WO2017073533A1 - 稀少細胞を観察するための細胞展開方法および細胞展開用キット - Google Patents

稀少細胞を観察するための細胞展開方法および細胞展開用キット Download PDF

Info

Publication number
WO2017073533A1
WO2017073533A1 PCT/JP2016/081512 JP2016081512W WO2017073533A1 WO 2017073533 A1 WO2017073533 A1 WO 2017073533A1 JP 2016081512 W JP2016081512 W JP 2016081512W WO 2017073533 A1 WO2017073533 A1 WO 2017073533A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
protein
substrate
cell expansion
Prior art date
Application number
PCT/JP2016/081512
Other languages
English (en)
French (fr)
Inventor
淳吾 荒木
茉奈美 増渕
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US15/770,964 priority Critical patent/US20180348098A1/en
Priority to EP16859763.1A priority patent/EP3369804A4/en
Priority to JP2017547791A priority patent/JPWO2017073533A1/ja
Publication of WO2017073533A1 publication Critical patent/WO2017073533A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes

Definitions

  • the present invention relates to a cell expansion method and a cell expansion kit for carrying out the method.
  • Blood normally contains blood cells such as red blood cells and white blood cells (neutrophils, eosinophils, basophils, lymphocytes, monocytes), but also circulating tumor cells (CTCs: Circulating Tumor Cells)
  • CTCs Circulating Tumor Cells
  • rare cells such as circulating vascular endothelial cells (CECs: Circulating Endothelial Cells), circulating vascular endothelial progenitor cells (CEPs), and other progenitor cells may be included.
  • the cultured cell population may include stem cells, specific differentiated cells, and other characteristic cells.
  • CTCs blood circulating cancer cells
  • the density of CTC in the blood is extremely low (in the case of low, about 1 to 10 per 10 mL of whole blood), and its detection and counting are not easy.
  • profiling of biomarkers expressing CTCs can be used to elucidate the mechanism of metastasis through comparison with profiling of biomarkers of primary cancers, and to determine useful anticancer drugs (molecular target drugs). It is also important to promote CTC research from various points of view, such as identifying CTC subpopulations (CTCs having characteristics such as epithelial cells, mesenchymal cells, stem cells, etc.).
  • a method of detecting CTC or the like from blood by performing nuclear staining or fluorescent staining to identify the position of a cell is known.
  • a flow path forming frame is installed on a substrate having a number of microchambers (well structures) that can accommodate cells on the surface.
  • a system for expanding cells in a cell suspension is used so that the prepared device for cell expansion can be easily observed and stained with a microscope.
  • a cell suspension is introduced into a channel provided in a cell deployment device, and after the cells are collected in the microchamber while moving the channel, the cell suspension is discharged from the channel.
  • a method of expanding cells using a cell deployment substrate that facilitates cell capture by providing a structure other than a microchamber such as a groove, or a cell deployment substrate that does not have such a structure There is also a method of expanding cells.
  • the present inventors added a trace amount of protein to a cell suspension using PBS as a solvent so that the final concentration falls within a specific range, and then the cell suspension was mixed with water.
  • PBS a solvent
  • the cell suspension was mixed with water.
  • a cell is prevented from adsorbing nonspecifically on the surface other than the microchamber of the cell deployment substrate, and is reliably collected in the microchamber.
  • a blocking treatment solution containing a blocking agent for example, bovine serum albumin (BSA), hydrophilic polymer, phospholipid
  • BSA bovine serum albumin
  • hydrophilic polymer hydrophilic polymer
  • phospholipid a blocking agent for example, bovine serum albumin (BSA), hydrophilic polymer, phospholipid
  • Patent Document 1 does not particularly refer to suppressing the adsorption of rare cells to the surface of the experimental equipment used before the cells are developed on the cell development substrate.
  • PBS is used as a solvent for a cell suspension containing cells (which may be immobilized), and the cell suspension is dropped.
  • a hydrophobic material for example, polystyrene having a contact angle with water of 20 to 100 degrees, which has been subjected to a hydrophilization treatment if necessary
  • cells adhere non-specifically to laboratory equipment such as pipette tips and microtubes, which are required when preparing the cell suspension and introducing cells into the cell development substrate. Problem arises.
  • the present invention provides a means for suppressing the adsorption of cells to laboratory equipment while preventing the adsorption of cells to a cell development substrate, thereby increasing the recovery efficiency of rare cells in a cell suspension.
  • the task is to do.
  • the present invention provides a step of adding an amount of protein having a final concentration of 0.0001% to 0.1% to a cell suspension (protein addition step), and a cell suspension that has undergone the protein addition step.
  • a cell expansion method including a step (cell expansion step) in which cells contained in a suspension are spread on a cell expansion substrate having a contact angle with water of 60 degrees or more and allowed to stand and adsorb.
  • the present invention provides, in a further aspect, (a) a dilution for cells containing a protein having a concentration of 0.0001% to 0.1%, or a protein and a solvent for preparing the same, and (b) water.
  • a cell expansion kit including a cell expansion substrate having a contact angle of 60 degrees or more.
  • the cell expansion method of the present invention it is possible to recover a larger number of cells in the cell expansion substrate (in the microchamber) than before by significantly suppressing the loss of rare cells in the cell suspension. . Furthermore, even during the assay after cell deployment, the cells can be kept adsorbed to the cell deployment substrate (bottom surface of the microchamber) with sufficient adsorption force, and the cells will be detached even if a staining solution is introduced into the flow path. Without remaining on the surface of the cell development substrate (bottom of the microchamber), another process for detecting rare cells can be performed following the cell development process.
  • FIG. 1 is a flowchart showing an embodiment of the cell expansion method of the present invention.
  • FIG. 2 is a schematic diagram showing one embodiment of a cell detection system (a) and a cell deployment substrate (b) capable of carrying out the cell deployment method (cell deployment step or the like) of the present invention.
  • FIG. 3 is a graph showing the relationship between the water contact angle (the contact angle between the cell development substrate and water) and the cell retention ratio created based on the measurement results of Experimental Example 1.
  • FIG. 4 is a graph showing the relationship between the concentration of protein (BSA) in the cell suspension and the cell retention rate, which was created based on the measurement results of Experimental Example 2.
  • FIG. 5 is an image of a pipette tip taken when pipetting a cell suspension containing BSA at a predetermined concentration 10 times.
  • FIG. 6 is a graph showing the relationship between the number of pipettings and the ratio of adherent cells to the pipette tip, created based on the measurement results of Experimental Example 5.
  • the cell expansion method of the present invention includes at least a protein addition step and a cell expansion step.
  • the cell expansion method usually includes a pretreatment step such as an anticoagulation treatment and a centrifugal separation treatment.
  • An immobilization treatment step and other treatment steps may be included.
  • deployment method can be implemented in the procedure along the flowchart shown in FIG. 1, for example.
  • each step included in the cell expansion method of the present invention will be described in more detail.
  • the cells (population) targeted by the cell expansion method of the present invention are not particularly limited, but representative examples are those collected from humans or other animals such as blood, urine, lymph, tissue fluid, and body cavity fluid. Examples thereof include cells contained in a specimen or cultured cells (cell lines).
  • target cells include rare cells such as CTC, CEC, EPC, nucleated red blood cells, and other progenitor cells contained in blood, stem cells, specific differentiated cells, and other characteristic cells contained in cultured cells.
  • the cells (population) containing such target cells are preferably targeted for the cell expansion method.
  • the cell suspension is, for example, a specimen such as blood, urine, lymph, tissue fluid, body cavity fluid, or a cell fraction obtained from such specimen, which may contain rare cells or other target cells.
  • a pretreated product such as a purified product can be prepared by diluting with a suitable solvent such as PBS.
  • Cell suspensions are prepared by dispersing rare cells or other cell lines of target cells or cell populations containing target cells cultured for testing, research, etc. in PBS or the like. Also good.
  • a cell suspension obtained by adding a rare cell line such as CTC to a blood cell suspension collected from a healthy person may be used.
  • the cell suspension in the stage to be subjected to the cell expansion step is usually subjected to pretreatment (anticoagulation treatment and centrifugation treatment), cell immobilization treatment step performed as necessary, and protein addition step.
  • pretreatment anticoagulation treatment and centrifugation treatment
  • cell immobilization treatment step performed as necessary
  • protein addition step a specific concentration of a protein containing a target cell such as CTC treated with a predetermined immobilizing agent and having both a blocking effect on experimental equipment and an adsorption effect on a cell expansion substrate is added.
  • the cell immobilization treatment step is a step of immobilizing cells contained in the cell suspension, as shown as a step performed in the second tube of FIG.
  • the immobilization treatment is a treatment performed to delay the self-degradation and rot of cells and maintain their morphology and antigenicity, and can improve the detectability of target cells such as CTC.
  • the immobilizing agent used for cell immobilization examples include aldehydes such as formaldehyde and acetaldehyde; ketones such as acetone and methyl ethyl ketone; and alcohols such as ethanol and methanol.
  • a donor that liberates a fixing agent by undergoing hydrolysis or the like, such as a formaldehyde donor is not used directly as a fixing agent, but is also used as one form of a known fixing agent. Yes.
  • the immobilizing agent used in the present invention is not particularly limited.
  • aldehydes formaldehyde-containing compounds
  • formaldehyde and acetaldehyde are preferable.
  • the immobilization treatment can be performed by bringing the immobilizing agent at an appropriate concentration into contact with the cells for an appropriate time.
  • concentration of the immobilizing agent in the immobilizing treatment liquid can be adjusted as appropriate, and is, for example, about 0.1 to 10 w / w%.
  • the contact time between the immobilization treatment solution and the cells can be adjusted as appropriate, and is, for example, about 10 minutes to 1 hour at room temperature.
  • Blood (whole blood) collected and taken out of the body will coagulate over time if exposed to air as it is, and the cells contained therein cannot be recovered and observed. Therefore, it is preferable that the collected blood is immediately subjected to anticoagulation treatment.
  • anticoagulants for whole blood are known and can be used according to conditions such as general concentration and treatment time.
  • an anticoagulant of the type that binds to calcium ions by chelating action and is added from the reaction system such as ethylenediaminetetraacetic acid (EDTA) and citric acid (including salts such as sodium salt).
  • EDTA ethylenediaminetetraacetic acid
  • citric acid including salts such as sodium salt.
  • a blood collection tube in which such an anticoagulant is previously stored may be used.
  • a cell fraction containing the target cells such as rare cells
  • a cell suspension suitable for further cell expansion it is usually centrifuged several times. Processing is performed.
  • Techniques for separating and purifying rare cells (white blood cells) such as CTC from whole blood by centrifugation and preparing a fraction containing such cells are well known, and appropriate centrifuges and centrifugation conditions are used. Can be implemented.
  • density gradient centrifugation is known as a method capable of fractionating components in blood containing various cells according to specific gravity.
  • density gradient centrifugation it is preferable to use density gradient centrifugation in order to add red blood cells contained in a large amount in the blood and use only white blood cells containing target cells such as CTC for the cell expansion step.
  • the separation liquid used for the density gradient centrifugation method may have any specific gravity suitable for the fractionation of cells in blood and an osmotic pressure and pH that do not destroy the cells.
  • any specific gravity suitable for the fractionation of cells in blood and an osmotic pressure and pH that do not destroy the cells.
  • commercially available sucrose solutions such as Ficoll (registered trademark) and Percoll (registered trademark) can be used.
  • density gradient centrifugation is performed after adjusting the specific gravity of this separated liquid to be smaller than the specific gravity of red blood cells and larger than the specific gravity of white blood cells, the blood sample is divided into ⁇ a fraction rich in red blood cells '' and ⁇ other than red blood cells '' Can be separated into at least two layers.
  • the specific gravity of the separation liquid is preferably 1.113 or less, more preferably 1.085 or less
  • the mixing ratio of erythrocytes to the “fraction containing many cells other than erythrocytes” is 2 to 6% or less. Can be suppressed.
  • Cell observation using “a fraction containing a large amount of cells other than erythrocytes” is preferable because the risk of failure to detect target cells such as CTC due to erythrocytes is reduced and the accuracy of diagnosis can be increased. .
  • a protein addition process is a process of adding protein to a cell suspension, as shown as a process performed with the 3rd tube of FIG.
  • the protein addition step is preferably performed after the immobilization treatment step.
  • the protein addition step can be performed before the immobilization treatment step, but the immobilization agent that should react with the intracellular protein also reacts with the protein in the added solution. It is appropriate to increase the reaction time of the agent or to increase the concentration of the fixing agent.
  • the effect is that the cells are non-specifically adsorbed to experimental equipment (the third tube and pipette used for pipetting, etc.) and are prevented from being lost before being spread on the cell development substrate.
  • the cell deployment process that follows this process maintains the ability of cells to adsorb to the surface of the cell deployment substrate (preferably the bottom surface of the microchamber) and can be efficiently recovered from the cell suspension. It is necessary to adjust the protein concentration in the cell suspension to an appropriate level. Therefore, in the present invention, in the protein addition step, the final concentration of the protein in the cell suspension is 0.0001% or more, preferably 0.0005% or more and 0.1% or less, preferably 0.01% or less. Add an amount of protein.
  • the final concentration of the protein in the cell suspension after the protein addition step is 0.1% or less, preferably 0.01% or less, the adsorption effect of the cells on the cell development substrate is sufficiently maintained. After the cells are adsorbed, they are not easily detached even if a staining solution or the like is fed.
  • the final concentration of the protein in the cell suspension after the protein addition step is 0.0001% or more, preferably 0.005% or more, the effect of suppressing the adhesion of cells to experimental equipment is sufficiently exerted. Is done.
  • the final concentration of the protein in the cell suspension after the protein addition step is basically 0.0001% to 0.1% in the present invention, but in a preferred embodiment 0.0005% to 0.00%. In another preferred embodiment in which the number of pipettings is 1 to 10 times, it can be 0.0001% to 0.01%.
  • a protein generally used as a blocking agent can be used, and for example, BSA is suitable.
  • the protein addition step may be performed twice as in the embodiment shown in FIG. 1, or may be performed only once, or may be performed three or more times.
  • the protein concentration in the cell suspension may be within the predetermined range described above. In the protein addition step, it is preferable that the protein concentration in the cell suspension is within the predetermined range.
  • a protein such as BSA having a concentration in the above-mentioned predetermined range or a concentration exceeding it may be added as a blocking treatment agent to the cell suspension (see FIG. 1).
  • BSA having a concentration in the above-mentioned predetermined range or a concentration exceeding it
  • centrifugation is performed to recover the immobilized cells (untreated cells if no immobilization treatment is performed).
  • the protein contained in the prepared cell suspension should be substantially separated and removed (it is allowed to leave a very small amount of protein that cannot be removed even by appropriate centrifugation). . Thereafter, in the protein addition step, a cell suspension containing a specific concentration of protein defined in the present invention is added to prepare a cell suspension in which the final concentration is within the specific range defined in the present invention. Can be regarded as having done.
  • the amount (concentration) of protein in the cell suspension immediately before the protein addition step should be taken into account. It is also possible to adjust.
  • proteins include albumin contained in blood (plasma), ⁇ -globulin, other plasma proteins, or BSA added to prevent non-specific adsorption before the immobilization process. Is mentioned.
  • proteins such as BSA contained in the medium can be mentioned.
  • collected from the patient (human etc.) by pathological diagnosis is also mentioned. If the concentration of such protein does not exceed the predetermined range, an appropriate amount of protein can be added to the cell suspension so that the final concentration is within the predetermined range.
  • laboratory equipment such as pipette tips and microtubes are used.
  • Various materials for these laboratory equipments are known.
  • polystyrene, polypropylene, polycarbonate, polyethylene terephthalate, polymethacrylic acid are used. It is preferable to use pipette tips and / or microtubes made of a material selected from methyl or cycloolefin polymers, and it is particularly preferable to use polypropylene.
  • the surface of the experimental equipment made of the above material may be subjected to a treatment that makes it difficult for cells to adhere, such as a hydrophilic treatment, for example, a treatment using methacryl phosphorylcholine (MPC) polymer.
  • a treatment that makes it difficult for cells to adhere such as a hydrophilic treatment, for example, a treatment using methacryl phosphorylcholine (MPC) polymer.
  • MPC methacryl phosphorylcholine
  • the material of these equipment is not particularly limited, and an optimum material can be selected in various embodiments according to the purpose.
  • the experimental materials of the above materials are relatively less likely to adhere to the cells.
  • the cell suspension does not contain a specific concentration of protein (blocking agent)
  • blocking agent protein
  • the cells are continuously introduced into the cell expansion substrate.
  • the number of pipettings is increased in order to uniformly disperse the cells and reagents
  • a cell suspension containing a large number of rare cells can be introduced continuously with the same equipment by adjusting the protein in the cell suspension to a predetermined final concentration, and the number of pipettings can be compared. Even if the amount is increased, cell adhesion to the experimental equipment can be suppressed.
  • laboratory equipment such as pipette tips and microtubes made of polypropylene or the like can be used, but is not limited to this, and equipment suitable for the purpose is used. be able to.
  • the pipetting performed in the protein addition step of the present invention is performed in order to mix the proteins well when they are added to the cell suspension (the first pipetting).
  • the cell suspension after addition of the protein is added to the cell expansion substrate (that is, in the cell expansion step)
  • the cell suspension in the cell suspension is eliminated and the cell suspension is uniformly dispersed.
  • second pipetting the number of times of the first pipetting and the second pipetting is such that the cell suspension can be uniformly suspended according to the cell density of the prepared cell suspension and the amount of added protein. , Each can be set arbitrarily.
  • the number of times of the first pipetting and the second pipetting is preferably 1 to 10 times, and more preferably 1 to 3 times. Further, the total number of the first pipetting and the second pipetting is preferably 10 times or less, and more preferably 3 times or less. With this number of times, even if the protein concentration in the cell suspension is 0.0001%, the effect of suppressing nonspecific adsorption to the experimental equipment is sufficiently observed.
  • the pipetting volume of pipetting in the cell expansion step can be arbitrarily set according to the cell density of the prepared cell suspension and the amount of added protein. It is preferable to carry out with a volume of 60% or more.
  • the cell deployment step is a step in which cells contained in the cell suspension that has undergone the protein addition step are developed on a cell development substrate and allowed to stand and adsorb.
  • the cell deployment substrate typically corresponds to a channel substrate of a device used in a cell deployment or cell observation system described later.
  • the cells in the cell suspension are spread on the surface of the cell deployment substrate (flow path substrate).
  • the cell deployment substrate that can carry out the cell deployment method of the present invention is not limited to such an embodiment, and a cell suspension is developed on the surface to adsorb the cells contained therein. Anything can be used.
  • the substrate for cell development may be the bottom surface of a slide glass or a petri dish for cell culture.
  • the cell expansion substrate used in the present invention has a contact angle with water of 60 ° or more, preferably 70 to 90 °. When the contact angle is in such a range, the cell suspension is added onto the cell development substrate and allowed to stand so that the cells in the cell suspension are adsorbed to the substrate with sufficient adsorption force. Can do.
  • the contact angle between water and the cell development substrate in the present invention is a static contact angle measured by a curve fitting method.
  • ⁇ Cell immobilization method Material and structure of cell development substrate
  • the cell is immobilized, that is, the position of the cell on the cell expansion substrate is moved. It is necessary not to. By immobilizing the cells, it becomes easy to specify the position of the cells to be observed, and the target cells detected can be collected as necessary.
  • Cell immobilization methods include a method (structure method) that limits the range in which cells can move depending on the structure of the surface of the cell deployment substrate, and physics generated by the surface properties of the cell deployment substrate. It can be broadly classified into a method (interaction method) in which cells are adsorbed by dynamic interaction so as not to move.
  • an interactive technique for adsorbing cells to at least a cell development substrate is used, and a structural technique is preferably used in combination.
  • the contact angle of the cell development substrate with water is adjusted to the specific range as described above (60 degrees or more, preferably 70 to 90 degrees).
  • the cell development substrate is made of a material having a contact angle with water in such a range, or the cell deployment substrate is surface-modified so that the contact angle with water is in such a range.
  • a cell development substrate made of polystyrene or polycarbonate, which is relatively strong in hydrophobicity and easily adsorbs cells.
  • a cell suspension is introduced by providing a flow path above the cell development substrate.
  • the above contact angle is obtained by UV ozone treatment or oxygen plasma treatment in which UV is irradiated in an air atmosphere. As long as the above condition is satisfied, it may be appropriately hydrophilized.
  • a structural method for solid phase for example, by forming a plurality of micro chambers or grooves on the surface of a cell development substrate, cell movement is limited to only inside the micro chamber or groove. To do.
  • the surface of the cell development substrate may be smooth.
  • the shape of the microchamber is not particularly limited.
  • an inverted frustoconical shape having a flat bottom surface and a tapered side surface is preferable.
  • the diameter and depth of the bottom surface of the microchamber can be appropriately adjusted so that a number of cells suitable for observation can be collected and accommodated.
  • the bottom surface has a diameter of 20 to 500 ⁇ m and a depth of 20 to 500 ⁇ m so as to accommodate 1 to 100 cells per microchamber.
  • the diameter of various cells (excluding red blood cells) in blood is generally 5 to 100 ⁇ m, and the diameter of rare cells such as CTC is said to be about 10 to 100 ⁇ m.
  • the arrangement of the plurality of microchambers on the surface of the cell development substrate (channel substrate) is not particularly limited, but the cell recovery rate (recovered in the microchamber out of all cells in the suspension) It is preferable that the orientation of the array and the interval between the microchambers are adjusted so that the ratio of the formed cells is as high as possible. For example, it is preferable to arrange the microchambers so that the cells settle in the microchamber at at least one location from the inlet to the outlet when the cell suspension is fed into the flow path.
  • the cells are placed on a cell development substrate made of polystyrene having a microchamber and having a hydrophilization treatment as necessary, and having a contact angle with water of 60 ° or more (preferably 70 to 90 °). It is preferable to deploy.
  • adsorbing cells in a microchamber whose bottom surface is polystyrene cells can be efficiently separated and recovered from the cell suspension, and the cell suspension or cell suspension on the cell deployment substrate (in the channel) Even if the flow of the other liquid is relatively strong, the cells once separated and recovered are not easily lost.
  • the micro chamber of the cell expansion substrate Even if the blocking treatment is not performed on the region other than the opening of the cell, it is possible to suppress the cell from adsorbing to such a region while the cell suspension is flowing (as opposed to this The cell can be adsorbed to the bottom surface of the microchamber from which the cell is collected by developing the suspension and then allowing it to stand).
  • a region other than the opening of the microchamber of the cell development substrate may be subjected to blocking treatment.
  • blocking treatment By blocking such a region, the possibility of cell attachment can be further reduced, and it can be reliably collected in a microchamber such as rare cells and adsorbed to the bottom surface thereof.
  • the device for cell deployment is constructed by a flow path substrate and a flow path forming member, and the space closed by these can be filled with a liquid such as a cell suspension. It is a flow path. In the vicinity of the upstream and downstream ends of the flow path, an inflow port and an exhaust port for allowing the various liquids to flow in and out are formed. From the viewpoint of ease of observation and maintenance, the flow path substrate and the flow path forming member may be attachable / detachable by means such as engagement, screw fixing, and adhesion.
  • the substrate for cell deployment as the flow path substrate in the present embodiment can use at least an interactive method for adsorbing cells, and preferably can further use a structural method together. ing.
  • the flow path forming member is mounted on a frame member that forms a side wall of the flow path that creates a space for giving the flow path a predetermined height and forms a planar range of the flow path, and a frame member. You may be constructed
  • the top plate member may include a space (reservoir) for temporarily storing a liquid such as a cell suspension, which is in communication with the inflow port or the outflow port.
  • the flow path forming member can be made of, for example, polystyrene, similarly to the cell development substrate (flow path substrate). In that case, similarly to the region other than the microchamber opening of the cell development substrate, blocking is performed as necessary. It may be processed.
  • the height of the flow path (the distance between the flow path substrate and the top plate member, that is, the thickness of the frame member) is preferably 50 ⁇ m to 500 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the height of the flow channel is within such a range, the rare cells in the cell suspension in the flow channel can be easily moved by the force of liquid feeding, and clogging by cells in the flow channel can be prevented. Since it does not easily occur, the cells can be expanded smoothly.
  • the cell suspension is fed onto a cell expansion substrate (the flow path substrate of the cell expansion device) and allowed to stand for a predetermined time, for example, 1 minute or more, so that the cells are sedimented. That's fine.
  • a cell expansion substrate the flow path substrate of the cell expansion device
  • the flow rate (flow velocity) and direction of the liquid may be changed in order to increase the cell collection efficiency.
  • target cells such as rare cells remaining in a region other than the micro chamber of the flow path substrate or discarded without being collected in the micro chamber until the end.
  • the use of the cell expansion method of the present invention is not particularly limited, and the cell expansion method of the present invention can be used in various embodiments according to the purpose.
  • the cell expansion method of the present invention is used to detect a target cell such as a rare cell. After the cell is expanded on a cell expansion substrate, (fluorescence) staining and observation of the cell are performed. Is called.
  • fluorescent fluorescence staining and observation of the cell are performed. Is called.
  • the protein concentration in the cell suspension is adjusted to a specific range so as to maintain the adsorptivity of the cells to the substrate for cell development.
  • a staining solution a washing solution, or other solution
  • a small number of cells that are detached and washed away from the surface of the cell development substrate (inside the microchamber) for example, a cell suspension in the cell development step It can be reduced to 20% or less of the cells recovered from inside (in other words, the cell retention rate is 80% or more).
  • An aqueous solution of a nuclear stain can be used as a staining solution for specifying the presence of cells when observing or detecting cells.
  • Nuclear stains are fluorescent dye molecules that fluoresce when intercalated into double-stranded DNA. Examples of such a nuclear stain include Hoechst dyes (Hoechst 33342, ⁇ Hoechst 33258, etc.) that are permeable to cell membranes and can nucleate living cells, and cannot stain nuclei of living cells because they are not permeable to cell membranes.
  • Hoechst dyes Hoechst 33342, ⁇ Hoechst 33258, etc.
  • DAPI 6-diamidino-2-phenylindole
  • an aqueous solution of a complex of an antibody against a protein unique to the cell (so-called cell marker) and a fluorescent dye molecule can be used.
  • a protein that is expressed in epithelial CTC and hardly expressed in leukocytes is known as a cancer cell marker for identifying CTC from leukocytes collected using a cell development substrate.
  • EpCAM Epithelial cell adhesion molecule
  • CK cytokeratin
  • a staining agent that directly labels such a cell marker for example, a complex of an antibody against a cell marker and a fluorescent dye molecule, or a staining agent that indirectly labels a cell marker, such as an antibody against a cell marker (primary antibody) ) And a combination of an antibody against the primary antibody (secondary antibody) and a fluorescent dye molecule, and the like, a staining solution corresponding to a specific type of target cell can be prepared.
  • Means for carrying out the cell expansion method of the present invention is not particularly limited, and other steps such as a protein addition step, a cell expansion step, and a cell immobilization treatment step as necessary are performed using known means. You should go sequentially.
  • At least the cell expansion step of the cell expansion method of the present invention is for expanding the cell suspension that has undergone the protein addition step on a cell expansion substrate (a flow path substrate in the cell expansion device). It can be carried out using an apparatus / system provided with a liquid feeding system mechanism. Furthermore, as described above, in order to detect target cells such as rare cells, when a cell (fluorescence) staining or observation is performed subsequent to the cell expansion step, a cell detection device capable of performing them collectively -It is also possible to implement using the system. Further, such a device or system for cell expansion or cell detection can be linked to a device / system for performing the cell immobilization treatment step and the protein addition step.
  • FIG. 2 shows an embodiment of the cell detection system (200).
  • the cell detection system (200) includes a cell detection device (100), a cell deployment device (100), a reagent container (20), and control means (190) for controlling various devices included in the cell detection device. It is configured.
  • the cell detection device (100) was recovered by the cell delivery device (100) and the fluid delivery system (110) for delivering various liquids to the flow path (1) of the cell deployment device (10).
  • the liquid feeding system mechanism (110) and the optical system mechanism (120) include a spatial moving means for enabling liquid suction / discharge and cell observation at an arbitrary position.
  • the optical mechanism (120) can be configured according to a microscope, and particularly preferably configured according to a fluorescence microscope so that cells stained with a fluorescent dye can be observed.
  • the control means (190) applies a predetermined amount of a predetermined liquid to the cell expansion substrate (11) at a predetermined flow rate at a predetermined timing (in the flow path (5)) so that the cell expansion process can be performed automatically. It is preferable that the liquid feeding system mechanism (110) can be controlled by a program.
  • the liquid feeding system mechanism preferably controls the flow of the cell suspension, the cell suspension of the reagent container, the (fluorescence) staining liquid, the washing liquid, and other reagents, and the cell recovery device under the control of the control means. It is a mechanism that moves between the inlet and sucks and discharges those liquids. Specifically, a predetermined amount of liquid such as a cell suspension stored in the reagent container is aspirated by a liquid feeding mechanism and discharged at a predetermined flow rate at the inlet of the cell recovery device. To introduce.
  • the liquid feeding system mechanism can be constructed using, for example, a syringe pump, a replaceable chip, an actuator that can move in the X-axis direction (left-right direction in the figure) and Z-axis direction (up-down direction in the figure).
  • the syringe pump has a capability of sucking and discharging a cell suspension, a washing solution, and the like at a desired flow rate in the cell expansion step and other steps.
  • the “exchangeable chip” provided in the liquid feeding system mechanism corresponds to one of “experimental equipment” that should suppress nonspecific adsorption of cells in the present invention.
  • the reagent container is used for cell expansion, other cell observation processes such as cell suspension, staining solution (nuclear staining solution, immunofluorescence staining solution, etc.) and washing solution.
  • Various liquids that need to be sent to the path are stored.
  • a liquid having a relatively high storage stability such as a washing solution can be stored in a predetermined portion of a reagent container in advance in a sealed state, and immediately before cell observation such as a cell suspension or a staining solution.
  • the liquid that needs to be prepared can be added to and stored in a predetermined part of the reagent container after preparation.
  • a cell suspension that has undergone an immobilization treatment step and a protein addition step is used.
  • the solution used multiple times during cell observation may contain a volume of solution corresponding to each step in a separate site, or a solution of the same composition in each step In the case of repeated use, these total doses of liquid may be contained in one site.
  • the reagent container is provided with a part for storing waste liquid sucked and discharged from the flow path after feeding, as necessary.
  • the “reagent container” (portion for storing the cell suspension) corresponds to one of “experimental equipment” in which nonspecific adsorption of cells should be suppressed in the present invention.
  • the cell expansion kit that can be used for carrying out the cell expansion method of the present invention is, for example, a protein having a concentration of 0.0001% to 0.1% as described above, preferably a concentration of 0.0005% to 0. Cell dilution containing 0.01% protein, or protein and solvent for preparing the same; and a cell expansion substrate having a contact angle with water of 60 degrees or more, preferably 70 to 90 degrees.
  • Such a cell expansion kit may contain other reagents, equipment for preparing the reagents, instructions for use, etc., if necessary.
  • the other reagents include the nuclear staining solution and the cleaning solution as described above, or the nuclear staining agent and the cleaning agent for preparing them, and their diluted solutions (solvents such as PBS).
  • the cell expansion method of the present invention includes a step of adding a protein in an amount of 0.0001% to 0.1% to the cell suspension (protein addition step), and a cell suspension that has undergone the protein addition step. It includes a step (cell deployment step) in which cells contained in the liquid are spread on a cell development substrate having a contact angle with water of 60 degrees or more and allowed to stand and adsorb.
  • the cell expansion method of the present invention may include an embodiment in which, in the protein addition step, a protein is added in an amount such that the final concentration is 0.0005% to 0.01%.
  • the cell expansion method of the present invention is an embodiment in which, in the protein addition step, a protein in an amount of a final concentration of 0.0001% to 0.01% is added, and pipetting in the cell expansion step is performed 1 to 10 times. May be included.
  • the cell expansion method of the present invention may include an embodiment in which pipetting in the cell expansion step is performed 1 to 3 times.
  • the cell expansion method of the present invention may include an embodiment in which a contact angle between the cell expansion substrate and water is 70 to 90 degrees.
  • the cell expansion method of the present invention may include an embodiment in which the cells contained in the cell suspension are cells that have been subjected to cell immobilization treatment.
  • the cell expansion method of the present invention may include an embodiment in which the experimental equipment used in the protein addition step and / or used for pipetting in the cell expansion step is made of polypropylene.
  • the laboratory equipment used in the protein addition step and / or pipetting in the cell expansion step is coated with methacryl phosphorylcholine (MPC) polymer or bovine serum albumin (BSA). Embodiments may be included.
  • MPC methacryl phosphorylcholine
  • BSA bovine serum albumin
  • the cell expansion method of the present invention may include an embodiment in which the pipetting volume of pipetting in the cell expansion process is performed by 60% or more of the volume of the cell suspension.
  • the cell expansion kit of the present invention comprises (a) a diluted solution for cells containing a protein having a concentration of 0.0001% to 0.1%, or a protein and solvent for preparing the diluted solution, and (b) water. And a cell development substrate having a contact angle of 60 degrees or more.
  • the cell expansion kit of the present invention may contain, as (a) above, a cell dilution containing a protein having a concentration of 0.0005% to 0.01%, or a protein and a solvent for preparing it.
  • the cell expansion substrate (b) used in the cell expansion kit of the present invention may have a contact angle with water of 70 to 90 degrees.
  • a polystyrene cell deployment substrate having a microchamber molded using a predetermined mold is prepared, and the substrate and the channel forming member (channel lid) are prepared. After performing hydrophilic treatment by irradiating with UV / O 3 for 20 seconds, a device for cell deployment was assembled.
  • the cell development substrate is not subjected to blocking treatment with BSA.
  • the diameter of the microchamber was 100 ⁇ m, the depth was 50 ⁇ m, and the shape of the microchamber was an inverted cone with a flat bottom.
  • the pitch representing the distance between the centers of adjacent microchambers is 200 ⁇ m, and the porosity (the void is the flow chamber longitudinal direction (that is, the flow-down direction from the inlet to the outlet)).
  • the contact angle with water after the hydrophilic treatment by irradiating with UV / O 3 for 20 seconds was measured with a dynamic contact angle meter (manufactured by FTA, “ It was 100 degrees and 80 degrees when measured by FTA125 ").
  • Substrates having various contact angles with water were prepared in the same manner as described above except that the irradiation time of UV / O 3 was changed.
  • Example 2 (Concentration of protein giving an effect of adsorption with a cell substrate) After preparing a cell suspension in the same manner as [1-1] in Experimental Example 1, the final concentration was 0%, 0.0001%, 0.001%, 0.01%, 0.1% or 1%. Protein (BSA) was added so that In addition, as a control, whole blood that had passed 4 days after being collected in a blood collection tube Cyto-Chex (registered trademark) was treated with Ficoll (GE), and after removing red blood cells, it was washed once with PBS to prepare a sample. (Contains 0.5% to 1% protein in addition to leukocytes). These five cell suspensions were used as samples of Experimental Example 2.
  • BSA Protein
  • Cyto-Chex registered trademark
  • GE Ficoll
  • the BSA concentration is 0.01% or less, the adsorptivity of the cells is sufficiently maintained (cell retention rate is 93% or more), and the staining solution and the washing solution are fed at a relatively large flow rate.
  • an anti-CK staining solution an anti-CK staining solution, an anti-CD45 staining solution, and a cell nucleus staining solution (Hoechst solution) were used.
  • the anti-CK staining solution is a solution of PE (phycoerythrin) labeled anti-CK monoclonal antibody (clone name CAM5.2 Becton Dickinson), and the anti-CD45 staining solution is APC (allophycocyanin) labeled anti-CD45 monoclonal antibody (clone name).
  • MDA-MB231 cells epidermal cells
  • leukocytes can be immunostained with an anti-CD45 stain. That is, when the above staining solutions are reacted, if cells that are negative for CD45, positive for CK, and stained with the Hoechst 33342 solution are detected, it is determined that the cells are MDA-MB231 cells. If a cell that is positive for CD45, negative for CK, and stained with the Hoechst 33342 solution is detected, it can be determined that the cell is a leukocyte.
  • a mixed solution of an anti-CK staining solution, an anti-CD45 staining solution and a cell nucleus staining solution was introduced into the flow path using the same Hamilton syringe as [1-3-3] (flow rate: 0.1 mL) / Min, volume: 150 ⁇ L), the cells collected in the microchamber were stained.
  • the BSA concentration (corresponding to the final concentration of the protein in the prepared cell suspension) is 0%, 0.0001%, 0.001%, 0.01%, 0.05% And 100 ⁇ l of 0.1% PBS solution (BSA / PBS) were added and pipetted 10 times with a sample volume of 68 ⁇ l using an ART 200 ⁇ l pipette tip (registered trademark, molecular Bio Products, polypropylene) and a 200 ⁇ l pipetman. . Furthermore, in order to wash the excess droplets on the pipette tip, PBS was pipetted 10 times with the same amount.
  • the amount of protein added to the cell suspension in the present invention is basically in the range where the final concentration is 0.0001% to 0.1%, preferably the final concentration is The amount can be in the range of 0.0005% to 0.01%.
  • the final concentration can preferably be in the range of 0.0001% to 0.01%.
  • the pipette tip was photographed with a fluorescence microscope, and the number of cells attached to the pipette tip was measured.
  • the ratio of the number of cells attached to the pipette tip and the number of cells in 100 ⁇ L was plotted as the ratio of adherent cells for each pipetting number.
  • the created graph is shown in FIG. In the case where the final concentration was 0.0001%, the effect of suppressing the number of adherent cells to 5% or less was confirmed by suppressing the number of pipettings to 10 or less.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Virology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、実験用器材に対する細胞の吸着を抑制する一方、細胞展開用基板への細胞の吸着は妨げず、それにより細胞懸濁液中の稀少細胞の回収効率を高めることのできる手段を提供することを課題とする。本発明に係る細胞展開方法は、細胞懸濁液に、最終濃度が0.0001%~0.1%、好ましくは0.0005%~0.01%となる量のタンパク質を添加する工程(タンパク質添加工程)、およびタンパク質添加工程を経た細胞懸濁液に含まれる細胞を、水との接触角が60度以上、好ましくは70~90度である細胞展開用基板上に展開し、静置して吸着させる工程(細胞展開工程)を含む。

Description

稀少細胞を観察するための細胞展開方法および細胞展開用キット
 本発明は、細胞展開方法、ならびに当該方法を実施するための細胞展開用キットに関する。
 血液中には通常、赤血球、白血球(好中球、好酸球、好塩基球、リンパ球、単球)などの血液細胞が含まれているが、さらに循環腫瘍細胞(CTCs:Circulating Tumor Cells)、循環血管内皮細胞(CECs:Circulating Endothelial Cells)、循環血管内皮前駆細胞(CEPs:Circulating Endothelial Progenitors)、その他の前駆細胞などの稀少細胞が含まれている場合がある。また、培養されている細胞集団には、幹細胞、特定の分化細胞、その他の特徴的な細胞が含まれている場合がある。
 たとえば、血液循環癌細胞(CTC)は、乳癌、肺癌、前立腺癌、膵臓癌などの患者の血中に見出される細胞であり、その数は癌の転移性を反映しているなど、臨床上の重要な情報になることで注目されている。しかしながら、血液中のCTCの密度は極めて低く(少ない場合、全血10mLあたり1~10個程度)、その検出および計数は容易ではない。また、CTCが発現しているバイオマーカーのプロファイリングは、その原発性がんのバイオマーカーのプロファイリングとの比較を通じて転移のメカニズムを解明したり、有用な抗がん剤(分子標的薬)を判定したり、CTCの亜集団(上皮細胞、間葉系細胞、幹細胞などの特性を有するCTC)を特定したりなど、様々な観点からCTCの研究を進めるためにも重要である。
 上記のような目的でCTC等の稀少細胞や特徴的な細胞の検出をする際には、細胞の形態や染色状況などを個々に顕微鏡観察などにより判断することが望ましい。細胞の位置を特定するために核染色や蛍光染色などを行い、血液中からCTC等を検出する方法などが知られている。たとえば、特許文献1(国際公開WO2014/007191号パンフレット)に記載されているように、細胞を収容できる多数のマイクロチャンバー(ウェル構造)を表面に有する基板上に流路形成枠体を設置して作製された、細胞展開用デバイスを用いて、顕微鏡観察や染色を行いやすい状態になるよう、細胞懸濁液中の細胞を展開するシステムが用いられている。このシステムでは、細胞懸濁液を細胞展開用デバイスが備える流路に導入し、流路を移動させながら細胞をマイクロチャンバー内に回収した後、細胞懸濁液を流路から排出するようにする。また、溝のようにマイクロチャンバー以外の構造を設けることによって細胞を補足しやすくした細胞展開用基板を用いて細胞を展開する方法、あるいはそのような構造を有さない細胞展開用基板を用いて細胞を展開する方法もある。
 本発明者らは、前述したようなシステムにおいて、PBSを溶媒とする細胞懸濁液に最終濃度が特定の範囲となるよう微量のタンパク質を添加し、続いてその細胞懸濁液を水との接触角が特定の範囲にある細胞展開用基板上に展開することにより、細胞懸濁液に含まれる細胞を、細胞懸濁液の調製および展開に用いた実験機材への非特異的吸着を抑制して、細胞展開用基板に設けられたマイクロチャンバー内に効率よく回収できることを見出し、本発明を完成させるに至った。細胞懸濁液に添加するタンパク質の濃度制御のみで、上記の2つの効果が両立できるということは意外なことである。
国際公開WO2014/007191号パンフレット
 CTCのような稀少細胞は存在数が非常に少ないため、細胞懸濁液の調製や前述したシステムの細胞展開用デバイスに細胞懸濁液を導入するためなどに用いられる、ピペットチチップやマイクロチューブなどの実験器材表面に対する稀少細胞の吸着が、細胞数の測定の精度に影響を与えることがある。
 その一方で、特許文献1に記載されているような細胞展開用基板(デバイス)を利用するシステムにおいては、マイクロチャンバーの底面に稀少細胞等が吸着させることが必要となってくる。稀少細胞の数を測定するために、マイクロチャンバー内に回収された細胞の形態や染色などの状況を1つ1つ見て判定する場合があるが、1つのマイクロチャンバー内に複数の細胞が回収されることもあるため、全ての細胞をマイクロチャンバーの底面に吸着させて互いに重なり合わないようにすることが望ましい。また、稀少細胞等がマイクロチャンバーの底面に吸着していれば、一旦回収した稀少細胞等が細胞懸濁液の移動に伴って再びマイクロチャンバー外に出て失われしまうことを防ぐこともできる。
 特許文献1には、細胞が細胞展開用基板のマイクロチャンバー以外の表面に非特異的に吸着することを抑制し、マイクロチャンバー内に確実に回収することができるよう、細胞展開用基板の上面にブロッキング剤(例えば、ウシ血清アルブミン(BSA)、親水性高分子、リン脂質)を含有するブロッキング処理液を所定の方法で当接し、マイクロチャンバー以外の表面、またはマイクロチャンバー以外の表面とマイクロチャンバーの内壁面をブロッキング剤で被覆する一方、マイクロチャンバーの底面はブロッキング剤で被覆せずに細胞が吸着できる状態を保持する、マイクロチャンバーの製造方法が記載されている。
しかしながら特許文献1には、細胞を細胞展開用基板上に展開する前に用いられる、実験用器材表面に対する稀少細胞の吸着を抑制することに関しては特に言及されていない。特許文献1に記載されているように、従来は、細胞(固定化処理されている場合もある)を含む細胞懸濁液の溶媒としてPBSを使用し、かつ、細胞懸濁液を滴下する細胞展開用基板に疎水性の材質(例えば、必要に応じて親水化処理を施した、水との接触角が20~100度のポリスチレン)を使用することが一般的である。しかし、本条件下では、前述の細胞懸濁液の調製や細胞を細胞展開用基板へ導入する時に必要となるピペットチップやマイクロチューブ等の実験用器材に、非特異的に細胞が付着してしまう問題が生じる。
 本発明は、実験用器材に対する細胞の吸着を抑制する一方、細胞展開用基板への細胞の吸着は妨げず、それにより細胞懸濁液中の稀少細胞の回収効率を高めることのできる手段を提供することを課題とする。

 本発明は、一つの側面において、細胞懸濁液に、最終濃度が0.0001%~0.1%となる量のタンパク質を添加する工程(タンパク質添加工程)、およびタンパク質添加工程を経た細胞懸濁液に含まれる細胞を、水との接触角が60度以上である細胞展開用基板上に展開し、静置して吸着させる工程(細胞展開工程)を含む、細胞展開方法を提供する。
 また、本発明はさらなる側面において、(a)濃度0.0001%~0.1%のタンパク質を含有する細胞用希釈液、またはそれを調製するためのタンパク質および溶媒と、(b)水との接触角が60度以上である細胞展開用基板とを含む、細胞展開用キットを提供する。
 本発明の細胞展開方法を用いれば、細胞懸濁液中の稀少細胞のロスを大幅に抑制することで、従来よりも多くの細胞を細胞展開用基板(マイクロチャンバー内)に回収することができる。さらに、細胞展開後のアッセイ中も細胞は十分な吸着力で細胞展開用基板(マイクロチャンバーの底面)に吸着した状態を保つことができ、染色液などを流路に導入しても細胞は剥がれずに細胞展開用基板の表面(マイクロチャンバーの底部)に留まるので、細胞展開工程に続けて稀少細胞を検出するための他の工程を行うことができる。
図1は、本発明の細胞展開方法の一実施形態を示すフローチャートである。 図2は、本発明の細胞展開方法(細胞展開工程等)を実施することのできる細胞検出システム(a)および細胞展開用基板(b)の一実施形態を示す模式図である。 図3は、実験例1の測定結果に基づいて作成した、水接触角(細胞展開用基板と水との接触角)と細胞保持率の関係を示すグラフである。 図4は、実験例2の測定結果に基づいて作成した、細胞懸濁液中のタンパク質(BSA)の濃度と細胞保持率との関係を示すグラフである。 図5は、BSAを所定の濃度で含有する細胞懸濁液を10回ピペッティングしたときに撮影したピペットチップの画像である。白い粒子状の物体がピペットチップに吸着した細胞である。 図6は、実験例5の測定結果に基づいて作成した、ピペッティング回数とピペットチップへの付着細胞割合の関係を表すグラフである。
 -細胞展開方法-
 本発明の細胞展開方法は、少なくとも、タンパク質添加工程および細胞展開工程を含み、血液検体を用いる場合は通常、抗凝固処理、遠心分離処理等の前処理工程を含み、必要に応じてさらに、細胞固定化処理工程、その他の処理工程を含んでいてもよい。このような細胞展開方法の各工程は、たとえば、図1に示すフローチャートに沿った手順で実施することができる。以下、本発明の細胞展開方法に含まれる各工程について、より詳細に説明する。
 (細胞)
 本発明の細胞展開方法が対象とする細胞(集団)は特に限定されるものではないが、代表例としては、血液、尿、リンパ液、組織液、体腔液など、ヒトまたはその他の動物から採取された検体に含まれる細胞、あるいは培養された細胞(細胞株)が挙げられる。特に、血液等に含まれるCTC、CEC、EPC、有核赤血球、その他の前駆細胞などの稀少細胞や、培養細胞中に含まれる幹細胞、特定の分化細胞、その他の特徴的な細胞を目的細胞とし、そのような目的細胞を含む細胞(集団)を細胞展開方法の対象とすることが好ましい。
 (細胞懸濁液)
 細胞懸濁液は、例えば、稀少細胞またはその他の目的細胞を含んでいる可能性がある、血液、尿、リンパ液、組織液、体腔液等の検体、あるいはそれらの検体から得られた細胞画分や精製物などの前処理物を、PBS等の適切な溶媒で希釈することにより調製することができる。また、細胞懸濁液は、試験、研究等のために培養した、稀少細胞またはその他の目的細胞の細胞株、あるいは目的細胞を含む細胞集団を、PBS等に分散させて調製したものであってもよい。患者の血中細胞モデルとして、健常者から採取された血中細胞の懸濁液にCTC等の稀少細胞の細胞株を添加したものを、細胞懸濁液として用いてもよい。
 本発明において細胞展開工程に供される段階にある細胞懸濁液は、通常行われる前処理(抗凝固処理および遠心分離処理)、必要に応じて行われる細胞固定化処理工程、およびタンパク質添加工程を経たもの、すなわち所定の固定化剤により処理されたCTC等の目的細胞を含み、かつ実験用器材に対するブロッキング効果と細胞展開用基板への吸着効果を両立させる特定の濃度のタンパク質が添加されている細胞懸濁液である。
 (1)細胞固定化処理工程
 細胞固定化処理工程は、図1の第2チューブで行われる工程として示すように、細胞懸濁液に含まれる細胞の固定化処理を行う工程である。固定化処理は、細胞の自己分解や腐敗を遅延させ、その形態や抗原性を保持するために行われる処理であり、CTC等の目的細胞の検出性を高めることができる。
 (固定化剤)
 細胞の固定化処理に用いられる固定化剤としては、例えば、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン等のケトン類;エタノール、メタノール等のアルコール類が挙げられる。また、それ自体が固定化剤として直接作用するものではないが、加水分解等を受けることによって固定化剤を遊離する供与体、たとえばホルムアルデヒド供与体も公知の固定化剤の一形態として用いられている。本発明で用いる固定化剤は、特に限定されるものではないが、例えば、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類(アルデヒド基を含む化合物)が好ましい。
 固定化処理は、適切な濃度の固定化剤を適切な時間、細胞に接触させることで行うことができる。固定化処理液中の固定化剤の濃度は適宜調節することができるが、たとえば0.1~10w/w%程度である。固定化処理液と細胞との接触時間(固定化処理時間)も適宜調節することができるが、例えば、室温で、10分間~1時間程度である。
 (その他の処理)
 細胞の固定化処理に先だって、血液またはそれから調製される画分に対しては、上述した固定化処理以外の処理を必要に応じて施すことができる。特に、細胞懸濁液をヒトまたはその他の動物から採取された検体を用いて調製する場合は、必要な前処理をあらかじめ行っておくことが適切である。以下、CTCを含有する代表的な検体である血液についての前処理工程について説明する。この場合、前述した固定化処理(細胞固定化処理工程)は一般的に、抗凝固処理および遠心分離処理を経た細胞懸濁液に対して施される。
 ・抗凝固処理
 採取されて体外に取り出された血液(全血)は、そのまま空気に触れさせると時間の経過と共に凝固し、そこに含まれる細胞を回収して観察することができなくなる。そのため、採取された血液は直ちに抗凝固処理することが好ましい。
 全血用の抗凝固剤としては様々なものが公知であり、一般的な濃度、処理時間等の条件に従って用いることができる。例えば、エチレンジアミン四酢酸(EDTA)やクエン酸(ナトリウム塩等の塩を含む)に代表される、キレート作用によりカルシウムイオンと結合し、反応系から添加することによって凝固を阻止するタイプの抗凝固剤や、ヘパリンに代表される、血漿中のアンチトロンビンIIIと複合体を形成してトロンビンの産生を抑制することにより凝固を阻止するタイプの抗凝固剤が挙げられる。このような抗凝固剤があらかじめ収容された採血管を利用してもよい。
 ・遠心分離処理
 全血から稀少細胞等の目的細胞を含む細胞画分を得て、さらに細胞展開工程に供するのに適した細胞懸濁液を調製するためには、通常、数回の遠心分離処理が行われる。遠心分離処理によって全血からCTC等の稀少細胞(白血球)を分離、精製し、そのような細胞を含む画分を調製するための手法は公知であり、適切な遠心分離機および遠心分離条件を用いて実施することができる。
 ここで、密度勾配遠心法は、各種の細胞を含む血液中の成分を比重に従って分画することができる方法として知られている。特に、血液中に多量に含まれている赤血球を添加して、CTC等の目的細胞を含む白血球のみを細胞展開工程に供するためには、密度勾配遠心法を用いることが好ましい。
 密度勾配遠心法に用いられる分離液は、血液中の細胞の分画に適した比重を有し、また細胞を破壊することのない浸透圧およびpHを有するよう調製したものであればよいが、例えば、市販されているフィコール(登録商標)、パーコール(登録商標)などのショ糖溶液を用いることができる。この分離液の比重を、赤血球の比重よりも小さく、白血球の比重よりも大きくなるよう調節した上で密度勾配遠心処理を行うと、血液検体を「赤血球が多く含まれる画分」と「赤血球以外の細胞が多く含まれる画分」の少なくとも二層に分離することができる。例えば、分離液の比重を好ましくは1.113以下、より好ましくは1.085以下にすると、「赤血球以外の細胞が多く含まれる画分」への赤血球の混入率を2~6%またはそれ以下に抑えることができる。「赤血球以外の細胞が多く含まれる画分」を用いて細胞観察を行うと、CTC等の目的細胞が赤血球に紛れて検出し損ねる危険性が低下し、診断の精度を高めることができるため好ましい。
 (2)タンパク質添加工程
 タンパク質添加工程は、図1の第3チューブで行われる工程として示すように、細胞懸濁液にタンパク質を添加する工程である。タンパク質添加工程は、固定化処理工程後に実施されることが好ましい。また、タンパク質添加工程を固定化処理工程の前に実施することもできるが、細胞内のタンパク質に反応すべき固定化剤が、添加された溶液中のタンパク質とも反応することになるので、固定化剤の反応時間を長くする、または固定化剤濃度を濃くすることが適切である。
 タンパク質添加工程では、細胞が実験用器材(第3チューブおよびピペッティングに用いるピペット等)に対して非特異的に吸着し、細胞展開用基板上に展開する前に失われることを防止する効果と、この工程に続く細胞展開工程において細胞が細胞展開用基板の表面(好ましくはマイクロチャンバーの底面)に吸着する能力を保持して細胞懸濁液中から効率的に回収できるようにする効果を両立させるよう、細胞懸濁液中のタンパク質の濃度を適当なレベルに調節する必要がある。そのために本発明では、タンパク質添加工程において、細胞懸濁液中のタンパク質の最終濃度が0.0001%以上、好ましくは0.0005%以上、かつ0.1%以下、好ましくは0.01%以下となる量のタンパク質を添加するようにする。タンパク質添加工程後の細胞懸濁液中のタンパク質の最終濃度が0.1%以下、好ましくは0.01%以下であることにより、細胞の細胞展開用基板に対する吸着効果は十分に保持され、一度、細胞が吸着した後は、染色液等を送液しても容易には剥離しない。また、タンパク質添加工程後の細胞懸濁液中のタンパク質の最終濃度が0.0001%以上、好ましくは0.005%以上であることにより、細胞の実験用器材への付着抑制効果が十分に発揮される。細胞懸濁液を細胞展開用基板に添加する前のピペッティングの回数(詳細は別途記載)を抑え、例えば10回以下とすれば、タンパク質の添加量が0.0001%以上であれば、ピペットチップ等の実験用器材への非特異的吸着の抑制効果は十分に認められる。したがって、タンパク質添加工程後の細胞懸濁液中のタンパク質の最終濃度は、本発明では基本的に0.0001%~0.1%であるが、好ましい実施形態においては0.0005%~0.01%とすることができ、またピペッティングの回数を1~10回とする別の好ましい実施形態においては、0.0001%~0.01%とすることができる。
 タンパク質添加工程で添加するタンパク質としては、一般的にブロッキング剤として用いられているタンパク質を用いることができ、例えばBSAが好適である。
 タンパク質添加工程は、図1に示す実施形態のように、2回繰り返して行ってもよいし、1回だけ行う、または3回以上繰り返して行ってもよい。タンパク質添加工程を2回以上繰り返す場合は、少なくとも、細胞展開工程に移行する直前の最後のタンパク質添加工程において、細胞懸濁液中のタンパク質濃度を上記の所定の範囲とすればよいが、全てのタンパク質添加工程において、細胞懸濁液中のタンパク質濃度を上記の所定の範囲とすることが好ましい。
 なお、タンパク質添加工程の前、例えば第2チューブ内で行われる細胞固定化処理工程の前の段階で、チューブやピペットチップ等の実験用器材への細胞の非特異的吸着を抑制する目的で、細胞懸濁液にブロッキング処理剤として、上記所定の範囲の濃度またはそれを上回る濃度のBSA等のタンパク質を添加していてもよい(図1参照)。そのような段階ではまだ、タンパク質の濃度により、細胞展開用基板に対する細胞の吸着性を厳密に調節する必要がない。タンパク質添加工程の直前に、固定化処理された細胞(固定化処理を実施していない場合は無処理の細胞)を回収するために遠心分離が行われるが、その際に、それまでの工程で調製された細胞懸濁液中に含まれているタンパク質を実質的にすべて分離、除去すればよい(適切な遠心分離処理によっても除去しきれないごく微量のタンパク質が残存することは許容される)。その後、タンパク質添加工程において、本発明で規定する特定の濃度のタンパク質を含有する細胞用希釈液を添加すれば、最終濃度が本発明で規定する特定の範囲に収まっている細胞懸濁液を調製したと見做すことができる。
 また、もしもタンパク質添加工程の直前段階の細胞懸濁液中のタンパク質の量(濃度)を把握できるのであれば、その量を考慮して、タンパク質添加工程において添加すべきタンパク質の量(濃度)を調節することも可能である。そのようなタンパク質としては、例えば、血液(血漿)中に含まれるアルブミン、γ-グロブリン、その他の血漿タンパク質、あるいは固定化処理工程の前の非特異的吸着を防止するために添加されたBSAなどが挙げられる。また、血液からではなく、培養細胞を用いて細胞懸濁液を調製する場合、培地中に含まれているBSA等のタンパク質が挙げられる。さらに、病理診断で、患者(ヒト等)から採取した組織片の細胞に含まれるタンパク質も挙げられる。そのようなタンパク質の濃度が上記所定の範囲の濃度を超えていなければ、最終濃度が上記所定の範囲に収まるよう、適切な量のタンパク質を細胞懸濁液に添加することができる。
 (実験用器材)
 本発明の細胞展開方法における細胞固定化処理工程、タンパク質添加工程、細胞展開工程などにおいては、ピペットチップ、マイクロチューブなどの実験用器材が用いられる。これらの実験用器材の材質としては様々なものが知られているが、本発明では、少なくともタンパク質添加工程および/または細胞展開工程においては、ポリスチレン、ポリプロピレン、ポリカーボナイト、ポリエチレンテレフタラート、ポリメタクリル酸メチルまたはシクロオレフィンポリマーから選ばれる材質のピペットチップおよび/またはマイクロチューブを用いることが好ましく、特にポリプロピレン製のものを用いることが好ましい。また、上記の材質の実験用器材の表面は、親水化処理のようにさらに細胞が付着しにくくなる処理、例えば、メタクリルホスホリルコリン(MPC)ポリマーを用いた処理が施されていてもよい。しかし、これらの器材の材質は特に限定されるものではなく、目的に応じた様々な実施形態において最適な材質を選択することができる。
 上記の材質の実験用器材に対しては元々、細胞の器材への付着が比較的起こりにくい。しかし、細胞懸濁液中に所定の濃度のタンパク質(ブロッキング剤)が含まれていない場合では、多数の稀少細胞を含んだ細胞懸濁液を調製する時、細胞を細胞展開用基板へ連続導入する時、細胞や試薬を均一に分散させるためにピペッティングの回数を多くした時などには、ピペットチップやマイクロチューブ等の器材に非特異的に細胞が付着してしまう問題が生じていた。細胞が実験用器材に一度付着してしまうと、その細胞に連鎖的に他の細胞が付着して、稀少細胞の目的細胞を含む多数の細胞が実験用器材に残留してしまうので、稀少細胞等を細胞展開用基板上に展開し、マイクロチャンバー等で回収することができなくなってしまう。本発明では、細胞懸濁液中のタンパク質を所定の最終濃度に調製することにより、多数の稀少細胞を含んだ細胞懸濁液を連続して同じ器材で導入したり、ピペッティングの回数を比較的多くしたりしても、実験用器材への細胞の付着を抑制することができる。
 なお、細胞固定化処理工程においても同様に、ポリプロピレン等の材質のピペットチップ、マイクロチューブなどの実験用器材を用いることができるが、これに限定されるものではなく、目的に応じた器材を用いることができる。
 (ピペッティング)
 本発明のタンパク質添加工程で実施されるピペッティング(ピペットを用いた懸濁)は、タンパク質を細胞懸濁液に添加する際にそれらをよく混合するために実施される場合(第1ピペッティングと称する)と、タンパク質添加後の細胞懸濁液を細胞展開用基板へ添加する際に(つまり細胞展開工程において)細胞懸濁液中の細胞の偏りをなくし均一に分散した状態とするために実施される場合(第2ピペッティングと称する)がある。本発明では、第1ピペッティングおよび第2ピペッティングの回数は、調製した細胞懸濁液の細胞密度や添加したタンパク質の量に応じて、細胞懸濁液を均一に懸濁することができるよう、それぞれ任意に設定することができる。実験用器材(ピペットチップ)への吸着をなるべく少なくする観点からは、第1ピペッティングおよび第2ピペッティングの回数はそれぞれ、1~10回が好ましく、1~3回がより好ましい。また、第1ピペッティングおよび第2ピペッティングの合計回数も、10回以下とすることが好ましく、3回以下とすることがより好ましい。この程度の回数であれば、細胞懸濁液中のタンパク質の濃度が0.0001%であっても、実験用器材への非特異的吸着の抑制効果が十分に認められる。
 さらに、細胞展開工程におけるピペッティングのピペッティング体積は、調製した細胞懸濁液の細胞密度や添加したタンパク質の量に応じて、それぞれ任意に設定することができるが、細胞懸濁液の体積の6割以上の体積により行うことが好ましい。
 (3)細胞展開工程
 細胞展開工程は、タンパク質添加工程を経た細胞懸濁液に含まれる細胞を細胞展開用基板上に展開し、静置して吸着させる工程である。
 (細胞展開用基板)
 細胞展開用基板は、典型的には、後述する細胞展開用ないし細胞観察用のシステムに用いられるデバイスの流路基板に相当する。流路形成部材と組み合わせて流路を形成し、その流路に細胞懸濁液を導入することにより、細胞展開用基板(流路基板)の表面に細胞懸濁液中の細胞を展開するようにして用いられる。しかしながら、本発明の細胞展開方法を実施することのできる細胞展開用基板はそのような実施形態に限定されるものではなく、表面に細胞懸濁液を展開してその中に含まれる細胞を吸着させることができるものであればよい。たとえば、細胞展開用基板はスライドグラスや細胞培養用のシャーレの底面であってもよい。
 (水と基板との接触角)
 本発明で用いる細胞展開用基板は、水との接触角が60度以上であり、好ましくは70~90度である。接触角がこのような範囲にある場合、細胞懸濁液を細胞展開用基板上に添加し、静置することで、細胞懸濁液中の細胞を基板に十分な吸着力でもって吸着させることができる。本発明における水と細胞展開用基板との接触角は、カーブフィッティング法によって測定した静的接触角とする。
 ・細胞の固相化方法:細胞展開用基板の材質および構造
 稀少細胞等の目的細胞の検出効率を高めるためには、細胞を固相化する、つまり細胞展開用基板上の細胞の位置が動かないようにする必要がある。細胞を固相化することにより、観察の対象とする細胞の位置を特定しやすくなり、必要に応じて検出された目的細胞を回収することも可能となる。
 細胞の固相化のための手法は、細胞展開用基板の表面の構造によって細胞の移動できる範囲を制限するようにする手法(構造的手法)と、細胞展開用基板の表面の性状によって生じる物理的相互作用により細胞を吸着させて動かないようにする手法(相互作用手法)とに大別することができる。本発明においては、少なくとも細胞展開用基板に細胞を吸着させる相互作用的手法を利用し、好ましくはさらに構造的手法を併用する。
 本発明では、固相化の相互作用的手法として、細胞展開用基板の水との接触角を、前述したような特定の範囲(60度以上、好ましくは70~90度)に調整する。そのためには細胞展開用基板を、水との接触角がそのような範囲にある材質で作製するか、細胞展開用基板を表面修飾して水との接触角をそのような範囲にすればよい。例えば、疎水性が比較的強く、細胞が吸着しやすい、ポリスチレン製またはポリカーボネート製の細胞展開用基板を用いることが好ましい。また、このような疎水性のプラスチック製の細胞展開用基板を用いる場合、細胞展開用基板の上部に流路を設けて細胞懸濁液を導入し、好ましくは細胞展開用基板に次に述べるマイクロチャンバーのような構造を設けて細胞を収容することなどを考慮すると、細胞懸濁液と馴染みやすくするために、大気雰囲気下でUVを照射するUVオゾン処理や酸素プラズマ処理によって、上記の接触角の条件を満たす範囲で、適度に親水化してもよい。
 一方、固相化の構造的手法としては、たとえば、細胞展開用基板の表面に微細なチャンバー(マイクロチャンバー)または溝を複数形成することによって、細胞の移動をマイクロチャンバーまたは溝の中だけに制限することが挙げられる。構造的手法を利用しない場合は、細胞展開用基板の表面は平滑であってもよい。
 マイクロチャンバーの形状は特に限定されるものではないが、例えば、底面が平坦で側面がテーパー形状である逆円錐台形が好ましい。マイクロチャンバーの底面の直径および深さは、観察に適した数の細胞を回収して収容することができるよう、適宜調節することができる。例えば、1つのマイクロチャンバーあたり1~100個の細胞を収容できるよう、底面の直径を20~500μm、深さを20~500μmの範囲とすることが好ましい。なお、血液中の種々の細胞(赤血球を除く)の直径は一般的に5~100μmであり、CTC等の稀少細胞の直径は10~100μm程度と言われている。
 細胞展開用基板(流路基板)の表面上における、複数のマイクロチャンバーの配置は特に限定されるものではないが、細胞の回収率(懸濁液中の全ての細胞のうちマイクロチャンバー内に回収できた細胞の割合)がなるべく高くなるよう、配列の向きやマイクロチャンバー同士の間隔を調節されていることが好ましい。例えば、流路に細胞懸濁液を送液したときに流入口から流出口に至るまでのどこか少なくとも1箇所で細胞がマイクロチャンバーに沈降するよう、マイクロチャンバーを配列させることが好ましい。
 本発明では特に、マイクロチャンバーを有する、必要に応じて親水化処理された、水との接触角が60度以上(好ましくは70~90度である)ポリスチレン製の細胞展開用基板上に細胞を展開することが好適である。底面がポリスチレンであるマイクロチャンバーに細胞を吸着させることで、細胞懸濁液から細胞を効率的に分離、回収することができ、また細胞展開用基板上(流路中)の細胞懸濁液またはその他の液体の流れが比較的強くても一旦分離、回収された細胞が失われにくくなる。
 ・ブロッキング処理
 本発明では、タンパク質添加工程において細胞懸濁液に特定の濃度のタンパク質を添加し、かつ細胞展開用基板の水に対する接触角を特定の範囲としているので、細胞展開用基板のマイクロチャンバーの開口以外の領域に対してブロッキング処理を行わずとも、細胞懸濁液が流動している状態で、そのような領域に細胞が吸着してしまうことは抑制できる(これに対して、細胞懸濁液を展開した後、静置することにより、細胞が回収されているマイクロチャンバーの底面に対して細胞は吸着することができる)。しかしながら必要であれば、従来行われていたように(WO2014/007191:特許文献1参照)、細胞展開用基板のマイクロチャンバーの開口以外の領域をブロッキング処理しておいてもよい。そのような領域をブロッキング処理しておくことで、細胞が付着してしまう可能性をより一層低くし、稀少細胞等のマイクロチャンバー内に確実に回収してその底面に吸着させることができる。
 ・細胞展開用デバイス
 細胞展開用デバイスは、流路基板および流路形成部材によって構築されており、これらによって閉鎖されている空間が、細胞懸濁液等の液体を送液して満たすことのできる流路となっている。流路の上流側および下流側の末端付近には、上記の各種の液体を流入および排出させるための流入口および排出口が形成される。流路基板と流路形成部材とは、観察やメンテナンスのしやすさの観点から、係合、ねじ固定、粘着等の手段で取り付け・取り外しが可能なようになっていてもよい。
 細胞展開用デバイスの流路基板として、前述したような細胞展開用基板を用いることにより、本発明の細胞展開方法を実施する上で好適な細胞展開用デバイスを作製することができる。本実施形態における流路基板としての細胞展開用基板は、前述したように、少なくとも細胞を吸着させる相互作用的手法を利用できるようになっており、好ましくはさらに構造的手法を併用できるようになっている。
 流路形成部材は、流路に所定の高さを持たせるための空隙を生み出すとともに流路の平面的な範囲を形作る、流路の側壁を形成する枠部材と、枠部材の上に載せられ流路の天井を形成する天板部材によって構築されていてもよい。流路の上流側および下流側の末端付近において、その天井を形成している流路形成部材(蓋部材)には、流路の流入口および排出口に相当する開口が設けられる。天板部材は、流入口または流出口に連通している、細胞懸濁液等の液体を一時的に貯留する空間(リザーバー)を備えていてもよい。
 流路形成部材は、細胞展開用基板(流路基板)と同様、例えばポリスチレンで作製することができ、その場合は細胞展開用基板のマイクロチャンバーの開口以外の領域と同様、必要に応じてブロッキング処理されていてもよい。
 流路の高さ(流路基板と天板部材の間隔、すなわち枠部材の厚さ)は、50μm~500μmであることが好ましく、50~100μmであることがより好ましい。流路の高さがそのような範囲内であると、流路内の細胞懸濁液内の稀少細胞を送液の力で容易に移動させることができるとともに、流路の細胞による目詰まりが発生しにくいため、細胞を円滑に展開することができる。
 細胞展開工程では、細胞展開用基板(細胞展開用デバイスの流路基板)上に細胞懸濁液を送液し、所定の時間、例えば1分間以上静置して、細胞を沈降させるようにすればよい。細胞展開用基板の表面にマイクロチャンバーを設け、その中に細胞を収容して回収する場合は、細胞の回収効率を高めるために、送液の流量(流速)や向きに変化を付けてもよい。例えば、短時間送液した後、短時間静置するといったパターン(間欠送液)にしたり、流入口から流出口への順方向に送液した後、その逆方向送液するといったパターンにすることにより、流路基板のマイクロチャンバー以外の領域に残存したり、最後までマイクロチャンバー内に回収されずに廃棄されたりする稀少細胞等の目的細胞を極力減らすことが可能になる。
 (細胞展開方法の用途)
 本発明の細胞展開方法の用途は特に限定されるものではなく、目的に応じた様々な実施形態において本発明の細胞展開方法を利用することができる。典型的には、本発明の細胞展開方法は、稀少細胞等の目的細胞を検出するために利用され、細胞展開用基板上に細胞を展開した後、細胞の(蛍光)染色および観察などが行われる。このような実施形態が前述したような細胞展開用デバイスを用いて行われる場合、細胞を展開するための細胞懸濁液の送液の後に、(蛍光)染色液の送液や洗浄液の送液などが引き続き行われる。本発明では、細胞懸濁液中のタンパク質濃度を特定の範囲に調節し、細胞展開用基板への細胞の吸着性を保持するようにしているので、細胞懸濁液の送液後にさらに(蛍光)染色液、洗浄液、その他の溶液を送液した際に、細胞展開用基板の表面(マイクロチャンバーの内部)から脱離、流失してしまう細胞を少数に、例えば細胞展開工程において細胞懸濁液中から回収した細胞のうちの20%以下に(逆に言えば、細胞保持率を80%以上に)することができる。
 細胞を観察ないし検出する際に細胞の存在を特定するための染色液として、核染色剤の水溶液を用いることができる。核染色剤は、二本鎖DNAにインターカレートすることにより蛍光を発する蛍光色素分子である。そのような核染色剤としては、例えば、細胞膜透過性があり生細胞の核染色が行えるHoechst系色素(Hoechst 33342, Hoechst 33258等)や、細胞膜透過性がないため生細胞の核染色は行えないが、細胞膜が変質しているため透過可能になっている死細胞の核染色が行えるDAPI(4',6-diamidino-2-phenylindole)が挙げられる。
 また、特定の種類の細胞を観察ないし検出するための染色液としては、その細胞に特有のタンパク質(いわゆる細胞マーカー)に対する抗体と蛍光色素分子との複合体の水溶液を用いることができる。例えば、細胞展開用基板を用いて回収された白血球の中からCTCを同定するための、上皮細胞性のCTCでは発現し、白血球ではほとんど発現しないタンパク質としては、がん細胞マーカーとして知られている、細胞表面に発現するEpCAM(Epithelial cell adhesion molecule:上皮細胞接着分子)や、細胞内部に発現するサイトケラチン(CK)などが挙げられる。一方、白血球では発現し、CTCではほとんど発現しないタンパク質としては、白血球マーカーとして知られている、細胞表面に発現するCD45などが挙げられる。したがって、このような細胞マーカーを直接的に標識する染色剤、例えば細胞マーカーに対する抗体と蛍光色素分子との複合体や、細胞マーカーを間接的に標識する染色剤、例えば細胞マーカーに対する抗体(一次抗体)およびこの一次抗体に対する抗体(二次抗体)と蛍光色素分子との複合体の組み合わせなどを利用して、目的とする特定の種類の細胞に対応する染色液を調製することができる。
 <細胞展開方法の実施手段(装置・システム)>
 本発明の細胞展開方法を実施するための手段は特に限定されるものではなく、タンパク質添加工程および細胞展開工程、ならびに必要に応じて細胞固定化処理工程などその他の工程を公知の手段を用いて順次行っていけばよい。
 好ましい実施形態において、本発明の細胞展開方法のうち、少なくとも細胞展開工程は、タンパク質添加工程を経た細胞懸濁液を細胞展開用基板(細胞展開用デバイスにおける流路基板)上に展開するための送液系機構を備えた装置・システムを用いて実施することができる。さらに、前述したように稀少細胞等の目的細胞を検出するために、細胞展開工程に続いて細胞の(蛍光)染色や観察などが行われる場合、それらをまとめて実施することのできる細胞検出装置・システムを用いて実施することも可能である。さらに、このような細胞展開用ないし細胞検出用の装置・システムは、細胞固定化処理工程およびタンパク質添加工程を実施するための装置・システムと連動できるようにすることも可能である。
 図2に、細胞検出システム(200)の一実施形態を示す。細胞検出システム(200)は、細胞検出装置(100)、細胞展開用デバイス(100)、試薬収容器(20)および細胞検出装置が備える各種の機器類を制御するための制御手段(190)によって構成されている。細胞検出装置(100)は、細胞展開用デバイス(10)の流路(1)に各種の液体を送液するための送液系機構(110)、細胞展開用デバイス(100)で回収された細胞(CL)を観察するための光学系機構(120)、細胞展開用デバイス(100)を保持する細胞展開用デバイスホルダー(160)、および試薬収容器(20)を保持する試薬収容器ホルダー(170)を備える。送液系機構(110)および光学系機構(120)は、任意の位置で液の吸引・吐出および細胞観察を可能にするための、空間的な移動手段を備えることが望ましい。光学的機構(120)は顕微鏡に準じた構成とすることができ、特に蛍光色素で染色された細胞を観察できるよう蛍光顕微鏡に準じた構成とすることが好ましい。制御手段(190)は、特に細胞展開工程を自動的に行えるよう、所定の量の所定の液体を、所定のタイミングで所定の流量で細胞展開基板(11)上(流路(5)内)に導入できるよう、プログラムにより送液系機構(110)を制御できることが好ましい。
 ・送液系機構
 送液系機構は、好ましくは制御手段の制御により、試薬収容器の細胞懸濁液、(蛍光)染色液、洗浄液、その他の試薬類それぞれの収納部と細胞回収デバイスの流入口との間を移動し、それらの液の吸引および吐出を行う機構である。具体的には、送液系機構によって、試薬収容器に収容されている細胞懸濁液等の液体を所定の量吸引し、細胞回収デバイスの流入口で所定の流量で吐出して、流路に導入する。また、送液により所定の処理が終わった後は、流路を満たしていた液体を流入口から吸引して排出し、試薬収容器の廃液収納部で吐出する。送液系機構は、例えば、シリンジポンプ、交換可能なチップ、X軸方向(図の左右方向)およびZ軸方向(図の上下方向)に移動可能なアクチュエーターなどを用いて構築することができる。シリンジポンプは、細胞展開工程およびその他の工程において、細胞懸濁液、洗浄液等を所望の流量で吸引および吐出ができる能力を有する。送液系機構が備える「交換可能なチップ」は、本発明において細胞の非特異的吸着を抑制すべき「実験用器材」の一つに相当する。
 ・試薬収容器
 試薬収容器には、細胞懸濁液、染色液(核染色剤溶液、免疫蛍光染色溶液等)、洗浄液など、細胞展開工程およびその他の細胞観察のための工程を行う上で流路に送液する必要のある各種の液体が収容されている。例えば、洗浄液など比較的保存性の高い液体は、密封された状態であらかじめ試薬収容器の所定の部位に収容しておくことが可能であり、細胞懸濁液、染色液など細胞観察の直前に調製する必要のある液体は、調製後に試薬収容器の所定の部位に添加して収容させることができるようにする。本発明では、細胞懸濁液として、固定化処理工程およびタンパク質添加工程を経たものが用いられる。染色液、洗浄液など、細胞観察の際に複数回使用される溶液は、各工程に対応した容量の溶液を別個の部位に収容しておいてもよいし、各工程で同一の組成の溶液を繰り返し使用する場合はそれらの合計の用量の液体を1つの部位に収容しておいてもよい。また、試薬収容器には必要に応じて、送液後に吸引して流路から排出させた廃液を貯留する部位を設けておくようにする。「試薬収容器」(細胞懸濁液の収容部分)は、本発明において細胞の非特異的吸着を抑制すべき「実験用器材」の一つに相当する。
 -細胞展開用キット-
 本発明の細胞展開方法を実施するために利用することのできる細胞展開用キットは、例えば、上述したような濃度0.0001%~0.1%のタンパク質、好ましくは濃度0.0005%~0.01%のタンパク質を含有する細胞用希釈液、またはそれを調製するためのタンパク質および溶媒;ならびに水との接触角が60度以上、好ましくは70~90度である細胞展開用基板を含む。
 このような細胞展開用キットは、必要に応じて、その他の試薬、試薬を調製するための器材、使用説明書などを含んでいてもよい。その他の試薬としては、例えば、前述したような核染色液、洗浄液、あるいはこれらを調製するための核染色剤、洗浄剤、とそれらの希釈液(PBS等の溶媒)などが挙げられる。
 本発明の細胞展開方法は、細胞懸濁液に、最終濃度が0.0001%~0.1%となる量のタンパク質を添加する工程(タンパク質添加工程)、およびタンパク質添加工程を経た細胞懸濁液に含まれる細胞を、水との接触角が60度以上である細胞展開用基板上に展開し、静置して吸着させる工程(細胞展開工程)を含む。
 本発明の細胞展開方法は、前記タンパク質添加工程において、最終濃度が0.0005%~0.01%となる量のタンパク質を添加する実施形態を含んでもよい。
 本発明の細胞展開方法は、前記タンパク質添加工程において、最終濃度が0.0001%~0.01%となる量のタンパク質を添加し、かつ細胞展開工程におけるピペッティングを1~10回行う実施形態を含んでもよい。
 本発明の細胞展開方法は、細胞展開工程におけるピペッティングを1~3回行う実施形態を含んでもよい。
 本発明の細胞展開方法は、前記細胞展開用基板の水との接触角が70~90度である実施形態を含んでもよい。
 本発明の細胞展開方法は、前記細胞懸濁液に含まれる細胞が細胞固定化処理がなされている細胞である実施形態を含んでもよい。
 本発明の細胞展開方法は、前記タンパク質添加工程において用いられる、および/または細胞展開工程におけるピペッティングに用いられる実験用器材が、ポリプロピレン製である実施形態を含んでもよい。
 本発明の細胞展開方法は、前記タンパク質添加工程において用いられる、および/または細胞展開工程におけるピペッティングに用いられる実験用器材が、メタクリルホスホリルコリン(MPC)ポリマーもしくはウシ血清アルブミン(BSA)によりコーティングされている実施形態を含んでもよい。
 本発明の細胞展開方法は、細胞展開工程におけるピペッティングのピペッティング体積が、細胞懸濁液の体積の6割以上の体積により行われる実施形態を含んでもよい。
 本発明の細胞展開用キットは、(a)濃度0.0001%~0.1%のタンパク質を含有する細胞用希釈液、またはそれを調製するためのタンパク質および溶媒と、(b)水との接触角が60度以上である細胞展開用基板とを含んでもよい。
 本発明の細胞展開用キットは、前記(a)として、濃度0.0005%~0.01%のタンパク質を含有する細胞用希釈液、またはそれを調製するためのタンパク質および溶媒を含んでもよい。
 本発明の細胞展開用キットで使用される、前記細胞展開用基板(b)は、水との接触角が70~90度であってもよい。
 [実験例1](細胞の基板との吸着効果を与える水と基板との接触角のスクリーニング)
 [1-1]細胞懸濁液の調製
 CCRF-CEM細胞(ヒトTリンパ球性白血病由来細胞株)の培養液を、200G,4分間遠心処理し、分離された細胞をPBSで2回洗浄した。この細胞をPBSで懸濁し、3.0×105/mlの濃度の細胞懸濁液200μlを調製した。この細胞懸濁液に最終濃度が0.4%となるようホルムアルデヒドを添加して、プロテオセーブSS1.5mlマイクロチューブ(品番MS-4215M、登録商標、住友ベークライト、超親水化処理済みのポリプロピレン製)内で、室温で細胞の固定化処理を行った。得られた細胞懸濁液を実験例1のサンプルとした。
 [1-2]細胞展開用デバイスの作製
 所定の金型を用いて成型した、マイクロチャンバーを備えたポリスチレン製の細胞展開用基板を準備し、この基板および流路形成部材(流路蓋)にUV/O3を20秒間照射して親水化処理を行った後、細胞展開用デバイスを組み立てた。細胞展開用基板に対してBSAによるブロッキング処理は行っていない。マイクロチャンバーの直径は100μm、深さは50μmであり、マイクロチャンバーの形状は、底部が平坦な逆円錐形であった。隣接するマイクロチャンバー同士の中心間の距離を表わすピッチは200μmであり、空隙率(空隙とはマイクロチャンバーの開口部が流路長手方向(つまり流入口から流出口に向けての流下方向)に対して垂直の方向(つまり流路短手方向)において存在しない部分であり、空隙率とは基板の短手方向の長さに対する空隙の長さの割合である。)は0%であった。また、流路の高さは100μm、流路の幅(短手方向)は15mm、流路の長さ(長手方向)は40mmであった。すなわち、流路の断面積は1.5mm2であり、流路の容積は60mm3(=0.06mL)となる。
 上記のようにして作製した細胞展開用基板について、UV/O3を20秒間照射する親水化処理をする前とした後における水との接触角を、動的接触角計(FTA社製、「FTA125」)で測定したところ、それぞれ100度および80度であった。UV/O3の照射時間を変更し、それ以外は上記と同様にして、様々な水との接触角を有する基板を作成した。
 [1-3]細胞展開用基板への細胞の吸着
 [1-3-1]まず、[1-2]で作製した各細胞展開用デバイスの流路に、チューブおよび50mLテルモシリンジを接続し、流路内に超純水を導入してプレウェットを行ない(流速:40mL/min、容積:40mL)、この超純水で流路内を満たした。
 [1-3-2]次に、チューブおよび1mLハミルトンシリンジを流路に接続し、PBSを導入して(流速:0.1mL/min、容積:150μL)、このPBSで流路内を満たした。
 [1-3-3]続いて、同じハミルトンシリンジを用いて、流路内に[1-1]で調製した細胞懸濁液を導入し(流速:0.1mL/min、容積:150μL)、1分間静置した。その後、倒立顕微鏡にて1回目の画像撮影を行った。
 [1-3-4]さらに、同じハミルトンシリンジを用いて流路内にPBSを導入し(流速:1mL/min、容積:500μL)、流路内を洗浄した。その後、倒立顕微鏡にて、1回目のときと同一の視野において、2回目の画像撮影を行った。
 1回目の撮影画像(洗浄用PBS導入前)および2回目の撮影画像(洗浄用PBS導入後)のそれぞれにおける、マイクロチャンバー内に存在する細胞数を計測し、前者に対する後者の割合(細胞保持率)を算出した。結果を図3に示す。スクリーニングの結果、水と基板との接触角が60度のときを境界として、細胞展開用基板に対する細胞の吸着力が大きく変化し、接触角が60度以上の場合は80%以上の細胞保持率を示した。
 [実験例2](細胞の基板との吸着効果を与えるタンパク質濃度)
 実験例1の[1-1]と同様にして細胞懸濁液を調製した後、最終濃度が0%、0.0001%、0.001%、0.01%、0.1%または1%となるようタンパク質(BSA)を添加した。また、対照として、採血管Cyto-Chex(登録商標)に採取してから4日経過した全血をフィコール(GE社)処理し、赤血球を取り除いた後PBSで1回洗浄して試料を作製した(白血球の他、タンパク質を0.5%~1%程度含有している)。これらの5つの細胞懸濁液を実験例2のサンプルとした。
 細胞展開用基板として、UV/O3を30秒間照射して親水化処理した、水との接触角が80度である、マイクロチャンバーを備えたポリスチレン製の基板を使用した。実験例2における細胞懸濁液の各サンプルおよび細胞展開用基板を用いて、実験例1の[1-3]と同様の手順で、細胞保持率を算出した。結果を図4に示す。BSA濃度が1%の場合、基板に対する細胞の吸着性はほとんど失われており(細胞保持率20%)、BSA濃度が0.1%でも、細胞の吸着性は大きく損なわれている(細胞保持率60%)。これに対してBSA濃度が0.01%以下であれば、細胞の吸着性は十分に保持されており(細胞保持率93%以上)、比較的大きな流量で染色液や洗浄液を送液することができることが分かる。
 [実験例3](細胞の基板との吸着効果および染色プロトコルに対する対応能力)
 CCRF-CEM細胞の代わりにMDA-MB231細胞(ヒト乳癌由来細胞株)および白血球を用い、それ以外は実験例1の[1-1]と同様にして、固定化処理(処理時間3日間、室温)が行われたMDA-MB231細胞懸濁液および白血球懸濁液を調製した。これらの細胞懸濁液を混合し、3×105個の固定化処理されたMDA-MB231細胞および1000個の固定化処理された白血球を含む細胞懸濁液100μLを調製し、さらに最終濃度が0.01%となるようタンパク質(BSA)を添加した。また、対照として、最終濃度が1%となるようタンパク質(BSA)を添加し、それ以外は上記と同様の手順で細胞懸濁液を作製した。これらの2つの細胞懸濁液を実験例3のサンプルとした。
 細胞展開用基板として、UV/O3を30秒間照射して親水化処理した、水との接触角が80度である、マイクロチャンバーを備えたポリスチレン製の基板を使用した。また、染色液としては、抗CK染色液、抗CD45染色液および細胞核染色液(Hoechst溶液)を用いた。抗CK染色液は、PE(フィコエリスリン)標識抗CKモノクローナル抗体(クローン名CAM5.2 ベクトンディッキンソン社)の溶液であり、抗CD45染色液はAPC(アロフィコシアニン)標識抗CD45モノクローナル抗体(クローン名J33 ベックマンコールター社)の溶液である。MDA-MB231細胞(上皮細胞)は抗CK染色液によって免疫染色することができ、白血球は抗CD45染色液によって免疫染色することができる。すなわち、上記各染色液を反応させた場合に、CD45が陰性でCKが陽性、かつ、Hoechst33342溶液で染色される細胞が検出されれば、その細胞はMDA-MB231細胞であると判定することができ、CD45が陽性でCKが陰性、かつ、Hoechst33342溶液で染色される細胞が検出されれば、その細胞は白血球であると判定することができる。
 実験例3における細胞懸濁液の各サンプルおよび細胞展開用基板を用いて、まず、実験例1の[1-3-1]~[1-3-3]と同様の手順で、超純水、PBSおよび細胞懸濁液を流路に導入した(ただし、[1-3-3]の1回目の画像撮影は行わなかった)。
 さらに、[1-3-3]と同じハミルトンシリンジを用いて流路内に、抗CK染色液、抗CD45染色液および細胞核染色液(Hoechst33342溶液)の混合溶液を導入し(流速:0.1mL/min、容積:150μL)、マイクロチャンバー内に回収された細胞の染色を行った。
 その後、PE、APCおよびHoechst33342のそれぞれに対応する蛍光画像を撮影し、MDA-MB231細胞を同定し、その数を計測した。そして、当初の細胞懸濁液中のMDA-MB231細胞数(3×105個)に対する、細胞展開用基板で回収されたMDA-MB231細胞数の割合(細胞回収率)を算出した。
 タンパク質(BSA)の最終濃度が0.01%の場合、1%の場合それぞれ、3回の試行を行った。その結果、タンパク質の最終濃度が0.01%の場合は、平均細胞回収率は100%(SD10%)であり、本発明で規定する濃度のタンパク質を含有する細胞懸濁液は高い検出能力を有するといえ、染色プロトコルに対応できることを確認した。一方、タンパク質の最終濃度が1%の場合は、平均細胞回収率は10%(SD10%)であり、検出能力が著しく低下することが確認された。
 [実験例4](ポリプロピレン製実験器材に対する細胞の付着抑制に関する効果)
 実験例1の[1-1]と同様の手順で白血球の固定化処理を行い、直後に、得られた細胞懸濁液に細胞核染色液(Hoechst33342溶液)1μlを添加した。PBSを用いて細胞濃度を3.5×106/mlに調節した細胞懸濁液を、「プロテオセーブ(登録商標)SS 1.5mlマイクロチューブ」(住友ベークライト株式会社)に100μl添加し、300Gで1分間の遠心分離処理を行い、上清を除去した。遠心分離処理後細胞画分に、BSA濃度(調製される細胞懸濁液のタンパク質の最終濃度に相当)が0%、0.0001%、0.001%、0.01%、0.05%および0.1%のPBS溶液(BSA/PBS)を100μl添加し、ART200μlピペットチップ(登録商標、molecular Bio Products、ポリプロピレン製)および200μlピペットマンを用いて、サンプル分取量68μlで10回ピペッティングした。さらに、ピペットチップについた余剰の液滴を洗浄するため、PBSを同じ分取量で10回ピペッティングを行った。その後、ピペットチップを蛍光顕微鏡で撮影し、細胞のピペットチップへの付着抑制効果を評価した。結果を図5に示す。最終濃度が0.0001%以上のBSAが添加されていれば、BSAが添加されていない場合に比べて明らかに細胞の付着量が少なく、器材への細胞の付着抑制効果が認められた。
 以上の実験例2~4の結果を下記表にまとめて示す。このような結果から、本発明において細胞懸濁液に添加するタンパク質の量は、基本的に、最終濃度が0.0001%~0.1%となる量の範囲としており、好ましくは最終濃度が0.0005%~0.01%となる量の範囲とすることができる。また実験例5からピペッティング回数を(10回以下に)制限した場合は、好ましくは最終濃度が0.0001%~0.01%となる量の範囲とすることができる。
Figure JPOXMLDOC01-appb-T000001
[実験例5](ポリプロピレン製実験器材に対する細胞の付着抑制に関する効果)
 実験例4で調整した遠心分離処理後細胞画分に、BSA濃度(調製される細胞懸濁液のタンパク質の最終濃度に相当)が0.0001%のPBS溶液(BSA/PBS)を100μl添加し、ART200μlピペットチップ(登録商標、molecular Bio Products、ポリプロピレン製)および200μlピペットマンを用いて、サンプル分取量68μlで1、5、10、25、50、75、100、200回ピペッティングした。さらに、ピペットチップについた余剰の液滴を洗浄するため、PBSを同じ分取量で10回ピペッティングを行った。その後、ピペットチップを蛍光顕微鏡で撮影し、ピペットチップに付着した細胞数を測定した。ピペットチップに付着した細胞数と100μL中の細胞数の比を付着細胞割合として、ピペッティング回数毎にプロットした。作成したグラフを図6に示す。最終濃度が0.0001%の場合においてピペッティング回数を10回以下に抑制することで付着細胞割合を5%以下に抑制できる効果が認められた。
 1   流路
 2   流入口
 3   流出口
 4   リザーバー
 5   マイクロチャンバー
 10  細胞展開用デバイス
 11  流路基板(細胞展開用基板)
 12  流路形成部材
 12a 枠部材
 12b 天板部材
 20  試薬収容器
 CL  細胞懸濁液
100  細胞検出装置
110  送液系機構
111  チップ
120  光学系機構
160  細胞展開用デバイスホルダー
170  試薬収容器ホルダー
190  制御手段
200  細胞検出システム

Claims (12)

  1.  細胞懸濁液に、最終濃度が0.0001%~0.1%となる量のタンパク質を添加する工程(タンパク質添加工程)、および
     タンパク質添加工程を経た細胞懸濁液に含まれる細胞を、水との接触角が60度以上である細胞展開用基板上に展開し、静置して吸着させる工程(細胞展開工程)
    を含む、細胞展開方法。
  2.  前記タンパク質添加工程において、最終濃度が0.0005%~0.01%となる量のタンパク質を添加する、請求項1に記載の細胞展開方法。
  3.  前記タンパク質添加工程において、最終濃度が0.0001%~0.01%となる量のタンパク質を添加し、かつ細胞展開工程におけるピペッティングを1~10回行う、請求項1に記載の細胞展開方法。
  4.  細胞展開工程におけるピペッティングを1~3回行う、請求項3に記載の細胞展開方法。
  5.  前記細胞展開用基板の水との接触角が70~90度である、請求項1に記載の細胞展開方法。
  6.  前記細胞懸濁液に含まれる細胞が細胞固定化処理がなされている細胞である、請求項1に記載の細胞展開方法。
  7.  前記タンパク質添加工程において用いられる、および/または細胞展開工程におけるピペッティングに用いられる実験用器材が、ポリプロピレン製である請求項1に記載の細胞展開方法。
  8.  前記タンパク質添加工程において用いられる、および/または細胞展開工程におけるピペッティングに用いられる実験用器材が、メタクリルホスホリルコリン(MPC)ポリマーもしくはウシ血清アルブミン(BSA)によりコーティングされている請求項1に記載の細胞展開方法。
  9.  細胞展開工程におけるピペッティングのピペッティング体積が、細胞懸濁液の体積の6割以上の体積により行う請求項3に記載の細胞展開方法。
  10.  (a)濃度0.0001%~0.1%のタンパク質を含有する細胞用希釈液、またはそれを調製するためのタンパク質および溶媒と、
     (b)水との接触角が60度以上である細胞展開用基板と
    を含む、細胞展開用キット。
  11.  前記(a)として、濃度0.0005%~0.01%のタンパク質を含有する細胞用希釈液、またはそれを調製するためのタンパク質および溶媒を含む、請求項10に記載の細胞展開用キット。
  12.  前記細胞展開用基板(b)の水との接触角が70~90度である、請求項10に記載の細胞展開用キット。
PCT/JP2016/081512 2015-10-26 2016-10-25 稀少細胞を観察するための細胞展開方法および細胞展開用キット WO2017073533A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/770,964 US20180348098A1 (en) 2015-10-26 2016-10-25 Cell-spreading method and cell-spreading kit for observing rare cells
EP16859763.1A EP3369804A4 (en) 2015-10-26 2016-10-25 Cell-spreading method and cell-spreading kit for observing rare cells
JP2017547791A JPWO2017073533A1 (ja) 2015-10-26 2016-10-25 稀少細胞を観察するための細胞展開方法および細胞展開用キット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015209744 2015-10-26
JP2015-209744 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017073533A1 true WO2017073533A1 (ja) 2017-05-04

Family

ID=58630391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081512 WO2017073533A1 (ja) 2015-10-26 2016-10-25 稀少細胞を観察するための細胞展開方法および細胞展開用キット

Country Status (4)

Country Link
US (1) US20180348098A1 (ja)
EP (1) EP3369804A4 (ja)
JP (1) JPWO2017073533A1 (ja)
WO (1) WO2017073533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230725A1 (ja) * 2018-05-28 2019-12-05 中外製薬株式会社 充填ノズル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022064159A (ja) * 2020-10-13 2022-04-25 吉川化成株式会社 バイオテクノロジ分野で用いられるプラスチック成形品及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296427A (ja) * 2005-04-15 2006-11-02 Samsung Electronics Co Ltd 疎水性固体支持体を利用した細胞分離方法
JP2009000012A (ja) * 2007-06-19 2009-01-08 Gc Corp 細胞培養容器
WO2014061675A1 (ja) * 2012-10-17 2014-04-24 コニカミノルタ株式会社 希少細胞の回収方法および検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296427A (ja) * 2005-04-15 2006-11-02 Samsung Electronics Co Ltd 疎水性固体支持体を利用した細胞分離方法
JP2009000012A (ja) * 2007-06-19 2009-01-08 Gc Corp 細胞培養容器
WO2014061675A1 (ja) * 2012-10-17 2014-04-24 コニカミノルタ株式会社 希少細胞の回収方法および検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, MENG. ET AL.: "Cell attachment and biocompatibility of polytetrafluoroethylene (PTFE) treated with glow-discharge plasma of mixed ammonia and oxygen", JOURNAL OF BIOMATERIALS SCIENCE, vol. 14, no. 9, 2003, pages 917 - 935, XP055379527 *
IKEDA, Y.: "Surface modification of polymers for medical applications", BIOMATERIALS, vol. 15, no. 10, 1994, pages 725 - 736, XP024142207 *
See also references of EP3369804A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230725A1 (ja) * 2018-05-28 2019-12-05 中外製薬株式会社 充填ノズル
JPWO2019230725A1 (ja) * 2018-05-28 2021-07-29 中外製薬株式会社 充填ノズル
JP2021191417A (ja) * 2018-05-28 2021-12-16 中外製薬株式会社 充填ノズル
EP3805112A4 (en) * 2018-05-28 2022-03-09 Chugai Seiyaku Kabushiki Kaisha FILLING NOZZLE
JP2022172176A (ja) * 2018-05-28 2022-11-15 中外製薬株式会社 充填ノズル
JP7255005B2 (ja) 2018-05-28 2023-04-10 中外製薬株式会社 充填ノズル
US11708186B2 (en) 2018-05-28 2023-07-25 Chugai Seiyaku Kabushiki Kaisha Filling nozzle
US11932435B2 (en) 2018-05-28 2024-03-19 Chugai Seiyaku Kabushiki Kaisha Filling nozzle

Also Published As

Publication number Publication date
EP3369804A1 (en) 2018-09-05
JPWO2017073533A1 (ja) 2018-08-09
EP3369804A4 (en) 2018-10-17
US20180348098A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US10416150B2 (en) Microfluidic isolation of tumor cells or other rare cells from whole blood or other liquids
US9290812B2 (en) Methods and compositions for separating rare cells from fluid samples
AU2013286593B2 (en) Methods and compositions for separating or enriching cells
JP6782998B2 (ja) 装置
US8969021B2 (en) Methods and compositions for detecting non-hematopoietic cells from a blood sample
US20160237397A1 (en) Methods and devices for breaking cell aggregation and separating or enriching cells
WO2013028848A1 (en) Boundary layer suction for cell capture
WO2016148085A1 (ja) 微粒子分離用チップ、該微粒子分離用チップを用いた微粒子分離用システム、該微粒子分離用システムを用いた微粒子分離方法及び微粒子抽出方法
WO2014061631A1 (ja) 微粒子分離用マイクロ流路チップ、該チップを用いた微粒子分離用システム及び微粒子分離方法
WO2018191534A1 (en) Methods, compositions, and devices for separating and/or enriching cells
WO2017073533A1 (ja) 稀少細胞を観察するための細胞展開方法および細胞展開用キット
WO2016121574A1 (ja) 相互作用する分子を有する血中細胞の同時検出方法
JP6519482B2 (ja) 細胞の蛍光免疫染色方法ならびにそのためのシステムおよびキット
JP6528378B2 (ja) 細胞展開方法およびそのためのキット
US20210025871A1 (en) Purification process for cells
JP6754345B2 (ja) 粒子の磁気標識方法及び標識装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859763

Country of ref document: EP