WO2014020949A1 - 通信装置、通信機、通信システム、通信方法、位置特定方法および記録媒体 - Google Patents

通信装置、通信機、通信システム、通信方法、位置特定方法および記録媒体 Download PDF

Info

Publication number
WO2014020949A1
WO2014020949A1 PCT/JP2013/061051 JP2013061051W WO2014020949A1 WO 2014020949 A1 WO2014020949 A1 WO 2014020949A1 JP 2013061051 W JP2013061051 W JP 2013061051W WO 2014020949 A1 WO2014020949 A1 WO 2014020949A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
information
communication
correction
unit
Prior art date
Application number
PCT/JP2013/061051
Other languages
English (en)
French (fr)
Inventor
正弥 峰
坂田 正行
政利 福川
健一 山岬
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014528018A priority Critical patent/JP6075377B2/ja
Publication of WO2014020949A1 publication Critical patent/WO2014020949A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system

Definitions

  • the present invention relates to a communication device, a communication device, a communication system, a communication method, a position specifying method, and a program, and in particular, a communication device, a communication device, a communication system, and a communication method that use positioning information from each of a plurality of satellites,
  • the present invention relates to a position specifying method and a program.
  • An inter-vehicle communication system that communicates position information of communication terminals between communication terminals mounted on a vehicle is known.
  • the position of the communication terminal mounted in the vehicle means the position of the vehicle.
  • the communication terminal mounted on the vehicle detects the position of the own terminal using, for example, a GPS (Global Positioning System) system.
  • GPS Global Positioning System
  • Patent Document 1 describes a technique for improving the accuracy of the position of a vehicle using correction information for correcting an error in the position of a vehicle that performs inter-vehicle communication specified by a GPS system.
  • information for example, position information specified by the GPS system having higher accuracy than that of a communication terminal that can receive correction information from a correction information transmission source
  • position information or correction information It is desired to effectively utilize position information or correction information.
  • An object of the present invention is to provide a communication device, a communication device, a communication system, a communication method, a position specifying method, and a program that can solve the above-described problems.
  • the communication device of the present invention A communication device for communicating with a communication device, Positioning information is received from each of a plurality of satellites, and correction information for correcting an error for a position specified using the plurality of positioning information is received from a specific satellite that is one of the plurality of satellites.
  • the communication device of the present invention A communication device that communicates with a communication device, Detecting means for detecting a relative positional relationship between the communication device and the communication device; Information receiving means for receiving, from the communication device, position information indicating the position of the communication device and predetermined identification information meaning having a predetermined position accuracy; When the position information is received together with the predetermined identification information, specifying means for specifying the position of the communication device based on the position information and the detection result of the relative positional relationship is included.
  • the communication device of the present invention A communication device that communicates with a communication device, Positioning information receiving means for receiving positioning information from each of a plurality of satellites; Correction information receiving means for receiving correction information for correcting an error for a position specified using the positioning information from the communication device; Specifying means for specifying a position of the communication device using a plurality of pieces of positioning information and correcting the position of the communication device according to the correction information.
  • the communication device of the present invention A communication device that communicates with a communication device, Position information representing the position of the communication device from the communication device, predetermined identification information meaning having a predetermined position accuracy, and positional relationship information representing a relative positional relationship between the communication device and the communication device And information receiving means for receiving Specifying means for specifying the position of the communication device based on the position information and the positional relationship information when the position information is received together with the predetermined identification information.
  • the communication system of the present invention includes: A communication system including a communication device and a communication device, The communication device Positioning information is received from each of a plurality of satellites, and correction information for correcting an error for a position specified using the plurality of positioning information is received from a specific satellite that is one of the plurality of satellites.
  • Receiving means for receiving; Position specifying means for specifying the position of the communication device using the plurality of positioning information, correcting the position of the communication device according to the correction information, and obtaining a correction position; Communication means for transmitting both the position information representing the correction position and the predetermined identification information meaning having a predetermined position accuracy to the communication device,
  • the communication device is Detecting means for detecting a relative positional relationship between the communication device and the communication device; Information receiving means for receiving the position information and the predetermined identification information from the communication device; When the position information is received together with the predetermined identification information, specifying means for specifying the position of the communication device based on the position information and the detection result of the relative positional relationship is included.
  • the communication system of the present invention includes: A communication system including a communication device and a communication device, The communication device Positioning information is received from each of a plurality of satellites, and correction information for correcting an error for a position specified using the plurality of positioning information is received from a specific satellite that is one of the plurality of satellites.
  • Receiving means for receiving; Position specifying means for specifying the position of the communication device using the plurality of positioning information, correcting the position of the communication device according to the correction information, and obtaining a correction position; Communication means for transmitting the correction information to the communication device,
  • the communication device is Positioning information receiving means for receiving the positioning information from each of the plurality of satellites; Correction information receiving means for receiving the correction information from the communication device; Specifying means for specifying the position of the communication device using a plurality of positioning information received by the positioning information receiving means, and correcting the position of the communication device according to the correction information.
  • the communication system of the present invention includes: A communication system including a communication device and a communication device, The communication device Positioning information is received from each of a plurality of satellites, and correction information for correcting an error for a position specified using the plurality of positioning information is received from a specific satellite that is one of the plurality of satellites.
  • Receiving means for receiving; Position specifying means for specifying the position of the communication device using the plurality of positioning information, correcting the position of the communication device according to the correction information, and obtaining a correction position; Detecting means for detecting a relative positional relationship between the communication device and the communication device; Communication means for transmitting position information representing the correction position, predetermined identification information meaning having a predetermined position accuracy, and a detection result of the relative positional relationship to the communication device,
  • the communication device is Information receiving means for receiving, from the communication device, the position information, the predetermined identification information, and a detection result of a relative positional relationship between the communication device and the communication device; When the position information is received together with the predetermined identification information, specifying means for specifying the position of the communication device based on the position information and the detection result of the relative positional relationship is included.
  • the communication method of the present invention includes: A communication method performed by a communication device communicating with a communication device, Positioning information is received from each of a plurality of satellites, and correction information for correcting an error for a position specified using the plurality of positioning information is received from a specific satellite that is one of the plurality of satellites. Receive Identifying the position of the communication device using the plurality of positioning information, correcting the position of the communication device according to the correction information to obtain a correction position, Both the position information representing the correction position and the predetermined identification information meaning having a predetermined position accuracy, or the correction information is transmitted to the communication device.
  • the location method of the present invention includes: A position identification method performed by a communication device communicating with a communication device, Detecting a relative positional relationship between the communication device and the communication device; Receiving from the communication device position information representing the position of the communication device and predetermined identification information meaning having a predetermined position accuracy; When the position information is received together with the predetermined identification information, the position of the communication device is specified based on the position information and the detection result of the relative positional relationship.
  • the location method of the present invention includes: A position identification method performed by a communication device communicating with a communication device, Receive positioning information from each of multiple satellites, From the communication device, receiving correction information for correcting an error for the position specified using the positioning information, The position of the communication device is specified using a plurality of positioning information, and the position of the communication device is corrected according to the correction information.
  • the location method of the present invention includes: A position identification method performed by a communication device communicating with a communication device, Position information representing the position of the communication device from the communication device, predetermined identification information meaning having a predetermined position accuracy, and positional relationship information representing a relative positional relationship between the communication device and the communication device And, receive When the position information is received together with the predetermined identification information, the position of the communication device is specified based on the position information and the detection result of the relative positional relationship.
  • the recording medium of the present invention is On the computer, Positioning information is received from each of a plurality of satellites, and correction information for correcting an error for a position specified using the plurality of positioning information is received from a specific satellite that is one of the plurality of satellites.
  • the receiving procedure to receive A position identifying procedure for identifying a position of the computer using the plurality of positioning information, correcting the position of the computer according to the correction information, and obtaining a corrected position;
  • a program for executing both the position information indicating the correction position and the predetermined identification information meaning having a predetermined position accuracy, or a communication procedure for transmitting the correction information to a communication device is recorded.
  • a computer-readable recording medium A computer-readable recording medium.
  • the recording medium of the present invention is On the computer, A detection procedure for detecting a relative positional relationship between the communication device and the computer; An information receiving procedure for receiving, from the communication device, position information indicating the position of the communication device, and predetermined identification information meaning having a predetermined position accuracy; When the position information is received together with the predetermined identification information, a program for executing a specific procedure for specifying the position of the computer based on the position information and the detection result of the relative positional relationship is recorded.
  • the computer-readable recording medium is On the computer, A detection procedure for detecting a relative positional relationship between the communication device and the computer; An information receiving procedure for receiving, from the communication device, position information indicating the position of the communication device, and predetermined identification information meaning having a predetermined position accuracy; When the position information is received together with the predetermined identification information, a program for executing a specific procedure for specifying the position of the computer based on the position information and the detection result of the relative positional relationship is recorded.
  • the computer-readable recording medium is On the computer,
  • the recording medium of the present invention is On the computer, Positioning information receiving procedure for receiving positioning information from each of a plurality of satellites; Correction information reception procedure for receiving correction information for correcting an error for a position specified using the positioning information from a communication device; A computer-readable recording medium recording a program for specifying a position of the computer using a plurality of positioning information and correcting a position of the computer according to the correction information.
  • the recording medium of the present invention is On the computer, From the communication device, position information indicating the position of the communication device, predetermined identification information meaning having a predetermined position accuracy, position relationship information indicating a relative position relationship between the communication device and the computer, Receiving information, and When the position information is received together with the predetermined identification information, a program for executing a specific procedure for specifying the position of the computer based on the position information and the detection result of the relative positional relationship is recorded.
  • the computer-readable recording medium is On the computer, From the communication device, position information indicating the position of the communication device, predetermined identification information meaning having a predetermined position accuracy, position relationship information indicating a relative position relationship between the communication device and the computer, Receiving information, and When the position information is received together with the predetermined identification information, a program for executing a specific procedure for specifying the position of the computer based on the position information and the detection result of the relative positional relationship is recorded.
  • the computer-readable recording medium is On the computer, From the communication device, position information indicating the
  • the positioning accuracy of a communication device it is possible to increase the positioning accuracy of a communication device that is difficult to increase the positioning accuracy by itself. Further, for example, the positioning accuracy of each vehicle (communication device) can be increased without requiring a correction device such as a gyro sensor.
  • FIG. 1 is a diagram illustrating an example of a communication device 1.
  • FIG. 3 is a diagram illustrating an example of a communication device 2.
  • FIG. 3 is a sequence diagram for explaining an operation of the communication system 100.
  • FIG. It is the figure which showed communication system 100A which showed 2nd Embodiment of this invention. It is the figure which showed an example of 1 A of communication apparatuses. It is the figure which showed an example of 2 A of communication apparatuses. It is a sequence diagram for demonstrating operation
  • FIG. 1 is a diagram showing a communication system 100 showing a first embodiment of the present invention.
  • the communication system 100 includes a communication device 1 and a communication device 2.
  • the communication device 1 is mounted on the vehicle 10, and the communication device 2 is mounted on the vehicle 20.
  • the communication device 1 and the communication device 2 perform inter-vehicle communication.
  • the communication device 1 receives information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40.
  • the quasi-zenith satellite 40 is an example of a specific satellite, and is also an example of a regional positioning satellite that constitutes a navigation satellite system that covers a predetermined area.
  • the communication system 100 exists within the coverage area of the quasi-zenith satellite 40.
  • FIG. 2 is a diagram illustrating an example of the communication device 1.
  • the communication device 1 includes a receiving unit 11, a position specifying unit 12, and a communication unit 13.
  • the receiving unit 11 is an example of a receiving unit.
  • the receiving unit 11 receives positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40. In addition, the receiving unit 11 receives correction information from the quasi-zenith satellite 40.
  • the correction information from the quasi-zenith satellite 40 is information for correcting an error regarding a position specified by using positioning information from each of the GPS satellites 30a to 30c and positioning information from the quasi-zenith satellite 40. is there.
  • the correction information is transmitted from the quasi-zenith satellite 40 together with the positioning information.
  • the position specifying unit 12 is an example of a position specifying unit.
  • the position specifying unit 12 specifies the position of the communication device 1 using the four pieces of positioning information received by the receiving unit 11.
  • the technology for specifying the position of the communication device 1 using the four pieces of positioning information is a technology used in the GPS system.
  • the position specifying unit 12 corrects the position of the communication device 1 specified using the four pieces of positioning information according to the correction information received by the receiving unit 11, and obtains a corrected position. For this reason, the correction position is more accurate than the position specified using the four pieces of positioning information.
  • the communication unit 13 is an example of a communication means.
  • the communication unit 13 communicates various information with the communication device 2. For example, the communication unit 13 transmits both the position information indicating the correction position (the position of the communication device 1) specified by the position specifying unit 12 and the QZSS (Quasi Zenith Satellite System) flag to the communication device 2. In the present embodiment, the communication unit 13 transmits the position information to which the QZSS flag is added to the communication device 2.
  • the communication unit 13 transmits both the position information indicating the correction position (the position of the communication device 1) specified by the position specifying unit 12 and the QZSS (Quasi Zenith Satellite System) flag to the communication device 2.
  • the communication unit 13 transmits the position information to which the QZSS flag is added to the communication device 2.
  • the QZSS flag is an example of predetermined identification information.
  • the QZSS flag means that the accuracy of the position information transmitted together with the QZSS flag is higher than the accuracy of the position information calculated by the GPS system.
  • the accuracy higher than the accuracy of the position information calculated by the GPS system is an example of the predetermined position accuracy.
  • the predetermined identification information is not limited to the QZSS flag and can be changed as appropriate.
  • FIG. 3 is a diagram illustrating an example of the communication device 2.
  • the communication device 2 does not have a function of receiving correction information from the quasi-zenith satellite 40.
  • the communication device 2 includes a detection unit 21, a communication unit 22, and a position specifying unit 23.
  • the detection unit 21 is an example of a detection unit.
  • the detecting unit 21 detects a relative positional relationship between the communication device 1 and the communication device 2.
  • the detection unit 21 is, for example, a radar device.
  • the detection unit 21 detects the distance from the communication device 2 to the vehicle 10 on which the communication device 1 is mounted as the distance from the communication device 2 to the communication device 1.
  • the detection unit 21 detects the direction from the vehicle 10 to the communication device 2 as the direction from the communication device 1 to the communication device 2.
  • the detection unit 21 is not limited to the radar device and can be changed as appropriate.
  • the communication unit 22 is an example of an information receiving unit.
  • the communication unit 22 communicates various information with the communication device 1. For example, the communication unit 22 receives the position information to which the QZSS flag is added from the communication device 1.
  • the position specifying unit 23 is an example of specifying means.
  • the position specifying unit 23 is based on the detection result of the relative positional relationship between the communication device 1 and the communication device 2 and the position information received together with the QZSS flag. The position of the communication device 2 is specified.
  • FIG. 4 is a sequence diagram for explaining the operation of the communication system 100.
  • the receiving unit 11 receives positioning information from each of the GPS satellites 30 a to 30 c and the quasi-zenith satellite 40, and receives correction information from the quasi-zenith satellite 40. Receive (step S401).
  • the receiving unit 11 outputs the positioning information to the position specifying unit 12 when receiving the positioning information, and outputs the correction information to the position specifying unit 12 when receiving the correction information.
  • the position specifying unit 12 specifies the position of the communication device 1 using the four pieces of positioning information (step S402).
  • the position specifying unit 12 calculates the correction position by correcting the position of the communication device 1 using the correction information (step S403).
  • the position specifying unit 12 generates position information indicating the correction position, and adds a QZSS flag to the position information. Subsequently, the position specifying unit 12 outputs the position information to which the QZSS flag is added to the communication unit 13.
  • the communication unit 13 When the communication unit 13 receives the position information to which the QZSS flag is added, the communication unit 13 transmits the position information to which the QZSS flag is added to the communication device 2 (step S404).
  • the communication unit 22 receives the position information to which the QZSS flag is added (step S405).
  • the communication unit 22 outputs the position information to which the QZSS flag is added to the position specifying unit 23.
  • the position specifying unit 23 When the position specifying unit 23 receives the position information to which the QZSS flag is added, the position specifying unit 23 operates the detection unit 21, and the detection unit 21 detects the relative positional relationship between the communication device 2 and the communication device 1 (vehicle 10). (Step S406).
  • the position specifying unit 23 in the communication device 2 determines the relative position between the communication device 2 and the communication device 1 (vehicle 10). The relationship can be easily detected.
  • the communication device 2 identifies the communication device 1 (vehicle 10) as a detection target from among a plurality of communication devices (vehicles) will be described.
  • the position specifying unit 23 When receiving the position information to which the QZSS flag is added, the position specifying unit 23 specifies the position of the communication device 2 using positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40, for example. Note that the method by which the position specifying unit 23 specifies the position of the communication device 2 is not limited to the method using the positioning information, and can be changed as appropriate.
  • the position specifying unit 23 estimates an area where the communication apparatus 1 exists based on the position of the communication apparatus 1 represented by the position information to which the QZSS flag is added.
  • the estimated area is referred to as “estimated area”.
  • the position specifying unit 23 specifies a circular area whose center is the position of the communication device 1 represented by the position information and whose radius is a predetermined value as the estimated area.
  • the position specifying unit 23 outputs position information indicating the position of the communication device 2 and estimated area information indicating the estimated area to the detecting unit 21.
  • the detection unit 21 When the detection unit 21 receives the position information and the estimated area information, the detection unit 21 detects a relative positional relationship between an object (hereinafter simply referred to as “object”) around the communication device 2 and the communication device 2.
  • object an object
  • the detection unit 21 specifies the position of the object using the position of the communication device 2 represented by the position information and the relative positional relationship between the object and the communication device 2.
  • the detection unit 21 identifies, as the communication device 1 (vehicle 10), an object that exists in the estimated area represented by the estimated area information among the objects.
  • the method by which the detection unit 21 specifies the communication device 1 (vehicle 10) that is the detection target is not limited to the above method, and can be changed as appropriate.
  • the detection unit 21 When detecting the relative positional relationship between the communication device 2 and the communication device 1 (the distance from the communication device 2 to the communication device 1 and the direction from the communication device 1 to the communication device 2), the detection unit 21 detects the detection result. The data is output to the position specifying unit 23.
  • the position specifying unit 23 specifies the position of the communication device 2 based on the detection result and the position information to which the QZSS flag is added (step S407).
  • the position specifying unit 23 communicates a position away from the position represented by the position information to which the QZSS flag is added in the direction from the communication device 1 to the communication device 2 by the distance from the communication device 2 to the communication device 1.
  • the position of the machine 2 is specified. Since the position specified in step S407 is set based on the position represented by the position information to which the QZSS flag is added, the position specified using only the GPS system (for example, each of the GPS satellites 30a to 30c). And the position specified using the positioning information from the quasi-zenith satellite 40).
  • the position specifying unit 23 When the position specifying unit 23 specifies the position of the communication device 2 in step S407, the position specifying unit 23 generates position information indicating the position of the communication device 2 specified in step S407, and the position information is transmitted to the communication device 22 via the communication unit 22. 1 (step S408).
  • the communication unit 13 receives the position information transmitted from the communication device 2 (step S409).
  • the receiving unit 11 receives positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40, and receives correction information from the quasi-zenith satellite 40.
  • the position specifying unit 12 specifies the position of the communication device 1 using the four pieces of positioning information received by the receiving unit 11, and corrects the position of the communication device 1 according to the correction information to obtain a correction position.
  • the communication unit 13 transmits both the position information indicating the correction position (the position of the communication device 1) specified by the position specifying unit 12 and the QZSS flag to the communication device 2.
  • the communication device 1 can provide highly accurate position information to the communication device 2 together with the QZSS flag which means that the position accuracy is higher than that of the GPS system. Therefore, the communication apparatus 1 determines whether or not the communication device 2 has high accuracy of the position information according to the presence or absence of the QZSS flag, and specifies the position of the communication device 2 with high accuracy using the high-accuracy position information. Make it possible. This effect is also achieved by the communication device 1 including the receiving unit 11, the position specifying unit 12, and the communication unit 13.
  • the detection unit 21 detects the relative positional relationship between the communication device 1 and the communication device 2.
  • the communication unit 22 receives position information and a QZSS flag from the communication device 1.
  • the position specifying unit 23 determines the position of the communication device 2 based on the position information and the detection result of the relative positional relationship between the communication device 1 and the communication device 2. Identify.
  • the communication device 2 can determine whether or not the accuracy of the position information is high according to the presence or absence of the QZSS flag, and can specify the position of the communication device 2 with high accuracy using the high-precision position information. become. This effect is also achieved by the communication device 2 including the detection unit 21, the communication unit 22, and the position specifying unit 23.
  • a communication device that does not have a function of receiving correction information from the quasi-zenith satellite 40 detects a relative positional relationship between the communication device and the communication device.
  • a communication device having a function of receiving correction information from the quasi-zenith satellite 40 detects the relative positional relationship between the communication device and the communication device.
  • FIG. 5 is a diagram showing a communication system 100A showing the second embodiment of the present invention.
  • the same components as those shown in FIG. 5 are identical to those shown in FIG. 5.
  • the communication system 100A includes a communication device 1A and a communication device 2A.
  • the communication device 1A is mounted on the vehicle 10A, and the communication device 2A is mounted on the vehicle 20A.
  • the communication device 1A and the communication device 2A perform inter-vehicle communication.
  • the communication system 100 ⁇ / b> A exists in the coverage area of the quasi-zenith satellite 40.
  • FIG. 6 is a diagram illustrating an example of the communication device 1A.
  • the communication device 1A will be described focusing on differences from the communication device 1 illustrated in FIG.
  • the communication device 1A includes a reception unit 11, a position specifying unit 12A, a communication unit 13A, and a detection unit 14.
  • the position specifying unit 12A is an example of a position specifying unit.
  • the position specifying unit 12A has a function of exchanging information and instructions with the detecting unit 14 in addition to the function of the position specifying unit 12 shown in FIG.
  • the detection unit 14 is an example of a detection unit.
  • the detecting unit 14 detects the relative positional relationship between the communication device 1A and the communication device 2A.
  • the detection unit 14 is, for example, a radar device.
  • the detection unit 14 detects the distance from the communication device 1A to the vehicle 20A on which the communication device 2A is mounted as the distance from the communication device 1A to the communication device 2A. Further, the detection unit 14 detects the direction from the vehicle 20A to the communication device 1A as the direction from the communication device 2A to the communication device 1A.
  • the detection unit 14 is not limited to the radar device and can be changed as appropriate.
  • the communication unit 13A is an example of a communication means.
  • the communication unit 13A communicates various information with the communication device 2A.
  • the communication unit 13A detects the positional information indicating the correction position (position of the communication device 1A) specified by the position specifying unit 12A, the QZSS flag, and the relative positional relationship between the communication device 1A and the communication device 2A.
  • the detection result in the unit 14 is transmitted to the communication device 2A.
  • the communication unit 13A transmits the positional information to which the QZSS flag is added and the positional relationship information indicating the detection result of the relative positional relationship between the communication device 1A and the communication device 2A to the communication device 2A. To do.
  • FIG. 7 is a diagram showing an example of the communication device 2A.
  • the communication device 2A does not have a function of receiving correction information from the quasi-zenith satellite 40.
  • the communication device 2A includes a communication unit 22A and a position specifying unit 23A.
  • the communication unit 22A is an example of an information receiving unit.
  • the communication unit 22A communicates various information with the communication device 1A. For example, the communication unit 22A receives the position information to which the QZSS flag is added and the position relation information from the communication device 1A.
  • the position specifying unit 23A is an example of specifying means.
  • the position specifying unit 23A When the position specifying unit 23A receives the position information together with the QZSS flag, the position specifying unit 23A specifies the position of the communication device 2A based on the position information and the position relation information. In addition, the position specifying unit 23A specifies the position of the communication device 2A using positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40, for example.
  • FIG. 8 is a sequence diagram for explaining the operation of the communication system 100A.
  • FIG. 8 processes having the same contents as those shown in FIG.
  • the operation of the communication system 100A will be described focusing on processing different from the processing shown in FIG.
  • the position specifying unit 23A specifies the position of the communication device 2A using the positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40 (step S801), the position of the communication device 2A is determined. Is generated.
  • the position specifying unit 23A transmits the communication device position information to the communication device 1A via the communication unit 22A (step S802).
  • the communication unit 13A receives the communication device position information from the communication device 1A (step S803).
  • the communication unit 13A outputs the communication device position information to the position specifying unit 12A.
  • the position specifying unit 12A When receiving the communication device position information, the position specifying unit 12A causes the reception unit 11 to execute step S401 because the QZSS flag is not added to the communication device position information. Thereafter, steps S402 and S403 are executed.
  • the position specifying unit 12A operates the detection unit 14, and the detection unit 14 detects the relative positional relationship between the communication device 1A and the communication device 2A (vehicle 20A) (step S804).
  • the position specifying unit 12A in the communication device 1A has a relative positional relationship between the communication device 1A and the communication device 2A (vehicle 20A). Can be easily detected.
  • the communication device 1A specifies the communication device 2A (vehicle 20A) as a detection target from among a plurality of communication devices (vehicles) will be described.
  • the position specifying unit 12A estimates a region where the communication device 2A exists based on the position of the communication device 2A represented by the communication device position information.
  • the estimated existence area of the communication device 2A is referred to as “estimated existence area”.
  • the position specifying unit 12A specifies a circular area whose center is the position of the communication device 2A represented by the position information and whose radius is a specific value as the estimated existence area.
  • the position specifying unit 12A outputs position information indicating the position of the communication device 1A and estimated presence area information indicating the estimated presence area to the detection unit 14.
  • the detection unit 14 When the detection unit 14 receives the position information and the estimated presence area information, the detection unit 14 detects a relative positional relationship between an object existing around the communication device 1A (hereinafter referred to as “ambient object”) and the communication device 1A.
  • ambient object an object existing around the communication device 1A
  • the detection unit 14 specifies the position of the surrounding object by using the position of the communication device 1A represented by the position information and the relative positional relationship between the surrounding object and the communication device 1A.
  • the detection unit 14 identifies, as the communication device 2A (vehicle 20A), a surrounding object that exists in the estimated existence area represented by the estimated existence area information among the surrounding objects.
  • the method by which the detection unit 14 specifies the communication device 2A (vehicle 20A) that is a detection target is not limited to the above method and can be changed as appropriate.
  • the detection unit 14 When detecting the relative positional relationship between the communication device 1A and the communication device 2A (the distance from the communication device 1A to the communication device 2A and the direction from the communication device 1A to the communication device 2A), the detection unit 14 detects the detection result. The data is output to the position specifying unit 12A.
  • the position specifying unit 12A Upon receiving the detection result (the relative positional relationship between the communication device 1A and the communication device 2A), the position specifying unit 12A receives the positional relationship information indicating the detection result and the position information (the communication device 1A) to which the QZSS flag is added. Is transmitted to the communication device 2A via the communication unit 13A (step S805).
  • the communication unit 22A receives the position information to which the QZSS flag is added and the positional relationship information (step S806).
  • the communication unit 22A outputs the position information to which the QZSS flag is added and the positional relationship information to the position specifying unit 23A.
  • the position specifying unit 23A Upon receiving the position information to which the QZSS flag is added and the positional relationship information, the position specifying unit 23A determines the position of the communication device 2A based on the position information to which the QZSS flag is added and the positional relationship information. Specify (step S807).
  • the position specifying unit 23A determines the distance from the communication device 1A to the communication device 2A in the direction from the communication device 1A to the communication device 2A from the position represented by the position information to which the QZSS flag is added (the position of the communication device 1A). A position that is far away is specified as the position of the communication device 2A. Note that the position specified in step S807 is set with reference to the position represented by the position information to which the QZSS flag is added, and therefore the accuracy is higher than the position specified only by the GPS system.
  • the position specifying unit 23A When the position specifying unit 23A specifies the position of the communication device 2A in step S807, the position specifying unit 23A generates communication device position information indicating the position of the communication device 2A specified in step S807, and the communication device position information is transmitted to the communication unit 22A. Via the communication device 1A (step S808).
  • the communication unit 13A receives the communication device position information transmitted from the communication device 2A (step S809).
  • the detection unit 14 detects the relative positional relationship between the communication device 1A and the communication device 2A.
  • the communication unit 13A transmits the position information, the QZSS flag, and the position relation information to the communication device 2A.
  • the communication device 1A determines whether or not the communication device 2A has high accuracy in the position information according to the presence or absence of the QZSS flag, and uses the position information and the positional relationship information with high accuracy. It is possible to specify the position with high accuracy.
  • the communication unit 22A receives the position information, the QZSS flag, and the position relationship information from the communication device 1A.
  • the position specifying unit 23A specifies the position of the communication device 2A based on the position information and the position relation information.
  • the communication device 2A can determine whether or not the accuracy of the position information is high according to the presence or absence of the QZSS flag, and the position of the communication device 2A can be determined with high accuracy using the highly accurate position information and the positional relationship information. It becomes possible to specify. This effect is also achieved by the communication device 2A including the communication unit 22A and the position specifying unit 23A.
  • a communication device having a function of receiving correction information from the quasi-zenith satellite 40 has a QZSS flag for a communication device that does not have a function of receiving correction information from the quasi-zenith satellite 40. The location information with is sent.
  • a communication device having a function of receiving correction information from the quasi-zenith satellite 40 is used for a communication device having no function of receiving correction information from the quasi-zenith satellite 40. Send correction information.
  • FIG. 9 is a diagram showing a communication system 100B according to the third embodiment of the present invention.
  • the same components as those shown in FIG. 9 are identical to FIG. 9, the same components as those shown in FIG. 9.
  • the communication system 100B includes a communication device 1B and a communication device 2B.
  • the communication device 1B is mounted on the vehicle 10B, and the communication device 2B is mounted on the vehicle 20B.
  • the communication device 1B and the communication device 2B perform inter-vehicle communication.
  • the communication system 100 ⁇ / b> B exists in the coverage area of the quasi-zenith satellite 40.
  • FIG. 10 is a diagram illustrating an example of the communication device 1B.
  • the communication device 1B includes a receiving unit 11, a position specifying unit 12B, and a communication unit 13B.
  • the position specifying unit 12B is an example of a position specifying unit.
  • the position specifying unit 12B has a function of outputting the correction information received by the receiving unit 11 to the communication unit 13B in addition to the function of the position specifying unit 12 shown in FIG.
  • the communication unit 13B is an example of communication means.
  • the communication unit 13B communicates various information with the communication device 2B. For example, the communication unit 13B transmits the correction information received from the position specifying unit 12B to the communication device 2B.
  • FIG. 11 is a diagram showing an example of the communication device 2B. Note that the communication device 2B does not have a function of receiving correction information from the quasi-zenith satellite 40.
  • the communication device 2B includes a communication unit 22B, a position specifying unit 23B, and a receiving unit 24.
  • the receiving unit 24 is an example of positioning information receiving means.
  • the receiving unit 24 receives positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40.
  • the receiving unit 24 outputs each positioning information to the position specifying unit 23B.
  • the communication unit 22B is an example of a correction information receiving unit.
  • the communication unit 22B communicates various information with the communication device 1B. For example, the communication unit 22B receives the correction information from the communication device 1B. The communication unit 22B outputs the correction information to the position specifying unit 23B.
  • the position specifying unit 23B is an example of specifying means.
  • the position specifying unit 23B specifies the position of the communication device 2B using the positioning information received from the receiving unit 24. And the position specific
  • the receiving unit 11 receives positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40, and receives correction information from the quasi-zenith satellite 40.
  • the position specifying unit 12B specifies the position of the communication device 1 using the four pieces of positioning information received by the receiving unit 11, and determines the correction position by correcting the position of the communication device 1 according to the correction information.
  • the communication unit 13B transmits the correction information received by the reception unit 11 to the communication device 2B.
  • the communication device 1B can provide the communication device 2B with correction information that the communication device 2B cannot receive from the quasi-zenith satellite 40. Therefore, the communication device 1B enables the communication device 2B to generate highly accurate position information using the correction information. This effect is also achieved by the communication device 1B including the receiving unit 11, the position specifying unit 12B, and the communication unit 13B.
  • the receiving unit 24 receives positioning information from each of the GPS satellites 30a to 30c and the quasi-zenith satellite 40.
  • the communication unit 22B receives the correction information from the communication device 1B.
  • the position specifying unit 23B specifies the position of the communication device 2B using the plurality of positioning information received by the receiving unit 24, and corrects the position of the communication device 2B according to the correction information received by the communication unit 22B. .
  • the communication device 2B can generate highly accurate position information using the correction information. This effect is also exhibited by the communication device 2B including the receiving unit 24, the communication unit 22B, and the position specifying unit 23B.
  • the communication device transmits supplementary information representing the reliability of the correction information to the communication device together with the correction information, and the communication device refers to the supplementary information from the received correction information and is most reliable. Highly corrective correction information is selected, and the position of the communication device 2B is corrected using the selected correction information.
  • FIG. 12 is a diagram showing a communication system 100Ba showing the fourth embodiment of the present invention.
  • the same components as those shown in FIG. 9 are denoted by the same reference numerals.
  • the communication system 100Ba includes a communication device 1Ba and a communication device 2Ba.
  • the communication device 1Ba is mounted on the vehicle 10B, and the communication device 2Ba is mounted on the vehicle 20B.
  • the communication device 1Ba and the communication device 2Ba perform inter-vehicle communication.
  • the communication system 100Ba exists in the cover area of the quasi-zenith satellite 40.
  • FIG. 13 is a diagram illustrating an example of the communication device 1Ba.
  • the communication device 1Ba includes a receiving unit 11, a position specifying unit 12B, a supplementary information generating unit 1Ba1, and a communication unit 13Ba.
  • the supplementary information generation unit 1Ba1 is an example of a generation unit.
  • the supplementary information generation unit 1Ba1 generates supplementary information representing the reliability of the correction information based on the reception result of the correction information by the reception unit 11. For example, the supplementary information generation unit 1Ba1 generates supplementary information that represents higher reliability as the correction information reception intensity is higher.
  • the method for generating supplemental information is not limited to the above, and can be changed as appropriate.
  • the supplementary information generation unit 1Ba1 outputs supplementary information to the communication unit 13Ba.
  • the communication unit 13Ba is an example of a communication unit.
  • the communication unit 13Ba communicates various information with the communication device 2Ba. For example, the communication unit 13Ba transmits the correction information received from the position specifying unit 12B and the supplementary information received from the supplementary information generating unit 1Ba1 to the communication device 2Ba.
  • the portion representing the granularity in the correction information functions as supplementary information.
  • FIG. 14 is a diagram illustrating an example of the communication device 2Ba.
  • the communication device 2Ba does not have a function of receiving correction information from the quasi-zenith satellite 40.
  • the communication device 2Ba includes a communication unit 22B, a supplementary information determination unit 2Ba1, a position specifying unit 23B, and a receiving unit 24.
  • the communication unit 22B receives correction information and supplementary information from a plurality of communication devices 1Ba, for example.
  • the communication unit 22B outputs a set of correction information and supplementary information to the supplementary information determination unit 2Ba1.
  • the supplementary information determination unit 2Ba1 is an example of a correction information determination unit.
  • the supplement information determination unit 2Ba1 When the communication unit 22B receives the correction information and the supplement information from the plurality of communication devices 1Ba, the supplement information determination unit 2Ba1 has the most reliable correction information among the plurality of correction information based on the plurality of supplement information. Is selected as high reliability correction information. The supplementary information determination unit 2Ba1 outputs the high reliability correction information to the position specifying unit 23B.
  • the position specifying unit 23B specifies the position of the communication device 2B using the positioning information received from the receiving unit 24. And the position specific
  • the supplementary information generation unit 1Ba1 generates supplementary information representing the reliability of the correction information based on the reception result of the correction information.
  • the communication unit 13Ba transmits the correction information and the supplement information to the communication device 2Ba.
  • the communication device 1Ba can provide correction information that the communication device 2Ba cannot receive from the quasi-zenith satellite 40 to the communication device 2Ba together with supplementary information. Therefore, the communication device 1Ba enables the communication device 2Ba to select correction information with high reliability and generate highly accurate position information using the correction information with high reliability.
  • the supplementary information determination unit 2Ba1 has a plurality of corrections based on a plurality of supplementary information when the communication unit 22B receives correction information and supplementary information from the plurality of communication devices 1Ba. Among the information, the correction information with the highest reliability is selected as the high reliability correction information.
  • the position specifying unit 23B corrects the position of the communication device 2Ba according to the high reliability correction information.
  • the communication device 2Ba can generate highly accurate position information (position information indicating the absolute position of the communication device 2Ba) using highly reliable correction information.
  • the communication unit 13Ba transmits position information indicating the position of the communication device 1Ba specified by the position specifying unit 12B to the communication device 2Ba
  • the communication unit 22B transmits the position information of the communication device 1Ba.
  • the position specifying unit 23b may receive and calculate a relative positional relationship between the position of the communication device 1Ba represented by the position information of the communication device 1Ba and the position of the communication device 2Ba specified by the position specifying unit 23b. . In this case, it is possible to calculate a relative positional relationship with high accuracy.
  • the communication device 1B transmits the correction information to the communication device 2B that cannot receive the correction information from the quasi-zenith satellite 40.
  • the communication device that can receive the correction information from the quasi-zenith satellite 40 receives the correction information received from the quasi-zenith satellite 40 to another communication device that can receive the correction information from the quasi-zenith satellite 40. Send. Then, the communication device compares the correction information received by the own device from the quasi-zenith satellite 40 with the correction information received from another communication device, and based on the comparison result, the communication device has a malfunction (for example, failure). Determine presence or absence.
  • FIG. 15 is a diagram showing a communication system 100C according to the fifth embodiment of the present invention.
  • the same components as those shown in FIG. 10 are denoted by the same reference numerals.
  • the communication system 100C includes a plurality of communication devices 1C. Each communication device 1C is mounted on a vehicle (not shown) and performs inter-vehicle communication with each other. In the present embodiment, the communication system 100 ⁇ / b> C exists within the coverage area of the quasi-zenith satellite 40.
  • 1C of communication apparatuses contain the receiving part 11, the position specific
  • the communication unit 13B transmits the correction information received by the receiving unit 11 in its own device to the surrounding communication device 1C.
  • the determination unit 15 is an example of a determination unit.
  • the determination unit 15 determines the correction information received by the reception unit 11 and Each of the plurality of correction information received by the communication unit 13B is compared, and the presence / absence of a malfunction of the own apparatus is determined based on the comparison result.
  • the determination unit 15 determines that the receiving unit 11 is not defective and the number of comparison results indicating matching indicates mismatch. When the number is smaller than the number of comparison results, it is determined that the receiving unit 11 has a problem.
  • the other communication devices 1C are the communication device 1Cx and the communication device 1Cy
  • the correction information received by the receiving unit 11 in the own device is the correction information from the communication device 1Cx and the correction information from the communication device 1Cy. If it matches, the determination unit 15 determines that the reception unit 11 is not defective. On the other hand, when the correction information received by the reception unit 11 in the own device does not match the correction information from the communication device 1Cx and the correction information from the communication device 1Cy, the determination unit 15 determines that the reception unit 11 has a defect. judge.
  • the determination unit 15 determines that the reception unit 11
  • the received correction information is compared with each of the plurality of correction information received by the communication unit 13B, and the presence / absence of a malfunction of the own apparatus is determined based on the comparison result.
  • the correction information can also be used as information for determining whether or not there is a malfunction of the own device.
  • the communication device 1 transmits the position information with the QZSS flag to the communication device 2 that cannot receive the correction information from the quasi-zenith satellite 40.
  • a communication device that can receive correction information from the quasi-zenith satellite 40 transmits position information with a QZSS flag to another communication device that can receive correction information from the quasi-zenith satellite 40. Then, the communication device identifies the number of objects in the image captured by the imaging unit using the position information received together with the QZSS flag.
  • FIG. 16 is a diagram illustrating a communication system 100D according to the sixth embodiment of the present invention.
  • the communication system 100D includes a plurality of communication devices 1D. Each communication device 1D is mounted on a vehicle (not shown) and performs inter-vehicle communication with each other. In the present embodiment, the communication system 100 ⁇ / b> D exists within the coverage area of the quasi-zenith satellite 40.
  • the communication device 1D includes a receiving unit 11, a position specifying unit 12, a communication unit 13, a photographing unit 16, an identifying unit 17, and a display unit 18.
  • the position specifying unit 12 in the communication device 1D also has a function of outputting correction information indicating the correction position to the identification unit 17.
  • the communication unit 13 transmits the position information with the QZSS flag generated by the position specifying unit 12 in the own device to the surrounding communication device 1D. Further, the communication unit 13 receives position information with a QZSS flag generated by the surrounding communication device 1D from the surrounding communication device 1D. The communication unit 13 outputs the position information with the QZSS flag generated by the surrounding communication device 1D to the identification unit 17.
  • the photographing unit 16 is an example of photographing means.
  • the photographing unit 16 photographs, for example, a scene in front of or behind the vehicle on which the communication device 1D is mounted.
  • the imaging unit 16 captures a scene in front of a vehicle on which the communication device 1D is mounted.
  • the imaging unit 16 outputs the captured image to the identification unit 17.
  • the identification unit 17 is an example of an identification unit.
  • the identification unit 17 in the image captured by the imaging unit 16 The number of objects is identified using the location information received with the QZSS flag.
  • the identification unit 17 first specifies corresponding position information representing the position within the imaging range of the imaging unit 16 from the positional information received together with the QZSS flag.
  • the identification unit 17 calculates the shooting range of the imaging unit 16 from the position of the communication device 1D (the position of the communication device 1D represented by the position information received from the position specifying unit 12) and the moving direction of the communication device 1D.
  • the identification unit 17 obtains the moving direction of the communication device 1D from the history of the position of the communication device 1D.
  • the identification unit 17 determines the number of pieces of position information as the number of objects in the image captured by the imaging unit 16.
  • the identification unit 17 displays the image captured by the imaging unit 16 and the number of objects in the image on the display unit 18.
  • the identification unit 17 when the communication unit 13 receives the position information (device position information) indicating the position of the surrounding communication device 1D and the QZSS flag from the surrounding communication device 1D, the identification unit 17 causes the imaging unit 16 to The number of objects in the captured image is identified using the positional information received together with the QZSS flag.
  • the specific satellite is not limited to the quasi-zenith satellite 40 or the regional positioning satellite, but may be any satellite that transmits positioning information and correction information.
  • the number of communication devices 1, 1A, or 1B and the number of communication devices 2, 2A, or 2B are 1, but the number of communication devices 1, 1A, or 1B.
  • the number of the communication devices 2, 2A, or 2B may be plural.
  • each communication device or each communication device may be realized by a computer.
  • the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, and the functions of the communication device or the communication device described above. Is realized.
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

通信機と通信する通信装置は、複数の衛星の各々から測位用情報を受信し複数の衛星のいずれかである特定衛星から測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信する受信手段と、複数の測位用情報を用いて通信装置の位置を特定し通信装置の位置を補正情報に応じて補正して補正位置を求める位置特定手段と、補正位置を表す位置情報と所定の位置精度を有することを意味する所定識別情報との両方または補正情報を通信機に送信する通信手段と、を含む。

Description

通信装置、通信機、通信システム、通信方法、位置特定方法および記録媒体
 本発明は、通信装置、通信機、通信システム、通信方法、位置特定方法およびプログラムに関し、特には、複数の衛星の各々からの測位用情報を利用する通信装置、通信機、通信システム 通信方法、位置特定方法およびプログラムに関する。
 車両に搭載された通信端末間で、通信端末の位置情報を相互に通信する車々間通信システムが知られている。なお、車両に搭載された通信端末の位置は、車両の位置を意味する。車両に搭載された通信端末は、例えば、GPS(Global Positioning System)システムを用いて自端末の位置を検出する。
 特許文献1には、車々間通信を行う車両がGPSシステムにて特定される位置の誤差を補正するための補正情報を利用して車両の位置の精度を上げる技術が記載されている。
特開2008-065481号公報
 車々間通信システムのような複数の通信端末が相互に通信するシステムにおいて、補正情報の送信元から補正情報を受信できる通信端末が有する情報(例えば、GPSシステムで特定される位置情報よりも高精度な位置情報または補正情報)を有効に活用することが望まれている。
 本発明の目的は、上記課題を解決可能な通信装置、通信機、通信システム、通信方法、位置特定方法およびプログラムを提供することである。
 本発明の通信装置は、
 通信機と通信する通信装置であって、
 複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
 前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
 前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方、または、前記補正情報を、前記通信機に送信する通信手段と、を含む。
 本発明の通信機は、
 通信装置と通信する通信機であって、
 前記通信装置と前記通信機との相対的な位置関係を検出する検出手段と、
 前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、を受信する情報受信手段と、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する特定手段と、を含む。
 本発明の通信機は、
 通信装置と通信する通信機であって、
 複数の衛星の各々から測位用情報を受信する測位用情報受信手段と、
 前記通信装置から、前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信する補正情報受信手段と、
 複数の前記測位用情報を用いて前記通信機の位置を特定し、当該通信機の位置を前記補正情報に応じて補正する特定手段と、を含む。
 本発明の通信機は、
 通信装置と通信する通信機であって、
 前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記通信装置と前記通信機との相対的な位置関係を表す位置関係情報と、を受信する情報受信手段と、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記位置関係情報と、に基づいて、前記通信機の位置を特定する特定手段と、を含む。
 本発明の通信システムは、
 通信装置と通信機とを含む通信システムであって、
 前記通信装置は、
 複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
 前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
 前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方を、前記通信機に送信する通信手段と、を含み、
 前記通信機は、
 前記通信装置と前記通信機との相対的な位置関係を検出する検出手段と、
 前記通信装置から、前記位置情報と、前記所定識別情報と、を受信する情報受信手段と、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する特定手段と、を含む。
 本発明の通信システムは、
 通信装置と通信機とを含む通信システムであって、
 前記通信装置は、
 複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
 前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
 前記補正情報を前記通信機に送信する通信手段と、を含み、
 前記通信機は、
 前記複数の衛星の各々から前記測位用情報を受信する測位用情報受信手段と、
 前記通信装置から、前記補正情報を受信する補正情報受信手段と、
 前記測位用情報受信手段にて受信された複数の測位用情報を用いて前記通信機の位置を特定し、当該通信機の位置を前記補正情報に応じて補正する特定手段と、を含む。
 本発明の通信システムは、
 通信装置と通信機とを含む通信システムであって、
 前記通信装置は、
 複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
 前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
 前記通信装置と前記通信機との相対的な位置関係を検出する検出手段と、
 前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記相対的な位置関係の検出結果と、を前記通信機に送信する通信手段と、を含み、
 前記通信機は、
 前記通信装置から、前記位置情報と、前記所定識別情報と、前記通信装置と前記通信機との相対的な位置関係の検出結果と、を受信する情報受信手段と、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する特定手段と、を含む。
 本発明の通信方法は、
 通信機と通信する通信装置が行う通信方法であって、
 複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信し、
 前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求め、
 前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方、または、前記補正情報を、前記通信機に送信する。
 本発明の位置特定方法は、
 通信装置と通信する通信機が行う位置特定方法であって、
 前記通信装置と前記通信機との相対的な位置関係を検出し、
 前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、を受信し、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する。
 本発明の位置特定方法は、
 通信装置と通信する通信機が行う位置特定方法であって、
 複数の衛星の各々から測位用情報を受信し、
 前記通信装置から、前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信し、
 複数の前記測位用情報を用いて前記通信機の位置を特定し、前記通信機の位置を前記補正情報に応じて補正する。
 本発明の位置特定方法は、
 通信装置と通信する通信機が行う位置特定方法であって、
 前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記通信装置と前記通信機との相対的な位置関係を表す位置関係情報と、を受信し、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する。
 本発明の記録媒体は、
 コンピュータに、
 複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手順と、
 前記複数の測位用情報を用いて前記コンピュータの位置を特定し、当該コンピュータの位置を前記補正情報に応じて補正して補正位置を求める位置特定手順と、
 前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方、または、前記補正情報を、通信機に送信する通信手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明の記録媒体は、
 コンピュータに、
 通信装置と前記コンピュータとの相対的な位置関係を検出する検出手順と、
 前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、を受信する情報受信手順と、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記コンピュータの位置を特定する特定手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明の記録媒体は、
 コンピュータに、
 複数の衛星の各々から測位用情報を受信する測位用情報受信手順と、
 通信装置から、前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信する補正情報受信手順と、
 複数の前記測位用情報を用いて前記コンピュータの位置を特定し、当該コンピュータの位置を前記補正情報に応じて補正する特定手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明の記録媒体は、
 コンピュータに、
 通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記通信装置と前記コンピュータとの相対的な位置関係を表す位置関係情報と、を受信する情報受信手順と、
 前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記コンピュータの位置を特定する特定手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明によれば、単独では測位精度を上げることが困難な通信装置の測位精度を上げることが可能になる。また、例えば、ジャイロセンサなどの補正用装置を必要とせずに、各車両(通信装置)の測位精度を上げることが可能になる。
本発明の第1実施形態を示した通信システム100を示した図である。 通信装置1の一例を示した図である。 通信機2の一例を示した図である。 通信システム100の動作を説明するためのシーケンス図である。 本発明の第2実施形態を示した通信システム100Aを示した図である。 通信装置1Aの一例を示した図である。 通信機2Aの一例を示した図である。 通信システム100Aの動作を説明するためのシーケンス図である。 本発明の第3実施形態を示した通信システム100Bを示した図である。 通信装置1Bの一例を示した図である。 通信機2Bの一例を示した図である。 本発明の第4実施形態を示した通信システム100Baを示した図である。 通信装置1Baの一例を示した図である。 通信機2Baの一例を示した図である。 本発明の第5実施形態を示した通信システム100Cを示した図である。 本発明の第6実施形態を示した通信システム100Dを示した図である。
 以下、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態を示した通信システム100を示した図である。
 図1において、通信システム100は、通信装置1と、通信機2と、を含む。
 通信装置1は車両10に搭載され、通信機2は車両20に搭載される。通信装置1と通信機2とは、車々間通信を行う。
 通信装置1は、GPS衛星30a~30cの各々と準天頂衛星40とのそれぞれから情報を受信する。
 準天頂衛星40は、特定衛星の一例であり、また、所定地域をカバーするナビゲーション衛星システムを構成する地域測位用衛星の一例でもある。本実施形態では、準天頂衛星40のカバー領域内に、通信システム100が存在する。
 図2は、通信装置1の一例を示した図である。
 図2において、通信装置1は、受信部11と、位置特定部12と、通信部13と、を含む。
 受信部11は、受信手段の一例である。
 受信部11は、GPS衛星30a~30cの各々と準天頂衛星40とから、それぞれ、測位用情報を受信する。また、受信部11は、準天頂衛星40から補正情報を受信する。
 準天頂衛星40からの補正情報は、GPS衛星30a~30cの各々からの測位用情報と準天頂衛星40からの測位用情報とを用いて特定される位置についての誤差を補正するための情報である。補正情報は、測位用情報と共に準天頂衛星40から送信される。
 位置特定部12は、位置特定手段の一例である。
 位置特定部12は、受信部11が受信した4つの測位用情報を用いて、通信装置1の位置を特定する。なお、4つの測位用情報を用いて通信装置1の位置を特定する技術は、GPSシステムで使用されている技術である。
 また、位置特定部12は、4つの測位用情報を用いて特定した通信装置1の位置を、受信部11が受信した補正情報に応じて補正して補正位置を求める。このため、補正位置は、4つの測位用情報を用いて特定された位置よりも高精度になる。
 通信部13は、通信手段の一例である。
 通信部13は、通信機2と種々の情報を通信する。例えば、通信部13は、位置特定部12が特定した補正位置(通信装置1の位置)を表す位置情報と、QZSS(Quasi Zenith Satellite System)フラグと、の両方を、通信機2に送信する。本実施形態では、通信部13は、QZSSフラグが付加された位置情報を、通信機2に送信する。
 QZSSフラグは、所定識別情報の一例である。QZSSフラグは、QZSSフラグと共に送信される位置情報の精度がGPSシステムにて算出された位置情報の精度よりも高いことを意味する。GPSシステムにて算出された位置情報の精度よりも高い精度は、所定の位置精度の一例である。なお、所定識別情報は、QZSSフラグに限らず適宜変更可能である。
 図3は、通信機2の一例を示した図である。なお、通信機2は、準天頂衛星40から補正情報を受信する機能を有していない。
 図3において、通信機2は、検出部21と、通信部22と、位置特定部23と、を含む。
 検出部21は、検出手段の一例である。
 検出部21は、通信装置1と通信機2との相対的な位置関係を検出する。
 検出部21は、例えばレーダ装置である。検出部21は、通信機2から通信装置1が搭載された車両10までの距離を、通信機2から通信装置1までの距離として検出する。また、検出部21は、車両10から通信機2への方向を、通信装置1から通信機2への方向として検出する。なお、検出部21は、レーダ装置に限らず適宜変更可能である。
 通信部22は、情報受信手段の一例である。
 通信部22は、通信装置1と種々の情報を通信する。通信部22は、例えば、通信装置1から、QZSSフラグが付加された位置情報を受信する。
 位置特定部23は、特定手段の一例である。
 位置特定部23は、位置情報にQZSSフラグが付加されている場合、通信装置1と通信機2との相対的な位置関係の検出結果と、QZSSフラグと共に受信された位置情報と、に基づいて、通信機2の位置を特定する。
 次に、動作を説明する。
 図4は、通信システム100の動作を説明するためのシーケンス図である。
 通信装置1では、例えば、電源投入時または所定時間間隔で、受信部11が、GPS衛星30a~30cの各々と準天頂衛星40とから測位用情報を受信し、準天頂衛星40から補正情報を受信する(ステップS401)。
 受信部11は、測位用情報を受信すると、測位用情報を位置特定部12に出力し、また、補正情報を受信すると、補正情報を位置特定部12に出力する。
 位置特定部12は、4つの測位用情報を受け付けると、4つの測位用情報を用いて、通信装置1の位置を特定する(ステップS402)。
 続いて、位置特定部12は、補正情報を用いて通信装置1の位置を補正して補正位置を算出する(ステップS403)。
 続いて、位置特定部12は、補正位置を表す位置情報を生成し、位置情報にQZSSフラグを付加する。続いて、位置特定部12は、QZSSフラグが付加された位置情報を、通信部13に出力する。
 通信部13は、QZSSフラグが付加された位置情報を受け付けると、QZSSフラグが付加された位置情報を通信機2に送信する(ステップS404)。
 続いて、通信機2では、通信部22が、QZSSフラグが付加された位置情報を受信する(ステップS405)。
 続いて、通信部22は、QZSSフラグが付加された位置情報を位置特定部23に出力する。
 位置特定部23は、QZSSフラグが付加された位置情報を受け付けると、検出部21を動作させ、検出部21は、通信機2と通信装置1(車両10)との相対的な位置関係を検出する(ステップS406)。
 なお、通信機2の周囲に通信装置1(車両10)しか存在しない場合には、通信機2内の位置特定部23は、通信機2と通信装置1(車両10)との相対的な位置関係を容易に検出することができる。
 しかしながら、通信機2の周囲に複数の通信装置(車両)が存在する状況では、複数の通信装置(車両)の中から通信装置1(車両10)を特定する必要が生じる。
 ここで、通信機2が、複数の通信装置(車両)の中から、検出対象である通信装置1(車両10)を特定する手法の一例を説明する。
 位置特定部23は、QZSSフラグが付加された位置情報を受け付けると、例えば、GPS衛星30a~30cの各々と準天頂衛星40とからの測位用情報を用いて通信機2の位置を特定する。なお、位置特定部23が通信機2の位置を特定する手法は、測位用情報を用いる手法に限らず適宜変更可能である。
 続いて、位置特定部23は、QZSSフラグが付加された位置情報が表す通信装置1の位置に基づいて、通信装置1が存在する領域を推測する。以下、推測された領域を「推測領域」と称する。例えば、位置特定部23は、位置情報が表す通信装置1の位置を中心とし半径を所定値とする円領域を、推測領域として特定する。
 続いて、位置特定部23は、通信機2の位置を表す位置情報と、推測領域を表す推測領域情報を検出部21に出力する。
 検出部21は、位置情報と推測領域情報とを受け付けると、通信機2の周囲に存在する物体(以下、単に「物体」と称する)と通信機2との相対的な位置関係を検出する。
 続いて、検出部21は、位置情報が表す通信機2の位置と、物体と通信機2との相対的な位置関係と、を用いて、物体の位置を特定する。
 続いて、検出部21は、物体のうち、推測領域情報にて表される推測領域内に存在する物体を、通信装置1(車両10)として特定する。
 なお、検出部21が、検出対象である通信装置1(車両10)を特定する手法は上記手法に限らず適宜変更可能である。
 検出部21は、通信機2と通信装置1との相対的な位置関係(通信機2から通信装置1までの距離と通信装置1から通信機2への方向)を検出すると、その検出結果を位置特定部23に出力する。
 位置特定部23は、検出結果を受け付けると、その検出結果と、QZSSフラグが付加された位置情報と、に基づいて、通信機2の位置を特定する(ステップS407)。
 例えば、位置特定部23は、QZSSフラグが付加された位置情報が表す位置から、通信装置1から通信機2への方向に、通信機2から通信装置1までの距離だけ離れた位置を、通信機2の位置として特定する。なお、ステップS407で特定された位置は、QZSSフラグが付加された位置情報が表す位置を基準に設定されるため、GPSシステムだけを用いて特定された位置(例えば、GPS衛星30a~30cの各々と準天頂衛星40とからの測位用情報を用いて特定された位置)よりも精度が高くなる。
 位置特定部23は、ステップS407で通信機2の位置を特定すると、ステップS407で特定された通信機2の位置を表す位置情報を生成し、その位置情報を、通信部22を介して通信装置1に送信する(ステップS408)。
 通信装置1では、通信部13は、通信機2から送信された位置情報を受信する(ステップS409)。
 次に、本実施形態の効果を説明する。
 本実施形態の通信装置1では、受信部11は、GPS衛星30a~30cの各々と準天頂衛星40とからそれぞれ測位用情報を受信し、かつ、準天頂衛星40から補正情報を受信する。位置特定部12は、受信部11が受信した4つの測位用情報を用いて通信装置1の位置を特定し、通信装置1の位置を補正情報に応じて補正して補正位置を求める。通信部13は、位置特定部12が特定した補正位置(通信装置1の位置)を表す位置情報と、QZSSフラグと、の両方を通信機2に送信する。
 このため、通信装置1は、精度の高い位置情報を、GPSシステムよりも位置精度が高いことを意味するQZSSフラグと共に、通信機2に提供することが可能になる。よって、通信装置1は、通信機2が、位置情報の精度が高いか否かをQZSSフラグの有無に応じて判断し精度の高い位置情報を用いて通信機2の位置を高精度に特定することを可能にする。なお、この効果は、受信部11と位置特定部12と通信部13とからなる通信装置1でも奏する。
 また、本実施形態の通信機2では、検出部21は、通信装置1と通信機2との相対的な位置関係を検出する。通信部22は、通信装置1から位置情報とQZSSフラグとを受信する。位置特定部23は、位置情報をQZSSフラグと共に受信した場合、その位置情報と、通信装置1と通信機2との相対的な位置関係の検出結果と、に基づいて、通信機2の位置を特定する。
 このため、通信機2は、位置情報の精度が高いか否かをQZSSフラグの有無に応じて判断でき、精度の高い位置情報を用いて通信機2の位置を高精度に特定することが可能になる。なお、この効果は、検出部21と通信部22と位置特定部23とからなる通信機2でも奏する。
 (第2実施形態)
 第1実施形態では、準天頂衛星40から補正情報を受信する機能を有していない通信機が、通信装置と通信機との相対的な位置関係を検出する。これに対して、第2実施形態では、準天頂衛星40から補正情報を受信する機能を有する通信装置が、通信装置と通信機との相対的な位置関係を検出する。
 以下、第2実施形態について、第1実施形態と異なる点を中心に説明する。
 図5は、本発明の第2実施形態を示した通信システム100Aを示した図である。図5において、図1に示したものと同一構成のものには同一符号を付してある。
 通信システム100Aは、通信装置1Aと、通信機2Aと、を含む。
 通信装置1Aは車両10Aに搭載され、通信機2Aは車両20Aに搭載される。通信装置1Aと通信機2Aとは、車々間通信を行う。本実施形態では、準天頂衛星40のカバー領域内に、通信システム100Aが存在する。
 図6は、通信装置1Aの一例を示した図である。図6において、図2に示したものと同一構成のものには同一符号を付してある。以下、通信装置1Aについて、図2に示した通信装置1と異なる点を中心に説明する。
 通信装置1Aは、受信部11と、位置特定部12Aと、通信部13Aと、検出部14と、を含む。
 位置特定部12Aは、位置特定手段の一例である。
 位置特定部12Aは、図2に示した位置特定部12が有する機能に加えて、検出部14と情報や指示をやり取りする機能を有する。
 検出部14は、検出手段の一例である。
 検出部14は、通信装置1Aと通信機2Aとの相対的な位置関係を検出する。
 検出部14は、例えばレーダ装置である。検出部14は、通信装置1Aから通信機2Aが搭載された車両20Aまでの距離を、通信装置1Aから通信機2Aまでの距離として検出する。また、検出部14は、車両20Aから通信装置1Aへの方向を、通信機2Aから通信装置1Aへの方向として検出する。なお、検出部14は、レーダ装置に限らず適宜変更可能である。
 通信部13Aは、通信手段の一例である。
 通信部13Aは、通信機2Aと種々の情報を通信する。例えば、通信部13Aは、位置特定部12Aが特定した補正位置(通信装置1Aの位置)を表す位置情報と、QZSSフラグと、通信装置1Aと通信機2Aとの相対的な位置関係についての検出部14での検出結果と、を通信機2Aに送信する。本実施形態では、通信部13Aは、QZSSフラグが付加された位置情報と、通信装置1Aと通信機2Aとの相対的な位置関係の検出結果を表す位置関係情報と、を通信機2Aに送信する。
 図7は、通信機2Aの一例を示した図である。なお、通信機2Aは、準天頂衛星40から補正情報を受信する機能を有していない。
 通信機2Aは、通信部22Aと、位置特定部23Aと、を含む。
 通信部22Aは、情報受信手段の一例である。
 通信部22Aは、通信装置1Aと種々の情報を通信する。通信部22Aは、例えば、通信装置1Aから、QZSSフラグが付加された位置情報と、位置関係情報と、を受信する。
 位置特定部23Aは、特定手段の一例である。
 位置特定部23Aは、位置情報をQZSSフラグと共に受信した場合、位置情報と、位置関係情報と、に基づいて通信機2Aの位置を特定する。また、位置特定部23Aは、例えば、GPS衛星30a~30cの各々と準天頂衛星40とからの測位用情報を用いて通信機2Aの位置を特定する。
 次に、動作を説明する。
 図8は、通信システム100Aの動作を説明するためのシーケンス図である。図8において、図4に示した処理と同一内容の処理には同一符号を付してある。以下、図4に示した処理と異なる処理を中心に、通信システム100Aの動作を説明する。
 通信機2Aにおいて、位置特定部23Aは、GPS衛星30a~30cの各々と準天頂衛星40とからの測位用情報を用いて通信機2Aの位置を特定すると(ステップS801)、通信機2Aの位置を表す通信機位置情報を生成する。
 続いて、位置特定部23Aは、通信機位置情報を、通信部22Aを介して通信装置1Aに送信する(ステップS802)。
 続いて、通信装置1Aでは、通信部13Aが、通信装置1Aから通信機位置情報を受信する(ステップS803)。
 続いて、通信部13Aは、通信機位置情報を位置特定部12Aに出力する。
 位置特定部12Aは、通信機位置情報を受け付けると、通信機位置情報にQZSSフラグが付加されていないため、受信部11にステップS401を実行させる。その後、ステップS402およびS403が実行される。
 続いて、位置特定部12Aは、検出部14を動作させ、検出部14は、通信装置1Aと通信機2A(車両20A)との相対的な位置関係を検出する(ステップS804)。
 なお、通信装置1Aの周囲に通信機2A(車両20A)しか存在しない場合には、通信装置1A内の位置特定部12Aは、通信装置1Aと通信機2A(車両20A)の相対的な位置関係を容易に検出することができる。
 しかしながら、通信装置1Aの周囲に複数の通信機(車両)が存在する状況では、複数の通信機(車両)の中から通信機2A(車両20A)を特定する必要が生じる。
 ここで、通信装置1Aが、複数の通信機(車両)の中から、検出対象である通信機2A(車両20A)を特定する手法の一例を説明する。
 位置特定部12Aは、ステップS403を終了すると、通信機位置情報が表す通信機2Aの位置に基づいて、通信機2Aが存在する領域を推測する。以下、推測された通信機2Aの存在領域を「推測存在領域」と称する。例えば、位置特定部12Aは、位置情報が表す通信機2Aの位置を中心とし半径を特定値とする円領域を、推測存在領域として特定する。
 続いて、位置特定部12Aは、通信装置1Aの位置を表す位置情報と、推測存在領域を表す推測存在領域情報を検出部14に出力する。
 検出部14は、位置情報と推測存在領域情報とを受け付けると、通信装置1Aの周囲に存在する物体(以下「周囲物体」と称する)と通信装置1Aとの相対的な位置関係を検出する。
 続いて、検出部14は、位置情報が表す通信装置1Aの位置と、周囲物体と通信装置1Aとの相対的な位置関係と、を用いて、周囲物体の位置を特定する。
 続いて、検出部14は、周囲物体のうち、推測存在領域情報にて表される推測存在領域内に存在する周囲物体を、通信機2A(車両20A)として特定する。
 なお、検出部14が、検出対象である通信機2A(車両20A)を特定する手法は上記手法に限らず適宜変更可能である。
 検出部14は、通信装置1Aと通信機2Aとの相対的な位置関係(通信装置1Aから通信機2Aまでの距離と通信装置1Aから通信機2Aへの方向)を検出すると、その検出結果を位置特定部12Aに出力する。
 位置特定部12Aは、検出結果(通信装置1Aと通信機2Aとの相対的な位置関係)を受け付けると、その検出結果を表す位置関係情報と、QZSSフラグが付加された位置情報(通信装置1Aの位置)とを、通信部13Aを介して通信機2Aに送信する(ステップS805)。
 続いて、通信機2Aでは、通信部22Aが、QZSSフラグが付加された位置情報と、位置関係情報と、を受信する(ステップS806)。
 続いて、通信部22Aは、QZSSフラグが付加された位置情報と、位置関係情報と、を位置特定部23Aに出力する。
 位置特定部23Aは、QZSSフラグが付加された位置情報と、位置関係情報と、を受信すると、QZSSフラグが付加された位置情報と、位置関係情報と、に基づいて、通信機2Aの位置を特定する(ステップS807)。
 例えば、位置特定部23Aは、QZSSフラグが付加された位置情報が表す位置(通信装置1Aの位置)から、通信装置1Aから通信機2Aへの方向に、通信装置1Aから通信機2Aまでの距離だけ離れた位置を、通信機2Aの位置として特定する。なお、ステップS807で特定された位置は、QZSSフラグが付加された位置情報が表す位置を基準に設定されるため、GPSシステムだけで特定された位置よりも精度が高くなる。
 位置特定部23Aは、ステップS807で通信機2Aの位置を特定すると、ステップS807で特定された通信機2Aの位置を表す通信機位置情報を生成し、その通信機位置情報を、通信部22Aを介して通信装置1Aに送信する(ステップS808)。
 通信装置1Aでは、通信部13Aは、通信機2Aから送信された通信機位置情報を受信する(ステップS809)。
 次に、本実施形態の効果を説明する。
 本実施形態の通信装置1Aでは、検出部14は、通信装置1Aと通信機2Aとの相対的な位置関係を検出する。通信部13Aは、位置情報と、QZSSフラグと、位置関係情報と、を通信機2Aに送信する。
 このため、通信装置1Aは、通信機2Aが、位置情報の精度が高いか否かをQZSSフラグの有無に応じて判断し、精度の高い位置情報と位置関係情報とを用いて通信機2Aの位置を高精度に特定することを可能にする。
 また、本実施形態の通信機2Aでは、通信部22Aは、通信装置1Aから、位置情報と、QZSSフラグと、位置関係情報と、を受信する。位置特定部23Aは、位置情報をQZSSフラグと共に受信した場合、位置情報と位置関係情報とに基づいて、通信機2Aの位置を特定する。
 このため、通信機2Aは、位置情報の精度が高いか否かをQZSSフラグの有無に応じて判断でき、精度の高い位置情報と位置関係情報とを用いて通信機2Aの位置を高精度に特定することが可能になる。なお、この効果は、通信部22Aと位置特定部23Aとからなる通信機2Aでも奏する。
 (第3実施形態)
 第1および第2実施形態では、準天頂衛星40から補正情報を受信する機能を有する通信装置が、準天頂衛星40から補正情報を受信する機能を有していない通信機に対して、QZSSフラグ付きの位置情報を送信した。これに対して、第3実施形態では、準天頂衛星40から補正情報を受信する機能を有する通信装置が、準天頂衛星40から補正情報を受信する機能を有していない通信機に対して、補正情報を送信する。
 以下、第3実施形態について、第1実施形態と異なる点を中心に説明する。
 図9は、本発明の第3実施形態を示した通信システム100Bを示した図である。図9において、図1に示したものと同一構成のものには同一符号を付してある。
 通信システム100Bは、通信装置1Bと、通信機2Bと、を含む。
 通信装置1Bは車両10Bに搭載され、通信機2Bは車両20Bに搭載される。通信装置1Bと通信機2Bとは、車々間通信を行う。本実施形態では、準天頂衛星40のカバー領域内に、通信システム100Bが存在する。
 図10は、通信装置1Bの一例を示した図である。
 通信装置1Bは、受信部11と、位置特定部12Bと、通信部13Bと、を含む。
 位置特定部12Bは、位置特定手段の一例である。
 位置特定部12Bは、図1に示した位置特定部12が有する機能に加えて、受信部11が受信した補正情報を通信部13Bに出力する機能を有する。
 通信部13Bは、通信手段の一例である。
 通信部13Bは、通信機2Bと種々の情報を通信する。例えば、通信部13Bは、位置特定部12Bから受け付けた補正情報を通信機2Bに送信する。
 図11は、通信機2Bの一例を示した図である。なお、通信機2Bは、準天頂衛星40から補正情報を受信する機能を有していない。
 通信機2Bは、通信部22Bと、位置特定部23Bと、受信部24と、を含む。
 受信部24は、測位用情報受信手段の一例である。
 受信部24は、GPS衛星30a~30cの各々と準天頂衛星40とから、それぞれ、測位用情報を受信する。受信部24は、各測位用情報を位置特定部23Bに出力する。
 通信部22Bは、補正情報受信手段の一例である。
 通信部22Bは、通信装置1Bと種々の情報を通信する。通信部22Bは、例えば、通信装置1Bから補正情報を受信する。通信部22Bは、補正情報を位置特定部23Bに出力する。
 位置特定部23Bは、特定手段の一例である。
 位置特定部23Bは、受信部24から受け付けた測位用情報を用いて通信機2Bの位置を特定する。そして、位置特定部23Bは、通信機2Bの位置を、通信部22Bから受け付けた補正情報に応じて補正する。
 次に、本実施形態の効果を説明する。
 本実施形態の通信装置1Bでは、受信部11は、GPS衛星30a~30cの各々と準天頂衛星40とからそれぞれ測位用情報を受信し、かつ、準天頂衛星40から補正情報を受信する。位置特定部12Bは、受信部11が受信した4つの測位用情報を用いて通信装置1の位置を特定し、通信装置1の位置を補正情報に応じて補正して補正位置を求める。通信部13Bは、受信部11が受信した補正情報を通信機2Bに送信する。
 このため、通信装置1Bは、通信機2Bが準天頂衛星40から受信できない補正情報を、通信機2Bに提供することが可能になる。よって、通信装置1Bは、通信機2Bが補正情報を用いて高精度な位置情報を生成することを可能にする。なお、この効果は、受信部11と位置特定部12Bと通信部13Bとからなる通信装置1Bでも奏する。
 また、本実施形態の通信機2Bでは、受信部24は、GPS衛星30a~30cの各々と準天頂衛星40とからそれぞれ測位用情報を受信する。通信部22Bは、通信装置1Bから補正情報を受信する。位置特定部23Bは、受信部24にて受信された複数の測位用情報を用いて通信機2Bの位置を特定し、通信機2Bの位置を通信部22Bが受信した補正情報に応じて補正する。
 このため、通信機2Bでは、補正情報を用いて高精度な位置情報を生成することが可能になる。なお、この効果は、受信部24と通信部22Bと位置特定部23Bとからなる通信機2Bでも奏する。
 (第4実施形態)
 第4実施形態は、第3実施形態に新たな機能を追加したものである。
 具体的には、通信装置が、補正情報の信頼性を表す補足情報を補正情報と共に通信機に送信し、通信機が、受信された補正情報の中から、補足情報を参照して、最も信頼性の高い補正情報を選択し、その選択された補正情報を用いて通信機2Bの位置を補正する。
 以下、第4実施形態について、第3実施形態と異なる点を中心に説明する。
 図12は、本発明の第4実施形態を示した通信システム100Baを示した図である。図12において、図9に示したものと同一構成のものには同一符号を付してある。
 通信システム100Baは、通信装置1Baと、通信機2Baと、を含む。
 通信装置1Baは車両10Bに搭載され、通信機2Baは車両20Bに搭載される。通信装置1Baと通信機2Baとは、車々間通信を行う。本実施形態では、準天頂衛星40のカバー領域内に、通信システム100Baが存在する。
 図13は、通信装置1Baの一例を示した図である。
 通信装置1Baは、受信部11と、位置特定部12Bと、補足情報生成部1Ba1と、通信部13Baと、を含む。
 補足情報生成部1Ba1は、生成手段の一例である。
 補足情報生成部1Ba1は、受信部11による補正情報の受信結果に基づいて、補正情報の信頼性を表す補足情報を生成する。例えば、補足情報生成部1Ba1は、補正情報の受信強度が高いほど高い信頼性を表す補足情報を生成する。なお、補足情報を生成手法は上記に限らず適宜変更可能である。補足情報生成部1Ba1は、補足情報を通信部13Baに出力する。
 通信部13Baは、通信手段の一例である。
 通信部13Baは、通信機2Baと種々の情報を通信する。例えば、通信部13Baは、位置特定部12Bから受け付けた補正情報と、補足情報生成部1Ba1から受け付けた補足情報と、を通信機2Baに送信する。
 なお、補正情報が、補正情報の粒度も表す場合、補正情報のうち粒度を表す部分が補足情報として機能する。
 図14は、通信機2Baの一例を示した図である。なお、通信機2Baは、準天頂衛星40から補正情報を受信する機能を有していない。
 通信機2Baは、通信部22Bと、補足情報判定部2Ba1と、位置特定部23Bと、受信部24と、を含む。
 通信部22Bは、例えば、複数の通信装置1Baから補正情報と補足情報とを受信する。通信部22Bは、補正情報と補足情報との組を補足情報判定部2Ba1に出力する。
 補足情報判定部2Ba1は、補正情報判定手段の一例である。
 補足情報判定部2Ba1は、通信部22Bが複数の通信装置1Baから補正情報と補足情報とを受信した場合、複数の補足情報に基づいて、複数の補正情報のうちで最も信頼性の高い補正情報を、高信頼性補正情報として選択する。補足情報判定部2Ba1は、高信頼性補正情報を位置特定部23Bに出力する。
 位置特定部23Bは、受信部24から受け付けた測位用情報を用いて通信機2Bの位置を特定する。そして、位置特定部23Bは、通信機2Bの位置を、補正情報判定部2Ba1から受け付けた高信頼性補正情報に応じて補正する。
 次に、本実施形態の効果を説明する。
 本実施形態の通信装置1Baでは、補足情報生成部1Ba1は、補正情報の受信結果に基づいて、補正情報の信頼性を表す補足情報を生成する。通信部13Baは、補正情報と補足情報とを通信機2Baに送信する。
 このため、通信装置1Baは、通信機2Baが準天頂衛星40から受信できない補正情報を補足情報と共に通信機2Baに提供することが可能になる。よって、通信装置1Baは、通信機2Baが信頼性の高い補正情報を選択し、信頼性の高い補正情報を用いて高精度な位置情報を生成することを可能にする。
 また、本実施形態の通信機2Baでは、補足情報判定部2Ba1は、通信部22Bが複数の通信装置1Baから補正情報と補足情報とを受信した場合、複数の補足情報に基づいて、複数の補正情報のうちで最も信頼性の高い補正情報を高信頼性補正情報として選択する。位置特定部23Bは、通信機2Baの位置を高信頼性補正情報に応じて補正する。
 このため、通信機2Baでは、信頼性の高い補正情報を用いて高精度な位置情報(通信機2Baの絶対位置を表す位置情報)を生成することが可能になる。
 なお、本実施形態において、通信部13Baが、位置特定部12Bにて特定された通信装置1Baの位置を表す位置情報を通信機2Baに送信し、通信部22Bが、通信装置1Baの位置情報を受信し、位置特定部23bが、通信装置1Baの位置情報が表す通信装置1Baの位置と、位置特定部23bが特定した通信機2Baの位置と、の相対的な位置関係を算出してもよい。この場合、精度の高い相対的な位置関係を算出することが可能になる。
 (第5実施形態)
 第3実施形態では、通信装置1Bは、準天頂衛星40から補正情報を受信できない通信機2Bに補正情報を送信した。
 これに対して、第5実施形態では、準天頂衛星40から補正情報を受信できる通信装置が、準天頂衛星40から補正情報を受信できる他の通信装置に、準天頂衛星40から受信した補正情報を送信する。そして、通信装置は、自装置が準天頂衛星40から受信した補正情報と、他の通信装置から受信した補正情報と、を比較し、その比較結果に基づいて自装置の不具合(例えば故障)の有無を判定する。
 以下、第5実施形態について、第3実施形態と異なる点を中心に説明する。
 図15は、本発明の第5実施形態を示した通信システム100Cを示した図である。図15において、図10に示したものと同一構成のものには同一符号を付してある。
 通信システム100Cは、複数の通信装置1Cを含む。各通信装置1Cは車両(不図示)に搭載され、相互に車々間通信を行う。本実施形態では、準天頂衛星40のカバー領域内に、通信システム100Cが存在する。
 通信装置1Cは、受信部11と、位置特定部12Bと、通信部13Bと、判定部15と、を含む。
 通信部13Bは、周囲の通信装置1Cに、自装置内の受信部11が受信した補正情報を送信する。
 判定部15は、判定手段の一例である。
 判定部15は、通信部13Bが、他の複数の通信装置1Cの各々から、他の通信装置1Cが準天頂衛星40から受信した補正情報を受信した場合、受信部11が受信した補正情報と、通信部13Bが受信した複数の補正情報の各々と、を比較し、比較の結果に基づいて自装置の不具合の有無を判定する。
 例えば、判定部15は、一致を示す比較結果の数が不一致を示す比較結果の数よりも多い場合に、受信部11に不具合は無いと判定し、一致を示す比較結果の数が不一致を示す比較結果の数以下である場合に、受信部11に不具合が有ると判定する。
 この場合、他の複数の通信装置1Cを、通信装置1Cx、通信装置1Cyとし、自装置内の受信部11が受信した補正情報が、通信装置1Cxからの補正情報および通信装置1Cyからの補正情報と一致している場合、判定部15は、受信部11に不具合は無いと判定する。一方、自装置内の受信部11が受信した補正情報が、通信装置1Cxからの補正情報および通信装置1Cyからの補正情報と不一致である場合、判定部15は、受信部11に不具合が有ると判定する。
 次に、本実施形態の効果を説明する。
 本実施形態によれば、判定部15は、通信部13Bが他の複数の通信装置1Cの各々から他の通信装置1Cが準天頂衛星40から受信した補正情報を受信した場合、受信部11が受信した補正情報と、通信部13Bが受信した複数の補正情報の各々と、の比較を行い、比較の結果に基づいて自装置の不具合の有無を判定する。
 このため、補正情報を、自装置の不具合の有無を判定するための情報としても利用することが可能になる。
 なお、本実施形態において、全ての通信装置1Cが判定部15を有する必要はなく、複数の通信装置1Cのうちの少なくとも1つが判定部15を有していればよい。
 (第6実施形態)
 第1実施形態では、通信装置1は、準天頂衛星40から補正情報を受信できない通信機2にQZSSフラグ付き位置情報を送信した。
 これに対して、第6実施形態では、準天頂衛星40から補正情報を受信できる通信装置が、準天頂衛星40から補正情報を受信できる他の通信装置に、QZSSフラグ付き位置情報を送信する。そして、通信装置は、撮影部にて撮像された画像内の物体の数を、QZSSフラグと共に受信された位置情報を用いて識別する。
 以下、第6実施形態について、第1実施形態と異なる点を中心に説明する。
 図16は、本発明の第6実施形態を示した通信システム100Dを示した図である。図16において、図1に示したものと同一構成のものには同一符号を付してある。
 通信システム100Dは、複数の通信装置1Dを含む。各通信装置1Dは車両(不図示)に搭載され、相互に車々間通信を行う。本実施形態では、準天頂衛星40のカバー領域内に、通信システム100Dが存在する。
 通信装置1Dは、受信部11と、位置特定部12と、通信部13と、撮影部16と、識別部17と、表示部18と、を含む。
 通信装置1D内の位置特定部12は、補正位置を表す補正情報を識別部17に出力する機能も有する。
 通信部13は、周囲の通信装置1Dに、自装置内の位置特定部12が生成したQZSSフラグ付き位置情報を送信する。また、通信部13は、周囲の通信装置1Dから、周囲の通信装置1Dが生成したQZSSフラグ付き位置情報を受信する。通信部13は、周囲の通信装置1Dが生成したQZSSフラグ付き位置情報を識別部17に出力する。
 撮影部16は、撮影手段の一例である。
 撮影部16は、例えば、通信装置1Dが搭載された車両の前方の景色または後方の景色を撮影する。本実施形態では、撮影部16は、通信装置1Dが搭載された車両の前方の景色を撮影する。
 なお、通信装置1Dが搭載された車両の前方に2台の車両が存在していても、撮影部16にて撮像された画像内では、一方の車両が他方の車両を隠す位置に存在している場合、1台の車両しか映っていない場合がある。
 撮影部16は、撮像画像を識別部17に出力する。
 識別部17は、識別手段の一例である。
 識別部17は、通信部13が周囲の通信装置1Dから周囲の通信装置1Dの位置を表す位置情報(装置位置情報)と共にQZSSフラグを受信した場合、撮像部16にて撮像された画像内の物体の数を、QZSSフラグと共に受信された位置情報を用いて識別する。
 例えば、識別部17は、まず、QZSSフラグと共に受信された位置情報の中から、撮像部16の撮影範囲内の位置を表す該当位置情報を特定する。
 なお、識別部17は、撮像部16の撮影範囲を、通信装置1Dの位置(位置特定部12から受け付けた位置情報が表す通信装置1Dの位置)と通信装置1Dの移動方向とから算出する。なお、識別部17は、通信装置1Dの移動方向を、通信装置1Dの位置の履歴から求める。
 続いて、識別部17は、該当位置情報の数を、撮像部16にて撮像された画像内の物体の数として判定する。
 識別部17は、撮像部16にて撮像された画像と、画像内の物体の数と、を表示部18に表示する。
 次に、本実施形態の効果を説明する。
 本実施形態によれば、識別部17は、通信部13が周囲の通信装置1Dから周囲の通信装置1Dの位置を表す位置情報(装置位置情報)とQZSSフラグを受信した場合、撮像部16にて撮像された画像内の物体の数を、QZSSフラグと共に受信された位置情報を用いて識別する。
 このため、撮像部16にて撮像された画像では識別が困難な物体の数を精度よく識別することが可能になる。
 なお、本実施形態において、全ての通信装置1Dが撮影部16と識別部17と表示部18とを有する必要はなく、複数の通信装置1Dのうちの少なくとも1つが撮影部16と識別部17と表示部18を有していればよい。
 上記各実施形態において、特定衛星は、準天頂衛星40または地域測位用衛星に限らず、測位用情報と補正情報とを送信する衛星であればよい。
 また、第1、第2、第3実施形態では、通信装置1、1Aまたは1Bの数、および、通信機2、2Aまたは2Bの数を1としたが、通信装置1、1Aまたは1Bの数、または、通信機2、2Aまたは2Bの数は複数であってもよい。
 また、上記各実施形態において、各通信装置または各通信機は、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能なCD-ROM(Compact Disk Read Only Memory)のような記録媒体に記録されたプログラムを読込み実行して、上述した通信装置または上述した通信機が有する機能を実現する。記録媒体は、CD-ROMに限らず適宜変更可能である。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。この出願は、2012年8月1日に出願された日本出願特願2012-170968を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、100A、100B、100Ba、100C、100D 通信システム
 1、1A、1B、1Ba、1C、1D 通信装置
 11 受信部
 12、12A、12B 位置特定部
 13、13A、13B、13Ba 通信部
 14 検出部
 15 判定部
 16 撮影部
 17 識別部
 18 表示部
 1Ba1 補足情報生成部
 2、2A、2B、2Ba 通信機
 21 検出部
 22、22A、22B 通信部
 23、23A、23B 位置特定部
 24 受信部
 2Ba1 補足情報判定部
 10、10A、10B、20、20A、20B 車両
 30a、30b、30c GPS衛星
 40 準天頂衛星

Claims (21)

  1.  通信機と通信する通信装置であって、
     複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
     前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
     前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方、または、前記補正情報を、前記通信機に送信する通信手段と、を含む通信装置。
  2.  前記通信装置と前記通信機との相対的な位置関係を検出する検出手段を、さらに含み、
     前記通信手段は、前記位置情報と、前記所定識別情報と、前記相対的な位置関係の検出結果と、を前記通信機に送信する、請求項1に記載の通信装置。
  3.  前記通信手段が他の複数の通信装置の各々から当該他の通信装置が前記特定衛星から受信した前記補正情報を受信した場合、前記受信手段が受信した補正情報と、前記通信手段が受信した複数の補正情報の各々と、を比較し、当該比較の結果に基づいて自装置の不具合の有無を判定する判定手段を、さらに含む、請求項1または2に記載の通信装置。
  4.  撮像手段と、
     前記通信手段が周囲の通信装置から当該周囲の通信装置の位置を表す装置位置情報と前記所定識別情報を受信した場合、前記撮像手段にて撮像された画像内の通信装置の数を、前記所定識別情報と共に受信された装置位置情報を用いて識別する識別手段と、をさらに含む、請求項1から3のいずれか1項に記載の通信装置。
  5.  前記補正情報の受信結果に基づいて、前記補正情報の信頼性を表す補足情報を生成する生成手段を、さらに含み、
     前記通信手段は、前記補正情報と前記補足情報とを前記通信機に送信する、請求項1に記載の通信装置。
  6.  前記特定衛星は、所定地域をカバーするナビゲーション衛星システムを構成する地域測位用衛星、または、準天頂衛星である、請求項1から5のいずれか1項に記載の通信装置。
  7.  通信装置と通信する通信機であって、
     前記通信装置と前記通信機との相対的な位置関係を検出する検出手段と、
     前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、を受信する情報受信手段と、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する特定手段と、を含む通信機。
  8.  通信装置と通信する通信機であって、
     複数の衛星の各々から測位用情報を受信する測位用情報受信手段と、
     前記通信装置から、前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信する補正情報受信手段と、
     複数の前記測位用情報を用いて前記通信機の位置を特定し、当該通信機の位置を前記補正情報に応じて補正する特定手段と、を含む通信機。
  9.  前記補正情報受信手段は、前記通信装置から、前記補正情報と、前記補正情報の信頼性を表す補足情報と、を受信し、
     前記補正情報受信手段が複数の前記通信装置から前記補正情報と前記補足情報とを受信した場合、複数の前記補足情報に基づいて、複数の前記補正情報のうちで最も信頼性の高い補正情報を、高信頼性補正情報として選択する補正情報判定手段を、さらに含み、
     前記特定手段は、前記通信機の位置を、前記高信頼性補正情報に応じて補正する、請求項8に記載の通信機。
  10.  通信装置と通信する通信機であって、
     前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記通信装置と前記通信機との相対的な位置関係を表す位置関係情報と、を受信する情報受信手段と、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記位置関係情報と、に基づいて、前記通信機の位置を特定する特定手段と、を含む通信機。
  11.  通信装置と通信機とを含む通信システムであって、
     前記通信装置は、
     複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
     前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
     前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方を、前記通信機に送信する通信手段と、を含み、
     前記通信機は、
     前記通信装置と前記通信機との相対的な位置関係を検出する検出手段と、
     前記通信装置から、前記位置情報と、前記所定識別情報と、を受信する情報受信手段と、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する特定手段と、を含む、通信システム。
  12.  通信装置と通信機とを含む通信システムであって、
     前記通信装置は、
     複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
     前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
     前記補正情報を前記通信機に送信する通信手段と、を含み、
     前記通信機は、
     前記複数の衛星の各々から前記測位用情報を受信する測位用情報受信手段と、
     前記通信装置から、前記補正情報を受信する補正情報受信手段と、
     前記測位用情報受信手段にて受信された複数の測位用情報を用いて前記通信機の位置を特定し、当該通信機の位置を前記補正情報に応じて補正する特定手段と、を含む、通信システム。
  13.  通信装置と通信機とを含む通信システムであって、
     前記通信装置は、
     複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手段と、
     前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求める位置特定手段と、
     前記通信装置と前記通信機との相対的な位置関係を検出する検出手段と、
     前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記相対的な位置関係の検出結果と、を前記通信機に送信する通信手段と、を含み、
     前記通信機は、
     前記通信装置から、前記位置情報と、前記所定識別情報と、前記通信装置と前記通信機との相対的な位置関係の検出結果と、を受信する情報受信手段と、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する特定手段と、を含む、通信システム。
  14.  通信機と通信する通信装置が行う通信方法であって、
     複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信し、
     前記複数の測位用情報を用いて前記通信装置の位置を特定し、当該通信装置の位置を前記補正情報に応じて補正して補正位置を求め、
     前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方、または、前記補正情報を、前記通信機に送信する、通信方法。
  15.  通信装置と通信する通信機が行う位置特定方法であって、
     前記通信装置と前記通信機との相対的な位置関係を検出し、
     前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、を受信し、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する、位置特定方法。
  16.  通信装置と通信する通信機が行う位置特定方法であって、
     複数の衛星の各々から測位用情報を受信し、
     前記通信装置から、前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信し、
     複数の前記測位用情報を用いて前記通信機の位置を特定し、前記通信機の位置を前記補正情報に応じて補正する、位置特定方法。
  17.  通信装置と通信する通信機が行う位置特定方法であって、
     前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記通信装置と前記通信機との相対的な位置関係を表す位置関係情報と、を受信し、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記通信機の位置を特定する、位置特定方法。
  18.  コンピュータに、
     複数の衛星の各々から測位用情報を受信し、複数の前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を、前記複数の衛星のいずれかである特定衛星から受信する受信手順と、
     前記複数の測位用情報を用いて前記コンピュータの位置を特定し、当該コンピュータの位置を前記補正情報に応じて補正して補正位置を求める位置特定手順と、
     前記補正位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、の両方、または、前記補正情報を、通信機に送信する通信手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  19.  コンピュータに、
     通信装置と前記コンピュータとの相対的な位置関係を検出する検出手順と、
     前記通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、を受信する情報受信手順と、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記コンピュータの位置を特定する特定手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  20.  コンピュータに、
     複数の衛星の各々から測位用情報を受信する測位用情報受信手順と、
     通信装置から、前記測位用情報を用いて特定される位置についての誤差を補正するための補正情報を受信する補正情報受信手順と、
     複数の前記測位用情報を用いて前記コンピュータの位置を特定し、当該コンピュータの位置を前記補正情報に応じて補正する特定手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  21.  コンピュータに、
     通信装置から、前記通信装置の位置を表す位置情報と、所定の位置精度を有することを意味する所定識別情報と、前記通信装置と前記コンピュータとの相対的な位置関係を表す位置関係情報と、を受信する情報受信手順と、
     前記位置情報を前記所定識別情報と共に受信した場合、当該位置情報と、前記相対的な位置関係の検出結果と、に基づいて、前記コンピュータの位置を特定する特定手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2013/061051 2012-08-01 2013-04-12 通信装置、通信機、通信システム、通信方法、位置特定方法および記録媒体 WO2014020949A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528018A JP6075377B2 (ja) 2012-08-01 2013-04-12 通信装置、通信システム、通信方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012170968 2012-08-01
JP2012-170968 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014020949A1 true WO2014020949A1 (ja) 2014-02-06

Family

ID=50027644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061051 WO2014020949A1 (ja) 2012-08-01 2013-04-12 通信装置、通信機、通信システム、通信方法、位置特定方法および記録媒体

Country Status (2)

Country Link
JP (1) JP6075377B2 (ja)
WO (1) WO2014020949A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113815A1 (ja) * 2015-01-15 2016-07-21 株式会社デンソー 車載機
JP2018205244A (ja) * 2017-06-08 2018-12-27 株式会社デンソー 測位装置
CN112492509A (zh) * 2019-09-11 2021-03-12 韩国道路公社 利用定位差的精确位置校正装置及其方法
WO2023007588A1 (ja) * 2021-07-27 2023-02-02 Ultimatrust株式会社 情報処理装置、プログラム及び測位方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878982B2 (ja) * 2017-03-23 2021-06-02 株式会社デンソー 車載装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170411A (ja) * 1985-04-19 1986-04-11 Hitachi Ltd 基準ブイ
JPH08178681A (ja) * 1994-12-26 1996-07-12 Toyota Motor Corp ハイブリッドナビゲーションシステム
JPH10185600A (ja) * 1996-12-24 1998-07-14 Fujitsu Ten Ltd 車両位置補正装置
JP2002323552A (ja) * 2001-04-27 2002-11-08 Mitsubishi Electric Corp 測位システム及び測位装置
JP2004309364A (ja) * 2003-04-09 2004-11-04 Hitachi Ltd 測位システム
JP2005223436A (ja) * 2004-02-03 2005-08-18 Hitachi Ltd 携帯端末及び位置情報交換システム
JP2007201921A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp 測位端末及び測位システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183588A (ja) * 1997-12-17 1999-07-09 Mazda Motor Corp 移動体用ディファレンシャルgps装置
JP3775033B2 (ja) * 1997-12-17 2006-05-17 マツダ株式会社 移動体用ディファレンシャルgps装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170411A (ja) * 1985-04-19 1986-04-11 Hitachi Ltd 基準ブイ
JPH08178681A (ja) * 1994-12-26 1996-07-12 Toyota Motor Corp ハイブリッドナビゲーションシステム
JPH10185600A (ja) * 1996-12-24 1998-07-14 Fujitsu Ten Ltd 車両位置補正装置
JP2002323552A (ja) * 2001-04-27 2002-11-08 Mitsubishi Electric Corp 測位システム及び測位装置
JP2004309364A (ja) * 2003-04-09 2004-11-04 Hitachi Ltd 測位システム
JP2005223436A (ja) * 2004-02-03 2005-08-18 Hitachi Ltd 携帯端末及び位置情報交換システム
JP2007201921A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp 測位端末及び測位システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113815A1 (ja) * 2015-01-15 2016-07-21 株式会社デンソー 車載機
JP2018205244A (ja) * 2017-06-08 2018-12-27 株式会社デンソー 測位装置
CN112492509A (zh) * 2019-09-11 2021-03-12 韩国道路公社 利用定位差的精确位置校正装置及其方法
JP2021043175A (ja) * 2019-09-11 2021-03-18 コリア エクスプレスウェイ コーポレーション 測位差を利用した精密位置補正装置およびその方法
US11175408B2 (en) 2019-09-11 2021-11-16 Korea Expressway Corp. Apparatus and method for precise position correction using positioning difference
WO2023007588A1 (ja) * 2021-07-27 2023-02-02 Ultimatrust株式会社 情報処理装置、プログラム及び測位方法

Also Published As

Publication number Publication date
JPWO2014020949A1 (ja) 2016-07-21
JP6075377B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
CN110146869B (zh) 确定坐标系转换参数的方法、装置、电子设备和存储介质
US10267924B2 (en) Systems and methods for using a sliding window of global positioning epochs in visual-inertial odometry
JP6075377B2 (ja) 通信装置、通信システム、通信方法およびプログラム
US20210109228A1 (en) Identifying gnss navigation data as potentially manipulated or as trustworthy at least partially based on an estimated deviation of a second estimate of a satellite state from a first estimate of the satellite state
EP3621286B1 (en) Method, and apparatus for clock synchronization, device, storage medium and vehicle
US20210072409A1 (en) Position-window extension for gnss and visual-inertial-odometry (vio) fusion
US20180188382A1 (en) Selection of gnss data for positioning fusion in urban environments
KR101611280B1 (ko) 스테레오 카메라를 이용한 모바일 맵핑 시스템 및 모바일 맵핑 시스템의 포인트 클라우드 생성방법
US10949981B2 (en) Position measuring method, position measuring apparatus, and position measuring system
US20190101653A1 (en) Global navigation satellite system, navigation terminal, navigation method and program
US20200249332A1 (en) Online Extrinsic Miscalibration Detection Between Sensors
KR20150078881A (ko) 클라우드 컴퓨팅을 통한 차량 위치 측정방법
US20180188381A1 (en) Motion propagated position for positioning fusion
CN113311905B (zh) 一种数据处理系统
US20090216432A1 (en) System and Method for Precision Collaborative Targeting
CN111461980B (zh) 点云拼接算法的性能估计方法和装置
KR20140057919A (ko) 위성항법 시스템과 비전 시스템 융합 기술 기반 이동체의 자기위치 측위방법 및 장치
CN112396662A (zh) 一种转换矩阵修正的方法及装置
KR101364047B1 (ko) 물체인식을 바탕으로 한 칼만필터를 이용한 이동체의 자기위치 추정방법 및 장치
JP2005300415A (ja) 補正装置
CN115471678A (zh) 点云数据和图像的对齐方法、装置、设备、介质和车辆
CN115060289A (zh) 定位轨迹精度评估方法、装置及电子设备、存储介质
JP2006322832A (ja) 通信端末、輪郭情報管理サーバ、情報提供システム、及び、情報提供方法
JP2019203770A (ja) 測位装置及び方法、並びに、コンピュータプログラム
CN115201796B (zh) 一种车辆传感器的外参校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826344

Country of ref document: EP

Kind code of ref document: A1