WO2014007192A1 - 細胞展開用マイクロチャンバーチップ - Google Patents

細胞展開用マイクロチャンバーチップ Download PDF

Info

Publication number
WO2014007192A1
WO2014007192A1 PCT/JP2013/067980 JP2013067980W WO2014007192A1 WO 2014007192 A1 WO2014007192 A1 WO 2014007192A1 JP 2013067980 W JP2013067980 W JP 2013067980W WO 2014007192 A1 WO2014007192 A1 WO 2014007192A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchamber
cells
chip
blocking
cell
Prior art date
Application number
PCT/JP2013/067980
Other languages
English (en)
French (fr)
Inventor
久美子 星
淳吾 荒木
山村 昌平
聖基 八代
正俊 片岡
Original Assignee
コニカミノルタ株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49881948&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014007192(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by コニカミノルタ株式会社, 独立行政法人産業技術総合研究所 filed Critical コニカミノルタ株式会社
Priority to JP2014523727A priority Critical patent/JP6238208B2/ja
Priority to US14/411,202 priority patent/US20150203804A1/en
Priority to EP13813972.0A priority patent/EP2871230A4/en
Publication of WO2014007192A1 publication Critical patent/WO2014007192A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Definitions

  • the present invention relates to a microchamber chip for cell deployment in which the top surface of the microchamber chip and the inner wall surface of the microchamber are subjected to blocking treatment.
  • Circulating tumor cells [CTC], vascular endothelial cells, vascular endothelial progenitor cells, various stem cells, etc. (collectively referred to herein as “rare cells”) are cells that are very rarely present in whole blood depending on the disease state. is there. Despite the obvious clinical utility of rare cell detection, it is extremely difficult to detect. In recent years, various cell separation techniques have been applied to attempt detection and commercialization. In any case, the effectiveness of detection results was evaluated because of the rarity of the target (rare cell loss or unwanted cell contamination). It is important to
  • a cell suspension such as a blood-derived sample is expanded in a flat shape, and then all the expanded cells are analyzed. Thus, it can be determined whether or not the target cell exists in the cell suspension.
  • the cell suspension When the cell suspension is spread in a flat shape, for example, when a chemical microdevice disclosed in Patent Document 1 is used as a flat surface, it is in a fine recess (microwell or microchamber) formed on the surface of the device.
  • the cells can be stored at high density, and the cells can be detected for each of the recesses. In addition, cells can be collected from each of the recesses and used for further examination.
  • the chemical microdevice of Patent Document 1 can be easily manufactured by injection molding using a plastic material that generates little fluorescence by excitation light. However, when cells are expanded using this chemical microdevice, the cells are likely to be adsorbed on the surface other than the recesses, so that the expanded cells cannot be sufficiently collected in the recesses and rare cells may be lost.
  • Patent Document 2 discloses a biochip having fine holes that can individually fix target substances one by one.
  • the same or different immobilization substances may be bonded to the side surface (wall portion) and the bottom surface (bottom portion) of the fine hole, respectively, or the immobilization material may be attached to either the side surface or the bottom surface. It is described that may be bonded.
  • Patent Document 2 describes that when the target substance is “lymphocyte cells expressing the relevant antigen recognition region”, “various antibodies” may be selected as the immobilization substance. Yes.
  • the biochip of Patent Document 2 can immobilize cells of the same type one by one in a microscopic hole, but blood that consists of a huge population with different types and sizes. It is not intended to detect rare cells from. Even if an immobilization substance (for example, an antibody against an antigen specifically expressed on the surface of a rare cell) corresponding to a rare cell is bound to the side surface, the bottom surface, or both of the micropore, the micropore is still a rare cell. If the cells are filled with other cells, rare cells cannot be captured by the immobilized substance. Moreover, there is not always an appropriate immobilization substance corresponding to the target rare cell.
  • the advantage of this method is that cells are developed on a microchamber chip for cell development, and almost all cells are stored in the microchamber, and then rare cells are detected by microscopic observation.
  • the present invention suppresses non-specific adsorption of cells to a surface other than a microchamber, and can store, hold and observe cells without containing rare cells from those containing a large amount of cells such as blood.
  • An object is to provide a microchamber chip for deployment.
  • the present inventors When the microchamber chip surface and a part or all of the inner wall surface of the microchamber are covered with a blocking agent capable of suppressing nonspecific adsorption of cells, the present inventors have various and large amounts contained in blood and the like. When the cells are spread on the chip, the cells are easily stored and held in the microchamber and the cells are not easily adsorbed on the inner wall of the microchamber. The present inventors have found that it is easy to observe below and have completed the present invention.
  • the microchamber chip for cell deployment (41) and (42) of the present invention is a microchamber (30) that can store and hold one or more cells.
  • the upper surface (11) of the microchamber chip (20) formed on the upper surface (11) of the substrate (10) and the inner wall surface (31) of the microchamber (30) is coated with a blocking agent (50) that can suppress non-specific adsorption.
  • the cell expansion microchamber chips (41) and (42) of the present invention can store almost all the cells in the microchamber (30) when cells are expanded using the chip.
  • the cell expansion microchamber chips (41) and (42) are subjected to cell non-adhesive surface treatment (also referred to as “blocking treatment”) up to the inner wall surface of the microchamber (30). Since it is easy to accumulate on the bottom surface without adsorbing to the inner wall of 30), cell observation in a bright field under a microscope becomes easy.
  • the bottom surface of the microchamber (30) is not subjected to blocking treatment, and the cells are easily adsorbed. It is extremely difficult to escape by liquid operation. Therefore, the loss of rare cells can be prevented and the reliability of cell observation can be improved without using an immobilizing substance such as an antibody that recognizes cell surface antigens.
  • the microchamber chips (41) and (42) for cell deployment of the present invention have an upper surface (11) with respect to the substrate (10) (that is, the microchamber chip (20)) after the microchamber (30) is formed. ) And the inner wall surface (31) of the microchamber (30) can be easily manufactured by blocking treatment. That is, according to the present invention, the blocking process for the surface of the microchamber chip (20) other than the bottom surface (32) of the microchamber (30) can be produced in only one step.
  • FIG. 1 (A) and 1 (B) are diagrams schematically showing a longitudinal sectional view of a typical microchamber (30) included in the microchamber chip for cell deployment of the present invention, respectively.
  • FIG. 5 schematically shows a longitudinal cross-sectional view of a microchamber chip for cell deployment (42) obtained by one embodiment of the method for producing a microchamber chip for cell deployment of the present invention, ) Represents that a part or all of the inner wall surface (31) is coated with the blocking agent (50).
  • FIG. 2 is a diagram schematically showing steps (a) and (b) in one embodiment of the method for producing a typical cell expansion microchamber chip (41) of the present invention.
  • FIG. 3A shows step (b-1) of step (b) in one embodiment of the method for producing a microchamber chip for cell deployment of the present invention
  • FIG. 3B shows step (b) in one embodiment of the production method
  • (B-2) of FIG. 3 (c) shows step (b-3) of step (b) in one embodiment of the production method
  • FIG. 3 (D) shows step (b) of one embodiment of the production method.
  • the arrow in FIG. 3 (A) indicates the direction in which the blocking solution (51) is fed, and the arrow in FIG. 3 (B) indicates the direction in which the stamp (70) is impressed on the microchamber chip (20). Note that the blocking solution (51) is infiltrated into the seal (71) in FIG. 3 (B).
  • FIG. 4 (A) is a diagram illustrating FIG. 3 (A) in more detail.
  • FIG. 4 (B) is a top plate (60) above the microchamber chip (20) in FIG. 3 (A).
  • FIG. 5 is a view showing a mode in which a flow path (80) is formed by arranging
  • FIG. 5 is a schematic view of the cell deployment microchamber (41) according to the present invention as viewed from above, and shows a case where the opening of the microchamber (30) is circular (A) and a rectangle (B). Show. 6 (A) and 6 (B) both show the results of Example 1.
  • FIG. 5 is a diagram illustrating FIG. 3 (A) in more detail.
  • FIG. 4 (B) is a top plate (60) above the microchamber chip (20) in FIG. 3 (A).
  • FIG. 5 is a view showing a mode in which a flow path (80) is formed by arranging
  • FIG. 5 is a schematic view of the cell deployment microchamber (41) according
  • each of the microchamber chips (41) and (42) for cell deployment according to the present invention is a ⁇ microchamber '' (30) capable of storing and holding one or more cells as ⁇ substrate '' 10)
  • the “upper surface” (11) of the “microchamber chip” (20) formed on the “upper surface” (11) and the “inner wall surface” (31) of the microchamber (30) It is characterized by being coated with a “blocking agent” (50) capable of suppressing nonspecific adsorption to the upper surface (11).
  • the coating with the blocking agent (50) is preferably continuous from the upper surface (11) of the substrate (10) to the inner wall surface (31) of the microchamber (30).
  • the inner wall surface (31) refers to a portion (side surface) excluding the bottom surface (32) among the surfaces constituting the microchamber (30).
  • the inner wall surface (31 ) In addition to the upper surface (11) of the substrate (10), for example, as shown in FIG. 1 (A), the inner wall surface (31 ), That is, an aspect in which the edge is covered with the blocking agent (50), or an aspect in which the inner wall surface (31) is entirely covered with the blocking agent (50) as shown in FIG. 1 (B).
  • the present invention includes. That is, the blocking agent (50) may cover the entire inner wall surface (31) of the microchamber (30) from the opening to the bottom (FIG. 1 (B)), or from the opening to the bottom. It may be partially covered up to the middle of (Fig. 1 (A)).
  • the bottom surface (32) is not covered with the blocking agent (50) so that the cells once stored in the microchamber (30) do not escape by the subsequent liquid feeding.
  • the microchamber chip (42) for cell deployment shown in FIG. 1 (C) is one in which the microchamber (30) includes both the embodiments shown in FIGS. 1 (A) and (B).
  • the microchamber chip for cell deployment (41) shown in Fig. 1 is a typical example, with the microchamber (30) having only the embodiment shown in Fig. 1 (A).
  • the expanded cells become the inner wall surface (31) of the microchamber (30), particularly Since it does not adsorb to the edge, it is preferable that the cells held on the edge and the bottom face (32) of the microchamber (30) can be observed without overlapping when observing under a microscope.
  • the method for producing a microchamber chip for cell deployment (41) of the present invention preferably includes the steps (a) and (b) described later.
  • Step (a) is a step of manufacturing the microchamber chip (20) by forming the microchamber (30) on the upper surface (11) of the substrate (10).
  • the formation method of the microchamber is not particularly limited, and a conventionally known method can be used.
  • a method of forming using a mold having a convex portion corresponding to the shape of the microchamber, a silicone resin, or the like examples include a method of injection molding using a material, a method of forming a microchamber by directly processing a substrate made of a polymer such as a thermoplastic resin, a metal, glass or the like (for example, microfabrication by lithography, excavation, LIGA process, etc.). It is done. From the viewpoint of industrial mass production, a method of molding using a mold is preferred.
  • the same material as a conventionally known microplate or the like can be used, and a material that can be molded using a mold may be used.
  • a material that can be molded using a mold may be used.
  • polystyrene, polyethylene, polypropylene, polyamide, polycarbonate examples thereof include polymers such as polydimethylsiloxane [PDMS], polymethyl methacrylate [PMMA], and cyclic olefin copolymer [COC].
  • the substrate may be a combination of a plurality of materials in which a substrate made of metal, glass, quartz glass, or the like is bonded to a polymer (molded).
  • the contact angle between water and the substrate is measured by dropping water onto the substrate with a dynamic contact angle meter (“FTA125” manufactured by FTA), it is preferably 20 degrees or more and 80 degrees or less, more preferably 30 degrees or more and 70 degrees. Less than or equal to degrees.
  • the contact angle of 20 degrees or more means that the hydrophilicity of the substrate to be contacted with a blocking treatment liquid (in many cases, an aqueous solution) described later is not so strong.
  • the blocking solution (51) is preferable because it does not excessively enter the inside of the micro chamber (30) and cover the bottom surface (32).
  • the microchamber in the present invention refers to a concave fine hole (microwell) that can “store” and “hold” one or more cells.
  • “storage” means that the cells enter (accommodate) when the cell suspension is added to the surface of the microchamber chip for cell deployment of the present invention
  • “holding” means It means that cells stored in the microchamber do not come out of the microchamber due to a staining solution or a washing solution added to the surface of the microchamber chip for cell development.
  • the opening of the microchamber (30) When the opening of the microchamber (30) is circular, its diameter may be about 500 ⁇ m, and since the cell holding power of the microchamber (30) is particularly strong, it is preferably 20 ⁇ m or more and 150 ⁇ m or less. . When the opening of the microchamber (30) is other than a circle, it is preferable to have an area equivalent to a circle having a diameter in the above range.
  • the depth of the microchamber (30) is preferably varied depending on the diameter of the microchamber (30), and those skilled in the art will be able to store about 10 to 15 cells per chamber.
  • the thickness can be determined as appropriate.
  • the depth of the microchamber (30) is not less than 20 ⁇ m and not more than 100 ⁇ m.
  • the blocking treatment liquid can maintain sufficient surface tension, and the microchamber (30 ) Can be prevented from reaching the bottom surface (32).
  • the shape of the opening (horizontal cross section) of the microchamber (30) is typically circular as shown in FIG. 5 (A), but may be rectangular as shown in FIG. 5 (B). There is no particular limitation.
  • the shape of the microchamber (30) is typically an inverted frustoconical shape (the longitudinal section shows a trapezoid as shown in FIGS. 1A and 1B) or a cylindrical shape (the longitudinal section is as shown in FIG. 3).
  • the area of the opening of the microchamber (30) is preferably larger than or equal to the area of the bottom surface (32), and the shape of such a microchamber (30) is other than the inverted frustoconical shape and the cylindrical shape.
  • an inverted hemispherical shape, an inverted pyramid shape (an inverted polygonal cone such as an inverted quadrangular pyramid or an inverted hexagonal cone), a rectangular parallelepiped shape, and the like can be given.
  • the microchamber (30) has no bottom (holds the cells on the side wall around the bottom) or the bottom for the purpose of removing the solvent of the cell suspension, etc., as long as it can hold the cells. However, from the viewpoint of reducing the risk of losing rare cells as much as possible, it is preferably bottomed (that is, not a through hole).
  • the bottom surface (32) of the microchamber (30) is typically flat, but may be a curved surface.
  • the microchamber chip (20) obtained in the step (a) is obtained by forming the microchamber (30) on the upper surface (11) of the substrate (10).
  • a blocking agent in the following blocking treatment step (b)
  • a blocking effect is brought about in this step (a) of forming the microchamber (30).
  • a blocking treatment can be performed after performing a surface treatment that does not inhibit the effects of the present invention, for example, a surface treatment that enhances cell adhesion of the substrate, such as UV ozone treatment.
  • Blocking step (b) Step (b), by contacting the blocking treatment liquid (51) containing the blocking agent (50) against the upper surface (11) of the microchamber chip (20) obtained in step (a), In this step, the upper surface (11) of the substrate (10) and the inner wall surface (a part or all) of the microchamber (30) are coated with a blocking agent (50).
  • Specific examples of the embodiment of the blocking treatment step (b) include, for example, the following four methods (b-1) to (b-4) described below.
  • the blocking agent (50) refers to a substance that covers the upper surface (11) of the substrate (10) and thereby suppresses nonspecific adsorption of cells thereto.
  • the blocking treatment liquid (51) refers to a solution prepared by diluting the blocking agent (50) with an appropriate solvent, which is used when the blocking treatment step (b) of the present invention is performed. 50) is contained (for example, including modes such as dissolution and dispersion).
  • blocking agent known substances can be used.
  • casein skim milk, albumin (including bovine serum albumin [BSA]), hydrophilic polymers such as polyethylene glycol, phospholipids, ethylenediamine and acetonitrile
  • BSA bovine serum albumin
  • hydrophilic polymers such as polyethylene glycol, phospholipids, ethylenediamine and acetonitrile
  • low molecular weight compounds such as, may be used alone or in combination of two or more.
  • the solvent for diluting the blocking agent may be selected appropriately according to the blocking agent.
  • a solvent compatible with a biological substance similar to the solvent in which cells to be spread are suspended is preferable.
  • PBS phosphate buffered saline
  • HEPES HEPES
  • MEM fetal calf serum
  • RPMI phosphate buffer and the like.
  • (Velocity control method (b-1)) (b-1) is also referred to as a flow rate control method.
  • the blocking solution (51) for example, BSA
  • the blocking solution is applied from one end of the upper surface (11) of the substrate (10). Solution).
  • the top plate (60) is placed on the upper surface (11) side of the substrate (10) so as to be parallel to the microchamber chip (20).
  • the “flow path” (80) is formed by providing the liquid and the blocking treatment liquid (51) is fed from one end of the flow path.
  • such an embodiment may be referred to as a “flow path flow rate control method”.
  • the flow rate control method in the flow channel is preferable because in the closed system, each operation of cell development / staining / detection can be performed following the blocking treatment step (b).
  • the distance between the upper surface (11) of the microchamber chip (20) and the inner surface of the top plate (60) is 50 ⁇ m or more and 1,000 ⁇ m or less. preferable.
  • the means for flowing down the blocking solution (51) is not particularly limited.
  • a liquid feeding means such as a liquid feeding pump.
  • the microchamber chip (20) can be inclined, or the blocking treatment liquid can be sucked from the downstream side using a suction means (for example, a water absorbing member such as filter paper).
  • the feeding rate (flow rate) of the blocking treatment liquid is preferably 0.1 to 1,000 mm / sec. If the flow rate is within this range, the blocking treatment solution excessively penetrates into the microchamber (30), and the bottom surface ( It is easy to prevent blocking processing until 32). If the contact angle between water (in many cases the blocking solution is an aqueous solution) and the substrate (10) is greater than 20 degrees, the flow rate of the liquid can be adjusted within a range of less than 1 mm / sec. is there. In the flow velocity control method in the flow channel, the flow velocity on the surface of the substrate and the flow velocity at the central portion of the flow channel (intermediate point between the top plate and the top surface of the substrate) may be different.
  • the flow rate substantially corresponds to the flow rate at the center of the flow path.
  • the flow rate is the flow rate at the pump that sends the liquid.
  • a flow rate of 0.1 to 1,000 mm / sec is 0.003 to 30 mL / Corresponds to a minute flow rate.
  • the flow rate of the blocking treatment liquid (51) can sufficiently cover the substrate (10) with the blocking agent (50) by the width along the flow direction of the region where the microchamber (30) is formed. It is preferable to adjust so as to ensure the contact time.
  • the contact time at this time is preferably adjusted in the range of 10 seconds to 1 hour.
  • the blocking agent (50) is applied from the upper surface (11) of the substrate (10) to the middle of the inner wall surface (31) of the microchamber (30) as shown in FIG.
  • the blocking agent can be applied to the entire inner wall surface (31) of the microchamber (30) as shown in FIG. 1 (B).
  • the bottom surface (32) of the microchamber (30) may be covered with a blocking agent. If the contact time is excessively short, the blocking agent may be covered with the top surface (11) or the inner wall surface (31). The blocking effect may be weakened.
  • stamp method (b-2)] (b-2) is also referred to as a stamp method.
  • a stamp method 70
  • a blocking treatment liquid (51) is used.
  • the upper surface (11) of the substrate (10) is brought into contact (or imprinted). It is mainly applied to an open microchamber chip (20) that does not include a top plate (60).
  • This stamp method (b-1) is also applied to the microchamber chip (20), which is difficult to block with the flow rate control method (b-1), simple addition method (b-3), or simple immersion method (b-4). If it is -2), it may be able to be properly blocked.
  • the surface of the silicone rubber made of polydimethylsiloxane [PDMS] is subjected to UV ozone treatment or the like to be modified to be hydrophilic, thereby forming the stamped meat (71).
  • a method of immersing in a blocking solution (51) such as PBS in which BSA is dissolved.
  • the processing conditions for imprinting the stamp (70) on the upper surface (11) of the substrate (10) are that the blocking treatment liquid (51) impregnated in the stamped meat (71) is excessively penetrated into the microchamber (30). Therefore, it can be adjusted within an appropriate range so that the bottom surface (32) is not blocked.
  • the appropriate stamping pressure may vary depending on the material of the stamp, but when using a silicone rubber stamp (or stamped) made of PDMS as described above, the pressure can be adjusted within a range of 100 MPa / cm 2 or less. preferable.
  • the stamping time may vary depending on the pressure of the stamping, but can be appropriately adjusted within the same range as the contact time in the flow rate control method (b-1) as described above.
  • (Simple addition method (b-3)) (b-3) is also referred to as a simple addition method, and is a method in which the blocking treatment liquid (51) is dropped over the entire upper surface (11) of the substrate (10) as shown in FIG. 3 (C). It is mainly applied to an open microchamber chip (20) that does not include a top plate (60). The upper surface (11) of the substrate (10) is covered by the dropped blocking treatment liquid (51), but the blocking treatment liquid (51) is contained inside the microchamber (30) by the surface tension of the blocking treatment liquid (51). Don't go too far.
  • the blocking treatment liquid (51) is an aqueous solution, the contact angle between water and the substrate can be mentioned as control of the degree of entry into the microchamber (30).
  • the contact angle is preferably 20 degrees or more and 80 degrees or less, and more preferably 30 degrees or more and 70 degrees or less.
  • the time during which the blocking treatment liquid (51) covers the state from the upper surface (11) of the substrate (10) to the inner wall surface (31) of the microchamber (30) is controlled by the flow rate control as described above. It can be appropriately adjusted within the same range as the contact time in the method (b-1). After the treatment, the dropped blocking treatment solution may be removed from the substrate (10).
  • the time for immersing the inverted microchamber chip (20) in the blocking solution (51) is appropriately adjusted within the same range as the contact time in the flow rate control method (b-1) as described above. can do.
  • the deeper the immersion the deeper the blocking treatment liquid (51) enters the microchamber (30), but the surface tension of the blocking treatment liquid (51) and the bubbles present in the microchamber (30). Therefore, the blocking solution (51) does not come into contact with the bottom surface (32) of the microchamber (30).
  • the desired depth of immersion varies depending on the depth and shape of the microchamber (30) itself, but those skilled in the art can appropriately adjust it.
  • Example 1 ⁇ Preparation of cell suspension> As a cell suspension, a PBS solution of Jurkat cells (1 ⁇ 10 7 cells / mL) was prepared.
  • a microchamber chip (length ⁇ width: 25 mm ⁇ 70 mm) was produced from a polystyrene substrate using a predetermined mold.
  • the diameter of the opening of the microchamber was 100 ⁇ m
  • the depth of the microchamber was 50 ⁇ m
  • the shape of the microchamber was an inverted cone with a flat bottom surface.
  • UV ozone treatment was performed for 1 minute with a UV ozone cleaner manufactured by Meiwa Forsys, and the contact angle of the microchamber chip and water was measured with a dynamic contact angle meter (FTA105) manufactured by FTA. there were.
  • FTA105 dynamic contact angle meter
  • This stamp was pressed against the microchamber chip at 0.1 MPa / cm 2 for 20 minutes. Thereafter, by washing the surface of the microchamber chip with PBS, the cells coated with the blocking agent (50) up to the middle of the inner wall surface (31) of the microchamber (30) as shown in the schematic diagram of FIG. 6 (B). A microchamber chip for deployment was obtained.
  • Photomultiplier tube [PMT] is used to illuminate Alexa Fluor (registered trademark) 488, which is labeled for BSA labeling.
  • FIG. 6B is a graph in which the fluorescence intensity is plotted on the horizontal axis with the maximum width (that is, the width corresponding to the diameter) of the opening of one microchamber.
  • a top plate was placed on the obtained cell development microchamber chip, and was spaced 100 ⁇ m from the top surface of the cell development microchamber chip to the inner surface of the top plate. Moreover, the side wall was provided so that the width
  • Example 1 In ⁇ Blocking treatment> in Example 1, the fluorescence intensity derived from BSA was measured in the same manner as in Example 1 except that the time for pressing the stamp against the microchamber chip was changed from 20 minutes to 10 seconds, and then cell expansion was performed. The images were observed and imaged in a bright field of a microscope. Each of these results is shown in FIG.
  • micro chamber chip 10 ... substrate 11 ... upper surface 20 ... micro chamber chip 30 ... micro chamber 31 ... inner wall surface of micro chamber (30) 32 ... micro chamber (30) Bottom surface 41,42 ... Micro chamber chip for cell deployment 50 ... Blocking agent 51 ... Blocking solution 60 ... Top plate 70 ... Stamp 71 ... Ink 80 .... Flow path

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

[課題] 細胞がマイクロチャンバー以外の表面に非特異的に吸着するのを抑制し、例えば血液などの多量の細胞を含むものの中から希少細胞をもらさず格納、保持し観察することができる細胞展開用マイクロチャンバーチップを提供すること。 [解決手段] 一個以上の細胞を格納、保持することができるマイクロチャンバー(30)が基板(10)の上面(11)に形成されているマイクロチャンバーチップ(20)の上面(11)と該マイクロチャンバー(30)の内壁面(31)とが、細胞が該上面(11)に非特異的に吸着するのを抑制できるブロッキング剤(50)で被覆されている、細胞展開用マイクロチャンバーチップ。

Description

細胞展開用マイクロチャンバーチップ
 本発明は、マイクロチャンバーチップ上面およびマイクロチャンバー内壁面にブロッキング処理が施された細胞展開用マイクロチャンバーチップに関する。
 循環腫瘍細胞〔CTC〕、血管内皮細胞、血管内皮前駆細胞、各種幹細胞等(本明細書において、まとめて「希少細胞」という。)は病態に応じて全血中に極めて稀に存在する細胞である。希少細胞の検出は臨床的な有用性が明らかであるにもかかわらず、その検出は極めて難しい。近年様々な細胞分離手法を応用してその検出が試みられ製品化がなされているが、いずれにおいても対象の希少性が故、検出結果の有効性を評価(希少細胞のロスや不要細胞の混入の有無)することが重要である。
 例えば採血した血液などの検体中に目的とする希少細胞が存在するか否かを検査する際、血液由来検体などの細胞懸濁液を平面状に展開した後、展開された全細胞を解析することによって、細胞懸濁液中に目的細胞が存在するか否かがわかる。
 細胞懸濁液を平面状に展開する際、平面として例えば特許文献1に開示された化学マイクロデバイスを使用すると、該デバイス表面に形成されている微細な凹部(マイクロウェルまたはマイクロチャンバー)の中に細胞を高密度で格納することができ、該凹部ごとに細胞を検出することができる。また、一個一個の該凹部からそれぞれ細胞を回収し、さらなる検査に供することができる。特許文献1の化学マイクロデバイスは、励起光による蛍光の発生が少ないプラスチック材料を用いて射出成形により容易に製造することができる。しかしながら、この化学マイクロデバイスを使用して細胞展開した際、該凹部以外の表面に細胞が吸着しやすいため、展開した細胞を該凹部で充分に回収できず、希少細胞をロスするおそれがある。
 一方、特許文献2には、ターゲット物質を一つ一つ個別的に固定化することができる微細穴を有するバイオチップが開示されている。特許文献2のバイオチップでは、微細穴の側面(壁部)と底面(底部)には、それぞれ同じまたは異なる固定化物質が結合していてもよいし、側面と底面のいずれかに固定化物質が結合していてもよいことが記載されている。また、特許文献2には、例えば、ターゲット物質を「該当する抗原認識領域を発現させたリンパ球細胞」とする場合、固定化物質としては「各種抗体」を選択すればよいことが記載されている。
 しかしながら、特許文献2のバイオチップは、例えば同じ種類の細胞一個一個を微細穴一つ一つに固定化することができるが、その種類や大きさが異なり細胞数も膨大な集団からなる血液などから希少細胞を検出することを目的としたものではない。希少細胞に対応する固定化物質(例えば、希少細胞の表面に特異的に発現している抗原に対する抗体)を微細穴の側面、底面またはその両方に結合させたとしても、その微細穴が希少細胞以外の細胞で充満してしまえば、固定化物質で希少細胞を捕捉することはできない。また、目的とする希少細胞に対応した適切な固定化物質が常に存在するとは限らない。細胞展開用マイクロチャンバーチップに細胞を展開し、ほとんど全ての細胞をマイクロチャンバー内に格納した上で、顕微鏡観察により希少細胞を検出するという手法の有利性はここにある。
特開2004-212048号公報 特開2005-214889号公報
 本発明は、細胞がマイクロチャンバー以外の表面に非特異的に吸着するのを抑制し、例えば血液などの多量の細胞を含むものの中から希少細胞をもらさず格納、保持し観察することができる細胞展開用マイクロチャンバーチップを提供することを目的とする。
 本発明者らは、マイクロチャンバーチップ表面およびマイクロチャンバー内壁面の一部または全部が、細胞の非特異的吸着を抑制できるブロッキング剤で被覆されていると、血液等に含まれる多種類かつ多量の細胞を当該チップ上に展開した際、細胞がマイクロチャンバー内に格納、保持されやすく、さらに、細胞がマイクロチャンバーの内壁面に吸着しにくいため、細胞どうしがマイクロチャンバー内で重層化せずに顕微鏡下での観察を容易にすることを見出し、本発明の完成に至った。
 すなわち、上述した目的のうち少なくとも一つを実現するため、本発明の細胞展開用マイクロチャンバーチップ(41)および(42)は、一個以上の細胞を格納、保持することができるマイクロチャンバー(30)が基板(10)の上面(11)に形成されているマイクロチャンバーチップ(20)の上面(11)と該マイクロチャンバー(30)の内壁面(31)とが、細胞が該上面(11)に非特異的に吸着するのを抑制できるブロッキング剤(50)で被覆されている。
 本発明の細胞展開用マイクロチャンバーチップ(41)および(42)は、それを用いて細胞展開した際、ほぼすべての細胞をマイクロチャンバー(30)内に格納することができる。
 細胞展開用マイクロチャンバーチップ(41)および(42)は、マイクロチャンバー(30)の内壁面まで細胞非接着性表面処理(「ブロッキング処理」ともいう。)が施されており、細胞がマイクロチャンバー(30)の内壁に吸着することなく底面に集積しやすいため、顕微鏡下の明視野による細胞観察が容易となる。
 さらに、本発明ではマイクロチャンバー(30)の底面に対してはブロッキング処理を施さず、細胞が吸着しやすい状態が保持されているため、マイクロチャンバー(30)の底面に集積した細胞がその後の送液操作によって脱出してしまうことは極めて起こりにくい。そのため、細胞表面の抗原を認識する抗体のような固定化物質を用いることなく、希少細胞のロスを防止することができ、細胞観察の信頼性を向上させることが可能となる。
 また、本発明の細胞展開用マイクロチャンバーチップ(41)および(42)は、マイクロチャンバー(30)形成後の基板(10)(すなわち、マイクロチャンバーチップ(20))に対して、その上面(11)およびマイクロチャンバー(30)の内壁面(31)にブロッキング処理を容易に施すことによって製造することが可能となる。すなわち、本発明は、マイクロチャンバーチップ(20)のマイクロチャンバー(30)の底面(32)以外の表面に対するブロッキング処理をたった一工程で製造することができる。
図1(A)および(B)はそれぞれ、本発明の細胞展開用マイクロチャンバーチップが有する典型的なマイクロチャンバー(30)の縦断面図を模式的に示した図であり、図1(C)は、本発明の細胞展開用マイクロチャンバーチップを製造する方法の一態様によって得られた細胞展開用マイクロチャンバーチップ(42)の縦断面図を模式的に示したものであって、マイクロチャンバー(30)の内壁面(31)の一部または全部がブロッキング剤(50)で被覆されている様子を表わしている。 図2は、本発明の典型的な細胞展開用マイクロチャンバーチップ(41)の製造方法の一態様において、工程(a),(b)を模式的に示した図である。 図3(A)は本発明の細胞展開用マイクロチャンバーチップの製造方法の一態様における工程(b)の(b-1)を、図3(B)は該製造方法の一態様における工程(b)の(b-2)を、図3(C)は該製造方法の一態様における工程(b)の(b-3)を、図3(D)は該製造方法の一態様における工程(b)の(b-4)を、それぞれ模式的に示した図である。図3(A)中の矢印はブロッキング処理液(51)を送液する方向を示し、図3(B)中の矢印はスタンプ(70)をマイクロチャンバーチップ(20)に押印する方向を示す。なお、図3(B)の印肉(71)はブロッキング処理液(51)が浸みこんでいる。 図4(A)は、図3(A)をより詳細に解説した図であり、図4(B)は、図3(A)において、マイクロチャンバーチップ(20)の上方に天板(60)を配設し、流路(80)を形成した態様を示した図である。 図5は、本発明の細胞展開用マイクロチャンバー(41)の上方から見た模式図であり、マイクロチャンバー(30)の開口部が円形である場合(A)および長方形である場合(B)を示す。 図6(A)および(B)はともに、実施例1の結果を示す。
 以下、本発明について、より詳細に説明する。
<細胞展開用マイクロチャンバーチップ>
 図1,2によると、本発明の細胞展開用マイクロチャンバーチップ(41)および(42)はそれぞれ、一個以上の細胞を格納、保持することができる「マイクロチャンバー」(30)が「基板」(10)の「上面」(11)に形成されている「マイクロチャンバーチップ」(20)の「上面」(11)と該マイクロチャンバー(30)の「内壁面」(31)とが、細胞が該上面(11)に非特異的に吸着するのを抑制できる「ブロッキング剤」(50)で被覆されていることを特徴とする。ブロッキング剤(50)による被覆は、基板(10)の上面(11)からマイクロチャンバー(30)の内壁面(31)まで連続していることが好ましい。しかしながら、実際の態様では、上面(11)と内壁面(31)との境界上で一部寸断して被覆されているマイクロチャンバー(30)も存在するので、本発明はこのような態様も包含される。なお、内壁面(31)は、マイクロチャンバー(30)を構成する面のうち底面(32)を除く部分(側面)を指す。
 本発明の細胞展開用マイクロチャンバーチップが有するマイクロチャンバーを拡大すると、基板(10)の上面(11)以外に、例えば図1(A)に示されるようにマイクロチャンバー(30)の内壁面(31)の一部、すなわち縁がブロッキング剤(50)で被覆されている態様や、図1(B)に示されるように該内壁面(31)が全部ブロッキング剤(50)で被覆されている態様を本発明は包含している。すなわち、ブロッキング剤(50)は、マイクロチャンバー(30)の内壁面(31)のうち、開口部から底部にかけて全部を被覆していてもよいし(図1(B))、開口部から底部にかけての途中までを部分的に被覆していてもよい(図1(A))。一方、底面(32)は、一旦マイクロチャンバー(30)の内部に格納された細胞がその後の送液によって脱出してしまわないよう、ブロッキング剤(50)で被覆しないようにする。
 図1(C)に示される細胞展開用マイクロチャンバーチップ(42)は、そのマイクロチャンバー(30)が図1(A)と(B)との両方の態様を含んでいるものであり、図2に示される細胞展開用マイクロチャンバーチップ(41)は、そのマイクロチャンバー(30)が図1(A)の態様のみからなり、典型的な例といえるものである。
 このように、該上面(11)以外にマイクロチャンバー(30)の内壁面(31)までブロッキング処理が施されていると、展開された細胞がマイクロチャンバー(30)の内壁面(31)、特に縁に吸着することがないため、顕微鏡下での観察の際マイクロチャンバー(30)の縁と底面(32)とに保持された細胞どうしが重ならずに観察できるため好適である。
<細胞展開用マイクロチャンバーチップの製造方法>
 図2に示されるように、例えば本発明の細胞展開用マイクロチャンバーチップ(41)を製造する方法は、後述する工程(a)および(b)を含むことが好ましい。
 〔マイクロチャンバー形成工程(a)〕
 工程(a)とは、基板(10)の上面(11)にマイクロチャンバー(30)を形成することによって、マイクロチャンバーチップ(20)を製造する工程である。
 マイクロチャンバーの形成方法は特に限定されるものではなく、従来公知の方法を用いることができるが、例えば、マイクロチャンバーの形状に対応する凸部を有する金型を用いて成形する方法やシリコーン樹脂等を用いて射出成形する方法、熱可塑性樹脂等のポリマーや金属、ガラスなどからなる基板に直接加工(例えばリソグラフィーによる微細加工、掘削加工、LIGAプロセスなど)を施しマイクロチャンバーを形成する方法などが挙げられる。工業的に量産できるという観点からは、金型を用いて成形する方法が好適である。
 (基板)
 本発明で用いる基板の材料としては、従来公知のマイクロプレート等と同じ材料を使用でき、また金型を用いて成形できる材料であってもよく、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリジメチルシロキサン〔PDMS〕、ポリメチルメタクリレート〔PMMA〕、環状オレフィンコポリマー〔COC〕などのポリマーが挙げられる。基板は、(金型成形された)ポリマーに、金属、ガラス、石英ガラスなどからなる基板を張り合わせたような複数の材料を組み合わせたものであってもよい。
 水と基板との接触角は、動的接触角計(FTA社製「FTA125」)により基板に水を滴下して測定した場合、好ましくは20度以上80度以下、より好ましくは30度以上70度以下である。接触角が20度以上であることは、後述するブロッキング処理液(多くの場合、水系溶液である。)を接触させようとする基板の親水性がそれほど強くないことを表しており、本発明のブロッキング処理工程(b)においてブロッキング処理液(51)がマイクロチャンバー(30)の内部に過度に侵入して底面(32)まで被覆してしまわないため好適である。
 (マイクロチャンバー)
 本発明におけるマイクロチャンバーとは、一個以上の細胞を「格納」し、「保持」することができる凹状の微細穴(マイクロウェル)をいう。ここで、「格納」とは、本発明の細胞展開用マイクロチャンバーチップ表面に細胞懸濁液を添加した際に細胞がマイクロチャンバーに入る(収容される)ことをいい、「保持」とは、マイクロチャンバーに格納された細胞が、細胞展開用マイクロチャンバーチップ表面に添加された染色液や洗浄液等によってマイクロチャンバー外に出ないことをいう。
 マイクロチャンバー(30)の開口部が円形である場合、その直径は、500μm程度であってもよく、マイクロチャンバー(30)の細胞保持力が特に強いことから、20μm以上150μm以下であるのが好ましい。なお、マイクロチャンバー(30)の開口部が円形以外の場合は、直径が上記範囲にある円と同等の面積となるようにすることが好ましい。
 マイクロチャンバー(30)の深さは、マイクロチャンバー(30)の直径によって変動させることが好ましく、当業者であれば、該チャンバー1つあたり細胞を10~15個程度格納できるように該チャンバーの深さを適宜決定することができる。好ましくは、マイクロチャンバー(30)の深さは、20μm以上100μm以下である。
 マイクロチャンバー(30)の開口部の直径ないし面積と、マイクロチャンバー(30)の深さとの比率を適切な範囲で調整することにより、ブロッキング処理液に充分な表面張力を保持させ、マイクロチャンバー(30)の底面(32)にブロッキング処理液が到達してしまうことを抑制することができる。
 マイクロチャンバー(30)の開口部(水平断面)の形は、典型的には、図5(A)に示されるように円形であるが、図5(B)のように長方形であってもよく、特に限定されるものではない。
 マイクロチャンバー(30)の形状は、典型的には、逆円錐台形(縦断面は図1(A),(B)のように台形を示す。)または円柱形(縦断面は図3などのように長方形を示す。)が、本発明ではこの態様に限定されるものではない。マイクロチャンバー(30)の開口部の面積は、底面(32)の面積より大きいまたは同等であるのが好ましく、そのようなマイクロチャンバー(30)の形状としては、上記逆円錐台形および円柱形以外にも、例えば、逆半球形、逆角錐形(逆四角形錐や逆六角形錐等の逆多角形錐)、直方体形などが挙げられる。
 マイクロチャンバー(30)は、細胞を保持できるようであれば、細胞懸濁液の溶媒を除去することなどを目的として、底部を有さない(底部周辺の側壁で細胞を保持する)、あるいは底部の一部に穴が形成されているものであってもよいが、希少細胞をロスする危険性を極力低くする観点からは、有底である(すなわち貫通した穴ではない)ことが好ましい。また、マイクロチャンバー(30)の底面(32)は、典型的には平坦であるが、曲面であってもよい。
 (マイクロチャンバーチップ)
 工程(a)で得られるマイクロチャンバーチップ(20)は、基板(10)の上面(11)にマイクロチャンバー(30)が形成されたものである。本発明では、次のブロッキング処理工程(b)により基板(10)の上面(11)をブロッキング剤で被覆するので、マイクロチャンバー(30)を形成するこの工程(a)の段階ではブロッキング効果をもたらす処理(特に底面までブロッキング剤で被覆してしまうおそれのある処理)を行う必要はない。必要に応じて、本発明の作用効果を阻害しない範囲の表面処理、例えばUVオゾン処理のように基板の細胞接着性を高める表面処理を行った上で、ブロッキング処理を施すことができる。
 〔ブロッキング処理工程(b)〕
 工程(b)とは、工程(a)で得られたマイクロチャンバーチップ(20)の上面(11)に対して、ブロッキング剤(50)を含有するブロッキング処理液(51)を当接することによって、基板(10)の上面(11)とマイクロチャンバー(30)の内壁面(の一部~全部)を、ブロッキング剤(50)で被覆する工程である。
 ブロッキング処理工程(b)の実施形態の具体例として、例えば、以下に説明する(b-1)~(b-4)のような四つの方式が挙げられる。
 (ブロッキング剤/ブロッキング処理液)
 ブロッキング剤(50)とは、基板(10)の上面(11)を被覆することで、細胞がそこに非特異的に吸着するのを抑制する物質を指す。また、ブロッキング処理液(51)は、本発明のブロッキング処理工程(b)を行う際に用いられる、ブロッキング剤(50)を適当な溶媒で希釈することにより調製される溶液を指し、ブロッキング剤(50)を含有(例えば溶解や分散などの態様を包含する。)している。
 ブロッキング剤としては公知の物質を用いることができ、例えば、カゼイン、スキムミルク、アルブミン(ウシ血清アルブミン〔BSA〕含む。)、ポリエチレングリコール等の親水性高分子、リン脂質などの他に、エチレンジアミンやアセトニトリルなどの低分子化合物も挙げられ、一種単独で用いても二種以上併用してもよい。
 ブロッキング剤を希釈するための溶媒は、ブロッキング剤に応じて適切なものを選択すればよい。例えば、ブロッキング剤としてBSAを用いる場合は、展開するための細胞が懸濁している溶媒と同様の、生体関連物質に適合する溶媒が好ましく、具体的には、リン酸緩衝生理食塩水〔PBS〕、HEPES、MEM、RPMI、リン酸緩衝液等が挙げられる。
 〔流速制御方式 (b-1)〕
 (b-1)は、流速制御方式ともいい、図3(A)および図4(A)に示すように、基板(10)の上面(11)の一端からブロッキング処理液(51)(例えばBSA溶液)を送液する方式である。
 流速制御方式のより好ましい実施形態として、図4(B)に示されるように、基板(10)の上面(11)側に、マイクロチャンバーチップ(20)と平行になるように天板(60)を設けることによって「流路」(80)を形成し、流路の一端からブロッキング処理液(51)を送液する方式が挙げられる。本明細書において、このような実施形態を「流路内流速制御方式」と呼ぶことがある。流路内流速制御方式は、閉鎖系において、ブロッキング処理工程(b)に続けて、細胞の展開・染色・検出の各操作を行うことができるため好ましい。
 流路内流速制御方式において、マイクロチャンバーチップ(20)の上面(11)と天板(60)の内面との距離(以下「天井の高さ」ともいう。)は、50μm以上1,000μm以下が好ましい。このような距離でマイクロチャンバーチップ(20)と天板(60)とが離間していると、適度な毛細管力も働いて、ブロッキング処理液を全面的に展開させて基板のみならず天板(60)の基板側表面も同時にブロッキング処理液を塗布することができるとともに、細胞懸濁液もマイクロチャンバーチップ(20)に全面的に展開させてマイクロチャンバー(30)に収めることができる。
 流速制御方式において、ブロッキング処理液(51)を流下させる手段は特に限定されるものではない。例えば、流路内流速制御方式では、送液ポンプのような送液手段を用いて閉鎖系内にブロッキング処理液(51)(および細胞懸濁液)を送液することが好適である。また、閉鎖系としない場合には、マイクロチャンバーチップ(20)に傾斜をつけたり、下流側から吸引手段(例えば濾紙などの水分吸収部材)を用いてブロッキング処理液を吸引したりすることができる。
 ブロッキング処理液の送液の速度(流速)は0.1~1,000mm/秒であることが好ましく、流速がこの範囲であるとブロッキング処理液がマイクロチャンバー(30)の内部に過度に侵入し、底面(32)までブロッキング処理されてしまうことを防止しやすくなる。水(多くの場合ブロッキング処理液は水性溶液である。)と基板(10)との接触角が20度より大きい場合は、送液の流速を1mm/秒より小さい範囲で調整することも可能である。なお、流路内流速制御方式において、基板表面の流速と流路中央部(天板と基板上面の中間地点)での流速は異なることがあるが、本発明では、ブロッキング処理液の送液の流速は、流路中央部の流速にほぼ該当するものである。一方、流量は送液するポンプでの流量になり、例えば、流路幅が5mm、天井の高さが100μmである流路を用いる場合、0.1~1,000mm/秒の流速は、0.003~30mL/分の流量に対応する。
 また、ブロッキング処理液(51)の流速は、マイクロチャンバー(30)が形成されている領域の流下方向に沿った幅によって、ブロッキング剤(50)が基板(10)を充分に被覆することができる接触時間を確保できるように調整することが好ましい。この際の接触時間は、10秒間以上1時間以下の範囲で調整することが好ましい。接触時間を比較的短くすることにより、図1(A)のように基板(10)の上面(11)からマイクロチャンバー(30)の内壁面(31)の途中までブロッキング剤(50)を塗布することができ、接触時間を比較的長くすることにより、図1(B)のようにマイクロチャンバー(30)の内壁面(31)の全部にまでブロッキング剤を塗布することができる。接触時間が過度に長いと、マイクロチャンバー(30)の底面(32)までブロッキング剤で被覆されるおそれがあり、接触時間が過度に短いと、ブロッキング剤が上面(11)や内壁面(31)に十分に付着せずブロッキング効果が弱くなるおそれがある。
 〔スタンプ方式 (b-2)〕
 (b-2)は、スタンプ方式ともいい、図3(B)で示されるように、ブロッキング処理液(51)を浸みこませた「印肉」(71)を有する「スタンプ」(70)を、基板(10)の上面(11)に接触(または押印)させる方式である。主に、天板(60)を備えない、開放系のマイクロチャンバーチップ(20)に対して適用される。また、流速制御方式(b-1)、単純添加方式(b-3)または単純浸漬方式(b-4)ではブロッキング処理を行いにくいマイクロチャンバーチップ(20)に対しても、このスタンプ方式(b-2)であれば適切にブロッキング処理できる場合がある。
 スタンプ(70)の作製方法としては、例えば、ポリジメチルシロキサン〔PDMS〕からなるシリコーンゴムの平滑な表面にUVオゾン処理等を施し親水性に改質することによって印肉(71)を形成し、BSAが溶解したPBS等のブロッキング処理液(51)に浸漬させる方法などが挙げられる。
 スタンプ(70)を基板(10)の上面(11)に押印する際の処理条件は、印肉(71)に含浸させたブロッキング処理液(51)がマイクロチャンバー(30)内部に過度に侵入せず、底面(32)までブロッキング処理されてしまわないよう、適切な範囲で調整することができる。例えば、適切な押印の圧力はスタンプの材質によっても変動し得るが、上述したようなPDMSからなるシリコーンゴムのスタンプ(または印肉)を用いる場合、100MPa/cm2以下の範囲で調整することが好ましい。また、押印の時間は、押印の圧力によっても変動し得るが、前述したような流速制御方式(b-1)における接触時間と同様の範囲内で適宜調整することができる。
 〔単純添加方式 (b-3)〕
 (b-3)は、単純添加方式ともいい、図3(C)に示されるように、基板(10)の上面(11)の全部にわたってブロッキング処理液(51)を滴下する方式である。主に、天板(60)を備えない、開放系のマイクロチャンバーチップ(20)に対して適用される。滴下されたブロッキング処理液(51)によって基板(10)の上面(11)が覆われるが、ブロッキング処理液(51)の表面張力によってマイクロチャンバー(30)の内部にはブロッキング処理液(51)は過度に入り込まない。ブロッキング処理液(51)が水性溶液である場合、マイクロチャンバー(30)の内部に入り込む度合いの制御として、水と基板との接触角が挙げられる。接触角が小さいほどブロッキング処理液(51)の入り込む度合いが高くなる。例えば、接触角が100度では、ほぼ基板上面しかブロッキング処理されないが、接触角が80度以下ではブロッキング処理液(51)がマイクロチャンバー(30)の内部に入り込み始め、マイクロチャンバー(30)の内壁面(31)の一部がブロッキング処理される。マイクロチャンバー(30)の底面(32)にまでブロッキング処理液(51)が入り込まないようにするには、接触角としては20度以上80度以下が好ましく、30度以上70度以下がより好ましい。
 この方式において、ブロッキング処理液(51)によって基板(10)の上面(11)からマイクロチャンバー(30)の内壁面(31)まで覆われるような状態を保持する時間は、前述したような流速制御方式(b-1)における接触時間と同様の範囲内で適宜調整することができる。上記処理後、滴下されたブロッキング処理液は基板(10)上から取り除けばよい。
 〔単純浸漬方式 (b-4)〕
 (b-4)は、単純浸漬方式ともいい、図3(D)に示されるように、マイクロチャンバーチップ(20)を裏返し、基板(10)の上面(11)の全部にわたってブロッキング処理液(51)に浸す方式である。天板(60)を備える閉鎖系のマイクロチャンバーチップ(20)に適用する場合、天板(60)を配設する前に、天板(60)の一方の面または天板全部をブロッキング処理液(51)に浸せばよい。
 この方式において、ブロッキング処理液(51)に、逆さにしたマイクロチャンバーチップ(20)を浸漬する時間は、前述したような流速制御方式(b-1)における接触時間と同様の範囲内で適宜調整することができる。また、浸漬する深さは、深ければ深いほどマイクロチャンバー(30)の内部にブロッキング処理液(51)が入り込むが、ブロッキング処理液(51)の表面張力とマイクロチャンバー(30)内に存在する気泡のため、マイクロチャンバー(30)の底面(32)にブロッキング処理液(51)が接触することはない。ただし、マイクロチャンバー(30)自体の深さや形状によって、浸漬する所望の深さが変動するが、当業者は適宜調整することができる。
 以下、本発明について実施例を挙げてさらに詳細に説明するが、本発明はこれらに限定されない。
 [実施例1]
 〈細胞懸濁液の調製〉
 細胞懸濁液として、Jurkat細胞のPBS溶液(1×107cells/mL)を調製した。
 〈マイクロチャンバーチップ〉
 ポリスチレン製の基板から所定の金型を用いて、マイクロチャンバーチップ(縦×横が25mm×70mm)を作製した。このマイクロチャンバーの開口部の直径は100μm、マイクロチャンバーの深さは50μmであり、マイクロチャンバーの形状は底面が平坦な逆円錐形であった。
 さらに、メイワフォーシス社製のUVオゾンクリーナーにてUVオゾン処理を1分間行い、マイクロチャンバーチップと水の接触角をFTA社製の動的接触角計(FTA105)にて測定した結果、70度であった。
 〈ブロッキング処理〉
 まず、PDMSからなるシリコーンゴムの平滑な表面を、60分間のUVオゾン処理(メイワフォーシス(株)製の「PC440」)により親水性に改質後、BSAのAlexa Fluor(登録商標) 488コンジュゲート(インビトロジェン社製)を0.5重量%含有するPBSに1時間浸漬させることによってスタンプを作製した。
 このスタンプをマイクロチャンバーチップに0.1MPa/cm2で20分間押しつけた。
 その後、マイクロチャンバーチップ表面をPBSで洗浄することによって、図6(B)の模式図にあるようにマイクロチャンバー(30)の内壁面(31)の途中までブロッキング剤(50)で被覆された細胞展開用マイクロチャンバーチップが得られた。
 BSA標識用に標識したAlexa Fluor(登録商標) 488を励起するHe-Neレーザー(波長633nm)を照射し、細胞展開用マイクロチャンバーチップを被覆しているBSAの蛍光強度を光電子倍増管〔PMT〕にて測定した。一つのマイクロチャンバーの開口部の最大幅(すなわち直径に相当する幅)を横軸に蛍光強度をプロットしたグラフを図6(B)に示す。
 〈細胞展開〉
 先ず、得られた細胞展開用マイクロチャンバーチップに天板を配設し、細胞展開用マイクロチャンバーチップの上面から天板の内面まで100μm離間させた。また、流路の幅が5mmとなるように側壁を設けた。その後、PBSを10mL、70%エタノールを1mL、さらにPBSを10mLの順に1mm/秒の流速で送液した。
 流路に満たされたPBSを置換するように、予め調製した細胞懸濁液200μLを1mm/秒の流速で流路に導入し、5分間静置させることによって、細胞を沈降させた。その後、余分の液体成分(細胞がほとんど除かれた細胞懸濁液)を流路から排出した。
 流路からPBSを1mm/秒の流速で0.1秒間導入した後に10秒間静置させるという「間欠送液」を20回繰り返した。
 顕微鏡の明視野にて観察し撮像した画像も図6(B)に示す。
 [比較例1]
 実施例1の〈ブロッキング処理〉において、スタンプをマイクロチャンバーチップに押し付ける時間を20分間から10秒間に変更した以外は実施例1と同様にしてBSA由来の蛍光強度を測定した後、細胞展開を行い、顕微鏡の明視野にて観察し撮像した。これらの結果をそれぞれ図6(A)に示す。
 《考察》
 スタンプ時間が10秒間の場合(比較例1;図6(A))、マイクロチャンバーの内壁面にも細胞が吸着し、底面にいる細胞と重なり観察しづらくなる場合があるのに対して、スタンプ時間が20分間の場合(実施例1;図6(B))、マイクロチャンバーの内壁面にもブロッキング処理が施されているため、細胞が底面に集積し、観察しやすくなることがわかる。
 10・・・・ 基板
 11・・・・ 上面
 20・・・・ マイクロチャンバーチップ
 30・・・・ マイクロチャンバー
 31・・・・ マイクロチャンバー(30)の内壁面
 32・・・・ マイクロチャンバー(30)の底面
 41,42・・・細胞展開用マイクロチャンバーチップ
 50・・・・ ブロッキング剤
 51・・・・ ブロッキング処理液
 60・・・・ 天板
 70・・・・ スタンプ
 71・・・・ 印肉
 80・・・・ 流路

Claims (5)

  1.  一個以上の細胞を格納、保持することができるマイクロチャンバー(30)が基板(10)の上面(11)に形成されているマイクロチャンバーチップ(20)の上面(11)と該マイクロチャンバー(30)の内壁面(31)とが、細胞が該上面(11)に非特異的に吸着するのを抑制できるブロッキング剤(50)で被覆されている、細胞展開用マイクロチャンバーチップ。
  2.  上記マイクロチャンバー(30)の開口部の直径が、20μm以上150μm以下であり、
     上記マイクロチャンバー(30)の深さが、20μm以上100μm以下である、請求項1に記載の細胞展開用マイクロチャンバーチップ。
  3.  上記マイクロチャンバー(30)が有底である、請求項1または2に記載の細胞展開用マイクロチャンバーチップ。
  4.  上記ブロッキング剤(50)が、カゼイン、スキムミルク、アルブミン、親水性高分子およびリン脂質からなる群から選択される少なくとも一種を含む、請求項1~3のいずれか一項に記載の細胞展開用マイクロチャンバーチップ。
  5.  水と基板(10)との接触角が20度以上80度以下である、請求項1~4のいずれか一項に記載の細胞展開用マイクロチャンバーチップ。
PCT/JP2013/067980 2012-07-03 2013-07-01 細胞展開用マイクロチャンバーチップ WO2014007192A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014523727A JP6238208B2 (ja) 2012-07-03 2013-07-01 細胞展開用マイクロチャンバーチップ
US14/411,202 US20150203804A1 (en) 2012-07-03 2013-07-01 Micro chamber chip for cell expansion
EP13813972.0A EP2871230A4 (en) 2012-07-03 2013-07-01 MICROCHAMBER CHIP FOR PROPAGATION OF CELLS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-149407 2012-07-03
JP2012149407 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014007192A1 true WO2014007192A1 (ja) 2014-01-09

Family

ID=49881948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067980 WO2014007192A1 (ja) 2012-07-03 2013-07-01 細胞展開用マイクロチャンバーチップ

Country Status (4)

Country Link
US (1) US20150203804A1 (ja)
EP (1) EP2871230A4 (ja)
JP (1) JP6238208B2 (ja)
WO (1) WO2014007192A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140327A1 (ja) * 2015-03-04 2016-09-09 国立研究開発法人産業技術総合研究所 マイクロチャンバーアレイプレート
JP7337760B2 (ja) 2015-10-07 2023-09-04 凸版印刷株式会社 生体分子の分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212048A (ja) 2002-11-14 2004-07-29 Starlite Co Ltd 化学マイクロデバイス
JP2004333404A (ja) * 2003-05-12 2004-11-25 Hitachi Ltd マイクロリアクタ及びその製造方法、並びに試料スクリーニング装置
JP2005214889A (ja) 2004-01-30 2005-08-11 Shibaura Institute Of Technology バイオチップの作製方法及びバイオチップ、並びに、プレ・バイオチップの作製方法及びプレ・バイオチップ
JP2010200714A (ja) * 2009-03-05 2010-09-16 Mitsui Eng & Shipbuild Co Ltd 細胞分離装置、細胞分離システムおよび細胞分離方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153682B2 (en) * 2000-06-05 2006-12-26 Chiron Corporation Microarrays on mirrored substrates for performing proteomic analyses
US20050121782A1 (en) * 2003-12-05 2005-06-09 Koichiro Nakamura Selectively adherent substrate and method for producing the same
JP2005187316A (ja) * 2003-12-05 2005-07-14 Nippon Sheet Glass Co Ltd 選択付着性基板およびその製造方法
JP2008054521A (ja) * 2006-08-29 2008-03-13 Canon Inc 細胞培養処理装置及び細胞培養処理方法
WO2010088517A1 (en) * 2009-01-30 2010-08-05 The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Methods and systems for purifying transferring and/or manipulating nucleic acids
JP5881031B2 (ja) * 2010-03-18 2016-03-09 国立研究開発法人産業技術総合研究所 薬剤感受性試験用バイオチップ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212048A (ja) 2002-11-14 2004-07-29 Starlite Co Ltd 化学マイクロデバイス
JP2004333404A (ja) * 2003-05-12 2004-11-25 Hitachi Ltd マイクロリアクタ及びその製造方法、並びに試料スクリーニング装置
JP2005214889A (ja) 2004-01-30 2005-08-11 Shibaura Institute Of Technology バイオチップの作製方法及びバイオチップ、並びに、プレ・バイオチップの作製方法及びプレ・バイオチップ
JP2010200714A (ja) * 2009-03-05 2010-09-16 Mitsui Eng & Shipbuild Co Ltd 細胞分離装置、細胞分離システムおよび細胞分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871230A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140327A1 (ja) * 2015-03-04 2016-09-09 国立研究開発法人産業技術総合研究所 マイクロチャンバーアレイプレート
JPWO2016140327A1 (ja) * 2015-03-04 2017-12-14 国立研究開発法人産業技術総合研究所 マイクロチャンバーアレイプレート
JP7337760B2 (ja) 2015-10-07 2023-09-04 凸版印刷株式会社 生体分子の分析方法

Also Published As

Publication number Publication date
US20150203804A1 (en) 2015-07-23
JP6238208B2 (ja) 2017-11-29
EP2871230A4 (en) 2016-03-09
JPWO2014007192A1 (ja) 2016-06-02
EP2871230A1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
EP3206791B1 (fr) Procédé de manipulation de microgouttes incluant des échantillons
JP6311609B2 (ja) 希少細胞の回収方法および検出方法
JPH0664062B2 (ja) ウエル型診断用プレート装置
US8470110B2 (en) Sample chamber and method for the production thereof
WO2010072410A2 (en) Methods for immobilizing microvesicles, means and methods for detecting them, and uses thereof
WO2013095729A1 (en) Sequential lateral flow capillary device for analyte determination
US20170298314A1 (en) Nano-droplet plate
JP4717961B2 (ja) 人工脂質膜形成方法
AU2013267227B2 (en) Dissolution guided wetting of structured surfaces
JP2016176938A (ja) 検査装置、転写材、検査装置の製造方法、及び検査キット
JP6238208B2 (ja) 細胞展開用マイクロチャンバーチップ
CN110087772B (zh) 用于微阵列3d生物打印的芯片平台
Nuss et al. Microfluidic trap-and-release system for lab-on-a-chip-based studies on giant vesicles
JPH01202661A (ja) 流れ増進性ディップスティック
JP6198070B2 (ja) 細胞展開用マイクロチャンバーチップの製造方法
JP2014239675A (ja) 構造体、マイクロ流路装置および構造体の使用方法
JP6535958B2 (ja) バルブ、流体デバイス、流体制御方法及びバルブの製造方法
US10350603B2 (en) Cover device for sample carrier
JP6547625B2 (ja) 膜小胞回収デバイス、膜小胞回収方法、及び膜小胞分析方法
JP6528378B2 (ja) 細胞展開方法およびそのためのキット
US20180024134A1 (en) Immobilization of cells or virus particles on protein structures using a microfluidic chamber
US20150008187A1 (en) Blood-pretreating apparatus and method
WO2017073533A1 (ja) 稀少細胞を観察するための細胞展開方法および細胞展開用キット
JP2019144133A (ja) アッセイ装置
WO2011090441A1 (en) A process for making a microarray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013813972

Country of ref document: EP