WO2014021067A1 - チオール基含有ポリマー及びその硬化型組成物 - Google Patents

チオール基含有ポリマー及びその硬化型組成物 Download PDF

Info

Publication number
WO2014021067A1
WO2014021067A1 PCT/JP2013/068830 JP2013068830W WO2014021067A1 WO 2014021067 A1 WO2014021067 A1 WO 2014021067A1 JP 2013068830 W JP2013068830 W JP 2013068830W WO 2014021067 A1 WO2014021067 A1 WO 2014021067A1
Authority
WO
WIPO (PCT)
Prior art keywords
thiol group
containing polymer
polymer
weight
curable composition
Prior art date
Application number
PCT/JP2013/068830
Other languages
English (en)
French (fr)
Inventor
幸樹 越後谷
有紀子 濱田
松本 和則
Original Assignee
東レ・ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ファインケミカル株式会社 filed Critical 東レ・ファインケミカル株式会社
Priority to CN201380034835.2A priority Critical patent/CN104411747B/zh
Priority to JP2013546109A priority patent/JP5790980B2/ja
Priority to EP13825332.3A priority patent/EP2881418B1/en
Priority to US14/416,468 priority patent/US9663619B2/en
Priority to KR1020147033037A priority patent/KR101743098B1/ko
Priority to KR1020167020589A priority patent/KR20160093102A/ko
Priority to RU2015106941A priority patent/RU2617686C2/ru
Publication of WO2014021067A1 publication Critical patent/WO2014021067A1/ja
Priority to US15/270,263 priority patent/US9738758B2/en
Priority to US15/494,746 priority patent/US10179766B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/12Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/52Polythioethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/14Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J181/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
    • C09J181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1012Sulfur-containing polymers, e.g. polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the present invention relates to a thiol group-containing polymer.
  • the present invention relates to a thiol group-containing polymer useful for polysulfide-based sealing materials, adhesives, and paints having improved low specific gravity, low glass transition temperature, high heat resistance, and restorability.
  • the liquid polysulfide polymer has a thiol group at the end and is easily oxidized and cured by an oxidizing agent such as lead dioxide or manganese dioxide.
  • the rubber-like cured product obtained by curing polysulfide polymer contains sulfur in the main chain of the molecule and does not contain double bonds, so it has excellent oil resistance, weather resistance, water tightness, and air tightness. In addition, it is widely used as a sealing material, an adhesive and a paint because of its excellent characteristics and good adhesion.
  • Patent Document 1 The most common method for producing a polysulfide polymer is to obtain a liquid polymer via solid polysulfide described in US Pat. No. 2,466,963 (see Patent Document 1). In addition, a production method using a phase transfer catalyst has been reported (see Patent Document 2).
  • the thioether described in International Publication No. 2009/131796 is a thioether substantially free of a polysulfide bond and is a sealing material excellent in fuel resistance and the like.
  • the polythioether polymer described in International Publication No. 1998/039365 is a polythioether containing no polysulfide bond, exhibits excellent low-temperature flexibility and fuel oil resistance when cured, and is similar to conventional polysulfide polymers. Used as a sealing material.
  • a sealant composition utilizing the characteristics of both polymers by blending a polysulfide polymer and a polythioether polymer is known (see Patent Document 5).
  • Conventional polysulfide polymers are used in various sealing materials and adhesives because they are excellent in oil resistance, weather resistance, low temperature / high temperature stability, and the like. In addition to these properties, especially for sealing materials for aircraft, further heat resistance, cold resistance and lower specific gravity are required. There is also a demand for lower viscosity in order to reduce the solvent in the sealing material. On the other hand, the sealing material for construction is required to have excellent weather resistance and resilience following the joint movement when applied to a sealing material for a movable part.
  • the present invention provides a thiol group-containing polymer having a low viscosity, a low specific gravity, a low glass transition temperature, and a high heat resistance as compared to conventional polysulfide polymers.
  • a curable composition that can be used as a sealing material, adhesive, or paint with improved low specific gravity, low glass transition temperature, high heat resistance, high resilience, and weather resistance compared to conventional curable compositions using polysulfide polymers.
  • a composition is provided.
  • the present invention relates to HS— (R—S r ) n —R—SH represented by the following general formula: (R is an organic group and / or branched alkylene group containing a —O—CH 2 —O— bond, n is an integer of 1 to 200, r is an integer of 1 to 5, and the average value of r is 1. 1 to 1.8) It is a thiol group-containing polymer.
  • the curable composition of the present invention is a curable composition having the above thiol group-containing polymer as a base polymer.
  • the thiol group-containing polymer of the present invention has a low specific gravity, a low viscosity, a low glass transition temperature, and a high heat resistance compared to conventional polysulfide polymers by reducing the number of sulfur repeats in the polysulfide bond.
  • the curable composition of the present invention has a low specific gravity, a low viscosity, and a low glass transition temperature, and improves heat resistance, resilience, and weather resistance.
  • the curable composition using the thiol group-containing polymer of the present invention can be used for sealing materials, adhesives, paints and the like.
  • the present invention is represented by the following general formula: HS- (R-S r ) n -R-SH (R is an organic group and / or branched alkylene group containing a —O—CH 2 —O— bond, n is an integer of 1 to 200, r is an integer of 1 to 5, and the average value of r is 1. 1 or more and 1.8 or less.) It is a thiol group-containing polymer.
  • R is preferably an organic group containing a —O—CH 2 —O— bond and a branched alkylene group.
  • the branched alkylene group is preferably 0 to 70 mol% based on the number of moles of —O—CH 2 —O— bonds.
  • R is preferably —C 2 H 4 —O—CH 2 —O—C 2 H 4 — Is contained in an amount of 50 mol% or more. More preferably, —C 2 H 4 —O—CH 2 —O—C 2 H 4 — 70 mol% or more.
  • the branched alkylene group is preferably a polyfunctional component derived from a trihalo organic compound
  • a preferred branched trihalo organic compound is a trihaloalkyl compound, and a more preferred branched trihalo organic compound is trihalopropane.
  • Preferred halogen atoms of trihalopropane are chlorine, bromine, and iodine, and more preferred halogen atoms are chlorine atoms.
  • Thiol group-containing polymers of the present invention HS- (R-S r) n -R-SH R in the formula is an integer of 1 to 5, preferably an integer of 1 to 3.
  • the average value of r is 1.1 or more and 1.8 or less. When the average value of r is less than 1.1, the ultraviolet absorptivity due to the polysulfide bond is lowered, and the weather resistance and hardness after curing are poor. On the other hand, when the average value of r exceeds 1.8, effects such as remarkable low viscosity, low specific gravity, low glass transition temperature, and high heat resistance cannot be obtained.
  • the preferable range of the average value of r varies depending on the application and purpose for which the polysulfide polymer of the present invention is used.
  • the average value of r is preferably 1.1 or more and 1.5 or less, more preferably If the ratio is 1.1 or more and 1.3 or less, the intended effect is great. Even in aircraft sealant applications, when high hardness after curing is emphasized in addition to low Tg, low specific gravity and low viscosity, the average value of r is preferably 1.3 or more and 1.8 or less, more preferably 1. If it is 3 or more and 1.5 or less, the required performance is well balanced.
  • the average value of r is preferably 1.1 or more and 1.5 or less, and more preferably 1.1 or more and 1.3 or less. Great effect. Even in the case of architectural sealants, the average value of r is preferably 1.3 or more and 1.8 or less, and more preferably 1.3 or more and 1. If it is 5 or less, the required performance balance is good.
  • n is an integer of 1 to 200, preferably n is an integer of 1 to 50, more preferably 5 to 50. It is liquid at room temperature, and the number average molecular weight is preferably 500 to 50,000, and more preferably 1,000 to 10,000.
  • a production method for obtaining a liquid polymer via solid polysulfide which is the most common method for producing a conventional polysulfide polymer, a method using a phase transfer catalyst, a terminal sulfur halide
  • a method using a phase transfer catalyst, a terminal sulfur halide examples include a method of reacting the containing polymer with sodium hydrosulfide.
  • Particularly preferred are a method using a phase transfer catalyst and a method in which a terminal halogenated sulfur-containing polymer is reacted with sodium hydrosulfide.
  • the present invention is a polymer that maintains the skeleton of a conventional polysulfide polymer, that is, a polymer containing an —O—CH 2 —O— bond, and a polysulfide polymer described in International Publication No. 2006/029144, and —O—CH 2 —O.
  • a conventional polysulfide polymer that is, a polymer containing an —O—CH 2 —O— bond, and a polysulfide polymer described in International Publication No. 2006/029144, and —O—CH 2 —O.
  • the structure is different from blend polymers of polymers with different backbones, such as the polythioether polymer "Permapol P3", which contains no bonds.
  • the sulfur in the thioether described in International Publication No. 2009/131796 is only a thioether (—S—) bond, that is, the average value of r is 1.0.
  • HS- (R-S r ) n -R-SH The average value r of sulfur in is 1.1 or more and 1.8 or less.
  • the thiol group-containing polymer of the present invention preferably has a glass transition temperature of ⁇ 85 ° C. or more and ⁇ 50 ° C. or less, more preferably ⁇ 85 ° C. or more and ⁇ 75 when the polymer viscosity is less than 1 Pa ⁇ s. -75 ° C or higher and -65 ° C or lower when 5 Pa ⁇ s or higher and lower than 45 Pa ⁇ s, -75 ° C or higher and -55 ° C or lower, 45 Pa ⁇ s or higher and 100 Pa ⁇ s If it is less than -60 ° C or more, it is -50 ° C or less.
  • the thiol group-containing polymer of the present invention preferably has a 50% weight loss temperature of 300 ° C. or higher and 350 ° C. or lower, more preferably 310 ° C. or higher and 340 ° C. or lower.
  • the thiol group-containing polymer of the present invention preferably has a specific gravity at 23 ° C. of 1.18 to 1.28, more preferably 1.20 to 1.27.
  • the curable composition of the present invention comprises HS— (R—S r ) n —R—SH represented by the following general formula: (R is an organic group and / or branched alkylene group containing a —O—CH 2 —O— bond, n is an integer of 1 to 200, r is an integer of 1 to 5, and the average value of r is 1. 1 or more and 1.8 or less.) Contains a thiol group-containing polymer and an oxidizing agent.
  • oxidizing agent substances that have been used as curing agents for conventional polysulfide polymers can be used.
  • oxidizing agents include inorganic oxidizing agents, organic peroxides, organic oxidizing agents and the like.
  • Inorganic oxidizers are inorganic such as manganese dioxide, lead dioxide, zinc peroxide, calcium peroxide, iron dioxide, barium peroxide, tellurium dioxide, selenium dioxide, tin dioxide, trilead tetroxide, strontium peroxide, lithium peroxide, etc.
  • Peroxide, zinc oxide, iron oxide (II), lead oxide, iron oxide (III), antimony trioxide, magnesium oxide, cobalt oxide, calcium oxide, copper oxide, barium oxide and other inorganic oxides, sodium chromate Examples include potassium chromate, sodium dichromate, potassium dichromate, sodium perchlorate, sodium perborate, potassium permanganate, and sodium percarbonate.
  • manganese dioxide and lead dioxide are preferable, and manganese dioxide is particularly preferable.
  • Organic peroxides include hydroperoxides, dialkyl peroxides, peroxyketals, peroxyesters, peroxydicarbonates, diacyl peroxides, and the like.
  • cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, and t-butyl peroxybenzoate are particularly preferred organic peroxides because of their excellent hardness.
  • Two or more kinds of the organic peroxides may be used.
  • Organic oxidants include nitrobenzene, dinitrobenzene, paraquinone dioxime and the like.
  • the number of added oxidizing agents is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the thiol group-containing polymer. If it is less than 1 part by weight, a sufficient curing rate cannot be obtained, and if it exceeds 50 parts by weight, it is not preferred because it is cured immediately after mixing and workability cannot be obtained. More preferred is 1 to 30 parts by weight, still more preferred is 1 to 20 parts by weight, and even more preferred is 5 to 15 parts by weight.
  • the curable composition of the present invention comprises HS— (R—S r ) n —R—SH represented by the following general formula: (R is an organic group and / or branched alkylene group containing a —O—CH 2 —O— bond, n is an integer of 1 to 200, r is an integer of 1 to 5, and the average value of r is 1. 1 or more and 1.8 or less.) It contains a thiol group-containing polymer and two or more isocyanate group-containing compounds in the molecule.
  • Two or more isocyanate group-containing compounds in the molecule are polymethylene polyphenylene polyisocyanate (polymeric MDI), triphenylmethane triisocyanate, dimethyltrihenylmethane tetraisocyanate, diuret compound biuret, trimethylolpropane adduct, Examples include isocyanurate trimer.
  • Diisocyanate compounds include TDI (for example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI)), MDI (for example, 4,4′-diphenylmethane diisocyanate).
  • TDI for example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI)
  • MDI for example, 4,4′-diphenylmethane diisocyanate
  • the curable composition of the present invention comprises HS— (R—S r ) n —R—SH represented by the following general formula: (R is an organic group and / or branched alkylene group containing a —O—CH 2 —O— bond, n is an integer of 1 to 200, r is an integer of 1 to 5, and the average value of r is 1.1. Is 1.8 or less.) It contains a thiol group-containing polymer, an epoxy resin containing two or more glycidyl groups in the molecule, and amines.
  • Epoxy resins containing two or more glycidyl groups in the molecule are epichloro and polychlorophenols such as bisphenol A, bisphenol F, resorcinol, hydroquinone, pyrocatechol, 4,4-dihydroxybiphenyl, 1,5-hydroxynaphthalene.
  • the amount of the epoxy resin is preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the thiol group-containing polymer.
  • the blending amount is less than 100 parts by weight, the hardness and fracture stress are not sufficient, which is not preferable. More preferably, it is 100 to 700 parts by weight. Even more preferably, it is 100 to 600 parts by weight.
  • the amines may be those known as ordinary epoxy resin curing agents.
  • Amines are aliphatic diamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine, trimethylenediamine, hexamethylenediamine, tetramethylenediamine, N, N-dimethylpropylamine, N, N, N ′, N ′.
  • -Aliphatic tertiary amines such as tetramethylhexamethylenediamine, alicyclic tertiary amines such as N-methylpiperidine, N, N'-dimethylpiperazine, benzyldimethylamine, dimethylaminomethylphenol, 2, 4, Aromatic tertiary amines such as 6-tris (dimethylaminomethyl) phenol, polyamine epoxy resin adducts produced by reacting epoxy resin with excess amine, polyamine-ethylene oxide adducts, polyamine-propylene oxide Ducts, cyanoethylated polyamines, diamines whose main chain is silicon, or dehydration condensates obtained by reacting polyamines with phenols and aldehydes, imidazoles such as 2-ethyl-4-methylimidazole, modification Examples include polyamines.
  • the compounding amount of amines is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curing is quick and the cost is advantageous.
  • the amount is more preferably 1 to 80 parts by weight, still more preferably 1 to 60 parts by weight, based on 100 parts by weight of the epoxy resin.
  • the curable composition of the present invention is a plasticizer, a filler, a curing accelerator, a polyfunctionality, if necessary, for the purpose of improving the economic efficiency, workability during construction of the composition, and physical properties after curing. It may contain a crosslinking agent, an adhesion promoter, an ultraviolet absorber, an antioxidant, a tackifier, a fluidity additive, a rubber / elastomer, a fungicide, a corrosion inhibitor, a pigment, and a masking agent.
  • Plasticizers include phthalates such as dibutyl phthalate, butyl benzyl phthalate, alkyl phthalate (C 7 -C 9 ) benzyl, chlorinated paraffin, dipropylene glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol dibenzoate , Dipropylene glycol monobenzoate, hydrogenated terphenyl, hydrocarbon plasticizer, halogen-terminated sulfur-containing polymer, and the like.
  • phthalates such as dibutyl phthalate, butyl benzyl phthalate, alkyl phthalate (C 7 -C 9 ) benzyl, chlorinated paraffin, dipropylene glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol dibenzoate , Dipropylene glycol monobenzoate, hydrogenated terphenyl, hydrocarbon plasticizer, halogen-terminated sulfur-containing polymer, and the like.
  • the number of parts added of the plasticizer is set by the strength and elongation of the cured product, and further the viscosity design before curing, but is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the thiol group-containing polymer.
  • the amount is more preferably 1 to 50 parts by weight, and still more preferably 1 to 30 parts by weight.
  • the filler examples include inorganic fillers such as calcium carbonate, aluminum oxide, aluminum hydroxide, silica, silicate, sulfate, and carbon black. Also, lightweight polymer fillers such as polyamide and polyethylene, thermoplastic balloons (thermal expansion microcapsules) such as silica, acrylonitrile, methacrylonitrile and vinylidene chloride, thermosetting balloons such as phenol and epoxy, shirasu and fly ash Examples thereof include hollow fillers such as inorganic balloons such as glass and alumina. Two or more kinds of fillers may be used, and any of the fillers may be used after treating the surface with a fatty acid, a resin acid, a surfactant, a silane coupling agent, paraffin or the like.
  • the calcium carbonate is preferably heavy calcium carbonate or colloidal calcium carbonate.
  • heavy calcium carbonate is calcium carbonate obtained by mechanically crushing and classifying raw limestone to obtain a desired particle size.
  • colloidal calcium carbonate is obtained by co-firing raw limestone with coke, etc., once producing calcium oxide (quick lime), reacting it with water to form calcium hydroxide (slaked lime), and reacting with carbon dioxide gas generated during firing, Calcium carbonate obtained to have a desired particle size and particle shape.
  • the number of added parts of the filler is preferably 0.1 to 500 parts by weight with respect to 100 parts by weight of the thiol group-containing polymer. More preferred is 1 to 300 parts by weight, still more preferred is 10 to 200 parts by weight, and even more preferred is 30 to 60 parts by weight.
  • the curing accelerator examples include vulcanization accelerators such as aldehyde / ammonia and aldehyde / amine, thiourea, guanidine, thiazole, sulfenamide, thiuram, dithiocarbamate, and xanthate. Specific examples include tris (dimethylaminomethyl) phenol, diphenylguanidine, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, hexamethylenetetramine and the like. Two or more kinds of the vulcanization accelerators may be used.
  • the number of parts added of the curing accelerator is set depending on the curing rate of the curable composition and the use temperature, but is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the thiol group-containing polymer. When the amount exceeds 10 parts by weight, the remaining accelerator that was not involved in the reaction may deteriorate the performance of the cured product.
  • the amount is more preferably 1 to 5 parts by weight, and still more preferably 1 to 3 parts by weight.
  • multifunctional crosslinking agent examples include trimethylolpropane trimercaptopropionate, trimethylolpropane trimercaptoacetate, pentaerythritol-tetrakis-3-mercaptopropionate, and the like. Two or more polyfunctional crosslinking agents may be used.
  • adhesion promoter examples include a silane coupling agent containing a hydrolyzable silyl group and a reactive organic functional group.
  • a silane coupling agent containing a hydrolyzable silyl group and a reactive organic functional group.
  • a terminal trimethoxysilane-modified polysulfide polymer synthesized by reacting the polysulfide polymer “thiocol LP-3” with 3-gridoxypropyltrimethoxysilane can also be used as a silane coupling agent. Two or more of these silane coupling agents may be used.
  • UV absorbers include benzophenone, benzotriazole, phenyl salicylate, triazine, nickel salt and nickel complex.
  • antioxidants examples include amine-based antioxidants, phenol-based antioxidants, phosphite-based antioxidants, and thioether-based antioxidants.
  • 1,3,5-tris [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] -1,3,5-triazine-2,4,6 ( 1H, 3H, 5H) -trione, 1,1,3-tris (5-tert-butyl-4-hydroxy-2-methylphenyl) butane, 1,1-bis (4-hydroxy-2-methyl-5- tert-Butylphenyl) butane, 2,2-bis [[[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] oxy] methyl] propane-1,3-diol 1,3- Bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], bis (3-tert-butyl-4-hydroxy-5-
  • Tackifiers are phenol resin, coumarone / indene resin, coumarone resin, naphthenic oil, rosin, rosin ester, hydrogenated rosin derivative, terpene resin, modified terpene resin, terpene / phenolic resin, hydrogenated terpene resin, ⁇ - pinene resins, alkylphenol-acetylene resin, alkylphenol-formaldehyde resins, styrene resins, C 6 petroleum resins, C 9 petroleum resins, alicyclic petroleum resins, C 6 / C 9 copolymer petroleum resin, xylene -For example, formaldehyde resins.
  • Rubber and elastomer are natural rubber, polybutadiene rubber, acrylic rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, chloroprene rubber, olefin elastomer, styrene elastomer, vinyl chloride elastomer, polyester elastomer, polyamide Examples include elastomers, polyurethane elastomers, polysiloxane elastomers, and the like.
  • T g glass transition temperature
  • thermoinstrument measuring device TGAQ50 manufactured by TA Instruments
  • approximately 30 mg of sample was heated from room temperature to 500 ° C. at a constant rate of 10 ° C./min in a nitrogen atmosphere.
  • the temperature at which the weight reached 50% of the initial weight was defined as the 50% weight reduction temperature.
  • 13 C-NMR analysis was performed to determine the amount of monosulfide bonds and the amount of disulfide bonds from the peak intensities near 32.2 ppm and 38.8 ppm, respectively, and the average sulfur content was quantified.
  • a 400 MHz NMR apparatus manufactured by JEOL Ltd. was used, and CDCl 3 was used as a solvent.
  • Example 1 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 572.6 g A 42% sodium hydrosulfide aqueous solution, 644 g of water, 78.3 g of sulfur, and 254.6 g of 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 2 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 568.9 g A 42% sodium hydrosulfide aqueous solution, 650 g of water, 49.4 g of sulfur, and 257.2 g of a 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without passing through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 3 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 563.7 g A 42% sodium hydrosulfide aqueous solution, 659 g water, 10.0 g sulfur, and 260.5 g 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 4 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 528.6 g A 42% sodium hydrosulfide aqueous solution, 718 g of water, 87.4 g of sulfur, and 284.0 g of 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 5 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 526.8 g A 42% sodium hydrosulfide aqueous solution, 721 g of water, 54.9 g of sulfur, and 285.1 g of a 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without passing through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 6 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 525.7 g A 42% aqueous sodium hydrosulfide solution, 723 g of water, 33.0 g of sulfur, and 285.9 g of a 48% aqueous sodium hydroxide solution were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 7 Using a 2 L separable flask, 629.2 g bis (2-chloroethyl) formal, 10.8 g 1,2,3-trichloropropane, 12.2 g tetrabutylammonium bromide 50 wt% aqueous solution, 524.5 g A 42% sodium hydrosulfide aqueous solution, 725 g of water, 11.0 g of sulfur, 286.7 g of 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 8 Using a 2 L separable flask, 640.0 g bis (2-chloroethyl) formal, 12.1 g tetrabutylammonium bromide 50 wt% aqueous solution, 514.2 g 42% sodium hydrosulfide aqueous solution, 565 g water, 11. 1 g of sulfur and 288.3 g of 48% aqueous sodium hydroxide were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Example 9 Using a 2 L separable flask, 640.0 g bis (2-chloroethyl) formal, 12.1 g tetrabutylammonium bromide 50 wt% aqueous solution, 589.4 g 42% sodium hydrosulfide aqueous solution, 482 g water, 9. 5 g of sulfur and 246.5 g of 48% sodium hydroxide aqueous solution were reacted to obtain a light yellow transparent liquid polymer without going through solid polysulfide.
  • Table 1 shows the average value of the number of sulfur repetitions r, SH content, viscosity, specific gravity, glass transition temperature, and 50% weight loss temperature of the obtained polymer.
  • Table 1 shows the characteristic values of the polymers used for evaluation. No. The polymers of 2 to 4 and 7 to 12 are the polymers of the present invention. No. with the same SH content.
  • the polymers of 1 to 5 are compared, the polymers of Examples 1 to 3 and Comparative Example 2 in which the average number of sulfur repetitions r is 1.8 or less are the polymers of Comparative Example 1 in which the average value of r is 2.0.
  • the viscosity was low, the glass transition temperature was low, the specific gravity was low, the 50% weight loss temperature was increased, and the heat resistance was good.
  • the SH content is almost the same.
  • the polymers of 6 to 10 are compared, the polymers of Examples 5 to 8 having an average sulfur repeat number r of 1.1 to 1.8 are polymers of Comparative Example 3 having an average r of 2.0. Compared with No. 1, the viscosity was low, the glass transition temperature was low, the specific gravity was low, the 50% weight loss temperature was increased, and the heat resistance was good.
  • Examples 10-12 With respect to 100 parts by weight of the polymers of Examples 1 to 3 (Nos. 2 to 4), 18 parts by weight of manganese dioxide (TYPE-FA manufactured by Honeywell) and 35 parts by weight of SRF carbon and butylbenzyl phthalate 18 as additives. Part by weight and 0.9 part by weight of tetrabutylthiuram disulfide (Noxeller TBT manufactured by Ouchi Shinsei Chemical Industry) were added and kneaded using a three-roll mill. A total of 38 g of the mixture was sandwiched between iron plates adjusted to have a gap of 2 mm, and heat cured at 70 ° C. for 2 hours to prepare a 2 mm thick sheet-like cured composition.
  • the obtained sheet was left for 1 hour in an atmosphere of 23 ° C. and 50% RH to remove heat.
  • the specific gravity, glass transition temperature, 50% weight loss temperature, restoration rate, hardness, and dumbbell physical properties of the cured product cut out to about 20 mm square were determined. Specific gravity is shown in Table 2, and other physical properties are shown in Table 3.
  • Examples 13 to 16 With respect to 100 parts by weight of the polymers of Examples 4 to 7 (Nos. 7 to 10), 9 parts by weight of manganese dioxide (TYPE-FA manufactured by Honeywell) and 35 parts by weight of SRF carbon and butylbenzyl phthalate 9 as additives Part by weight and 0.45 part by weight of tetrabutylthiuram disulfide (Nouchira TBT manufactured by Ouchi Shinsei Chemical Industry) were added and kneaded using a three-roll mill. A total of 34 g of the mixture was sandwiched between iron plates adjusted to have a gap of 2 mm, and heat cured at 70 ° C. for 2 hours to prepare a 2 mm thick sheet-like cured composition. The obtained sheet was left for 1 hour in an atmosphere of 23 ° C. and 50% RH to remove heat. The specific gravity of the cured product cut out to about 20 mm square was measured. The results are shown in Table 2.
  • Comparative Example 5 In the same manner as in Examples 13 to 16, the polymer was No.
  • Table 2 shows the results of preparing a curable composition using 6 (a polymer obtained by blending thiocol “LP-3” and “LP-2” manufactured by Toray Fine Chemical Co., Ltd. in a ratio of 1: 9) and measuring the specific gravity. .
  • Comparative Example 6 In the same manner as in Examples 10 to 12, no. 5 (polymer of Comparative Example 2) was used to prepare a sheet-like curable composition having a thickness of 2 mm, and the glass transition temperature, 50% weight loss temperature, restoration rate, hardness, and dumbbell physical properties were determined. The obtained results are shown in Table 3.
  • the curable compositions of Examples 10 to 12 using thiol group-containing polymers (Nos. 2 to 4) having an average value of the sulfur repeat number r in the range of 1.1 to 1.8 are Compared to the cured product of Comparative Example 4 using a polysulfide polymer (No. 1) having an average value of r of 2.0, which is used in general, it has a low glass transition temperature, high heat resistance, and a high recovery rate. ing.
  • the curable composition of Comparative Example 6 having an average value of the number of repetitions of sulfur r of 1.0 has a low glass transition temperature and high heat resistance, the hardness is very low as 4, and in the dumbbell tensile test. M100 and Tmax were also low and practical use as a cured product could not be obtained.
  • the curable composition using the thiol group-containing polymer having an average value of r in the range of 1.1 to 1.8 is lighter and more compatible with a wider temperature range. Suitable for sealing materials for aircraft that require
  • Example 17 The compounding agent shown in Table 4 was added to 100 parts by weight of the polymer of Example 3 (No. 4, r has an average value of 1.1), and a main component was prepared using a planetary mixer. 134 parts by weight of diisocyanate (Duranate 50M-HDI manufactured by Asahi Kasei, NCO content 5.0%) was added and kneaded well by hand kneading. The mixture was molded into a sheet of 50 mm ⁇ 12 mm ⁇ 3 mm thickness on an aluminum plate and cured at 23 ° C. for 3 days and then at 50 ° C. for 3 days to obtain a cured product. The obtained cured product was converted to S.P. W. O. M.M. The accelerated weather resistance was evaluated using Table 4 shows the obtained results.
  • Comparative Example 7 In the same manner as in Example 17, a 3 mm-thick cured product using the polymer of Comparative Example 2 (No. 5, average value of r was 1.0) was prepared. W. O. M.M. The accelerated weather resistance was evaluated using Table 4 shows the obtained results.
  • Example 18 100 parts by weight of the epoxy resin “Epicoat 828” made by Japan Epoxy Resin and the aromatic tertiary amine “Adeka Hardener” made by Japan Epoxy Resin with respect to 100 parts by weight of the polymer of Example 3 (No. 4, average value of r is 1.1) After 5 parts by weight of EHC30 was well kneaded by hand, it was cured at 23 ° C. for 7 days to prepare a test piece having a thickness of 1 cm. The glass transition temperature and 50% weight loss temperature of the obtained curable composition were measured. The results obtained are shown in Table 5.
  • Comparative Example 8 Cured in the same manner as in Example 18 using Sample 1 (polymer obtained by blending thiocol “LP-3” and “LP-23” manufactured by Toray Fine Chemical Co., Ltd. in a ratio of 6: 4) instead of the polymer of Example 3.
  • Sample 1 polymer obtained by blending thiocol “LP-3” and “LP-23” manufactured by Toray Fine Chemical Co., Ltd. in a ratio of 6: 4
  • a mold composition was prepared and the glass transition temperature and 50% weight loss temperature were measured. The results obtained are shown in Table 5.
  • Example 18 As shown in Table 5, the curable composition of Example 18 using a thiol group-containing polymer (No. 4) having an average number of sulfur repetitions r of 1.1 is generally used. It was confirmed that the glass transition temperature and the high heat resistance were exhibited as compared with the cured product of Comparative Example 8 using the polysulfide polymer (No. 1) having an average value of 2.0.
  • the thiol group-containing polymer of the present invention has a low specific gravity, a low viscosity, a low glass transition temperature, and a high heat resistance compared to conventional polysulfide polymers by reducing the number of sulfur repeats in the polysulfide bond. It can be used for sealing materials, adhesives, paints, and the like that require specific gravity, low viscosity, and low glass transition temperature.
  • the curable composition of the present invention can be used for sealing materials, adhesives, paints and the like that require restoration and weather resistance since the restoration and weather resistance are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Sealing Material Composition (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明のチオール基含有ポリマーは、下記の一般式 HS-(R-Sr-R-SH (Rが-O-CH-O-結合を含む有機基及び/又は分岐アルキレン基であり、nが1~200の整数、rが1~5の整数であり、rの平均値が1.1以上1.8以下である)で表される。 本発明のチオール基含有ポリマーを用いた硬化型組成物は、低比重、低粘度、低ガラス転移温度という特性が必要なシーリング材、接着剤、塗料などに用いることができる。また、本発明の硬化型組成物は、復元性、耐候性が向上するので、復元性、耐候性が必要なシーリング材、接着剤、塗料などに用いることができる。

Description

チオール基含有ポリマー及びその硬化型組成物
 本発明は、チオール基含有ポリマーに関する。特に、低比重、低ガラス転移温度、高耐熱性、復元性を向上させたポリサルファイド系シーリング材、接着剤、塗料に有用なチオール基含有ポリマーに関する。
 液状ポリサルファイドポリマーは、末端にチオール基を持ち、二酸化鉛、二酸化マンガン等の酸化剤によって容易に酸化されて硬化する。ポリサルファイドポリマーが硬化して得られるゴム状の硬化物は、分子の主鎖に硫黄を含んでおり、また、二重結合を含まないことから、耐油性、耐候性、水密性、気密性に優れた特徴を持ち、さらに接着性も良好であることから、シーリング材、接着剤および塗料として広く用いられている。
 ポリサルファイドポリマーの製造方法としては、米国特許第2466963号(特許文献1参照)記載の固体ポリサルファイドを経由して液状ポリマーを得る方法が最も一般的である。また、相間移動触媒を用いた製造方法が報告されている(特許文献2参照)。
 国際公開2009/131796号に記載(特許文献3参照)のチオエーテルは、実質的にポリスルフィド結合を含まないチオエーテルであり耐燃料性等に優れたシーリング材となると記載されている。
 国際公開1998/039365号(特許文献4参照)記載のポリチオエーテルポリマーは、ポリスルフィド結合を含まないポリチオエーテルであり、硬化した場合に優れた低温柔軟性及び耐燃料油性を示し、従来のポリサルファイドポリマー同様にシーリング材として使用されている。
 ポリサルファイドポリマーとポリチオエーテルポリマーをブレンドすることにより、両ポリマーの特性を活かしたシーラント組成物が知られている(特許文献5参照)。
 従来のポリサルファイドポリマーは、耐油性、耐候性、低温・高温での安定性等に優れることから各種シーリング材、接着剤に使用されている。これらの特性に加え、特に航空機向けシーリング材では、更なる耐熱性、耐寒性、低比重化が要求されている。また、シーリング材中の溶媒を低減するために低粘度化の要望もある。一方で、建築用シーリング材では、優れた耐候性や可動部分のシーリング材に適用される場合には目地の動きに追従する復元性が要求されている。
米国特許第2466963号明細書 米国特許第6939941号明細書 国際公開2009/131796号パンフレット 国際公開1998/039365号パンフレット 国際公開2006/029144号パンフレット
 
 本発明は、従来のポリサルファイドポリマーに比べて、低粘度、低比重、低ガラス転移温度、高耐熱性を有するチオール基含有ポリマーを得る。また、従来のポリサルファイドポリマーを用いた硬化型組成物に比べて、低比重、低ガラス転移温度、高耐熱性、高復元性、耐候性を向上させたシーリング材、接着剤、塗料となる硬化型組成物を提供する。
 本発明は、下記の一般式で表される
    HS-(R-Sr-R-SH  
(Rが-O-CH-O-結合を含む有機基及び/又は分岐アルキレン基であり、nが1~200の整数、rが1~5の整数であり、rの平均値が1.1以上1.8以下である)
チオール基含有ポリマーである。
 本発明の硬化型組成物は、上記のチオール基含有ポリマーをベースポリマーとする硬化型組成物である。
 本発明のチオール基含有ポリマーは、ポリスルフィド結合中の硫黄の繰り返し数を減じることで、従来のポリサルファイドポリマーに比べて、低比重、低粘度、低ガラス転移温度であり、耐熱性が高い。
 本発明の硬化型組成物は、低比重、低粘度、低ガラス転移温度であり、耐熱性、復元性、耐候性が向上する。
 本発明のチオール基含有ポリマーを用いた硬化型組成物は、シーリング材、接着剤、塗料などに用いることができる。
 以下、本発明を詳細に説明する。
 本発明は、下記一般式で表される、
  HS-(R-Sr-R-SH  
(Rが-O-CH-O-結合を含む有機基及び/又は分岐アルキレン基であり、nが1~200の整数、rが1~5の整数であり、rの平均値が1.1以上1.8以下である。)
チオール基含有ポリマーである。
 Rは、好ましくは、-O-CH-O-結合と、分岐アルキレン基を含む有機基である。分岐アルキレン基は、好ましくは、-O-CH-O-結合のモル数に対して、0~70モル%である。
 Rは、好ましくは、
 -C-O-CH-O-C
を50モル%以上含有する。さらに好ましくは、
 -C-O-CH-O-C
を70モル%以上含有する。
 分岐アルキレン基は、好ましくは、トリハロ有機化合物由来の多官能成分で、
Figure JPOXMLDOC01-appb-C000002
で示される有機基である。好ましい分岐トリハロ有機化合物は、トリハロアルキル化合物であり、より好ましい分岐トリハロ有機化合物は、トリハロプロパンである。好ましいトリハロプロパンのハロゲン原子は、塩素、臭素、およびヨウ素であり、より好ましいハロゲン原子は塩素原子である。
 本発明のチオール基含有ポリマー
HS-(R-Sr-R-SH
のrは、1~5の整数であり、好ましくは、1~3の整数である。rの平均値は、1.1以上1.8以下である。rの平均値が1.1未満である場合、ポリスルフィド結合による紫外線吸収性が低下し硬化後の耐候性や硬度が乏しくなる。また、rの平均値が1.8を超える場合は、顕著な低粘度、低比重、低ガラス転移温度、高耐熱性などの効果が得られない。
 rの平均値の好ましい範囲は、本発明のポリサルファイドポリマーが使用される用途・目的によって異なる。
 例を挙げると、航空機シーラント用途において、低Tg・低比重・低粘度・耐熱性がより要求される場合は、rの平均値は、1.1以上1.5以下が好ましく、さらに好ましくは、1.1以上1.3以下であると目的とする効果が大きい。航空機シーラント用途でも、低Tg・低比重・低粘度に加え、硬化後の高硬度が重視される場合は、rの平均値は1.3以上1.8以下が好ましく、さらに好ましくは、1.3以上1.5以下であると要求性能のバランスが良い。
 建築シーラント用途において、圧縮復元性・耐熱性をより要求される場合は、rの平均値は1.1以上1.5以下が好ましく、さらに好ましくは、1.1以上1.3以下であると目的とする効果が大きい。建築用シーラント用途でも、圧縮復元性・耐熱性に加え、耐候性が重視される場合は、rの平均値は1.3以上1.8以下が好ましく、さらに好ましくは、1.3以上1.5以下であると要求性能のバランスが良い。
 本発明のチオール基含有ポリマーは、nは1~200の整数であり、好ましくは、nは1~50の整数、より好ましくは、5~50である。室温では液状であり、数平均分子量は、好ましくは、500~50,000であり、より好ましくは、1,000~10,000である。
 本発明のチオール基含有ポリマーを得るには、従来のポリサルファイドポリマーの製造方法として最も一般的である固体ポリサルファイドを経由して液状ポリマーを得る製造方法、相間移動触媒を用いた方法、末端ハロゲン化硫黄含有ポリマーを、水硫化ナトリウムと反応させること方法等が挙げられる。特に好ましいのは、相間移動触媒を用いた方法及び末端ハロゲン化硫黄含有ポリマーを、水硫化ナトリウムと反応させる方法である。
 本発明は、従来のポリサルファイドポリマーの骨格を維持し、すなわち-O-CH-O-結合を含むポリマーであり、国際公開2006/029144号記載の、ポリサルファイドポリマーと、-O-CH-O-結合を全く含まないポリチオエーテルポリマー「パーマポールP3」のような異なる骨格を持つポリマーのブレンドポリマーとは構造が異なる。
 国際公開2009/131796号に記載のチオエーテル中の硫黄は、チオエーテル(-S-)結合のみ、つまりrの平均値が1.0に相当するが、本発明のポリマーは、
HS-(R-Sr-R-SH
における硫黄の平均値rが1.1以上1.8以下である。
 本発明のチオール基含有ポリマ-は、好ましくは、ガラス転移温度が、-85℃以上-50℃以下であり、より好ましくは、ポリマー粘度が、1Pa・s未満の場合は-85℃以上-75℃以下、1Pa・s以上5Pa・s未満の場合は-75℃以上-65℃以下、5Pa・s以上45Pa・s未満の場合は-75℃以上-55℃以下、45Pa・s以上100Pa・s未満の場合は-60℃以上-50℃以下である。
 本発明のチオール基含有ポリマ-は、好ましくは、50%重量減少温度が、300℃以上350℃以下であり、より好ましくは、310℃以上340℃以下である。
 本発明のチオール基含有ポリマ-は、好ましくは、23℃における比重が、1.18から1.28であり、より好ましくは、1.20から1.27である。
 本発明の硬化型組成物は、下記一般式で表される
  HS-(R-Sr-R-SH  
(Rが-O-CH-O-結合を含む有機基及び/又は分岐アルキレン基であり、nが1~200の整数、rが1~5の整数であり、rの平均値が1.1以上1.8以下である。)
チオール基含有ポリマーと、酸化剤を含有する。
 本発明の硬化型組成物において、酸化剤としては、従来のポリサルファイドポリマーの硬化剤として用いられてきた物質が使用できる。これらの酸化剤の具体例としては、無機酸化剤、有機過酸化物、有機酸化剤などが挙げられる。
 無機酸化剤は、二酸化マンガン、二酸化鉛、過酸化亜鉛、過酸化カルシウム,二酸化鉄、過酸化バリウム、二酸化テルル、二酸化セレン、二酸化スズ、四酸化三鉛、過酸化ストロンチウム,過酸化リチウムなどの無機過酸化物、酸化亜鉛、酸化鉄(II)、酸化鉛、酸化鉄(III)、三酸化アンチモン,酸化マグネシウム、酸化コバルト、酸化カルシウム、酸化銅、酸化バリウムなどの無機酸化物、クロム酸ナトリウム、クロム酸カリウム,二クロム酸ナトリウム、二クロム酸カリウム、過塩素酸ナトリウム、過ホウ酸ナトリウム、過マンガン酸カリウム、過炭酸ナトリウムなどが挙げられる。この中でも、二酸化マンガン、二酸化鉛が好ましく、特に、二酸化マンガンが好ましい。
 有機過酸化物は、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシケタール、パーオキシエステル、パーオキシジカーボネート、ジアシルパーオキサイドなどが挙げられる。特にクメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルパーオキシベンゾエートが特に硬度発現に優れており好ましい有機過酸化物である。上記有機過酸化物は2種類以上用いてもよい。
 有機酸化剤は、ニトロベンゼン、ジニトロベンゼン、パラキノンジオキシムなどが挙げられる。
 酸化剤の添加部数は、チオール基含有ポリマー100重量部に対して1~50重量部であることが好ましい。1重量部未満では十分な硬化速度が得られず、50重量部を超えると混合直後に硬化して作業性が取れず、好ましくない。より好ましくは1~30重量部であり、さらにより好ましくは、1~20重量部であり、もっと好ましくは、5~15重量部である。
 本発明の硬化型組成物は、下記一般式で表される
  HS-(R-Sr-R-SH  
(Rが-O-CH-O-結合を含む有機基及び/又は分岐アルキレン基であり、nが1~200の整数、rが1~5の整数であり、rの平均値が1.1以上1.8以下である。)
チオール基含有ポリマーと、分子中に2個以上のイソシアネート基含有化合物を含有する。
 分子中に2個以上のイソシアネート基含有化合物は、ポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)、トリフェニルメタントリイソシアネート、ジメチルトリヘニルメタンテトライソシアネート、ジイソシアネート化合物を用いたビウレット体、トリメチロールプロパン付加体、イソシアヌレート三量体などが挙げられる。
 ジイソシアネート化合物は、TDI(例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI))、MDI(例えば、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI))、1,4’-フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)のような芳香族ジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアネート(NBDI)のような脂肪族ジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、またこれらのカルボジイミド変性ジイソシアネートなどが挙げられる。上記イソシアネート化合物は2種類以上用いてもよい。
 本発明の硬化型組成物は、下記一般式で表される
  HS-(R-Sr-R-SH  
(Rが-O-CH-O-結合を含む有機基及び/又は分岐アルキレン基であり、nが1~200の整数、rが1~5の整数で、rの平均値が1.1以上1.8以下である。)
チオール基含有ポリマーと、分子中に2個以上のグリシジル基を含有するエポキシ樹脂とアミン類を含有する。
 分子中に2個以上のグリシジル基を含有するエポキシ樹脂は、ビスフェノールA、ビスフェノールF、レゾルシノール、ハイドロキノン、ピロカテコール、4,4-ジヒドロキシビフェニル、1,5-ヒドロキシナフタリンなどの多価フェノールにエピクロロヒドリンを付加させて得られるエポキシ樹脂、エチレングリコール、プロピレングリコール、グリセリンなどの多価アルコールにエピクロロヒドリンを付加させて得られるエポキシ樹脂、及びオキシ安息香酸、フタル酸などの芳香族ジカルボン酸にエピクロロヒドリンを付加させて得られるエポキシ樹脂、末端にエポキシ基を有するポリサルファイドポリマー(商品名「FLEP-50」、「FLEP-60」いずれも東レ・ファインケミカル製)などが挙げられ、常温で液状のものが好ましい。
 本発明においては、エポキシ樹脂の配合量は、チオール基含有ポリマー100重量部に対して100~1000重量部となるように配合することが好ましい。前記配合量が100重量部下回ると硬度・破壊応力が十分でなくなり、好ましくない。より好ましくは100~700重量部である。さらにより好ましくは、100~600重量部である。
 アミン類は、通常のエポキシ樹脂用硬化剤として公知のものでよい。アミン類は、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミン、トリメチレンジアミン、ヘキサメチレンジアミン、テトラメチレンジアミンなどの脂肪族ジアミン、N,N-ジメチルプロピルアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミンなどの脂肪族3級アミン類、N-メチルピペリジン、N,N’-ジメチルピペラジンなどの脂環族3級アミン類、ベンジルジメチルアミン、ジメチルアミノメチルフェノール、2,4,6-トリス(ジメチルアミノメチル)フェノールなどの芳香族3級アミン類、エポキシ樹脂を過剰なアミンと反応させて製造されるポリアミンエポキシ樹脂アダクト、ポリアミン-エチレンオキサイドアダクト、ポリアミン-プロピレンオキサイドアダクト、シアノエチル化ポリアミン、主鎖がシリコンであるジアミン、または、ポリアミン類とフェノール類及びアルデヒド類などとを反応させて得られる脱水縮合物、2―エチル―4-メチルイミダゾールなどのイミダゾール類、変性ポリアミンなどが挙げられる。
 本発明においては、アミン類の配合量は、エポキシ樹脂100重量部に対して、1~100重量部となるように配合することが好ましい。アミン類の配合量が、エポキシ樹脂100重量部に対して、1~100重量部であると、硬化が速く、コスト的に有利である。エポキシ樹脂100重量部に対するより好ましくは、1~80重量部であり、さらにより好ましくは、1~60重量部である。
 本発明の硬化型組成物は、経済性、組成物を施工する際の作業性及び硬化後の物性を改良する目的で、必要に応じて、可塑剤、充填材、硬化促進剤、多官能性架橋剤、接着促進剤、紫外線吸収剤、酸化防止剤、粘着付与剤、流動性添加剤、ゴム・エラストマー、殺カビ剤、腐食防止剤、顔料、マスキング剤を含有してもよい。
 可塑剤としては、フタル酸ジブチル、フタル酸ブチルベンジル、フタル酸アルキル(C-C)ベンジルなどのフタル酸エステル、塩素化パラフィン、ジプロピレングリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ジプロピレングリコールモノベンゾエート、水添ターフェニル、炭化水素系可塑剤、ハロゲン末端硫黄含有重合体などが挙げられる。
 可塑剤の添加部数は、硬化物の強度や伸び、さらには硬化前の粘度の設計によって設定されるが、チオール基含有ポリマー100重量部に対して1~100重量部であることが好ましい。より好ましくは1~50重量部であり、さらにより好ましくは、1~30重量部である。
 充填剤は、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、シリカ、ケイ酸塩、硫酸塩などの無機充填剤やカーボンブラックなどが挙げられる。また、ポリアミドやポリエチレンのような軽量ポリマー充填剤、シリカ、アクリロニトリルやメタクリロニトリルや塩化ビニリデンなどの熱可塑性バルーン(熱膨張マイクロカプセル)、フェノールやエポキシなどの熱硬化性バルーン、シラスやフライアッシュやガラスやアルミナなどの無機系バルーンなどの中空充填剤などが挙げられる。充填剤は2種類以上用いてもよく、いずれの充填剤も、表面を脂肪酸、樹脂酸、界面活性剤、シランカップリング剤、パラフィンなどで処理したものを使用してもよい。
 炭酸カルシウムは、重質炭酸カルシウム、コロイド炭酸カルシウムが好ましい。一般に、重質炭酸カルシウムは、石灰石原石を機械的に粉砕・分級して所望の粒度とし得られた炭酸カルシウムである。またコロイド炭酸カルシウムは、石灰石原石をコークス等で混焼し、一旦酸化カルシウム(生石灰)を作製し、それを水と反応させて水酸化カルシウム(消石灰)とし、焼成時に発生した炭酸ガスと反応せしめ、所望の粒径、粒子形状とし得られた炭酸カルシウムである。
 充填剤の添加部数は、チオール基含有ポリマー100重量部に対して0.1~500重量部であることが好ましい。より好ましくは1~300重量部であり、さらにより好ましくは、10~200重量部であり、もっと好ましくは、30~60重量部である。
 硬化促進剤は、アルデヒド・アンモニア及びアルデヒド・アミン系、チオウレア系、グアニジン系、チアゾール系、スルフェンアミド系、チウラム系、ジチオカルバミン酸塩系、キサントゲン酸塩系などの加硫促進剤が挙げられる。具体的には、トリス(ジメチルアミノメチル)フェノール、ジフェニルグアニジン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ヘキサメチレンテトラミンなどが挙げられる。上記加硫促進剤は2種類以上を用いても良い。
 硬化促進剤の添加部数は、硬化型組成物の硬化速度や、さらには使用温度によって設定されるが、チオール基含有ポリマー100重量部に対して1~10重量部であることが好ましい。10重量部を超えると反応に関与しなかった残存の促進剤が硬化物の性能を落とす場合がある。より好ましくは1~5重量部であり、さらにより好ましくは、1~3重量部である。
 多官能性架橋剤は、トリメチロールプロパントリメルカプトプロピオネート、トリメチロールプロパントリメルカプトアセテート、ペンタエリスリトール-テトラキス-3-メルカプトプロピオネートなどが挙げられる。上記多官能性架橋剤は2種類以上を用いても良い。
 接着促進剤は、加水分解性シリル基と反応性有機官能基とを含有するシランカップリング剤が挙げられる。具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィドなどが挙げられる。また、ポリサルファイドポリマー“チオコールLP-3”と3―グリドキシプロピルトリメトキシシランを反応させて合成した末端トリメトキシシラン変性ポリサルファイドポリマーもシランカップリング剤として用いることができる。これらシランカップリング剤は2種以上を用いてもよい。
 紫外線吸収剤は、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ニッケル塩及びニッケル錯塩系が挙げられる。具体的には、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3(3,4,5,6-テトラ-ヒドロフタルイミドメチル)-5-メチルフェニル]ベンソトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、ニッケルジブチルジチオカルバメート、[2,2’-チオビス(4-t-オクチルフェノレート)]-2-エチルヘキシルアミン-ニッケルなどが挙げられる。
 酸化防止剤は、例えば、アミン系酸化防止剤、フェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤が上げられる。具体的には、1,3,5‐トリス[[3,5‐ビス(1,1‐ジメチルエチル)‐4‐ヒドロキシフェニル]メチル]‐1,3,5‐トリアジン‐2,4,6(1H,3H,5H)‐トリオン、1,1,3‐トリス(5‐tert‐ブチル‐4‐ヒドロキシ‐2‐メチルフェニル)ブタン、1,1‐ビス(4‐ヒドロキシ‐2‐メチル‐5‐tert‐ブチルフェニル)ブタン、2,2‐ビス[[[3‐(3,5‐ジ‐tert‐ブチル‐4‐ヒドロキシフェニル)プロピオニル]オキシ]メチル]プロパン‐1,3‐ジオール1,3‐ビス[3‐(3,5‐ジ‐tert‐ブチル‐4‐ヒドロキシフェニル)プロピオナート]、ビス(3‐tert‐ブチル‐4‐ヒドロキシ‐5‐メチルベンゼンプロパン酸)エチレンビス(オキシエチレン), 4,4′,4′′‐[(2,4,6‐トリメチルベンゼン‐1,3,5‐トリイル)トリス(メチレン)]トリス(2,6‐ジ‐tert‐ブチルフェノール)などが挙げられる。
 粘着性付与剤は、フェノール樹脂、クマロン・インデン樹脂、クマロン樹脂、ナフテン系油、ロジン、ロジンエステル、水素添加ロジン誘導体、テルペン樹脂、変性テルペン樹脂、テルペン・フェノール系樹脂、水添テルペン樹脂、α-ピネン樹脂、アルキルフェノール・アセチレン系樹脂、アルキルフェノール・ホルムアルデヒド系樹脂、スチレン樹脂、C系石油樹脂、C系石油樹脂、脂環族系石油樹脂、C/C共重合系石油樹脂、キシレン-ホルムアルデヒド系樹脂などが挙げられる。
 ゴム・エラストマーは、天然ゴム、ポリブタジエンゴム、アクリルゴム、ポリイソプレンゴム、スチレンーブタジエンゴム、アクリロニトリル-ブタジエンゴム、クロロプレンゴム、オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなどが挙げられる。
 本発明を以下の実施例によりさらに詳細に説明する。
 SH含量の測定
 試料をトルエンとピリジンの混合溶液に溶解し、ヨウ化カリウム水溶液を加えた後にヨウ素標準溶液を用いて滴定した。
 粘度の測定
 東機産業製粘度計U-EIIを用いて25℃でのサンプル粘度を測定した。
 ポリマー比重の測定
 23℃の雰囲気下で、比重測定用容器を用いて、23℃で24時間以上養生した蒸留水ならびにポリマーの質量を測定した。水の比重が1.0であると仮定して、容量に対するポリマー質量から、ポリマー比重を算出した。
 硬化物比重の測定
 23℃の雰囲気下で、空気中と水中での質量を測定し、以下の式により
比重=空気中での質量/(空気中での質量-水中での質量)
比重を算出した。
 ガラス転移温度(T)の測定
 TAInstruments製示差走査熱量計DSCQ10を用いて、約10mgのサンプルを―90℃から10℃まで、窒素雰囲気下で10℃/分で等速昇温した。得られたDSC曲線の階段状シグナルからTを求めた。
 50%重量減少温度の測定
 TAInstruments製熱重量測定装置TGAQ50を用いて、約30mgのサンプルを室温から500℃まで、窒素雰囲気下で10℃/分で等速昇温した。得られたTGA曲線において、重量が初期重量の50%になる温度を50%重量減少温度とした。
 硫黄の平均値の測定
 下記のチオール基含有ポリマーの場合は
    HS-(R-S-R-SH  
(ここで、Rは-C-O-CH-O-C-、nが1~200の整数である)、rが2、すなわち、ジスルフィド結合を有する場合には、13C-NMR分析を行うと、38.6~38.8ppm付近に強いピークが存在する。rが1、すなわち、モノスルフィド結合を有する場合には、31.6~32.2ppm付近に強いピークが存在する。本実施例においては、13C-NMR分析を行い、32.2ppm付近と38.8ppm付近のピーク強度から、それぞれモノスルフィド結合量とジスルフィド結合量を求めて、平均の硫黄含量を定量した。13C-NMR分析は、日本電子(株)製400MHzNMR装置を用い、溶媒にはCDClを用いた。
 促進耐候性の評価
 JIS A 1415 WS-Aに従ってサンシャインウェザーメーター(Sunshine Weather Meter)(S.W.O.M.)で曝露し、500時間後、1000時間後、1500時間後、2000時間後の硬化物の表面状態を観察した。評価基準は以下のとおりで、○であれば良好と判断した。
○: クラッキングがない
×: クラッキングがある 。
 復元率の測定
 2mm厚シートを6枚重ねた硬化型組成物を30%圧縮した状態で固定して90℃で24時間養生し、次いで圧縮を開放してから23℃で24時間養生したものについて、厚みを測定し、加熱圧縮に対する復元率を次式により
 復元率(%)=(復元時厚み-圧縮時の厚み)/(初期厚み-圧縮時の厚み)×100
求めた。
 ダンベル引張物性の測定
 直径約120mm×2mm厚のシート状硬化物から、JIS K6251記載のダンベル状5号形に調整した打ち抜き刃を用いてダンベル試験片3本を切り出した。切り出したダンベル試験片に20mmの標線を付け、オリエンテック製テンシロンRTA-500を用いて、500mm/分で引張り試験を行った。ダンベル引張り測定における、M100(N/mm)は100%伸長時(標線が40mmになった時点)の応力、Tmax(N/mm)は最大引張応力、Emax(%)は最大荷重時の伸び率である。試験数は1検体n=3とし、平均値を測定結果とした。
 硬度の測定
 直径約110mm×2mm厚のシート状硬化物から、ダンベル試験片3本を切り出し、残りのシートを4枚重ね、約50mm×約50mm×8mm厚のブロック状硬化物に調整した。この8mm厚のブロック状に調整した硬化物を23℃の雰囲気下にてJIS K6253記載のタイプAデュロメータにて硬度測定を行った。
 実施例1
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、572.6gの42%水硫化ナトリウム水溶液、644gの水、78.3gの硫黄、254.6gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例2 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、568.9gの42%水硫化ナトリウム水溶液、650gの水、49.4gの硫黄、257.2gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例3 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、563.7gの42%水硫化ナトリウム水溶液、659gの水、10.0gの硫黄、260.5gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 比較例2 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、562.4gの42%水硫化ナトリウム水溶液、661gの水、261.4gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例4 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、528.6gの42%水硫化ナトリウム水溶液、718gの水、87.4gの硫黄、284.0gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例5 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、526.8gの42%水硫化ナトリウム水溶液、721gの水、54.9gの硫黄、285.1gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例6 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、525.7gの42%水硫化ナトリウム水溶液、723gの水、33.0gの硫黄、285.9gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例7 
 2Lのセパラブルフラスコを用いて、629.2gのビス(2-クロロエチル)ホルマール、10.8gの1,2,3-トリクロロプロパン、12.2gのテトラブチルアンモニウムブロマイド50wt%水溶液、524.5gの42%水硫化ナトリウム水溶液、725gの水、11.0gの硫黄、286.7gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例8 
 2Lのセパラブルフラスコを用いて、640.0gのビス(2-クロロエチル)ホルマール、12.1gのテトラブチルアンモニウムブロマイド50wt%水溶液、514.2gの42%水硫化ナトリウム水溶液、565gの水、11.1gの硫黄、288.3gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
 実施例9
 2Lのセパラブルフラスコを用いて、640.0gのビス(2-クロロエチル)ホルマール、12.1gのテトラブチルアンモニウムブロマイド50wt%水溶液、589.4gの42%水硫化ナトリウム水溶液、482gの水、9.5gの硫黄、246.5gの48%水酸化ナトリウム水溶液を反応させて、固体ポリサルファイドを経由させずに、淡黄色透明液体ポリマーを得た。得られたポリマーの硫黄の繰り返し数rの平均値、SH含量、粘度、比重、ガラス転移温度、50%重量減少温度を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1に評価に用いるポリマーの特性値を示す。No.2~4、7~12のポリマーは、本発明のポリマーである。SH含量がほぼ同じNo.1~5のポリマーを比較すると、硫黄の繰り返し数rの平均値が1.8以下の実施例1~3と比較例2のポリマーは、rの平均値が2.0の比較例1のポリマーに比べて、低粘度、低ガラス転移温度、低比重であり、50%重量減少温度が増加し、耐熱性がよかった。また、SH含量がほぼ同じNo.6~10のポリマーを比較すると、硫黄の繰り返し数rの平均値が1.1以上1.8以下の実施例5~8のポリマーは、rの平均値が2.0の比較例3のポリマーに比べて、低粘度、低ガラス転移温度、低比重であり、50%重量減少温度が増加し、耐熱性がよかった。
 SH含量がほぼ同じポリマーを比較すると、rの平均値の値が低いポリマーほど粘度が低くなっており、シーリング材として配合する際には、作業性を確保するための溶剤の添加量を低減することが可能である。
 実施例10~12
 実施例1~3(No.2~4)のポリマー100重量部に対し、二酸化マンガン(ハニウェル社製 TYPE-FA)18重量部と、添加剤として、SRFカーボン35重量部、フタル酸ブチルベンジル18重量部、テトラブチルチウラムジスルフィド0.9重量部(大内新興化学工業製 ノクセラーTBT)を加え、三本ロールミルを用いて混練した。トータル38gの混合物を2mmの隙間ができるように調整した鉄板で挟み込み、70℃で2時間加熱養生して、2mm厚のシート状硬化組成物を作製した。得られたシートを23℃50%RHの雰囲下に1時間放置して除熱した。約20mm角に切り出した硬化物の比重、ガラス転移温度、50%重量減少温度、復元率、硬度、ダンベル物性値を求めた。比重を表2に、その他の物性を表3に示す。
 比較例4
 実施例10~12と同様にして、ポリマーとしてNo.1(東レ・ファインケミカル製チオコール「LP-3」と「LP-23」を6:4の比率でブレンドしたポリマー)を用いて硬化型組成物を作製し、比重を測定した結果を表2に示す。さらに、2mm厚のシート状硬化物のガラス転移温度、50%重量減少温度、復元率、硬度、ダンベル物性値を求めた。得られた結果を表3に示す。
 実施例13~16
 実施例4~7(No.7~10)のポリマー100重量部に対し、二酸化マンガン(ハニウェル社製 TYPE-FA)9重量部と、添加剤として、SRFカーボン35重量部、フタル酸ブチルベンジル9重量部、テトラブチルチウラムジスルフィド0.45重量部(大内新興化学工業製 ノクセラーTBT)を加え、三本ロールミルを用いて混練した。トータル34gの混合物を2mmの隙間ができるように調整した鉄板で挟み込み、70℃で2時間加熱養生して、2mm厚のシート状硬化組成物を作製した。得られたシートを23℃50%RHの雰囲下に1時間放置して除熱した。約20mm角に切り出した硬化物の比重を測定した。その結果を表2に示す。
 比較例5
 実施例13~16と同様にして、ポリマーとしてNo.6(東レ・ファインケミカル製チオコール「LP-3」と「LP-2」を1:9の比率でブレンドしたポリマー)を用いて硬化型組成物を作製し、比重を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2から、硫黄の繰り返し数rの平均値が1.1~1.8の範囲のポリサルファイドポリマー(No.2~4、7~10)を用いた実施例10~16の硬化型組成物が、一般的に使用されているrの平均値が2.0であるポリサルファイドポリマー(No.1、6)を用いた比較例4、5の硬化物に比べて、比重が低い。rの平均値が1.1~1.8の範囲のポリサルファイドポリマーを用いた硬化型組成物は、より軽量化が求められる用途に適している。
 比較例6
 実施例10~12と同様にして、ポリマーとしてNo.5(比較例2のポリマー)を用いて2mm厚のシート状硬化型組成物を作製し、ガラス転移温度、50%重量減少温度、復元率、硬度、ダンベル物性値を求めた。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3から、硫黄の繰り返し数rの平均値が1.1~1.8の範囲のチオール基含有ポリマー(No.2~4)を用いた実施例10~12の硬化型組成物が、一般的に使用されているrの平均値が2.0であるポリサルファイドポリマー(No.1)を用いた比較例4の硬化物に比べて、低ガラス転移温度、高耐熱性、高復元率を兼ね備えている。硫黄の繰り返し数rの平均値が1.0の比較例6の硬化型組成物は、低ガラス転移温度、高耐熱性は有しているものの、硬度が4と非常に低く、ダンベル引張り試験におけるM100やTmaxも低く硬化物としての実用性が得られなかった。
 表2と表3の結果から、rの平均値が1.1~1.8の範囲のチオール基含有ポリマーを用いた硬化型組成物は、より軽量化や、より幅広い温度範囲での適合性が求められる航空機向けのシーリング材に適している。
 実施例17
 実施例3のポリマー(No.4、rの平均値が1.1)100重量部に対して、表4に示す配合剤を添加してプラネタリーミキサーを用いて主剤を作製し、さらにヘキサメチレンジイソシアネート(旭化成製デュラネート50M-HDI、NCO含量5.0%)134重量部を加えて手練りでよく混錬した。混合物をアルミ板上に50mm×12mm×3mm厚のシート状に成型し23℃で3日、次いで50℃で3日間養生して硬化物を得た。得られた硬化物をS.W.O.M.を用いて促進耐候性評価を行った。得られた結果を表4に示す。
 比較例7
 実施例17と同様にして、比較例2のポリマー(No.5、rの平均値が1.0)を用いた3mm厚の硬化物を作製し、S.W.O.M.を用いて促進耐候性評価を行った。得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4から、硫黄の繰り返し数rの平均値が1.0(No.5)の比較例7に比べて、rの平均値が1.1(サンプル4)の実施例17の場合にはクラックの発生が起こりにくく、耐候性が向上することが確認できた。
 表3のダンベル引張り物性と表4の耐候性の結果から、rの平均値が1.1のポリサルファイドポリマーを用いた硬化型組成物はrの平均値が1.0のポリマーを用いた場合とは、特性が大きく異なることがわかる。
 実施例18
 実施例3のポリマー(No.4、rの平均値が1.1)100重量部に対して、ジャパンエポキシレジン製エポキシ樹脂「エピコート828」100重量部とアデカ製芳香族3級アミン「アデカハードナーEHC30」5重量部を手練りでよく混練した後に23℃で7日間養生して1cm厚の試験片を作製した。得られた硬化型組成物のガラス転移温度と50%重量減少温度を測定した。得られた結果を表5に示す。
 比較例8
 実施例18と同様にして、実施例3のポリマーの代わりにサンプル1(東レ・ファインケミカル製チオコール「LP-3」と「LP-23」を6:4の比率でブレンドしたポリマー)を用いて硬化型組成物を作製し、ガラス転移温度と50%重量減少温度を測定した。得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表5に示すように、硫黄の繰り返し数rの平均値が1.1のチオール基含有ポリマー(No.4)を用いた実施例18の硬化型組成物は、一般的に使用されているrの平均値が2.0であるポリサルファイドポリマー(No.1)を用いた比較例8の硬化物に比べて、低ガラス転移温度、高耐熱性を示すことが確認できた。
 本発明のチオール基含有ポリマーは、ポリスルフィド結合中の硫黄の繰り返し数を減じることで、従来のポリサルファイドポリマーに比べて、低比重、低粘度、低ガラス転移温度であり、耐熱性が高いので、低比重、低粘度、低ガラス転移温度という特性が必要なシーリング材、接着剤、塗料などに用いることができる。また、本発明の硬化型組成物は、復元性、耐候性が向上するので、復元性、耐候性が必要なシーリング材、接着剤、塗料などに用いることができる。

Claims (9)

  1. 下記の一般式で表される
       HS-(R-Sr-R-SH  
    (Rが-O-CH-O-結合を含む有機基及び分岐アルキレン基であり、nが1~200の整数、rが1~5の整数であり、rの平均値が1.1以上1.8未満である)
    チオール基含有ポリマー。
  2. -O-CH-O-結合を含む有機基が
    -C-O-CH-O-C
    を50モル%以上含有する有機基である請求項1に記載のチオール基含有ポリマー。
  3. 分岐アルキレン基Rが
    Figure JPOXMLDOC01-appb-C000001
    である請求項1に記載のチオール基末端硫黄含有ポリマー。  
  4. ガラス転移温度が-85℃以上-50℃以下である請求項1に記載のチオール基含有ポリマー。
  5. 50%重量減少温度が300℃以上350℃以下である請求項1に記載のチオール基含有ポリマー。
  6. 23℃における比重が1.18から1.28である請求項1に記載のチオール基含有ポリマー
  7. 請求項1から6のいずれかに記載のチオール基含有ポリマーと酸化剤を含有する硬化型組成物。
  8. 請求項1から6のいずれかに記載のチオール基含有ポリマーと分子中に2個以上のイソシアネート基含有化合物を含有する硬化型組成物。
  9. 請求項1から6のいずれかに記載のチオール基含有ポリマーと分子中に2個以上のグリシジル基を含有するエポキシ樹脂とアミン類を含有する硬化型組成物。
PCT/JP2013/068830 2012-08-01 2013-07-10 チオール基含有ポリマー及びその硬化型組成物 WO2014021067A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201380034835.2A CN104411747B (zh) 2012-08-01 2013-07-10 含巯基的聚合物及其固化型组合物
JP2013546109A JP5790980B2 (ja) 2012-08-01 2013-07-10 チオール基含有ポリマー及びその硬化型組成物
EP13825332.3A EP2881418B1 (en) 2012-08-01 2013-07-10 Thiol group-containing polymer and curable composition thereof
US14/416,468 US9663619B2 (en) 2012-08-01 2013-07-10 Thiol group-containing polymer and curable composition thereof
KR1020147033037A KR101743098B1 (ko) 2012-08-01 2013-07-10 티올기 함유 폴리머 및 그 경화형 조성물
KR1020167020589A KR20160093102A (ko) 2012-08-01 2013-07-10 티올기 함유 폴리머 및 그 경화형 조성물
RU2015106941A RU2617686C2 (ru) 2012-08-01 2013-07-10 Полимер, содержащий тиоловые группы, и включающая его отверждаемая композиция
US15/270,263 US9738758B2 (en) 2012-08-01 2016-09-20 Thiol group-containing polymer, curable composition thereof and method of producing same
US15/494,746 US10179766B2 (en) 2012-08-01 2017-04-24 Thiol group-containing polymer and curable composition thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170857 2012-08-01
JP2012170857 2012-08-01

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/416,468 A-371-Of-International US9663619B2 (en) 2012-08-01 2013-07-10 Thiol group-containing polymer and curable composition thereof
US15/270,263 Division US9738758B2 (en) 2012-08-01 2016-09-20 Thiol group-containing polymer, curable composition thereof and method of producing same
US15/494,746 Division US10179766B2 (en) 2012-08-01 2017-04-24 Thiol group-containing polymer and curable composition thereof

Publications (1)

Publication Number Publication Date
WO2014021067A1 true WO2014021067A1 (ja) 2014-02-06

Family

ID=50027752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068830 WO2014021067A1 (ja) 2012-08-01 2013-07-10 チオール基含有ポリマー及びその硬化型組成物

Country Status (8)

Country Link
US (3) US9663619B2 (ja)
EP (1) EP2881418B1 (ja)
JP (1) JP5790980B2 (ja)
KR (2) KR20160093102A (ja)
CN (2) CN104411747B (ja)
RU (2) RU2617686C2 (ja)
TW (1) TWI518113B (ja)
WO (1) WO2014021067A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065152A (ja) * 2014-09-25 2016-04-28 東レ・ファインケミカル株式会社 硬化型組成物
KR20160097829A (ko) * 2015-02-10 2016-08-18 한국생산기술연구원 폴리티올 경화제를 포함하는 에폭시 접착제 조성물 및 이의 제조방법
JP2017506688A (ja) * 2014-02-27 2017-03-09 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. メルカプト末端液体ポリマーの調製プロセス
JP2017533286A (ja) * 2014-08-29 2017-11-09 ピーアールシー−デソト インターナショナル,インコーポレイティド 向上した耐熱性を有するポリチオエーテルシーラント

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477491B2 (ja) * 2013-11-27 2019-03-06 横浜ゴム株式会社 シーリング材組成物及び複合ガラス
EP3224292A1 (en) 2014-11-24 2017-10-04 PPG Industries Ohio, Inc. Methods for reactive three-dimensional printing by inkjet printing
WO2018057337A1 (en) * 2016-09-21 2018-03-29 3M Innovative Properties Company Polysulfide or polythioether sealant composition including glycol organic acid esters
EP3535311B1 (en) 2016-11-04 2022-05-25 PRC-Desoto International, Inc. Sulfur-containing poly(alkenyl) ethers, prepolymers incorporating sulfur-containing poly(alkenyl) ethers, and uses thereof
WO2018227149A1 (en) 2017-06-09 2018-12-13 Prc-Desoto International, Inc. Dual cure sealants
US10597565B2 (en) 2017-07-07 2020-03-24 Prc-Desoto International, Inc. Hydraulic fluid and fuel resistant sealants
US10434704B2 (en) 2017-08-18 2019-10-08 Ppg Industries Ohio, Inc. Additive manufacturing using polyurea materials
US10351674B2 (en) 2017-10-17 2019-07-16 Prc-Desoto International, Inc. Sulfur-containing polymeric particles and compositions
US10843180B2 (en) 2018-10-02 2020-11-24 Prc-Desoto International, Inc. Delayed cure micro-encapsulated catalysts
KR20240038831A (ko) 2019-02-11 2024-03-25 피피지 인더스트리즈 오하이오 인코포레이티드 밀봉 캡의 3차원 인쇄
CN118082177A (zh) 2019-02-11 2024-05-28 Ppg工业俄亥俄公司 制作耐化学性密封组件的方法
MX2021009610A (es) 2019-02-11 2021-10-26 Ppg Ind Ohio Inc Sistemas multicapa y métodos para elaborar sistemas multicapa.
US11015097B2 (en) 2019-03-06 2021-05-25 Prc-Desoto International, Inc. Chemically resistant sealant compositions and uses thereof
US11015057B2 (en) 2019-04-03 2021-05-25 Prc-Desoto International, Inc. Dual-cure compositions
US11505702B2 (en) 2019-04-05 2022-11-22 Prc-Desoto International, Inc. Controlled cure rate using polyether-coated synergists
US11466125B2 (en) 2019-12-19 2022-10-11 Prc-Desoto International, Inc. Low nucleation temperature polythioether prepolymers and uses thereof
US11608458B2 (en) 2019-12-19 2023-03-21 Prc-Desoto International, Inc. Adhesion-promoting interlayer compositions containing organic titanates/zirconates and methods of use
US11173692B2 (en) 2019-12-19 2021-11-16 Prc-Desoto International, Inc. Free radical polymerizable adhesion-promoting interlayer compositions and methods of use
US11437162B2 (en) 2019-12-31 2022-09-06 Industrial Technology Research Institute Conductive material composition and conductive material prepared therefrom
US11624007B2 (en) 2020-01-29 2023-04-11 Prc-Desoto International, Inc. Photocurable adhesion-promoting compositions and methods of use
US11214666B2 (en) 2020-04-15 2022-01-04 Prc-Desoto International, Inc. Controlling cure rate with wetted filler
WO2022177863A1 (en) 2021-02-16 2022-08-25 Prc-Desoto International, Inc. Compositions containing a free radical polymerization initiator
KR20230159592A (ko) 2021-03-29 2023-11-21 피알시-데소토 인터내쇼날, 인코포레이티드 하이브리드 이중 경화 조성물
WO2022232730A1 (en) 2021-04-27 2022-11-03 Ppg Industries Ohio, Inc. Multiple cure coreactive compositions for additive manufacturing and uses thereof
EP4083109A1 (en) 2021-04-28 2022-11-02 The Boeing Company Cure promoter compositions and methods for the same
CA3228686A1 (en) 2021-09-02 2023-03-09 Shane Xiufeng Peng Applicators for high viscosity materials
AU2022388723A1 (en) 2021-11-10 2024-05-30 Ppg Industries Ohio, Inc. Linear sealing components and methods and compositions for additively manufacturing thereof
WO2023164445A1 (en) 2022-02-23 2023-08-31 Ppg Industries Ohio, Inc. Conductive articles and methods for additive manufacturing thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392402A (en) 1940-10-12 1946-01-08 Thiokol Corp Monodisulphide polymer
US2466963A (en) 1945-06-16 1949-04-12 Thiokol Corp Polysulfide polymer
JPS62280259A (ja) * 1986-05-28 1987-12-05 Toray Chiokoole Kk ポリサルフアイド重合体組成物
JPH04363325A (ja) * 1991-06-10 1992-12-16 Toray Chiokoole Kk 重合体組成物、その製造方法及びその硬化型組成物
JPH0517684A (ja) * 1991-05-07 1993-01-26 Dainippon Ink & Chem Inc ポリサルフアイド系シーリング材
JPH0952937A (ja) * 1995-08-10 1997-02-25 Toray Thiokol Co Ltd ポリサルファイドポリマー用硬化剤
WO1998039365A2 (en) 1997-02-19 1998-09-11 Courtaulds Aerospace, Inc. Composition and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility
JP2000345101A (ja) * 1999-03-26 2000-12-12 Konishi Co Ltd プライマー組成物とそれを用いたコンクリート、モルタルの打継ぎ方法
JP2003128645A (ja) * 2001-09-12 2003-05-08 Rohm & Haas Co ポリスルフィド組成物の調製法
JP2004149712A (ja) * 2002-10-31 2004-05-27 Dow Corning Toray Silicone Co Ltd 含ケイ素ポリサルファイド系重合体の製造方法
WO2006029144A1 (en) 2004-09-08 2006-03-16 Prc-Desoto International, Inc. Polymer blend and compositions and methods for using the same
WO2009131796A1 (en) 2008-04-24 2009-10-29 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
WO2013018501A1 (ja) * 2011-07-29 2013-02-07 東レ・ファインケミカル株式会社 ハロゲン末端硫黄含有重合体
WO2013089000A1 (ja) * 2011-12-15 2013-06-20 東レ・ファインケミカル株式会社 硬化型組成物
JP2013127026A (ja) * 2011-12-19 2013-06-27 Toray Fine Chemicals Co Ltd 硬化型組成物
JP2013129768A (ja) * 2011-12-22 2013-07-04 Toray Fine Chemicals Co Ltd 硬化型組成物
JP2013144756A (ja) * 2012-01-16 2013-07-25 Toray Fine Chemicals Co Ltd 硬化型組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553206A (en) 1945-10-04 1951-05-15 Thiokol Corp Polysulfide polymer
US2646415A (en) 1948-02-11 1953-07-21 Reconstruction Finance Corp Copolymers of polythiols, phenols, and aldehydes
US3316324A (en) * 1966-07-11 1967-04-25 Sika Chemical Corp Thermosetting compositions containing a liquid rubber selected from polysulfide, polymercaptan, and chlorinated polyethylene, together with an epoxide and curing agent
US3402134A (en) 1964-04-27 1968-09-17 Thiokol Chemical Corp Tri and tetra mercapto compounds as cross-link control agents for polysulfide elastomers
JPS6253354A (ja) * 1985-08-30 1987-03-09 Sanyo Chem Ind Ltd ゴム用反応性可塑剤及び組成物
JP3584537B2 (ja) * 1995-03-31 2004-11-04 東レ・ファインケミカル株式会社 チオール基含有ポリエーテルポリマー及びその製造 方法
JPH1160693A (ja) * 1997-08-11 1999-03-02 Yuka Shell Epoxy Kk エポキシ樹脂用硬化剤組成物及びエポキシ樹脂組成物
JP3879083B2 (ja) * 2002-07-24 2007-02-07 東レ・ファインケミカル株式会社 硬化型組成物
EP2079795A1 (en) 2006-10-06 2009-07-22 Teijin Aramid B.V. Particle-matrix composition coated with mixture comprising polysulfide polymer
US8466220B2 (en) * 2008-04-24 2013-06-18 PRC DeSoto International, Inc Thioethers, methods for their preparation, and compositions including such thioethers
EP2430075A2 (en) * 2009-04-29 2012-03-21 Henkel Corporation Moisture curable polydisulfides

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392402A (en) 1940-10-12 1946-01-08 Thiokol Corp Monodisulphide polymer
US2466963A (en) 1945-06-16 1949-04-12 Thiokol Corp Polysulfide polymer
JPS62280259A (ja) * 1986-05-28 1987-12-05 Toray Chiokoole Kk ポリサルフアイド重合体組成物
JPH0517684A (ja) * 1991-05-07 1993-01-26 Dainippon Ink & Chem Inc ポリサルフアイド系シーリング材
JPH04363325A (ja) * 1991-06-10 1992-12-16 Toray Chiokoole Kk 重合体組成物、その製造方法及びその硬化型組成物
JPH0952937A (ja) * 1995-08-10 1997-02-25 Toray Thiokol Co Ltd ポリサルファイドポリマー用硬化剤
WO1998039365A2 (en) 1997-02-19 1998-09-11 Courtaulds Aerospace, Inc. Composition and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility
JP2000345101A (ja) * 1999-03-26 2000-12-12 Konishi Co Ltd プライマー組成物とそれを用いたコンクリート、モルタルの打継ぎ方法
JP2003128645A (ja) * 2001-09-12 2003-05-08 Rohm & Haas Co ポリスルフィド組成物の調製法
US6939941B2 (en) 2001-09-12 2005-09-06 Toray Fine Chemicals Co., Ltd. Preparation of polysulfide compositions
JP2004149712A (ja) * 2002-10-31 2004-05-27 Dow Corning Toray Silicone Co Ltd 含ケイ素ポリサルファイド系重合体の製造方法
WO2006029144A1 (en) 2004-09-08 2006-03-16 Prc-Desoto International, Inc. Polymer blend and compositions and methods for using the same
WO2009131796A1 (en) 2008-04-24 2009-10-29 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
WO2013018501A1 (ja) * 2011-07-29 2013-02-07 東レ・ファインケミカル株式会社 ハロゲン末端硫黄含有重合体
WO2013089000A1 (ja) * 2011-12-15 2013-06-20 東レ・ファインケミカル株式会社 硬化型組成物
JP2013127026A (ja) * 2011-12-19 2013-06-27 Toray Fine Chemicals Co Ltd 硬化型組成物
JP2013129768A (ja) * 2011-12-22 2013-07-04 Toray Fine Chemicals Co Ltd 硬化型組成物
JP2013144756A (ja) * 2012-01-16 2013-07-25 Toray Fine Chemicals Co Ltd 硬化型組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881418A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506688A (ja) * 2014-02-27 2017-03-09 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. メルカプト末端液体ポリマーの調製プロセス
JP2017533286A (ja) * 2014-08-29 2017-11-09 ピーアールシー−デソト インターナショナル,インコーポレイティド 向上した耐熱性を有するポリチオエーテルシーラント
JP2016065152A (ja) * 2014-09-25 2016-04-28 東レ・ファインケミカル株式会社 硬化型組成物
KR20160097829A (ko) * 2015-02-10 2016-08-18 한국생산기술연구원 폴리티올 경화제를 포함하는 에폭시 접착제 조성물 및 이의 제조방법
KR101693605B1 (ko) 2015-02-10 2017-01-17 한국생산기술연구원 폴리티올 경화제를 포함하는 에폭시 접착제 조성물 및 이의 제조방법

Also Published As

Publication number Publication date
US9738758B2 (en) 2017-08-22
EP2881418B1 (en) 2023-04-12
EP2881418A4 (en) 2016-04-27
EP2881418A1 (en) 2015-06-10
CN106832285A (zh) 2017-06-13
US10179766B2 (en) 2019-01-15
TWI518113B (zh) 2016-01-21
RU2017112503A (ru) 2019-01-25
KR20160093102A (ko) 2016-08-05
CN104411747A (zh) 2015-03-11
US20170226055A1 (en) 2017-08-10
CN106832285B (zh) 2019-04-19
KR20150037744A (ko) 2015-04-08
JP5790980B2 (ja) 2015-10-07
US9663619B2 (en) 2017-05-30
KR101743098B1 (ko) 2017-06-02
CN104411747B (zh) 2017-09-22
RU2015106941A (ru) 2016-09-20
US20170009019A1 (en) 2017-01-12
RU2617686C2 (ru) 2017-04-26
US20150307664A1 (en) 2015-10-29
JPWO2014021067A1 (ja) 2016-07-21
TW201412826A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
JP5790980B2 (ja) チオール基含有ポリマー及びその硬化型組成物
EP2792695B1 (en) Curable composition
JP5769031B2 (ja) ハロゲン末端硫黄含有重合体
JP2013127026A (ja) 硬化型組成物
JP2013129768A (ja) 硬化型組成物
JP2013144756A (ja) 硬化型組成物
JP6511753B2 (ja) 硬化型組成物
JP2017125126A (ja) チオール基含有ポリサルファイドポリエーテルポリマーの製造方法
RU2574399C2 (ru) Серосодержащий полимер с концевыми галогеновыми группами
JP2016186019A (ja) 硬化型組成物の硬化方法および硬化型組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013546109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825332

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013825332

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147033037

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416468

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015106941

Country of ref document: RU

Kind code of ref document: A