WO2013118612A1 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
WO2013118612A1
WO2013118612A1 PCT/JP2013/051944 JP2013051944W WO2013118612A1 WO 2013118612 A1 WO2013118612 A1 WO 2013118612A1 JP 2013051944 W JP2013051944 W JP 2013051944W WO 2013118612 A1 WO2013118612 A1 WO 2013118612A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
charging
capacitor
storage system
Prior art date
Application number
PCT/JP2013/051944
Other languages
English (en)
French (fr)
Inventor
伸治 今井
井上 健士
政重 中條
天野 雅彦
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Publication of WO2013118612A1 publication Critical patent/WO2013118612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage system that uses a power storage device such as a storage battery or a capacitor to drive a load such as an electric motor, and more particularly to a power storage system including a main power storage device and an auxiliary power storage device.
  • a power storage device such as a storage battery or a capacitor
  • a load such as an electric motor
  • transport vehicles such as automatic guided vehicles, tracked carts, and overhead traveling carts are used for transporting and transferring articles.
  • an electric motor is used to drive such a transport vehicle, and a storage battery is mounted as the power source.
  • the electric power of the storage battery is used to drive an electric motor for traveling, an electric motor for transfer, and the like. It was. Since the storage battery is used as the power source in this way, it is necessary to charge the storage battery when the power is consumed.
  • Patent Document 1 discloses a method for increasing the system efficiency of a charging system for an automated guided vehicle and reducing the system size and weight.
  • the ground side electric double layer capacitor that is charged by the power of the commercial power source is arranged in the charging device on the side, and the charged ground side electric double layer capacitor and the vehicle side electric double layer capacitor are connected to charge the vehicle side.
  • a technique is described in which charging of the vehicle-side electric double layer capacitor is completed in a short time.
  • Patent Document 2 Japanese Patent Laid-Open No. 2011-55698 (Patent Document 2) describes a capacitor and a drive for the purpose of suppressing the increase in weight and cost without causing the battery to run out at the time of resuming operation such as the end of a holiday.
  • Lead-acid battery charging for charging a lead-acid battery whose output side is connected to the output side of the DC / DC converter via a switch between the DC / DC converter connected between the control device and the capacitor and the drive control device
  • the output voltage of the capacitor is equal to or higher than the output voltage of the DC / DC converter
  • power is sent to the drive control device and the lead storage battery using the capacitor, and the output voltage of the capacitor is the output voltage of the DC / DC converter.
  • a technique is described in which a lead storage battery is used to supply power to the drive control circuit.
  • Patent Document 1 describes an automatic guided vehicle having a configuration in which an electric double layer capacitor (or lithium ion capacitor), a DC / DC converter, and an auxiliary storage battery are connected in parallel to a load and its controller. .
  • the auxiliary storage battery described in Patent Document 1 ensures power necessary for driving an automatic guided vehicle so that power can be supplied to the controller when the voltage of the electric double layer capacitor becomes zero or low due to some abnormality. Is provided to do.
  • Patent Document 2 discloses a bidirectional DC / DC converter connected between an electric double layer capacitor and a drive control device, and an output side between the electric double layer capacitor and the drive control device via a switch.
  • a secondary battery charger connected to the output side of the DC / DC converter for charging the secondary battery, and a switch when the output voltage of the electric double layer capacitor is equal to or higher than the output voltage of the bidirectional DC / DC converter
  • a control circuit that switches on when the output voltage of the electric double layer capacitor is less than the output voltage of the bidirectional DC / DC converter, and the electric double layer capacitor and the secondary battery as a power source It describes a type transport system.
  • the secondary battery described in Patent Document 2 is also used as an auxiliary power source, and is mounted for the purpose of preventing a situation where the main power source electric double layer capacitor cannot be operated when the voltage is low.
  • the charging method of the auxiliary storage battery as a standby power source described in Patent Document 1 and Patent Document 2 has the following problems in securing the standby power performance.
  • the capacitor voltage which is the main power supply
  • the power is supplied (discharged) from the auxiliary storage battery to the motor and moved to a place where charging is possible such as a charging station, and the capacitor whose voltage has dropped due to discharging is charged.
  • the charging by the charging device ends when the capacitor as the main power supply is fully charged.
  • this type of general charging device is configured to detect the charging state of the capacitor, which is the main power supply, by the charging device on the charging station side, and when the charging state of the capacitor reaches the full charging state, charging is performed on the charging device side. It is supposed to end.
  • the auxiliary storage battery is charged at the same time when the capacitor is charged, but there is a possibility that the capacitor is fully charged before the auxiliary storage battery is fully charged and the charging is terminated.
  • An object of the present invention is to provide a power storage system including a main power storage device (main storage battery) and an auxiliary power storage device (auxiliary storage battery) before the main power storage device (main storage battery) during charging by a charging device such as a charging station. It is an object of the present invention to provide a power storage system capable of ensuring standby power supply performance by ensuring that (auxiliary storage battery) is charged to a predetermined charge amount and thereafter charging of a main power storage device (main storage battery) is terminated.
  • the present invention is characterized in that a main power storage device that supplies power to a load to drive the load, an auxiliary power storage device that supplies power to the load to drive the load, and charging the main power storage device
  • a switching means is provided for supplying power from the main power storage device to the load when the amount is greater than or equal to a predetermined amount, and for supplying power from the auxiliary power storage device to the load when the remaining charge amount of the main power storage device is less than or equal to the predetermined amount.
  • charging when charging the main power storage device and the auxiliary power storage device, charging is performed so that the main power storage device reaches a predetermined charge amount after or substantially simultaneously with the auxiliary power storage device reaching a predetermined charge amount.
  • the power storage system includes a control unit.
  • the main power storage device reaches the predetermined charge amount, preferably the full charge amount.
  • the main power storage device reaches the predetermined charge amount, preferably the full charge amount.
  • FIGS. 7A and 7B are configuration diagrams illustrating the operation of the flowchart illustrated in FIG.
  • FIG. 6A is a diagram illustrating a switch operation in step S ⁇ b> 110
  • FIG. 10 is a configuration diagram for explaining the operation of the flowchart shown in FIG. 9, where (a) is a diagram showing a switch operation in step S210, and (b) is a diagram showing a switch operation in step S230.
  • FIG. 12 is a flowchart showing a switch control procedure during charging of the automated guided vehicle in the power storage system shown in FIG. 11.
  • FIG. 1 shows the configuration of an automated guided vehicle system.
  • This automated guided vehicle system includes a plurality of automated guided vehicles 1, a predetermined route R along which the automated guided vehicle 1 moves, and a plurality of locations on the predetermined route R.
  • the charging station 2 is installed, and the charging device 3 is installed adjacent to the charging station 2.
  • the automatic transport vehicle 1 transports a transported object while automatically traveling in a factory along a predetermined route R.
  • the automatic transport vehicle 1 is an electric type driven by an electric motor and is mounted on the main body of the automatic transport vehicle 1.
  • the power storage system (which will be described in detail later) is operated.
  • the power storage system of the automated guided vehicle is appropriately charged by the charging device 3 at the charging station 2 installed at a predetermined position.
  • the vehicle body of the automatic guided vehicle 1 is provided with driving wheels 8a and 8b and driven wheels 9a and 9b, and further, an electric motor 6 for driving the driving wheels 8a and 8b, and driving the electric motor 6.
  • Drive control device 5 for controlling, power storage system 10 as a power source for driving the electric motor 6, relays 4a and 4b for electrically connecting and disconnecting the power storage system 10 and the drive control device 5, and power storage in the charging station 2
  • a charging terminal 3 for connecting the charging device 3 and the power storage system 10 when the system 10 is charged is provided.
  • the automatic transport vehicle 1 includes a plurality of electric motors related to the operation of the automatic transport vehicle 1 and a drive control device for driving them, such as a steering motor and a transfer motor, in addition to the traveling motor 6 shown in FIG.
  • a drive control device for driving them such as a steering motor and a transfer motor
  • the drive control device 5 incorporates a well-known controller and inverter device (not shown).
  • the power storage system of the automated guided vehicle 1 used in such an automated guided vehicle system will be described in detail below.
  • FIG. 3 is a configuration diagram for explaining the configuration of the power storage system 10 according to the first embodiment of the present invention.
  • the power storage system 10 includes a capacitor 11 as a main power storage device and a lead storage battery 12 as an auxiliary power storage device.
  • a charge / discharge circuit 13 and a control device 14 functioning as a charge control means, a capacitor voltage detection means 15 for detecting a charge voltage of the capacitor 11 and the lead storage battery 12, and a lead storage battery voltage detection means 16, respectively.
  • the charging characteristic of the capacitor 11 is faster than the charging characteristic of the lead storage battery 12 if the power is the same.
  • a capacitor is used as the main power storage device and a lead storage battery is used as the auxiliary power storage device, but any type can be applied without being caught as long as it satisfies the power storage function. Also good.
  • the capacitor 11 is configured as a cell group in which a large number of capacitor cells are connected in series, and as a capacitor module formed by connecting these cell groups in parallel.
  • a capacitor module in which cell groups are not connected in parallel can be used.
  • an electric double layer capacitor, a lithium ion capacitor, etc. can be used, for example.
  • the lead storage battery 12 is also configured as a storage battery group in which a large number of lead storage batteries are connected in series, and a lead storage battery module formed by connecting these storage battery groups in parallel.
  • a lead storage battery module that does not connect storage battery groups in parallel can also be used.
  • the lead storage battery 12 is used as an auxiliary power storage device, but any other type of storage battery can be used as long as it satisfies the power storage function such as a lithium ion secondary battery or a nickel metal hydride battery. It may be used.
  • the charge / discharge circuit 13 has one end of its electrical wiring path connected to the plus side terminal 19a (power receiving terminal side) and the plus side terminal 19b (drive control device side) of the power storage system 10, and two other electrical wiring paths.
  • the capacitor 11 and the lead storage battery 12 are electrically connected to the ends in parallel.
  • the capacitor 11 and the lead storage battery 12 are charged from the plus side terminal 19a (power receiving terminal side) or discharged from the plus side terminal 19b (drive control device side) by the charge / discharge circuit 13, and the power control is performed. Is.
  • the charge / discharge circuit 13 includes switches SW1, SW2, and SW3, an inrush current preventing resistor 17, and a lead-acid battery charger 18.
  • the capacitor 11 is connected to the positive terminals 19a and 19b via the switch SW1
  • the lead storage battery 12 is connected to the lead storage battery charger 18, the switch SW2 connected in series with the lead storage battery charger 18, and the lead storage battery charger 18.
  • the inrush current preventing resistor 17 placed in parallel with the switch SW2 and the switch SW3 connected in series therewith are connected.
  • switches SW2 and SW3 are connected to an electrical wiring path between the switch SW1 and the plus side terminals 19a and 19b.
  • the switches SW1, SW2, and SW3 are ON / OFF controlled by a control device 14 to be described later, and the switches SW1, SW2, and SW3 use a semiconductor element such as a MOSFET in addition to a mechanical relay to control current. It goes without saying that any switch system may be used as long as it can arbitrarily control interruption and conduction.
  • the inrush current prevention resistor 17 is momentarily applied to the electrical wiring path passing through SW3 when the switch SW3 is switched from OFF to ON in a state where there is a potential difference between the positive terminal 19a of the power storage system 10 and the lead storage battery 12. This is a resistor for preventing a large current from flowing.
  • the lead-acid battery charger 18 has a function for charging the lead-acid battery 12 to a predetermined voltage.
  • the lead-acid battery charger 18 is provided for trickle charging, and an example thereof is shown in FIG.
  • the lead-acid battery charger 18 includes a one-way DC / DC converter 181 having the capacitor 11 side as an input via a switch SW2, a current limiting resistor 182, a reverse current preventing diode 183, and the like.
  • the current preventing diode 183 is connected to the lead storage battery 12.
  • the one-way DC / DC converter 181 has a specification having a function of maintaining a fully charged voltage of the lead storage battery, and the switch SW2 is in a state where a voltage is applied to the plus side terminal 19a of the power storage system 10 shown in FIG. Is turned on, the lead-acid battery charger 18 is charged so as to maintain the lead-acid battery 12 in a fully charged state, and functions to maintain the voltage state even after the lead-acid battery 12 is fully charged. .
  • the current limiting resistor 182 provided in the lead-acid battery charger 18 is connected to the lead-acid battery 12 from the one-way DC / DC converter 181 at the moment when the switch SW2 is turned on, similarly to the inrush current preventing resistor 17 shown in FIG. This is provided to prevent inrush current.
  • the reverse current prevention diode 183 provided in the lead storage battery charger 18 is a diode for preventing current from flowing from the lead storage battery 12 to the one-way DC / DC converter 181 when the switch SW2 is OFF.
  • FIG. 4 shows an example of the configuration of the lead-acid battery charger 18. If the lead-acid battery 12 has a function capable of charging the lead-acid battery 12 to a predetermined voltage value when the switch SW2 is turned on, the lead-acid battery shown in FIG. A charger other than the charger 18 can be applied.
  • the capacitor voltage detection means 15 and the lead storage battery voltage detection means 16 are composed of a combination of a well-known differential amplifier, A / D converter, etc., although not shown.
  • the differential amplifier is configured to receive a reference potential (for example, a negative potential of the power storage system 10) and a divided potential obtained by dividing the potential of the capacitor 11 or the lead storage battery 12, and obtained by this differential amplifier.
  • the potential difference is input to the A / D converter.
  • the A / D converter has a function of outputting the input potential difference as a digital signal to the control device 14. Thereby, the voltage of the capacitor 11 and the lead storage battery 12 can be detected.
  • FIG. 5 shows the configuration of the control device 14, and the control device 14 includes a charge state determination unit 141 and a switch drive control unit 142. From the capacitor voltage detection means 15 and the lead storage battery voltage detection means 16 described above, the total voltage of the capacitor 11 and the total voltage of the lead storage battery 12 are respectively taken into the charge state determination unit 141 as digital signals. The charging state determination unit 141 determines the charging state of the capacitor 11 and the lead storage battery 12 based on the taken capacitor voltage and lead storage battery voltage value.
  • the charge state determination unit 141 sends a switch drive command to the switch drive control unit 142 based on the determined charge state of the capacitor 11 and the lead storage battery 12.
  • the switch drive control unit 142 performs ON / OFF control of the switches SW1, SW2, and SW3 in the charge / discharge circuit 13 in accordance with the switch drive command.
  • these functions may be executed by a microcomputer, and in this case, the functions described above described in the control program are configured to be executed.
  • FIG. 6 is a flowchart showing a control procedure of the switches SW1, SW2, and SW3 performed by the control device 14 when the automatic guided vehicle 1 is running.
  • control device 14 controls the switches SW1, SW2, and SW3 based on the voltage of the capacitor 11 that is the main power storage device.
  • step S100 it is determined whether or not the voltage of the capacitor 11 representing the remaining charge amount obtained by the capacitor voltage detecting means 15 is equal to or higher than the threshold value A.
  • This threshold A is set as a value obtained by adding a margin to a voltage value at which a necessary and sufficient output can be output to drive the drive control device 5 and the electric motor 6, and a value equal to or lower than the full charge voltage of the lead storage battery 12. It is determined according to the type of the automatic transport vehicle 1, the type of the drive system, the capacity of the lead storage battery 12 mounted as an auxiliary power storage device, and the like.
  • step S100 If it is determined in step S100 that the capacitor voltage is equal to or higher than the threshold value A, it is considered that the capacitor 11 is in a sufficiently charged state, and the process proceeds to step S110 to appropriately control each switch in the charge / discharge circuit 13. Specifically, the switch SW1 is controlled to be ON, the switch SW2 is ON, and the switch SW3 is OFF.
  • step S100 determines whether the capacitor voltage is less than the threshold value A. If it is determined in step S100 that the capacitor voltage is less than the threshold value A, it is assumed that the capacitor 11 is in a state of insufficient remaining capacity, and the process proceeds to step S120 to appropriately control each switch in the charge / discharge circuit 13. Is done. Specifically, the switch SW1 is turned on, the switch SW2 is turned off, and the switch SW3 is turned on.
  • the charging / discharging of the capacitor 11 and the lead storage battery 12 is controlled by the control of the switches SW1, SW2 and SW3.
  • FIG. 7 is a diagram showing a circuit portion for charging and discharging the capacitor 11 and the lead storage battery 12 while the automatic guided vehicle 1 is running.
  • FIG. 7A is a flowchart shown in FIG. The state when proceeding to step S110 is shown. At this time, the capacitor 11 is discharged for driving the drive control device 5, driving the electric motor 6, and charging the lead storage battery 12.
  • the lead-acid battery 12 continues to be trickle-charged (charged with a predetermined current in order to maintain the lead-acid battery 12 in a fully charged state) as described above.
  • the switch SW1 and the switch SW2 are always ON. However, when the lead storage battery 12 is fully charged, the switch SW2 is turned OFF. It does not matter. In this case, the electric power of the capacitor 11 is used for controlling and driving the drive control device 5 and the electric motor 6.
  • FIG. 7B shows the state when the process proceeds to step S120 when the capacitor voltage is less than the threshold A in the flowchart shown in FIG. In this case, since the output of the capacitor 11 is lowered, the switch SW2 is turned off here, and the switch SW3 is turned on instead.
  • the electric power of the lead storage battery 12 is discharged via the resistor 17 and the switch SW3, and is discharged together with the capacitor 11 to the drive control device 5 and the electric motor 6 side.
  • the discharge current of the capacitor 11 is reduced by discharging the lead storage battery 12 as well, and the traveling distance of the automatic transport vehicle 1 can be increased. It becomes.
  • FIG. 8 is a time chart showing changes in the capacitor voltage and lead-acid battery voltage during travel and charging of the automatic guided vehicle 1, and the operation patterns of the switches SW1, SW2 and SW3 in the charge / discharge circuit 13. This time chart starts from a state in which the automatic guided vehicle 1 is running.
  • the threshold A and the threshold B have appropriate values depending on the system specifications, it is realistic to determine the threshold A and the threshold B according to the system to be adopted.
  • the following threshold is set.
  • the main power storage device 11 is a lithium ion capacitor 16 series module
  • the auxiliary power storage device 12 is a nominal 12V lead acid battery 4 series module
  • each threshold has a threshold A of 50V and a threshold B of 54. 6V is desirable.
  • the lead-acid battery full charge voltage is set to the same value for the threshold B.
  • the control device 14 since the capacitor voltage is initially equal to or higher than the predetermined threshold A, the control device 14 performs the switch operation shown in step S110.
  • the capacitor 11 supplies (discharges) electric power to drive the drive control device 5 and the electric motor 6, so the capacitor voltage decreases accordingly, but the lead storage battery 12 Since the battery is trickle charged, the lead-acid battery voltage is maintained at the full charge voltage.
  • step S120 the control device 14 shifts to perform the switch operation shown in step S120, and the switch operation is switched. At this time, the discharge of the lead storage battery 12 starts and the lead storage battery voltage starts to decrease. In addition, since the power supply from the lead storage battery 12 to the drive control device 5 and the electric motor 6 is assisted, the discharge current of the capacitor 11 is reduced, and the pace of the voltage drop of the capacitor is delayed.
  • the control device 14 controls the switches SW1, SW2, and SW3 based on the voltage of the lead storage battery 12 that is a standby power source.
  • FIG. 9 is a flowchart showing a procedure in which the control device 14 controls each of the switches SW1, SW2, and SW3 when the automatic transport vehicle 1 is charging the power storage system 10 at the charging station 2.
  • the power storage system 10 of the automatic guided vehicle 1 is connected to the charging device 3 installed in the charging station 2 via the power storage system plus side terminal 19a.
  • the control device 14 proceeds to step S200. Then, it is determined whether or not the lead storage battery 12 is in a fully charged state. Here, the remaining charge state of the lead storage battery 12 is detected by the lead storage battery voltage detection means 16.
  • step S200 When it is determined in step S200 that the lead storage battery 12 is in a fully charged state, the process proceeds to step S230 and each switch in the charge / discharge circuit 13 is appropriately controlled. Specifically, the switch SW1 is controlled to be ON, the switch SW2 is ON, and the switch SW3 is OFF.
  • a current flows from the positive terminal 19 a to the capacitor 11 to charge the capacitor 11, and the lead storage battery 12 is charged via the lead storage battery charger 18.
  • This charge has the effect of trickle charge because the lead storage battery 12 is fully charged. If trickle charging is not required, the switch SW2 may be turned off to concentrate the current on the capacitor 11 and allow current to flow.
  • step S200 when it is determined in step S200 that the lead storage battery 12 is not in a fully charged state, the process proceeds to step S210 and each switch in the charge / discharge circuit 13 is appropriately controlled. Specifically, the switch SW1 is turned off, the switch SW2 is turned off, and the switch SW3 is turned on.
  • FIG. 10 is a diagram showing a circuit portion for charging the capacitor 11 and the lead storage battery 12 when the automatic transport vehicle 1 is charged by the charging device 3 in the charging station 2, and FIG.
  • the flowchart shown in FIG. 9 shows a state where the lead storage battery 12 has proceeded to step S210 when it is not fully charged.
  • the state when the charging of the lead storage battery 12 is started by the charging device 3 is shown.
  • the switch SW1 since the switch SW1 is OFF, the charging current from the charging device 3 does not flow to the capacitor 11. Then, the lead storage battery 12 is intensively charged via the switch SW3 and the resistor 17 which are turned on.
  • step S220 since the voltage of the lead storage battery 12 is input from the lead storage battery voltage detection means 16 to the control device 14, it is determined whether or not the voltage of the lead storage battery 12 being charged exceeds the threshold B in step S220. . A method for setting the threshold value B will be described later.
  • step S220 If it is determined in step S220 that the lead-acid battery voltage has exceeded the threshold value B, the process proceeds to step S230, and each switch in the charge / discharge circuit 13 is appropriately controlled. Specifically, the switch SW1 is controlled to be ON, the switch SW2 is ON, and the switch SW3 is OFF. (In this case, the capacitor 11 is in a discharged state.)
  • FIG. 10B shows a flow state of the charging current to the capacitor 11 and the lead storage battery 12 when the process proceeds to step S230. In this case, charging current flows into both the capacitor 11 and the lead storage battery 12. In this state, when the voltage of the power storage system reaches the charging end voltage, charging by the charging device 3 is ended.
  • This determination of the end of charging can be executed by providing a charging end determination step S240 after step S230. Specifically, by determining whether the charge amount of the capacitor 11 is sufficient by the voltage detected by the capacitor voltage detecting means 15. Can be executed. Thereafter, the process proceeds to step S250, and a charge end process is executed.
  • step 240 and step 250 whether or not the charge amount of the capacitor 11 is sufficient in the power storage system and the charge end process are executed, but the charge state of the capacitor 11 is transmitted to the charging device on the charging station side.
  • the charging state of the capacitor 11 may be detected on the charging device side, and the charging end process may be executed on the charging device side based on the result.
  • the switch SW2 may be turned OFF to concentrate the capacitor 11 and allow the charging current to flow.
  • control device 14 determines that the lead storage battery is not fully charged, and thus proceeds to step S210. At this time, since the charging current does not flow through the capacitor 11, the voltage of the capacitor 11 does not increase, and only the voltage of the lead storage battery 12 increases.
  • step S220 when the control device 14 detects that the voltage of the lead storage battery 12 has reached a predetermined voltage value (threshold value B) in step S220, the process proceeds to step S230, and charging of the capacitor 11 is started.
  • the process proceeds to step S250 and the charging ends.
  • This threshold value B is a value that is determined so that the lead storage battery 12 that is a standby power supply is fully charged when charging by the charging device 3 is completed.
  • the threshold value B shown in the time chart of FIG. 8 is the same value as the full charge voltage of the lead storage battery 12 as an example, but may be a threshold value equal to or lower than the full charge voltage as described above.
  • the lead storage battery 12 is fully charged before the capacitor 12 in both charging after it is determined in step S220 that the threshold value equal to or lower than the full charge voltage has been exceeded and the process proceeds to step S230.
  • the threshold value B is preferably set so that the lead storage battery 12 and the capacitor 11 are fully charged almost simultaneously.
  • step S230 If the value of the threshold value B is extremely lower than the full charge voltage value of the lead storage battery 12, the process immediately proceeds to step S230, and charging of the capacitor 11 is started.
  • the charging device 3 ends charging without being fully charged.
  • the threshold value B is set to a value close to the full charge voltage value of the lead storage battery 12.
  • the power storage system shown in the present embodiment can surely fully charge the lead storage battery, which is a standby power source when charging by the charging device of the charging station, and ensure backup performance as a standby power source necessary for running operation. be able to.
  • the switch SW2 and the lead-acid battery charger in the charge / discharge circuit 13 are compared with the configuration of the power storage system 10 in the first embodiment shown in FIG. The difference is that the electrical wiring path including 18 is omitted. That is, the lead storage battery 12 is connected to the inrush current preventing resistor 17 and the switch SW3 connected in series therewith, and further connected to an electrical wiring path between the switch SW1 and the plus side terminal 19a.
  • FIG. 12 is a flowchart showing a control procedure of the switches SW1 and SW3 performed by the control device 14 when the automated guided vehicle 1 is charging the power storage system 10 from the charging device 3 at the charging station 2.
  • control device 14 determines whether or not the lead storage battery 12 is fully charged in step S300.
  • step S300 When it is determined in step S300 that the lead storage battery 12 is fully charged, the process proceeds to step S310, where the switch SW1 in the charge / discharge circuit 13 is turned on and the switch SW3 is turned off. In this case, since the lead storage battery 12 is fully charged, the capacitor 11 is intensively charged.
  • step S300 if it is determined in step S300 that the lead storage battery 12 is not fully charged, the process proceeds to step S320, where the switch SW1 in the charge / discharge circuit 13 is turned off and the switch SW3 is turned on. In this case, since the lead storage battery 12 is in an insufficiently charged state, the lead storage battery 12 is intensively charged.
  • step S330 If it is determined in step S330 that the lead-acid battery voltage has exceeded the threshold value B, the process proceeds to step S310, and the switch SW1 in the charge / discharge circuit 13 is controlled to be ON and the switch SW3 is controlled to be OFF. In this case, the capacitor 11 is intensively charged.
  • step S340 determines whether the capacitor 11 is fully charged. If it is determined in step S340 that the capacitor 11 is fully charged, the process proceeds to step S350, and a charge termination process is executed. Also in this case, as described in the first embodiment, the functions of steps S340 and S350 may be executed by the charging device on the charging station side.
  • the lead storage battery 12 as a standby power supply is fully charged before the capacitor 11, so that when the capacitor 11 is fully charged and the charging is finished, the lead storage battery is surely in a fully charged state. It has become. Therefore, it is possible to ensure backup performance as a standby power source required during running operation.
  • a part of the configuration of the embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of the embodiment. Further, it is possible to add / delete / replace other configurations for a part of the configuration of each embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • SYMBOLS 1 Automatic conveyance vehicle, R ... Predetermined route, 2 ... Charging station, 3 ... Charging device, 4a, 4b ... Relay, 5 ... Drive control device, 6 ... Electric motor, 7 ... Power receiving terminal, 8a, 8b ... Drive wheel, 9a , 9b ... driven wheel, 10 ... power storage system, 11 ... capacitor, 12 ... lead storage battery, 13 ... charge / discharge circuit, 14 ... control device, 141 ... charge state determination unit, 142 ... switch drive control unit, 15 ... capacitor voltage detection Means 16 ... Lead-acid battery voltage detection means 17 ... Inrush current prevention resistor 18 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 キャパシタと鉛蓄電池が同時に充電される蓄電システムでは、鉛蓄電池が満充電されるよりも先にキャパシタが満充電となって充電が終了され、キャパシタ電圧低下時に鉛蓄電池が充分充電されていないため電動機に電力を供給することができない。本発明ではキャパシタと鉛蓄電池が同時に充電される蓄電システムにおいて、蓄電システムの充電に際して、鉛蓄電池が満充電されることを検出し、この満充電を検出するとキャパシタの充電を開始して鉛蓄電池が確実に満充電となって充電が終了されるようにした。

Description

蓄電システム
 本発明は蓄電池やキャパシタ等の蓄電装置を利用して電動機等の負荷を駆動する蓄電システムに係り、特に主蓄電装置と補助蓄電装置を備えた蓄電システムに関するものである。
 蓄電システムとしては、例えば物流関係の分野においては、物品の搬送や移載等のために、無人搬送車、有軌道台車、天井走行台車などの搬送車が使用されている。
 このような搬送車の駆動には一般には電動機を使用しており、その電源として蓄電池を搭載し、この蓄電池の電力を使用して、走行用の電動機や移載用の電動機等を駆動していた。このように蓄電池を電源としているため、その電力を消費したときには蓄電池を充電する必要がある。
 このような蓄電システムの充電方法に関して、特開2010-4587号公報(特許文献1)には、無人搬送車への充電システムのシステム効率を上げ、またシステムを小型・軽量化する目的で、地上側の充電装置に商用電源の電力によって充電される地上側電気二重層キャパシタを配置し、車両側を充電するために充電済みの地上側電気二重層キャパシタと車両側電気二重層キャパシタを接続して短時間で車両側電気二重層キャパシタの充電を完了する、という技術が記載されている。
 また、特開2011-55698号公報(特許文献2)には、休日明け等の運転再開時に電池切れを生じることなく、寿命が比較的長く重量及びコストの増大を抑制する目的で、キャパシタ及び駆動制御装置の間に接続されたDC/DCコンバータと、キャパシタ及び駆動制御装置の間に、その出力側がスイッチを介してDC/DCコンバータの出力側に接続された、鉛蓄電池を充電する鉛蓄電池充電器を設け、キャパシタの出力電圧がDC/DCコンバータの出力電圧以上である場合にはキャパシタを使用して駆動制御装置と鉛蓄電池に電力を送り、キャパシタの出力電圧がDC/DCコンバータの出力電圧未満である場合には鉛蓄電池を使用して駆動制御回路に電力を供給する、という技術が記載されている。
特開2010-04587号公報 特開2011-55698号公報
 特許文献1には、電気二重層キャパシタ(又はリチウムイオンキャパシタ)と、DC/DCコンバータと、補助蓄電池とが負荷及びそのコントローラに対して並列に接続された構成の無人搬送車について記載されている。
 特許文献1に記載の補助蓄電池は、何らかの異常により電気二重層キャパシタの電圧が零ないし低電圧になった場合にコントローラに電力を供給できるようにして無人搬送車の駆動等に必要な電力を確保するために設けられている。
 また、特許文献2には、電気二重層キャパシタ及び駆動制御装置の間に接続された双方向DC/DCコンバータと、電気二重層キャパシタ及び駆動制御装置の間に、その出力側がスイッチを介して双方向DC/DCコンバータの出力側に接続された、二次電池を充電する二次電池充電器と、電気二重層キャパシタの出力電圧が双方向DC/DCコンバータの出力電圧以上である場合にはスイッチを切り、電気二重層キャパシタの出力電圧が双方向DC/DCコンバータの出力電圧未満である場合にはスイッチを入れる制御回路と、を備えた電気二重層キャパシタ及び二次電池を電源とした自走式搬送システムについて記載されている。
 特許文献2に記載の二次電池もまた補助電源として利用され、主電源の電気二重層キャパシタが電圧低下している場合において稼働できなくなる事態を防止する目的で搭載されている。
 ところで、特許文献1及び特許文献2に記載された予備電源としての補助蓄電池の充電方式は予備電源性能を確保する上では以下に述べるような課題を有している。
 例えば、主電源であるキャパシタ電圧が低下した際は、補助蓄電池から電動機に電力を供給(放電)して充電ステーション等の充電できる場所まで移動させ、放電によって電圧低下したキャパシタを充電することとなるが、主電源であるキャパシタが満充電となった時点で充電装置による充電が終了するようになる。
 すなわち、一般のこの種の充電装置は主電源であるキャパシタの充電状態を充電ステーション側の充電装置によって検出する構成となっており、キャパシタの充電状態が満充電状態になると充電装置側で充電を終了するようになっている。
 そして、このキャパシタの充電時に補助蓄電池も同時に充電されることとなるが、補助蓄電池が満充電されるよりも先にキャパシタが満充電となって充電が終了される可能性がある。
 その理由として、キャパシタは短い充電時間で充電が完了するため、キャパシタが補助蓄電池より先に充電完了すると、充電ステーション側の充電装置によって強制的に補助蓄電池の充電が終了されるからである。
 このため、補助蓄電池の充電が不十分のまま充電装置による充電が終了して走行稼働を始めたとすると、次回のキャパシタ電圧低下時に補助蓄電池から電動機に電力を供給することができない虞が生じ、結果として予備電源性能を十分確保できないことになる。
 本発明の目的は、主蓄電装置(主蓄電池)と補助蓄電装置(補助蓄電池)を備えた蓄電システムにおいて、充電ステーション等の充電装置による充電時に主蓄電装置(主蓄電池)より先に補助蓄電装置(補助蓄電池)を確実に所定の充電量まで充電させ、その後に主蓄電装置(主蓄電池)が充電終了するようにして予備電源性能を確保できる蓄電システムを提供することにある。
 本発明の特徴は、負荷に電力を供給して前記負荷を駆動する主蓄電装置と、前記負荷に補助的に電力を供給して前記負荷を駆動する補助蓄電装置と、前記主蓄電装置の充電量が所定以上では前記主蓄電装置から前記負荷に電力を供給させ、前記主蓄電装置の残存充電量が前記所定以下になると前記補助蓄電装置からも前記負荷に電力を供給させる切り換え手段を備えた蓄電システムにおいて、前記主蓄電装置と前記補助蓄電装置を充電する際に、前記補助蓄電装置が所定充電量に達した後、或いはほぼ同時に前記主蓄装置が所定充電量に達するように充電させる充電制御手段を備えたことを特徴とする蓄電システム、にある。
 本発明によれば、補助蓄電装置(補助蓄電池)が所定充電量、好ましくは満充電量に達した後、或いはほぼ同時に主蓄電装置(主蓄電池)が所定充電量、好ましくは満充電量に達するように充電させることによって予備電源性能を確実に確保することができる。
本発明の蓄電システムが適用される一例としての自動搬送車システムの全体構成例を示す構成図である。 本発明の蓄電システムが適用される自動搬送車の電源系及び駆動系の概略の構成を説明するための構成図である。 本発明の一実施例になる蓄電システムの概略構成図である。 図3に記載の鉛蓄電池充電器の概略構成を示す構成図である。 図3に記載の制御装置の概略構成を示す構成図である。 図3に示す蓄電システムにおける自動搬送車の走行中のスイッチ制御手順を示すフローチャートである。 図6に示すフローチャートの動作を説明する構成図であって、(a)はステップS110のスイッチ動作を示す図であり、(b)はステップS120のスイッチ動作を示す図である。 本発明の一実施例になる自動搬送車に搭載した蓄電システムの走行中及び充電中のキャパシタ電圧及び鉛蓄電池電圧の変化と、充放電回路内のスイッチ(SW1、SW2、SW3)の動作パターンを示すタイムチャートである。 本発明の一実施例になる蓄電システムの充電中のスイッチ制御手順を示すフローチャートである。 図9に示すフローチャートの動作を説明する構成図であって、(a)はステップS210のスイッチ動作を示す図であり、(b)はステップS230のスイッチ動作を示す図である。 本発明の他の実施例になる蓄電システムの概略構成図である。 図11に示す蓄電システムにおける自動搬送車の充電中のスイッチ制御手順を示すフローチャートである。
 以下、本発明の一実施例を図面に基づき詳細に説明するが、その前に本発明が適用される一例としての自動搬送車システムについて説明する。
 図1は自動搬送車システムの構成を示しており、この自動搬送車システムは複数台の自動搬送車1と、この自動搬送車1が移動する所定経路Rと、所定経路R上に複数個所に設置された充電ステーション2と、充電ステーション2に隣接して設置された充電装置3から構成される。
 自動搬送車1は所定経路Rに沿って例えば工場内を自動走行しながら搬送物を運搬するもので、自動搬送車1は電動機によって駆動される電動式であり、自動搬送車1の本体に搭載される蓄電システム(詳細は後述)によって稼働されるようになっている。自動搬送車の蓄電システムは所定の位置に設置された充電ステーション2において充電装置3によって適宜充電される。
 図2に示しているように、自動搬送車1の車両本体には駆動輪8a及び8b、従動輪9a及び9bが設けられ、更に駆動輪8a及び8bを駆動する電動機6、この電動機6を駆動/制御する駆動制御装置5、電動機6の駆動用電源としての蓄電システム10、この蓄電システム10と駆動制御装置5との電気的な接続及び遮断を行うリレー4a及び4b、及び充電ステーション2における蓄電システム10の充電時に充電装置3と蓄電システム10を接続するための受電端子7とを備えている。
 更に、自動搬送車1には図2に示した走行用の電動機6の他にステアリングモータ、移載モータ等、自動搬送車1の運用に関する複数の電動機及びそれらを駆動する駆動制御装置等が備えられるが、ここでは簡単のため駆動輪8a及び8bのための電動機6と駆動制御装置5のみ示してある。なお、駆動制御装置5には図示してはいないが周知のコントローラ及びインバータ装置が組み込まれている。
 このような自動搬送車システムに使用される自動搬送車1の蓄電システムについて以下詳細に説明する。
 図3は本発明の第1の実施形態になる蓄電システム10の構成を説明するための構成図であり、図3において蓄電システム10は主蓄電装置としてキャパシタ11、補助蓄電装置としての鉛蓄電池12、充電制御手段として機能する充放電回路13及び制御装置14、キャパシタ11及び鉛蓄電池12の充電電圧をそれぞれ検出するキャパシタ電圧検出手段15、及び鉛蓄電池電圧検出手段16とを備える。
 ここで、キャパシタ11の充電特性は鉛蓄電池12の充電特性に比べて同じ電力であれば早く充電が完了するもので、これを電流受け入れ特性と称する。
 本実施の形態では、一例として主蓄電装置にキャパシタ、補助蓄電装置として鉛蓄電池を用いているが、蓄電機能を満たすものであれば形式は捉われることなくどのような形式のものを適用しても良い。
 尚、キャパシタ11は、多数のキャパシタセルが直列に接続されたセル群と、しかもこれらセル群を並列に接続して成るキャパシタモジュールとして構成されている。尚、これ以外にセル群を並列に接続しないキャパシタモジュールを用いることもできる。そして、このようなキャパシタセルとして、例えば電気二重層キャパシタやリチウムイオンキャパシタ等を用いることができる。
 また、鉛蓄電池12も同様に多数の鉛蓄電池が直列に接続された蓄電池群と、これら蓄電池群を並列に接続して成る鉛蓄電池モジュールとして構成されている。尚、これ以外に蓄電池群を並列に接続しない鉛蓄電池モジュールを用いることもできる。
 本実施例においては、鉛蓄電池12を補助蓄電装置として用いているが、この他にリチウムイオン二次電池やニッケル水素電池等のように蓄電機能を満たすものであればどのような種類の蓄電池を用いても良いものである。
 充放電回路13は、その電気的配線路の一端が蓄電システム10のプラス側端子19a(受電端子側)とプラス側端子19b(駆動制御装置側)に接続され、電気的配線路の2つの他端にキャパシタ11及び鉛蓄電池12が電気的に並列に接続される構成をとる。
 したがって、キャパシタ11及び鉛蓄電池12は充放電回路13によってプラス側端子19a(受電端子側)から充電されたり、プラス側端子19b(駆動制御装置側)から放電されたりしてその電力制御が行なわれるものである。
 充放電回路13内の構成は、図3に示すように、スイッチSW1、SW2、SW3、突入電流防止用抵抗17、鉛蓄電池充電器18とから構成される。
 具体的には、キャパシタ11はスイッチSW1を介してプラス側端子19a、19bと接続され、鉛蓄電池12は鉛蓄電池充電器18及びこれと直列に接続されたスイッチSW2、及び鉛蓄電池充電器18とスイッチSW2と並列におかれた突入電流防止用抵抗17及びこれと直列に接続されたスイッチSW3と接続されている。
 更にスイッチSW2とSW3はスイッチSW1とプラス側端子19a、19bの間の電気的配線路に接続されている。
 スイッチSW1、SW2、SW3は、後述する制御装置14によってそれぞれON/OFF制御されるものであり、スイッチSW1、SW2、SW3は、機械式リレーの他に、MOSFETなどの半導体素子を用いて電流の遮断及び導通を任意に制御できるものならばどのようなスイッチ方式でも良いことはいうまでもない。
 尚、突入電流防止用抵抗17は蓄電システム10のプラス側端子19aと鉛蓄電池12との間に電位差がある状態でスイッチSW3をOFFからONに切り替えた時に、SW3を通る電気的配線路に瞬間的に大電流が流れるのを防ぐための抵抗である。
 鉛蓄電池充電器18は鉛蓄電池12を所定電圧に充電するための機能を備えるものであり、本実施例においてはトリクル充電のために備えられており、その一例を図4に示している。
 図4において、鉛蓄電池充電器18にはスイッチSW2を介してキャパシタ11側を入力とする片方向DC/DCコンバータ181、電流制限用抵抗182、逆電流防止用ダイオード183等から構成され、この逆電流防止用ダイオード183は鉛蓄電池12に接続されている。
 片方向DC/DCコンバータ181は鉛蓄電池の満充電電圧を維持する機能を備える仕様となっており、図3に示した蓄電システム10のプラス側端子19aに電圧がかかっている状態において、スイッチSW2がONされると鉛蓄電池充電器18は鉛蓄電池12を満充電状態に維持させるように充電を行なうもので、鉛蓄電池12が満充電となった後もその電圧状態を保持させるように機能する。
 尚、図4には図示していないが、片方向DC/DCコンバータ181の入力側及び出力側にはそれぞれマイナス極端子があり、これらは蓄電システム10のマイナス側端子に接続される。
 鉛蓄電池充電器18に設けた電流制限用抵抗182は、図3に示した突入電流防止用抵抗17と同様に、スイッチSW2がONされた瞬間に片方向DC/DCコンバータ181から鉛蓄電池12への突入電流を防止するために設けたものである。
 また、鉛蓄電池充電器18に設けた逆電流防止用ダイオード183は、スイッチSW2がOFF時に、鉛蓄電池12から片方向DC/DCコンバータ181に電流が流れ込むのを防止するためのダイオードである。
 図4に鉛蓄電池充電器18の構成の一例を示したが、スイッチSW2がONされたときに鉛蓄電池12を所定の電圧値まで充電できる機能を有していれば、図4に示す鉛蓄電池充電器18以外の充電器を適用できるものである。
 図3に戻り、キャパシタ電圧検出手段15及び鉛蓄電池電圧検出手段16は、図示はしていないが周知の差動増幅器やA/Dコンバータ等の組み合わせから構成されている。差動増幅器には基準電位(例えば蓄電システム10のマイナス側電位)と、キャパシタ11や鉛蓄電池12の電位を分圧した分圧電位とが入力されるように構成され、この差動増幅器によって得られる電位差がA/Dコンバータに入力される。A/Dコンバータは入力された電位差をディジタル信号として制御装置14へと出力する機能を有している。これによってキャパシタ11や鉛蓄電池12の電圧を検出することができる。
 図5には制御装置14の構成を示しており、制御装置14は充電状態判定部141、スイッチ駆動制御部142を備えている。上述したキャパシタ電圧検出手段15及び鉛蓄電池電圧検出手段16から、キャパシタ11の総電圧及び鉛蓄電池12の総電圧がそれぞれディジタル信号として充電状態判定部141に取り込まれる。充電状態判定部141は取り込まれたキャパシタ電圧及び鉛蓄電池電圧の値に基づいて、キャパシタ11及び鉛蓄電池12の充電状態を判定する。
 更に、充電状態判定部141は、判定したキャパシタ11及び鉛蓄電池12の充電状態に基づいてスイッチ駆動制御部142にスイッチ駆動命令を送る。スイッチ駆動制御部142はこのスイッチ駆動命令に応じて充放電回路13内のスイッチSW1、SW2、SW3をそれぞれON/OFF制御する。
 ここで、これらの機能はマイクロコンピュータによって実行されても良く、この場合は制御プログラムに記述された上記に説明した機能が演算実行されるように構成される。
 次に図6乃至図10を用いて本実施例の蓄電システム10内の複数のスイッチの制御動作を自動搬送車1の運行状況に基づいて詳細に説明する。
 図6は自動搬送車1が走行稼働しているときに制御装置14が行うスイッチSW1、SW2、SW3の制御手順を示すフローチャートを示している。
 自動搬送車1が走行中において、制御装置14は主蓄電装置であるキャパシタ11の電圧を基にスイッチSW1、SW2、SW3を制御する。
 図6において、ステップS100では、キャパシタ電圧検出手段15で得られる残存充電量を表すキャパシタ11の電圧が閾値A以上かどうかを判定する。この閾値Aは駆動制御装置5および電動機6を駆動するのに必要十分な出力が出せる電圧値に余裕分を加えた値、かつ鉛蓄電池12の満充電電圧以下の値として設定されるもので、自動搬送車1の種類や駆動システムの種類、補助蓄電装置として搭載する鉛蓄電池12の容量等に応じて決定される。
 ステップS100にてキャパシタ電圧が閾値A以上と判定されると、キャパシタ11が充分な充電状態にあると見做され、ステップS110へ進んで充放電回路13内の各スイッチが適切に制御される。具体的にはスイッチSW1がON、スイッチSW2がON、スイッチSW3がOFFにそれぞれ制御される。
 一方、ステップS100にてキャパシタ電圧が閾値A未満と判定されると、キャパシタ11が残容量不足状態にあると見做され、ステップS120へと進んで充放電回路13内の各スイッチが適切に制御される。具体的にはスイッチSW1がON、スイッチSW2がOFF、スイッチSW3がONにそれぞれ制御される。
 このようなスイッチSW1、SW2及びSW3の制御によってキャパシタ11と鉛蓄電池12の充放電が制御される。
 図7は自動搬送車1の走行中におけるキャパシタ11及び鉛蓄電池12の充放電を行う回路部分を示す図であり、図7(a)は図6に示すフローチャートでキャパシタ電圧が閾値A以上の時にステップS110に進んだ場合の状態を示している。この時、キャパシタ11は駆動制御装置5、電動機6の駆動、及び鉛蓄電池12の充電のために放電するようになる。
 この状態において、鉛蓄電池12は上述したようにトリクル充電(鉛蓄電池12を満充電状態に維持するために所定の電流を流して充電する)され続けることとなる。
 尚、本実施例においては、キャパシタ電圧が閾値A以上のときはスイッチSW1及びスイッチSW2をそれぞれ常時ONとしているが、鉛蓄電池12が満充電状態となったときにはスイッチSW2をOFFする制御を実施しても構わないものである。この場合はキャパシタ11の電力は駆動制御装置5及び電動機6の制御、駆動に使用される。
 また、図7(b)は図6に示すフローチャートでキャパシタ電圧が閾値A未満の時にステップS120に進んだ場合の状態を示している。この場合はキャパシタ11の出力が低下している状態であるので、ここでは、スイッチSW2がOFFされ、代わりにスイッチSW3がONされるようになる。
 この時、鉛蓄電池12の電力は抵抗17及びスイッチSW3を経由して放電され、キャパシタ11と共に駆動制御装置5や電動機6側へと放電される。このように、キャパシタ11の出力が低下している状態では鉛蓄電池12からも放電させることでキャパシタ11の放電電流が低減されるようになって、自動搬送車1の走行距離を伸ばすことが可能となる。
 図8は自動搬送車1の走行中および充電中のキャパシタ電圧及び鉛蓄電池電圧の変化と、充放電回路13内の各スイッチSW1、SW2、SW3の動作パターンを示すタイムチャートである。このタイムチャートは自動搬送車1が走行中の状態から始まっている。
 ここで、閾値A及び閾値Bはシステムの仕様によって夫々適切な値があるので、採用されるシステムに合わせて閾値A及び閾値Bを決めるのが現実的である。本実施例においては以下のような閾値に設定している。
 例えば、公称48V系駆動システムを前提とし、主蓄電装置11をリチウムイオンキャパシタ16直列モジュール、補助蓄電装置12を公称12V鉛蓄電池4直列モジュールとし、各閾値は閾値Aを50V、閾値Bを54.6Vにするのが望ましい。尚、今回の実施例では閾値Bに関しては鉛蓄電池満充電電圧は同値に設定している。
 図8において、最初はキャパシタ電圧が所定の閾値A以上あるため、制御装置14はステップS110に示したスイッチ動作を行う。
 この状態を継続していると、キャパシタ11は駆動制御装置5や電動機6を駆動するため電力を供給(放電)しているのでキャパシタ電圧はこれに伴って低下していくが、鉛蓄電池12はトリクル充電されているため鉛蓄電池電圧は満充電電圧を維持している。
 次に、キャパシタ電圧が閾値Aを下回ると、制御装置14はステップS120に示したスイッチ動作を行うように移行し、スイッチ動作が切り替わる。このとき、鉛蓄電池12の放電が始まり鉛蓄電池電圧も低下し始める。また、鉛蓄電池12から駆動制御装置5や電動機6への電力供給が補助されるため、キャパシタ11の放電電流が少なくなりキャパシタの電圧低下のペースが遅くなる。
 このように、キャパシタ11の電圧が所定値(閾値A)を下回ったときに、予備電源である鉛蓄電池12から補助的に放電させることで自動搬送車1の走行中に充電ステーション2にたどり着けなくなる事態を回避することができる。尚、タイムチャートの後半部分の充電中については後述する。
 次に蓄電システム10の充電時における各スイッチの制御方法を説明する。蓄電システムの充電中においては、制御装置14は予備電源である鉛蓄電池12の電圧を基に各スイッチSW1、SW2、SW3の制御を実行する。
 図9は自動搬送車1が充電ステーション2にて蓄電システム10に充電しているときに制御装置14が各スイッチSW1、SW2、SW3の制御を行なう手順を示すフローチャートである。
 充電中においては、自動搬送車1の蓄電システム10は充電ステーション2に設置される充電装置3と蓄電システムプラス側端子19aを介して接続され、充電が開始されると制御装置14はステップS200にて鉛蓄電池12が満充電状態にあるかどうかを判定する。ここで、鉛蓄電池12の残存充電状態は鉛蓄電池電圧検出手段16によって検出されている。
 ステップS200で鉛蓄電池12が満充電状態にあると判定された場合はステップS230へ進んで充放電回路13内の各スイッチが適切に制御される。具体的には、スイッチSW1がON、スイッチSW2がON、スイッチSW3がOFFにそれぞれ制御される。
 このスイッチ動作の組み合わせは、図6に示した自動搬送車1の走行中のフローチャートにおいてステップS110と同様のもので、具体的には図7(a)にあるスイッチの制御と同じである。ただし、この場合は充電中であるのでプラス側端子19aから電流が流れ込むため、電流の流れは図7(a)とは逆になる。
 つまり、プラス側端子19aからキャパシタ11に電流が流れてキャパシタ11を充電し、また鉛蓄電池充電器18を介して鉛蓄電池12が充電される。この充電は鉛蓄電池12が満充電状態であるのでトリクル充電の作用を有している。尚、トリクル充電が必要ない場合はスイッチSW2をOFFしてキャパシタ11に集中して電流を流しても良い。
 一方、ステップS200にて、鉛蓄電池12が満充電状態にないと判定された場合、ステップS210へと進んで充放電回路13内の各スイッチが適切に制御される。具体的にはスイッチSW1がOFF、スイッチSW2がOFF、スイッチSW3がONにそれぞれ制御される。
 図10は自動搬送車1が充電ステーション2において充電装置3によって蓄電システム10が充電されているときのキャパシタ11及び鉛蓄電池12の充電を行う回路部分を示す図であり、図10(a)は図9に示したフローチャートで鉛蓄電池12が満充電の状態になかった時にステップS210に進んだ場合の状態を示している。
 つまり、充電装置3によって鉛蓄電池12への充電が開始された場合の状態を示している。この時、スイッチSW1がOFFされているため、充電装置3による充電電流はキャパシタ11には流れない。そして、ONされたスイッチSW3と抵抗17を経由して鉛蓄電池12が集中的に充電される。
 この充電状態で、制御装置14には鉛蓄電池電圧検出手段16から鉛蓄電池12の電圧が入力されているので、ステップS220において充電中の鉛蓄電池12の電圧が閾値Bを越えたかどうかを判定する。この閾値Bの設定法は後述する。
 ステップS220において、鉛蓄電池電圧が閾値Bを越えたと判定されると、ステップS230へと進んで充放電回路13内の各スイッチが適切に制御される。具体的には、スイッチSW1がON、スイッチSW2がON、スイッチSW3がOFFにそれぞれ制御される。(この場合キャパシタ11は放電状態である。)
 図10(b)に、ステップS230に進んだ場合のキャパシタ11及び鉛蓄電池12への充電電流の流れ状態を示している。この場合は、キャパシタ11と鉛蓄電池12の両方に充電電流が流れ込む。この状態で、蓄電システムの電圧が充電終了電圧に達したとき、充電装置3による充電は終了となる。この充電終了の判断はステップS230の後に充電終了判断ステップS240を設けることで実行でき、具体的にはキャパシタ電圧検出手段15で検出された電圧によってキャパシタ11の充電量が十分かどうか判断することで実行できる。この後ステップS250に進んで充電終了処理を実行する。
 ここで、ステップ240、及びステップ250では蓄電システムでキャパシタ11の充電量が十分かどうかの判断と、充電終了処理を実行しているが、充電ステーション側の充電装置にキャパシタ11の充電状態を送信するか、或いは充電装置側でキャパシタ11の充電状態を検出し、この結果に基づいて充電終了処理を充電装置側で実行するようにしても良い。
 尚、ここでもトリクル充電が必要ない場合はスイッチSW2をOFFしてキャパシタ11に集中して充電電流を流しても良い。
 図8に戻って、タイムチャートの後半部分に、上述した蓄電システムの充電時のスイッチ動作とキャパシタ11及び鉛蓄電池12の電圧の変化状態を示している。
 充電開始当初、制御装置14は鉛蓄電池が満充電の状態にないと判定したためステップS210に進む。このとき、キャパシタ11には充電電流が流れないため、キャパシタ11は電圧上昇せず、鉛蓄電池12の電圧のみが上昇している。
 この状態で、制御装置14がステップS220で鉛蓄電池12の電圧が所定の電圧値(閾値B)に達したことを検知すると、ステップS230へと移行してキャパシタ11の充電が開始する。キャパシタ11の電圧が充電装置3によって充電が進められ、予め決められた充電終了電圧まで上昇するとステップS250に進んで充電は終了する。
 ここで、ステップS220における判定値である鉛蓄電池12の閾値Bについて説明する。この閾値Bは、充電装置3による充電終了時に予備電源である鉛蓄電池12が確実に満充電状態となるように決められた値である。
 ここで、図8のタイムチャートに示した閾値Bは、一例として鉛蓄電池12の満充電電圧と同じ値となっているが、上述したように満充電電圧以下の閾値でも良い。
 ただし、この場合はステップS220で満充電電圧以下の閾値を越えたと判断されてステップS230に移った後の両者の充電において、鉛蓄電池12の方がキャパシタ12よりも先に満充電状態となる、または鉛蓄電池12とキャパシタ11がほぼ同時に満充電となるように閾値Bを設定することが好ましい。
 仮に、閾値Bの値が鉛蓄電池12の満充電電圧値よりも極端に低い場合、ステップS230へと早々に移行し、キャパシタ11の充電が開始されることとなる。
 このとき、キャパシタ11の方が鉛蓄電池12よりも電圧値が低かったとしても、鉛蓄電池12よりも入力特性(電流の受け入れやすさ)が大きなキャパシタ11の方が先に充電完了する可能性が高く、鉛蓄電池12の充電が完了しないまま充電装置3は充電終了することとなる。
 鉛蓄電池12が満充電状態でない状態から自動搬送車1が走行開始すると、キャパシタ11から鉛蓄電池12への充電量が多くなるため、キャパシタ11のエネルギー消費が激しく、早期に予備電源である鉛蓄電池12から放電させなければならない。
 鉛蓄電池12の充電不足が原因で主電源であるキャパシタ11の放電が加速してしまうと、予備電源として鉛蓄電池12を搭載している意味がなくなるようになる。したがって、閾値Bは鉛蓄電池12の満充電電圧値に近い値に設定することが望ましい。
 以上、本実施例に示した蓄電システムによって、充電ステーションの充電装置による充電時に予備電源である鉛蓄電池を確実に満充電させることができ、走行稼働時に必要な予備電源としてのバックアップ性能を確保することができる。
 本実施例では、本発明の第1の実施形態に示した蓄電システムよりも簡易な構成とした蓄電システムの例を説明する。
 図11に示す第2の実施形態の蓄電システム10においては、図3に示した第1の実施形態における蓄電システム10の構成と比較して、充放電回路13内のスイッチSW2及び鉛蓄電池充電器18を含む電気的配線路が省かれている点が異なる。つまり、鉛蓄電池12は突入電流防止用抵抗17及びこれと直列に接続されたスイッチSW3と接続され、更にスイッチSW1とプラス側端子19aの間の電気的配線路に接続されている。
 図11の蓄電システム10のうち、既に説明した図3に示された同一の参照番号が付された構成要素は同一の構成要素、或いは同一機能、或いは均等の機能を有するものである。
 本実施例における蓄電システムの動作は、自動搬送車1の走行中、或いは充電中に鉛蓄電池充電器18によるトリクル充電が鉛蓄電池12に対して実行されないこと以外は第1の実施の形態で説明した動作と同様の動作を行なうものである。
 図12は、自動搬送車1が充電ステーション2にて充電装置3から蓄電システム10に充電しているときに、制御装置14が行うスイッチSW1、SW3の制御手順を示すフローチャートである。
 自動搬送車1が充電ステーション2に設置される充電装置3と接続されて充電が開始されると、制御装置14はステップS300にて鉛蓄電池12が満充電状態にあるかどうかを判定する。
 ステップS300にて、鉛蓄電池12が満充電状態にあると判定された場合、ステップS310へ進み、充放電回路13内のスイッチSW1をONにし、スイッチSW3をOFFにそれぞれ制御する。そして、この場合は鉛蓄電池12が満充電状態であるので、キャパシタ11に対して集中的に充電を実行する。
 一方、ステップS300にて、鉛蓄電池12が満充電状態にないと判定された場合はステップS320へと進み、充放電回路13内のスイッチSW1をOFFにし、スイッチSW3をONにそれぞれ制御する。そして、この場合は鉛蓄電池12が充電不足状態であるので、鉛蓄電池12に対して集中的に充電を実行する。
 この充電状態で、制御装置14には鉛蓄電池電圧検出手段16から鉛蓄電池12の電圧が入力されているので、ステップS330において充電中の鉛蓄電池12の電圧が閾値Bを越えたかどうかを判定する。
 ステップS330において、鉛蓄電池電圧が閾値Bを越えたと判定されると、ステップS310へと進んで充放電回路13内のスイッチSW1がON、スイッチSW3がOFFにそれぞれ制御される。この場合キャパシタ11が集中的に充電される。
 更に、この状態においてステップS340でキャパシタ11が満充電状態になったと判断されるとステップS350に進んで充電終了処理を実行する。この場合も、実施例1で説明したようにステップS340及びステップS350の機能を充電ステーション側の充電装置に実行させても良いものである。
 以上のスイッチ制御を行うことで、キャパシタ11よりも先に予備電源である鉛蓄電池12が満充電されるため、キャパシタ11が満充電となり充電終了する際には確実に鉛蓄電池が満充電状態となっている。よって、走行稼働時に必要な予備電源としてのバックアップ性能を確保することができる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加/削除/置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。
 また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
 1…自動搬送車、R…所定経路、2…充電ステーション、3…充電装置、4a,4b…リレー、5…駆動制御装置、6…電動機、7…受電端子、8a、8b…駆動輪、9a、9b…従動輪、10…蓄電システム、11…キャパシタ、12…鉛蓄電池、13…充放電回路、14…制御装置、141…充電状態判定部、142…スイッチ駆動制御部、15…キャパシタ電圧検出手段、16…鉛蓄電池電圧検出手段、17…突入電流防止用抵抗、18…鉛蓄電池充電器、181…片方向DC/DCコンバータ、182…電流制限抵抗、183…逆電流防止用ダイオード、19a…蓄電システムプラス側端子(受電端子側)、19b…蓄電システムプラス側端子(駆動制御装置側)、SW1~SW3…スイッチ。

Claims (9)

  1.  負荷に電力を供給して前記負荷を駆動する主蓄電装置と、前記負荷に補助的に電力を供給して前記負荷を駆動する補助蓄電装置と、前記主蓄電装置の充電量が所定以上では前記主蓄電装置から前記負荷に電力を供給させ、前記主蓄電装置の残存充電量が前記所定以下になると前記補助蓄電装置からも前記負荷に電力を供給させる切り換え手段を備えた蓄電システムにおいて、
     前記主蓄電装置と前記補助蓄電装置を充電する際に、前記補助蓄電装置が所定充電量に達した以後に、前記主蓄電装置が所定充電量に達するように充電させる充電制御手段を備えたことを特徴とする蓄電システム。
  2.  請求項1に記載の蓄電システムにおいて、
     前記充電制御手段は、前記補助蓄電装置の残存充電量を検出する第1の充電量検出手段からの信号が所定充電量以下の場合は前記補助蓄電装置に充電のための電力を供給し、前記補助蓄電装置が満充電状態になると前記補助蓄電装置への電力の供給を停止すると共に前記主蓄電装置に充電のための電力を供給することを特徴とする蓄電システム。
  3.  請求項2に記載の蓄電システムにおいて、
     前記充電制御手段は、前記主蓄電装置が満充電状態になると前記補助蓄電装置も含めて充電を終了させることを特徴とする蓄電システム。
  4.  請求項3に記載の蓄電システムにおいて、
     前記充電制御手段は、前記主蓄電装置を充電しているときは前記補助蓄電装置に対してトリクル充電を行なうことを特徴とする蓄電システム。
  5.  請求項4に記載の蓄電システムにおいて、
     前記主蓄電装置は前記補助蓄電装置に比べて同じ充電電力に対して早く充電される特性を有していることを特徴とする蓄電システム。
  6.  請求項5に記載の蓄電システムにおいて、
     前記主蓄電装置はキャパシタであり、前記補助蓄電装置は鉛蓄電池であることを特徴とする蓄電システム。
  7.  請求項1に記載の蓄電システムにおいて、
     前記充電制御手段は、前記主蓄電装置と受電端子を結ぶ電気的配線路に設けた第1のスイッチ手段と、前記補助蓄電装置と受電端子を結ぶ電気的配線路に設けた第2のスイッチ手段を備え、前記補助蓄電装置の残存充電量が所定以下の場合は前記第1のスイッチ手段によって前記主蓄電装置と前記受電端子の接続を解除すると共に、前記第2のスイッチ手段によって前記補助蓄電装置と前記受電端子を接続することを特徴とする蓄電システム。
  8.  請求項7に記載の蓄電システムにおいて、
     前記充電制御手段は、前記補助蓄電装置が満充電状態になると前記第2のスイッチ手段によって前記補助蓄電装置と前記受電端子の接続を解除すると共に、前記第1のスイッチ手段によって前記主助蓄電装置と前記受電端子を接続することを特徴とする蓄電システム。
  9.  請求項8に記載の蓄電システムにおいて、
     前記充電制御手段は、前記第2のスイッチ手段が設けられた電気的配線路とは並列に前記受電端子と前記補助蓄電装置を結ぶ電気的配線路に設けられた第3のスイッチ手段を有し、この第3のスイッチ手段は、前記補助蓄電装置の残存充電量が所定以下の場合は前記補助蓄電装置と前記受電端子の接続を解除され、前記補助蓄電装置が満充電状態になると前記補助蓄電装置と前記受電端子が接続されるように制御されることを特徴とする蓄電システム。
PCT/JP2013/051944 2012-02-08 2013-01-30 蓄電システム WO2013118612A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025147A JP2015084607A (ja) 2012-02-08 2012-02-08 蓄電システム
JP2012-025147 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118612A1 true WO2013118612A1 (ja) 2013-08-15

Family

ID=48947378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051944 WO2013118612A1 (ja) 2012-02-08 2013-01-30 蓄電システム

Country Status (2)

Country Link
JP (1) JP2015084607A (ja)
WO (1) WO2013118612A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002485A1 (ja) * 2014-06-30 2016-01-07 日立化成株式会社 電池システム
JP2016005357A (ja) * 2014-06-17 2016-01-12 株式会社豊田自動織機 車両の電源装置
WO2019040526A1 (en) * 2017-08-22 2019-02-28 Maxwell Technologies, Inc. SYSTEM AND METHOD FOR PROVIDING BIDIRECTIONAL TRANSIENT VOLTAGE SUPPORT AND ENERGY

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406188B2 (ja) * 2015-09-11 2018-10-17 株式会社オートネットワーク技術研究所 車載用電源装置
GB2562064A (en) * 2017-05-02 2018-11-07 Zapgo Ltd Supercapacitor device
CN112297845B (zh) * 2019-07-31 2022-05-13 比亚迪股份有限公司 供电控制系统、方法及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095174A (ja) * 2000-09-13 2002-03-29 Casio Comput Co Ltd 電源装置及びその充放電方法
WO2004057719A1 (ja) * 2002-12-20 2004-07-08 Sony Corporation スイッチ回路、スイッチ方法、保護装置、および電池パック
JP2005160290A (ja) * 2003-10-30 2005-06-16 Sharp Corp 独立電源システム
JP2005333692A (ja) * 2004-05-18 2005-12-02 Sony Ericsson Mobilecommunications Japan Inc 充電システム
JP2008236951A (ja) * 2007-03-22 2008-10-02 Fuji Heavy Ind Ltd 鉛バッテリの充電制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095174A (ja) * 2000-09-13 2002-03-29 Casio Comput Co Ltd 電源装置及びその充放電方法
WO2004057719A1 (ja) * 2002-12-20 2004-07-08 Sony Corporation スイッチ回路、スイッチ方法、保護装置、および電池パック
JP2005160290A (ja) * 2003-10-30 2005-06-16 Sharp Corp 独立電源システム
JP2005333692A (ja) * 2004-05-18 2005-12-02 Sony Ericsson Mobilecommunications Japan Inc 充電システム
JP2008236951A (ja) * 2007-03-22 2008-10-02 Fuji Heavy Ind Ltd 鉛バッテリの充電制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005357A (ja) * 2014-06-17 2016-01-12 株式会社豊田自動織機 車両の電源装置
WO2016002485A1 (ja) * 2014-06-30 2016-01-07 日立化成株式会社 電池システム
CN106663960A (zh) * 2014-06-30 2017-05-10 日立化成株式会社 电池系统
US10461545B2 (en) 2014-06-30 2019-10-29 Hitachi Chemical Company, Ltd. Battery system
CN106663960B (zh) * 2014-06-30 2021-01-15 昭和电工材料株式会社 电池系统
WO2019040526A1 (en) * 2017-08-22 2019-02-28 Maxwell Technologies, Inc. SYSTEM AND METHOD FOR PROVIDING BIDIRECTIONAL TRANSIENT VOLTAGE SUPPORT AND ENERGY
US10797503B2 (en) 2017-08-22 2020-10-06 Maxwell Technologies, Inc. System and method for providing bidirectional transient voltage support and power

Also Published As

Publication number Publication date
JP2015084607A (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
US9428075B2 (en) Battery charging management system of automated guided vehicle and battery charging management method
JP5865013B2 (ja) 車両用の電源装置及びこの電源装置を備える車両
US9387763B2 (en) Power source device for vehicle
WO2013118612A1 (ja) 蓄電システム
JP6026226B2 (ja) 蓄電システム及び電源システム
US8754654B2 (en) Power supply device for detecting disconnection of voltage detection lines
CN106740206B (zh) 电动车电池包的快换方法及快换系统
US10967746B2 (en) Vehicle
JP6704895B2 (ja) 電動車両の電源システム
JP5187406B2 (ja) 補機バッテリ充電装置
JP2012501620A5 (ja)
EP3521098B1 (en) Motor-driven vehicle and control method for motor-driven vehicle
JP5709601B2 (ja) 蓄電装置および蓄電装置の電圧均等化方法
JP2012222955A (ja) 電源装置及びその制御方法
US20150069960A1 (en) Auxiliary Battery Charging Apparatus
JP2012182857A (ja) 直流電源装置
KR101856298B1 (ko) 친환경 차량의 전원 제어 시스템 및 방법
CN115320377A (zh) 用于车辆的电力系统
JP2021118629A (ja) 車両のバッテリ制御装置
KR20210047750A (ko) 배터리 관리 시스템 및 밸런싱 방법
US20220416552A1 (en) In-vehicle battery system
JP5481367B2 (ja) 組電池モジュール、および、車両
JP7126416B2 (ja) 車両の制御装置
CN116853000A (zh) 动力系统及其控制方法和车辆
JP2020092587A (ja) 電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP