WO2014021363A1 - 無人搬送車の充電管理システム及び充電管理方法 - Google Patents

無人搬送車の充電管理システム及び充電管理方法 Download PDF

Info

Publication number
WO2014021363A1
WO2014021363A1 PCT/JP2013/070706 JP2013070706W WO2014021363A1 WO 2014021363 A1 WO2014021363 A1 WO 2014021363A1 JP 2013070706 W JP2013070706 W JP 2013070706W WO 2014021363 A1 WO2014021363 A1 WO 2014021363A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
guided vehicle
automatic guided
management system
Prior art date
Application number
PCT/JP2013/070706
Other languages
English (en)
French (fr)
Inventor
敏人 福井
満 平山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020157003230A priority Critical patent/KR101540553B1/ko
Priority to EP13824849.7A priority patent/EP2882065B1/en
Priority to CN201380041173.1A priority patent/CN104521091B/zh
Priority to MX2015001361A priority patent/MX338060B/es
Priority to JP2014528186A priority patent/JP5796683B2/ja
Priority to US14/418,283 priority patent/US9428075B2/en
Priority to BR112015002359-2A priority patent/BR112015002359B1/pt
Publication of WO2014021363A1 publication Critical patent/WO2014021363A1/ja

Links

Images

Classifications

    • H02J7/0003
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0027
    • H02J7/0077
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • G05B19/41895Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system using automatic guided vehicles [AGV]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31004Move vehicle to battery charge or maintenance area
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charge management system and a charge management method for an automatic guided vehicle that travels unattended using the power of a mounted battery as a drive source and charges a battery mounted at a charging station.
  • JP2-49341U is equipped with a lead-acid battery as a battery for automatic guided vehicles.
  • This automatic guided vehicle is periodically replaced with a new fully charged battery.
  • the battery is automatically charged from the charger at the charging station so that the mounted battery is fully charged.
  • the JP2007-74800A automatic guided vehicle is equipped with a nickel metal hydride battery or a lithium ion battery that can be used not only for full charge but also for partial charge / discharge as a battery.
  • the automatic guided vehicle is charged when the remaining capacity of the battery reaches the charge start capacity, and is stopped when the remaining capacity reaches the charge stop capacity, so that the charge state is controlled.
  • the automatic transfer vehicle of JP3-27732A is equipped with a battery having a different capacity and voltage for each automatic transfer vehicle.
  • An ID tag corresponding to the battery type is attached.
  • the type of battery mounted is determined according to the ID tag, and charging is performed under appropriate charging conditions such as charging voltage and charging current.
  • an automatic charger for a lead storage battery has already been installed at a charging station in the transport process of the lead-acid battery automatic guided vehicle.
  • This automatic charger incorporates a power supply device that increases the charging voltage up to 28 V in order to charge the lead storage battery. Therefore, as in JP2007-74800A, in order to put an automatic guided vehicle equipped with a lithium ion battery instead of a lead storage battery as a battery into the above-described transporting process, an automatic charger installed at a charging station is connected with a lithium ion battery. It is necessary to completely switch to a battery that incorporates a power supply device in which the maximum voltage during charging is adjusted for the battery, resulting in high costs.
  • the automatic charger has an ID tag corresponding to the battery mounted on the automatic guided vehicle, and the automatic charger determines the battery type based on the ID tag and switches the charging voltage. It is also possible to charge in accordance with the type.
  • the cost of both the battery and the charger is increased by having an ID tag.
  • the ID tag is mistaken when replacing the battery, overvoltage may be applied.
  • Automatic There is a problem that the cost increases due to the provision of the voltage switching control in the charger.
  • the present invention was made paying attention to such conventional problems.
  • the objective of this invention is providing the charge management system and charge management method of an automatic guided vehicle suitable for charge of the automatic guided vehicle with which the battery classification to mount is mixed.
  • One aspect of the charge management system for an automated guided vehicle that travels unattended using the mounted battery according to the present invention as a drive source and charges the mounted battery at a charging station is the automatic guided vehicle monitoring the remaining capacity of the mounted battery. It is equipped with a charging controller. The charging controller starts charging the mounted battery at the charging station when the remaining capacity of the battery becomes lower than a predetermined value, and the charging amount of the mounted battery is preset during charging. When the capacity is reached, the vehicle charging path is turned off.
  • FIG. 1 is a conceptual diagram showing an example of a travel route of an automatic guided vehicle showing a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of an automatic charger for an automatic guided vehicle and a charging station in which a lead storage battery is mounted as a battery.
  • FIG. 3 is an explanatory view showing an outline of an automatic guided vehicle equipped with a lithium ion secondary battery as a battery and an automatic charger of a charging station.
  • FIG. 4 is an explanatory diagram showing a relationship between a battery device made of a lead storage battery of an automatic guided vehicle and a charger of a charging station at the time of charging.
  • FIG. 5 is a charge characteristic diagram showing a change in battery voltage during charging and a change in supplied charging current.
  • FIG. 1 is a conceptual diagram showing an example of a travel route of an automatic guided vehicle showing a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of an automatic charger for an automatic guided vehicle and a charging station in
  • FIG. 6 is an explanatory diagram showing a relationship between a battery device made of a lithium ion secondary battery of an automatic guided vehicle and a charger of a charging station during charging.
  • FIG. 7 is an explanatory diagram illustrating the transition of the voltage change of the lithium ion battery.
  • FIG. 8 is a conceptual diagram showing an example of a travel route of the automatic guided vehicle showing the second embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing a relationship between a battery device made of a lithium ion secondary battery of an automatic guided vehicle and a charger of a charging station during charging according to the second embodiment.
  • FIG. 10 is a charging characteristic diagram showing a change in battery voltage and a change in supplied charging current during charging in the second embodiment.
  • FIG. 11 is a flowchart showing an operation during charging of the automatic guided vehicle and the automatic charging device.
  • the traveling route of the automatic guided vehicle in the transportation process is a traveling route R of a set orbit that passes through the picking station PS and the assembly station BS on the line side.
  • a plurality of automatic guided vehicles 1 travel on the travel route R.
  • the traveling of each automatic guided vehicle 1 is controlled by the equipment-side control device 2.
  • the automatic guided vehicle 1 loads parts required at the assembly station BS at the picking station PS.
  • the automatic guided vehicle 1 travels on the travel route R, transports it to the assembly station BS, and loads and unloads the parts loaded at the picking station PS.
  • the automatic guided vehicle 1 travels again on the travel route R and returns to the picking station PS.
  • the automatic guided vehicle 1 repeats such circulating travel.
  • the automatic guided vehicle 1 is equipped with a battery box 5 that houses a battery B made of a secondary battery (for example, a lead storage battery or a lithium ion secondary battery), for example, in the center of the vehicle. ing.
  • the automatic guided vehicle 1A shown in FIG. 2 is equipped with a lead storage battery as a battery B1.
  • the automatic guided vehicle 1B shown in FIG. 3 is equipped with a lithium ion secondary battery as a battery B2.
  • the automatic guided vehicle 1 runs using the battery B as a driving power source. For this reason, when the charging capacity of the battery B decreases from the predetermined range, the battery B is charged by the automatic charger 3 when the automatic guided vehicle 1 stops at the charging station CS on the travel route R.
  • the automatic charger 3 is supplied with charging power from the DC power source 21.
  • an automatic guided vehicle 1A that uses a battery B1 such as a lead storage battery that has been conventionally used as a driving power is used.
  • 3 A of lead battery automatic chargers generally used conventionally which charge with respect to battery B1 of this automatic guided vehicle 1A are installed in charging station CS.
  • the automatic guided vehicle 1 ⁇ / b> B that uses a battery B ⁇ b> 2 based on a lithium ion secondary battery as a driving power source is sequentially introduced. Yes.
  • the battery replacement of the automatic guided vehicle 1 is not performed entirely, but the battery B1 is sequentially replaced with the battery B2, and the automatic charger 3 of the charging station CS is also sequentially used for the lead battery. It will be expanded for use in lithium-ion batteries.
  • the automatic guided vehicle 1 ⁇ / b> A that uses the battery B ⁇ b> 1 that has been generally adopted as a driving power source is referred to as a “PB type automatic guided vehicle”.
  • the automatic guided vehicle 1B that uses the newly inserted battery B2 as a driving power source is referred to as an “LB type automatic guided vehicle”.
  • the battery box 5 of the PB type automatic guided vehicle 1 ⁇ / b> A includes a battery B ⁇ b> 1 configured by connecting lead storage batteries in series.
  • the electric power of the battery B1 is supplied to a travel motor (not shown) as a power source.
  • the charging / discharging state of the battery B1 is monitored by a vehicle-mounted control device (not shown).
  • the control device detects the voltage, temperature, etc. of the battery B1, and calculates the charge capacity of the battery B1. Then, it is determined from the calculated charging capacity (battery voltage) whether or not charging is necessary. In the battery B1, for example, when the battery voltage drops below 21V, it is determined that charging is necessary.
  • the control device stops the PB type automatic guided vehicle 1A at the charging station CS on the travel route R described above. Then, as shown in FIG. 4, when the automatic charger 3A in the charging station CS confirms that the PB type automatic guided vehicle 1A has stopped at a predetermined position of the charging station CS, the power supply contactor 23 is connected to the PB type automatic guided vehicle. Drive progress towards 1. When the power feeding contactor 23 is connected to the power receiving contactor 13, charging is possible.
  • the automatic charging device 3A is activated when, for example, the DC power source 21 capable of boosting the charging voltage value to 29V, the power supply contactor 23, and the power receiving contactor 13 are connected, and the charging current value supplied from the DC power source 21 to the battery B1. And a charge control device 20 for controlling the voltage value.
  • the charging control device 20 charges the battery B1 by rapid charging. Rapid charging is a constant current / constant voltage charging method that supplies a charging current larger than the charging current during normal charging to the battery B1. Rapid charging is desirable for transport processes that require short-term charging. However, the charge control device 20 can perform constant current / constant voltage normal charging. In constant current / constant voltage charging, constant current charging (CC charging) for supplying a constant charging current is performed in the initial stage of charging. From the time when the battery voltage rises to a fully charged voltage (for example, 29 V) due to the continuation of charging, constant voltage charging (CV charging) with a constant voltage is executed until a predetermined time elapses.
  • FIG. 5 is a characteristic diagram showing changes in the battery voltage during charging and changes in the supplied charging current.
  • the battery voltage is gradually increased by CC charging.
  • a fully charged voltage for example, 29V
  • constant voltage charging CV charging
  • CV charging constant voltage charging
  • the charging control device 20 stops the charging by stopping the DC power source 21.
  • the power supply contactor 23 is retracted, and the connection with the power receiving contactor 13 of the automatic guided vehicle 1 is disconnected.
  • the PB type automatic guided vehicle 1A travels on the travel route R in a direction to leave the charging station CS.
  • the LB type automatic guided vehicle 1B includes a battery B2 made of a lithium ion battery as shown in FIG.
  • the LB type automatic guided vehicle 1 ⁇ / b> B includes a vehicle-mounted charging controller 11.
  • the charge controller 11 is a controller that monitors, calculates, and controls the state of charge of the battery B2.
  • the charging controller 11 determines that charging is necessary, it starts a power receiving preparation operation.
  • the charging controller 11 commands the power receiving control relay 12A to charge the power switch 12 provided in the charging path connecting the battery B2 and the charging contactor 13 from the cut-off state to the conductive state. Put it in a state.
  • the charging controller 11 instructs the power reception control relay 12A to change the power switch 12 from the conduction state to the cutoff state and stop the charging. .
  • Battery B2 is, for example, a lithium ion secondary battery.
  • Battery B2 includes battery modules BM connected in series by bus bar BB. In FIG. 6, three battery modules BM are connected in series.
  • a battery module BM is configured in parallel or in series with a plurality of lithium ion cells (cells).
  • the voltage of the battery module BM is about 8V in the charged state. Since three battery modules BM are connected in series to the battery B2, the output voltage of the battery B2 is about 25V. Therefore, the overcharge voltage of the battery B2 is set to, for example, 25.02V, the overdischarge voltage is set to, for example, 18V, and each of the charge start voltage and the charge complete voltage is between the overcharge voltage and the overdischarge voltage. For example, it is set to 21V and 24V, respectively. In this way, the voltage difference between the overdischarge voltage and the charge start voltage is sufficiently increased to protect the battery so that the battery B2 does not reach the overdischarge voltage.
  • the charge controller 11 receives the charge amount (voltage) of the LB battery B2, the input / output current amount (ampere hour, AH) of the LB battery B2, and the LB battery B2 via the communication unit 14 (for example, optical communication). It is possible to transmit the abnormality history of
  • the charging controller 11 stops the LB type automatic guided vehicle 1B at the charging station CS on the travel route R when the battery voltage is lower than the charging start voltage.
  • the automatic charger 3A in the charging station CS confirms that the LB type automatic guided vehicle 1B has stopped at a predetermined position of the charging station CS, as shown in FIG. 6, the power supply contactor 23 is connected to the LB type automatic guided vehicle. Extend to 1B.
  • the power feeding contactor 23 is connected to the power receiving contactor 13, charging is possible.
  • the power switch 12 When the battery B2 is fully charged, the power switch 12 is opened and the charging current of the automatic charger 3A is stopped. Then, the power supply contactor 23 is retracted, and the connection with the power receiving contactor 13 of the LB type automatic guided vehicle 1B is disconnected. Thereafter, the LB type automatic guided vehicle 1B leaves the charging station CS and travels on the travel route R.
  • the automatic charger 3A for the battery B1 is already installed in the charging station CS. From the picking station PS to the assembly station BS in a state where the PB type automatic guided vehicle 1A equipped with the battery B1 on the travel route R and the LB type automatic guided vehicle 1B equipped with the newly introduced battery B2 are mixed. Parts are being transported.
  • the PB type automatic guided vehicle 1A is stopped by the charging station CS on the travel route R and charged by the above-described procedure.
  • the automatic charger 3A determines that the charging is finished, retracts the power contactor 23, and disconnects the connection with the power receiving contactor 13 of the PB type automatic guided vehicle 1A. Thereafter, the PB type automatic guided vehicle 1A travels on the travel route R in a direction to leave the charging station CS.
  • the LB type automatic guided vehicle 1B operates the power reception control relay 12A according to a command from the charging controller 11 when the on-board charging controller 11 determines that charging is necessary due to a decrease in battery voltage, and the power switch 12 is changed from the open state to the closed state. Moreover, the LB type automatic guided vehicle 1B stops at the charging station CS according to the command of the charging controller 11. When the automatic charger 3A in the charging station CS confirms that the LB type automatic guided vehicle 1B has stopped at a predetermined position of the charging station CS, as shown in FIG. 6, the power supply contactor 23 is moved to the LB type automatic guided vehicle 1B. extend. When the power feeding contactor 23 is connected to the power receiving contactor 13, charging is possible.
  • the automatic charging device 3A activates the DC power source 21 when the power supply contactor 23 and the power receiving contactor 13 are connected, and controls the charging current value and the voltage value supplied from the DC power source 21 to the charging battery B2. Specifically, as in the case of charging the battery B1, as shown in FIG. 5, at the initial stage of charging, the battery B1 operates to perform constant current charging (CC charging) for supplying a constant charging current.
  • CC charging constant current charging
  • the battery voltage increases from the charging start voltage with charging.
  • the rise in the battery voltage is monitored by the on-vehicle charge controller 11 and the charge controller 20 on the equipment side.
  • the on-vehicle charging controller 11 operates the power reception control relay 12A to shut off the power switch 12, disconnects the connection between the battery B2 and the power receiving contactor 13, and ends the charging operation.
  • the automatic charger 3 ⁇ / b> A of the charging station CS stops the DC power supply 21 when the current flowing to the battery B ⁇ b> 2 through the power supply contactor 23 is reduced to zero by the interruption by the power switch 12, and the charging operation is stopped.
  • the automatic charger 3A of the charging station CS retracts the power supply contactor 23 and disconnects the power receiving contactor 13 of the LB type automatic guided vehicle 1B.
  • the LB automatic guided vehicle 1B leaves the charging station CS and travels on the travel route R.
  • the battery voltage of the LB automatic guided vehicle 1B equipped with the battery B2 changes as shown in FIG. That is, at time t0, t2, t4 when the battery voltage becomes lower than the charging start voltage, the power switch 12 is closed by the operation of the charging control relay 12A, and charging is performed at time t1, t3 when the battery voltage becomes higher than the power reception completion voltage.
  • the power switch 12 is switched from the closed state to the open state by the control relay 12A. For this reason, the battery voltage rises from a state lower than the charging relay ON voltage to a state higher than the charging relay OFF voltage every time charging is performed.
  • the LB type automatic guided vehicle 1B travels on the travel route R, battery power is consumed, and the battery voltage gradually decreases from a state higher than the charging relay OFF voltage to a state lower than the charging relay ON voltage.
  • the automatic guided vehicle 1 includes a lithium ion battery B2 as a mounting battery B, and a charging controller 11 that monitors the remaining capacity of the mounting battery B2. Then, the charging controller 11 starts charging the mounted battery B2 at the charging station CS when the remaining capacity of the battery B2 becomes lower than a predetermined value. Then, the charging controller 11 switches the power switch 12 as a power reception control switch provided in the charging path of the vehicle to the cut-off state when the amount of charge of the on-board battery B2 reaches a preset capacity during charging. It is characterized in that the charging for the onboard battery B2 is terminated.
  • the charging controller 11 mounted on the automatic guided vehicle 1 determines that the charging of the mounted battery B2 is completed, the charging path is interrupted by the power switch 12 as the power reception control switch to end the charging.
  • the automatic charger 3 ⁇ / b> A provided in the charging station CS does not need to change the charging condition corresponding to the battery type mounted on the automatic guided vehicle 1. For this reason, as a charger installed in the charging station CS, the lead-acid battery charger 3A that is already installed in the transport process can be used as it is as a charger for the lithium ion battery B2. Further, unlike the prior art, a device for discriminating the type of the onboard battery B becomes unnecessary, and the cost of the charger can be reduced. In addition, even when a charger 3A for a lead storage battery, for example, having a high final voltage setting value at the time of charging is used, the lithium ion battery B2 can be charged while avoiding overcharging.
  • the charging controller 11 conducts the power switch 12 as a power reception control switch provided in the charging path of the vehicle from the cut-off state. I am trying to switch to a state. For this reason, when the lead-acid battery charger 3A having a wider operating voltage range than the lithium ion battery B2 is used as the charger for the lithium ion battery B2, the voltage range to be used in the lithium ion battery B2 is determined from the charge controller 11. Can be set arbitrarily by specifying. As a result, it is possible to always use a medium-capacity region with high usage efficiency in terms of the characteristics of the lithium ion battery B2, and to extend the life of the lithium ion battery B2.
  • FIG. 8 is explanatory drawing which shows the outline
  • FIG. 9 is a system configuration diagram.
  • FIG. 10 is a characteristic diagram showing changes in battery voltage and charging current during charging.
  • FIG. 11 is a flowchart showing an operation during charging of the automatic guided vehicle and the automatic charging device.
  • the charging station CS on the travel route R of the automatic guided vehicle 1 of this embodiment includes a PB type automatic charger 3A for charging the battery B1 of the PB type automatic guided vehicle 1A.
  • a LB type automatic charger 3B dedicated to the LB type automatic guided vehicle 1B equipped with the battery B2 is installed.
  • the LB type automatic charger 3B newly added for the battery B2 includes a DC power source 21A capable of boosting up to the upper limit voltage (for example, 25.02V) of the battery B2, and a battery B2 from the DC power source 21A.
  • a charging control device 20A for controlling a charging current value and a voltage value supplied to the communication unit 24 and a communication unit 24 capable of communicating with the communication unit 14 of the automatic guided vehicle 1.
  • the charging control device 20A of the LB type automatic charger 3B the power contactor 23 and the power receiving contactor 13 are connected, the power switch 12 is closed by the operation of the power receiving control relay 12A of the LB type automatic guided vehicle 1B, and before the battery B2 is charged. It is activated after detecting the voltage.
  • the charging control device 20A charges the battery B2 by rapid charging. Rapid charging is a constant current / constant voltage charging method that supplies a charging current larger than the charging current during normal charging to the battery B2. Rapid charging is desirable for transport processes that require short-term charging.
  • the charge control device 20 can perform constant current / constant voltage normal charging. In constant current / constant voltage charging, constant current charging (CC charging) for supplying a constant charging current is performed in the initial stage of charging. From the time when the battery voltage rises to a fully charged voltage (for example, 25 V) due to the continuation of charging, constant voltage charging (CV charging) with a constant voltage is executed until a predetermined time elapses.
  • CC charging constant current charging
  • FIG. 10 shows changes in battery voltage and charging current supplied during charging.
  • the battery voltage is gradually increased by CC charging.
  • a charging upper limit voltage for example, 25 V
  • constant voltage charging (CV charging) in which the charging current is reduced and the voltage is constant from that point is executed until a predetermined time elapses.
  • the charging control device 20A stops the DC power supply 21A to stop charging.
  • the charge can be stopped as the completion of charge.
  • the constant voltage charging (CV charging) executed for a predetermined time thereafter can be omitted, and the charging time can be reduced. It can be shortened.
  • the communication unit 24 is connected to the communication unit 14 of the LB type automatic guided vehicle 1B.
  • the charge amount (voltage) of the battery B2 the current amount of input / output of the battery B (ampere hour, AH), the abnormal history of the battery B,
  • the ON / OFF control signal of the power reception control relay of the automatic guided vehicle 1 and other command signals can be communicated.
  • the left column in the figure shows the operation flow of the LB type automatic guided vehicle 1B
  • the right column shows the operation flow of the equipment side LB type automatic charger 3B.
  • Reference numerals NP1 and NP1 facing each other in the center in the figure indicate communication units by optical communication between the LB type automatic guided vehicle 1B and the LB type automatic charger 3B on the facility side.
  • the LB type automatic guided vehicle 1B is directed to the LB automatic charger 3B of the charging station CS on the travel route R. Travel is controlled and stops at a predetermined position (S1).
  • the communication units 14 and 24 of the LB type automatic guided vehicle 1B and the LB automatic charger 3B can stably communicate with each other (S2, S22). And when it determines with it being a communication stable area
  • the automatic charging condition is confirmed by inquiring whether the battery B2 is normal or abnormal from the LB automatic charger 3B side toward the LB type automatic guided vehicle 1B side, and a normal response is received from the LB type automatic guided vehicle 1B side. It is established by returning.
  • the power supply contactor 23 is extended from the LB automatic charger 3B toward the LB type automatic guided vehicle 1B so as to be connected to the power receiving contactor 13 of the LB type automatic guided vehicle 1B, and contact with the LB type automatic guided vehicle 1B is ON.
  • a command is output (S24).
  • the LB type automatic guided vehicle 1B confirms the charging conditions (S4), operates the power reception control relay 12A, and closes the power switch 12 provided in the charging path connecting the battery B2 and the charging contactor 13 (S5).
  • the LB automatic charging device 3B checks the battery voltage of the LB automatic guided vehicle 1B (S25).
  • the LB automatic charger 3B activates the DC power supply 21A, and inquires of the LB type automatic guided vehicle 1B whether the preparation for charging is completed (S26).
  • the LB type automatic guided vehicle 1B confirms whether or not the preparation for charging is completed (S6). If the preparation for charging is completed, a normal response signal is output to the LB automatic charger 3B (S7).
  • the LB automatic charger 3B is based on the normal response signal from the LB type automatic guided vehicle 1B side, and supplies the DC power from the DC power source 21A via the power supply contactor 23, the power receiving contactor 13, and the power switch 12 to the LB type automatic guided vehicle 1B.
  • the battery B2 is supplied to start charging (S27).
  • the LB automatic charger 3B starts a charge timer (S28), and when the voltage and time set by the timer have elapsed, the DC power source 21A is stopped and charging is stopped (S29).
  • the LB type automatic guided vehicle 1B monitors the charging state based on the battery voltage (S8), and confirms the completion of charging when the charging is stopped (S9).
  • the LB automatic charger 3B stops the DC power supply 21A, and makes an inquiry to the LB type automatic guided vehicle 1B as to whether or not the charging circuit can be disconnected (S30).
  • the LB type automatic guided vehicle 1B operates the power reception control relay 12A to open the power switch 12 provided in the charging path connecting the battery B2 and the charging contactor 13 (S10), and the LB type automatic guided vehicle 1B is ready for charging. Is turned off and a normal response (separation OK) is output to the LB automatic charger 3A (S11).
  • the LB automatic charger 3B contracts the power supply contactor 23 to release the connection with the power receiving contactor 13 on the LB type automatic guided vehicle 1B side (S31).
  • a command to allow detachment is output to the automatic guided vehicle 1B (S32).
  • the LB type automatic guided vehicle 1B causes the LB type automatic guided vehicle 1 to move away from the charging station CS based on a command to allow separation (S12). Then, the LB type automatic guided vehicle 1B is caused to travel back to the travel route R.
  • the charging station CS is configured to be able to send and receive signals to and from the automated guided vehicle 1 via the communication units 14 and 24.
  • the in-vehicle charging controller 11 controls opening / closing of the power switch 12 as a power reception control switch provided in the charging path of the vehicle based on a command from the charging station CS.
  • the power receiving contactor 13 and the power receiving control switch of the automatic guided vehicle 1B can be enabled only when communicating with the charging station CS, and the power consumption of the power receiving control relay 12A for operating the power receiving control switch is reduced.
  • the battery B2 can be used effectively.
  • the time during which the power receiving contactor 13 is energized can be limited only at the time of charging. That is, since the power receiving contactor 13 is not energized except during charging, the protection of the terminals can be minimized or unnecessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 搭載バッテリーを駆動源として無人で走行し、充電ステーションで前記搭載バッテリーを充電する無人搬送車の充電管理システムにおいて、前記無人搬送車は、前記搭載バッテリーの残容量を監視する充電制御器を搭載し、前記充電制御器は、前記バッテリーの残容量が所定値よりも低くなった時点で、充電ステーションにおいて搭載バッテリーに対して充電を開始させ、充電中に前記搭載バッテリーの充電量が予め設定した容量に到達した時点で車両の充電経路を遮断状態にする。

Description

無人搬送車の充電管理システム及び充電管理方法
 この発明は、搭載したバッテリーの電力を駆動源として無人で走行し、充電ステーションで搭載したバッテリーに充電を行う無人搬送車の充電管理システム及び充電管理方法に関する。
 JP2-49341Uの無人搬送車は、鉛蓄電池を無人搬送車のバッテリーとして搭載する。この無人搬送車は、定期的に満充電済みの新しいバッテリーと交換される。又は、充電ステーションの充電器から搭載状態のバッテリーに対して満充電となるよう自動充電される。
 また、JP2007-74800Aの無人搬送車は、満充電でなく部分充放電でも使用可能なニッケル水素電池やリチウムイオン電池をバッテリーとして搭載する。この無人搬送車は、バッテリーの残容量が充電開始容量になったときに充電が開始され、残容量が充電停止容量に達したときに充電が停止されることで、充電状態が制御される。
 また、JP3-27732Aの無人搬送車は、無人搬送車ごとに、容量及び電圧がそれぞれ異なるバッテリーをそれぞれ搭載している。そして、バッテリー種別に対応するIDタグが取り付けられている。充電ステーションでは、IDタグに応じて搭載されたバッテリー種別が判定されて、適切な充電電圧,充電電流等の充電条件で充電される。
 ところで、発明者らは、JP2-49341Uにあるような鉛蓄電池の無人搬送車の搬送工程に、JP2007-74800Aにあるようなリチウムイオン電池の無人搬送車を投入することを検討している。鉛蓄電池の無人搬送車の搬送工程の充電ステーションには、鉛蓄電池用の自動充電器が設置済みである。この自動充電器には、鉛蓄電池を充電するために最大で28Vまで充電電圧を上げていく電源装置が組み込まれている。このため、JP2007-74800Aのように、バッテリーとして鉛蓄電池に代えてリチウムイオン電池を搭載した無人搬送車を、上記した搬送工程に投入するには、充電ステーションに設置した自動充電器を、リチウムイオン電池用に充電時最大電圧を調整した電源装置を組み込んだものに全面的に切り替える必要があり、コスト高となる。
 したがって、過渡的には、鉛蓄電池を搭載した無人搬送車とリチウムイオン電池を搭載した無人搬送車とを混在させて使用することが考えられる。この場合、JP3-27732Aのように、無人搬送車に搭載バッテリーに対応したIDタグを持たせて、自動充電器はIDタグに基づいて、バッテリー種別を判定して充電電圧を切り替えることで、バッテリー種別に対応して充電することも考えられる。しかしながら、(1)IDタグを持たせる分、バッテリー・充電器共にコスト高になる、(2)バッテリーを入れ替えるときに、IDタグを間違えると、過電圧を掛けてしまう虞がある、(3)自動充電器に電圧切替制御を設ける分、コスト高になる、などの課題があった。
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、搭載するバッテリー種別が混在する無人搬送車の充電に好適な無人搬送車の充電管理システム及び充電管理方法を提供することである。
 本発明による搭載バッテリーを駆動源として無人で走行し、充電ステーションで前記搭載バッテリーを充電する無人搬送車の充電管理システムのひとつの態様は、前記無人搬送車は、前記搭載バッテリーの残容量を監視する充電制御器を搭載する。そして、前記充電制御器は、前記バッテリーの残容量が所定値よりも低くなった時点で、充電ステーションにおいて搭載バッテリーに対して充電を開始させ、充電中に前記搭載バッテリーの充電量が予め設定した容量に到達した時点で車両の充電経路を遮断状態にする。
図1は、本発明の第1実施形態を示す無人搬送車の走行経路の例を示す概念図である。 図2は、鉛蓄電池をバッテリーとして搭載した無人搬送車及び充電ステーションの自動充電器の概略を示す説明図である。 図3は、リチウムイオン二次電池をバッテリーとして搭載した無人搬送車及び充電ステーションの自動充電器の概略を示す説明図である。 図4は、充電時における無人搬送車の鉛蓄電池よりなるバッテリー装置と充電ステーションの充電器との関係を示す説明図である。 図5は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示す充電特性図である。 図6は、充電時における無人搬送車のリチウムイオン二次電池よりなるバッテリー装置と充電ステーションの充電器との関係を示す説明図である。 図7は、リチウムイオンバッテリーの電圧変化の推移を説明する説明図である。 図8は、本発明の第2実施形態を示す無人搬送車の走行経路の例を示す概念図である。 図9は、第2実施形態の充電時における無人搬送車のリチウムイオン二次電池よりなるバッテリー装置と充電ステーションの充電器との関係を示す説明図である。 図10は、第2実施形態における充電時のバッテリー電圧の変化と供給する充電電流の変化を示す充電特性図である。 図11は、無人搬送車と自動充電装置との充電時の動作を示すフローチャートである。
 以下、添付の図面を参照しながら本発明の実施形態について説明する。
 (第1実施形態)
 搬送工程における無人搬送車の走行経路は、例えば、図1に示すように、ピッキングステーションPSとラインサイドの組立ステーションBSとを経由する設定された周回軌道の走行ルートRである。搬送工程では、この走行ルートR上を複数の無人搬送車1が走行する。各無人搬送車1の走行は設備側制御装置2によって制御される。無人搬送車1は、ピッキングステーションPSにおいて組立ステーションBSで必要とする部品を積み込む。そして無人搬送車1は、走行ルートR上を走行して組立ステーションBSに搬送し、ピッキングステーションPSで積載した部品を積み降ろす。そして無人搬送車1は、再び走行ルートR上を走行してピッキングステーションPSに戻る。無人搬送車1は、このような循環走行を繰返す。
 無人搬送車1は、図2,図3に示すように、二次電池(例えば、鉛蓄電池やリチウムイオン二次電池)からなるバッテリーBを収容するバッテリーボックス5を、例えば、車両中央に装備している。図2に示す無人搬送車1Aは、鉛蓄電池をバッテリーB1として装備する。図3に示す無人搬送車1Bは、リチウムイオン二次電池をバッテリーB2として装備する。無人搬送車1は、バッテリーBを駆動電源として走行する。このため、バッテリーBの充電容量が所定範囲から低下したときには、無人搬送車1が走行ルートR上の充電ステーションCSで停止したときに、バッテリーBが自動充電器3よって充電される。自動充電器3は、直流電源21から充電電力が供給される。
 本実施形態の無人搬送車の充電管理システムでは、図2に示すように、従来一般に採用されている鉛蓄電池等のバッテリーB1を駆動電源とする無人搬送車1Aが使用される。そして、本実施形態の前提となる搬送工程では、この無人搬送車1AのバッテリーB1に対して充電する従来一般に採用されている鉛バッテリー用自動充電器3Aが充電ステーションCSに設置されている。そして、本実施形態では、上記前提とする搬送工程において、図3に示すように、新たにリチウムイオン二次電池によるバッテリーB2を駆動電源とする無人搬送車1Bを順次投入することを想定している。即ち、本実施形態では、無人搬送車1のバッテリー交換を全面的に実施するのではなく、バッテリーB1を順次バッテリーB2に換装すると共に、充電ステーションCSの自動充電器3も、鉛バッテリー用から順次リチウムイオンバッテリー用に拡大導入できるようにしていくものである。以下では、従来一般に採用されているバッテリーB1を駆動電源とする無人搬送車1Aを「PB型無人搬送車」と称する。新たに投入されるバッテリーB2を駆動電源とする無人搬送車1Bを「LB型無人搬送車」と称する。
 先ず、前提とする搬送工程におけるPB型無人搬送車1A及び充電ステーションCSの自動充電器3Aについて説明する。PB型無人搬送車1Aのバッテリーボックス5は、図4に示すように、鉛蓄電池を直列接続して構成したバッテリーB1を有する。このバッテリーB1の電力が、動力源として図示しない走行モータ等に供給される。このバッテリーB1の充放電状態は、車載の図示しない制御装置によって監視される。制御装置は、バッテリーB1の電圧、温度等を検出し、バッテリーB1の充電容量を演算する。そして、演算した充電容量(バッテリー電圧)から、充電が必要か否かを判定する。バッテリーB1においては、例えば、バッテリー電圧が、21Vよりも低下した場合に、充電が必要である判定される。
 制御装置は、充電が必要と判定すると、PB型無人搬送車1Aを上記した走行ルートR上の充電ステーションCSに停車させる。そして、充電ステーションCSにある自動充電器3Aは、図4に示すように、PB型無人搬送車1Aが充電ステーションCSの所定位置に停止したことを確認すると、給電コンタクター23をPB型無人搬送車1に対して進展駆動する。給電コンタクター23が受電コンタクター13に接続されると、充電可能な状態になる。
 自動充電装置3Aは、例えば、充電電圧値を29Vまで昇圧可能な直流電源21と、給電コンタクター23と受電コンタクター13とが接続されると起動し、直流電源21からバッテリーB1へ供給する充電電流値及び電圧値を制御する充電制御装置20と、を備える。
 充電制御装置20は、急速充電によってバッテリーB1へ充電する。急速充電とは、普通充電時の充電電流よりも大きな充電電流をバッテリーB1に供給する定電流・定電圧方式の充電方法である。急速充電は、短時間の充電を必要とする搬送工程には望ましい。ただし充電制御装置20は、定電流・定電圧方式の普通充電も可能である。定電流・定電圧方式の充電では、充電初期には定電流の充電電流を供給する定電流充電(CC充電)を実行する。充電の継続によってバッテリー電圧が満充電電圧(例えば、29V)まで上昇した時点からは、電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで実行する。図5は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示す特性図である。CC充電によりバッテリー電圧は徐々に昇圧する。バッテリー電圧が満充電電圧(例えば、29V)まで上昇すると、その時点から充電電流を低下させつつ電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで実行される。所定時間が経過すると、充電制御装置20は、直流電源21を停止させて充電を停止する。そして、給電コンタクター23を待避させて無人搬送車1の受電コンタクター13との接続を切り離す。その後、PB型無人搬送車1Aは、充電ステーションCSから離脱させる方向に、走行ルートR上を走行する。
 LB型無人搬送車1Bは、図6に示すように、リチウムイオン電池によるバッテリーB2を備える。また、LB型無人搬送車1Bは、車載の充電制御器11を備える。充電制御器11は、バッテリーB2の充電状態を監視・演算し、制御する制御器である。
 充電制御器11は、充電が必要であると判定すると受電準備動作を開始する。受電準備動作では、充電制御器11が受電制御リレー12Aに対して指令して、バッテリーB2と充電コンタクター13とを接続する充電経路に設けたパワースイッチ12を遮断状態から導通状態にして充電可能な状態にする。充電が開始されて、バッテリー電圧が所定電圧に昇圧した段階で、充電制御器11は、受電制御リレー12Aに対して指令して、パワースイッチ12を導通状態から遮断状態にして、充電を停止する。
 バッテリーB2は、たとえばリチウムイオン二次電池である。バッテリーB2は、バスバーBBで直列接続された電池モジュールBMを含む。図6では、3個の電池モジュールBMが直列接続される。
 複数のリチウムイオン単電池(セル)が並列又は直列に電池モジュールBMが構成される。この電池モジュールBMの電圧は、充電状態で約8V強である。バッテリーB2には、3個の電池モジュールBMが直列接続されているので、バッテリーB2の出力電圧は、25V程度となる。したがって、バッテリーB2の過充電電圧は、例えば、25.02V、過放電電圧は、例えば、18Vに設定され、充電開始及び充電完了の各電圧は、過充電電圧と過放電電圧との間の、例えば、21V及び24Vにそれぞれ設定されている。このように、過放電電圧と充電開始電圧との間の電圧差を十分に大きくして、バッテリーB2が過放電電圧に至らないよう、電池を保護している。
 また、充電制御器11は、通信部14(例えば、光通信)を介して、LBバッテリーB2の充電量(電圧)、LBバッテリーB2の入出力の電流量(アンペアアワー、AH)、LBバッテリーB2の異状履歴等を、外部に送信可能としている。
 さらに、充電制御器11は、バッテリー電圧が充電開始電圧よりも低下した場合には、LB型無人搬送車1Bを走行ルートR上の充電ステーションCSに停止させる。そして、充電ステーションCSにある自動充電器3Aは、LB型無人搬送車1Bが充電ステーションCSの所定位置に停止したことを確認すると、図6に示すように、給電コンタクター23をLB型無人搬送車1Bまで伸ばす。給電コンタクター23が受電コンタクター13に接続されると、充電可能な状態になる。
 バッテリーB2が充電完了状態になるとパワースイッチ12が開かれて、自動充電器3Aの充電電流が停止する。そして給電コンタクター23を待避させてLB型無人搬送車1Bの受電コンタクター13との接続を切り離す。その後、LB型無人搬送車1Bは充電ステーションCSから離脱して、走行ルートR上を走行する。
 搬送工程においては、充電ステーションCSに、バッテリーB1用の自動充電器3Aが設置済みである。走行ルートR上にバッテリーB1を搭載したPB型無人搬送車1Aと、新たに投入されたバッテリーB2を搭載したLB型無人搬送車1Bとが、混在した状態で、ピッキングステーションPSから組立ステーションBSへ部品を搭載して搬送している。
 PB型無人搬送車1Aは、バッテリー電圧が低下して充電が必要な場合には、走行ルートR上の充電ステーションCSに停止させられ、前述した手順によって充電される。
 そして、バッテリーBが満充電になると、自動充電器3Aは充電終了と判断して、給電コンタクター23を待避させてPB型無人搬送車1Aの受電コンタクター13との接続を切り離す。その後、PB型無人搬送車1Aが充電ステーションCSから離脱する方向に、走行ルートR上を走行する。
 LB型無人搬送車1Bは、車載の充電制御器11によってバッテリー電圧が低下して充電が必要と判定された場合には、充電制御器11の指令によって受電制御リレー12Aを動作させて、パワースイッチ12を開状態から閉状態にする。また、充電制御器11の指令によって、LB型無人搬送車1Bが充電ステーションCSに停止する。充電ステーションCSにある自動充電器3Aは、LB型無人搬送車1Bが充電ステーションCSの所定位置に停止したことを確認すると、図6に示すように、給電コンタクター23をLB型無人搬送車1Bまで伸ばす。給電コンタクター23が受電コンタクター13に接続されると、充電可能な状態になる。
 自動充電装置3Aは、給電コンタクター23と受電コンタクター13とが接続されると直流電源21を起動させ、直流電源21から充電バッテリーB2へ供給する充電電流値及び電圧値を制御する。具体的には、バッテリーB1への充電と同様に、図5に示すように、充電初期には定電流の充電電流を供給する定電流充電(CC充電)を行うよう作動する。
 バッテリー電圧は充電開始電圧から充電に連れて上昇する。バッテリー電圧の上昇は車載の充電制御器11及び設備側の充電制御装置20により監視される。バッテリー電圧が充電完了電圧に到達すると、車載の充電制御器11は受電制御リレー12Aを動作させてパワースイッチ12を遮断して、バッテリーB2と受電コンタクター13との接続を断ち、充電動作を終了させる。充電ステーションCSの自動充電器3Aは、給電コンタクター23を介してバッテリーB2へ流れる電流がパワースイッチ12による遮断によりゼロへ低下することにより直流電源21を停止させて、充電動作が停止する。
 次いで、充電ステーションCSの自動充電器3Aは、給電コンタクター23を待避させてLB型無人搬送車1Bの受電コンタクター13との接続を切り離す。コンタクター13,23同士の接続が切離されると、LB型無人搬送車1Bは充電ステーションCSから離脱して、走行ルートR上を走行する。
 バッテリーB2を搭載するLB型無人搬送車1Bのバッテリー電圧は、図7に示すように推移する。即ち、バッテリー電圧が、充電開始電圧よりも低くなった時点t0,t2,t4で、充電制御リレー12Aの動作によってパワースイッチ12を閉じ、受電完了電圧よりも高くなった時点t1,t3で、充電制御リレー12Aによってパワースイッチ12を閉状態から開状態に切り替える。このため、バッテリー電圧は、充電の度に、充電リレーON電圧よりも低い状態から充電リレーOFF電圧よりも高い状態に上昇する。LB型無人搬送車1Bが走行ルートRを走行するとバッテリー電力が消費されて、バッテリー電圧は、充電リレーOFF電圧よりも高い状態から充電リレーON電圧よりも低い状態へ徐々に低下する。
 本実施形態においては、以下に記載する効果を奏することができる。
 (1)搭載バッテリーBを駆動源として無人で走行し、充電ステーションCSにおいて搭載バッテリーBに対して充電を行う無人搬送車1の充電管理システムである。無人搬送車1は、搭載バッテリーBとしてリチウムイオンバッテリーB2を備えると共に、搭載バッテリーB2の残容量を監視する充電制御器11を搭載する。そして、充電制御器11は、バッテリーB2の残容量が所定値よりも低くなった時点で、充電ステーションCSにおいて搭載バッテリーB2に対して充電を開始させる。そして、充電制御器11は、充電中に搭載バッテリーB2の充電量が予め設定した容量に到達した時点で車両の充電経路中に設けた受電制御スイッチとしてのパワースイッチ12を遮断状態に切り替えることにより搭載バッテリーB2に対する充電を終了させることを特徴としている。
 即ち、無人搬送車1側に搭載する充電制御器11により、搭載バッテリーB2の充電が終了したと判定した時点で、受電制御スイッチとしてのパワースイッチ12により充電経路が遮断されて充電を終了させるため、充電ステーションCSに設けた自動充電器3Aは、無人搬送車1に搭載されているバッテリー種別に対応して充電条件を変更する必要がない。このため、充電ステーションCSに設置する充電器として、搬送工程に既設されている鉛蓄電池用充電器3AをそのままリチウムイオンバッテリーB2の充電器として利用することができる。また、従来技術のように、搭載バッテリーBの種別を判別する装置類が不要となり、充電器のコストを下げることができる。しかも、充電時の最終電圧の設定値が高い、例えば鉛蓄電池用の充電器3Aを用いても、リチウムイオンバッテリーB2に対して、過充電を回避しつつ充電することができる。
 (2)充電制御器11は、搭載バッテリーB2の残容量が予め設定する所定値よりも低くなった時点で、車両の充電経路中に設けた受電制御スイッチとしてのパワースイッチ12を遮断状態から導通状態に切り替えるようにしている。このため、リチウムイオンバッテリーB2よりも稼働電圧領域の広い鉛蓄電池用の充電器3AをリチウムイオンバッテリーB2の充電器として利用する場合に、リチウムイオンバッテリーB2で使用したい電圧領域を充電制御器11からの指定で任意に設定できる。結果として、リチウムイオンバッテリーB2の特性上の使用効率の高い中容量の領域を常に使うことができ、リチウムイオンバッテリーB2の寿命を長くすることができる。
 (第2実施形態)
 次に、図8~図11に基づいて、本発明を適用した無人搬送車の充電管理システム及び充電管理方法の第2実施形態について説明する。なお図8は走行ルートの概要を示す説明図である。図9はシステム構成図である。図10は充電時のバッテリー電圧及び充電電流の変化を示す特性図である。図11は無人搬送車と自動充電装置との充電時の動作を示すフローチャートである。
 この第2実施形態では、新規にバッテリーB2を搭載したLB型無人搬送車1Bに専用のLB型自動充電器3Bを追加設置した構成を第1実施形態に追加した。なお、第1実施形態と同一装置には同一符号を付してその説明を省略又は簡略化する。
 図8に示すように、本実施形態の無人搬送車1の走行ルートR上の充電ステーションCSには、PB型無人搬送車1AのバッテリーB1に対して充電を実施するPB型自動充電器3Aと、バッテリーB2を搭載したLB型無人搬送車1Bに専用のLB型自動充電器3Bとが、設置されている。バッテリーB2用として新規に追加したLB型自動充電器3Bは、図9に示すように、バッテリーB2の上限電圧(例えば、25.02V)まで昇圧可能な直流電源21Aと、直流電源21AよりバッテリーB2へ供給する充電電流値及び電圧値を制御する充電制御装置20Aと、無人搬送車1の通信部14と通信可能な通信部24と、を備える。
 LB型自動充電器3Bの充電制御装置20Aは、給電コンタクター23と受電コンタクター13とが接続され、LB型無人搬送車1Bの受電制御リレー12Aの動作によりパワースイッチ12が閉じ、バッテリーB2の充電前の電圧を検出した後に起動される。充電制御装置20Aは、急速充電によってバッテリーB2へ充電する。急速充電とは、普通充電時の充電電流よりも大きな充電電流をバッテリーB2に供給する定電流・定電圧方式の充電方法である。急速充電は、短時間の充電を必要とする搬送工程には望ましい。ただし充電制御装置20は、定電流・定電圧方式の普通充電も可能である。定電流・定電圧方式の充電では、充電初期には定電流の充電電流を供給する定電流充電(CC充電)を実行する。充電の継続によってバッテリー電圧が満充電電圧(例えば、25V)まで上昇した時点からは、電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで実行する。
 図10は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示すものである。CC充電によってバッテリー電圧は徐々に昇圧する。バッテリー電圧が充電上限電圧(例えば、25V)まで上昇すると、その時点から充電電流を低下させつつ電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで実行される。所定時間が経過すると、充電制御装置20Aは、直流電源21Aを停止させて充電を停止する。また、CC充電を実行して、無人搬送車1Bのバッテリー電圧が充電上限電圧まで上昇した時点で、充電完了として、充電を停止することもできる。このように、充電上限電圧までバッテリー電圧を上昇させた時点で、充電を終了させる場合には、その後に所定時間だけ実行される定電圧充電(CV充電)を省略することができ、充電時間を短縮することができる。
 通信部24は、LB型無人搬送車1Bの通信部14との間で、バッテリーB2の充電量(電圧)、バッテリーBの入出力の電流量(アンペアアワー、AH)、バッテリーBの異状履歴、無人搬送車1の受電制御リレーのON/OFF制御信号、その他の指令信号等を通信可能としている。
 以下では、図11の制御フローチャートに基づいて、LB型無人搬送車1Bに搭載したバッテリーB2への充電時の手順を説明する。図中の左側の列はLB型無人搬送車1Bの動作フローを示し、右側の列は設備側のLB型自動充電器3Bの動作フローを示している。そして、図中の中央で対峙している符号NP1,NP1は、夫々LB型無人搬送車1Bと設備側のLB型自動充電器3Bとの光通信による通信部を示している。
 LB型無人搬送車1Bは、車載の充電制御器11によりバッテリー電圧が低下して充電が必要と判定された場合には、走行ルートR上の充電ステーションCSのLB用自動充電器3Bに向かうよう走行が制御されて、所定位置で停止する(S1)。
 そして、LB型無人搬送車1BとLB用自動充電器3Bとの通信部14,24同士が互いに安定して通信動作が可能か否かを判定する(S2,S22)。そして、通信安定領域であると判定した場合には、LB用自動充電器3B側とLB型無人搬送車1B側との間で、自動充電条件の確認動作を実行する(S3,S23)。自動充電条件の確認は、LB用自動充電器3B側からLB型無人搬送車1B側に向かって、バッテリーB2が正常か異常かの問い合せを実行し、LB型無人搬送車1B側から正常応答が返されることにより成立する。
 次いで、LB用自動充電器3Bから給電コンタクター23をLB型無人搬送車1Bに向かって伸長させてLB型無人搬送車1Bの受電コンタクター13に接続させると共にLB型無人搬送車1Bに対してコンタクトON指令を出力する(S24)。LB型無人搬送車1Bは充電条件を確認して(S4)、受電制御リレー12Aを作動させてバッテリーB2と充電コンタクター13とを接続する充電経路に設けたパワースイッチ12を閉じる(S5)。コンタクター13,23同士が接続され、パワースイッチ12が閉じられることにより、LB用自動充電装置3BはLB型無人搬送車1Bのバッテリー電圧を確認する(S25)。
 次いで、LB用自動充電器3Bは直流電源21Aを起動して、LB型無人搬送車1Bに対して充電準備が完了したか問い合せる(S26)。LB型無人搬送車1Bは充電準備が完了したかどうか確認し(S6)、充電準備完了であれば、正常応答信号をLB用自動充電器3Bに対して出力する(S7)。LB用自動充電器3BはLB型無人搬送車1B側からの正常応答信号に基づき、直流電源21Aからの直流電力を給電コンタクター23、受電コンタクター13、パワースイッチ12を介してLB型無人搬送車1BのバッテリーB2に供給して充電を開始する(S27)。
 LB用自動充電器3Bは充電タイマーを起動させ(S28)、タイマーで設定した電圧及び時間が経過した段階で、直流電源21Aを停止させ、充電を停止させる(S29)。一方、LB型無人搬送車1Bは、バッテリー電圧により充電状態を監視し(S8)、充電が停止された段階で、充電完了を確認する(S9)。
 次いで、LB用自動充電器3Bは、直流電源21Aを停止させ、LB型無人搬送車1Bに対してコンタクトOFF指令、及び、充電回路の切り離してよいか否かを問い合わせる(S30)。LB型無人搬送車1Bは、受電制御リレー12Aを作動させてバッテリーB2と充電コンタクター13とを接続する充電経路に設けたパワースイッチ12を開き(S10)、LB型無人搬送車1Bの充電準備完了をOFFして、LB用自動充電器3Aに対して、正常応答(切り離しOK)を出力する(S11)。
 LB用自動充電器3Bは、LB型無人搬送車1Bからの正常応答に基づき、給電コンタクター23を収縮させてLB型無人搬送車1B側の受電コンタクター13との接続を解除し(S31)、LB型無人搬送車1Bに対して離脱可の指令を出力する(S32)。LB型無人搬送車1Bは、離脱可の指令に基づき、LB型無人搬送車1を充電ステーションCSから離脱させて走行させる(S12)。そして、LB型無人搬送車1Bを走行ルートRへ復帰走行させる。
 本実施形態においては、第1実施形態における効果(1)に加えて以下に記載した効果を奏することができる。
 (3)充電ステーションCSは、無人搬送車1に対して通信部14,24を介して信号の送受信を可能に構成されている。そして、充電ステーションCSにおいて、車載の充電制御器11は、充電ステーションCSからの指令に基づいて、車両の充電経路中に設けた受電制御スイッチとしてのパワースイッチ12を開閉制御する。このため、無人搬送車1Bの受電コンタクター13及び受電制御スイッチを、充電ステーションCSと通信を実施するときにのみ有効にすることができ、受電制御スイッチを動作させる受電制御リレー12Aの電力消費を削減し、バッテリーB2を有効活用できる。また、受電コンタクター13が活電となる時間を充電時にのみ制限できる、即ち、受電コンタクター13が充電時以外は活電状態にならないため、端子の保護を最小化又は不要とできる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 たとえば、上記実施形態は、適宜組み合わせ可能である。
 本願は、2012年8月2日に日本国特許庁に出願された特願2012-171713に基づく優先権を主張し、これらの出願の全ての内容は参照によって本明細書に組み込まれる。

Claims (6)

  1.  搭載バッテリーを駆動源として無人で走行し、充電ステーションで前記搭載バッテリーを充電する無人搬送車の充電管理システムにおいて、
     前記無人搬送車は、前記搭載バッテリーの残容量を監視する充電制御器を搭載し、
     前記充電制御器は、前記バッテリーの残容量が所定値よりも低くなった時点で、充電ステーションにおいて搭載バッテリーに対して充電を開始させ、充電中に前記搭載バッテリーの充電量が予め設定した容量に到達した時点で車両の充電経路を遮断状態にする、
    無人搬送車の充電管理システム。
  2.  請求項1に記載の無人搬送車の充電管理システムにおいて、
     前記充電制御器は、充電中に前記搭載バッテリーの充電量が予め設定した容量に到達した時点で車両の充電経路中に設けた受電制御スイッチを遮断状態に切り替える、
    無人搬送車の充電管理システム。
  3.  請求項1又は請求項2に記載の無人搬送車の充電管理システムにおいて、
     前記充電制御器は、前記搭載バッテリーの残容量が予め設定する所定値よりも低くなった時点で、前記受電制御スイッチを遮断状態から導通状態に切り替える、
    無人搬送車の充電管理システム。
  4.  請求項1から請求項3までのいずれか1項に記載の無人搬送車の充電管理システムにおいて、
     前記充電ステーションは、無人搬送車に対して通信部を介して信号の送受信を可能に構成され、
     前記充電ステーションにおいて、前記充電制御器は充電ステーションからの指令に基づいて、車両の充電経路中に設けた前記受電制御スイッチを開閉する、
    無人搬送車の充電管理システム。
  5.  請求項1から請求項4までのいずれか1項に記載の無人搬送車の充電管理システムにおいて、
     前記搭載バッテリーは、リチウムイオンバッテリーである、
    無人搬送車の充電管理システム。
  6.  搭載バッテリーを駆動源とする無人搬送車に対して前記搭載バッテリーを充電する場合に、
     前記無人搬送車は、前記搭載バッテリーの残容量を監視し、前記バッテリーの残容量が所定値よりも低くなった時点で、充電ステーションにおいて搭載バッテリーに対して充電を開始させ、
     充電中に前記搭載バッテリーの充電量が予め設定した容量に到達した時点で車両の充電経路を遮断状態にする、
    無人搬送車の充電管理方法。
PCT/JP2013/070706 2012-08-02 2013-07-31 無人搬送車の充電管理システム及び充電管理方法 WO2014021363A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157003230A KR101540553B1 (ko) 2012-08-02 2013-07-31 무인 반송차의 충전 관리 시스템 및 충전 관리 방법
EP13824849.7A EP2882065B1 (en) 2012-08-02 2013-07-31 Battery charging management system of automated guided vehicle and battery charging management method
CN201380041173.1A CN104521091B (zh) 2012-08-02 2013-07-31 无人搬运车的充电管理系统以及充电管理方法
MX2015001361A MX338060B (es) 2012-08-02 2013-07-31 Sistema de administracion de carga de bateria de vehiculo guiado automaticamente y metodo de admisnitracion de carga de bateria.
JP2014528186A JP5796683B2 (ja) 2012-08-02 2013-07-31 無人搬送車の充電管理システム及び充電管理方法
US14/418,283 US9428075B2 (en) 2012-08-02 2013-07-31 Battery charging management system of automated guided vehicle and battery charging management method
BR112015002359-2A BR112015002359B1 (pt) 2012-08-02 2013-07-31 sistema de gerenciamento de carregamento de bateria de veículo autoguiado e método de gerenciamento de carregamento de bateria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171713 2012-08-02
JP2012171713 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021363A1 true WO2014021363A1 (ja) 2014-02-06

Family

ID=50028033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070706 WO2014021363A1 (ja) 2012-08-02 2013-07-31 無人搬送車の充電管理システム及び充電管理方法

Country Status (9)

Country Link
US (1) US9428075B2 (ja)
EP (1) EP2882065B1 (ja)
JP (1) JP5796683B2 (ja)
KR (1) KR101540553B1 (ja)
CN (1) CN104521091B (ja)
BR (1) BR112015002359B1 (ja)
MX (1) MX338060B (ja)
MY (1) MY154243A (ja)
WO (1) WO2014021363A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160001664A1 (en) * 2014-07-07 2016-01-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage system and method for operating an energy storage system
US10090685B2 (en) 2015-03-10 2018-10-02 Lsis Co., Ltd. Electricity providing system including battery energy storage system
CN109878376A (zh) * 2019-03-13 2019-06-14 广州市车极速汽车服务有限责任公司 一种新能源汽车用安全监控系统
CN112849302A (zh) * 2021-02-08 2021-05-28 江苏惊蛰智能科技有限公司 agv能源管理系统
US11396388B2 (en) 2018-12-20 2022-07-26 The Boeing Company Optimized power balanced variable thrust transfer orbits to minimize an electric orbit raising duration
US11401053B2 (en) * 2018-12-20 2022-08-02 The Boeing Company Autonomous control of electric power supplied to a thruster during electric orbit raising
US11753188B2 (en) 2018-12-20 2023-09-12 The Boeing Company Optimized power balanced low thrust transfer orbits utilizing split thruster execution

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098216B2 (ja) * 2013-02-20 2017-03-22 株式会社デンソー タイマ備忘装置
JP6052228B2 (ja) * 2014-05-19 2016-12-27 株式会社デンソー 車載制御システム
FR3028109B1 (fr) * 2014-11-03 2020-01-24 Renault S.A.S Procede de gestion de l'etat de charge d'une batterie de traction d'un vehicule hybride.
JP6569122B2 (ja) * 2015-08-05 2019-09-04 株式会社オートネットワーク技術研究所 車載充電システム
CN106965695A (zh) * 2017-04-12 2017-07-21 深圳市赛亿科技开发有限公司 一种无人驾驶车辆的自动充电系统及充电方法
US10857896B2 (en) 2017-06-14 2020-12-08 Samuel Rutt Bridges Roadway transportation system
US11233419B2 (en) 2017-08-10 2022-01-25 Zoox, Inc. Smart battery circuit
US11707955B2 (en) 2018-02-21 2023-07-25 Outrider Technologies, Inc. Systems and methods for automated operation and handling of autonomous trucks and trailers hauled thereby
SG11202007974VA (en) * 2018-02-21 2020-09-29 Outrider Technologies Inc Systems and methods for automated operation and handling of autonomous trucks and trailers hauled thereby
CN108448693B (zh) * 2018-03-13 2022-03-18 武汉理工大学 用于agv的无线电能传输系统及其控制方法
JP6853805B2 (ja) * 2018-09-13 2021-03-31 株式会社Subaru 電動車両
US11858491B2 (en) 2018-10-30 2024-01-02 Outrider Technologies, Inc. System and method for controlling braking functions in an autonomous vehicle
CN111016692B (zh) * 2019-11-26 2021-05-25 阳光学院 一种基于LoRa网络的电动车无线充电控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249341U (ja) 1988-09-27 1990-04-05
JPH0327732A (ja) 1989-06-21 1991-02-06 Shinko Electric Co Ltd バッテリーの充電制御装置
JPH07255105A (ja) * 1994-03-11 1995-10-03 Suzuki Motor Corp 電動車両
JP2007074800A (ja) 2005-09-06 2007-03-22 Tsubakimoto Chain Co 無人搬送車の電池充放電管理システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202617A (en) * 1991-10-15 1993-04-13 Norvik Technologies Inc. Charging station for electric vehicles
US5200689A (en) * 1992-01-24 1993-04-06 Compaq Computer Corporation Battery charge monitor to determine fast charge termination
US5548200A (en) * 1994-07-06 1996-08-20 Norvik Traction Inc. Universal charging station and method for charging electric vehicle batteries
US5545967A (en) * 1995-07-21 1996-08-13 Precision Automation Systems, Inc. Automatic battery management system
KR0156432B1 (ko) * 1995-08-28 1998-12-15 석진철 무인 운반차의 자동충전시스템
KR100218745B1 (ko) * 1996-09-11 1999-09-01 추호석 무인차 밧데리의 자동 충전방법
JP3999414B2 (ja) * 1999-07-30 2007-10-31 富士通株式会社 電流モニター回路
JP2001240326A (ja) * 2000-02-28 2001-09-04 Mitsubishi Electric Corp エレベータの制御装置
KR100460881B1 (ko) * 2002-06-28 2004-12-09 현대자동차주식회사 연료전지 하이브리드 전기자동차의 동력분배 제어시스템및 제어방법
US7358701B2 (en) * 2003-02-07 2008-04-15 Field Robert B Method and system for modeling energy transfer
JP2005006461A (ja) * 2003-06-13 2005-01-06 Panasonic Ev Energy Co Ltd 無人搬送車用二次電池の充放電制御方法
SG120181A1 (en) * 2004-08-18 2006-03-28 Gp Batteries Internat Ltd Method and system for determining the SOC of a rechargeable battery
JPWO2008155917A1 (ja) * 2007-06-19 2010-08-26 パナソニック株式会社 スイッチング素子駆動回路
US20120207620A1 (en) * 2007-07-12 2012-08-16 Odyne Systems, LLC. Hybrid vehicle drive system and method and idle reduction system and method
US7928735B2 (en) * 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
JP4539887B2 (ja) * 2008-01-31 2010-09-08 トヨタ自動車株式会社 搬送用自走車の充電管理方法及びシステム
JP4499164B2 (ja) * 2008-02-25 2010-07-07 岩崎電気株式会社 充電装置及び充電方法
US7890228B2 (en) * 2008-12-01 2011-02-15 Savant Automation, Inc. Power source monitoring system for AGVs and method
JP3176361U (ja) * 2009-06-15 2012-06-21 ホン チャウ,ハク フォールトトレラントモジュール電池管理システム
CN102273044B (zh) * 2009-07-31 2015-04-22 松下电器产业株式会社 保护电路、电池组件以及充电系统
JP5703587B2 (ja) * 2010-04-14 2015-04-22 コベルコ建機株式会社 ハイブリッド作業機械
FR2964265B1 (fr) * 2010-08-30 2015-01-09 Commissariat Energie Atomique Procede de charge d'une batterie electrique
JPWO2012050207A1 (ja) * 2010-10-15 2014-02-24 三洋電機株式会社 蓄電システム
US8471522B2 (en) * 2011-05-06 2013-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. System for charging electrically powered automated guided vehicles
US9391465B2 (en) * 2011-10-20 2016-07-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electrical storage device management system
US9167228B2 (en) * 2012-01-03 2015-10-20 Lawrence Maxwell Monari Instrumented sports paraphernalia system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249341U (ja) 1988-09-27 1990-04-05
JPH0327732A (ja) 1989-06-21 1991-02-06 Shinko Electric Co Ltd バッテリーの充電制御装置
JPH07255105A (ja) * 1994-03-11 1995-10-03 Suzuki Motor Corp 電動車両
JP2007074800A (ja) 2005-09-06 2007-03-22 Tsubakimoto Chain Co 無人搬送車の電池充放電管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882065A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160001664A1 (en) * 2014-07-07 2016-01-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage system and method for operating an energy storage system
US10090685B2 (en) 2015-03-10 2018-10-02 Lsis Co., Ltd. Electricity providing system including battery energy storage system
US11396388B2 (en) 2018-12-20 2022-07-26 The Boeing Company Optimized power balanced variable thrust transfer orbits to minimize an electric orbit raising duration
US11401053B2 (en) * 2018-12-20 2022-08-02 The Boeing Company Autonomous control of electric power supplied to a thruster during electric orbit raising
US11753188B2 (en) 2018-12-20 2023-09-12 The Boeing Company Optimized power balanced low thrust transfer orbits utilizing split thruster execution
CN109878376A (zh) * 2019-03-13 2019-06-14 广州市车极速汽车服务有限责任公司 一种新能源汽车用安全监控系统
CN112849302A (zh) * 2021-02-08 2021-05-28 江苏惊蛰智能科技有限公司 agv能源管理系统

Also Published As

Publication number Publication date
JPWO2014021363A1 (ja) 2016-07-21
MY154243A (en) 2015-05-18
EP2882065B1 (en) 2018-09-12
US20150258908A1 (en) 2015-09-17
KR101540553B1 (ko) 2015-07-29
JP5796683B2 (ja) 2015-10-21
MX2015001361A (es) 2015-05-15
MX338060B (es) 2016-04-01
CN104521091B (zh) 2016-05-18
BR112015002359B1 (pt) 2021-05-04
EP2882065A4 (en) 2015-08-12
US9428075B2 (en) 2016-08-30
KR20150023074A (ko) 2015-03-04
CN104521091A (zh) 2015-04-15
BR112015002359A2 (ja) 2019-11-26
EP2882065A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5796683B2 (ja) 無人搬送車の充電管理システム及び充電管理方法
RU2576668C1 (ru) Система управления зарядом для автоматически управляемого транспортного средства
US9387763B2 (en) Power source device for vehicle
EP2882064B1 (en) Charging management system for unpiloted conveyance vehicles and charging management method for unpiloted conveyance vehicles
KR101921641B1 (ko) 배터리 제어 장치 및 방법
WO2014156041A1 (ja) 電源システム及び電源システムの充放電制御方法
JP4785797B2 (ja) 車両用の電源装置
RU2569984C1 (ru) Система обнаружения анормальности для автоматически управляемого транспортного средства
US20210078442A1 (en) Charging architecture for reconfigurable battery pack using solid-state and contactor switches
WO2013118612A1 (ja) 蓄電システム
JP2007074800A (ja) 無人搬送車の電池充放電管理システム
JP6477602B2 (ja) 車載電池ユニット
JP5773083B2 (ja) 無人搬送車の充電管理システム
RU2575705C1 (ru) Система управления зарядом аккумулятора автоматически управляемого транспортного средства и способ управления зарядом аккумулятора
US20220416552A1 (en) In-vehicle battery system
WO2014021414A1 (ja) 無人搬送車のバッテリー管理システム
CN103692923A (zh) 以电容器及二次电池为电源的自行式输送系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824849

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014528186

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418283

Country of ref document: US

Ref document number: MX/A/2015/001361

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157003230

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015105980

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013824849

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015002359

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015002359

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150202

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: BR

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2426 DE 04/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015002359

Country of ref document: BR

Kind code of ref document: A2

Free format text: EXIGENCIAS:1- APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP2012-171713; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. 2- APRESENTE NOVA VIA DOS DESENHOS, UMA VEZ QUE O DOCUMENTO APRESENTADO TERMINA NA PAGINA 10 DE 11

ENP Entry into the national phase

Ref document number: 112015002359

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150202