い、冷媒を蒸発させて気化させ、又は、凝縮させて液化させる。熱源側熱交換器12は、暖房運転時には、液配管41と、アキュムレータ19との間に接続される。熱源側熱交換器12は、冷房運転時には、圧縮機10の吐出側と、液配管41との間に接続される。熱源側熱交換器12は、配管を流通する冷媒と、フィンの間を流通する空気との間で熱交換を行うことができればよく、例えば、プレートフィンチューブ側の熱交換器でよい。
 アキュムレータ19は、冷媒回路Aで生じる余剰冷媒を溜めるものである。余剰冷媒は、例えば、暖房運転モード及び冷房運転モードにおける冷媒状態の相違、又は、運転している室内機3a~3dの数など運転モードの遷移の変化によって生じる。アキュムレータ19は、暖房運転時には、熱源側熱交換器12と、圧縮機10の吸入側との間に接続される。アキュムレータ19は、冷房運転時には、ガス配管42と、圧縮機10との間に接続される。
 図19は、例示であって、すべての構成が必須のものではない。
 <室内機3a~3dの構成>
 室内機3a~3dは、実施の形態1の室内機3a~3dと同様の構成でよいため、説明を割愛する。
 <中継機2の構成>
 中継機2は、中間熱交換器25b、膨張装置26b、ポンプ31a、31b、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33d、及び、熱媒体流量調整装置34a~34dを備えている。
 中間熱交換器25bは、凝縮器又は蒸発器として機能し、熱源側の冷媒と、熱媒体とで熱交換を行い、室外機1で生成された冷熱又は温熱エネルギーを伝達させる。暖房運転では、中間熱交換器25bが凝縮器として機能し、熱源側の冷媒が有する温熱エネルギーを熱媒体に伝達させる。冷房運転では、中間熱交換器25bが蒸発器として機能し、熱源側の冷媒が有する冷熱エネルギーを熱媒体に伝達させる。中間熱交換器25bは、冷媒回路Aの膨張装置26bと、ガス配管42との間に設けられている。中間熱交換器25bは、冷媒運転において、冷媒を冷却するために用いられる。
 膨張装置26bは、減圧弁、又は、膨張弁の機能を有し、熱源側の冷媒を減圧し、熱源側の冷媒を膨張させる。膨張装置26bは、冷房運転における熱源側の冷媒の流れにおいて、中間熱交換器25bの上流側に配置されている。膨張装置26bは、開度が制御可能な、例えば、電子膨張弁などである。
 ポンプ31aは、熱媒体を補助回路Cに循環させるものである。ポンプ31aは、補助装置15の熱媒体配管61aと、第2熱媒体流路切替装置33a~33dとの間に延びている熱媒体配管5aに設けられている。ポンプ31aは、補助回路Cの補助熱交換器25cと直列に接続されている。ポンプ31bは、熱媒体を熱媒体回路Bに循環させるものである。ポンプ31bは、中間熱交換器25bと、第2熱媒体流路切替装置33a~33dとの間に延びている熱媒体配管5bに設けられている。ポンプ31bと、中間熱交換器25bとは、直列に接続されている。ポンプ31a、及び、ポンプ31bは、熱媒体の流量を室内機3a~3dの空調負荷に応じた流量にできるものであって、例えば、容量制御可能なポンプ31a、31bである。
 第1熱媒体流路切替装置32a~32dは、熱媒体の流路を、それぞれが対応する利用側熱交換器35a~35dの流出側と、中間熱交換器25bの流入口との間で切り替えるものである。第1熱媒体流路切替装置32a~32dの数は、利用側熱交換器35a~35dの数に対応している。例えば、利用側熱交換器35a~35dの数が4であれば、第1熱媒体流路切替装置32a~32dの数は、4である。第1熱媒体流路切替装置32a~32dは、それぞれ、中間熱交換器25bと、補助装置15と、熱媒体流量調整装置34a~34dと、の三方向に延びて接続されている。第1熱媒体流路切替装置32a~32dは、それぞれが対応する利用側熱交換器35a~35dの流出側の熱媒体の流路に配置されている。
 第1熱媒体流路切替装置32aと、第1熱媒体流路切替装置32bと、第1熱媒体流路切替装置32cと、第1熱媒体流路切替装置32dとは、この順番で対応する利用側熱交換器35a~35dの流出側に配置されている。第1熱媒体流路切替装置32aと、第1熱媒体流路切替装置32bと、第1熱媒体流路切替装置32cと、第1熱媒体流路切替装置32dとは、それぞれ、対応する利用側熱交換器35a~35dが設けられた室内機3a~3dに収容されている。それぞれの熱媒体の流路は、対応する利用側熱交換器35a~35dの流出側と、中間熱交換器25bの流入口との間を完全に切り替えられる構成であってもよく、部分的に切り替えられる構成であってもよい。第1熱媒体流路切替装置32a~32dは、例えば、三方弁である。
 第2熱媒体流路切替装置33a~33dは、熱媒体の流路を、それぞれが対応する利用側熱交換器35a~35dの流入側と、中間熱交換器25bの流出口との間で切り替えるものである。第2熱媒体流路切替装置33a~33dの数は、利用側熱交換器35a~35dの数に対応している。利用側熱交換器35a~35dの数が4であれば、第2熱媒体流路切替装置33a~33dの数は、4である。第2熱媒体流路切替装置33a~33dは、それぞれ、中間熱交換器25aと、中間熱交換器25bと、対応する利用側熱交換器35a~35dと、の三方向に延びて接続されている。
 第2熱媒体流路切替装置33a~33dは、それぞれが対応する利用側熱交換器35a~35dの流入側の熱媒体の流路に配置されている。第2熱媒体流路切替装置33aと、第2熱媒体流路切替装置33bと、第2熱媒体流路切替装置33cと、第2熱媒体流路切替装置33dとは、この順番で対応する利用側熱交換器35a~35dの流入側に配置されている。第2熱媒体流路切替装置33aと、第2熱媒体流路切替装置33bと、第2熱媒体流路切替装置33cと、第2熱媒体流路切替装置33dとは、対応する利用側熱交換器35a~35dが設けられた室内機3a~3dに収容されている。それぞれの熱媒体の流路は、完全に切り替えられる構成であってもよく、部分的に切り替えられる構成であってもよい。第2熱媒体流路切替装置33a~33dは、例えば、三方弁である。
 熱媒体流量調整装置34a~34dは、流量制御が可能な、例えば、2方弁であり、対応する熱媒体配管5における熱媒体の流量を調整するものである。熱媒体流量調整装置34a~34dの数は、利用側熱交換器35a~35dの数に対応している。つまり、利用側熱交換器35a~35dの数が4であれば、熱媒体流量調整装置34a~34dの数は、4である。熱媒体流量調整装置34a~34dは、一方が、対応する利用側熱交換器35a~35dに接続されており、他方が、対応する第1熱媒体流路切替装置32a~32dに接続されている。熱媒体流量調整装置34a~34dは、対応する利用側熱交換器35a~35dの流出側の熱媒体の流路に設けられている。すなわち、熱媒体流量調整装置34a~34dは、制御装置50により、室内機3a~3dに流入する熱媒体の温度と、室内機3a~3dから流出する熱媒体の温度と、に基づき調整される。これにより、対応する室内機3a~3dに流入する熱媒体の流量が、室内機3a~3dの空調負荷に最適な流量になる。
 図19において、熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34c、及び、熱媒体流量調整装置34dは、紙面の上からこの順番でそれぞれの室内機3a~3dに収容されている。熱媒体流量調整装置34a~34dは、対応する利用側熱交換器35a~35dの流出側に代えて、対応する利用側熱交換器35a~35dの流入側に配置されていてもよい。熱媒体流量調整装置34a~34dは、対応する利用側熱交換器35a~35dの流入側であって、対応する利用側熱交換器35a~35dと、第2熱媒体流路切替装置33a~33dとの間に配置されていてもよい。空調負荷が要求されていない場合、熱媒体流量調整装置34a~34dが全閉となる構成であると、室内機3a~3dへの熱媒体の供給が停止することができる。空調負荷が要求されていない場合とは、例えば、室内機3a~3dが停止モードである場合、又は、室内機3a~3dのサーモスタットがオフになっている場合である。
 第1熱媒体流路切替装置32a~32d、又は、第2熱媒体流路切替装置33a~33dは、熱媒体流量調整装置34a~34dと同様の機能を有する構成であってもよい。この場合、熱媒体流量調整装置34a~34dは、構成から除外してもよい。
 中継機2は、中間熱交換器25b及び補助装置15の出口における熱媒体の温度を検出する温度センサ40a、40bを有する。温度センサ40aは、補助装置15から流出した熱媒体の温度を検出する。温度センサ40bは、中間熱交換器25bから流出した熱媒体の温度を検出する。温度センサ40a、40bにより検出された温度情報は、空気調和装置100の運転を制御する制御装置50に送信される。
 温度センサ40a、40bは、それぞれ、中間熱交換器25b、及び、補助装置15から排出された熱媒体の温度を検出する。つまり、温度センサ40a、40bは、それぞれ、中間熱交換器25b、及び、補助装置15の出口における熱媒体の温度を検出する。温度センサ40aは、ポンプ31aの吸入側に接続されている熱媒体配管61aに設けられている。温度センサ40bは、ポンプ31bの吸入側に接続されている熱媒体配管5に設けられている。温度センサ40a、40bは、例えば、サーミスタである。
 制御装置50は、実施の形態1の制御装置50と同様、マイクロプロセッサなどであって、空気調和装置100の構成要素に設けられたアクチュエータ等を制御し、以下で説明する異なる動作態様を実現する。制御装置50の配置位置は、中継機2に限定されない。制御装置50は、室外機1、又は、室内機3a~3dに配置されていてよく、室外機1、及び、室内機3a~3dの全てに配置された構成であってもよい。制御装置50は、室外機1、中継機2、又は、室内機3a~32dのいずれかの間で通信可能であってもよく、また、室外機1、中継機2、及び、室内機3a~32dの全てと通信可能に設けられていてもよい。
 <補助装置15の構成>
 補助装置15は、補助回路Cに接続された補助熱交換器25cを備える。補助熱交換器25cは、熱媒体配管5aから流入した熱媒体を流通させ、熱媒体から放熱対象となる二次熱媒体に放熱させるものである。補助熱交換器25cは、ポンプ31aと直列に接続されている。補助熱交換器25cは、中間熱交換器25bと、利用側熱交換器35a~35bに対し、並列になるように接続されている。補助熱交換器25cは、例えば、冷媒が流通する伝熱管と、空気が流通するフィンとを有するプレートフィンチューブ熱交換器である。補助装置15は、図示せぬ送風装置を備えていてもよい。放熱対象となる媒体が空気でない場合、補助熱交換器25cは、水冷式熱交換器であってもよい。熱は、補助熱交換器25cにおいて、熱媒体配管61aから放熱対象となる二次熱媒体に放熱される。従って、補助回路Cにより、冷媒を用いることなく、二次熱媒体により熱媒体が冷却される。
 中継機2に設けられている温度センサ40aは、補助装置15の中に配置されていてもよく、中継機2と補助装置15との間に配置されていてもよい。温度センサ40aは、ポンプ31aが接続されている熱媒体配管5aに至る熱媒体配管61aに設けられていればよい。温度センサ40aの検出値は、放熱量を制御するために用いることができる。補助熱交換器25cにおける放熱量の制御は、例えば、動作モードに応じた送風装置からの風量、ポンプ31aの開度を制御することによる補助熱交換器25cの熱媒体流量の調整などにより行うことができる。放熱量の制御方法は、特に限定されず、他の公知の方法も採用できる。補助装置15は、熱媒体配管61aにより第2熱媒体流路切替装置33a~33dに接続されており、熱媒体配管61bにより第1熱媒体流路切替装置32a~32dに接続されている。
 空気調和装置100は、圧縮機10、第1流路切替装置11、熱源側熱交換器12、中間熱交換器25bの冷媒流路、膨張装置26b、及び、アキュムレータ19が、冷媒配管4により接続された構成である。冷媒配管4により、冷媒回路Aが構成されている。また、空気調和装置100は、中間熱交換器25bの熱媒体流路、ポンプ31b、第1熱媒体流路切替装置32a~32d、熱媒体流量調整装置34a~34d、利用側熱交換器35a~35d、及び、第2熱媒体流路切替装置33a~33dが、熱媒体配管5bにより接続された構成である。熱媒体配管5bは、熱媒体回路Bの一部を構成している。補助装置15は、熱媒体配管61aにより、第1熱媒体流路切替装置32a~32dに接続されており、熱媒体配管61bにより、第2熱媒体流路切替装置33a~33dに接続されている。熱媒体配管61a及び熱媒体配管61bにより補助回路Cが構成されている。熱媒体回路Bは、利用側熱交換器35a~35dがそれぞれ、中間熱交換器25bに並列に接続されることで、複数のシステムを含む構成になっている。
 <空気調和装置の動作>
 空気調和装置100においては、室外機1及び中継機2が、中継機2の中間熱交換器25bを介し接続され、且つ、中継機2及び室内機3a~3dが、中継機2の中間熱交換器25bを介し接続されている。空気調和装置100は、中間熱交換器25bにおいて、冷媒回路Aを循環する熱源側の冷媒と、熱媒体回路Bを循環する熱媒体とが熱交換を行う構成である。熱媒体回路Bは、補助装置15において熱交換を行う。空気調和装置100は、この構成により、空調負荷に応じた冷房運転又は暖房運転を実現している。
 <空気調和装置の運転態様>
 空気調和装置100は、全暖房運転、全冷房運転、単独冷却運転、補助冷却冷房運転、及び、単独冷却暖房運転のいずれかの運転モードを実行する。運転モードの切替は、制御装置50の制御により行われる。全暖房運転は、運転中の室内機3a~3dの全てが暖房運転を行うモードである。全冷房運転は、運転中の室内機3a~3dの全てが冷房運転を行うモードである。単独冷却運転は、運転中の室内機3a~3dの全てが冷房運転を行っており、且つ、空調空間の温度が、熱源となる二次熱媒体温度よりも第1の温度差ΔT1だけ高い場合のモードである。補助冷却冷房運転は、運転中の室内機3a~3dの全てが冷却運転を行っており、且つ、空調空間の温度が、熱源となる二次熱媒体温度よりも第2の温度差ΔT2だけ高い場合のモードである。第2の温度差ΔT2は、第1の温度差ΔT1よりも小さい。冷却暖房運転は、運転中の室内機3a~3dのうちのいずれかは、冷房運転を行っており、他のいずれかは、暖房運転を行っている場合であって、且つ、空調空間の温度が、熱源となる二次熱媒体温度よりも低い場合のモードである。これらの運転モードは、制御装置50の制御による第1流路切替装置11、第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dの切替の組み合わせ、及び、ポンプ31a、31bの駆動により実現される。
 <単独冷却運転>
 図20は、実施の形態2に係る空気調和装置100の単独冷却運転における水の流れを示す概略図である。図20において、破線矢印は、熱媒体の流れ方向を示している。単独冷却運転では、全ての冷熱が補助装置15で生成され、冷媒回路Aが利用されないため、冷媒回路Aにおける要素の動作は任意である。図20において、利用側熱交換器35a~35dは、全て、冷房負荷を有する。つまり、室内機3a~3dは、全て、冷房運転を実施している。
 単独冷却運転では、中継機2において、制御装置50により、ポンプ31aが動作し、熱媒体流量調整装置34a~34dが開となる。熱媒体は、補助装置15と、利用側熱交換器35a~35dとの間を循環する。従って、ポンプ31aにより圧縮されて搬送された熱媒体は、第2熱媒体流路切替装置33a~33dを介し、利用側熱交換器35a~35dに流入する。そして、熱媒体は、利用側熱交換器35a~35dにおいて室内7の空気に冷熱を伝達し、室内7を冷却する。
 利用側熱交換器35a~35dから流出した熱媒体は、熱媒体流量調整装置34a~34dに流入する。このとき、熱媒体流量調整装置34a~34dは、熱媒体の流量がそれぞれの利用側熱交換器35a~35dで要求された空調負荷に応じた流量となるように熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、補助装置15に流入する。熱媒体は、熱媒体配管61bを介し、補助装置15の補助熱交換器25cに流入し、補助熱交換器25cにおいて冷媒を用いることなく、二次熱媒体により冷却される。その後、熱媒体は、熱媒体配管61aを流通して中継機2に再び流入し、ポンプ31aに吸入される。これにより、室外機1を運転させずに、冷房運転が実現される。
 <補助冷却冷房運転>
 図21は、実施の形態2に係る空気調和装置100の補助冷却冷房運転における冷媒及び水の流れを示す概略図である。図21において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。補助冷却冷房運転において、利用側熱交換器35a~35dは、全て、冷房負荷を有する。つまり、室内機3a~3dは、全て、冷房運転を実施している。
 補助冷却冷房運転における冷媒回路Aの熱源側の冷媒の流れについて説明する。冷媒は、圧縮機10において、高温及び高圧のガス冷媒となり、圧縮機10から吐出され、第1流路切替装置11を介し、熱源側熱交換器12に流入する。冷媒は、熱源側熱交換器12において、熱源側熱交換器12の外部6の空気と熱交換を行い、高温及び高圧の液冷媒、又は、二相冷媒となる。高温及び高圧の液冷媒、又は、二相冷媒は、熱源側熱交換器12から冷媒配管4を通って室外機1から流出し、中継機2に流入する。中継機2に流入した高温及び高圧の液冷媒、又は、二相冷媒は、膨張装置26bにおいて膨張され、低温及び低圧の二相冷媒となって中間熱交換器25bに流入する。二相冷媒は、中間熱交換器25bにおいて熱媒体から受熱して蒸発し、液化して低温のガス冷媒となる。ガス冷媒は、冷媒配管4を流通し、室外機1に再び流入する。室外機1のガス配管42を通り流入した冷媒は、第1流路切替装置11、及び、アキュムレータ19を流通した後、圧縮機10に再び吸入される。
 中継機2では、制御装置50により、ポンプ31a、及び、ポンプ31bが駆動し、熱媒体流量調整装置34a~34dが開となっている。これにより、熱媒体は、ポンプ31aと補助装置15との間を循環する。また、熱媒体は、ポンプ31bと中間熱交換器25bとの間を循環する。
 熱媒体回路Bにおける熱媒体の流れを説明する。補助冷却冷房運転では、補助装置15で冷却された熱媒体が、ポンプ31aの駆動により熱媒体配管61aを流通する。また、中間熱交換器25bで冷却された熱媒体が、ポンプ31bの駆動により熱媒体配管5を流通する。そして、ポンプ31a、31bにより搬送された熱媒体は、第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを通り、利用側熱交換器35a~利用側熱交換器35dに流入する。熱媒体は、利用側熱交換器35a~35dにおいて、空調空間に冷熱エネルギーを伝達し、これにより、室内7が冷却される。
 その後、熱媒体は、利用側熱交換器35a~35dから流出し、熱媒体流量調整装置34a~34dに流入する。このとき、熱媒体流量調整装置34a~34dは、熱媒体の流量がそれぞれの利用側熱交換器35a~35dで要求された空調負荷に応じた流量となるように熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、分岐して補助装置15及び中間熱交換器25bに流入する。補助装置15に流入した熱媒体は、熱媒体配管61bから補助装置15の補助熱交換器25cに流入し、補助熱交換器25cにおいて冷媒を用いずに冷却された後、熱媒体配管61aを流通して中継機2に再び流入し、ポンプ31aに吸入される。また、中間熱交換器25bに流入した熱媒体は、中間熱交換器25bを流通し、ポンプ31bに再び吸入される。
 これにより、室外機1、及び、補助装置15を利用した冷房運転が実施される。
 <全冷房運転(補助装置による冷却なし)>
 図22は、実施の形態2に係る空気調和装置100の全冷房運転における冷媒及び水の流れを示す概略図である。全冷房運転では、補助装置15による冷却補助動作は行われない。図22において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。全冷房運転において、利用側熱交換器35a~35dは、全て、冷房負荷を有する。つまり、室内機3a~3dは、全て、冷房運転を実施している。
 全冷房運転における冷媒回路Aの熱源側の冷媒の流れについて説明する。冷媒は、圧縮機10において、高温及び高圧のガス冷媒となり、圧縮機10から吐出され、第1流路切替装置11を介し、熱源側熱交換器12に流入する。冷媒は、熱源側熱交換器12において、熱源側熱交換器12の外部6の空気と熱交換を行い、高温及び高圧の液冷媒、又は、二相冷媒となる。高温及び高圧の液冷媒、又は、二相冷媒は、熱源側熱交換器12から冷媒配管4を通って室外機1から流出し、中継機2に流入する。中継機2に流入した高温及び高圧の液冷媒、又は、二相冷媒は、膨張装置26bにおいて膨張され、低温及び低圧の2相冷媒となって中間熱交換器25bに流入する。2相冷媒は、中間熱交換器25bにおいて熱媒体から受熱して蒸発し、液化して低温のガス冷媒となる。ガス冷媒は、冷媒配管4を流通し、室外機1に再び流入する。室外機1のガス配管42を通り流入した冷媒は、第1流路切替装置11、及び、アキュムレータ19を流通した後、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れを説明する。
 中継機2では、制御装置50により、ポンプ31bが駆動し、熱媒体流量調整装置34a~34dが開となっている。これにより、熱媒体が、中間熱交換器25bとの間を循環する。全冷房運転では、中間熱交換器25bで冷却された熱媒体は、ポンプ31bの駆動により、熱媒体配管5を流れる。従って、ポンプ31bにより圧縮され、搬送された熱媒体は、第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを通り、利用側熱交換器35a~利用側熱交換器35dに流入する。熱媒体は、利用側熱交換器35a~35dにおいて、空調空間に冷熱エネルギーを伝達し、これにより、室内7が冷却される。
 その後、熱媒体は、利用側熱交換器35a~35dから流出し、熱媒体流量調整装置34~34dに流入する。このとき、熱媒体流量調整装置34a~34dは、熱媒体の流量がそれぞれの利用側熱交換器35a~35dで要求された空調負荷に応じた流量となるように熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、分岐して中間熱交換器25bに流入する。中間熱交換器25bを流通した熱媒体は、ポンプ31bに再び吸入される。
 これにより、室外機1を利用した冷房運転が実施される。
 <全暖房運転>
 図23は、実施の形態2に係る空気調和装置100の全暖房運転における冷媒及び水の流れを示す概略図である。図23において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。室内機3a~3dは、全て、暖房運転を実施している。
 全暖房運転においては、圧縮機10から吐出された冷媒が、熱源側熱交換器12を通らず、中継機2に流入するように室外機1の第1流路切替装置11が切り替えられる。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となる。高温及び高圧のガス冷媒は、圧縮機10から吐出され、室外機1の第1流路切替装置11を通り、ガス配管42を通過して室外機1から流出する。高温及び高圧のガス冷媒は、室外機1から冷媒配管4を通り中継機2に流入する。高温及び高圧のガス冷媒は、中継機2において、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを流れる熱媒体に熱を伝達し、凝縮されて液化し、液冷媒となる。ガス冷媒は、中間熱交換器25bから流出すると、膨張装置26bにより膨張され、低圧の2相冷媒になる。低圧の2相冷媒は、膨張装置26bから流出し、冷媒配管4を介して室外機1に再び流入する。
 低圧の2相冷媒は、室外機1の液配管41を介し、蒸発器として機能する熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12の外気からの熱エネルギーにより、低温及び低圧のガス冷媒となる。低温及び低圧のガス冷媒は、熱源側熱交換器12から流出すると、第1流路切替装置11と、アキュムレータ19とを流通した後、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。全暖房運転においては、中継機2において、室内機3a~3dのいずれかが暖房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体流量調整装置34a、34b、34c、及び、34dが開となる。第2熱媒体流路切替装置33a、33b、33c、及び、33dは、制御装置50により、熱媒体がポンプ31bから利用側熱交換器35a、35b、35c、及び、35dに供給されるように切替られる。第1熱媒体流路切替装置32a、32b、32c、及び、32dは、制御装置50により、熱媒体流量調整装置34a、34b、34c、及び、33dから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。
 熱源側の冷媒の温熱エネルギーは、中間熱交換器25bにおいて熱媒体に伝達され、これにより熱媒体が加熱され、ポンプ31bの駆動により熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33a、33b、33c、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35b、35c、及び、35dに流入する。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35a、35b、35c、及び、35dとの間を循環する。
 これにより、室外機1を利用した暖房運転が実現される。
 <冷却暖房運転>
 図24は、実施の形態2に係る空気調和装置100の冷却暖房運転における冷媒及び水の循環を示す概略図である。図24において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。室内機3a、及び、3bは、暖房運転を実施している。室内機3c、及び、3dは、冷房運転を実施している。
 冷却暖房運転においては、圧縮機10から吐出された冷媒が、熱源側熱交換器12を通らず、中継機2に流入するように室外機1の第1流路切替装置11が切り替えられる。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となる。高温及び高圧のガス冷媒は、圧縮機10から吐出され、室外機1の第1流路切替装置11を通り、ガス配管42を通過して室外機1から流出する。高温及び高圧のガス冷媒は、室外機1から冷媒配管4を通り中継機2に流入する。高温及び高圧のガス冷媒は、中継機2において、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを流れる熱媒体に熱を伝達し、凝縮されて液化し、液冷媒となる。ガス冷媒は、中間熱交換器25bから流出すると、膨張装置26bにより膨張され、低圧の2相冷媒になる。低圧の2相冷媒は、膨張装置26bから流出し、冷媒配管4を介して室外機1に再び流入する。
 低圧の2相冷媒は、室外機1の液配管41を介し、蒸発器として機能する熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12の外気からの熱エネルギーにより、低温及び低圧のガス冷媒となる。低温及び低圧のガス冷媒は、熱源側熱交換器12から流出すると、第1流路切替装置11と、アキュムレータ19とを流通した後、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。
 冷却暖房運転では、熱媒体のうちの一部が暖房運転に利用される。中継機2において、室内機3a~3dのいずれかが暖房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体流量調整装置34a、及び、34bが開となる。第2熱媒体流路切替装置33a、及び、33bは、制御装置50により、熱媒体がポンプ31bから利用側熱交換器35a、及び、35bに供給されるように切替られる。第1熱媒体流路切替装置32a、及び、32bは、制御装置50により、熱媒体流量調整装置34a、及び、34bから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。
 熱源側の冷媒の温熱エネルギーは、中間熱交換器25bにおいて熱媒体に伝達され、これにより冷媒を用いて熱媒体が加熱され、ポンプ31bの駆動により熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33a、及び、33bを介し、暖房負荷を有する利用側熱交換器35a、及び、35bに流入する。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35a、及び、35bとの間を循環する。
 冷却暖房運転では、中継機2において、室内機3a~3dのいずれかが冷房運転を行うため、制御装置50により、ポンプ31bが駆動され、熱媒体のうちの他の一部が補助装置15による冷房運転に利用される。熱媒体は、補助装置15において冷却され、ポンプ31aの駆動により熱媒体配管61bを流通する。従って、ポンプ31aにより圧縮され、搬送された熱媒体は、第2熱媒体流路切替装置33c、及び、33dを通り、利用側熱交換器35c、及び、35dに流入する。熱媒体は、利用側熱交換器35c、及び、35dにおいて、空調空間に冷熱エネルギーを伝達し、これにより、室内7が冷却される。
 これにより、室外機1を利用した暖房運転と、補助装置15を利用した冷房運転とが実施される。
<実施の形態2の変形例1>
 図25は、実施の形態2の変形例に係る空気調和装置100の概略図である。図25に示すように、実施の形態2の変形例に係る空気調和装置100は、室外機1と中継機2とを備え、中継機2に熱媒体流路開閉装置36を有する。室外機1は、暖房主体又は冷房主体運転を行うことができない、逆流式ヒートポンプタイプのユニットである。従って、室外機1は、暖房運転、また、冷房運転のいずれか一方のみしか行うことができない。以下では、室外機1が、室外の空気を熱源とするタイプのものとして説明されているが、室外機1の熱源は、室外の空気に限定されない。
 実施の形態2の変形例に係る空気調和装置100の中継機2は、ポンプ31aと、中間熱交換器25bを有する。また、熱媒体回路Bには、補助装置15が接続されている。また、補助装置15が接続された熱媒体回路Bには、補助装置15をバイパスする流路に、熱媒体流路開閉装置36が設けられている。熱媒体流路開閉装置36は、中継機2の内部に設けられていてもよく、中継機2の外部に設けられていてもよい。これにより、室内機3a~3dは、冷媒回路Aによる冷却暖房運転を実施しないが、補助回路Cを用いた全暖房運転、全冷房運転、単独冷却運転、又は、補助冷却運転を実施し得る構成となる。なお、第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dは、設けられていない。実施の形態2の変形例に係る空気調和装置100は、室内機3a~3d毎に暖房運転と冷房運転とを切り替える構成ではないためである。
 特に、実施の形態2に係る空気調和装置100のように、冷暖同時運転が補助装置15による冷房運転に限定される構成であっても、空気調和装置100の簡略化及び低価格化を実現できる。
 実施の形態3.
 図26は、実施の形態3に係る空気調和装置100の回路構成を示す概略図である。図26に示すように、実施の形態3に係る空気調和装置100は、二次熱媒体から受熱する加熱装置16を備える点で実施の形態1と相違している。その他の構成は実施の形態1と同様であるため、実施の形態1と同様の符号を付して説明する。
 実施の形態3に係る空気調和装置100は、補助装置としての加熱装置16が筐体に補助熱交換器としての加熱用熱交換器25dを備えている。加熱用熱交換器25dは、熱媒体配管5bから熱媒体配管61dを介して流入した熱媒体と、加熱装置16内であって、受熱対象となる加熱用熱交換器25d周囲の二次熱媒体との間で熱交換を行い、熱媒体配管61dを流通する熱媒体から受熱する。つまり、加熱装置16は、冷媒を用いず、二次熱媒体により熱媒体を加熱するものである。加熱用熱交換器25dは、例えば、熱媒体が流通する伝熱管と、空気が流通するフィンとを有するプレートフィンチューブ熱交換器である。この場合、放熱対象となる二次熱媒体は、加熱装置16が配置された空間の空気、例えば、外気である。加熱装置16は、図示せぬ送風装置を備えていてもよい。吸熱対象となる媒体が空気でない場合、加熱用熱交換器25dは、水熱交換器であってもよい。加熱用熱交換器25dは、熱媒体配管5bに供給された熱媒体が、受熱対象となる二次熱媒体から受熱されるものである。
 加熱装置16は、加熱用温度センサ40dを備えていてもよい。加熱用温度センサ40dは、補助温度センサ40cと同様の構成でよい。加熱用温度センサ40dの検出値は、制御装置50に送信される。加熱用温度センサ40dは、加熱用熱交換器25dの出口側に配置されているとよい。加熱装置16における受熱量は、加熱用温度センサ40d、又は、温度センサ40bの検出値を用いて制御することができる。受熱量は、例えば、動作モードに応じた送風装置からの風量、熱媒体流路開閉装置39又はポンプ31bによる流量制御、又は、それらの組み合わせにより制御することができる。受熱量の制御方法は、特に限定されず、他の公知の方法も採用できる。
 加熱装置16は、熱媒体配管61c及び61dにより熱媒体回路Bに接続されている。熱媒体配管61dは、一端が加熱用熱交換器25dの上流側に接続され、他端が熱媒体流路開閉装置39と第1熱媒体流路切替装置32a~32dとを接続している熱媒体配管5bに接続されている。熱媒体配管61cは、一端が加熱用熱交換器25dの下流側に接続され、他端が熱媒体流路開閉装置39と中間熱交換器25bとを接続している熱媒体配管5bに接続されている。
 熱媒体配管61cの他端が接続された位置と、熱媒体配管61dの他端が接続された位置との間を接続する熱媒体配管5bは、補助回路Cをバイパスするバイパス熱媒体回路60として機能する。バイパス熱媒体回路60は、熱媒体回路Bの一部である。熱媒体配管5bにおけるバイパス熱媒体回路60には、熱媒体流路開閉装置39が設けられている。熱媒体流路開閉装置39は、熱媒体配管61cの他端が接続された位置と、熱媒体配管61dの他端が接続された位置との間に配置されている。熱媒体流路開閉装置39は、開閉する構成に変えて、第1熱媒体流路切替装置32a~32dから流れる熱媒体を、加熱装置16、又は、中間熱交換器25bの方向に流通させる3方弁の構成であってもよい。熱媒体流路開閉装置39は、第1熱媒体流路切替装置32a~32d、又は、加熱装置16から流れる熱媒体を、中間熱交換器25bに流入させる3方弁であってもよい。熱媒体流路開閉装置39は、例えば、2方弁であって、対応する流路を開閉する構成であってもよい。熱媒体流路開閉装置39は、3方弁である場合、2つの接続口はそれぞれ熱媒体配管5bに接続されていればよい。3方弁の残りの接続口には、熱媒体配管61cの他端、又は、熱媒体配管61dの他端が接続されていればよい。熱媒体流路開閉装置39は、熱媒体配管5aにおける熱媒体流路開閉装置36と同様の構成であってよい。
 圧縮機10、第1流路切替装置11、熱源側熱交換器12、開閉装置27、開閉装置29、第2流路切替装置28a、28b、中間熱交換器25a、25bの冷媒流路、膨張装置26a、26b、及び、アキュムレータ19は、冷媒配管4により接続されている。冷媒配管4により、冷媒回路Aが構成されている。中間熱交換器25a、25bの熱媒体流路、ポンプ31a、31b、第1熱媒体流路切替装置32a~32d、熱媒体流量調整装置34a~34d、利用側熱交換器35a~35d、及び、第2熱媒体流路切替装置33a~33dは、熱媒体配管5a、5bで接続されている。熱媒体配管5a、5bにより、熱媒体回路Bが構成されている。熱媒体回路Bは、複数の利用側熱交換器35a~35dがそれぞれ、中間熱交換器25a、25bに並列に接続されることで、複数のシステムを含む構成になっている。更に、熱媒体回路Bには、補助回路Cが接続され、加熱用熱交換器25dが、中間熱交換器25bが接続された熱媒体配管5bに直列に接続されている。
 空気調和装置100においては、室外機1及び中継機2が、中継機2の中間熱交換器25a、25bを介し冷媒回路Aにより接続され、且つ、中継機2及び室内機3a~3dが、中継機2の中間熱交換器25a、25bを介し熱媒体回路Bにより接続されている。空気調和装置100は、中間熱交換器25a、25bにおいて、冷媒回路Aを循環する熱源側の冷媒と、熱媒体回路Bを循環する熱媒体とが熱交換を行う構成である。空気調和装置100は、このような構成により、空調負荷に応じた冷房運転又は暖房運転を実現している。
 加熱装置16は、例えば、川などの水源、データセンター等の排熱、地域エネルギーループなどを用いて熱が供給される構成である。加熱装置16は、例えば、外部6として以下の受熱対象から受熱し、温熱を供給する構成である。
 ・ボイラー等からの熱を受ける。
 ・川や沼などから熱を受ける。
 ・データセンターから熱回収して、熱を受ける。
 ・エネルギーループ介して産業からの熱を受ける。
 ・ビルのエネルギーループから熱を受ける。
 ・下水から熱を受ける。
 ・ボーリング孔掘から熱を受ける。
 ・土地から熱を受ける(地熱)。
 <空気調和装置の運転態様>
 空気調和装置100において実施される運転モードは、全暖房運転、全冷房運転、暖房主体運転、及び、冷房主体運転を含む。全暖房運転は、全ての室内機3a~3dが暖房運転を行うモードである。全冷房運転は、全ての室内機3a~3dが冷房運転を行うモードである。暖房主体運転は、暖房運転及び冷房運転を行うモードであって、暖房負荷が冷房負荷よりも大きい場合のモードである。冷房主体運転は、暖房運転及び冷房運転を行うモードであって、冷房負荷が暖房負荷よりも大きい場合のモードである。これらの運転モードは、例えば、制御装置50の制御により実施される。これらの運転モードは、第1流路切替装置11、第2流路切替装置28a、28b、第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dの切り替え、及び、開閉装置27及び開閉装置29の開閉の組み合わせにより実現される。
 <加熱装置16の運転態様>
 空気調和装置100において、補助装置15として加熱装置16を用いた運転モードは、単独加熱及び補助加熱を含む。加熱装置16を用いた運転モードは、制御装置50の制御により実施される。加熱装置16を用いた運転モードは、利用側熱交換器35a~35dの何れかにおいて暖房運転が要求されている場合に実施されるモードである。
 加熱装置16を用いた運転モードのうち、単独加熱は、加熱用熱交換器25dにおける放熱により生成された温熱が、室内機3a~3dの利用側熱交換器35a~35dに移送されるモードである。単独加熱では、中間熱交換器25bにおいて熱媒体への温熱の追加が行われない。補助加熱は、加熱用熱交換器25dで生成された温熱に加え、中間熱交換器25b、又は、中間熱交換器25a及び中間熱交換器25bで生成された温熱が、室内機3の利用側熱交換器35a~35dに移送されるモードである。すなわち、補助加熱では、加熱用熱交換器25dにおいて二次熱媒体により加熱された熱媒体が、中間熱交換器25b、又は、中間熱交換器25a及び中間熱交換器25bに流入する構成である。そして、熱媒体は、中間熱交換器25b、又は、中間熱交換器25a及び中間熱交換器25bにおいて冷媒回路Aを流通する冷媒により、更に加熱されて、暖房運転が要求されている利用側熱交換器35a~35dに供給される。
 加熱装置16による運転モードは、空気調和装置100の全暖房運転、冷房主体運転、又は、暖房主体運転のいずれかと組み合わせて用いることができる。すなわち、空気調和装置100は、単独加熱全暖房運転、補助加熱全暖房運転、単独加熱暖房主体運転、補助加熱暖房主体運転、単独加熱冷房主体運転、又は、補助冷却冷房主運転を実施する。
<単独加熱全暖房運転>
 図27は、実施の形態3に係る空気調和装置100の単独加熱全暖房運転における水の流れを示す図である。図27において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図27において、利用側熱交換器35a~35dは、全て、暖房負荷を有する。つまり、室内機3a~3dは、全て、暖房運転を実施している。単独加熱全暖房運転では、全ての冷熱が加熱装置16で生成され、冷媒回路Aが利用されないため、冷媒回路Aにおける要素の動作は任意である。
 中継機2において、制御装置50の制御により、ポンプ31aが動作し、熱媒体流量調整装置34a~34dが開となって、熱媒体が、中間熱交換器25bと、利用側熱交換器35a~35dとの間を循環する。熱媒体流路開閉装置39は、制御装置50の制御により、閉となり、熱媒体がバイパス熱媒体回路60を流れない。従って、ポンプ31bにより搬送された熱媒体は、補助回路Cの加熱装置16を循環する。
 熱媒体回路Bにおける熱媒体の流れについて説明する。単独加熱全暖房運転において、熱媒体は、加熱装置16において加熱され、ポンプ31bの駆動により熱媒体回路Bを構成する熱媒体配管5bに流入する。熱媒体は、ポンプ31bからの圧力により、第2熱媒体流路切替装置33a~33dを通って、暖房運転が要求されている利用側熱交換器35a~25dに到達する。そして、熱媒体は、第2熱媒体流路切替装置33a~33dにおいて室内空気に温熱を伝達し、室内7を加熱する。
 その後、熱媒体は、利用側熱交換器35a~35dから流出し、熱媒体流量調整装置34a~34dに流入する。熱媒体流量調整装置34a~34dは、それぞれの部屋で要求された空調負荷に応じた流量で熱媒体が流れるよう、熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、分岐して加熱装置16に流入する。熱媒体配管61dを流通した熱媒体は、加熱用熱交換器25dにおいて冷却され、中継機2の中間熱交換器25bに流入し、再びポンプ31bに吸い込まれる。これにより、室外機1を動作させることなく要求された暖房を行うことができる。
 <補助加熱全暖房運転>
 図28は、実施の形態3に係る空気調和装置100の補助加熱全暖房運転における冷媒及び水の循環を示す図である。図28において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図28において、利用側熱交換器35a~35dは、全て、暖房負荷を有する。つまり、室内機3a~3dは、全て、暖房運転を実施している。
 図28に示すように、補助加熱全暖房運転では、熱源側の冷媒が冷媒回路Aを循環する。高温及び高圧となって圧縮機10から吐出された冷媒は、室外機1の第1流路切替装置11により、室外機1の熱源側熱交換器12を通ることなく中継機2に流入する。低温及び低圧の冷媒は、圧縮機10で圧縮されて高温及び高圧のガス冷媒となる。高温及び高圧のガス冷媒は、圧縮機10から吐出され、冷媒配管4を通り、第1流路切替装置11から第1接続冷媒配管4aを介して室外機1から流出する。高温及び高圧のガス冷媒は、冷媒配管4を通り室外機1から中継機2に流入する。高温及び高圧のガス冷媒は、中継機2に流入すると、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bに流入すると、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。液冷媒は、中間熱交換器25bを流出し、膨張装置26bにおいて膨張されて低圧の二相冷媒となる。このとき、開閉装置27は、閉であり、開閉装置29は、開である。従って、低圧の二相冷媒は、中間熱交換器25bから流出すると、開閉装置29を流通し、冷媒配管4を通り、室外機1に再度流入する。
 低圧の二相冷媒は、室外機1の第1接続冷媒配管4aを通り、蒸発器として機能している熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12の外気と熱交換し、低温及び低圧の冷媒に変化する。低温及び低圧となった冷媒は、熱源側熱交換器12から流出し、第1流路切替装置11及びアキュムレータ19を通り、圧縮機10に再び吸入される。
 中継機2では、制御装置50の制御により、ポンプ31bが駆動し、熱媒体流量調整装置34a~34dが開となって、熱媒体が中間熱交換器24a及び中間熱交換器25bと、利用側熱交換器35a~35dと、の間を流通する。このとき、ポンプ31aは駆動していなくてもよい。熱媒体流路開閉装置39は、制御装置50の制御により、閉となっており、ポンプ31bにより搬送された熱媒体が、加熱装置16を循環する。
 熱媒体回路Bにおける熱媒体の流れを説明する。補助加熱全暖房運転では、熱媒体は、加熱装置16において加熱され、ポンプ31bにより熱媒体配管5bを流通する。熱媒体は、ポンプ31bにより加圧されて排出され、第2熱媒体流路切替装置33a~33dを通過して、利用側熱交換器35a~35bを流通する。利用側熱交換器35a~35dにおいて、熱媒体は、室内空気に温熱を供給し、室内7が加熱される。
 その後、熱媒体は、利用側熱交換器35a~35bから流出し、熱媒体流量調整装置34a~34dに流入する。熱媒体流量調整装置34a~34dは、熱媒体が利用側熱交換器35a~35bのそれぞれで要求されている空調負荷に応じた流量となるように、熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを通り、分岐されて熱媒体流路開閉装置39により加熱装置16に向かい流路を流通する。加熱装置16の熱媒体配管61dを介して流入した熱媒体は、加熱用熱交換器25dにおいて加熱され、熱媒体配管61cを流通して再び中継機2に戻り、中間熱交換器25bを流通して、ポンプ31bに再び吸入される。これにより、室外機1及び加熱装置16の双方による暖房運転が実現される。
 <単独加熱暖房主体運転>
 図29は、実施の形態3に係る空気調和装置100の単独加熱暖房主体運転における冷媒及び水の循環を示す図である。図29において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図29において、利用側熱交換器35cは冷房負荷を有し、利用側熱交換器35a、35b、及び、35dは、暖房負荷を有する。つまり、室内機3cは、冷房運転を実施しており、室内機3a、3b、及び、3dは暖房運転を実施している。
 始めに、冷媒回路Aにおける熱源側の冷媒の流れについて説明する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となって圧縮機10から吐出される。圧縮機10から吐出された高温及び高圧のガス冷媒は、室外機1の第1流路切替装置11に流入し、第1流路切替装置11により圧縮機10から熱源側熱交換器12に流入するように流路が切り替えられる。高温及び高圧のガス冷媒は、第1流路切替装置11を通り、第1流路切替装置11から熱源側熱交換器12に向かい流れ、熱源側熱交換器12において外部の空気と熱交換を行うことにより高温及び高圧の液冷媒又は二相冷媒となる。高温及び高圧の液冷媒又は二相冷媒は、逆止弁13aを通り、室外機1から流出し、冷媒配管4を介し、中継機2に流入する。
 中継機2に流入した高温及び高圧の液冷媒又は二相冷媒は、開閉装置27を通り、膨張装置26aにおいて膨張され、低温及び低圧の二相冷媒となって中間熱交換器25aに流入する。二相冷媒は、中間熱交換器25aにおいて、熱媒体からの温熱の供給により蒸発し、低温のガス冷媒となる。ガス冷媒は、第2流路切替装置28bを通り、冷媒配管4から再び室外機1に流入する。室外機1に流入したガス冷媒は、逆止弁13cから第1流路切替装置11及びアキュムレータ19を介し、再び圧縮機10に吸入される。単独加熱暖房主体運転では、全ての冷熱が中間熱交換器25aで供給されるため、中継機2の膨張装置26bは、全閉であってよい。
 熱媒体回路Bにおける熱媒体の流れについて説明する。熱媒体の一部は、冷房運転に使用される。単独加熱暖房主体運転では、熱源側の冷媒から供給される冷熱エネルギーが、中間熱交換器25aにおいて、熱媒体に伝達され、これにより熱媒体が冷却され、ポンプ31aの駆動によって熱媒体配管5を流通する。ポンプ31aから排出された熱媒体は、第2熱媒体流路切替装置33cを介し、冷房負荷を有する利用側熱交換器35cに流入する。
 中継機2において、室内機3のいずれかが冷房運転を行うため、ポンプ31aが駆動され、熱媒体流量調整装置34cが開となる。第2熱媒体流路切替装置33cは、熱媒体がポンプ31aから利用側熱交換器35cに供給されるように切替られる。第1熱媒体流路切替装置32cは、熱媒体流量調整装置34cから流出した熱媒体が中間熱交換器25aに流入するように切り替えられる。従って、熱媒体は、中間熱交換器25aと、利用側熱交換器35cとの間を循環する。
 熱媒体の他の一部は、単独加熱に使用される。単独加熱暖房主体運転では、温熱は、加熱装置16の加熱用熱交換器25dにおいて熱媒体に伝達されて熱媒体が加熱される。加熱された熱媒体は、ポンプ31bの駆動により熱媒体配管5を流通する。熱媒体は、熱媒体流路開閉装置39が閉となることで、加熱装置16に流入する。熱媒体は、ポンプ31bにより搬送されて中間熱交換器25bに流入し、第2熱媒体流路切替装置33a、33b、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。
 中継機2では、室内機3のいずれかが冷房運転を行っているため、ポンプ31bが駆動され、熱媒体流量調整装置34a、34b、及び、34dが開にされている。第2熱媒体流路切替装置33a、33b、及び、33dは、ポンプ31bにより搬送された熱媒体が利用側熱交換器35a、35b、及び、35dに流入するように切り替えられる。第1熱媒体流路切替装置32a、32b、及び、32dは、熱媒体流量調整装置34a、34b、及び、34dから搬送された熱媒体が、加熱装置16に流入するように切り替えられる。熱媒体流路開閉装置39は、閉となっている。従って、熱媒体は、加熱装置16と、利用側熱交換器35a、35b、及び35dとの間を循環する。
 <単独加熱暖房主体運転>
 単独加熱冷房主体運転における冷媒及び水の循環を示す図は、図29と同様である。始めに、冷媒回路Aにおける熱源側の冷媒の流れについて説明する。単独加熱冷房主体運転において、利用側熱交換器35a、35b、及び、35dは冷房負荷を有し、利用側熱交換器35cは暖房負荷を有する。つまり、室内機3a、3b、及び、3dは、冷房運転を実施しており、室内機3cは暖房運転を実施している。
 低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となって圧縮機10から吐出される。圧縮機10から吐出された高温及び高圧のガス冷媒は、室外機1の第1流路切替装置11に流入し、第1流路切替装置11により圧縮機10から熱源側熱交換器12に流入するように流路が切り替えられる。高温及び高圧のガス冷媒は、第1流路切替装置11を通り、第1流路切替装置11から熱源側熱交換器12に向かい流れ、熱源側熱交換器12において外部の空気と熱交換を行うことにより高温及び高圧の液冷媒又は二相冷媒となる。高温及び高圧の液冷媒又は二相冷媒は、逆止弁13aを通り、室外機1から流出し、冷媒配管4を介し、中継機2に流入する。
 中継機2に流入した高温及び高圧の液冷媒又は二相冷媒は、開閉装置27を通り、膨張装置26aにおいて膨張され、低温及び低圧の二相冷媒となって中間熱交換器25aに流入する。二相冷媒は、中間熱交換器25aにおいて、熱媒体からの温熱の供給により蒸発し、低温のガス冷媒となる。ガス冷媒は、第2流路切替装置28bを通り、冷媒配管4から再び室外機1に流入する。室外機1に流入したガス冷媒は、逆止弁13cから第1流路切替装置11及びアキュムレータ19を介し、再び圧縮機10に吸入される。なお、中継機2は、中間熱交換器25aによる冷熱のみを供給するため、中継機2の膨張装置26bは、全閉であってよい。
 熱媒体回路Bにおける熱媒体の流れについて説明する。熱媒体の一部は、冷房運転に使用される。単独加熱冷房主体運転では、熱源側の冷媒から供給される冷熱エネルギーが、中間熱交換器25aにおいて、熱媒体に伝達され、これにより熱媒体が冷却され、ポンプ31aの駆動によって熱媒体配管5を流通する。ポンプ31aから排出された熱媒体は、第2熱媒体流路切替装置33a、33b、及び、33dを介し、冷房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。
 中継機2において、室内機3のいずれかが冷房運転を行うため、ポンプ31aが駆動され、熱媒体流量調整装置34a、34b、及び、34dが開となる。第2熱媒体流路切替装置33a、33b、及び、33dは、熱媒体がポンプ31aから利用側熱交換器35a、35b、及び、35dに供給されるように切替られる。第1熱媒体流路切替装置32a、32b、及び、32dは、熱媒体流量調整装置34a、34b、及び、34dから流出した熱媒体が中間熱交換器25aに流入するように切り替えられる。従って、熱媒体は、中間熱交換器25aと、利用側熱交換器35a、35b、及び、35dとの間を循環する。
 熱媒体の他の一部は、単独加熱に使用される。単独加熱暖房主体運転では、温熱は、加熱装置16の加熱用熱交換器25dにおいて熱媒体に伝達されて熱媒体が加熱される。加熱された熱媒体は、ポンプ31bの駆動により熱媒体配管5を流通する。熱媒体は、熱媒体流路開閉装置39が閉となることで、加熱装置16に流入する。熱媒体は、ポンプ31bにより搬送されて中間熱交換器25bに流入し、第2熱媒体流路切替装置33cを介し、暖房負荷を有する利用側熱交換器35cに流入する。
 中継機2では、室内機3のいずれかが冷房運転を行っているため、ポンプ31bが駆動され、熱媒体流量調整装置34cが開にされている。第2熱媒体流路切替装置33cは、ポンプ31bにより搬送された熱媒体が利用側熱交換器35cに流入するように切り替えられる。第1熱媒体流路切替装置32cは、熱媒体流量調整装置34cから搬送された熱媒体が、加熱装置16に流入するように切り替えられる。熱媒体流路開閉装置39は、閉となっている。従って、熱媒体は、加熱装置16と、利用側熱交換器35cとの間を循環する。これにより、室外機1による冷房運転と、加熱装置16による暖房運転とが実現される。
 <補助加熱冷房主体運転>
 図30は、実施の形態3に係る空気調和装置100の補助加熱冷房主体運転における冷媒及び水の循環を示す図である。図30において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図30において、利用側熱交換器35a、35b、及び、35dは、冷房負荷を有し、利用側熱交換器35cは、暖房負荷を有する。つまり、室内機3a、3b、及び、3dは、冷房運転を実施し、室内機3cは、暖房運転を実施している。
 冷媒回路Aにおける熱媒体側の冷媒の流れについて説明する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となって圧縮機10から吐出される。圧縮機10から吐出された高温及び高圧のガス冷媒は、室外機1の第1流路切替装置11に流入し、第1流路切替装置11により圧縮機10から熱源側熱交換器12に流入するように流路が切り替えられる。高温及び高圧のガス冷媒は、第1流路切替装置11を通り、第1流路切替装置11から熱源側熱交換器12に向かい流れ、熱源側熱交換器12において外部の空気と熱交換を行うことにより高温及び高圧の液冷媒又は二相冷媒となる。高温及び高圧の液冷媒又は二相冷媒は、逆止弁13aを通り、室外機1から流出し、冷媒配管4を介し、中継機2に流入する。中継機2に流入した高温及び高圧の液冷媒又は二相冷媒は、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 高温及び高圧の液冷媒又は二相冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。液冷媒は、中間熱交換器25bを流出すると、膨張装置26bにおいて膨張されて低圧の二相冷媒となる。開閉装置27は、及び、開閉装置29は、閉であって、膨張装置26aは、開になっている。低圧の二相冷媒は、膨張装置26aを通過し、蒸発器として機能している中間熱交換器25aに流入する。
 低圧の二相冷媒は、中間熱交換器25aにおいて、熱媒体回路Bを流れる熱媒体からの温熱エネルギーにより加熱され、蒸発する。低温及び低圧の二相冷媒は、中間熱交換器25aから流出し、第2流路切替装置28aを通り、中継機2から流出する。低温及び低圧の二相冷媒は、中継機2から流出すると、冷媒配管4を介し、再び室外機1に流入する。中継機2から流出した低温及び低圧の二相冷媒は、室外機1の第1流路切替装置11及びアキュムレータ19を介し、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れを説明する。熱媒体の一部は、冷房運転に使用される。補助加熱冷房主体運転において、熱源側の冷媒から供給される冷熱エネルギーは、中間熱交換器25aにおいて熱媒体に供給され、これにより、熱媒体が冷却され、ポンプ31aの駆動により熱媒体配管5を流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33a、33b、及び、33dを介し、冷房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。
 中継機2において、室内機3のいずれかが冷房運転を行うため、ポンプ31aが駆動され、熱媒体流量調整装置34a、34b、及び、34dが開となる。第2熱媒体流路切替装置33a、33b、及び、33dは、熱媒体がポンプ31aから利用側熱交換器35a、35b、及び、35dに供給されるように切替られる。第1熱媒体流路切替装置32a、32b、及び、32dは、熱媒体流量調整装置34a、34b、及び、33dから流出した熱媒体が中間熱交換器25aに流入するように切り替えられる。従って、熱媒体は、中間熱交換器25aと、利用側熱交換器35a、35b、及び、35dとの間を循環する。
 熱媒体の他の一部は、補助加熱に使用される。補助加熱冷房主体運転において、熱媒体は、熱媒体流路開閉装置39が閉となっているため、加熱装置16に流入する。ポンプ31bから流出した熱媒体は、中間熱交換器25bを通り、第2熱媒体流路切替装置33cを経て、暖房負荷を有する利用側熱交換器35cに流入する。
 中継機2において、室内機3のいずれかが暖房運転を行うため、ポンプ31bが駆動され、熱媒体流量調整装置34cが開となる。第2熱媒体流路切替装置33cは、熱媒体がポンプ31bから利用側熱交換器35cに供給されるように切替られる。第1熱媒体流路切替装置32cは、熱媒体流量調整装置34cから流出した熱媒体が、閉となった熱媒体流路開閉装置39により加熱装置16及び中間熱交換器25bに流入するように切り替えられる。従って、熱媒体は、加熱装置16と、利用側熱交換器35cとの間を循環する。これにより、室外機1による冷房運転と、室外機1及び加熱装置16による暖房運転とが実現される。
 <補助加熱暖房主体運転>
 図31は、実施の形態3に係る空気調和装置100の補助加熱暖房主体運転における冷媒及び水の循環を示す図である。図31において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図31において、利用側熱交換器35cは、冷房負荷を有し、利用側熱交換器35a、35b、35dは、暖房負荷を有する。つまり、室内機3cは冷房運転を実施しており、室内機3a、3b、及び、3dは、暖房運転を実施している。
 冷媒回路Aにおける熱媒体側の冷媒の流れについて説明する。低温及び低圧の冷媒は、圧縮機10により圧縮され、高温及び高圧のガス冷媒となる。ガス冷媒は、圧縮機10から吐出され、室外機1の第1流路切替装置11から第1接続冷媒配管4aを通り、室外機1から流出する。高温及び高圧のガス冷媒は、冷媒配管4を通り、室外機1から中継機2に向かい流れる。高温及び高圧のガス冷媒は、中継機2に流入すると、第2流路切替装置28bを通り、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bに流入すると、熱媒体回路Bを循環する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。中間熱交換器25bから流出した液冷媒は、膨張装置26bにおいて膨張されて低圧の二相冷媒となる。開閉装置27、及び、開閉装置29は、閉であって、膨張装置26aは、開になっている。低圧の二相冷媒は、膨張装置26bから流出すると、膨張装置26aを流通し、蒸発器として機能している中間熱交換器25aに流入する。低圧の二相冷媒は、中間熱交換器25aにおいて、熱媒体回路Bを流通する熱媒体から温熱の供給を受けて蒸発し、これにより、熱媒体が冷却される。低温及び低圧の二相冷媒は、中間熱交換器25aから流出し、第2流路切替装置28aから中継機2に流入する。低温及び低圧の二相冷媒は、中継機2から流出し、冷媒配管4を介し、再び室外機1に流入する。
 低温及び低圧の二相冷媒は、室外機1に流入すると、第2接続冷媒配管4bを介し、蒸発器として機能している熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、外部の空気からの温熱の供給により、低温及び低圧のガス冷媒となる。低温及び低圧のガス冷媒は、熱源側熱交換器12から流出すると、第1流路切替装置11及びアキュムレータ19を介し、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れについて説明する。熱媒体の一部は、冷房運転に使用される。補助加熱暖房主体運転では、熱源側から供給される冷熱エネルギーが、中間熱交換器25aにおいて熱媒体に伝達され、これにより、熱媒体が冷却され、ポンプ31aによって熱媒体配管5を流通する。ポンプ31aから排出された熱媒体は、第2熱媒体流路切替装置33cを介し、冷房負荷を有する利用側熱交換器35cに流入する。
 中継機2において、室内機3のいずれかが冷房運転を行うため、ポンプ31aが駆動され、熱媒体流量調整装置34cが開となる。第2熱媒体流路切替装置33cは、熱媒体がポンプ31aから利用側熱交換器35cに供給されるように切替られる。第1熱媒体流路切替装置32cは、熱媒体流量調整装置34cから流出した熱媒体が中間熱交換器25aに流入するように切り替えられる。従って、熱媒体は、中間熱交換器25aと、利用側熱交換器35cとの間を循環する。
 熱媒体の他の一部は、補助冷却に使用される。補助加熱暖房主体運転では、熱媒体は、熱媒体流路開閉装置39が閉となることで、加熱装置16に流入する。熱媒体は、ポンプ31bにより搬送されて中間熱交換器25bに流入し、第2熱媒体流路切替装置33a、33b、及び、33dを介し、暖房負荷を有する利用側熱交換器35a、35b、及び、35dに流入する。室内機3のいずれかが暖房運転を行うため、ポンプ31bが駆動され、熱媒体流量調整装置34a、34b、及び、34dが開となる。第2熱媒体流路切替装置33a、33b、及び、33dは、熱媒体がポンプ31bから利用側熱交換器35a、35b、及び、35dに供給されるように切替られる。第1熱媒体流路切替装置32a、32b、及び、32dは、熱媒体流量調整装置34a、34b、及び、33dから流出した熱媒体が、閉となった熱媒体流路開閉装置39により加熱装置16及び中間熱交換器25bに流入するように切り替えられる。従って、熱媒体は、加熱装置16と、利用側熱交換器35a、35b、及び、35dとの間を循環する。
 その後、利用側熱交換器35a、35b、及び、35dから流出した熱媒体は、熱媒体流量調整装置34a、34b、及び、33dに流入する。熱媒体流量調整装置34a、34b、及び、33dは、熱媒体が利用側熱交換器35a、35b、及び、35dのそれぞれで要求されている空調負荷に応じた流量となるように、熱媒体の流量を制御する。熱媒体流量調整装置34a、34b、及び、33dから流出した熱媒体は、第1熱媒体流路切替装置32a、32b、及び、32dを通り、分岐されて加熱装置16に流入する。加熱装置16の熱媒体配管61dを介して流入した熱媒体は、加熱用熱交換器25dにおいて加熱され、熱媒体配管61cを流通して再び中継機2に流入し、ポンプ31aに再び吸入される。これにより、室外機1及び加熱装置16の双方による暖房運転が実現される。これにより、室外機1による冷房運転と、室外機1及び加熱装置16による暖房運転とが実現される。
 <二次熱媒体温度と空調空間温度との関係>
 図32は、実施の形態1に係る空気調和装置100の空調空間温度と、受熱対象となる二次熱媒体温度と、加熱装置16の動作との関係を示すグラフである。図32において、横軸は、加熱装置16における受熱対象となる二次熱媒体温度を示し、縦軸は、空調空間温度を示している。図32では、加熱装置16における受熱の対象となる媒体が屋外空気である場合を例に説明しているが、受熱の対象となる媒体は、屋外空気に限定されない。空調空間温度は、例えば、室内7の温度である。
 線dhは、暖房運転が要求されている空調空間温度と、加熱装置16における二次熱媒体温度とが同じ場合を示している。外部6が受熱の対象となる媒体である場合には、二次熱媒体温度は、外気温と同じである。外気温が、例えば、20℃であり、室内7の温度である空調空間温度と同じか、又は低い点zhにおいては、暖房運転が要求されている空調空間である室内7から受熱することができない。そのため、空調空間温度が線dh上、又は、線dhよりも左側、すなわち、線dhよりも高い場合には、加熱装置16はオフとなり、加熱装置16による受熱は行われず、暖房負荷が、室外機1の駆動により賄われなければならない。
 線ahは、加熱装置16における二次熱媒体温度が、暖房運転が要求されている空調空間温度よりも第3の温度差ΔT3だけ高い場合を示している。外気温が空調空間温度よりも高い、例えば、30℃であり、空調空間温度が、例えば、20℃である点whにおいては、冷房運転が要求されている空調空間である室内7から放熱することができる。この場合、第3の温度差ΔT3は、10℃である。従って、空調空間温度が、線ah上、又は、線ahよりも低い場合には、室内7が外部6から受熱することができる。
 線bhは、二次熱媒体温度が、暖房運転が要求されている空調空間温度よりも第4の温度差ΔT4だけ低い場合を示している。第4の温度差ΔT4は、第3の温度差ΔT3よりも小さい。外気温が空調空間温度よりも高い、例えば、25℃であり、空調空間温度が、例えば、20℃である点xhにおいては、空調空間である室内7が受熱することができる。この場合、第4の温度差ΔT4は、5℃である。空調空間温度が、線bh上、又は、線bhよりも低い場合には、室内7が外部6から受熱することができる。一方、空調空間温度が、線bhよりも左側、すなわち、線bhよりも高い場合には、空調空間と、受熱の対象となる二次熱媒体との間の温度差はあるが、加熱装置16の能力では室内7を十分加熱することができない。空調空間温度が、線bhよりも左側、又は、線bhよりも高い場合とは、空調空間と、受熱の対象となる二次熱媒体との間の温度差が、第4の温度差ΔT4未満である場合である。そのため、室内7の熱は、空調空間温度と、二次熱媒体温度との温度差が、第4の温度差ΔT4以上であって、第3の温度差ΔT3以下である場合、一部が、補助加熱モードにより室外機1の運転により受熱される。
 線bhは、加熱装置16における受熱性能を向上させることで、より左側に移動し、単独加熱で運転可能な範囲を増大させることができる。加熱装置16における受熱性能は、通常、構成部品の価格と性能とに基づき決定されるが、例えば、加熱用熱交換器25dのサイズを増加させることで向上させることができる。線bhは、また、室内7で要求される加熱負荷が、加熱装置16の受熱性能と比較して小さければ、より左側に移動し、その逆の場合には、より右側に移動する。
 線chよりも左側で、線chよりも上であって、且つ、線dhよりも右側で、線dhよりも下の領域では、受熱の対象となる二次熱媒体温度が、室内7の温度よりも高いにもかかわらず、加熱装置16において、二次熱媒体から十分に受熱ができない領域である。しかし、例えば、加熱用熱交換器25dのサイズを増加させ、加熱装置16の加熱能力を向上させることで、線chはより左側に移動するので、加熱用熱交換器25dの選定により加熱装置16を利用した補助加熱を行うことができる領域を増大させることができる。
 従って、空気調和装置100の制御装置50は、例えば、暖房運転が要求されている空調空間温度が、加熱装置16における二次熱媒体温度よりも第3の温度差ΔT3だけ低いと判断した場合、単独加熱の制御を行う。また、空気調和装置100の制御装置50は、例えば、暖房運転が要求されている空調空間温度が、二次熱媒体温度よりも第4の温度差ΔT4だけ低いと判断した場合、補助加熱の制御を行う。第3の温度差ΔT3及び第4の温度差ΔT4は、空調空間の温度、及び、空気調和装置100の能力などに基づき求めることができる。また、第4の温度差ΔT4は、第3の温度差ΔT3よりも小さい値である。
 <加熱装置16におけるΔT3及びΔT4の算出方法>
 空調空間と、地域エネルギーループからの水などの熱源となる媒体との熱交換は、例えば、以下の数式8で表すことができる。
  [数8]
   Q=U×A×ΔTh
 ここで、Qは、エネルギーループから空調空間に伝達される熱の総量である。Aは、加熱装置16における熱交換面積である。ΔThは、空調空間と、熱源となる媒体との温度差である。Uは、熱源となる媒体から空調空間への熱伝達係数である。
 空調空間と熱源となる媒体との熱交換は、次の数式9でも表すことができる。
  [数9]
   Q=1/R×ΔTh
 ここで、Rは、熱源となる媒体から空調空間への熱伝達抵抗であって、以下の数式10で表すことができる。
  [数10]
   R=1/(U×A)
 この数式10より、加熱装置16における熱交換面積が増大すると、熱交換量が増大することがわかる。
 室内機3における最大設計加熱能力Qpeakhは、以下の数式11で表すことができる。
  [数11]
   Qpeakh=U×A×ΔT3
 この数式11を書き換えると以下の数式12のようになる。
  [数12]
   ΔT3=Qpeakh/(U×A)
 ΔT3が低下すると、室内機3に要求される暖房能力全体のうち加熱装置16が供給できる温熱が増加し、図32における線ahが左に移動する。図32における線ahが左に移動するのは、例えば、以下の場合である。
 ・室内機3における最大設計加熱能力Qpeakhの低下。
 ・加熱装置16における熱交換面積Aの増大。
 ・加熱装置16の熱伝達係数U。熱交換器の熱伝達係数Uは、例えば、熱交換する媒体の変更、送風速度又は搬送速度の増加などによる熱交換媒体の速度の増加により増加させることができる。
 室内機3における暖房要求Qlоadhは、以下の数式13で表すことができる。
  [数13]
   Qlоadh=U×A×ΔT4
 この数式13を書き換えると以下の数式14のようになる。
  [数14]
   ΔT4=Qlоadh/(U×A)
 ΔT4が低下すると、室内機3に要求される暖房能力のうち加熱装置16が供給できる温熱が増加し、図32における線bhが左に移動する。図32における線bhが左に移動するのは、例えば、以下の場合である。
 ・室内機3における最大設計加熱能力Qpeakhの低下。
 ・加熱装置16における熱交換面積Aの増大。
 ・加熱装置16の熱伝達係数Uの増大。熱交換器の熱伝達係数Uは、例えば、熱交換する媒体の変更、送風速度又は搬送速度の増加などによる熱交換媒体の速度の増加により増加させることができる。
 なお、図32において、線ah、bh、ch及びdhは、直線で示されているが、室内熱交換器の能力、又は、加熱用熱交換器25dの環境温度等に応じて直線でない場合もあり得る。
 <実施の形態3の変形例1>
 図33は、実施の形態3の変形例1に係る空気調和装置100の概略図である。図33に示すように、変形例1に係る空気調和装置100は、熱媒体流路開閉装置39を備えておらず、熱媒体配管61cの他端と熱媒体配管61dの他端との間を接続する熱媒体配管5も備えていない構成である。図33の構成では、加熱装置16がオフとなっている場合、ポンプ31bが駆動していても加熱用熱交換器25dにおいて吸熱が行われない。
 <実施の形態3の変形例2>
 図34は、実施の形態3の変形例2に係る空気調和装置100の概略図である。図34に示すように、変形例2に係る空気調和装置100は、熱媒体流路開閉装置39を備えておらず、熱媒体回路Bから加熱装置16に流入する流路を切り替える三方弁も備えていない構成である。図34の構成では、ポンプ31bが停止しているときに熱媒体が加熱用熱交換器25dに逆流することを防止するため、逆止弁38が設けられている。
 <実施の形態3の変形例3>
 図35は、実施の形態3の変形例3に係る空気調和装置100の概略図である。図35に示すように、変形例2に係る空気調和装置100は、図26の構成において、中間熱交換器25bをバイパスする構成である。つまり、図35は、熱媒体配管61cの他端が、中間熱交換器25bの下流側と、ポンプ31bとを接続している熱媒体配管5bに接続された構成である。
 <実施の形態3の変形例4>
 図36は、実施の形態3の変形例4に係る空気調和装置100の概略図である。図36に示すように、変形例4に係る空気調和装置100は、補助装置15と、加熱装置16とが熱媒体配管5に接続されている。空気調和装置100は、このような構成により、単独冷却及び加熱モード、補助冷却及び加熱モード、暖房及び冷房モード、又は、これら及び上述の運転態様のいずれの組み合わせであっても実施することができる。
 実施の形態4. 
 図37は、実施の形態4に係る空気調和装置100の回路構成図である。実施の形態4に係る空気調和装置100は、加熱装置16を備える点で実施の形態2と相違しており、その他の構成は実施の形態2と同様であるため、実施の形態2と同様の符号を付して説明する。
 <加熱装置16の構成>
 実施の形態4に係る空気調和装置100は、加熱装置16により、二次熱媒体である、例えば、空気から受熱する構成である。加熱装置16は、筐体に加熱用熱交換器25dを備える。加熱装置16は、加熱用熱交換器25dに加え、図示しないファンなどの送風装置を備えていてもよい。受熱対象となる二次熱媒体が空気ではない、例えば水の場合、加熱用熱交換器25dは、水熱交換器などであってよい。熱は、受熱対象となる二次熱媒体から熱媒体配管5bを通る熱媒体に対して供給される。
 加熱装置16は、内部に加熱用温度センサ40dを備えている。加熱用温度センサ40dは、中継機2の内部に設けられていてもよい。加熱用温度センサ40dの検出値は、制御装置50に送信される。加熱用温度センサ40dの検出値は、加熱量を制御するために用いることができる。加熱量の制御は、例えば、動作モードに応じた送風装置からの風量、ポンプ31bの開度を制御することによる補助熱交換器25cの熱媒体流量などにより行うことができる。放熱量の制御方法は、特に限定されず、他の公知の方法も採用できる。
 加熱装置16は、熱媒体配管61c及び熱媒体配管61dにより熱媒体回路Bに接続されている。熱媒体配管61cは、ポンプ31aと、加熱装置16との間の熱媒体配管5aに接続されている。熱媒体配管61dは、第1熱媒体流路切替装置32a~32dと、加熱装置16との間の熱媒体配管5aに接続されている。
 空気調和装置100は、圧縮機10、第1流路切替装置11、熱源側熱交換器12、中間熱交換器25bの冷媒流路、膨張装置26a、26b、及び、アキュムレータ19が、冷媒配管4により接続された構成である。冷媒配管4により、冷媒回路Aが構成されている。また、空気調和装置100は、中間熱交換器25bの熱媒体流路、ポンプ31b、第1熱媒体流路切替装置32a~32d、熱媒体流量調整装置34a~34d、利用側熱交換器35a~35d、及び、第2熱媒体流路切替装置33a~33dが、熱媒体配管5bにより接続された構成である。熱媒体配管5aは、熱媒体回路Bの一部を構成している。加熱装置16は、熱媒体配管61c及び熱媒体配管61dにより、熱媒体配管5aに接続されている。熱媒体回路Bは、複数の利用側熱交換器35a~35dがそれぞれ、中間熱交換器25b及び加熱装置16に並列に接続されることで、複数のシステムを含む構成になっている。
 <空気調和装置の動作>
 空気調和装置100においては、室外機1及び中継機2が、中継機2の中間熱交換器25bを介し接続され、且つ、中継機2及び室内機3が、中継機2の中間熱交換器25b及び加熱装置16を介し接続されている。空気調和装置100は、中間熱交換器25bにおいて、冷媒回路Aを循環する熱源側の冷媒と、熱媒体回路Bを循環する熱媒体とが熱交換を行う構成である。また、熱媒体回路Bは、加熱装置16において熱交換を行う。空気調和装置100は、このような構成により、空調負荷に応じた冷房運転又は暖房運転を実現している。
 <空気調和装置の運転態様>
 空気調和装置100は、全暖房運転、全冷房運転、単独加熱運転、補助加熱全暖房運転、及び、単独加熱冷房運転のいずれかの運転モードを実行する。運転モードの切替は、制御装置50の制御により行われる。全暖房運転は、運転中の室内機3a~3dの全てが暖房運転を行うモードである。全冷房運転は、運転中の室内機3a~3dの全てが冷房運転を行うモードである。単独加熱運転は、運転中の室内機3a~3dの全てが暖房運転を行っており、且つ、熱源となる二次熱媒体温度が、空調空間の温度よりも第3の温度差ΔT3だけ高い場合のモードである。補助加熱全暖房運転は、運転中の室内機3a~3dの全てが暖房運転を行っており、且つ、熱源となる熱媒体の温度が、空調空間の温度よりも第4の温度差ΔT4だけ高い場合のモードである。単独加熱冷房運転は、運転中の室内機3a~3dの一部が冷房運転を行っており、他の一部が暖房運転を行っている場合であって、熱源となる熱媒体の温度が、空調空間の温度よりも高い場合のモードである。これらの運転モードは、第1流路切替装置11、第1熱媒体流路切替装置32a~32d、及び、第2熱媒体流路切替装置33a~33dの切替の組み合わせと、加熱装置16の動作により実現される。
 <全暖房運転、全冷房運転>
 全暖房運転、及び、全冷房運転は、実施の形態2で説明した図23及び図22と同じであるため、説明を割愛する。
 <単独加熱運転>
 図37は、実施の形態4に係る空気調和装置の回路構成図である。図37において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。単独加熱全暖房運転では、全ての温熱が加熱装置16で生成され、冷媒回路Aが利用されないため、冷媒回路Aにおける要素の動作は任意である。図37において、利用側熱交換器35a~35dは、全て、暖房負荷を有する。つまり、室内機3a~3dは、全て、暖房運転を実施している。
 熱媒体回路Bにおける熱媒体の流れを説明する。中継機2において、ポンプ31aが動作し、熱媒体流量調整装置34a~34dが開となって、熱媒体が、加熱装置16と、利用側熱交換器35a~35dとの間を循環する。単独加熱全暖房運転では、加熱装置16で加熱された熱媒体が、ポンプ31bの駆動により熱媒体配管5aを流通する。従って、ポンプ31aにより圧縮されて搬送された熱媒体は、第2熱媒体流路切替装置33a~33dを介し、利用側熱交換器35a~35dに流入する。そして、熱媒体は、利用側熱交換器35a~35dにおいて温熱を伝達し、室内7を加熱する。
 利用側熱交換器35a~35dから流出した熱媒体は、熱媒体流量調整装置34a~34dに流入する。このとき、熱媒体流量調整装置34a~34dは、熱媒体の流量がそれぞれの利用側熱交換器35a~35dで要求された空調負荷に応じた流量となるように熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、分岐されて加熱装置16に流入する。熱媒体配管61bを介して加熱装置16に流入した熱媒体は、加熱装置16の加熱用熱交換器25dにおいて加熱された後、熱媒体配管61aを流通して中継機2に再び流入し、ポンプ31aに再び吸入される。これにより、室外機1を運転させずに、暖房運転が実現される。
 <補助加熱全暖房運転>
 図38は、実施の形態4に係る空気調和装置100の補助加熱全暖房運転における水の流れを示す図である。図38において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図38において、利用側熱交換器35a~35dは、全て、暖房負荷を有する。つまり、室内機3a~3dは、全て、暖房運転を実施している。
 補助加熱全暖房運転における冷媒回路Aの熱源側の冷媒の流れについて説明する。補助加熱全暖房運転では、第1流路切替装置11は、圧縮機10から吐出された冷媒を、熱源側熱交換器12を介さず、中継機2に流入させるように切り替えられている。低温及び低圧の冷媒は、圧縮機10で圧縮され、高温及び高圧のガス冷媒となって吐出される。高温及び高圧のガス冷媒は、圧縮機10から流出し、第1流路切替装置11からガス配管42を通り、室外機1から流出する。室外機1から流出した高温及び高圧のガス冷媒は、冷媒配管4を通り中継機2に流入する。高温及び高圧のガス冷媒は、中継機2において、凝縮器として機能している中間熱交換器25bに流入する。
 ガス冷媒は、中間熱交換器25bにおいて、熱媒体回路Bを流通する熱媒体に熱を伝達することで凝縮し、液化して液冷媒となる。液冷媒は、中間熱交換器25bから流出すると、膨張装置26bにおいて膨張され、低圧の二相冷媒となる。低圧の二相冷媒は、中間熱交換器25bから冷媒配管4を通り、室外機1の液配管41を通り再び室外機1に流入する。
 低圧の二相冷媒は、室外機1から流入すると、液配管41を介し、蒸発器として機能している熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12の外部の空気から吸熱し、低温及び低圧のガス冷媒となる。低温及び低圧のガス冷媒は、熱源側熱交換器12から流出し、第1流路切替装置11及びアキュムレータ19を介し、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れを説明する。補助加熱全暖房運転では、中継機2において、ポンプ31a、及び、ポンプ31bが駆動し、熱媒体流量調整装置34a~34dが開となっている。これにより、熱媒体は、中間熱交換器25bと加熱装置16との間を循環する。加熱装置16及び中間熱交換器25bで加熱された熱媒体が、ポンプ31a、31bの駆動により熱媒体配管5a、5bを流通する。従って、ポンプ31a、31bにより圧縮され、搬送された熱媒体は、第2熱媒体流路切替装置33a~33dを通り、利用側熱交換器35a~35dに流入する。熱媒体は、利用側熱交換器35a~35dにおいて、空調空間に温熱エネルギーを伝達し、これにより、室内7が加熱される。
 その後、熱媒体は、利用側熱交換器35a~35dから流出し、熱媒体流量調整装置34a~34dに流入する。このとき、熱媒体流量調整装置34a~34dは、熱媒体の流量がそれぞれの利用側熱交換器35a~35dで要求された空調負荷に応じた流量となるように熱媒体の流量を制御する。熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dを流れた後、分岐して加熱装置16及び中間熱交換器25aに流入する。熱媒体配管61dを介して加熱装置16に流入した熱媒体は、加熱装置16の加熱用熱交換器25dにおいて加熱された後、熱媒体配管61cを流通して中継機2に再び流入し、ポンプ31aに再び吸入される。また、中間熱交換器25bを流通した熱媒体は、ポンプ31bに再び吸入される。これにより、室外機1、及び、加熱装置16を利用した暖房運転が実施される。
 <単独加熱冷房運転>
 図39は、実施の形態4に係る空気調和装置100の単独加熱冷房運転における水の流れを示す図である。図39において、熱源側の冷媒が流通している配管は、太線で示されている。また、冷媒の流れ方向は、実線矢印で示されており、熱媒体の流れ方向は、破線矢印で示されている。図39において、利用側熱交換器35a及び35bは暖房負荷を有し、利用側熱交換器35c及び35dは、冷房負荷を有する。つまり、室内機3a及び3bは、暖房運転を行っており、室内機3c及び3dは、冷房運転を行っている。
 単独加熱冷房運転における冷媒回路Aの熱源側の冷媒の流れについて説明する。高温及び高圧のガス冷媒は、圧縮機10から吐出され、第1流路切替装置11を介し、熱源側熱交換器12に流入する。冷媒は、熱源側熱交換器12において、熱源側熱交換器12の外部の空気と熱交換を行い、高温及び高圧の液冷媒、又は、二相冷媒となる。高温及び高圧の液冷媒、又は、二相冷媒は、熱源側熱交換器12から冷媒配管4を通って室外機1から流出し、冷媒配管4を介し中継機2に流入する。中継機2に流入した高温及び高圧の液冷媒、又は、二相冷媒は、膨張装置26bにおいて膨張され、低温及び低圧の二相冷媒となって中間熱交換器25bに流入する。二相冷媒は、中間熱交換器25bにおいて熱媒体から受熱して蒸発し、液化して低温のガス冷媒となる。ガス冷媒は、冷媒配管4を流通し、室外機1に再び流入する。ガス配管42を通り室外機1に流入した冷媒は、第1流路切替装置11、及び、アキュムレータ19を流通した後、圧縮機10に再び吸入される。
 熱媒体回路Bにおける熱媒体の流れを説明する。単独加熱冷房運転では、熱媒体のうちの一部が冷房運転に利用される。熱源側の冷媒の冷熱エネルギーは、中間熱交換器25bにおいて熱媒体に伝達され、これにより熱媒体が冷却され、ポンプ31bの駆動により熱媒体配管5bを流通する。ポンプ31bから排出された熱媒体は、第2熱媒体流路切替装置33a、及び、33bを介し、冷房負荷を有する利用側熱交換器35a、及び、35bに流入する。
 中継機2において、室内機3のいずれかが冷房運転を行うため、ポンプ31aが駆動され、熱媒体流量調整装置34a、及び、43bが開となる。第2熱媒体流路切替装置33a、及び、33bは、熱媒体がポンプ31から利用側熱交換器35a、及び、35bに供給されるように切替られる。第1熱媒体流路切替装置32a、及び、32bは、熱媒体流量調整装置34a、及び、34bから流出した熱媒体が中間熱交換器25bに流入するように切り替えられる。従って、熱媒体は、中間熱交換器25bと、利用側熱交換器35a、及び、35bとの間を循環する。
 単独加熱冷房運転では、熱媒体のうちの他の一部が加熱装置16による暖房運転に利用される。熱媒体は、加熱装置16において加熱され、ポンプ31aの駆動により熱媒体配管5を流通する。従って、ポンプ31aにより圧縮され、搬送された熱媒体は、第2熱媒体流路切替装置33c、及び、33dを通り、利用側熱交換器35c、及び、35dに流入する。熱媒体は、利用側熱交換器35c、及び、35dにおいて、空調空間に温熱エネルギーを伝達し、これにより、室内7が加熱される。
 その後、熱媒体は、利用側熱交換器35c、及び、35dから流出し、熱媒体流量調整装置34c、及び、34dに流入する。このとき、熱媒体流量調整装置34c、及び、34dは、熱媒体の流量がそれぞれの利用側熱交換器35c、及び、35dで要求された空調負荷に応じた流量となるように熱媒体の流量を制御する。熱媒体流量調整装置34c、及び、34dから流出した熱媒体は、第1熱媒体流路切替装置32c、及び、32dを流れた後、分岐して加熱装置16に流入する。熱媒体配管61dを介して加熱装置16に流入した熱媒体は、加熱装置16の加熱用熱交換器25dにおいて加熱された後、熱媒体配管61cを流通して中継機2に再び流入し、ポンプ31aに再び吸入される。これにより、加熱装置16を利用した暖房運転と、室外機1を利用した冷房運転とが実施される。
 <変形例>
 図40は、実施の形態4の変形例に係る空気調和装置100の概略図である。図40に示すように、変形例に係る空気調和装置100は、補助装置15と、加熱装置16との双方を備えている。図40において、加熱装置16は、三方弁37b、37aにより、補助装置15と並列に接続されている。
 実施の形態4に係る空気調和装置100の変形例において、熱媒体流路を開閉する装置として、三方弁37a、37bを用いた場合を説明しているが、熱媒体流路を開閉する装置は、三方弁37a、37bに限定されず、熱媒体流路を開閉することができればよい。具体的には、熱媒体流路を開閉する装置としては、二方弁、又は、三方弁であって、3つの流路のうちの1つが閉鎖されているものを用いることもできる。熱媒体流路を開閉する装置は、開閉弁でもよく、2つの開閉可能な流路を有するものであってもよい。この場合、開閉操作を継続することで流量を一定に保つことができる。
 1 室外機、2 中継機、3 室内機、3a 室内機、3b 室内機、3c 室内機、3d 室内機、4 冷媒配管、4a 第1接続冷媒配管、4b 第2接続冷媒配管、5 熱媒体配管、5a 熱媒体配管、5b 熱媒体配管、6 外部、7 室内、8 空間、9 建物、10 圧縮機、11 第1流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、15 補助装置、16 加熱装置、19 アキュムレータ、20 バイパス冷媒配管、24a 中間熱交換器、25a 中間熱交換器、25b 中間熱交換器、25c 補助熱交換器、25d 加熱用熱交換器、26a 膨張装置、26b 膨張装置、27 開閉装置、28a 第2流路切替装置、28b 第2流路切替装置、29 開閉装置、30 冷却用ポンプ、31a ポンプ、31b ポンプ、32a 第1熱媒体流路切替装置、32b 第1熱媒体流路切替装置、32c 第1熱媒体流路切替装置、32d 第1熱媒体流路切替装置、33a 第2熱媒体流路切替装置、33b 第2熱媒体流路切替装置、33c 第2熱媒体流路切替装置、33d 第2熱媒体流路切替装置、34a 熱媒体流量調整装置、34b 熱媒体流量調整装置、34c 熱媒体流量調整装置、34d 熱媒体流量調整装置、35 利用側熱交換器、35a 利用側熱交換器、35b 利用側熱交換器、35c 利用側熱交換器、35d 利用側熱交換器、36 熱媒体流路開閉装置、37 逆止弁、40a 温度センサ、40b 温度センサ、40c 補助温度センサ、40d 加熱用温度センサ、41 液配管、42 ガス配管、50 制御装置、60 バイパス熱媒体回路、61a 熱媒体配管、61b 熱媒体配管、61c 熱媒体配管、61d 熱媒体配管、100 空気調和装置、A 冷媒回路、B 熱媒体回路、C 補助回路。

Claims (17)

  1.  圧縮機と、流路切替装置と、熱源側熱交換器と、少なくとも1つの中間熱交換器と、前記中間熱交換器にそれぞれ対応した膨張装置と、を有し、前記圧縮機と前記熱源側熱交換器と少なくとも1つの前記中間熱交換器との間で冷媒を循環させる冷媒回路と、
     少なくとも1つの前記中間熱交換器と、前記中間熱交換器のそれぞれに対応したポンプと、複数の利用側熱交換器と、を有し、少なくとも1つの前記中間熱交換器と前記複数の利用側熱交換器の少なくとも1つとの間で熱媒体を循環させる熱媒体回路と、
     前記熱媒体回路に接続され、補助熱交換器を有する補助回路と、
     を有し、
     前記補助熱交換器は、前記補助回路に流入した前記熱媒体を、二次熱媒体との熱交換により加熱又は冷却する
     空気調和装置。
  2.  前記補助熱交換器において冷却された前記熱媒体が、複数の前記利用側熱交換器のうちの冷房運転が要求されている前記利用側熱交換器に供給されている
     請求項1に記載の空気調和装置。
  3.  前記補助熱交換器において冷却された前記熱媒体が、前記中間熱交換器において前記冷媒回路を流通する冷媒により、更に冷却されて、複数の前記利用側熱交換器のうちの冷房運転が要求されている前記利用側熱交換器に供給されている
     請求項1又は2に記載の空気調和装置。
  4.  前記補助回路において加熱された前記熱媒体が、複数の前記利用側熱交換器のうちの暖房運転が要求されている前記利用側熱交換器に供給されている
     請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記補助回路において加熱された前記熱媒体が、前記中間熱交換器において前記冷媒回路を流通する冷媒により、更に加熱されて、複数の前記利用側熱交換器のうちの暖房運転が要求されている前記利用側熱交換器に供給されている
     請求項1~4のいずれか一項に記載の空気調和装置。
  6.  前記補助回路において冷却された前記熱媒体は、
     複数の前記利用側熱交換器のうちの冷房運転が要求されている前記利用側熱交換器に供給されて冷房運転が実施され、同時に、
     前記中間熱交換器において、前記圧縮機により搬送された冷媒により加熱された前記熱媒体は、
     複数の前記利用側熱交換器のうちの暖房運転が要求されている前記利用側熱交換器に供給されて暖房運転が実施されている
     請求項1~5のいずれか一項に記載の空気調和装置。
  7.  前記補助回路において加熱された前記熱媒体は、
     複数の前記利用側熱交換器のうちの暖房運転が要求されている前記利用側熱交換器に供給されて冷房運転が実施され、同時に、
     前記中間熱交換器において、前記圧縮機により搬送された冷媒により冷却された前記熱媒体は、
     複数の前記利用側熱交換器のうちの冷房運転が要求されている前記利用側熱交換器に供給されて冷却運転が実施されている
     請求項1~6のいずれか一項に記載の空気調和装置。
  8.  前記補助回路において冷却された前記熱媒体は、
     複数の前記利用側熱交換器のうちの冷房運転が要求されている前記利用側熱交換器に供給されて冷房運転が実施され、同時に、
     前記補助回路において加熱された前記熱媒体は、
     複数の前記利用側熱交換器のうちの暖房運転が要求されている前記利用側熱交換器に供給されて暖房運転が実施されるように構成されている
     請求項1~7のいずれか一項に記載の空気調和装置。
  9.  前記補助回路において冷却された前記熱媒体は、
     複数の前記利用側熱交換器のうちの冷房運転が要求されている前記利用側熱交換器に供給されて冷房運転が実施され、同時に、
     前記補助回路において加熱され、且つ、前記中間熱交換器において、前記圧縮機により搬送された冷媒により加熱された前記熱媒体は、
     複数の前記利用側熱交換器のうちの暖房運転が要求されている前記利用側熱交換器に供給されて暖房運転が実施されるように構成されている
     請求項1~8のいずれか一項に記載の空気調和装置。
  10.  複数の前記利用側熱交換器は、空調の対象となる空間である室内に配置されており、
     前記熱源側熱交換器と、前記補助熱交換器とは、外部に配置されているように構成されている
     請求項1~9のいずれか一項に記載の空気調和装置。
  11.  前記中間熱交換器は、第1中間熱交換器と、第2中間熱交換器と、を含み、
     前記ポンプは、第1ポンプと、第2ポンプと、を含み、
     前記第1中間熱交換器と、前記第1ポンプとは、直列に接続されており、
     前記第2中間熱交換器と、前記第2ポンプとは、直列に接続されており、
     前記第1中間熱交換器及び前記第1ポンプは、前記複数の利用側熱交換器に対し、前記第2中間熱交換器及び前記第2ポンプに並列に接続されている
     請求項1~10のいずれか一項に記載の空気調和装置。
  12.  前記第1中間熱交換器と、前記補助熱交換器とは、前記複数の利用側熱交換器に対し、直列に接続されている
     請求項11に記載の空気調和装置。
  13.  前記熱媒体回路に設けられ、前記補助回路をバイパスするバイパス熱媒体回路を更に有する
     請求項11又は12に記載の空気調和装置。
  14.  前記バイパス熱媒体回路に設けられ、前記熱媒体回路を開閉する熱媒体流路開閉装置を更に有する
     請求項13に記載の空気調和装置。
  15.  前記補助回路に設けられ、前記補助回路に流入した前記熱媒体を搬送する第3ポンプを更に有する
     請求項11~14のいずれか一項に記載の空気調和装置。
  16.  前記第2中間熱交換器と、前記補助熱交換器とは、前記複数の利用側熱交換器に対し、並列に接続されている
     請求項11に記載の空気調和装置。
  17.  前記ポンプは、第1ポンプと、第2ポンプと、を含み、
     前記中間熱交換器及び前記第2ポンプは、直列に接続されており、
     前記補助熱交換器及び前記第1ポンプは、直列に接続されており、
     前記補助熱交換器及び前記第1ポンプは、前記複数の利用側熱交換器に対し、前記中間熱交換器及び前記第2ポンプに並列に接続されている
     請求項1~5のいずれか一項に記載の空気調和装置。
PCT/JP2021/003207 2021-01-29 2021-01-29 空気調和装置 WO2022162864A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003207 WO2022162864A1 (ja) 2021-01-29 2021-01-29 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003207 WO2022162864A1 (ja) 2021-01-29 2021-01-29 空気調和装置

Publications (1)

Publication Number Publication Date
WO2022162864A1 true WO2022162864A1 (ja) 2022-08-04

Family

ID=82652814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003207 WO2022162864A1 (ja) 2021-01-29 2021-01-29 空気調和装置

Country Status (1)

Country Link
WO (1) WO2022162864A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337152A (ja) * 1993-05-27 1994-12-06 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH07208828A (ja) * 1994-01-24 1995-08-11 Matsushita Refrig Co Ltd 多室冷暖房装置
WO2011033652A1 (ja) * 2009-09-18 2011-03-24 三菱電機株式会社 空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337152A (ja) * 1993-05-27 1994-12-06 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH07208828A (ja) * 1994-01-24 1995-08-11 Matsushita Refrig Co Ltd 多室冷暖房装置
WO2011033652A1 (ja) * 2009-09-18 2011-03-24 三菱電機株式会社 空気調和装置

Similar Documents

Publication Publication Date Title
JP6385436B2 (ja) 空気調和装置
JP6192706B2 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
JP5340406B2 (ja) 空気調和装置
JP5377653B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
WO2011030430A1 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
JP5490245B2 (ja) 空気調和装置
WO2012172613A1 (ja) 空気調和装置
WO2012172605A1 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JP2017190946A (ja) 空気調和装置
WO2014083679A1 (ja) 空気調和装置、その設計方法
WO2014083652A1 (ja) 空気調和装置
WO2012035573A1 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
WO2015087421A1 (ja) 空気調和装置
JP6429901B2 (ja) 空気調和装置
WO2022162864A1 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置
WO2015079531A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP