WO2014010715A1 - ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池 - Google Patents

ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池 Download PDF

Info

Publication number
WO2014010715A1
WO2014010715A1 PCT/JP2013/069083 JP2013069083W WO2014010715A1 WO 2014010715 A1 WO2014010715 A1 WO 2014010715A1 JP 2013069083 W JP2013069083 W JP 2013069083W WO 2014010715 A1 WO2014010715 A1 WO 2014010715A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion electrode
electrode
solid polymer
conductive
Prior art date
Application number
PCT/JP2013/069083
Other languages
English (en)
French (fr)
Inventor
達規 伊藤
佑太 若元
隆 多羅尾
Original Assignee
日本バイリーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バイリーン株式会社 filed Critical 日本バイリーン株式会社
Priority to JP2014524886A priority Critical patent/JP6209515B2/ja
Publication of WO2014010715A1 publication Critical patent/WO2014010715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas diffusion electrode substrate, a gas diffusion electrode, a membrane-electrode assembly, and a polymer electrolyte fuel cell.
  • Non-Patent Document 1 the fuel cell is a phosphoric acid fuel cell (PAFC), melted, depending on the type of electrolyte used.
  • PAFC phosphoric acid fuel cell
  • the PEFC has a low temperature range of 100 ° C or lower, the PAFC has a medium temperature range of 180-210 ° C, the MCFC has a temperature of 600 ° C or higher, and the SOFC has a temperature of nearly 1000 ° C It is known to operate in the high temperature region.
  • a general PEFC capable of outputting in a low temperature region takes out electric power generated by a combined reaction between hydrogen gas and oxygen gas (or air) as a fuel, but has a relatively small device configuration. There is an urgent need for practical use in that efficient power can be extracted.
  • FIG. 1 is a schematic cross-sectional view of the main part of a fuel cell showing the basic structure of a conventionally known PEFC.
  • the PEFC includes a membrane-electrode assembly (MEA) composed of a fuel electrode (gas diffusion electrode) 17a, a solid polymer film 19 and an air electrode (gas diffusion electrode) 17c as shown in FIG. It has a structure in which a plurality of cell units sandwiched between 11a and 11c are stacked.
  • MEA membrane-electrode assembly
  • the fuel electrode 17a includes a catalyst layer 15a that decomposes into protons and electrons, and a gas diffusion layer 13a that supplies fuel gas to the catalyst layer 15a, and moisture management is provided between the catalyst layer 15a and the gas diffusion layer 13a.
  • the air electrode 17c is composed of a catalyst layer 15c for reacting protons, electrons and oxygen-containing gas, and a gas diffusion layer 13c for supplying oxygen-containing gas to the catalyst layer 15c.
  • a moisture management layer 14c is formed between the layer 15c and the gas diffusion layer 13c.
  • the bipolar plate 11a Since the bipolar plate 11a has a groove capable of supplying a fuel gas, when the fuel gas is supplied through the groove of the bipolar plate 11a, the fuel gas diffuses through the gas diffusion layer 13a and permeates the moisture management layer 14a to pass through the catalyst layer 15a. To be supplied. The supplied fuel gas is decomposed into protons and electrons, and the protons move through the solid polymer film 19 and reach the catalyst layer 15c. On the other hand, the electrons pass through an external circuit (not shown) and move to the air electrode 17c.
  • the bipolar plate 11c since the bipolar plate 11c has a groove capable of supplying an oxygen-containing gas, when the oxygen-containing gas is supplied through the groove of the bipolar plate 11c, the oxygen-containing gas diffuses through the gas diffusion layer 13c and permeates the moisture management layer 14c. And supplied to the catalyst layer 15c. The supplied oxygen-containing gas reacts with protons that have moved through the solid polymer membrane 19 and electrons that have moved through the external circuit, thereby generating water. The generated water is discharged out of the fuel cell through the moisture management layer 14c. In the fuel electrode, water that has been reversely diffused from the air electrode passes through the moisture management layer 14a and is discharged out of the fuel cell.
  • the functions necessary for the gas diffusion layer 13a and the moisture management layer 14a, or the gas diffusion layer 13c and the moisture management layer 14c include a moisture retention property for keeping the solid polymer film 19 moist under a low humidification condition, and a high Under humidified conditions, water accumulates in the fuel cell, and has drainage to prevent flooding.
  • Such gas diffusion layer 13a and moisture management layer 14a, or gas diffusion layer 13c and moisture management layer 14c are conventionally impregnated with a conductive porous substrate such as carbon paper with a fluorine-based resin such as polytetrafluoroethylene.
  • moisture management layers 14a and 14c in which fluororesin is present or carbon powder and fluororesin are present, and these are not present
  • the regions were gas diffusion layers 13a and 13c.
  • the moisture management layers 14a and 14c formed in this way are fluorinated resins or carbon powders and fluorinated resins applied to a conductive porous substrate.
  • Carbon paper is used, and the carbon fibers that make up this carbon paper have high rigidity, so it penetrates the moisture management layers 14a and 14c and the catalyst layers 15a and 15c, damages the solid polymer film, and shorts. There was a case.
  • the present invention has been made under such circumstances, and provides a gas diffusion electrode substrate, a gas diffusion electrode, a membrane-electrode assembly, and a solid polymer fuel cell that do not damage the solid polymer membrane
  • the purpose is to do.
  • the present invention [1] A gas diffusion electrode base material comprising a nonwoven fabric containing conductive fibers containing conductive particles at least inside an organic resin; [2] A gas diffusion electrode in which a catalyst is supported on the gas diffusion electrode substrate according to [1], [3] A membrane-electrode assembly comprising the gas diffusion electrode substrate according to [1], [4] The present invention relates to a polymer electrolyte fuel cell comprising the gas diffusion electrode substrate according to [1].
  • the “gas diffusion electrode” of the present invention of [2] is a gas diffusion electrode which can produce a fuel cell which is not easily short-circuited and has excellent power generation performance because a catalyst is supported on the base material for the gas diffusion electrode. It is.
  • the “membrane-electrode assembly” of the present invention includes the gas diffusion electrode base material, and therefore can prevent a short circuit and can produce a fuel cell with excellent power generation performance. Is the body.
  • the “solid polymer fuel cell” of the present invention of [4] is a fuel cell that is not easily short-circuited and has excellent power generation performance because it includes the base material for gas diffusion electrode.
  • the base material for gas diffusion electrodes of the present invention includes a nonwoven fabric containing conductive fibers containing conductive particles at least inside an organic resin. . Since the conductive fiber of this nonwoven fabric is flexible because it contains an organic resin, the conductive fiber does not damage the solid polymer film and short-circuit it.
  • the “organic resin” of the present invention does not include diamond, graphite, and amorphous carbon.
  • the organic resin constituting the conductive fiber may be a hydrophobic organic resin or a hydrophilic organic resin, and is not particularly limited.
  • the former hydrophobic organic resin exhibits excellent water permeability without impregnating with a hydrophobic resin such as a fluororesin, and exhibits excellent drainage.
  • the hydrophilic organic resin can retain moisture, the solid polymer membrane can be kept moist and a solid polymer fuel cell capable of exhibiting sufficient power generation performance can be produced. it can.
  • moisture can be retained and the solid polymer membrane can be kept moist even in a low-humidity environment, thus producing a solid polymer fuel cell that can exhibit sufficient power generation performance. can do.
  • the “hydrophobic organic resin” is an organic resin having a contact angle with water of 90 ° or more, and examples thereof include fluororesins such as polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE).
  • fluororesins such as polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE).
  • PVDF Polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PFA perfluoroalkoxy fluororesin
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • VDF Polyvinylidene fluoride
  • PE Polyethylene
  • PP Polypropylene
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • polyolefin resin for example, Polyethylene (PE), Polypropylene (PP); Poly Ester-based resin, for example, a polyethylene terephthalate (PET), polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the “hydrophilic organic resin” is an organic resin having a contact angle with water of less than 90 °.
  • examples thereof include cellulose, such as rayon; polyamide resin, such as nylon 6, nylon 66; polyacrylonitrile.
  • the hydrophobic organic resin and the hydrophilic organic resin may be mixed or combined.
  • the conductive fiber of the present invention When used as a gas diffusion electrode, it contains conductive particles at least inside the organic resin so that the electron mobility is excellent. That is, if the conductive particles are present only on the outer surface of the organic resin, the organic resin component becomes a resistance component and is inferior in conductivity. In the present invention, however, the conductive particles are contained inside the organic resin. Since it contains, it is excellent in electroconductivity. From the viewpoint of conductivity, the conductive particles are preferably exposed from the organic resin. “Containing conductive particles inside” does not only mean that the conductive particles are completely buried in the organic resin, but a part of the conductive particles is made of the organic resin. It also means an exposed state. Such conductive fibers containing conductive particles at least inside the organic resin can be produced, for example, by spinning a spinning solution containing the organic resin and conductive particles.
  • the conductive particles are not particularly limited, and examples thereof include carbon black, carbon nanotubes, carbon nanofibers, metal particles, and metal oxide particles. Among these, carbon black is preferably used in terms of chemical resistance, conductivity, and dispersibility.
  • the particle size of the carbon black which is suitable is not particularly limited, but those having an average primary particle size of 5 nm to 200 nm, more preferably 10 nm to 100 nm can be used. In addition, it is preferable that the average primary particle diameter of the conductive particles is smaller than the fiber diameter of the conductive fibers to be described later so that the average primary particle diameter does not easily fall off and easily forms a fiber form.
  • the mass ratio between the conductive particles and the organic resin is not particularly limited, but is preferably 10 to 90:90 to 10, more preferably 20 to 80:80 to 20, and 30 It is more preferably from 70 to 70 to 30, and further preferably from 40 to 70:60 to 30. This is because if the conductive particles are less than 10 mass%, the conductivity tends to be insufficient, whereas if the conductive particles are more than 90 mass%, the fiber forming property tends to be lowered.
  • the conductive particles preferably occupy 10 to 90 mass% of the nonwoven fabric, and more preferably 20 to 80 mass% so that the conductivity is excellent.
  • the average fiber diameter of the conductive fiber of the present invention is not particularly limited, but is preferably 10 nm to 10 ⁇ m. When the average fiber diameter exceeds 10 ⁇ m, there are few contact points between the fibers in the electrode substrate, and the conductivity tends to be insufficient. On the other hand, when the average fiber diameter is less than 10 nm, it tends to be difficult to contain conductive particles inside the fiber. Because there is. In addition, it is preferable that the average fiber diameter of a conductive fiber is 5 times or more of the primary particle diameter of an electroconductive particle so that an electroconductive particle cannot drop out easily.
  • the “average fiber diameter” means the arithmetic average value of the fiber diameters at 40 points, and the “fiber diameter” is a value measured based on a micrograph, and the conductive particle exposed conductive particles. In the case of being composed only of conductive fibers, it means the diameter including the exposed conductive particles, and does not contain conductive fibers with exposed conductive particles or conductive fibers with exposed conductive particles In the case where it is configured to include a conductive fiber having a portion where the conductive particles are not exposed, the diameter at the portion where the conductive particles are not exposed is meant.
  • the conductive fiber of the present invention is preferably a continuous fiber so that the mobility of electrons is excellent and the end of the conductive fiber is small and the solid polymer film is hardly damaged.
  • a conductive continuous fiber is, for example, an electrospinning method, a spun bond method, a melt blow method, or a spinning solution discharged from a liquid discharging unit as disclosed in JP 2009-287138 A.
  • a liquid discharging unit as disclosed in JP 2009-287138 A.
  • the mass content ratio of the conductive fibers in the nonwoven fabric constituting the electrode substrate of the present invention is preferably 10% or more, more preferably 50% or more, and more preferably 70% or more so that the mobility of electrons is excellent. More preferably, it is more preferably 90% or more, and most preferably composed only of conductive fibers.
  • fibers other than conductive fibers include hydrophobic organic fibers such as fluorine fibers and polyolefin fibers; hydrophilic organic fibers such as acrylic fibers and nylon fibers (for example, nylon 6 and nylon 66). Can be.
  • the nonwoven fabric constituting the electrode substrate of the present invention can contain fibers other than conductive fibers, but the electrode substrate has an electrical resistivity of 10 7 ⁇ ⁇ cm or less so as to be excellent in conductivity. It is preferably 10 6 ⁇ ⁇ cm or less, and more preferably 10 5 ⁇ ⁇ cm or less.
  • Electrical resistivity in the present invention refers to a value measured by a four-probe method using a resistivity meter (Loresta, manufactured by Mitsubishi Chemical Corporation).
  • the nonwoven fabric which comprises the electrode base material of this invention may be couple
  • suitable organic resin bonds include entanglement of fibers, bonding by plasticization with a solvent, and bonding by heat fusion.
  • the basis weight of the nonwoven fabric constituting the electrode substrate of the present invention is not particularly limited, but is preferably 0.5 to 200 g / m 2 from the viewpoint of drainage, gas diffusibility, handleability and productivity, It is more preferably 0.5 to 100 g / m 2 , and still more preferably 0.5 to 50 g / m 2 .
  • the thickness is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m, and still more preferably 1 to 300 ⁇ m.
  • Weight in the present invention is a value obtained by measuring the mass of a sample cut into a 10 cm square and converting it to a mass of 1 m 2.
  • Thiickness is a thickness gauge (manufactured by Mitutoyo Corporation: Code No.) .547-401: Measurement force 3.5N or less).
  • the porosity is preferably 20% or more in terms of porosity.
  • the porosity is 30% or more, more preferably the porosity is 50% or more.
  • the upper limit of the porosity is not particularly limited, but is 99% or less from the viewpoint of form stability.
  • Frn indicates the filling rate (unit:%) of component n constituting the nonwoven fabric, and is a value obtained from the following formula.
  • M is the basis weight of the nonwoven fabric (unit: g / cm 2 )
  • T is the thickness (cm) of the nonwoven fabric
  • Prn is the mass ratio of component n (for example, organic resin, conductive particles) in the nonwoven fabric
  • SGn It means the specific gravity (unit: g / cm 3 ) of component n.
  • the electrode base material of the present invention includes the nonwoven fabric as described above. However, since the nonwoven fabric is porous, the drainage property and gas also in the surface direction when nothing is filled in the voids of the nonwoven fabric. Excellent diffusivity.
  • gap of a nonwoven fabric contains a fluorine resin and / or carbon
  • moisture content internally generated by containing the former fluorine resin or Emission can be increased, and the conductivity can be increased by containing the latter carbon.
  • fluororesin examples include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVF polyvinyl fluoride
  • PFA perfluoroalkoxy fluororesin
  • Ethylene / hexafluoropropylene copolymer FEP
  • Ethylene / hexafluoropropylene copolymer Ethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • Examples of carbon include carbon black, carbon nanotube, and carbon nanofiber.
  • the electrode substrate of the present invention can be manufactured, for example, as follows.
  • a fiber web is formed by spinning using a spinning solution in which an organic resin and conductive particles are mixed to form conductive fibers, and collecting and collecting the conductive fibers directly. If the fiber web itself is moderately entangled, the fiber web can be used as a non-woven fabric as long as it is strong enough to handle, and in order to impart or improve the strength, plasticizing with a solvent, melting by heat It can also be made into a non-woven fabric by bonding, adhesion with an adhesive or the like. In addition, it is preferable that the fiber which comprises the fiber web formed by directly collecting and accumulating conductive fibers is a continuous long fiber. This is because the continuous long fibers are not only excellent in terms of conductivity and strength, but also have few fiber ends and are difficult to damage the solid polymer film.
  • a method for forming a fiber web for example, an electrostatic spinning method, a spunbond method, a melt blow method, or a spinning solution discharged from a liquid discharge unit as disclosed in JP-A-2009-287138 is used.
  • a method in which gas is discharged in parallel and a fiber is formed by applying a shearing force to the spinning solution in a straight line there can be mentioned a method in which gas is discharged in parallel and a fiber is formed by applying a shearing force to the spinning solution in a straight line.
  • the electrostatic spinning method or the method disclosed in Japanese Patent Application Laid-Open No. 2009-287138 conductive fibers having a small fiber diameter can be spun, so that a thin non-woven fabric can be produced, resulting in the resistance of the fuel cell. This is preferable because the volume of the fuel cell can be reduced.
  • the conductive particles are mixed with a solution in which an organic resin is dissolved in a solvent, as in the electrostatic spinning method or the method disclosed in JP2009-287138A, a solvent that does not easily volatilize during spinning is used. If the spinning solvent is removed by solvent substitution after forming the fiber web or nonwoven fabric, the conductive fibers tend to be in a plasticized state, and as a result, a highly conductive nonwoven fabric can be produced. It is preferable because the electrode substrate becomes dense and the contact resistance in the fuel cell tends to be low.
  • a fiber web is formed by a known dry method or wet method, and plasticization with a solvent, heat It can also be made into a non-woven fabric by bonding by fusing, bonding with an adhesive or the like.
  • the conductive fibers constituting the nonwoven fabric are preferably continuous fibers
  • the nonwoven fabric is derived from a fiber web formed by collecting and collecting the continuous conductive fibers directly. preferable.
  • the organic resin which comprises a nonwoven fabric is an acryl oxide
  • the fiber web containing this electroconductive fiber is formed.
  • the acrylic resin can be converted to acrylic oxide by heating in air at a temperature of 200 to 300 ° C. to further increase the conductivity of the nonwoven fabric.
  • conductive fibers spun using a spinning solution in which acrylic resin and conductive particles are mixed are heated in air at a temperature of 200 to 300 ° C. to make the acrylic resin acrylic oxide, and then acrylic oxide and It is also possible to form a nonwoven fabric using conductive fibers made of conductive particles.
  • the organic resin constituting the conductive fiber is a heat-resistant organic resin having a melting point exceeding 350 ° C.
  • a fluorine-based dispersion such as a polytetrafluoroethylene dispersion
  • the gas diffusion electrode of the present invention Since the gas diffusion electrode of the present invention has a catalyst supported on the above electrode base material, it is difficult to short-circuit, and a fuel cell with excellent power generation performance can be produced. Further, the gas diffusion electrode of the present invention has a catalyst supported on the surface of the conductive fiber, and not only the electron conduction due to the contact between the catalysts but also the electron conduction path by the conductive fiber is formed, so that it is isolated from the electron conduction path. Less catalyst. Furthermore, the electrode base material is a non-woven porous body and has excellent drainage and gas diffusivity, so that gas can be supplied sufficiently stably to the three-phase interface (reaction field where gas, catalyst, and electrolyte resin meet). be able to. For these reasons, the catalyst can be used efficiently and the amount of catalyst can be reduced.
  • the gas diffusion electrode of the present invention has the same structure as that of a conventional gas diffusion electrode except that it includes the electrode base as described above.
  • the catalyst include platinum, platinum alloy, palladium, palladium alloy, titanium, manganese, magnesium, lanthanum, vanadium, zirconium, iridium, rhodium, ruthenium, gold, nickel-lanthanum alloy, titanium-iron alloy, and the like. It is possible to carry one or more kinds of catalysts selected from these.
  • an electron conductor and a proton conductor are included, and as the electron conductor, conductive particles similar to the conductive particles contained in conductive fibers such as carbon black are suitable.
  • the catalyst may be supported on the conductive particles.
  • an ion exchange resin is suitable as the proton conductor.
  • the gas diffusion electrode of the present invention can be produced, for example, by the following method.
  • a catalyst for example, carbon powder carrying a catalyst such as platinum
  • a catalyst for example, carbon powder carrying a catalyst such as platinum
  • a single or mixed solvent composed of ethyl alcohol, propyl alcohol, butyl alcohol, ethylene glycol dimethyl ether, etc.
  • the solution is added and mixed uniformly by ultrasonic dispersion or the like to obtain a catalyst dispersion suspension.
  • the catalyst dispersion suspension can be coated or dispersed on the electrode base as described above, and dried to produce a gas diffusion electrode.
  • the membrane-electrode assembly of the present invention is a membrane-electrode assembly that is difficult to short-circuit and can produce a fuel cell with excellent power generation performance because it includes the above-described base material for gas diffusion electrode.
  • the membrane-electrode assembly of the present invention can be exactly the same as the conventional membrane-electrode assembly except that it comprises the gas diffusion electrode substrate as described above.
  • Such a membrane-electrode assembly can be produced, for example, by sandwiching a solid polymer membrane between the catalyst support surfaces of a pair of gas diffusion electrodes and hot pressing.
  • this catalyst layer is transferred to a solid polymer film, and then the catalyst layer is used for the gas diffusion electrode as described above. It can also be produced by a method of laminating the substrates and hot pressing.
  • solid polymer film for example, a perfluorocarbon sulfonic acid resin film, a sulfonated aromatic hydrocarbon resin film, an alkylsulfonated aromatic hydrocarbon resin film, or the like can be used.
  • the polymer electrolyte fuel cell of the present invention is provided with the base material for gas diffusion electrode as described above, it is difficult to short-circuit and is a fuel cell with excellent power generation performance.
  • the fuel cell of the present invention can be exactly the same as a conventional fuel cell except that it includes the gas diffusion electrode substrate as described above.
  • it has a structure in which a plurality of cell units each having a membrane-electrode assembly sandwiched between a pair of bipolar plates are stacked.
  • a plurality of cell units can be stacked and fixed.
  • the bipolar plate is not particularly limited as long as the bipolar plate has high conductivity, does not transmit gas, and has a flow path capable of supplying gas to the gas diffusion electrode.
  • Carbon-resin composite materials, metal materials, and the like can be used.
  • ⁇ Preparation of the first spinning solution> In a solution of polyacrylonitrile (weight average molecular weight 200,000) dissolved in N, N-dimethylformamide (DMF), carbon black [Denka Black granular product, manufactured by Denki Kagaku Kogyo Co., Ltd., average primary particle size as conductive particles] : 35 nm] is mixed and stirred, and further diluted with DMF to disperse the carbon black, and the first spinning with a solid mass ratio of carbon black to polyacrylonitrile of 40:60 and a solid content concentration of 20 mass%. A solution was prepared.
  • DMF N, N-dimethylformamide
  • a second spinning solution was prepared in the same manner as the first spinning solution except that the solid content mass ratio of carbon black and polyacrylonitrile was 50:50 and the solid content concentration was 25 mass%.
  • a third spinning solution was prepared in the same manner as the first spinning solution except that the solid mass ratio of carbon black and polyacrylonitrile was 60:40 and the solid content concentration was 25 mass%.
  • a fourth spinning solution was prepared in the same manner as the first spinning solution except that the solid content mass ratio of carbon black and polyacrylonitrile was 30:70 and the solid content concentration was 25 mass%.
  • Example 1 ⁇ Preparation of base material for gas diffusion electrode> Conductive fibers obtained by spinning the first spinning solution by an electrostatic spinning method are directly accumulated on a stainless drum, which is a counter electrode, and a non-woven fabric (for gas diffusion electrodes) consisting only of continuous conductive fibers.
  • the electrospinning conditions were as follows.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 1 g / hour Distance between nozzle tip and stainless steel drum: 5 cm Applied voltage: 10 kV Temperature / humidity: 25 ° C / 40% RH
  • Example 2 Conductive fibers obtained by spinning the second spinning solution by the same electrospinning method as in Example 1 except that the distance between the nozzle tip and the stainless steel drum was 10 cm was placed on the stainless steel drum as the counter electrode.
  • Non-woven fabric consisting of only conductive fibers that are directly integrated (gas diffusion electrode substrate, basis weight 20 g / m 2 , thickness 140 ⁇ m, porosity 92%, average fiber diameter: 600 nm, electrical resistivity: 2 .3 ⁇ 10 4 ⁇ ⁇ cm). The carbon black constituting this conductive fiber was partially exposed from the fiber surface, and the fibers were in a state of being bonded at the time of accumulation.
  • Example 3 A non-woven fabric consisting of only continuous conductive fibers (gas diffusion electrode substrate, basis weight 20 g / m 2 , thickness 140 ⁇ m, porosity 92%, except that the third spinning solution was used) Average fiber diameter: 450 nm, electrical resistivity: 2.3 ⁇ 10 4 ⁇ ⁇ cm). The carbon black constituting this conductive fiber was partially exposed from the fiber surface, and the fibers were in a state of being bonded at the time of accumulation.
  • Example 4 A non-woven fabric consisting of only continuous conductive fibers (gas diffusion electrode substrate, basis weight 20 g / m 2 , thickness 175 ⁇ m, porosity 93%, except that the fourth spinning solution was used) Average fiber diameter: 800 nm, electrical resistivity: 3.4 ⁇ 10 5 ⁇ ⁇ cm). The carbon black constituting this conductive fiber was partially exposed from the fiber surface, and the fibers were in a state of being bonded at the time of accumulation.
  • Example 5 Conductive fibers obtained by spinning the fifth spinning solution by an electrostatic spinning method are directly accumulated on a stainless drum, which is a counter electrode, and a non-woven fabric made of only continuous conductive fibers (for gas diffusion electrodes) A substrate, a basis weight of 20 g / m 2 , a thickness of 100 ⁇ m, a porosity of 87%, an average fiber diameter: 500 nm, and an electric resistivity: 2.1 ⁇ 10 4 ⁇ ⁇ cm) were produced. The carbon black constituting this conductive fiber was partially exposed from the fiber surface, and the fibers were in a state of being bonded at the time of accumulation.
  • the electrospinning conditions were as follows.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 1 g / hour Distance between nozzle tip and stainless steel drum: 10 cm Applied voltage: 10 kV Temperature / humidity: 25 ° C / 30% RH
  • this catalyst paste was applied to a 25 cm 2 support (trade name: Naflon PTFE tape, manufactured by Nichias Co., Ltd., thickness 0.1 mm), dried at 60 ° C. with a hot air dryer, and platinum on the support A catalyst layer having a loading amount of 0.4 mg / cm 2 was produced.
  • Nafion NRE-212CS (trade name, manufactured by DuPont, USA) was prepared as a solid polymer film.
  • the catalyst layers were transferred and laminated on both surfaces of the solid polymer membrane, and then joined by hot pressing under conditions of a temperature of 135 ° C., a pressure of 2.6 MPa, and a time of 10 minutes, and a solid polymer having an electrode area of 25 cm 2 .
  • a membrane-catalyst layer assembly was produced.
  • the prepared polymer membrane-catalyst layer assembly is sandwiched between the gas diffusion electrode substrates (25 cm 2 ) of Examples 1 to 5 or Comparative Example, and is further sandwiched between carbon plates, and fastened at a pressure of 2 MPa in the stacking direction. A cell unit was produced.
  • the cell unit using the gas diffusion electrode substrate of the present invention has a very low leakage current, and the solid polymer membrane is formed by piercing the conductive fibers constituting the gas diffusion electrode substrate. The damage was found to be very small.
  • the cell resistance indicates not only the resistance of the gas diffusion electrode base material but also the total value of the solid polymer membrane, separator, and other electronic conductive materials.
  • the resistance of the solid polymer film that occupies is reduced. Therefore, the cell resistance reflects the difference in the base material for the gas diffusion electrode. From the said Table 2, the cell resistance of the base material for gas diffusion electrodes of Example 1 is low. This was considered to be because the amount of carbon black, which is the conductive particles in Example 1, was 40 mass%, which was larger than the gas diffusion electrode substrate of Example 4.
  • the electrode base material of the present invention does not damage the solid polymer membrane, it can be suitably used for polymer electrolyte fuel cell applications.
  • this invention was demonstrated along the specific aspect, the deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 固体高分子膜を損傷することのないガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池を提供する。本発明のガス拡散電極用基材は、有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維を含有する不織布を備えている。また、本発明のガス拡散電極は、前記ガス拡散電極用基材に触媒が担持されている。更に、膜-電極接合体及び固体高分子形燃料電池は前記ガス拡散電極用基材を備えている。

Description

ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池
 この発明は、ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池に関する。
 様々な形で利用されているエネルギーについては、石油資源の枯渇に対する懸念から、代替燃料の模索や省資源が重要な課題となっている。その中にあって、種々の燃料を化学エネルギーに変換し、電力として取り出す燃料電池について、活発な開発が続けられている。
 燃料電池は、例えば『燃料電池に関する技術動向調査』(以下、非特許文献1)の第5頁に開示されるように、使用される電解質の種類によって、りん酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化形燃料電池(SOFC)、固体高分子形燃料電池(PEFC)の4つに分類される。これら各種の燃料電池は、その電解質に応じて作動温度範囲に制約が有り、PEFCでは100℃以下の低温領域、PAFCでは180~210℃の中温領域、MCFCでは600℃以上、SOFCは1000℃近くの高温領域で動作することが知られている。このうち、低温領域での出力が可能である一般的なPEFCは、燃料となる水素ガスと酸素ガス(若しくは空気)との化合反応に伴って生じる電力を取り出すが、比較的小型の装置構成で効率的な電力を取り出すことができる点で、実用化が急がれている。
 図1は、従来知られているPEFCの基本構成を示す、燃料電池の要部断面の模式図である。図中、材質として実質的に同一の構成若しくは機能を有する構成成分には、同一のハッチングを付して示してある。PEFCは、図1に示すような、燃料極(ガス拡散電極)17a、固体高分子膜19及び空気極(ガス拡散電極)17cからなる膜-電極接合体(MEA)を、1対のバイポーラプレート11a、11cで挟んだセル単位を複数積層した構造からなる。前記燃料極17aはプロトンと電子とに分解する触媒層15aと、触媒層15aに燃料ガスを供給するガス拡散層13aとからなり、前記触媒層15aとガス拡散層13aとの間には水分管理層14aが形成されており、他方、空気極17cはプロトン、電子及び酸素含有ガスとを反応させる触媒層15cと、触媒層15cに酸素含有ガスを供給するガス拡散層13cとからなり、前記触媒層15cとガス拡散層13cとの間には水分管理層14cが形成されている。
 前記バイポーラプレート11aは燃料ガスを供給できる溝を有するため、このバイポーラプレート11aの溝を通して燃料ガスを供給すると、燃料ガスはガス拡散層13aを拡散し、水分管理層14aを透過して触媒層15aに供給される。供給された燃料ガスはプロトンと電子とに分解され、プロトンは固体高分子膜19を移動し、触媒層15cに到達する。他方、電子は図示しない外部回路を通り、空気極17cへと移動する。一方、バイポーラプレート11cは酸素含有ガスを供給できる溝を有するため、このバイポーラプレート11cの溝を通して酸素含有ガスを供給すると、酸素含有ガスはガス拡散層13cを拡散し、水分管理層14cを透過して触媒層15cに供給される。供給された酸素含有ガスは固体高分子膜19を移動したプロトン及び外部回路を通って移動した電子と反応し、水を生成する。この生成した水は水分管理層14cを通って、燃料電池外へ排出される。また、燃料極においては、空気極から逆拡散してきた水が水分管理層14aを通って、燃料電池外へ排出される。
 このようなガス拡散層13a及び水分管理層14a、又はガス拡散層13c及び水分管理層14cに必要な機能としては、低加湿条件下では固体高分子膜19を湿潤に保つための保湿性、高加湿条件下では燃料電池内に水が溜まり、フラッディングが起こるのを防ぐための排水性などがある。このようなガス拡散層13a及び水分管理層14a、又はガス拡散層13c及び水分管理層14cは、従来、カーボンペーパー等の導電性多孔質基材に、ポリテトラフルオロエチレンなどのフッ素系樹脂を含浸、又はカーボン粉末とフッ素系樹脂とを混合したペーストを塗布することによって、フッ素系樹脂が存在、又はカーボン粉末及びフッ素系樹脂が存在する水分管理層14a、14cを形成するとともに、これらが存在しない領域をガス拡散層13a、13cとしていた。しかしながら、このようにして形成した水分管理層14a、14cは、フッ素系樹脂、又はカーボン粉末及びフッ素系樹脂を導電性多孔質基材に塗布しているとはいえ、導電性多孔質基材としてカーボンペーパー等を使用しており、このカーボンペーパーを構成するカーボン繊維は剛性が高いため、水分管理層14a、14c及び触媒層15a、15cを突き抜けてしまい、固体高分子膜を損傷し、短絡してしまう場合があった。
 本願出願人も、「ガラス繊維にアクリル樹脂及び/又は酢酸ビニル樹脂を含むバインダを付着せしめたガラス不織布からなるガス拡散電極用基材に、カーボンブラックと、ポリテトラフルオロエチレン樹脂又はポリフッ化ビニリデン樹脂とを含む導電性ペーストを被着焼成したガス拡散電極」(特許文献1)を提案したが、従来のカーボンペーパーと同様に、ガラス繊維は剛性が高いため、水分管理層14a、14c及び触媒層15a、15cを突き抜けてしまい、固体高分子膜を損傷し、短絡してしまう場合があった。
特開2008-204945号公報
『燃料電池に関する技術動向調査』(特許庁技術調査課編,平成13年5月31日,<URL>http://www.jpo.go.jp/shiryou/index.htm)
 本発明はこのような状況下でなされたものであり、固体高分子膜を損傷することのないガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池を提供することを目的とする。
 本発明は、
[1]有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維を含有する不織布を備えているガス拡散電極用基材、
[2]前記[1]に記載のガス拡散電極用基材に触媒が担持されているガス拡散電極、
[3]前記[1]に記載のガス拡散電極用基材を備えている膜-電極接合体、
[4]前記[1]に記載のガス拡散電極用基材を備えている固体高分子形燃料電池
に関する。
 前記[1]の本発明の「ガス拡散電極用基材」は、ガス拡散電極用基材を構成する不織布が有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維を含有しており、この導電性繊維は有機樹脂を含んでいることによって柔軟であるため、導電性繊維が固体高分子膜を損傷し、短絡するということがない。
 前記[2]の本発明の「ガス拡散電極」は、前記ガス拡散電極用基材に触媒が担持されているため、短絡しにくく、発電性能の優れる燃料電池を作製することのできるガス拡散電極である。
 前記[3]の本発明の「膜-電極接合体」は、前記ガス拡散電極用基材を備えているため、短絡しにくく、発電性能の優れる燃料電池を作製することのできる膜-電極接合体である。
 前記[4]の本発明の「固体高分子形燃料電池」は、前記ガス拡散電極用基材を備えているため、短絡しにくく、発電性能の優れる燃料電池である。
固体高分子形燃料電池の概略構成を示す模式断面図
 本発明のガス拡散電極用基材(以下、単に「電極基材」と表記することがある)は、有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維を含有する不織布を備えている。この不織布の導電性繊維は、有機樹脂を含んでいることによって柔軟であるため、導電性繊維が固体高分子膜を損傷し、短絡するということがない。なお、本発明の「有機樹脂」に、ダイヤモンド、グラファイト、無定形炭素は含まれない。
 この導電性繊維を構成する有機樹脂は、疎水性有機樹脂であっても、親水性有機樹脂であっても良く、特に限定するものではない。前者の疎水性有機樹脂であると、フッ素系樹脂等の疎水性樹脂を含浸しなくても優れた水の透過性を示し、優れた排水性を示す。他方で、親水性有機樹脂であると、水分を保持することができるため、固体高分子膜を湿潤に保つことができ、十分な発電性能を発揮できる固体高分子形燃料電池を作製することができる。特に、親水性有機樹脂のみからなると、低湿度環境下においても、水分を保持し、固体高分子膜を湿潤に保つことができるため、十分な発電性能を発揮できる固体高分子形燃料電池を作製することができる。
 この「疎水性有機樹脂」とは、水との接触角が90°以上の有機樹脂であり、その例として、フッ素系樹脂、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、及び前記樹脂を構成する各種モノマーの共重合体;ポリオレフィン系樹脂、例えば、ポリエチレン(PE)、ポリプロピレン(PP);ポリエステル系樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)を挙げることができる。また、これらの樹脂は単独で用いることもできるし、2種類以上混合して使用することもできる。これらの中でも特に、フッ素系樹脂は耐熱性、耐薬品性、疎水性が強いため、好適に用いることができる。
 他方、「親水性有機樹脂」とは、水との接触角が90°未満の有機樹脂であり、その例として、セルロース、例えば、レーヨン;ポリアミド系樹脂、例えば、ナイロン6、ナイロン66;ポリアクリロニトリル;酸化アクリル;ポリビニルアルコール系樹脂;アクリル系樹脂、例えば、ポリアクリル酸、ポリメタクリル酸;親水性基(アミド基、カルボキシル基、水酸基、アミノ基、スルホン酸基等)を有する樹脂、例えば、親水性ポリウレタン、ポリビニルピロリドンを挙げることができる。また、これらの樹脂は単独で用いることもできるし、2種類以上混合して使用することもできる。これらの中でもポリアクリロニトリルは耐熱性に優れ、また、固体高分子膜の膨潤によっても潰れにくいため好適である。なお、本発明においては、前記疎水性有機樹脂と親水性有機樹脂とが混合又は複合していることもできる。
 本発明の導電性繊維はガス拡散電極として使用した場合に、電子移動性に優れているように、有機樹脂の少なくとも内部に導電性粒子を含有している。つまり、有機樹脂の外側表面にのみ導電性粒子が存在する状態にあると、有機樹脂成分が抵抗成分となり、導電性に劣ることになるが、本発明においては、有機樹脂の内部に導電性粒子を含有しているため、導電性に優れている。導電性という観点からは、導電性粒子は有機樹脂から露出しているのが好ましい。なお、「内部に導電性粒子を含有する」とは、有機樹脂内に導電性粒子が完全に埋没している状態だけを意味しているのではなく、導電性粒子の一部が有機樹脂から露出した状態も意味する。このような有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維は、例えば、有機樹脂と導電性粒子とを含む紡糸液を紡糸することによって製造することができる。
 この導電性粒子は特に限定するものではないが、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、金属粒子、金属酸化物粒子などを挙げることができる。これらの中でもカーボンブラックは耐薬品性、導電性及び分散性の点から好適に用いられる。この好適であるカーボンブラックの粒径は特に限定するものではないが、平均一次粒径が5nm~200nm、より好ましくは10nm~100nmのものを用いることができる。なお、導電性粒子の平均一次粒径は、脱落しにくく、また、繊維形態を形成しやすいように、後述の導電性繊維の繊維径よりも小さいのが好ましい。
 このような導電性粒子と有機樹脂との質量比は特に限定するものではないが、10~90:90~10であるのが好ましく、20~80:80~20であるのがより好ましく、30~70:70~30であるのが更に好ましく、40~70:60~30であるのが更に好ましい。導電性粒子が10mass%を下回ると導電性が不足しやすく、他方、導電性粒子が90mass%を上回ると繊維形成性が低下する傾向があるためである。
 なお、導電性に優れているように、導電性粒子は不織布の10~90mass%を占めているのが好ましく、20~80mass%を占めているのがより好ましい。
 本発明の導電性繊維の平均繊維径は特に限定するものではないが、10nm~10μmであるのが好ましい。平均繊維径が10μmを上回ると、電極基材における繊維同士の接触点が少なく、導電性が不足しやすい傾向があり、他方、10nmを下回ると、繊維内部に導電性粒子を含有しにくい傾向があるためである。なお、導電性繊維の平均繊維径は導電性粒子が脱落しにくいように、導電性粒子の一次粒子径の5倍以上であるのが好ましい。
 この「平均繊維径」とは、40点における繊維径の算術平均値を意味し、また、「繊維径」とは、顕微鏡写真をもとに計測した値であり、導電性粒子が露出した導電性繊維のみから構成されている場合には、露出した導電性粒子を含めた直径を意味し、導電性粒子が露出した導電性繊維を含有していないか、導電性粒子が露出した導電性繊維を含有していても、導電性粒子が露出していない部分を有する導電性繊維を含んで構成されている場合には、導電性粒子が露出していない部分における直径を意味する。
 本発明の導電性繊維は電子の移動性に優れているように、また、導電性繊維の端部が少なく、固体高分子膜を損傷しにくいように、連続繊維であるのが好ましい。このような導電性連続繊維は、例えば、静電紡糸法、スパンボンド法、メルトブロー法、或いは特開2009-287138号公報に開示されているような、液吐出部から吐出された紡糸液に対してガスを平行に吐出し、紡糸液に1本の直線状に剪断力を作用させて繊維化する方法、により製造することができる。
 本発明の電極基材を構成する不織布における導電性繊維の質量含有割合は電子の移動性に優れるように、10%以上であるのが好ましく、50%以上であるのがより好ましく、70%以上であるのが更に好ましく、90%以上であるのが更に好ましく、導電性繊維のみから構成されているのが最も好ましい。なお、導電性繊維以外の繊維として、例えば、疎水性有機繊維、例えば、フッ素繊維、ポリオレフィン繊維;親水性有機繊維、例えば、アクリル繊維、ナイロン繊維(例えば、ナイロン6、ナイロン66など)を含んでいることができる。
 本発明の電極基材を構成する不織布は導電性繊維以外の繊維を含んでいることができるが、電極基材は導電性に優れているように、電気抵抗率が10Ω・cm以下であるのが好ましく、10Ω・cm以下であるのがより好ましく、10Ω・cm以下であるのが更に好ましい。本発明の「電気抵抗率」は、抵抗率計(三菱化学社製、ロレスタ)を用い、四探針法により測定した値をいう。
 なお、本発明の電極基材を構成する不織布は接着剤を使用することによって結合し、形態を維持させても良いが、導電性に優れるように、導電性繊維を構成する有機樹脂の結合によって形態を維持しているのが好ましい。この好適である有機樹脂の結合として、例えば、繊維同士の絡合、溶媒による可塑化による結合、又は熱による融着による結合を挙げることができる。
 本発明の電極基材を構成する不織布の目付は特に限定するものではないが、排水性、ガス拡散性、取り扱い性及び生産性の点から0.5~200g/mであるのが好ましく、0.5~100g/mであるのがより好ましく、0.5~50g/mであるのが更に好ましい。また、厚さも特に限定するものではないが、1~1000μmであるのが好ましく、1~500μmであるのがより好ましく、1~300μmであるのが更に好ましい。
 本発明における「目付」は、10cm角に切断した試料の質量を測定し、1mの大きさの質量に換算した値をいい、「厚さ」はシックネスゲージ((株)ミツトヨ製:コードNo.547-401:測定力3.5N以下)を用いて測定した値をいう。
 本発明の電極基材を構成する不織布は多孔性であることから、面方向においても、排水性およびガス拡散性に優れ、発電性能の高い燃料電池を作製することができるものであるが、この多孔性は空隙率にして20%以上の多孔性を有するのが好ましい。好ましくは空隙率が30%以上の多孔性を有し、より好ましくは空隙率が50%以上の多孔性を有する。なお、空隙率の上限は特に限定するものではないが、形態安定性の点から99%以下である。また、空隙率P(単位:%)は次の式から得られる値をいう。
 P=100-(Fr1+Fr2+・・+Frn)
 ここで、Frnは不織布を構成する成分nの充填率(単位:%)を示し、次の式から得られる値をいう。
 Frn=(M×Prn/T×SGn)×100
 ここで、Mは不織布の目付(単位:g/cm)、Tは不織布の厚さ(cm)、Prnは不織布における成分n(例えば、有機樹脂、導電性粒子)の存在質量比率、SGnは成分nの比重(単位:g/cm)をそれぞれ意味する。
 本発明の電極基材は、前述のような不織布を備えているが、不織布は多孔性であるため、不織布の空隙に何も充填されていない場合には、面方向においても、排水性およびガス拡散性に優れている。
 なお、不織布の表面及び/又は空隙に、フッ素系樹脂及び/又はカーボンを含んでいる場合には、前者のフッ素系樹脂を含有していることによって、燃料ガスや内部で発生する水分の供給若しくは排出を高めることができ、後者のカーボンを含有していることによって、導電性を高めることができる。
 このフッ素系樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、及び前記樹脂を構成する各種モノマーの共重合体、などを挙げることができる。また、カーボンとしては、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノファイバーなどを挙げることができる。
 本発明の電極基材は、例えば次のようにして製造することができる。
 まず、有機樹脂と導電性粒子とを混合した紡糸液を用いて紡糸して、導電性繊維を形成し、この導電性繊維を直接捕集し、集積することによって、繊維ウエブを形成する。この繊維ウエブ自体が適度に絡合していることによって、取り扱える程度の強度があれば、そのまま繊維ウエブを不織布として使用できるし、強度を付与又は向上させるために、溶媒による可塑化、熱による融着、接着剤による接着等により結合し、不織布とすることもできる。なお、導電性繊維を直接捕集し、集積して形成した繊維ウエブを構成する繊維は連続した長繊維であるのが好ましい。連続した長繊維であることによって、導電性及び強度の点で優れているだけでなく、繊維の端部が少なく、固体高分子膜を損傷しにくいためである。
 なお、繊維ウエブの形成方法としては、例えば、静電紡糸法、スパンボンド法、メルトブロー法、或いは特開2009-287138号公報に開示されているような、液吐出部から吐出された紡糸液に対してガスを平行に吐出し、紡糸液に1本の直線状に剪断力を作用させて繊維化する方法、を挙げることができる。これらの中でも静電紡糸法又は特開2009-287138号公報に開示の方法によれば、繊維径の小さい導電性繊維を紡糸できることから、薄い不織布を製造することができ、結果として燃料電池の抵抗を下げることができ、また、燃料電池の体積を小さくすることができるため好適である。なお、静電紡糸法又は特開2009-287138号公報に開示の方法のように、溶媒に有機樹脂を溶解させた溶液に導電性粒子を混合する場合、溶媒として、紡糸時に揮散しにくいものを使用し、繊維ウエブ又は不織布を形成した後に、溶媒置換により紡糸溶媒を除去すると、導電性繊維同士が可塑化結合した状態になりやすく、結果として導電性の高い不織布を製造することができ、また、電極基材が緻密になり、燃料電池内での接触抵抗が低くなりやすいため好適である。
 なお、導電性繊維を連続繊維として巻き取り、次いで導電性繊維を所望繊維長に切断して短繊維とした後、公知の乾式法又は湿式法により繊維ウエブを形成し、溶媒による可塑化、熱による融着、接着剤による接着等により結合し、不織布とすることもできる。しかしながら、前述の通り、不織布を構成する導電性繊維は連続した繊維であるのが好ましいため、連続した導電性繊維を直接捕集し、集積して形成した繊維ウエブに由来する不織布であるのが好ましい。
 なお、不織布を構成する有機樹脂が酸化アクリルである場合、アクリル樹脂と導電性粒子とを混合した紡糸液を用いて紡糸して、導電性繊維を形成し、この導電性繊維を含む繊維ウエブを、直接的に又は間接的に形成した後、空気中で温度200~300℃で加熱することによって、アクリル樹脂を酸化アクリルとして、不織布の導電性を更に高めることもできる。或いは、アクリル樹脂と導電性粒子とを混合した紡糸液を用いて紡糸した導電性繊維を、空気中、温度200~300℃で加熱することによって、アクリル樹脂を酸化アクリルとした後に、酸化アクリルと導電性粒子からなる導電性繊維を使用して不織布を形成することもできる。
 なお、導電性繊維を構成する有機樹脂が350℃を超えるような融点を有する耐熱性有機樹脂である場合、不織布をポリテトラフルオロエチレンディスパージョンなどのフッ素系ディスパージョンに浸漬して付与した後、温度300~350℃で焼結することで、撥水性を高めたガス拡散電極用基材を形成することもできる。
 本発明のガス拡散電極は、上述の電極基材に触媒が担持されているため、短絡しにくく、発電性能の優れる燃料電池を作製することができる。また、本発明のガス拡散電極は、導電性繊維表面に触媒が担持され、触媒同士の接触による電子伝導だけではなく、導電性繊維による電子伝導パスも形成されているため、電子伝導パスから孤立した触媒が少ない。更に、電極基材は不織布構造の多孔体で、排水性およびガス拡散性に優れることから、三相界面(ガス、触媒、電解質樹脂が会合する反応場)へガスを十分に安定して供給することができる。これらの理由で、効率的に触媒を利用でき、触媒量を少なくできるという効果を奏する。
 本発明のガス拡散電極は上述のような電極基材を備えていること以外は、従来のガス拡散電極と全く同様の構造を有する。例えば、触媒としては、白金、白金合金、パラジウム、パラジウム合金、チタン、マンガン、マグネシウム、ランタン、バナジウム、ジルコニウム、イリジウム、ロジウム、ルテニウム、金、ニッケル-ランタン合金、チタン-鉄合金などを挙げることができ、これらから選ばれる1種類以上の触媒を担持していることができる。
 なお、触媒以外にも、電子伝導体及びプロトン伝導体を含んでいるのが好ましく、電子伝導体として、カーボンブラック等の導電性繊維に含まれている導電性粒子と同様の導電性粒子が好適であり、触媒はこの導電性粒子に担持されていても良い。また、プロトン伝導体として、イオン交換樹脂が好適である。
 本発明のガス拡散電極は、例えば、次の方法で作製できる。
 まず、エチルアルコール、プロピルアルコール、ブチルアルコール、エチレングリコールジメチルエーテルなどからなる単一あるいは混合溶媒中に、触媒(例えば、白金などの触媒を担持したカーボン粉末)を加えて混合し、これにイオン交換樹脂溶液を加え、超音波分散等で均一に混合して触媒分散懸濁液とする。そして、前述のような電極基材に、前記触媒分散懸濁液をコーティング、或いは散布し、これを乾燥して、ガス拡散電極を製造することができる。
 本発明の膜-電極接合体は前述のようなガス拡散電極用基材を備えているため、短絡しにくく、発電性能の優れる燃料電池を作製することのできる膜-電極接合体である。本発明の膜-電極接合体は前述のようなガス拡散電極用基材を備えていること以外は、従来の膜-電極接合体と全く同様であることができる。このような膜-電極接合体は、例えば、一対のガス拡散電極のそれぞれの触媒担持面の間に固体高分子膜を挟み、熱プレスすることによって接合し、製造できる。また、前述のような触媒分散懸濁液を支持体に塗布して触媒層を形成した後、この触媒層を固体高分子膜に転写し、その後、触媒層に前述のようなガス拡散電極用基材を積層し、熱プレスする方法によっても製造できる。
 なお、固体高分子膜としては、例えば、パーフルオロカーボンスルホン酸系樹脂膜、スルホン化芳香族炭化水素系樹脂膜、アルキルスルホン化芳香族炭化水素系樹脂膜などを用いることができる。
 本発明の固体高分子形燃料電池は前述のようなガス拡散電極用基材を備えているため、短絡しにくく、発電性能の優れる燃料電池である。本発明の燃料電池は前述のようなガス拡散電極用基材を備えていること以外は、従来の燃料電池と全く同様であることができる。例えば、前述のような膜-電極接合体を1対のバイポーラプレートで挟んだセル単位を複数積層した構造からなり、例えば、セル単位を複数積層し、固定して製造できる。
 なお、バイポーラプレートとしては、導電性が高く、ガスを透過せず、ガス拡散電極にガスを供給できる流路を有するものであれば良く、特に限定するものではないが、例えば、カーボン成形材料、カーボン-樹脂複合材料、金属材料などを用いることができる。
 以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。
 <第1紡糸溶液の調製>
 ポリアクリロニトリル(重量平均分子量20万)をN,N-ジメチルホルムアミド(DMF)に溶解させた溶液に、導電性粒子としてカーボンブラック[デンカブラック粒状品、電気化学工業(株)製、平均一次粒子径:35nm]を混合し、撹拌した後、更にDMFを加えて希釈し、カーボンブラックを分散させ、カーボンブラックとポリアクリロニトリルの固形質量比が40:60で、固形分濃度が20mass%の第1紡糸溶液を調製した。
 <第2紡糸溶液の調製>
 カーボンブラックとポリアクリロニトリルの固形分質量比が50:50で、固形分濃度が25mass%であること以外は第1紡糸溶液と同様にして、第2紡糸溶液を調製した。
 <第3紡糸溶液の調製>
 カーボンブラックとポリアクリロニトリルの固形分質量比が60:40で、固形分濃度が25mass%であること以外は第1紡糸溶液と同様にして、第3紡糸溶液を調製した。
 <第4紡糸溶液の調製>
 カーボンブラックとポリアクリロニトリルの固形分質量比が30:70で、固形分濃度が25mass%であること以外は第1紡糸溶液と同様にして、第4紡糸溶液を調製した。
 <第5紡糸溶液の調製>
 ポリエーテルスルホンをジメチルアセトアミド(DMAc)に溶解させた溶液に、導電性粒子としてカーボンブラック[デンカブラック粒状品、電気化学工業(株)製、平均一次粒子径:35nm]を混合し、撹拌した後、更にDMAcを加えて希釈し、カーボンブラックを分散させ、カーボンブラックとポリエーテルスルホンの固形質量比が40:60で、固形分濃度が25mass%の第5紡糸溶液を調製した。
 (実施例1)
 <ガス拡散電極用基材の作製>
 前記第1紡糸溶液を静電紡糸法により紡糸して得た導電性繊維を、対向電極であるステンレスドラム上に、直接、集積して、連続した導電性繊維のみからなる不織布(ガス拡散電極用基材、目付18g/m、厚さ90μm、空隙率85%、平均繊維径:700nm、電気抵抗率:1.09×10Ω・cm)を作製した。この導電性繊維を構成するカーボンブラックは一部が繊維表面から露出した状態にあり、繊維同士は集積時に結合した状態にあった。なお、静電紡糸条件は次の通りとした。
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:1g/時間
 ノズル先端とステンレスドラムとの距離:5cm
 印加電圧:10kV
 温度/湿度:25℃/40%RH
 (実施例2)
 ノズル先端とステンレスドラムとの距離を10cmとしたこと以外は実施例1と同じ静電紡糸法により、前記第2紡糸溶液を紡糸して得た導電性繊維を、対向電極であるステンレスドラム上に、直接、集積して、連続した導電性繊維のみからなる不織布(ガス拡散電極用基材、目付20g/m、厚さ140μm、空隙率92%、平均繊維径:600nm、電気抵抗率:2.3×10Ω・cm)を作製した。この導電性繊維を構成するカーボンブラックは一部が繊維表面から露出した状態にあり、繊維同士は集積時に結合した状態にあった。
 (実施例3)
 第3紡糸溶液を用いたこと以外は実施例2と同様にして、連続した導電性繊維のみからなる不織布(ガス拡散電極用基材、目付20g/m、厚さ140μm、空隙率92%、平均繊維径:450nm、電気抵抗率:2.3×10Ω・cm)を作製した。この導電性繊維を構成するカーボンブラックは一部が繊維表面から露出した状態にあり、繊維同士は集積時に結合した状態にあった。
 (実施例4)
 第4紡糸溶液を用いたこと以外は実施例2と同様にして、連続した導電性繊維のみからなる不織布(ガス拡散電極用基材、目付20g/m、厚さ175μm、空隙率93%、平均繊維径:800nm、電気抵抗率:3.4×10Ω・cm)を作製した。この導電性繊維を構成するカーボンブラックは一部が繊維表面から露出した状態にあり、繊維同士は集積時に結合した状態にあった。
 (実施例5)
 前記第5紡糸溶液を静電紡糸法により紡糸して得た導電性繊維を、対向電極であるステンレスドラム上に、直接、集積して、連続した導電性繊維のみからなる不織布(ガス拡散電極用基材、目付20g/m、厚さ100μm、空隙率87%、平均繊維径:500nm、電気抵抗率:2.1×10Ω・cm)を作製した。この導電性繊維を構成するカーボンブラックは一部が繊維表面から露出した状態にあり、繊維同士は集積時に結合した状態にあった。なお、静電紡糸条件は次の通りとした。
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:1g/時間
 ノズル先端とステンレスドラムとの距離:10cm
 印加電圧:10kV
 温度/湿度:25℃/30%RH
 (比較例)
 ガス拡散電極基材として、カーボンペーパー[TGP-H-030、東レ社製、厚さ:110μm)を用意した。
 <固体高分子膜への突き刺し性評価>
 エチレングリコールジメチルエーテル10.4gに対して、市販の白金担持炭素粒子(石福金属(株)製、炭素に対する白金担持量40質量%)0.8gを加え、超音波処理によって分散させた後、電解質樹脂溶液として、市販の5質量%ナフィオン溶液(米国シグマ・アルドリッチ社製、商品名)4.0gを加え、更に超音波処理により分散させ、更に攪拌機で攪拌して、触媒ペーストを調製した。
 次いで、この触媒ペーストを25cmの支持体(商品名:ナフロンPTFEテープ、ニチアス(株)製、厚さ0.1mm)に塗布し、熱風乾燥機によって60℃で乾燥し、当該支持体に対する白金担持量が0.4mg/cmの触媒層を作製した。
 他方、固体高分子膜として、Nafion NRE-212CS(商品名、米国デュポン社製)を用意した。この固体高分子膜の両面に、前記触媒層を夫々転写して積層した後、温度135℃、圧力2.6MPa、時間10分間の条件でホットプレスにより接合し、電極面積25cmの固体高分子膜-触媒層接合体を作製した。
 作製した高分子膜-触媒層接合体を、実施例1~5又は比較例のガス拡散電極基材(25cm)で挟持した状態で、更にカーボンプレートで挟み、積層方向に2MPaの圧力で締結し、セル単位を作製した。
 次いで、このセル単位に対して0.2Vの電圧を印加し、リーク電流を測定した。この結果は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明のガス拡散電極用基材を用いたセル単位はリーク電流が非常に低く、ガス拡散電極用基材を構成する導電性繊維の突き刺しによる、固体高分子膜への損傷が非常に小さいことがわかった。
 <発電試験>
 前記<固体高分子膜への突き刺し性評価>と同様にして作製した高分子膜-触媒層接合体の両面に、実施例1又は実施例4のガス拡散電極用基材を積層した後、ホットプレスによって、膜-電極接合体(MEA)をそれぞれ作製した。
 その後、締め付け圧1.5N・mで固体高分子形燃料電池セル『As-510-C25-1H』(商品名、エヌエフ回路設計ブロック(株)製)にそれぞれ組み付け、それぞれの発電性能及びセル抵抗を評価した。この標準セルは、バイポーラプレートを含み、膜-電極接合体(MEA)の評価試験に用いるものである。発電は燃料極側に水素ガス利用率70%、空気極側に空気ガス利用率45%を供給し、セル温度は80℃、バブラー温度80℃のフル加湿条件で、電位-電流曲線を測定した。また、2.0A/cm電流密度時のアノード側とカソード側のバイポーラプレート間の、抵抗値を測定した。この結果は表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000002
 セル抵抗はガス拡散電極用基材の抵抗だけではなく、固体高分子膜、セパレータ、及びその他の電子伝導材料の合計値を示すが、発電をフル加湿下で行ったため、燃料電池で抵抗の多くを占める固体高分子膜の抵抗が低くなる。そのため、セル抵抗はガス拡散電極用基材の違いを反映する。
 前記表2から、実施例1のガス拡散電極用基材の方が低いセル抵抗を示している。これは、実施例1における導電性粒子であるカーボンブラック量が40mass%と、実施例4のガス拡散電極用基材よりも多いためであると考えられた。
 本発明の電極基材は固体高分子膜を損傷しないものであるため、固体高分子形燃料電池用途に好適に使用できる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。
 11a (燃料極側)バイポーラプレート
 11c (空気極側)バイポーラプレート
 13a (燃料極側)ガス拡散層
 13c (空気極側)ガス拡散層
 14a (燃料極側)水分管理層
 14c (空気極側)水分管理層
 15a (燃料極側)触媒層
 15c (空気極側)触媒層
 17a 燃料極(ガス拡散電極)
 17c 空気極(ガス拡散電極)
 19 固体高分子膜

Claims (4)

  1.  有機樹脂の少なくとも内部に導電性粒子を含有する導電性繊維を含有する不織布を備えているガス拡散電極用基材。
  2.  請求項1に記載のガス拡散電極用基材に触媒が担持されているガス拡散電極。
  3.  請求項1に記載のガス拡散電極用基材を備えている膜-電極接合体。
  4.  請求項1に記載のガス拡散電極用基材を備えている固体高分子形燃料電池。
PCT/JP2013/069083 2012-07-13 2013-07-12 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池 WO2014010715A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524886A JP6209515B2 (ja) 2012-07-13 2013-07-12 ガス拡散電極用基材、ガス拡散電極、膜−電極接合体及び固体高分子形燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-158122 2012-07-13
JP2012158122 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010715A1 true WO2014010715A1 (ja) 2014-01-16

Family

ID=49916154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069083 WO2014010715A1 (ja) 2012-07-13 2013-07-12 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池

Country Status (2)

Country Link
JP (1) JP6209515B2 (ja)
WO (1) WO2014010715A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185491A1 (ja) 2013-05-15 2014-11-20 日本バイリーン株式会社 ガス拡散電極用基材
WO2015146984A1 (ja) * 2014-03-27 2015-10-01 日本バイリーン株式会社 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
JP2016169450A (ja) * 2015-03-12 2016-09-23 日本バイリーン株式会社 導電性繊維シ−ト、ガス拡散電極、膜−電極接合体、固体高分子形燃料電池、及び導電性繊維シートの製造方法
US20210313588A1 (en) * 2016-11-09 2021-10-07 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978716B2 (en) * 2018-06-07 2021-04-13 Panasonic Intellectual Property Management Co., Ltd. Gas diffusion layer for fuel battery, membrane electrode assembly, and fuel battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204114A (ja) * 1998-01-20 1999-07-30 Daikin Ind Ltd 電極材料
JP2004281363A (ja) * 2003-01-21 2004-10-07 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用ガス拡散電極、その製造方法及びそれを用いた固体高分子型燃料電池
JP2008210725A (ja) * 2007-02-28 2008-09-11 Tomoegawa Paper Co Ltd ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP2010153222A (ja) * 2008-12-25 2010-07-08 Noritake Co Ltd 柔軟型ガス拡散電極基材および膜−電極接合体
JP2011028849A (ja) * 2009-07-21 2011-02-10 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用ガス拡散電極及びその製造方法
JP2012199225A (ja) * 2011-02-07 2012-10-18 Japan Vilene Co Ltd 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2013101771A (ja) * 2011-11-07 2013-05-23 Honda Motor Co Ltd 燃料電池用電極

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204114A (ja) * 1998-01-20 1999-07-30 Daikin Ind Ltd 電極材料
JP2004281363A (ja) * 2003-01-21 2004-10-07 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用ガス拡散電極、その製造方法及びそれを用いた固体高分子型燃料電池
JP2008210725A (ja) * 2007-02-28 2008-09-11 Tomoegawa Paper Co Ltd ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP2010153222A (ja) * 2008-12-25 2010-07-08 Noritake Co Ltd 柔軟型ガス拡散電極基材および膜−電極接合体
JP2011028849A (ja) * 2009-07-21 2011-02-10 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用ガス拡散電極及びその製造方法
JP2012199225A (ja) * 2011-02-07 2012-10-18 Japan Vilene Co Ltd 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2013101771A (ja) * 2011-11-07 2013-05-23 Honda Motor Co Ltd 燃料電池用電極

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185491A1 (ja) 2013-05-15 2014-11-20 日本バイリーン株式会社 ガス拡散電極用基材
US9685663B2 (en) 2013-05-15 2017-06-20 Japan Vilene Company, Ltd. Base material for gas diffusion electrode
WO2015146984A1 (ja) * 2014-03-27 2015-10-01 日本バイリーン株式会社 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
JP2016169450A (ja) * 2015-03-12 2016-09-23 日本バイリーン株式会社 導電性繊維シ−ト、ガス拡散電極、膜−電極接合体、固体高分子形燃料電池、及び導電性繊維シートの製造方法
US20210313588A1 (en) * 2016-11-09 2021-10-07 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
US11735747B2 (en) * 2016-11-09 2023-08-22 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire

Also Published As

Publication number Publication date
JP6209515B2 (ja) 2017-10-04
JPWO2014010715A1 (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6121007B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2019526918A (ja) 膜−電極アセンブリー、その製造方法、そして、これを含む燃料電池
JP2008204945A (ja) ガス拡散電極用基材、ガス拡散電極及びその製造方法、並びに燃料電池
JP6209515B2 (ja) ガス拡散電極用基材、ガス拡散電極、膜−電極接合体及び固体高分子形燃料電池
JP6251737B2 (ja) ガス拡散電極用基材
JP5193478B2 (ja) ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP5601779B2 (ja) ガス拡散層、膜−電極接合体及び燃料電池
JP5328407B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP5875957B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP5430486B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
WO2015068745A1 (ja) ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池
JP6009252B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2015022888A (ja) ガス拡散電極用基材、ガス拡散電極、膜−電極接合体及び固体高分子形燃料電池
JP2015079639A (ja) 電解質膜・電極構造体
JP6193669B2 (ja) ガス拡散電極用基材、ガス拡散電極、膜−電極接合体及び固体高分子形燃料電池
JP6775316B2 (ja) 膜−電極接合体及び固体高分子形燃料電池
JP6775346B2 (ja) 膜−導電性多孔シート接合体及び固体高分子形燃料電池
JP2015099716A (ja) ガス拡散電極用基材、ガス拡散電極、膜−電極接合体及び固体高分子形燃料電池
KR102666467B1 (ko) 연료전지용 기체확산층 및 그 제조방법
JP2012074319A (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2009037932A (ja) 固体高分子型燃料電池用ガス拡散電極、固体高分子型燃料電池用膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP2009199954A (ja) 固体高分子型燃料電池用ガス拡散電極、それを用いた膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816928

Country of ref document: EP

Kind code of ref document: A1