WO2014017379A1 - グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法 - Google Patents

グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法 Download PDF

Info

Publication number
WO2014017379A1
WO2014017379A1 PCT/JP2013/069529 JP2013069529W WO2014017379A1 WO 2014017379 A1 WO2014017379 A1 WO 2014017379A1 JP 2013069529 W JP2013069529 W JP 2013069529W WO 2014017379 A1 WO2014017379 A1 WO 2014017379A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb molded
green honeycomb
molded body
cradle
groove
Prior art date
Application number
PCT/JP2013/069529
Other languages
English (en)
French (fr)
Inventor
信行 小出
雅人 松田
浩史 齊藤
晃権 後藤
和也 土本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP13822264.1A priority Critical patent/EP2878417A4/en
Priority to CN201380039909.1A priority patent/CN104507652A/zh
Priority to MX2015000978A priority patent/MX2015000978A/es
Priority to US14/417,053 priority patent/US20150210024A1/en
Priority to KR1020157001767A priority patent/KR20150040275A/ko
Publication of WO2014017379A1 publication Critical patent/WO2014017379A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/248Supports for drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/04Discharging the shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/008Handling preformed parts, e.g. inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/355Conveyors for extruded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/08Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for ceramic mouldings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B2003/203Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded for multi-channelled structures, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2103/00Use of resin-bonded materials as moulding material
    • B29K2103/04Inorganic materials
    • B29K2103/08Mineral aggregates, e.g. sand, clay or the like

Definitions

  • the present invention relates to a cradle for a green honeycomb molded body and a method for manufacturing a diesel particulate filter.
  • a green honeycomb molded body is an intermediate in the manufacture of a honeycomb structure used for a diesel particulate filter or the like, and is manufactured by extruding a paste containing a ceramic raw material powder (for example, Patent Documents) 1). That is, the green honeycomb molded body means a honeycomb structure before being fired (raw honeycomb structure).
  • the cylindrical green honeycomb molded body extruded from the extrusion machine in the horizontal direction is supported by the cradle with the side surfaces thereof being kept horizontal, and is supported by the cradle after cutting to a desired length. It is conveyed to the next process.
  • the main body portion of the cradle is provided with a groove corresponding to the columnar shape in order to support the green honeycomb molded body.
  • the conveyed green honeycomb formed body becomes a ceramic honeycomb structure through steps such as drying and firing.
  • an object of the present invention is to provide a cradle for a green honeycomb molded body and a method for manufacturing a diesel particulate filter capable of suppressing a decrease in dimensional accuracy of the green honeycomb molded body.
  • a green honeycomb molded body is a green honeycomb for supporting the side surface of a cylindrical green honeycomb molded body after extrusion molding in a state where the longitudinal direction (center axis) of the green honeycomb molded body is horizontal.
  • a pedestal for a molded body comprising a flexible main body portion, the main body portion having a groove portion for supporting a side surface of the green honeycomb molded body at an upper portion of the main body portion, and a cavity below the groove portion of the main body portion. The part is formed.
  • the green honeycomb molded body when the green honeycomb molded body is supported in the upper groove portion of the main body portion, the cavity below the groove portion is crushed in the vertical direction, and accordingly, The shape of the flexible main body changes, and the clearance between the groove and the side surface of the green honeycomb molded body decreases. That is, the space in which the green honeycomb molded body can spread in the horizontal direction is narrowed. Therefore, according to the present invention, in a state where the central axis of the green honeycomb molded body is horizontal, deformation (distortion) of the green honeycomb molded body is suppressed, and the circular cross section of the molded body becomes an elliptical flat shape. It is suppressed. Therefore, according to the present invention, it is possible to suppress a decrease in dimensional accuracy of the green honeycomb molded body.
  • the groove portion includes a curved surface portion in contact with the lower half circumference of the side surface of the green honeycomb molded body, and a pair of curved surfaces extending upward from both edges in the curved surface direction. It is preferable to have a side part. According to this, when the main body portion is deformed so that the longitudinal edge of the groove portion is difficult to touch the side surface of the green honeycomb molded body and the clearance is reduced, the side surface of the green honeycomb molded body is in contact with the edge of the groove portion. Can be prevented from being damaged.
  • the cavity portion passes through the main body portion in the direction in which the groove portion extends, and the cross-sectional shapes of the groove portion and the cavity portion in the vertical plane orthogonal to the direction in which the groove portion and the cavity portion extend are common to each other.
  • the cross-sectional shape of the cavity in the vertical plane has opposite sides that are at least partially horizontal and parallel to each other, and at least the upper side of the opposite sides faces upward on both sides. It is preferable that the horizontal distance between both ends of the upper side is longer than the width of the groove on the vertical plane.
  • the clearance is uniformly reduced when the shape of the main body portion supporting the green honeycomb molded body is deformed. A decrease in dimensional accuracy of the honeycomb formed body is suppressed in a well-balanced manner.
  • the cross-sectional shape of the hollow portion is the above-described aspect, the clearance is appropriately reduced as the shape of the main body changes. That is, since the horizontal distance between both end portions of the upper side in the cross-sectional shape is longer than the width of the groove portion, the main body portion is easily deformed so that the groove portion wraps the side surface of the green honeycomb molded body when the green honeycomb molded body is supported. . At this time, since the cross-sectional shape of the cavity has opposite sides that are at least partially horizontal and parallel to each other, the degree of wrapping is not excessive, and the clearance is appropriately reduced.
  • the cavity portion penetrates the main body portion in the direction in which the groove portion extends, and the cross-sectional shapes of the groove portion and the cavity portion in the vertical plane orthogonal to the direction in which the groove portion and the cavity portion extend are common to each other.
  • the vertical cross-sectional shape of the cavity on the vertical plane is a virtual trapezoidal apex whose upper side is shorter than the lower side and whose lower side is less than the width of the groove on the vertical plane.
  • It is a shape that consists of at least lines that follow, and the line that traces between the vertices on the upper side of the lines intersects the symmetry axis at a position lower than the position of the vertex on the upper side, and from the vertex side toward the symmetry axis.
  • An inclined part inclined downward may be included.
  • the clearance is uniformly reduced when the shape of the main body portion supporting the green honeycomb molded body is deformed.
  • a decrease in dimensional accuracy of the honeycomb formed body is suppressed in a well-balanced manner.
  • the cross-sectional shape of the hollow portion is the above-described aspect, it is possible to further suppress the side surface of the green honeycomb molded body from being damaged due to contact with the edge of the groove portion.
  • the cross-sectional shape is a shape consisting of a line that at least follows the apex of a virtual trapezoidal shape in which the upper side is shorter than the lower side and the length of the lower side is equal to or less than the width of the groove, when the green honeycomb molded body is supported The main body portion is deformed so that the groove portion wraps the side surface of the green honeycomb molded body.
  • the green honeycomb molded body is less likely to be encased in the main body as compared with the case where the cross-sectional shape has opposite sides that are at least partially horizontal and parallel to each other.
  • the line that traces between the vertices on the upper side among the above lines intersects the symmetry axis at a position below the position of the vertices on the upper side.
  • the main body portion can wrap the green honeycomb molded body to such an extent that deformation of the body can be suppressed.
  • the cavity portion passes through the main body portion in the direction in which the groove portion extends, and the cross-sectional shapes of the groove portion and the cavity portion in the vertical plane orthogonal to the direction in which the groove portion and the cavity portion extend are common to each other.
  • the cross-sectional shape of the cavity in the vertical plane is at least the top of a virtual rectangular shape in which the length of the upper and lower sides in the horizontal direction is longer than the width of the groove in the vertical plane.
  • the line that traces between the vertices on the upper side of the line intersects the symmetry axis at a position lower than the position of the vertex on the upper side, and downwards from the vertex side toward the symmetry axis.
  • Two or more inclined downward inclined portions and an upward inclined portion inclined upward from the apex side toward the symmetry axis side between the downward inclined portions may be included.
  • the clearance is reduced evenly when the shape of the main body portion supporting the green honeycomb molded body is deformed. A decrease in dimensional accuracy of the honeycomb formed body is suppressed in a well-balanced manner.
  • the cross-sectional shape of the hollow portion is the above-described aspect, the clearance is significantly reduced as the shape of the main body changes. That is, when the green honeycomb molded body is supported, the cross-sectional shape is a shape composed of a line that at least follows the apex of a virtual rectangular shape in which the length of the upper side and the lower side in the horizontal direction is longer than the width of the groove in the vertical plane.
  • the main body part is easily deformed so that the groove part wraps the side surface of the green honeycomb molded body.
  • the line that traces between the vertices on the upper side of the above line intersects the symmetry axis at a position lower than the position of the vertex on the upper side, so that the degree of wrapping is greater and the clearance is noticeable. Decrease.
  • the curved surface portion of the groove portion is semicircular when viewed from the direction in which the groove portion extends, and the hollow portion is positioned below the entire curved surface portion, and the main body portion is disposed in the direction in which the groove portion extends.
  • the hollow portion is surrounded by a horizontal bottom surface, a top surface facing the bottom surface, and a pair of opposed vertical side surfaces, and both end portions parallel to the direction in which the groove extends on the top surface face the curved surface portion. It is bent. Also in the fourth aspect, the deformation of the green honeycomb molded body is suppressed, and a decrease in dimensional accuracy can be suppressed.
  • the curved surface portion of the groove portion is semicircular when viewed from the direction in which the groove portion extends, and the cavity portion passes through the main body portion in the direction in which the groove portion extends, and the bottom surface of the cavity portion,
  • the upper surface of the cavity part facing the bottom surface is a curved surface that is bent along the entire curved surface part, and the cavity part is surrounded only by two curved surfaces of the bottom surface and the upper surface.
  • the cradle for a green honeycomb molded body may include a lining portion that covers the surface of the groove portion.
  • the lining portion is made of a material having flexibility and higher flexibility than the main body portion.
  • the groove portion supports the side surface of the green honeycomb molded body through the lining portion.
  • the lining portion is made of a material that is more flexible than the main body portion, the end portion of the groove of the cradle is prevented from biting into the side surface of the green honeycomb molded body.
  • the transportability is maintained by the rigidity of the main body made of a material that is less flexible than the lining. Therefore, the cradle for the green honeycomb molded body has the lining portion, and thus can prevent the side surface of the green honeycomb molded body from being damaged along the circumferential direction while maintaining the transportability.
  • the thickness of the lining portion is preferably 0.05 to 0.2 times the radius of the circular cross section of the green honeycomb molded body. According to this, it becomes easy to suppress that the side surface of the green honeycomb molded object is damaged.
  • the lining portion is preferably made of a material having a smaller hardness than the main body portion. Moreover, it is preferable that a lining part consists of a material whose rebound resilience is smaller than a main-body part. According to this, it becomes easy to suppress that the side surface of the green honeycomb molded object is damaged.
  • a method for manufacturing a diesel particulate filter according to an aspect of the present invention is a manufacturing method using the cradle for a green honeycomb molded body, wherein a mixture containing ceramic raw material powder is extruded from an extruder in a horizontal direction.
  • the manufacturing method of the present invention it is possible to suppress deformation of the green honeycomb molded body and improve its dimensional accuracy.
  • the manufacturing method using the cradle having the lining portion not only can the deformation of the green honeycomb molded body be suppressed, but also the transportability is maintained and the side surface of the green honeycomb molded body is circumferentially This makes it possible to manufacture a diesel particulate filter that is free from distortion and has few scratches.
  • a cradle for a green honeycomb molded body and a method for manufacturing a diesel particulate filter capable of suppressing a decrease in dimensional accuracy of the green honeycomb molded body.
  • FIGS. 6A and 6B are cross-sectional views perpendicular to the direction X in which the groove extends in the fourth embodiment of the cradle for a green honeycomb molded body according to the present invention.
  • FIG. 7A is a cross-sectional view of the green honeycomb molded body cradle of FIG. 6B that is cut vertically and bisected along the direction X.
  • FIG. 7B is a cross-sectional view of FIG. It is the top view seen from the groove part side of the base for green honeycomb molded objects of b). It is a side view of the green honeycomb molded object supported by the conventional receiving stand.
  • FIGS. 11A and 11B are cross-sectional views perpendicular to the direction X in which the groove extends in the fifth embodiment of the cradle for green honeycomb molded body according to the present invention.
  • 12 (a) is a cross-sectional view of the green honeycomb molded body cradle of FIG. 11 (b) cut vertically and bisected along the direction X.
  • FIG. 12 (b) is a cross-sectional view of FIG. It is the top view seen from the groove part side of the base for green honeycomb molded objects of b).
  • Fig. 13 (a) is a perspective view of a green honeycomb molded body formed in one embodiment of the present invention
  • Fig. 13 (b) is an end view of the green honeycomb molded body of Fig. 13 (a).
  • Fig.14 (a) is a perspective view of the diesel particulate filter manufactured by one Embodiment of this invention
  • FIG.14 (b) is an end elevation of the diesel particulate filter of Fig.14 (a).
  • 4 is a graph showing the dimensions of a green honeycomb molded body supported by a cradle of Example 2.
  • FIG. 6 is a graph showing the dimensions of a green honeycomb molded body supported by a cradle of Comparative Example 2.
  • the cradle for green honeycomb molded body according to the present invention (hereinafter referred to as “carrying base”) has a side surface of a cylindrical green honeycomb molded body 70 in the longitudinal direction of the green honeycomb molded body 70. Is supported in a horizontal state.
  • the green honeycomb molded body is an intermediate in the manufacture of a honeycomb structure used for a diesel particulate filter or the like. Since the green honeycomb molded body is formed by extruding a paste-like mixture containing ceramic raw material powder, it is soft, easily damaged and easily deformed.
  • the longitudinal direction of the green honeycomb molded body 70 is paraphrased as the direction of the axis (center axis) passing through the center of the circular cross section of the cylindrical green honeycomb molded body 70.
  • the green honeycomb molded body 70 has a plurality of partition walls 70c parallel to the central axis thereof. That is, the green honeycomb molded body 70 has a lattice structure in a cross section perpendicular to the central axis direction. In other words, the green honeycomb molded body 70 is formed with a large number of through holes 70a (flow passages) extending in the same direction (center axis direction), and the through holes 70a are separated by the partition walls 70c. The plurality of through holes 70a are parallel to each other. On the first end surface of the green honeycomb molded body 70 and the second end surface opposite to the first end surface, openings of the respective through holes are located.
  • Each through hole 70 a is perpendicular to both end faces of the green honeycomb molded body 70.
  • the angle formed by each partition wall 70c is not particularly limited, and may be 90 ° or 120 °.
  • the length of one side of the square may be, for example, 0.8 to 2.5 mm.
  • the length of the side surface in the direction in which the through hole of the green honeycomb molded body 70 extends is not particularly limited, but may be, for example, 30 to 350 mm.
  • the outer diameter of the green honeycomb molded body 70 is not particularly limited, but may be, for example, 10 to 320 mm.
  • the outer diameter of the green honeycomb molded body 70 may be 140 to 180 mm or 150 to 170 mm.
  • FIG. 1 is a cross-sectional view of a first aspect (a cradle 1A) of a cradle according to the present invention.
  • the cradle 1A includes a main body 3 made of a material such as flexible rubber or sponge.
  • the term “flexibility” refers to a property that can cause bending or bending.
  • the main body portion 3 has a groove portion 7 that supports the side surface of the green honeycomb molded body 70 at an upper portion thereof, and has a hollow portion 5 below the groove portion 7.
  • the groove part 7 is a dent provided in the upper part of the main body part 3, and extends in the front and back direction of the paper surface of FIG.
  • the groove portion 7 is formed so that the lower half circumference of the side surface of the green honeycomb molded body 70 abuts when the green honeycomb molded body 70 having a cylindrical shape is supported, and the curved surface portion 9 from both edges in the curved direction. And a side surface portion 11 extending at a predetermined height b8.
  • the curvature of the curved surface portion 9 is equal to or smaller than the cylindrical curvature of the green honeycomb molded body so that the side surface of the green honeycomb molded body 70 contacts the deepest portion of the groove portion 7.
  • the width of the upper end portion of the groove portion 7, that is, the distance between the edges of the side surface portion 11 is such that the green honeycomb molded body 70 can enter the groove portion 7 without contacting the edge of the side surface portion 11 in a state where the longitudinal direction is horizontal.
  • the diameter of the green honeycomb molded body 70 is wider.
  • the hollow part 5 penetrates the main body part 3 in the direction in which the groove part 7 extends.
  • the cross-sectional shapes of the groove portion 7 and the cavity portion 5 in FIG. 1 are line symmetric with respect to the common symmetry axis a1 in the vertical direction.
  • the cross-sectional shape of the cavity portion 5 in the vertical plane has a lower side L1 and an upper side L2 that are partially parallel and parallel to each other, and the upper side L2 is a pair of inclined portions inclined upward on both sides thereof. L2a.
  • the lowermost portions of the pair of inclined portions L2a extend vertically downward to form a pair of vertical portions L2b, and are coupled to both ends of the horizontal portion of the upper side L2.
  • the uppermost portions of the pair of inclined portions L2a that is, both end portions of the upper side L2 extend vertically downward to form a pair of side sides L3, and are coupled to both end portions of the lower side L1.
  • the horizontal distance d1 between both ends of the upper side L2 (horizontal distance between both ends of the lower side L1) d1 is longer than the width b3 of the groove 7 on the same vertical plane.
  • b3 indicates the width of the groove 7
  • b4 indicates the width of the side surface 11
  • b5 indicates the width of the cradle 1A
  • b6 indicates the width of the cradle 1A.
  • B7 indicates the height of the cradle 1A up to the upper end of the curved surface portion 9
  • b8 indicates the height of the side surface portion 11
  • b9 indicates the height of the cradle 1A up to the deepest portion of the groove portion 7. It shows.
  • d1 indicates the length of the lower side L1 of the cavity 5
  • d2 indicates the length of the horizontal part of the upper side L2 of the cavity 5
  • d3 indicates the horizontal length of the inclined part L2a of the cavity 5.
  • D4 represents the distance between the side L3 of the cavity 5 and the side surface of the body 3
  • d5 represents the length of the side L3 of the cavity 5
  • d6 represents the lower side L1 of the cavity and the body.
  • D7 represents the vertical length of the inclined portion L2a of the cavity 5
  • d8 represents the distance between the horizontal portion of the upper side L2 of the cavity 5 and the lower side L1.
  • FIG. 2 is a cross-sectional view perpendicular to the direction in which the groove of the conventional cradle extends.
  • the conventional cradle having no hollow portion as shown in FIG. 2, in a state where the green honeycomb molded body (broken line) 70 is supported by the cradle 100, the groove portion 47 of the cradle 100 and the green honeycomb molded body ( A clearance C exists between the side face of the broken line 70 and the broken line 70.
  • the green honeycomb formed body (broken line) 70 before being dried and fired is supported by the cradle 100 and waits for the next processing step from its own weight (gravity) F1 and the main body 103 of the cradle 100 having flexibility.
  • an internal stress F3 that tries to spread in the horizontal direction acts. Since there is a clearance C in the direction of the internal stress F3, the green honeycomb molded body (broken line) 70 is crushed in the direction of gravity and spreads in the horizontal direction, resulting in an elliptical flat shape (solid line). This causes a reduction in dimensional accuracy of the green honeycomb molded body 70.
  • the cavity 5 is crushed in the vertical direction. More specifically, since the horizontal distance d1 between both ends of the upper side L2 is longer than the width b3 of the groove part 7, the upper side L2 falls downward, and the pair of inclined parts L2a and the side side L3 are directed toward the symmetry axis a1. The main body 3 is deformed so as to be inclined, and the entire cavity 5 is crushed in the vertical direction.
  • the cross-sectional shape of the cavity 5 has a lower side L1 and an upper side L2 at least partially horizontal and parallel to each other. Therefore, the degree of wrapping by the main body 3 does not become excessive.
  • the cradle 1A supports the green honeycomb molded body 70, the space in which the green honeycomb molded body 70 can spread in the horizontal direction is narrowed, so the green honeycomb molded body is flattened in an elliptical shape. It is suppressed that it becomes the shape which did. Therefore, according to the cradle 1A, it is possible to suppress a decrease in dimensional accuracy of the green honeycomb molded body 70.
  • the groove portion 7 has a side surface portion 11. Therefore, when the cradle 1 ⁇ / b> A supports the green honeycomb molded body 70 and the shape of the main body 3 changes, the edge of the groove portion 7 does not touch the side surface of the green honeycomb molded body 70. Therefore, the side surface of the green honeycomb molded body 70 is prevented from being damaged by contact with the edge of the groove portion 7.
  • the cavity 5 passes through the main body 3 in the direction in which the groove 7 extends, and the cross-sectional shapes of the groove 7 and the cavity 5 have a vertical symmetry axis a1 that is common to each other.
  • FIG. 4 is a cross-sectional view of a second aspect (a cradle 1B) of a cradle according to the present invention.
  • the difference between the cradle 1B and the first embodiment (the cradle 1A) is that the groove does not have a side surface and the cross-sectional shape of the cavity is different.
  • the cross-sectional shapes of the groove portion 17 and the cavity portion 15 of the cradle 1B are line symmetric with respect to the vertical symmetry axis a2. .
  • the cross-sectional shape of the hollow portion 15 in the vertical plane is as follows: a horizontal lower side L11, a pair of side sides L13 extending at an acute angle upward from both ends of the lower side 11, and an upper side L12 connecting the upper ends of the pair of side sides L13. Consists of.
  • the upper side 12 extends from the upper ends of the pair of side sides L13 so as to incline downward toward the symmetry axis a2, and is connected to each other on the symmetry axis a2.
  • the cross-sectional shape of the hollow portion in the vertical plane is a shape made of a line that follows the apex of a virtual trapezoidal shape whose upper side is shorter than the lower side.
  • the lower side and the pair of side sides follow the shape of the trapezoidal shape as it is.
  • the line that traces between the vertices on the upper side is bent at the middle point and intersects the symmetry axis a2 at a position lower than the position of the vertices on the upper side. That is, the line includes the upper side L12 that is a pair of inclined portions that are inclined downward from the vertex side on the upper side toward the axis of symmetry.
  • the length of the lower side d11 is equal to or less than the width b13 of the groove portion 17.
  • the degree of collapse of the hollow portion 15 when the green honeycomb molded body 70 is supported is smaller than that in the first aspect (the cradle 1A). That is, in the cradle 1B in which the upper side L12 is shorter than the lower side L11 and the length of the lower side L11 is equal to or less than the width b13 of the groove part 17, the main body part 13 is deformed so that the groove part 17 wraps the side surface of the green honeycomb molded body. Compared with the cradle 1A, the degree of wrapping is weak.
  • FIG. 5 is a cross-sectional view of the third aspect (the cradle 1C) of the cradle according to the present invention.
  • the difference between the cradle 1C and the first mode (the cradle 1A) is that the groove does not have a side surface and the cross-sectional shape of the cavity is different.
  • the cross-sectional shapes of the groove portion 27 and the cavity portion 25 of the cradle 1C are line symmetric with respect to the common symmetry axis a3 in the vertical direction. .
  • the cross-sectional shape of the hollow portion 25 in the vertical plane is as follows: a horizontal lower side L21, a pair of side sides L23 rising upward at right angles from both ends of the lower side 21, and an upper side L22 connecting the upper ends of the pair of side sides L23. Consists of.
  • the upper side L22 is, in order from the upper ends of the pair of side sides L23, from the first lower inclined portion L22a inclined downward toward the symmetry axis a3 and the first lower inclined portion L22a at a steeper angle than L22a.
  • the third downward inclined portions L22d are connected to each other on the symmetry axis a3.
  • the cross-sectional shape of the hollow portion 25 in the vertical plane is a shape composed of lines that at least follow the vertices of a virtual rectangular shape. Of the lines, the lower side and the pair of side sides follow the shape of the rectangular shape as it is.
  • a line that traces between the vertices on the upper side intersects the symmetry axis at a position below the position of the vertices on the upper side. Then, the line includes two or more pairs of downward inclined portions inclined downward from the vertex side toward the symmetry axis a3 side, and an upper portion inclined upward from the vertex side toward the symmetry axis a3 side between the downward inclination portions. And an inclined portion.
  • the length of the lower side d21 is longer than the width b23 of the groove 27.
  • the degree of collapse of the cavity 25 when the green honeycomb molded body 70 is supported is larger than in the first aspect (the cradle 1A). That is, in the cradle 1 ⁇ / b> C in which the length of the lower side L ⁇ b> 21 is longer than the width b ⁇ b> 23 of the groove portion 27, the main body portion 23 is easily deformed so that the groove portion 27 wraps the side surface of the green honeycomb molded body 70.
  • the third downward inclined portion L22d intersects the axis of symmetry a3 at a position below the position of the upper end of the side L23, the shape of the main body portion 23 as a whole changes greatly, and the degree of clearance reduction is also large. large. Therefore, the decrease in the clearance due to the change in the shape of the main body is more remarkable, and the decrease in the dimensional accuracy of the green honeycomb molded body 70 can be further suppressed.
  • the cradle 1D includes a main body portion 63 made of a flexible material.
  • the main body portion 63 has a groove portion 67 in the upper portion thereof, and has a hollow portion 65 below the groove portion 67.
  • the groove portion 67 is a recess provided in the upper portion of the main body portion 63 and extends in the direction X toward the front and back of the paper surface of FIG.
  • the groove portion 67 has a curved surface portion 69 that accommodates the lower half circumference of the side surface of the green honeycomb molded body 70 when the cylindrical green honeycomb molded body 70 is supported, and upwards from both edges of the curved surface portion 69.
  • a side surface portion 71 extending.
  • the both edges of the curved surface portion 69 are referred to as both end portions parallel to the direction X in which the groove portion 67 extends in the curved surface portion 69.
  • the curvature of the curved surface portion 69 is equal to or smaller than the cylindrical curvature of the green honeycomb molded body.
  • the width b61 of the groove portion 67 is larger than the diameter of the green honeycomb molded body 70. Therefore, the green honeycomb molded body 70 can be allowed to enter the groove portion without contacting the edge of the groove portion 67 in a state where the longitudinal direction of the green honeycomb molded body 70 is horizontal.
  • the green honeycomb molded body 70 is in direct contact with the groove portion 67. In other words, the groove portion 67 of the cradle 1D supports the green honeycomb molded body 70.
  • the hollow portion 65 penetrates the main body portion 63 in the direction X in which the groove portion 67 extends.
  • the cross-sectional shape of the groove 67 in FIG. 6A (the cross section orthogonal to the direction X in which the groove 67 extends) is line-symmetric with respect to the axis a61 extending in the vertical direction Z at the center of the cross section.
  • the cross-sectional shape of the hollow portion 65 in FIG. 6A (the cross section perpendicular to the direction X in which the hollow portion 65 extends) is line-symmetric with respect to the axis a61.
  • the cross-sectional shape of the hollow portion 65 in the vertical plane has a lower side L61 and an upper side L62 that are partly opposite sides that are horizontal and parallel to each other.
  • the upper side L62 has a pair of inclined portions L62a inclined upward on both sides thereof.
  • the lowermost portions of the pair of inclined portions L62a are coupled to both ends of the horizontal portion of the upper side L62.
  • the uppermost portions of the pair of inclined portions L62a that is, both end portions of the upper side L62 extend vertically downward to form a pair of side sides L63, and are coupled to both end portions of the lower side L61.
  • the horizontal distance between both ends of the upper side L62 (horizontal distance between both ends of the lower side L61) d61 is longer than the width b61 of the groove 67.
  • the above cradle 1D is paraphrased as follows.
  • the curved surface portion 69 of the groove portion 67 is semicircular when viewed from the direction X in which the groove portion extends.
  • a hollow portion 65 is formed in the main body portion 63.
  • the hollow portion 65 is positioned below the entire curved surface portion 69 and penetrates the main body portion 63 in the direction X in which the groove portion 67 extends.
  • the cavity 65 is surrounded by a horizontal bottom surface (a surface including the lower side L61), an upper surface (a surface including the upper side L62) facing the bottom surface, and a pair of opposed vertical side surfaces (a surface including the side side L63). .
  • Both end portions (a portion including the inclined portion L62a) parallel to the direction X in which the groove portion extends on the upper surface are bent toward the curved surface portion 69.
  • the cavity 65 is plane-symmetric with respect to a surface (a surface including the axis a61) that bisects the groove 67 along the direction X in which the groove 67 extends.
  • the width d61 of the bottom surface of the cavity 65 in the horizontal direction (the direction Y that is perpendicular to the direction X and horizontal) is longer than the width b61 of the groove 67 in the same direction.
  • the cavity 65 is crushed in the vertical direction. More specifically, the upper side L62 falls downward. At this time, since the horizontal distance d61 between both end portions of the upper side L62 is longer than the width b61 of the groove portion 67, the pair of inclined portions L62a and the side side L63 are inclined toward the symmetry axis a61, and the entire hollow portion 65 is vertically oriented. It collapses. Along with this, the flexible main body 63 is deformed.
  • the groove portion 67 a part of the side surface portion 71 and the curved surface portion 69 is inclined toward the symmetry axis a ⁇ b> 61, and the entire upper portion of the main body portion 63 is deformed so as to wrap around the side surface of the green honeycomb molded body 70.
  • the cross-sectional shape of the cavity 65 has the lower side L61 and the upper side L62, at least a part of which is horizontal and parallel to each other, the degree of wrapping does not become excessive.
  • Such deformation of the main body 63 as a whole reduces the distance between the groove 67 and the side surface of the green honeycomb molded body 70, and the surface of the groove 67 comes into contact with the green honeycomb molded body 70. Then, a repulsive force by the abutting groove portion 67 acts on an internal stress that tends to spread horizontally on the green honeycomb molded body 70 due to gravity. Thereby, the spread of the cross section perpendicular to the central axis of the green honeycomb molded body 70 in the horizontal direction is suppressed.
  • the cradle 1D supports the green honeycomb molded body 70
  • the space in which the green honeycomb molded body 70 can spread in the horizontal direction is narrowed, so that the cross section of the green honeycomb molded body has a flat elliptical shape. It is suppressed. Therefore, according to the cradle 1D, the dimensional accuracy of the green honeycomb molded body 70 is improved as compared with the case where the cradle without the hollow portion is used.
  • the groove portion 67 has the side surface portion 71, when the cradle 1D supports the green honeycomb molded body 70 and the shape of the main body portion 63 changes, the edge of the groove portion 67 is increased. Does not touch the side surface of the green honeycomb molded body 70. Therefore, the side surface of the green honeycomb molded body 70 is prevented from being damaged by contact with the edge of the lining portion 73.
  • the cavity 65 passes through the main body 63 in the direction in which the groove 67 extends, and the cross-sectional shapes of the groove 67 and the cavity 65 are axisymmetric with respect to the axis a61. . Therefore, with the deformation of the main body 63 as a whole, the distance between the groove 67 and the side surface of the green honeycomb molded body 70 is uniformly reduced over the entire main body 63, so that the dimensional accuracy of the green honeycomb molded body 70 is improved. .
  • the fourth embodiment of the pedestal for the green honeycomb molded body is more flexible than the main body 63, as in the cradle 1E shown in FIGS. 6 (b), 7 (a), and 7 (b).
  • a lining 73 made of a material may be provided.
  • the lining 73 of the cradle 1E covers the entire surface of the groove 67.
  • the cradle 1 ⁇ / b> E has the same dimensions and structure as the cradle 1 ⁇ / b> D described above except that it includes a lining 73.
  • the horizontal distance between both ends of the upper side L62 (the horizontal distance between both ends of the lower side L61) d61 is longer than the distance b61 between the upper ends of the lining 73.
  • the width d61 of the bottom surface of the cavity 65 in the horizontal direction (the direction Y perpendicular to the direction X) is longer than the width b61 of the lining 73 in the same direction.
  • the material of the main body 63 includes flexible rubber, sponge, and the like, and more specifically, polyurethane, expanded polystyrene, or expanded polyethylene.
  • the main body 63 for example, the material No. listed in Table 1 described later is used. 1 to 10 can be used. Material No.
  • the main body portions 1 to 10 are all made of polyurethane.
  • flexibility refers to a property that can cause bending and bending, and “high flexibility” means, for example, that 25% hardness is small and rebound resilience is small.
  • the entire surface of the curved surface portion 69 and the side surface portion 71 of the groove portion 67 is covered with a sheet-like lining portion 73.
  • the thickness of the lining 73 is preferably 0.05 to 0.2 times the radius of the green honeycomb molded body to be supported.
  • the distance b61 between the upper end portions of the lining portion 73 is larger than the diameter of the green honeycomb molded body 70. Therefore, the green honeycomb molded body 70 can be allowed to enter the groove shape of the lining portion 73 without contacting the edge of the lining portion 73 in a state where the longitudinal direction of the green honeycomb molded body 70 is horizontal.
  • the green honeycomb molded body 70 is brought into contact with the lining portion 73 and directly supported by the lining portion 73.
  • the main body 63 of the cradle 1 ⁇ / b> E supports the green honeycomb molded body 70 via the lining 73 that covers the surface of the groove 67.
  • the material of the lining 73 a material having higher flexibility than the material of the main body 63 is used.
  • the material of the lining portion 73 include soft rubber, soft polyurethane, and silicone gel.
  • the lining 73 for example, the material No. listed in Table 2 described later is used. 11 to 25 can be used. Material No. The lining portions 11 to 25 are all made of polyurethane.
  • the 25% hardness (hardness at a compression rate of 25%) of the main body 63 is preferably 130 N or more, and the 25% hardness of the lining 73 is preferably 100 N or less.
  • the 25% hardness is the hardness of the sample when the sample (material constituting the main body) is compressed 25% in a predetermined direction. 25% hardness, impact resilience (%), density (kg / m 3 ), tensile strength (kPa), elongation (%), tear strength (N / cm), compression residual strain (%), and repetition
  • the compression residual strain (%) is measured based on JIS K6401 standard.
  • the rebound resilience of the main body 63 is preferably 30% or more, and the rebound resilience of the lining 73 is preferably 5 to 50%.
  • FIG. 8 is a side view of a green honeycomb molded body supported by a conventional cradle.
  • the conventional cradle 10 generally has a longer length in the longitudinal direction of the green honeycomb molded body 70 than a length in a direction in which the groove portion of the cradle 10 extends. Therefore, the green honeycomb molded body 70 is supported in a state where both ends thereof protrude from the receiving table 10. For this reason, when the green honeycomb molded body 70 is supported by the conventional cradle 10, the end portion of the groove of the cradle 10 (the portion indicated by the arrow in FIG.
  • the side surface has scratches S along the circumferential direction, and the appearance of the green honeycomb molded body 70 may be poor.
  • the transportability refers to the shape retention of the cradle that supports the green honeycomb molded body.
  • the lining 73 is made of a material that is more flexible than the main body 63. Therefore, the end portion of the groove of the cradle 1E is suppressed from biting into the side surface of the green honeycomb molded body. Further, since the main body 63 is made of a material that is less flexible than the lining 73, the transportability is maintained. Therefore, according to the cradle 1E, it is possible to prevent the side surface of the green honeycomb molded body 70 from being damaged along the circumferential direction while maintaining the transportability.
  • the thickness of the lining 73 is 0.05 to 0.2 times the radius of the circular cross section of the green honeycomb molded body 70, the above effect is further exhibited. Furthermore, when the lining portion 73 is made of a material whose hardness is 25% smaller than that of the main body portion 63, the above effect is further exhibited. Further, when the lining portion 73 is made of a material having a smaller rebound resilience than the main body portion 63, the above effect is further exhibited.
  • the cavity 65 is crushed in the vertical direction. More specifically, since the horizontal distance d61 between both end portions of the upper side L62 is longer than the distance b61 between the upper end portions of the lining portion 73, the upper side L62 falls downward, and the pair of inclined portions L62a and the side side L63 are symmetrical. The entire hollow portion 65 is crushed in the vertical direction by inclining toward the axis a61. Along with this, the flexible main body 63 is deformed.
  • the groove portion 67 a part of the side surface portion 71 and the curved surface portion 69 is inclined toward the symmetry axis a ⁇ b> 61, and the entire upper portion of the main body portion 63 is deformed so as to wrap around the side surface of the green honeycomb molded body 70.
  • the cross-sectional shape of the cavity 65 has the lower side L61 and the upper side L62, at least a part of which is horizontal and parallel to each other, the degree of wrapping does not become excessive.
  • Such a deformation of the entire main body 63 reduces the distance between the lining 73 and the side surface of the green honeycomb molded body 70, and the surface of the lining 73 contacts the green honeycomb molded 70. Then, a repulsive force by the abutting lining 73 acts on the internal stress that tends to spread horizontally on the green honeycomb molded body 70 due to gravity, and the horizontal direction of the cross section perpendicular to the central axis of the green honeycomb molded body 70 The spread of is suppressed.
  • the cradle 1E supports the green honeycomb molded body 70, the space in which the green honeycomb molded body 70 can spread in the horizontal direction is narrowed, so that the cross section of the green honeycomb molded body has a flat elliptical shape. It is suppressed. Therefore, according to the cradle 1E, the dimensional accuracy of the green honeycomb molded body 70 is improved as compared with the case where the cradle without the hollow portion is used.
  • the groove part 67 has the side surface part 71, when the cradle 1E supports the green honeycomb molded body 70 and the shape of the main body part 63 changes, the edge of the groove part 67 is increased. Does not touch the side surface of the green honeycomb molded body 70. Therefore, the side surface of the green honeycomb molded body 70 is prevented from being damaged by contact with the edge of the lining portion 73.
  • the cavity 65 passes through the main body 63 in the direction in which the groove 67 extends, and the cross-sectional shapes of the groove 67 and the cavity 65 are axisymmetric with respect to the axis a61. . Therefore, with the deformation of the main body 63 as a whole, the distance between the lining 73 and the side surface of the green honeycomb molded body 70 is uniformly reduced over the entire main body 63, so that the dimensional accuracy of the green honeycomb molded body 70 is improved. To do.
  • FIG. 11 (a) is substantially the same as the fourth aspect (the cradle 1D) except for the position and shape of the cavity 80. According to the cradle 1F, substantially the same operations and effects as those of the cradle 1D are achieved.
  • the cradle 1G shown in FIG. 11 (b), FIG. 12 (a) and FIG. 12 (b) is substantially the same as the fourth mode (the cradle 1E) except for the position and shape of the cavity 80.
  • the curved surface part 89 of the groove part 87 is semicircular when viewed from the direction X in which the groove part 87 extends.
  • the main body of the cradle 1F (or cradle 1G) is composed of a first main body 83a and a second main body 83b.
  • the end portion parallel to the direction X in the first main body portion 83a and the end portion parallel to the direction X in the second main body portion 83b are in contact with each other through the adhesive at the bonding portion 82.
  • the bonded first main body 83a and second main body 83b are collectively referred to as “main body”.
  • a hollow portion 80 is formed in the main body portion.
  • the cavity 80 is located between the first main body 83a and the second main body 83b.
  • the cavity 80 penetrates the main body in the direction X in which the groove 87 extends.
  • the bottom surface C81 of the cavity 80 and the top surface C82 of the cavity 80 facing the bottom C81 are curved surfaces that are curved along the entire curved surface portion 89.
  • the cavity 80 is surrounded by only two curved surfaces, a bottom surface C81 and a top surface C82.
  • the cross section of the cavity 80 that is perpendicular to the direction X in which the groove 87 extends has a substantially crescent or arcuate shape.
  • the cavity 80 is plane-symmetric with respect to a surface (a surface including the axis a81) that bisects the groove 87 along the direction X in which the groove 87 extends.
  • the width d82 of the bottom surface C81 of the cavity 80 in the horizontal direction is longer than the width b81 of the groove 87 in the same direction (or the width b81 of the lining 93).
  • the thickness of the second main body portion 83b in the portion where the curved surface portion 89 is located is substantially uniform. In other words, the thickness of the second main body portion 83b between the curved surface portion 89 and the upper surface C82 of the hollow portion is substantially uniform.
  • the cavity 80 is crushed in the vertical direction when the green honeycomb molded body 70 is supported, and the entire bottom surface C81 and top surface C82 of the cavity 80 are obtained. Is almost completely adhered.
  • the flexible main body 3 is deformed. That is, in the groove portion 87, the side surface portion 91 and the curved surface portion 89 are inclined toward the green honeycomb molded body 70, and the upper portion of the first main body portion 83 a and the entire second main body portion 83 b wrap around the side surface of the green honeycomb molded body 70.
  • the entire groove portion 87 (or the lining portion 93) adheres almost completely to the side surface of the green honeycomb molded body 70. Therefore, in the cradle 1G, the internal stress acting on the side surface of the green honeycomb molded body 70 in contact with the groove portion 87 (or the lining portion 93) is dispersed over the entire side surface of the green honeycomb molded body 70 as compared with the case of the fourth mode. To do. In other words, in the cradle 1G, the internal stress is less likely to concentrate on a part of the side surface of the green honeycomb molded body 70 that is in contact with the groove portion 87 (or the lining portion 93) as compared with the case of the fourth mode. As a result, in the cradle 1G, as compared with the case of the fourth aspect, the spread in the horizontal direction of the cross section perpendicular to the central axis of the green honeycomb molded body 70 is significantly suppressed.
  • the factor that suppresses the deformation of the green honeycomb molded body 70 as compared with the fourth aspect is that the cross section of the cavity 80 of the fifth aspect is substantially crescent shaped. It is to be.
  • the factors that suppress the deformation of the green honeycomb molded body 70 as compared with the fourth aspect are the curved surface part 89 of the fifth aspect and the upper surface C82 of the cavity part 80. While the thickness of the second main body portion 83b is substantially uniform, the thickness of the main body portion 63 between the curved surface portion 69 and the upper surface of the cavity portion 65 of the fourth aspect is non-uniform.
  • the entire bottom surface C81 and the top surface C82 of the cavity 80 are in close contact with each other, and the entire groove portion 87 (or lining portion 93) is the green honeycomb molded body 70. Adheres almost completely to the side of On the other hand, in the fourth aspect, the bottom surface and the top surface of the cavity portion 65 are not almost completely adhered, and a gap remains between both surfaces, and the vicinity of the side surface portion 71 (or the lining portion 73 covering the side surface portion 71) is formed into a green honeycomb.
  • the cradle 1F (or the cradle 1G) is different from the fourth aspect in the above points, the cradle 1F (or the cradle 1G) has a side surface of the green honeycomb molded body 70 as compared with the fourth aspect.
  • the internal stress is difficult to concentrate, and the deformation of the green honeycomb molded body 70 is further suppressed.
  • the internal stress which acts on the green honeycomb molded object 70 in the 4th aspect and the 5th aspect can be confirmed by the simulation etc. based on a finite element method.
  • the diameter of the cross section perpendicular to the central axis of the green honeycomb molded body 70 before being supported by the groove 87 is 140 to 180 mm, and the width b81 of the groove 87 before the green honeycomb molded body 70 contacts (or the lining 93).
  • the roundness of the cross section of the green honeycomb molded body 70 supported by the groove portion 87 is about 0.4 mm. is there.
  • the roundness of the cross section of the green honeycomb molded body 70 supported by the groove portion 67 is about 0.6 mm.
  • the roundness of the cross section of the green honeycomb molded body 70 supported by the groove 67 is about 1.9 mm. These roundnesses were measured by the inventors' experiments. The roundness is measured based on, for example, the American Industrial Standard ASME Y14.5M, and all points on the outer periphery of the cross section of the green honeycomb molded body supported by the groove are two concentric circles. It is the difference between the radial distances of two concentric circles when the difference between the radial distances of the circles is at a minimum.
  • the material, composition, 25% hardness and rebound resilience of the first main body 83a and the second main body 83b of the cradle 1F (or cradle 1G) may be the same as the main body 3 of the cradle 1E.
  • the material, composition, 25% hardness and rebound resilience of the lining 93 of the cradle 1G may be the same as those of the lining 73 of the cradle 1E.
  • the 25% hardness of the first main body 83a and the second main body 83b of the cradle 1G is preferably 150 N or more or 200 N or more.
  • the 25% hardness of the lining 93 of the cradle 1G is preferably 50 N or less.
  • the rebound resilience of the first main body 83a and the second main body 83b of the cradle 1G is preferably 30% or more.
  • the rebound resilience of the lining 93 of the cradle 1G is preferably 20% or less.
  • a raw material mixture is prepared by mixing ceramic raw material powder, an organic binder, additives and the like with a kneader or the like.
  • the ceramic raw material powder examples include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and the like.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • the raw material powder for ceramics is not limited to these.
  • the raw material powder When producing a diesel particulate filter made of aluminum titanate or aluminum magnesium titanate, the raw material powder includes an aluminum source powder such as ⁇ -alumina powder, and a titanium source powder such as anatase type or rutile type titania powder.
  • the raw material powder can further contain a magnesium source powder such as magnesia powder and magnesia spinel powder and / or a silicon source powder such as silicon oxide powder and glass frit, if necessary.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • additives examples include pore formers, lubricants and plasticizers, dispersants, and solvents.
  • pore-forming agents include carbon materials such as graphite; resins such as polyethylene, polypropylene, and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells, and corn; ice; and dry ice.
  • Lubricants and plasticizers include alcohols such as glycerine; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; metal stearates such as aluminum stearate, polyoxyalkylene alkyl And ether (POAAE).
  • alcohols such as glycerine
  • higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid
  • metal stearates such as aluminum stearate, polyoxyalkylene alkyl And ether (POAAE).
  • dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate Surfactant etc. are mentioned.
  • alcohols and water can be used.
  • the alcohol include monohydric alcohols such as methanol, ethanol, butanol, and propanol; dihydric alcohols such as propylene glycol, polypropylene glycol, and ethylene glycol;
  • a long cylindrical body is formed by extruding the raw material mixture in the horizontal direction from a die of an extruder. Since the die has a lattice-shaped opening, a plurality of through holes extending in the longitudinal direction are formed in the cylindrical body.
  • the raw material mixture may be kneaded in an extruder.
  • the cylindrical body extruded from the extrusion molding machine is supported by a cradle (the cradle 1A, 1B, 1C, 1D, 1E, 1F, or 1G). That is, a part of the lower side surface of the cylindrical body is supported by the groove portion of the cradle.
  • the cylindrical body is cut perpendicularly to the longitudinal direction to form a green honeycomb molded body 70 supported by a cradle.
  • the green honeycomb molded body supported by the cradle is transported to the dryer together with the cradle.
  • the green honeycomb molded body may be transferred from the cradle to the conveyance plate, and the green honeycomb molded body may be conveyed in a state of being placed on the conveyance plate.
  • the conveyed green honeycomb molded body 70 is dried by hot air, microwave, or the like to remove the solvent. Further, a cutting process for accurately adjusting the dimensions of the green honeycomb molded body 70 may be performed. In addition, dust may be removed from the green honeycomb formed body 70 after cutting.
  • the first mask is attached to the first end surface of the green honeycomb molded body 70 where one opening of the plurality of through holes 70a is located.
  • a mask portion having substantially the same dimensions as the through hole 70a and a plurality of openings are arranged in a staggered manner.
  • a first mask is affixed to the first end surface of the green honeycomb molded body 70 so that each through hole 70a overlaps each mask portion and opening.
  • a second mask is attached to the second end surface opposite to the first end surface. The arrangement relationship between the opening and the mask portion of the second mask is opposite to that of the first mask.
  • any of the plurality of through holes 70a formed in the green honeycomb molded body 70 is open at either the first end face or the second end face, and is closed by the mask portion at the other end.
  • the sealing material is introduced into the opening (end) of each through-hole 70a that overlaps the opening of the first mask.
  • the entire green honeycomb molded body 70 may be vibrated by a vibrator. As a result, the sealing material is easily filled in the gaps at the end portions of the through holes 70a. What is necessary is just to use a substantially the same thing as said raw material mixture as a sealing material.
  • the sealing step for the first end surface After the sealing step for the first end surface, the sealing step for the second end surface to which the second mask is attached is performed in the same manner as the sealing step for the first end surface. After performing the sealing step on both end faces, each mask is peeled off from each end face.
  • Green honeycomb molded body 70 calcining step and firing step After the sealing step, the green honeycomb molded body 70 is calcined (degreasing) and fired. Through the above steps, a diesel particulate filter 170 made of porous ceramics can be obtained (see FIG. 14).
  • Calcination is a process for removing the organic binder in the green honeycomb molded body 70 and the organic additive blended as necessary by burning or decomposing.
  • the calcining process corresponds to an initial stage of the firing process, that is, a temperature raising stage (for example, a temperature range of 300 to 900 ° C.) until the green honeycomb molded body 70 reaches the firing temperature.
  • a temperature raising stage for example, a temperature range of 300 to 900 ° C.
  • the firing temperature of the green honeycomb molded body 70 is preferably 1300 ° C. or higher, more preferably 1400 ° C. or higher.
  • the firing temperature is preferably 1650 ° C. or lower, more preferably 1550 ° C. or lower.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour.
  • Calcination is usually performed in the atmosphere.
  • firing may be performed in an inert gas such as nitrogen gas or argon gas. Firing may be performed in a reducing gas such as carbon oxide gas or hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • Calcination is usually performed using a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously. Moreover, you may carry out by a stationary type and may carry out by a fluid type.
  • a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace.
  • Firing may be performed batchwise or continuously.
  • you may carry out by a stationary type and may carry out by a fluid type.
  • the time required for firing varies depending on the composition and amount of the raw material powder constituting the green honeycomb molded body 70, the form of the firing furnace, the firing temperature, the firing atmosphere, and the like, but may be 10 minutes to 24 hours.
  • Calcination and firing may be performed separately.
  • the green honeycomb molded body 70 may be heated at a temperature equal to or higher than the thermal decomposition temperature of the organic binder and other organic additives and lower than the sintering temperature of the inorganic compound powder.
  • the honeycomb formed body after the calcining step may be heated at a temperature equal to or higher than the sintering temperature of the raw material powder.
  • the through hole 70a closed by the sealing portion 70b on the first end surface side has an opening on the second end surface side.
  • the through-hole 70a closed by the sealing portion 70b on the second end surface side has an opening on the first end surface side (see FIG. 14).
  • a platinum-based metal catalyst supported on a carrier such as alumina or a promoter such as ceria or zirconia may be attached to the partition wall surface of the through hole 70a.
  • the dimensions of the diesel particulate filter 170 are not limited.
  • the inner diameter (the length of one side of the square) of the cross section perpendicular to the longitudinal direction of the through hole 70a is, for example, 0.5 to 2.5 mm.
  • the length of the diesel particulate filter in the direction in which the through hole 70a extends is, for example, 30 to 350 mm.
  • the outer diameter of the diesel particulate filter is, for example, 10 to 320 mm.
  • the number (cell density) of the through holes 70a opened in the end face of the diesel particulate filter is, for example, 150 to 450 cpsi.
  • the unit of cpsi means “/ inch 2 ” and is equal to “/(0.0254m) 2 ”.
  • the thickness of the partition wall of the through hole 70a is, for example, 0.1 to 0.76 mm.
  • the porosity (open porosity) of the partition wall 70c is, for example, 30 to 70% by volume.
  • the cross-sectional shape of the hollow portion may be other shapes as long as the clearance decreases with the deformation of the main body portion when the groove portion supports the green honeycomb molded body.
  • the material which can be used as a main-body part and a lining part is not restricted to the thing quoted in Table 1 and Table 2.
  • the first aspect (the cradle 1A in FIG. 1), the second aspect (the cradle 1B in FIG. 4), and the third aspect (the cradle 1C in FIG. 5) may each have a lining portion.
  • the diesel particulate filter may be a porous ceramic made of cordierite or silicon carbide.
  • cordierite, silicon carbide, or a mixture thereof may be used as the raw material powder.
  • the cross-sectional shape of the through hole is not limited to a square, and may be a rectangle, a circle, an ellipse, a triangle, a hexagon, an octagon, or the like.
  • a plurality of types of through-holes having different cross-sectional shapes and dimensions may be formed in the diesel particulate filter.
  • the spacing between the through holes and the arrangement of the through holes are not particularly limited.
  • Example 1 A green honeycomb molded body continuously extruded from an extrusion molding machine having an inner peripheral diameter of an outlet die of the extrusion molding machine of 153 mm was supported by a cradle shown in FIG. 1 and cut at a cutting length setting of 240 mm. A total of 32 green honeycomb molded bodies were supported on the cradle.
  • Example 1 A green honeycomb molded body continuously extruded from an extrusion molding machine having an inner peripheral diameter of an outlet die of the extrusion molding machine of 153 mm was supported by a cradle shown in FIG. 2 and cut at a cutting length setting of 240 mm. A total of 20 green honeycomb molded bodies were supported on the cradle.
  • the material of the cradle is the same as that used in Example 1.
  • Example 1 and Comparative Example 1 various dimensions of the green honeycomb molded body supported by the cradle were measured.
  • the diameter in the vertical direction when the green honeycomb molded body was viewed from the longitudinal direction was defined as the “height dimension”.
  • the diameter in the horizontal direction when the green honeycomb molded body was viewed from the longitudinal direction was defined as the “width dimension”.
  • the position of one end of the diameter of the width dimension is set to 0 °, and then the side of the green honeycomb molded body is turned downward, the position that is the lowest in the vertical direction is set to 90 °, and the side is raised from there
  • the position opposite to the 0 ° position was set to the 180 ° position, the side surface was further turned upward from this position, and the position at the top of the side surface was set to the 270 ° position.
  • a diameter connecting a position corresponding to 225 ° from a position corresponding to 45 ° was defined as a “diagonal dimension”.
  • Example 1 From the data shown in Table 3, in Example 1, the height, width, and diagonal dimensions of the supported green honeycomb molded body were close to each other compared to Comparative Example 1, and the cross-sectional shape was more true. It was found that the shape was close to a circle. It was also found that the dimensional variation between lots was small. That is, it can be seen that the use of the cradle having the shape shown in FIG. 1 suppresses a decrease in dimensional accuracy of the green honeycomb molded body as compared with the conventional cradle.
  • Example 2 A green honeycomb molded body continuously extruded from an extrusion molding machine having an inner peripheral diameter of an outlet die of the extrusion molding machine of 163 mm was supported by a cradle shown in FIG. 1 and cut at a cutting length setting of 300 mm. A total of 75 green honeycomb molded bodies were supported on the cradle.
  • Example 2 A green honeycomb molded body continuously extruded from an extrusion molding machine having an inner peripheral diameter of an outlet die of the extrusion molding machine of 166 mm was supported by a cradle shown in FIG. 2 and cut at a cutting length setting of 220 mm. A total of 80 green honeycomb molded bodies were supported on the cradle.
  • the material of the cradle is the same as that used in Example 2.
  • Example 2 and Comparative Example 2 various dimensions of the green honeycomb molded body supported by the cradle were measured.
  • the measurement result of Example 2 is shown in FIG. 15, and the measurement result of Comparative Example 2 is shown in FIG.
  • the definitions of “height dimension”, “width dimension”, and “diagonal dimension” are the same as in Example 1 and Comparative Example 1.
  • Example 2 is a value in which the height dimension, the width dimension, and the diagonal dimension of the supported green honeycomb molded body are close to each other as compared with Comparative Example 2, and the cross-sectional shape is It was found that the shape was closer to a perfect circle. It was also found that the dimensional variation between lots was small. That is, it was found that the use of the cradle having the shape shown in FIG. 1 suppressed the reduction in dimensional accuracy of the green honeycomb molded body as compared with the conventional cradle.
  • Example 3 Embodiment 3 of the present invention will be described below.
  • No. 1 in Table 1 is used as the main body 63.
  • No. 9 in Table 2 is used as the lining 73.
  • a cradle 1E shown in FIG. 6B using 17 materials was constructed. When the green honeycomb molded body 70 was supported by the cradle 1E for about 8 minutes, the side surface of the green honeycomb molded body 70 was not damaged as shown in FIG.
  • Receiving base according to the present invention, 10, 100... Conventional receiving base, 3, 13, 23, 63. -1st main-body part, 83b ... 2nd main-body part, 5, 15, 25, 65, 80 ... cavity part, 82 ... adhesion part, 7, 17, 27, 47, 67, 87 ... -Groove part, 9, 69, 89 ... curved surface part, 11, 71, 91 ... side part, 73, 93 ... lining part, 70 ... green honeycomb molded object, 70a ... through-hole, 70b: Sealing portion, 70c: Partition, 170 ...
  • Diesel particulate filter a1, a2, a3, a61, a81 ... Axis of symmetry, b3, b13, b23 ... Width of groove, b61 , B81 ... the width of the groove or the distance between the upper ends of the lining, C81 ... the bottom, C 2 ... upper surface, L1, L11, L21, L61 ... lower side, L2, L12, L22, L62 ... upper side, L2a, L62a ... inclined part, L22a, L22b, L22d ... downward inclined part , L22c... Upwardly inclined portion, L63.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

グリーンハニカム成形体の寸法精度の低下を抑制することができるグリーンハニカム成形体用受台を提供する。押出成形後の円柱形状のグリーンハニカム成形体の側面をグリーンハニカム成形体の長手方向を水平にした状態で支持するためのグリーンハニカム成形体用受台1Gであって、受台1Gは、可撓性を有する本体部83a,83bを備え、本体部83bは、本体部83bの上部にグリーンハニカム成形体の側面を支持する溝部87を有し、本体部83bの溝部87の下方に空洞部80が形成されている。

Description

グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法
 本発明は、グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法に関する。
 グリーンハニカム成形体は、ディーゼルパティキュレートフィルタ(Diesel Particulate Filter)等に用いられるハニカム構造体の製造における中間体であり、セラミックスの原料粉末を含むペーストを押出成形することにより製造される(例えば特許文献1参照。)。つまり、グリーンハニカム成形体とは焼成前のハニカム構造体(生のハニカム構造体)を意味する。
 押出成形機から水平方向に押し出された円柱状のグリーンハニカム成形体は、その側面が水平に維持された状態で受台に支持され、所望の長さに切断後、受台に支持された状態で次の工程へと搬送される。当該受台の本体部には、グリーンハニカム成形体を支持するために、その円柱状に応じた溝が設けられている。搬送されたグリーンハニカム成形体は、乾燥、焼成等の工程を経てセラミックスのハニカム構造体となる。
特許第4099896号公報
 グリーンハニカム成形体が受台に支持された状態では、受台の溝とグリーンハニカム成形体の側面との間にクリアランス(隙間)が存在している。クリアランスが大きい場合、焼成前の乾燥していないグリーンハニカム成形体は、受台に支持されている間に自重により重力方向に潰れて水平方向に広がり、その断面は楕円状に扁平した形状となってしまう。このことは、グリーンハニカム成形体の寸法精度を低下させる原因となる。
 そこで本発明は、グリーンハニカム成形体の寸法精度の低下を抑制することができるグリーンハニカム成形体用受台、及びディーゼルパティキュレートフィルタの製造方法を提供することを目的とする。
 本発明の一態様に係るグリーンハニカム成形体は、押出成形後の円柱形状のグリーンハニカム成形体の側面をグリーンハニカム成形体の長手方向(中心軸)を水平にした状態で支持するためのグリーンハニカム成形体用受台であって、可撓性を有する本体部を備え、本体部は、本体部の上部にグリーンハニカム成形体の側面を支持する溝部を有し、本体部の溝部の下方に空洞部が形成されている。
 本発明の一態様に係るグリーンハニカム成形体によれば、本体部の上部の溝部にグリーンハニカム成形体が支持されたときに、溝部の下方にある空洞部が鉛直方向に潰れ、これに伴い、可撓性を有する本体部の形状が変化し、溝部とグリーンハニカム成形体の側面との間のクリアランスが減少する。つまり、グリーンハニカム成形体が水平方向へ広がり得る空間が狭くなることになる。そのため、本発明によれば、グリーンハニカム成形体の中心軸が水平である状態において、グリーンハニカム成形体の変形(歪み)が抑制され、成形体の円形の断面が楕円状に扁平な形状になることが抑制される。従って、本発明によれば、グリーンハニカム成形体の寸法精度の低下を抑制することができる。
 本発明の一態様に係るグリーンハニカム成形体においては、溝部は、グリーンハニカム成形体の側面の下部半周分が当接する曲面部と、曲面部の曲面方向の両縁から上方に向かって延びる一対の側面部とを有することが好ましい。これによれば、溝部の長手方向の縁がグリーンハニカム成形体の側面に触れ難くなり、クリアランスが減少するように本体部が変形した場合に、グリーンハニカム成形体の側面が溝部の縁との接触により傷つくことを抑制することができる。
 本発明の第一の態様では、空洞部は、溝部が延びる方向に本体部を貫通しており、溝部及び空洞部が延びる方向に直交する鉛直面における溝部及び空洞部の断面形状は、互いに共通する鉛直方向の対称軸について線対称であり、鉛直面における空洞部の断面形状は、少なくとも一部が水平かつ互いに平行である対辺を有し、対辺のうち少なくとも上辺は、その両側において上方に向かって傾斜した傾斜部を有し、上辺の両端部間の水平距離は、鉛直面における溝部の幅よりも長いことが好ましい。
 空洞部が本体部を貫通しており、且つ溝部及び空洞部が上記の対称性を有すると、グリーンハニカム成形体を支持した本体部の形状が変形したときにクリアランスが均等に減少するため、グリーンハニカム成形体の寸法精度の低下がバランスよく抑制される。また、空洞部の断面形状が上記態様であると、本体部の形状変化に伴ってクリアランスが適度に減少する。すなわち、断面形状における上辺の両端部間の水平距離が溝部の幅よりも長いため、グリーンハニカム成形体を支持したときに、溝部がグリーンハニカム成形体の側面を包み込むように本体部が変形しやすい。このとき、空洞部の断面形状が、少なくとも一部が水平かつ互いに平行である対辺を有しているため、その包み込みの程度が過度にならず、クリアランスが適度に減少する。
 本発明の第二の態様では、空洞部は、溝部が延びる方向に本体部を貫通しており、溝部及び空洞部が延びる方向に直交する鉛直面における溝部及び空洞部の断面形状は、互いに共通する鉛直方向の対称軸について線対称であり、鉛直面における空洞部の断面形状は、上辺が下辺よりも短く且つ下辺の長さが鉛直面における溝部の幅以下である仮想の台形形状の頂点を少なくとも辿る線からなる形状であり、線のうち、上辺側の頂点間を辿る線は、上辺側の頂点の位置よりも下方の位置で対称軸と交差し、頂点側から対称軸側に向けて下方に傾斜した傾斜部を含んでいてもよい。
 空洞部が本体部を貫通しており、且つ溝部及び空洞部が上記の対称性を有すると、グリーンハニカム成形体を支持した本体部の形状が変形したときにクリアランスが均等に減少するため、グリーンハニカム成形体の寸法精度の低下がバランスよく抑制される。また、空洞部の断面形状が上記態様であると、グリーンハニカム成形体の側面が溝部の縁との接触により傷つくことをより抑制することができる。すなわち、断面形状が、上辺が下辺よりも短く且つ下辺の長さが溝部の幅以下である仮想の台形形状の頂点を少なくとも辿る線からなる形状であるため、グリーンハニカム成形体を支持したときに、溝部がグリーンハニカム成形体の側面を包み込むように本体部が変形する。この第二の態様では、断面形状が少なくとも一部が水平かつ互いに平行である対辺を有している場合に比べて、グリーンハニカム成形体は本体部で包み込まれ難い。しかし第二の態様の空洞部の断面形状では、上記線のうち上辺側の頂点間を辿る線が上辺側の頂点の位置よりも下方の位置で対称軸と交差しているため、グリーンハニカム成形体の変形を抑制することができる程度に、本体部がグリーンハニカム成形体を包み込むことができる。
 本発明の第三の態様では、空洞部は、溝部が延びる方向に本体部を貫通しており、溝部及び空洞部が延びる方向に直交する鉛直面における溝部及び空洞部の断面形状は、互いに共通する鉛直方向の対称軸について線対称であり、鉛直面における空洞部の断面形状は、水平方向の上辺及び下辺の長さが鉛直面における溝部の幅よりも長い仮想の長方形形状の頂点を少なくとも辿る線からなる形状であり、線のうち、上辺側の頂点間を辿る線は、上辺側の頂点の位置よりも下方の位置で対称軸と交差し、頂点側から対称軸側に向けて下方に傾斜した2対以上の下方傾斜部と、下方傾斜部の間で頂点側から対称軸側に向けて上方に傾斜した上方傾斜部と、を含んでいてもよい。
 空洞部が本体部を貫通しており、且つ溝部及び空洞部の上記の対称性を有すると、グリーンハニカム成形体を支持した本体部の形状が変形したときにクリアランスが均等に減少するため、グリーンハニカム成形体の寸法精度の低下がバランスよく抑制される。また、空洞部の断面形状が上記態様であると、本体部の形状変化に伴ってクリアランスが顕著に減少する。すなわち、断面形状が、水平方向の上辺及び下辺の長さが鉛直面における溝部の幅よりも長い仮想の長方形形状の頂点を少なくとも辿る線からなる形状であるため、グリーンハニカム成形体を支持したときに、溝部がグリーンハニカム成形体の側面を包み込むように本体部が変形しやすい。このとき、上記線のうち上辺側の頂点間を辿る線が上辺側の頂点の位置よりも下方の位置で対称軸と交差しているため、その包み込みの程度がより大きくなり、クリアランスが顕著に減少する。
 本発明の第四の態様では、溝部の曲面部は、溝部が延びる方向から見て半円状であり、空洞部は、曲面部全体の下方に位置し、かつ溝部が延びる方向に本体部を貫通しており、空洞部は、水平な底面、底面に対向する上面、及び対向する一対の鉛直な側面によって囲まれており、上面において溝部が延びる方向に平行な両端部が、曲面部に向かって折れ曲がっている。第四の態様においても、グリーンハニカム成形体の変形が抑制され、その寸法精度の低下を抑制することができる。
 本発明の第五の態様では、溝部の曲面部は、溝部が延びる方向から見て半円状であり、空洞部は、溝部が延びる方向に本体部を貫通しており、空洞部の底面、及び底面に対向する空洞部の上面は、曲面部全体に沿って曲がった曲面であり、空洞部は底面及び上面の2つの曲面のみによって囲まれている。第五の態様によれば、上記態様に比べて、グリーンハニカム成形体の変形を抑制し易くなり、グリーンハニカム成形体の寸法精度が向上し易い。なお、第五の態様では、曲面部と上面との間における本体部の厚さは均一であることが好ましい。これにより、さらにグリーンハニカム成形体の変形を抑制し易くなる。
 本発明の一態様に係るグリーンハニカム成形体用受台は、溝部の表面を覆う内張り部を備えてもよい。内張り部は、可撓性を有し、かつ本体部よりも可撓性が高い材質からなる。溝部は、内張り部を介して、グリーンハニカム成形体の前記側面を支持する。
 内張り部が本体部よりも可撓性が高い材質からなるため、受台の溝の終端部がグリーンハニカム成形体の側面に食い込むことが抑制される。一方、搬送性は、内張り部よりも可撓性の低い材質からなる本体部の剛性によって維持されている。従って、グリーンハニカム成形体用受台は、内張り部を有することにより、搬送性を維持しつつ、グリーンハニカム成形体の側面に周方向に沿う傷がつくことを抑制することができる。
 内張り部の厚さは、グリーンハニカム成形体の円状の断面の半径に対して0.05~0.2倍であることが好ましい。これによれば、グリーンハニカム成形体の側面が傷つくことを抑制し易くなる。
 内張り部は、本体部よりも硬さが小さい材質からなることが好ましい。また、内張り部は、本体部よりも反発弾性が小さい材質からなることが好ましい。これによれば、グリーンハニカム成形体の側面が傷つくことを抑制し易くなる。
 本発明の一態様に係るディーゼルパティキュレートフィルタの製造方法は、上記グリーンハニカム成形体用受台を用いた製造方法であって、セラミックスの原料粉末を含む混合物を押出成形機から水平方向に押し出すことにより、長尺の円柱体を形成する工程と、円柱体の下側の側面をグリーンハニカム成形体用受台の溝部で支持し、円柱体を円柱体の長手方向に垂直に切断して、グリーンハニカム成形体用受台で支持されたグリーンハニカム成形体を形成する工程と、グリーンハニカム成形体用受台で支持されたグリーンハニカム成形体を、グリーンハニカム成形体用受台とともに搬送する工程と、を備える。本発明に係る製造方法によれば、グリーンハニカム成形体の変形を抑制して、その寸法精度を向上させることが可能となる。また内張り部を備える上記受台を用いた製造方法によれば、グリーンハニカム成形体の変形を抑制することができるのみならず、搬送性が維持されるとともに、グリーンハニカム成形体の側面に周方向に沿う傷がつくことを抑制して、歪みがなく傷の少ないディーゼルパティキュレートフィルタの製造が可能となる。
 本発明によれば、グリーンハニカム成形体の寸法精度の低下を抑制することができるグリーンハニカム成形体用受台、及びディーゼルパティキュレートフィルタの製造方法を提供することができる。
本発明に係るグリーンハニカム成形体用受台の第一の態様の、溝部が延びる方向に垂直な断面図である。 従来の受台の溝部が延びる方向に垂直な断面図であって、従来の受台に係る作用を示す図である。 第一の態様の溝部が延びる方向に垂直な断面図であって、第一の態様に係る作用を示す図である。 本発明に係るグリーンハニカム成形体用受台の第二の態様の、溝部が延びる方向に垂直な断面図である。 本発明に係るグリーンハニカム成形体用受台の第三の態様の、受台の断面図である。 図6(a)及び図6(b)は、本発明に係るグリーンハニカム成形体用受台の第四の態様の、溝部が延びる方向Xに垂直な断面図である。 図7(a)は、図6(b)のグリーンハニカム成形体用受台を方向Xに沿って鉛直に切断して二等分した断面図であり、図7(b)は、図6(b)のグリーンハニカム成形体用受台の溝部側から見た上面図である。 従来の受台で支持されたグリーンハニカム成形体の側面図である。 従来の受台に支持された後のグリーンハニカム成形体の側面図である。 本発明の実施例3の受台に支持された後のグリーンハニカム成形体の側面図である。 図11(a)及び図11(b)は、本発明に係るグリーンハニカム成形体用受台の第五の態様の、溝部が延びる方向Xに垂直な断面図である。 図12(a)は、図11(b)のグリーンハニカム成形体用受台を方向Xに沿って鉛直に切断して二等分した断面図であり、図12(b)は、図11(b)のグリーンハニカム成形体用受台の溝部側から見た上面図である。 図13(a)は、本発明の一実施形態で形成されるグリーンハニカム成形体の斜視図であり、図13(b)は、図13(a)のグリーンハニカム成形体の端面図である。 図14(a)は、本発明の一実施形態によって製造されたディーゼルパティキュレートフィルタの斜視図であり、図14(b)は、図14(a)のディーゼルパティキュレートフィルタの端面図である。 実施例2の受台で支持したグリーンハニカム成形体の寸法を示すグラフである。 比較例2の受台で支持したグリーンハニカム成形体の寸法を示すグラフである。
 以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、同一又は同等の要素については同一の符号を付す。また、上下左右の位置関係は図面に示す通りであるが、寸法の比率は図面に示すものに限定されない。
 [グリーンハニカム成形体用受台]
 本発明に係るグリーンハニカム成形体用受台(以下、「受台」という。)は、図8に示されるように、円柱状のグリーンハニカム成形体70の側面をグリーンハニカム成形体70の長手方向を水平にした状態で支持するものである。グリーンハニカム成形体とは、ディーゼルパティキュレートフィルタ等に用いられるハニカム構造体の製造における中間体である。グリーンハニカム成形体は、セラミックスの原料粉末を含むペースト状の混合物を押出成形することにより形成されるため、柔らかく、傷付き易く、変形し易い。なお、グリーンハニカム成形体70の長手方向とは、円柱状のグリーンハニカム成形体70の円状の断面の中心を通る軸(中心軸)の方向と言い換えられる。
 図13(a)及び図13(b)に示すように、グリーンハニカム成形体70はその中心軸に平行である複数の隔壁70cを有する。つまり、グリーンハニカム成形体70は、その中心軸方向に垂直な断面において格子構造を有する。換言すれば、グリーンハニカム成形体70には、同一方向(中心軸方向)に延びる多数の貫通孔70a(流路)が形成されており、各貫通孔70aは隔壁70cによって隔てられる。複数の貫通孔70aは互いに平行である。グリーンハニカム成形体70の第一端面とその反対側の第二端面において、各貫通孔の開口部が位置している。各貫通孔70aはグリーンハニカム成形体70の両端面に垂直である。各隔壁70cが互いになす角は、特に限定されず、90°であってもよく、120°であってもよい。貫通孔の断面が正方形である場合、正方形の一辺の長さは、例えば0.8~2.5mmであればよい。
 グリーンハニカム成形体70の貫通孔が延びる方向の側面の長さは特に限定されないが、例えば、30~350mmとすることができる。また、グリーンハニカム成形体70の外径も特に限定されないが、例えば、10~320mmとすることできる。グリーンハニカム成形体70の外径は、140~180mmであってもよく、150~170mmであってもよい。
 (グリーンハニカム成形体用受台の第一の態様)
 図1は、本発明に係る受台の第一の態様(受台1A)の断面図である。図1に示されるように、受台1Aは、可撓性を有するゴム、スポンジ等の材質からなる本体部3を備えている。可撓性とは、曲げや撓みが生じうる性質をいう。本体部3は、その上部にグリーンハニカム成形体70の側面を支持する溝部7を有し、溝部7の下方に空洞部5を有する。
 溝部7は、本体部3の上部に設けられた凹みであり、図1の紙面手前と奥の方向に延びている。溝部7は、円柱形状であるグリーンハニカム成形体70を支持したときにグリーンハニカム成形体70の側面の下部半周分が当接する曲面部9と、曲面部9の曲面方向の両縁からそれぞれ上方に向かって所定の高さb8で延びる側面部11とを有する。
 曲面部9の曲率は、溝部7の最深部にグリーンハニカム成形体70の側面が当接するように、グリーンハニカム成形体の円柱形状の曲率と同等又は小さくされている。溝部7の上端部の幅、すなわち側面部11の縁間の距離は、グリーンハニカム成形体70がその長手方向を水平にした状態で側面部11の縁に接することなく溝部7に進入できるように、グリーンハニカム成形体70の直径よりも広くされている。
 空洞部5は、溝部7が延びる方向に本体部3を貫通している。図1における溝部7及び空洞部5の断面形状(つまり、溝部7及び空洞部5が延びる方向に直交する鉛直面における断面形状)は、互いに共通する鉛直方向の対称軸a1について線対称である。
 上記鉛直面における空洞部5の断面形状は、一部が水平かつ互いに平行な対辺である下辺L1及び上辺L2を有し、そのうち上辺L2は、その両側において上方に向かって傾斜した一対の傾斜部L2aを有する。一対の傾斜部L2aの最下部は、それぞれ鉛直下方に延びて一対の垂直部L2bを形成し、上辺L2の水平部分の両端部と結合している。また、一対の傾斜部L2aの最上部、すなわち上辺L2の両端部は、それぞれ鉛直下方に延びて一対の側辺L3を形成し、下辺L1の両端部と結合している。ここで、上辺L2の両端部間の水平距離(下辺L1の両端部間の水平距離)d1は、同鉛直面における溝部7の幅b3よりも長い。
 図1に示される受台1Aの断面図において、b3は溝部7の幅を示し、b4は側面部11の幅を示し、b5は受台1Aの幅を示し、b6は受台1Aの幅の半分の長さを示し、b7は曲面部9の上端までの受台1Aの高さを示し、b8は側面部11の高さを示し、b9は溝部7の最深部までの受台1Aの高さを示す。また、同図においてd1は、空洞部5の下辺L1の長さを示し、d2は空洞部5の上辺L2の水平部分の長さを示し、d3は空洞部5の傾斜部L2aの水平長さを示し、d4は空洞部5の側辺L3と本体部3の側面との距離を示し、d5は空洞部5の側辺L3の長さを示し、d6は空洞部の下辺L1と本体部の底面との距離を示し、d7は空洞部5の傾斜部L2aの垂直長さを示し、d8は空洞部5の上辺L2の水平部分と下辺L1との距離を示す。
 ここで、受台1Aの作用及び効果について説明する。図2は、従来の受台の溝部が延びる方向に垂直な断面図である。空洞部を有しない従来の受台では、図2に示されるように、グリーンハニカム成形体(破線)70が受台100に支持された状態では、受台100の溝部47とグリーンハニカム成形体(破線)70の側面との間にクリアランスCが存在している。乾燥・焼成前のグリーンハニカム成形体(破線)70は、受台100に支持されて次の加工工程を待つ間に、自重(重力)F1及び可撓性を有する受台100の本体部103からの反発力F2を受け、水平方向に広がろうとする内部応力F3が働く。内部応力F3の方向にはクリアランスCが存在するため、グリーンハニカム成形体(破線)70が重力方向に潰れて水平方向に広がり、楕円状に扁平した形状(実線)となってしまう。このことは、グリーンハニカム成形体70の寸法精度が低下する原因となる。
 これに対し、図3に示されるように、受台1Aでは、グリーンハニカム成形体70を支持したときに空洞部5が鉛直方向に潰れる。より具体的には、上辺L2の両端部間の水平距離d1が溝部7の幅b3よりも長いため、上辺L2が下方へ落ち込み、一対の傾斜部L2a及び側辺L3が対称軸a1に向かって傾斜するように本体部3が変形し、空洞部5全体が鉛直方向に潰れた形状となる。すなわち、溝部7において、側面部11及び曲面部9の一部が対称軸a1に向かって傾き、本体部3上部全体がグリーンハニカム成形体70の側面を包み込むように変形する。このとき、空洞部5の断面形状が、少なくとも一部が水平かつ互いに平行である下辺L1及び上辺L2を有している。そのため、本体部3による包み込みの程度が過度にならない。
 このような本体部3全体の形状変化により、溝部7とグリーンハニカム成形体70の側面との間のクリアランスが減少し、更にはグリーンハニカム成形体70に溝部7の表面が当接する。そして、グリーンハニカム成形体70が水平方向に広がろうとする内部応力F3に対して、当接した溝部7による反発力F4が働き、グリーンハニカム成形体70の水平方向の広がりが抑制される。
 このような作用により、受台1Aがグリーンハニカム成形体70を支持したときに、グリーンハニカム成形体70が水平方向へ広がり得る空間が狭くなることになるため、グリーンハニカム成形体が楕円状に扁平した形状となることが抑制される。従って、受台1Aによれば、グリーンハニカム成形体70の寸法精度の低下を抑制することができる。
 これに加え、受台1Aでは、溝部7が側面部11を有している。そのため、受台1Aがグリーンハニカム成形体70を支持して本体部3の形状が変化したときに、溝部7の縁がグリーンハニカム成形体70の側面に触れない。従って、グリーンハニカム成形体70の側面が溝部7の縁との接触により傷つくことが防止される。
 また、受台1Aでは、空洞部5は、溝部7が延びる方向に本体部3を貫通しており、且つ、溝部7及び空洞部5の断面形状は、互いに共通する鉛直方向の対称軸a1を有している。そのため、クリアランスが本体部3全体にわたって均等に減少し、グリーンハニカム成形体70の寸法精度の低下がバランスよく抑制される。
 (グリーンハニカム成形体用受台の第二の態様)
 図4は、本発明に係る受台の第二の態様(受台1B)の断面図である。受台1Bが第一の態様(受台1A)と異なる点は、溝部が側面部を有しない点、及び、空洞部の断面形状が異なる点である。
 受台1Bの溝部17及び空洞部15の断面形状(つまり、溝部17及び空洞部15が延びる方向に直交する鉛直面における断面形状)は、互いに共通する鉛直方向の対称軸a2について線対称である。
 上記鉛直面における空洞部15の断面形状は、水平な下辺L11と、下辺11の両端からそれぞれ上方に向かって鋭角に延びる一対の側辺L13と、一対の側辺L13の上端同士を結ぶ上辺L12からなる。上辺12は、一対の側辺L13の上端からそれぞれ、対称軸a2に向けて下方に傾斜して延び、対称軸a2上で互いに結ばれている。
 換言すれば、上記鉛直面における空洞部の断面形状は、上辺が下辺よりも短い仮想の台形形状の頂点を辿る線からなる形状である。線のうち、下辺及び一対の側辺は、当該台形形状そのままの形状を辿っている。そして、上辺側の頂点間を辿る線は、その中点で折れ曲がっており、且つ上辺側の頂点の位置よりも下方の位置で対称軸a2と交差している。つまり、上記線は、上辺側の頂点側から対称軸側に向けて下方に傾斜した一対の傾斜部である上辺L12を含んでいる。
 ここで、下辺d11の長さは、溝部17の幅b13の幅以下である。
 受台1Bでは、空洞部15が上記断面形状を有するため、上記第一の態様(受台1A)と比べて、グリーンハニカム成形体70を支持したときの空洞部15の潰れ具合が小さい。すなわち、上辺L12が下辺L11よりも短く且つ下辺L11の長さが溝部17の幅b13以下である受台1Bでは、溝部17がグリーンハニカム成形体の側面を包み込むように本体部13が変形するとき、受台1Aに比べて、その包み込みの程度は弱い。一方で、一対の上辺L12同士の交点が側辺L13の上端の位置よりも下方の位置で対称軸a2と重なるため、その包み込みがある程度は確保される。そして、本体部13全体としての形状の変化も小さく、クリアランスの減少度合いも小さい。従って、グリーンハニカム成形体70の側面が溝部17の縁との接触により傷つくことを防止することができる。
 (グリーンハニカム成形体用受台の第三の態様)
 図5は、本発明に係る受台の第三の態様(受台1C)の断面図である。受台1Cが第一の態様(受台1A)と異なる点は、溝部が側面部を有しない点、及び、空洞部の断面形状が異なる点である。
 受台1Cの溝部27及び空洞部25の断面形状(つまり、溝部27及び空洞部25が延びる方向に直交する鉛直面における断面形状)は、互いに共通する鉛直方向の対称軸a3について線対称である。
 上記鉛直面における空洞部25の断面形状は、水平な下辺L21と、下辺21の両端からそれぞれ直角に上方に向かって立ち上がる一対の側辺L23と、一対の側辺L23の上端同士を結ぶ上辺L22からなる。上辺L22は、一対の側辺L23の上端からそれぞれ、順に、対称軸a3に向けて下方に傾斜した第1の下方傾斜部L22aと、第1の下方傾斜部L22aから、L22aより急角度で下方に傾斜した第2の下方傾斜部L22bと、第2の下方傾斜部L22bから上方に傾斜した上方傾斜部L22cと、上方傾斜部L22cから下方に傾斜した第3の下方傾斜部L22dとからなり、第3の下方傾斜部L22dが対称軸a3上で互いに結ばれている。
 換言すれば、上記鉛直面における空洞部25の断面形状は、仮想の長方形形状の頂点を少なくとも辿る線からなる形状である。線のうち、下辺及び一対の側辺は、当該長方形形状そのままの形状を辿っている。そして、上辺側の頂点間を辿る線は、上辺側の頂点の位置よりも下方の位置で対称軸と交差している。そして、当該線は、頂点側から対称軸a3側に向けて下方に傾斜した2対以上の下方傾斜部と、下方傾斜部の間で頂点側から対称軸a3側に向けて上方に傾斜した上方傾斜部とを含んでいる。
 ここで、下辺d21の長さは、溝部27の幅b23の幅よりも長い。
 受台1Cでは、空洞部25が上記断面形状を有するため、第一の態様(受台1A)と比べて、グリーンハニカム成形体70を支持したときの空洞部25の潰れ具合が大きい。すなわち、下辺L21の長さが溝部27の幅b23よりも長い受台1Cでは、溝部27がグリーンハニカム成形体70の側面を包み込むように、本体部23が変形しやすい。また、第3の下方傾斜部L22dが側辺L23の上端の位置よりも下方の位置で対称軸a3と交差しているため、本体部23全体としての形状の変化も大きく、クリアランスの減少度合いも大きい。従って、本体部の形状変化によるクリアランスの減少がより顕著であり、グリーンハニカム成形体70の寸法精度の低下をより抑制することができる。
 (グリーンハニカム成形体用受台の第四の態様)
 以下、本発明に係るグリーンハニカム成形体用受台の第四の態様(受台1D及び受台1E)について説明する。図6(a)に示されるように、受台1Dは、可撓性を有する材質からなる本体部63を備えている。本体部63は、その上部に溝部67を有し、溝部67の下方に空洞部65を有する。
 溝部67は、本体部63の上部に設けられた凹みであり、図6(a)の紙面手前と奥の方向Xに延びている。溝部67は、円柱状であるグリーンハニカム成形体70を支持したときにグリーンハニカム成形体70の側面の下部半周分が収容される曲面部69と、曲面部69の両縁からそれぞれ上方に向かって延びる側面部71とを有する。なお、曲面部69の両縁とは、曲面部69において溝部67が延びる方向Xに平行な両端部と言い換えられる。曲面部69の曲率は、グリーンハニカム成形体の円柱状の曲率と同等であるか、又は小さい。
 溝部67の幅b61は、グリーンハニカム成形体70の直径よりも大きい。よって、グリーンハニカム成形体70の長手方向を水平にした状態で、グリーンハニカム成形体70を溝部67の縁に接触させることなく溝部内に進入させることができる。グリーンハニカム成形体70は、溝部67に直接接触する。換言すれば、受台1Dの溝部67がグリーンハニカム成形体70を支持する。
 空洞部65は、溝部67が延びる方向Xに本体部63を貫通している。図6(a)の溝部67の断面形状(溝部67が延びる方向Xに直交する断面)は、断面の中心において鉛直方向Zに延びる軸a61に対して線対称である。図6(a)の空洞部65の断面形状(空洞部65が延びる方向Xに直交する断面)は、上記軸a61に対して線対称である。
 上記鉛直面における空洞部65の断面形状は、一部が水平かつ互いに平行な対辺である下辺L61及び上辺L62を有する。そのうち上辺L62は、その両側において上方に向かって傾斜した一対の傾斜部L62aを有する。一対の傾斜部L62aの最下部は、上辺L62の水平部分の両端部と結合している。また、一対の傾斜部L62aの最上部、すなわち上辺L62の両端部は、それぞれ鉛直下方に延びて一対の側辺L63を形成し、下辺L61の両端部と結合している。ここで、上辺L62の両端部間の水平距離(下辺L61の両端部間の水平距離)d61は、溝部67の幅b61よりも長い。
 上記の受台1Dは、以下のように言い換えられる。受台1Dでは、溝部67の曲面部69は、溝部が延びる方向Xから見て半円状である。本体部63に空洞部65が形成されている。空洞部65は、曲面部69全体の下方に位置し、かつ溝部67が延びる方向Xに本体部63を貫通している。空洞部65は、水平な底面(下辺L61を含む面)、底面に対向する上面(上辺L62を含む面)、及び対向する一対の鉛直な側面(側辺L63を含む面)によって囲まれている。上面において溝部が延びる方向Xに平行な両端部(傾斜部L62aを含む部分)が、曲面部69に向かって折れ曲がっている。溝部67が延びる方向Xに沿って溝部67を二等分する面(軸a61を含む面)に対して、空洞部65は面対称である。水平方向(方向Xに垂直且つ水平な方向Y)における空洞部65の底面の幅d61は、同方向における溝部67の幅b61よりも長い。
 受台1Dでは、グリーンハニカム成形体70を支持したときに空洞部65が鉛直方向に潰れる。より具体的には、上辺L62が下方へ落ち込む。このとき上辺L62の両端部間の水平距離d61が溝部67の幅b61よりも長いため、一対の傾斜部L62a及び側辺L63が対称軸a61に向かって傾斜して、空洞部65全体が鉛直方向に潰れる。これに伴い、可撓性を有する本体部63が変形する。すなわち、溝部67において、側面部71及び曲面部69の一部が対称軸a61に向かって傾き、本体部63の上部全体がグリーンハニカム成形体70の側面を包み込むように変形する。このとき、空洞部65の断面形状が、少なくとも一部が水平かつ互いに平行である下辺L61及び上辺L62を有しているため、その包み込みの程度が過度にならない。
 このような本体部63全体の変形により、溝部67とグリーンハニカム成形体70の側面との間の間隔が減少し、グリーンハニカム成形体70に溝部67の表面が当接する。そして、重力によりグリーンハニカム成形体70に水平方向に広がろうとする内部応力に対して、当接した溝部67による反発力が働く。これによって、グリーンハニカム成形体70の中心軸に垂直な断面の水平方向の広がりが抑制される。
 このような作用により、受台1Dがグリーンハニカム成形体70を支持したときに、グリーンハニカム成形体70が水平方向へ広がり得る空間が狭くなるため、グリーンハニカム成形体の断面が扁平な楕円状になることが抑制される。従って、受台1Dによれば、空洞部を備えない受台を用いた場合に比べて、グリーンハニカム成形体70の寸法精度が向上する。
 これに加え、受台1Dでは、溝部67が側面部71を有しているため、受台1Dがグリーンハニカム成形体70を支持して本体部63の形状が変化したときに、溝部67の縁がグリーンハニカム成形体70の側面に触れない。したがって、グリーンハニカム成形体70の側面が内張り部73の縁との接触により傷つくことが防止される。
 また、受台1Dでは、空洞部65は、溝部67が延びる方向に本体部63を貫通しており、且つ、溝部67及び空洞部65の断面形状は、それぞれ軸a61に対して線対称である。そのため、本体部63全体の変形に伴い、溝部67とグリーンハニカム成形体70の側面との間の間隔が、本体部63全体にわたって均等に減少するので、グリーンハニカム成形体70の寸法精度が向上する。
 グリーンハニカム成形体用受台の第四の態様は、図6(b)、図7(a)及び図7(b)に示す受台1Eのように、本体部63よりも可撓性の高い材質からなる内張り部73を備えてもよい。受台1Eの内張り部73は溝部67の表面全体を被覆する。受台1Eは、内張り部73を備えること以外は、上記の受台1Dと同様の寸法及び構造を有するものである。なお、受台1Eでは、上辺L62の両端部間の水平距離(下辺L61の両端部間の水平距離)d61は、内張り部73の上端部間の距離b61よりも長い。また、水平方向(方向Xに垂直且つ水平な方向Y)における空洞部65の底面の幅d61は、同方向における内張り部73の幅b61よりも長い。
 本体部63の材質としては、可撓性を有するゴム、スポンジ等が挙げられ、より具体的には、ポリウレタン、発泡ポリスチレン、又は発泡ポリエチレンが挙げられる。本体部63としては、例えば後述する表1に挙げた材質No.1~10のものを使用することができる。材質No.1~10の本体部は、全てポリウレタンから構成される。ここで可撓性とは、曲げや撓みが生じうる性質をいい、「可撓性が高い」とは、例えば25%硬さが小さいことや、反発弾性が小さいことを意味する。
 溝部67の曲面部69及び側面部71は、その全面がシート状の内張り部73により覆われている。ここで、内張り部73の厚さは、支持するグリーンハニカム成形体の半径の0.05~0.2倍であることが好ましい。
 内張り部73の上端部間の距離b61は、グリーンハニカム成形体70の直径よりも大きい。よって、グリーンハニカム成形体70の長手方向を水平にした状態で、グリーンハニカム成形体70を内張り部73の縁に接触させることなく内張り部73の溝形状内に進入させることができる。グリーンハニカム成形体70は、内張り部73に当接され、内張り部73に直接的に支持される。換言すれば、受台1Eの本体部63は、溝部67の表面を覆う内張り部73を介してグリーンハニカム成形体70を支持する。
 内張り部73の材質としては、本体部63の材質よりも可撓性の高いものを使用する。内張り部73の材質としては、例えば、軟質ゴム、軟質ポリウレタン又はシリコーンゲル等が挙げられる。内張り部73としては、例えば後述する表2に挙げた材質No.11~25のものを使用することができる。材質No.11~25の内張り部は、全てポリウレタンから構成される。
 本体部63の25%硬さ(圧縮率25%での硬さ)は130N以上であることが好ましく、内張り部73の25%硬さは100N以下であることが好ましい。なお、25%硬さとは、試料(本体部を構成する材料)を所定の方向に25%圧縮したときの試料の硬さである。25%硬さ、反発弾性(%)、密度(kg/m)、引張強さ(kPa)、伸び(%)、引裂強さ(N/cm)、圧縮残留歪み(%)、及び繰返圧縮残留歪み(%)は、JIS K6401規格に基づいて測定される。また、本体部63の反発弾性は30%以上であることが好ましく、内張り部73の反発弾性は5~50%であることが好ましい。25%硬さ及び反発弾性が上記範囲内になる本体部63の材質と内張り部73の材質とを組み合わせることが好ましい。これにより、グリーンハニカム成形体70が傷つくことを抑制し易くなる。本体部63に適用可能な材質の例を表1に示し、内張り部73に適用可能な材質の例を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ここで、受台1Eの作用及び効果について説明する。図8は、従来の受台で支持されたグリーンハニカム成形体の側面図である。従来の受台10は、一般的に、図8に示されるように、グリーンハニカム成形体70の長手方向の長さが受台10の溝部が延びる方向の長さよりも長い。よって、グリーンハニカム成形体70はその両端が受台10からはみ出した状態で支持される。このため、グリーンハニカム成形体70が従来の受台10に支持されているときに、受台10の溝の終端部(図8の矢印で示した部分)がグリーンハニカム成形体70の側面に食い込む。その結果、図9に示されるように側面に周方向に沿う傷Sがついて、グリーンハニカム成形体70の外観が不良になることがあった。一方、このような食い込みを防止すべく、受台の材質を軟らかいものとした場合、グリーンハニカム成形体70を支持したときに受台10の形状が大きく変形してしまい、搬送性が劣るものとなる。ここで、搬送性とは、グリーンハニカム成形体を支持する受台の保形性をいう。
 一方、図6(b)、図7(a)及び図7(b)に示される受台1Eでは、内張り部73が本体部63よりも可撓性が高い材質からなる。そのため、受台1Eの溝の終端部がグリーンハニカム成形体の側面に食い込むことが抑制される。また、本体部63が内張り部73よりも可撓性の低い材質からなるため、搬送性が維持されている。したがって、受台1Eによれば、搬送性を維持しつつ、グリーンハニカム成形体70の側面に周方向に沿う傷がつくことを抑制することができる。また、受台1Eにおいて、内張り部73の厚さがグリーンハニカム成形体70の円形の断面の半径に対して0.05~0.2倍である場合、上記効果が一層奏される。更に、内張り部73が本体部63よりも25%硬さが小さい材質からなっている場合、上記効果がより一層奏される。また、内張り部73が本体部63よりも反発弾性が小さい材質からなっている場合、上記効果がより一層奏される。
 受台1Eでは、グリーンハニカム成形体70を支持したときに空洞部65が鉛直方向に潰れる。より具体的には、上辺L62の両端部間の水平距離d61が内張り部73の上端部間の距離b61よりも長いため、上辺L62が下方へ落ち込み、一対の傾斜部L62a及び側辺L63が対称軸a61に向かって傾斜して、空洞部65全体が鉛直方向に潰れる。これに伴い、可撓性を有する本体部63が変形する。すなわち、溝部67において、側面部71及び曲面部69の一部が対称軸a61に向かって傾き、本体部63の上部全体がグリーンハニカム成形体70の側面を包み込むように変形する。このとき、空洞部65の断面形状が、少なくとも一部が水平かつ互いに平行である下辺L61及び上辺L62を有しているため、その包み込みの程度が過度にならない。
 このような本体部63全体の変形により、内張り部73とグリーンハニカム成形体70の側面との間の間隔が減少し、グリーンハニカム成形体70に内張り部73の表面が当接する。そして、重力によりグリーンハニカム成形体70に水平方向に広がろうとする内部応力に対して、当接した内張り部73による反発力が働き、グリーンハニカム成形体70の中心軸に垂直な断面の水平方向の広がりが抑制される。
 このような作用により、受台1Eがグリーンハニカム成形体70を支持したときに、グリーンハニカム成形体70が水平方向へ広がり得る空間が狭くなるため、グリーンハニカム成形体の断面が扁平な楕円状になることが抑制される。従って、受台1Eによれば、空洞部を備えない受台を用いた場合に比べて、グリーンハニカム成形体70の寸法精度が向上する。
 これに加え、受台1Eでは、溝部67が側面部71を有しているため、受台1Eがグリーンハニカム成形体70を支持して本体部63の形状が変化したときに、溝部67の縁がグリーンハニカム成形体70の側面に触れない。したがって、グリーンハニカム成形体70の側面が内張り部73の縁との接触により傷つくことが防止される。
 また、受台1Eでは、空洞部65は、溝部67が延びる方向に本体部63を貫通しており、且つ、溝部67及び空洞部65の断面形状は、それぞれ軸a61に対して線対称である。そのため、本体部63全体の変形に伴い、内張り部73とグリーンハニカム成形体70の側面との間の間隔が、本体部63全体にわたって均等に減少するので、グリーンハニカム成形体70の寸法精度が向上する。
 (グリーンハニカム成形体用受台の第五の態様)
 本発明に係るグリーンハニカム成形体用受台の第五の態様(受台1F及び受台1G)について説明する。図11(a)に示す受台1Fは、空洞部80の位置及び形状を除いて、上記の第四の態様(受台1D)とほぼ同じものである。受台1Fによれば、上記の受台1Dと略同様の作用及び効果が達成される。図11(b)、図12(a)及び図12(b)に示す受台1Gは、空洞部80の位置及び形状を除いて、上記の第四の態様(受台1E)とほぼ同じものである。そして、受台1Gによれば、上記の受台1Eと略同様の作用及び効果が達成される。以下では、第五の態様に固有の特徴(第五の態様の第四の態様との相違点)についてのみ説明する。
 受台1F(又は受台1G)では、溝部87の曲面部89は、溝部87が延びる方向Xから見て半円状である。受台1F(又は受台1G)の本体部は、第一本体部83aと、第二本体部83bとから構成されている。第一本体部83aにおいて方向Xに平行な端部と、第二本体部83bにおいて方向Xに平行な端部とは、接着部82において、接着剤を介して接している。以下、接着された第一本体部83a及び第二本体部83bを「本体部」と総称する。本体部には空洞部80が形成されている。換言すれば、空洞部80は、第一本体部83aと第二本体部83bとの間に位置する。空洞部80は、溝部87が延びる方向Xに本体部を貫通している。空洞部80の底面C81、及び底面C81に対向する空洞部80の上面C82は、曲面部89全体に沿って曲がった曲面である。空洞部80は底面C81及び上面C82の2つの曲面のみによって囲まれている。溝部87が延びる方向Xに垂直な空洞部80の断面は、略三日月状、又は略弓状である。溝部87が延びる方向Xに沿って溝部87を二等分する面(軸a81を含む面)に対して、空洞部80は面対称である。水平方向(方向Xに垂直且つ水平な方向Y)における空洞部80の底面C81の幅d82は、同方向における溝部87の幅b81(又は内張り部93の幅b81)よりも長い。曲面部89が位置する部分における第二本体部83bの厚さは略均一である。換言すれば、曲面部89と空洞部の上面C82との間における第二本体部83bの厚さは略均一である。
 受台1F(又は受台1G)では、第四の態様と同様に、グリーンハニカム成形体70を支持したときに空洞部80が鉛直方向に潰れて、空洞部80の底面C81及び上面C82の全体が略完全に密着する。これに伴い、可撓性を有する本体部3が変形する。すなわち、溝部87において、側面部91及び曲面部89がグリーンハニカム成形体70に向かって傾き、第一本体部83aの上部及び第二本体部83bの全体がグリーンハニカム成形体70の側面を包み込む。そして、溝部87(又は内張り部93)の全体がグリーンハニカム成形体70の側面に略完全に密着する。そのため、受台1Gでは、第四の態様の場合に比べて、溝部87(又は内張り部93)に接するグリーンハニカム成形体70の側面に作用する内部応力がグリーンハニカム成形体70の側面全域に分散する。換言すれば、受台1Gでは、第四の態様の場合に比べて、溝部87(又は内張り部93)に接するグリーンハニカム成形体70の側面の一部に内部応力が集中し難い。その結果、受台1Gでは、第四の態様の場合に比べて、グリーンハニカム成形体70の中心軸に垂直な断面の水平方向の広がりが顕著に抑制される。
 第五の態様(受台1F又は受台1G)では第四の態様に比べてグリーンハニカム成形体70の変形がより抑制される要因は、第五の態様の空洞部80の断面が略三日月状であることである。また、受台1F(又は受台1G)では第四の態様に比べてグリーンハニカム成形体70の変形がより抑制される要因は、第五の態様の曲面部89と空洞部80の上面C82との間における第二本体部83bの厚さは略均一である一方で、第四の態様の曲面部69と空洞部65の上面との間における本体部63の厚さが不均一であることである。これらの要因により、受台1F(又は受台1G)では空洞部80の底面C81及び上面C82の全体が略完全に密着して、溝部87(又は内張り部93)の全体がグリーンハニカム成形体70の側面に略完全に密着する。一方、第四の態様では、空洞部65の底面及び上面が略完全には密着せずに両面間に隙間が残り、側面部71近傍(又は側面部71を覆う内張り部73)がグリーンハニカム成形体70の側面に完全には密着せず、グリーンハニカム成形体70の側面と溝部67(又は内張り部73)との間に隙間が残る。以上の点において受台1F(又は受台1G)と第四の態様とは異なるため、受台1F(又は受台1G)では、第四の態様に比べて、グリーンハニカム成形体70の側面に内部応力が集中し難く、グリーンハニカム成形体70の変形がより抑制される。なお、第四の態様及び第五の態様においてグリーンハニカム成形体70に作用する内部応力は、有限要素法に基づくシミュレーション等によって確認することができる。
 溝部87で支持される前のグリーンハニカム成形体70の中心軸に垂直な断面の直径が140~180mmであり、グリーンハニカム成形体70が接触する前の溝部87の幅b81(又は内張り部93の端部間の距離b81)が140~180mmであるとき、受台1F(又は受台1G)では、溝部87で支持されたグリーンハニカム成形体70の上記断面の真円度は0.4mm程度である。第四の態様では、溝部67で支持されたグリーンハニカム成形体70の上記断面の真円度は、0.6mm程度である。仮に第四の態様において空洞部65がない場合、溝部67で支持されたグリーンハニカム成形体70の上記断面の真円度は1.9mm程度である。これらの真円度は、本発明者らの実験によって測定されたものである。なお、真円度とは、例えば、米国工業規格ASME Y14.5Mに基づいて測定されるものであり、溝部で支持されたグリーンハニカム成形体の断面の外周上のすべての点が二つの同心円の間にあり、円の半径方向の距離の差が最小となる場合の、二つの同心円の半径方向の距離の差である。
 受台1F(又は受台1G)の第一本体部83a及び第二本体部83bの材質、組成、25%硬さ及び反発弾性は、受台1Eの本体部3と同じであってよい。受台1Gの内張り部93の材質、組成、25%硬さ及び反発弾性は、受台1Eの内張り部73と同じであってよい。ただし、受台1Gの第一本体部83a及び第二本体部83bの25%硬さは150N以上又は200N以上であることが好ましい。受台1Gの内張り部93の25%硬さは50N以下であることが好ましい。また、受台1Gの第一本体部83a及び第二本体部83bの反発弾性は30%以上であることが好ましい。受台1Gの内張り部93の反発弾性は20%以下であることが好ましい。受台1Gがこれらの条件を満たすことにより、グリーンハニカム成形体70の変形が抑制され易くなる。
 [ディーゼルパティキュレートフィルタの製造方法]
 (原料混合物の調製工程)
 セラミックスの原料粉末、有機バインダ及び添加物等を混練機等により混合して、原料混合物を調製する。
 セラミックスの原料粉末としては、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素等が挙げられる。なお、チタン酸アルミニウムは、更に、マグネシウム及び/又はケイ素を含むことができる。セラミックスの原料粉末は、これらに限定されない。
 チタン酸アルミニウム又はチタン酸アルミニウムマグネシウムからなるディーゼルパティキュレートフィルタを製造する場合、原料粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末を含む。原料粉末は、必要に応じて、更に、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩が挙げられる。
 添加物としては、例えば、造孔剤、潤滑剤及び可塑剤、分散剤、溶媒が挙げられる。
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料;氷;及びドライアイス等などが挙げられる。
 潤滑剤及び可塑剤としては、グリセリンなどのアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸などの高級脂肪酸;ステアリン酸アルミニウムなどのステアリン酸金属塩、ポリオキシアルキレンアルキルエーテル(POAAE)などが挙げられる。
 分散剤としては、例えば、硝酸、塩酸、硫酸などの無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸;メタノール、エタノール、プロパノールなどのアルコール類;ポリカルボン酸アンモニウムなどの界面活性剤などが挙げられる。
 溶媒としては、アルコール類及び水などを用いることができる。アルコール類としては、例えば、メタノール、エタノール、ブタノール、プロパノールなどの一価アルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどの二価アルコール類;などを用いることができる。
 (原料混合物の成形工程)
 上述の原料混合物を押出成形機のダイから水平方向に押し出すことにより、長尺の円柱体を形成する。ダイは格子状の開口部を有するため、円柱体にはその長尺方向に延びる複数の貫通孔が形成される。なお、押出成形機内で原料混合物を混練してもよい。押出成形機から押し出された円柱体を受台(上記受台1A、1B、1C、1D,1E、1F又は1G)で支持する。つまり、円柱体の下側の側面の一部を受台の溝部で支持する。円柱体をその長手方向に垂直に切断して、受台で支持されたグリーンハニカム成形体70を形成する。受台で支持されたグリーンハニカム成形体を、受台とともに乾燥機へ搬送する。搬送中に、グリーンハニカム成形体を受台から搬送板に移して、搬送板上に載置した状態でグリーンハニカム成形体を搬送してもよい。搬送されたグリーンハニカム成形体70を熱風やマイクロウエーブ等により乾燥して溶媒を除去する。さらに、グリーンハニカム成形体70の寸法を正確に調整するための切断工程を実施してもよい。また、切断後のグリーンハニカム成形体70の除塵を行ってもよい。
 (封口工程)
 封口工程では、グリーンハニカム成形体70において複数の貫通孔70aの一方の開口部が位置する第一端面に第一マスクを貼り付ける。第一マスクでは、貫通孔70aと略同様の寸法を有するマスク部と複数の開口部とが千鳥状に配置されている。各貫通孔70aと各マスク部及び開口部とが重なるように、グリーンハニカム成形体70の第一端面に第一マスクを貼り付ける。また、グリーンハニカム成形体70において第一端面とは反対側の第二端面に、第二マスクを貼り付ける。第二マスクが有する開口部とマスク部の配置関係は第一マスクとは真逆である。したがって、第一端面側で第一マスクのマスク部に塞がれた貫通孔70aは、第二端面側で第二マスクの開口部と重なる。第二端面側で第二マスクのマスク部に塞がれた貫通孔70aは、第一端面側で第一マスクの開口部と重なる。したがって、グリーンハニカム成形体70に形成された複数の貫通孔70aのいずれも、第一端面又は第二端面のいずれか一方において開いており、他方においてマスク部で塞がれる。
 第一端面に対する封口工程では、第一マスクの開口部と重なる各貫通孔70aの開口部(端部)内に上記の封口材を導入する。なお、貫通孔70aに封口材を導入した後、グリーンハニカム成形体70全体を振動器により振動させてもよい。これにより、貫通孔70aの端部の隙間に隈なく封口材が充填され易くなる。封口材としては、上記の原料混合物と略同様の物を用いればよい。
 以上の第一端面に対する封口工程後、第一端面に対する封口工程と同様に、第二マスクが貼られた第二端面に対する封口工程を実施する。両端面に封口工程を施した後に、各端面から各マスクを剥がす。
 (グリーンハニカム成形体70の仮焼き工程及び焼成工程)
 封口工程後、グリーンハニカム成形体70を仮焼き(脱脂)し、且つ焼成する。以上の工程によって、多孔質のセラミックスからなるディーゼルパティキュレートフィルタ170を得ることができる(図14参照。)。
 仮焼(脱脂)は、グリーンハニカム成形体70中の有機バインダや、必要に応じて配合される有機添加物を、焼失、分解等により除去するための工程である。仮焼き工程は、焼成工程の初期段階、すなわちグリーンハニカム成形体70が焼成温度に至るまでの昇温段階(例えば、300~900℃の温度範囲)に相当する。仮焼(脱脂)工程においては、昇温速度を極力抑えることが好ましい。
 グリーンハニカム成形体70の焼成温度は、好ましくは1300℃以上、より好ましくは1400℃以上であればよい。また、焼成温度は、好ましくは1650℃以下、より好ましくは1550℃以下である。焼成温度までの昇温速度は特に限定されるものではないが、通常、1℃/時間~500℃/時間である。
 焼成は通常、大気中で行なわれる。用いる原料粉末、すなわちアルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末の種類や使用量比によっては、窒素ガス、アルゴンガスなどの不活性ガス中で焼成を行ってもよいし、一酸化炭素ガス、水素ガスなどのような還元性ガス中で焼成を行ってもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉などの通常の焼成炉を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また、静置式で行なってもよいし、流動式で行なってもよい。
 焼成に要する時間は、グリーンハニカム成形体70を構成する原料粉末の組成及び量、焼成炉の形式、焼成温度、焼成雰囲気などにより異なるが、10分~24時間であればよい。
 仮焼きと焼成を個別に行ってもよい。仮焼き工程では、有機バインダその他の有機添加物の熱分解温度以上であり無機化合物粉末の焼結温度よりも低い温度でグリーンハニカム成形体70を加熱すればよい。焼成工程では、仮焼き工程後のハニカム成形体を原料粉末の焼結温度以上の温度で加熱すればよい。
 [ディーゼルパティキュレートフィルタ]
 ディーゼルパティキュレートフィルタ170では、第一端面側で封口部70bに塞がれた貫通孔70aは、第二端面側に開口部を有する。第二端面側で封口部70bに塞がれた貫通孔70aは、第一端面側に開口部を有する(図14参照。)。貫通孔70aの隔壁表面に、アルミナ等の担体に担持された白金系金属触媒や、セリア又はジルコニア等の助触媒を付着させてもよい。
 ディーゼルパティキュレートフィルタ170の寸法は限定されない。貫通孔70aの長手方向に垂直な断面の内径(正方形の一辺の長さ)は、例えば0.5~2.5mmである。貫通孔70aが延びる方向におけるディーゼルパティキュレートフィルタの長さは、例えば30~350mmである。また、ディーゼルパティキュレートフィルタの外径は、例えば10~320mmである。ディーゼルパティキュレートフィルタの端面に開いている貫通孔70aの数(セル密度)は、例えば150~450cpsiである。なお、cpsiとの単位は「/inch」を意味し、「/(0.0254m)」に等しい。貫通孔70aの隔壁の厚さは、例えば0.1~0.76mmである。隔壁70cの気孔率(開気孔率)は、例えば30~70体積%である。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、例えば、空洞部の断面形状は、溝部がグリーンハニカム成形体を支持したときに本体部の変形に伴ってクリアランスが減少するものであれば、他の形状であってもよい。また、本体部及び内張り部として使用することができる材質は、表1及び表2に挙げたものに限られない。上記第一の態様(図1の受台1A)、第二の態様(図4の受台1B)及び第三の態様(図5の受台1C)がそれぞれ内張り部を備えてもよい。
 ディーゼルパティキュレートフィルタは、コージェライトやシリコンカーバイド等からなる多孔質のセラミックスであってもよい。この場合、原料粉末として、コージェライト若しくはシリコンカーバイド又はこれらの混合物をもちいればよい。貫通孔の断面形状は、正方形には限定されず、矩形、円形、楕円形、三角形、六角形、八角形等にすることができる。断面の形状及び寸法が互いに異なる複数の種類の貫通孔がディーゼルパティキュレートフィルタに形成されていてもよい。貫通孔同士の間隔や、貫通孔の配置も特に限定されない。
 <グリーンハニカム成形体の支持>
 (実施例1)
 押出成形機の出口の口金の内周径を153mmとした押出成形機から連続的に押し出されるグリーンハニカム成形体を、図1に示す受台で支持し、240mmの切断長設定にて切断した。合計32本のグリーンハニカム成形体を受台で支持した。受台の寸法は、b3=155mm,b4=67.5mm,b5=290mm,b6=145mm,b7=155mm,b8=45mm,b9=77.5mm,d1=200mm,d2=130mm,d3=35mm,d4=45mm,d5=50mm,d6=25mm,d7=25mm,d8=25mmであり、受台の材質はポリウレタンである。
 (比較例1)
 押出成形機の出口の口金の内周径を153mmとした押出成形機から連続的に押し出されるグリーンハニカム成形体を、図2に示す受台で支持し、240mmの切断長設定にて切断した。合計20本のグリーンハニカム成形体を受台で支持した。受台の材質は、実施例1で用いたものと同一である。受台の寸法は、b3=155mm,b4=67.5mm,b5=290mm,b7=155mm,b9=77.5mmであった。
 <寸法の測定>
 実施例1及び比較例1において、受台で支持したグリーンハニカム成形体の各種寸法を測定した。ここで、グリーンハニカム成形体を長手方向から見たときの鉛直方向の直径(グリーンハニカム成形体の端面の鉛直方向の直径)を「高さ寸法」とした。グリーンハニカム成形体を長手方向から見たときの水平方向の直径(グリーンハニカム成形体の端面の水平方向の直径)を「幅寸法」とした。また、幅寸法となる直径の一端の位置を0°の位置とし、そこからグリーンハニカム成形体の側面を下方へ回り、鉛直方向最下部となる位置を90°の位置とし、そこから側面を上方へ回り、0°の位置と正反対の位置を180°の位置とし、そこから更に側面を上方へ回り、側面の最上部となる位置を270°の位置とした。このとき、45°に相当する位置から225°に相当する位置を結ぶ直径を「対角寸法」とした。
 実施例1における9番目から32番目までのグリーンハニカム成形体、及び、比較例1における9番目から20番目までのグリーンハニカム成形体について、押出成形から約2分間経過後に、上記各直径について平均値を求めた。また、高さ寸法と幅寸法との差について、その最大値と平均値を求めた。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 <結果>
 表3に示すデータから、実施例1は比較例1に比べて、支持したグリーンハニカム成形体の高さ寸法、幅寸法及び対角寸法が互いに接近した値となっており、断面形状がより真円に近い形状となっていることが分かった。また、各ロット間の寸法のばらつきが小さいことも分かった。つまり、図1に示された形状の受台を用いることにより、従来の受台に比べてグリーンハニカム成形体の寸法精度の低下が抑制されたことが分かったる。
 <他の実験>
 (実施例2)
 押出成形機の出口の口金の内周径を163mmとした押出成形機から連続的に押し出されるグリーンハニカム成形体を、図1に示す受台で支持し、300mmの切断長設定にて切断した。合計75本のグリーンハニカム成形体を受台で支持した。受台の寸法は、b3=164mm,b4=63mm,b5=290mm,b6=145mm,b7=155mm,b8=30mm,b9=73mm,d1=200mm,d2=130mm,d3=35mm,d4=45mm,d5=45mm,d6=25mm,d7=25mm,d8=10mmであり、受台の材質はポリウレタンである。
 (比較例2)
 押出成形機の出口の口金の内周径を166mmとした押出成形機から連続的に押し出されるグリーンハニカム成形体を、図2に示す受台で支持し、220mmの切断長設定にて切断した。合計80本のグリーンハニカム成形体を受台で支持した。受台の材質は、実施例2で用いたものと同一である。受台の寸法は、b3=167mm,b4=61.5mm,b5=290mm,b7=152mm,b9=68.5mmであった。
 <寸法の測定>
 実施例2及び比較例2において、受台で支持したグリーンハニカム成形体の各種寸法を測定した。実施例2の測定結果を図15に、比較例2の測定結果を図16に示す。「高さ寸法」、「幅寸法」及び「対角寸法」の定義は実施例1及び比較例1と同様である。
 <結果>
 図15及び図16のグラフから、実施例2は比較例2に比べて、支持したグリーンハニカム成形体の高さ寸法、幅寸法及び対角寸法が互いに接近した値となっており、断面形状がより真円に近い形状となっていることが分かった。また、各ロット間の寸法のばらつきが小さいことも分かった。つまり、図1に示された形状の受台を用いることにより、従来の受台に比べてグリーンハニカム成形体の寸法精度の低下が抑制されたことが分かった。
 (実施例3)
 以下、本発明の実施例3について説明する。本体部63として表1のNo.9の材質を使用し、内張り部73として表2のNo.17の材質を使用した図6(b)に示す受台1Eを構成した。この受台1Eでグリーンハニカム成形体70を約8分間支持したところ、図10に示されるように、グリーンハニカム成形体70の側面には傷がついていなかった。
 本発明によれば、寸法精度が高いグリーンハニカム成形体及びディーゼルパティキュレートフィルタを製造することが可能である。
 1A,1B,1C,1D,1E,1F,1G・・・本発明に係る受台、10,100・・・従来の受台、3,13,23,63・・・本体部、83a・・・第一本体部、83b・・・第二本体部、5,15,25,65,80・・・空洞部、82・・・接着部、7,17,27,47,67,87・・・溝部、9,69,89・・・曲面部、11,71,91・・・側面部、73,93・・・内張り部、70・・・グリーンハニカム成形体、70a・・・貫通孔、70b・・・封口部、70c・・・隔壁、170・・・ディーゼルパティキュレートフィルタ、a1,a2,a3,a61,a81・・・対称軸、b3,b13,b23・・・溝部の幅、b61,b81・・・溝部の幅、又は内張り部の上端部間の距離、C81・・・底面、C82・・・上面、L1,L11,L21,L61・・・下辺、L2,L12,L22,L62・・・上辺、L2a,L62a・・・傾斜部、L22a,L22b,L22d・・・下方傾斜部、L22c・・・上方傾斜部、L63・・・側辺。

Claims (13)

  1.  押出成形後の円柱形状のグリーンハニカム成形体の側面を前記グリーンハニカム成形体の長手方向を水平にした状態で支持するためのグリーンハニカム成形体用受台であって、
     可撓性を有する本体部を備え、
     前記本体部は、前記本体部の上部に前記グリーンハニカム成形体の前記側面を支持する溝部を有し、
     前記本体部の前記溝部の下方に空洞部が形成されている、
     グリーンハニカム成形体用受台。
  2.  前記溝部は、前記グリーンハニカム成形体の前記側面の下部半周分が当接する曲面部と、前記曲面部の両縁から上方に向かって延びる一対の側面部と、を有する、
     請求項1に記載のグリーンハニカム成形体用受台。
  3.  前記空洞部は、前記溝部が延びる方向に前記本体部を貫通しており、
     前記溝部及び前記空洞部が延びる方向に直交する鉛直面における前記溝部及び前記空洞部の断面形状は、互いに共通する鉛直方向の対称軸について線対称であり、
     前記鉛直面における前記空洞部の断面形状は、
     少なくとも一部が水平かつ互いに平行である対辺を有し、
     前記対辺のうち少なくとも上辺は、その両側において上方に向かって傾斜した傾斜部を有し、
     前記上辺の両端部間の水平距離は、前記鉛直面における前記溝部の幅よりも長い、
     請求項1又は2に記載のグリーンハニカム成形体用受台。
  4.  前記空洞部は、前記溝部が延びる方向に前記本体部を貫通しており、
     前記溝部及び前記空洞部が延びる方向に直交する鉛直面における前記溝部及び前記空洞部の断面形状は、互いに共通する鉛直方向の対称軸について線対称であり、
     前記鉛直面における前記空洞部の断面形状は、
     上辺が下辺よりも短く且つ前記下辺の長さが前記鉛直面における前記溝部の幅以下である仮想の台形形状の頂点を少なくとも辿る線からなる形状であり、
     前記線のうち、前記上辺側の頂点間を辿る線は、
     前記上辺側の頂点の位置よりも下方の位置で前記対称軸と交差し、
     前記頂点側から前記対称軸側に向けて下方に傾斜した傾斜部を含む、
     請求項1又は2に記載のグリーンハニカム成形体用受台。
  5.  前記空洞部は、前記溝部が延びる方向に前記本体部を貫通しており、
     前記溝部及び前記空洞部が延びる方向に直交する鉛直面における前記溝部及び前記空洞部の断面形状は、互いに共通する鉛直方向の対称軸について線対称であり、
     前記鉛直面における前記空洞部の断面形状は、
     水平方向の上辺及び下辺の長さが前記鉛直面における前記溝部の幅よりも長い仮想の長方形形状の頂点を少なくとも辿る線からなる形状であり、
     前記線のうち、前記上辺側の頂点間を辿る線は、
     前記上辺側の頂点の位置よりも下方の位置で前記対称軸と交差し、
     前記頂点側から前記対称軸側に向けて下方に傾斜した2対以上の下方傾斜部と、前記下方傾斜部の間で前記頂点側から前記対称軸側に向けて上方に傾斜した上方傾斜部と、を含む、
     請求項1又は2に記載のグリーンハニカム成形体用受台。
  6.  前記溝部の前記曲面部は、前記溝部が延びる方向から見て半円状であり、
     前記空洞部は、前記曲面部全体の下方に位置し、かつ前記溝部が延びる方向に前記本体部を貫通しており、
     前記空洞部は、水平な底面、前記底面に対向する上面、及び対向する一対の鉛直な側面によって囲まれており、
     前記上面において前記溝部が延びる方向に平行な両端部が、前記曲面部に向かって折れ曲がっている、
     請求項2に記載のグリーンハニカム成形体用受台。
  7.  前記溝部の前記曲面部は、前記溝部が延びる方向から見て半円状であり、
     前記空洞部は、前記溝部が延びる方向に前記本体部を貫通しており、
     前記空洞部の底面、及び前記底面に対向する前記空洞部の上面は、前記曲面部全体に沿って曲がった曲面であり、
     前記空洞部は前記底面及び前記上面の2つの曲面のみによって囲まれている、
     請求項2に記載のグリーンハニカム成形体用受台。
  8.  前記曲面部と前記上面との間における前記本体部の厚さは均一である、
     請求項7に記載のグリーンハニカム成形体用受台。
  9.  可撓性を有し、前記溝部の表面を覆う内張り部を備え、
     前記内張り部は、前記本体部よりも可撓性が高い材質からなり、
     前記溝部は、前記内張り部を介して、前記グリーンハニカム成形体の前記側面を支持する、
     請求項1~8のいずれか一項に記載のグリーンハニカム成形体用受台。
  10.  前記内張り部の厚さは、前記グリーンハニカム成形体の円状の断面の半径に対して0.05~0.2倍である、
     請求項9に記載のグリーンハニカム成形体用受台。
  11.  前記内張り部は、前記本体部よりも硬さが小さい材質からなる、
     請求項9又は10に記載のグリーンハニカム成形体用受台。
  12.  前記内張り部は、前記本体部よりも反発弾性が小さい材質からなる、
     請求項9~11のいずれか一項に記載のグリーンハニカム成形体用受台。
  13.  セラミックスの原料粉末を含む混合物を押出成形機から水平方向に押し出すことにより、長尺の円柱体を形成する工程と、
     前記円柱体の下側の側面を請求項1~12のいずれか一項に記載のグリーンハニカム成形体用受台の前記溝部で支持し、前記円柱体を前記円柱体の長手方向に垂直に切断して、前記グリーンハニカム成形体用受台で支持された前記グリーンハニカム成形体を形成する工程と、
     前記グリーンハニカム成形体用受台で支持された前記グリーンハニカム成形体を、前記グリーンハニカム成形体用受台とともに搬送する工程と、
     を備える、
     ディーゼルパティキュレートフィルタの製造方法。
PCT/JP2013/069529 2012-07-27 2013-07-18 グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法 WO2014017379A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13822264.1A EP2878417A4 (en) 2012-07-27 2013-07-18 GREEN WAVEFORM BODY CARRIER AND METHOD FOR PRODUCING A DIESEL PARTICLE FILTER
CN201380039909.1A CN104507652A (zh) 2012-07-27 2013-07-18 未烧结的蜂窝成形体用支座以及柴油机微粒过滤器的制造方法
MX2015000978A MX2015000978A (es) 2012-07-27 2013-07-18 Sujetador de cuerpo moldeado con forma de panal, crudo, y metodo para producir un filtro para material particulado del diesel.
US14/417,053 US20150210024A1 (en) 2012-07-27 2013-07-18 Green-honeycomb-molded-body holder and method for producing diesel particulate filter
KR1020157001767A KR20150040275A (ko) 2012-07-27 2013-07-18 그린 허니컴 성형체용 홀더 및 디젤 파티큘레이트 필터의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012167461 2012-07-27
JP2012-167467 2012-07-27
JP2012-167461 2012-07-27
JP2012167467 2012-07-27
JP2012-241062 2012-10-31
JP2012241062A JP5964205B2 (ja) 2012-07-27 2012-10-31 グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法

Publications (1)

Publication Number Publication Date
WO2014017379A1 true WO2014017379A1 (ja) 2014-01-30

Family

ID=49997193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069529 WO2014017379A1 (ja) 2012-07-27 2013-07-18 グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法

Country Status (7)

Country Link
US (1) US20150210024A1 (ja)
EP (1) EP2878417A4 (ja)
JP (1) JP5964205B2 (ja)
KR (1) KR20150040275A (ja)
CN (1) CN104507652A (ja)
MX (1) MX2015000978A (ja)
WO (1) WO2014017379A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904498B2 (en) 2019-03-11 2024-02-20 Ngk Insulators, Ltd. Receiving table for honeycomb formed body, method for producing honeycomb formed body, and method for producing honeycomb fired body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027435B2 (ja) * 2012-12-27 2016-11-16 住友化学株式会社 ディーゼルパティキュレートフィルタの製造方法、及びグリーンハニカム成形体用受台
CN108290314B (zh) * 2015-11-30 2021-03-12 康宁股份有限公司 用于蜂窝体的载具和方法
CN106827206A (zh) * 2017-03-22 2017-06-13 河南鑫海电力设备有限公司 一种瓷套泥段干燥底衬
JP2019136939A (ja) 2018-02-09 2019-08-22 日本碍子株式会社 ハニカム成形体又は焼成品の製造方法、受け台、及び受け台の製造方法
CN114514102B (zh) * 2019-08-14 2023-10-31 康宁股份有限公司 通过周向辐照使湿挤出物硬化的系统和方法
JP2023140574A (ja) * 2022-03-23 2023-10-05 日本碍子株式会社 Si-SiC系複合構造体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131903A (ja) * 1988-11-14 1990-05-21 Ngk Insulators Ltd セラミック体の搬送装置
JP2002046856A (ja) * 2000-08-01 2002-02-12 Ngk Insulators Ltd セラミック成形体の搬送システム及びそれに用いる受け台
JP2002103325A (ja) * 2000-09-27 2002-04-09 Hitachi Metals Ltd ハニカム構造押出成形体の搬送用受台
JP4099896B2 (ja) 1999-04-21 2008-06-11 株式会社デンソー ハニカム構造体の押出成形装置
WO2009057213A1 (ja) * 2007-10-31 2009-05-07 Ibiden Co., Ltd. ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
JP2011079254A (ja) * 2009-10-08 2011-04-21 Ngk Insulators Ltd ハニカム成形体の搬送用受台、それを用いた搬送装置及び搬送方法
WO2011106592A1 (en) * 2010-02-26 2011-09-01 Corning Incorporated Conveyor tray apparatus with air bearing and air curtain and methods of use

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326756B2 (ja) * 1973-06-20 1978-08-03
JPS63102911A (ja) * 1986-10-18 1988-05-07 日本碍子株式会社 セラミツク体の押出成形法
JP2001293711A (ja) * 2000-04-13 2001-10-23 Nippon Soken Inc 押出成形型
JP4069613B2 (ja) * 2001-11-09 2008-04-02 株式会社デンソー セラミックハニカム構造体の製造方法及び乾燥装置
JP2003311726A (ja) * 2002-04-19 2003-11-05 Ngk Insulators Ltd ハニカム構造体製造装置及びハニカム構造体の製造方法
JP3560338B2 (ja) * 2002-04-19 2004-09-02 日本碍子株式会社 ハニカム構造体製造装置、及びハニカム構造体の製造方法
JP4373177B2 (ja) * 2003-10-22 2009-11-25 日本碍子株式会社 ハニカム構造体、その製造方法及びキャニング構造体
US20070182072A1 (en) * 2006-02-06 2007-08-09 Ngk Insulators, Ltd. Method of manufacturing plugged honeycomb structure and manufacturing apparatus of plugged honeycomb structure
JP2008155594A (ja) * 2006-12-26 2008-07-10 Denso Corp ハニカム構造体の製造方法及びスキンレスハニカム成形体成形用の金型
JP2009023318A (ja) * 2007-07-24 2009-02-05 Denso Corp ハニカム構造体成形用金型
JP2009202537A (ja) * 2008-02-29 2009-09-10 Meidensha Corp 押出成形体の受治具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131903A (ja) * 1988-11-14 1990-05-21 Ngk Insulators Ltd セラミック体の搬送装置
JP4099896B2 (ja) 1999-04-21 2008-06-11 株式会社デンソー ハニカム構造体の押出成形装置
JP2002046856A (ja) * 2000-08-01 2002-02-12 Ngk Insulators Ltd セラミック成形体の搬送システム及びそれに用いる受け台
JP2002103325A (ja) * 2000-09-27 2002-04-09 Hitachi Metals Ltd ハニカム構造押出成形体の搬送用受台
WO2009057213A1 (ja) * 2007-10-31 2009-05-07 Ibiden Co., Ltd. ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
JP2011079254A (ja) * 2009-10-08 2011-04-21 Ngk Insulators Ltd ハニカム成形体の搬送用受台、それを用いた搬送装置及び搬送方法
WO2011106592A1 (en) * 2010-02-26 2011-09-01 Corning Incorporated Conveyor tray apparatus with air bearing and air curtain and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878417A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904498B2 (en) 2019-03-11 2024-02-20 Ngk Insulators, Ltd. Receiving table for honeycomb formed body, method for producing honeycomb formed body, and method for producing honeycomb fired body

Also Published As

Publication number Publication date
CN104507652A (zh) 2015-04-08
US20150210024A1 (en) 2015-07-30
JP5964205B2 (ja) 2016-08-03
JP2014040084A (ja) 2014-03-06
EP2878417A1 (en) 2015-06-03
EP2878417A4 (en) 2016-04-27
KR20150040275A (ko) 2015-04-14
MX2015000978A (es) 2015-04-10

Similar Documents

Publication Publication Date Title
WO2014017379A1 (ja) グリーンハニカム成形体用受台及びディーゼルパティキュレートフィルタの製造方法
JP6200404B2 (ja) ハニカム成形体焼成用生トチ、及びハニカム成形体の焼成方法
EP3235565A1 (en) Honeycomb structured body
WO2011040402A1 (ja) 目封止ハニカム構造体の製造方法
US9561985B2 (en) Method for manufacturing ceramic honeycomb fired body
JP4071025B2 (ja) ハニカム構造体の製造方法
JP5830001B2 (ja) ハニカム成形体の支持方法
JP6027435B2 (ja) ディーゼルパティキュレートフィルタの製造方法、及びグリーンハニカム成形体用受台
JP2018167397A (ja) ハニカムフィルタの製造方法
JP2014014983A (ja) 金型、及び、ハニカム構造体の製造方法
JP4625654B2 (ja) セッターに用いるセラミックス製のカバー
JP5937800B2 (ja) ハニカム焼成体の製造方法
JP2014180600A (ja) ハニカムフィルタ
JP2017077624A (ja) ハニカム成形体の製造方法、並びに、ハニカム成形体製造装置
JP4938904B2 (ja) ハニカム構造体の封口方法
JP2013230568A (ja) グリーンハニカム成形体の製造方法及びグリーンハニカム成形体の製造システム
JP2013146687A (ja) ハニカム構造体の封口方法及びハニカムフィルタの製造方法
JP2020059635A (ja) ハニカム構造体
JP2017024928A (ja) セラミクス焼成体の台座分離装置、セラミクス焼成体の台座分離方法及びセラミクス焼成体の製造方法
JP2013154549A (ja) ハニカム構造体の封口方法
JP2012051369A (ja) 封口用マスク及びこれを用いたハニカム構造体の封口方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/000978

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157001767

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14417053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013822264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013822264

Country of ref document: EP