WO2014003123A1 - 製鋼スラグ還元処理方法 - Google Patents
製鋼スラグ還元処理方法 Download PDFInfo
- Publication number
- WO2014003123A1 WO2014003123A1 PCT/JP2013/067665 JP2013067665W WO2014003123A1 WO 2014003123 A1 WO2014003123 A1 WO 2014003123A1 JP 2013067665 W JP2013067665 W JP 2013067665W WO 2014003123 A1 WO2014003123 A1 WO 2014003123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- molten
- electric furnace
- hot
- steelmaking
- Prior art date
Links
- 239000002893 slag Substances 0.000 title claims abstract description 377
- 238000000034 method Methods 0.000 title claims abstract description 57
- 229910000831 Steel Inorganic materials 0.000 title abstract description 15
- 239000010959 steel Substances 0.000 title abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 220
- 229910052742 iron Inorganic materials 0.000 claims abstract description 105
- 239000000463 material Substances 0.000 claims abstract description 46
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 238000009628 steelmaking Methods 0.000 claims description 131
- 238000006722 reduction reaction Methods 0.000 claims description 66
- 239000003575 carbonaceous material Substances 0.000 claims description 11
- 239000003607 modifier Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 2
- 238000005485 electric heating Methods 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 24
- 239000002994 raw material Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 229910052748 manganese Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000007664 blowing Methods 0.000 description 8
- 238000011946 reduction process Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000010405 reoxidation reaction Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002686 phosphate fertilizer Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000161 steel melt Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0087—Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
- C04B5/06—Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5229—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/527—Charging of the electric furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B19/00—Combinations of furnaces of kinds not covered by a single preceding main group
- F27B19/04—Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/18—Arrangements of devices for charging
- F27B3/183—Charging of arc furnaces vertically through the roof, e.g. in three points
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D15/00—Handling or treating discharged material; Supports or receiving chambers therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/14—Charging or discharging liquid or molten material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5229—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
- C21C2005/5235—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace with bottom electrodes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2300/00—Process aspects
- C21C2300/04—Avoiding foam formation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a steelmaking slag reduction treatment method that recovers valuable components by reducing slag (steelmaking slag) generated in a steelmaking process and that modifies the properties of the steelmaking slag to suit various applications.
- This application includes Japanese Patent Application No. 2012-144473 filed in Japan on June 27, 2012, Japanese Patent Application No. 2012-144557 filed in Japan on June 27, 2012, and October 25, 2012.
- Steelmaking slag contains metal components such as Fe and Mn, and P.
- metal components such as Fe and Mn, and P.
- due to expansion and disintegration caused by containing a large amount of CaO its use for roadbed materials and aggregates has been limited. .
- recycling of resources has been actively promoted, and many methods for recovering valuable materials from steelmaking slag have been disclosed so far.
- Patent Document 1 to steel melt stored in a melting furnace, steel slag generated at the time of steel melting is added, and further, heat and reducing material are added to transform the steel slag, while Fe, Mn, and A steel slag treatment method is disclosed in which P is transferred to molten metal to obtain a modified slag, and then Mn and P in the molten metal are transferred to slag.
- this processing method is poor in work efficiency because it is necessary to continuously perform several batch processes until a slag having a required component composition is obtained.
- Patent Document 2 steel slag having an iron oxide content of more than 5 wt% is supplied to a steel bath having a carbon content of less than 1.5 wt%, and then carbon or a carbon carrier is introduced to carbonize the steel bath, A method is disclosed in which a reduction treatment is performed after obtaining a steel bath with a carbon content greater than 2.0 wt%.
- Patent Document 2 suppresses the generation of a large amount of gas by setting the C concentration (carbon concentration) in molten iron to less than 1.5 wt% when molten slag is charged, and the C concentration is 2.0 wt% when performing smelting reduction.
- the desired reduction is carried out by raising it to a very high level. Therefore, since decarburization heating and carburization reduction are repeated, batch processing is performed and work efficiency is poor.
- Patent Document 2 Since the C concentration is increased to over 2.0 wt% during the reduction treatment, the method of Patent Document 2 promotes the reduction reaction mainly by the reaction between slag and metal. Conceivable.
- Non-Patent Document 1 discloses a result of a reduction test in which steel-manufactured slag powder, carbonaceous material powder, and slag modifier powder are charged from a hollow electrode in an electric furnace.
- the reduction test of Non-Patent Document 1 since the cold steel-making slag that has been solidified and pulverized is used as the object to be processed, the energy intensity is large.
- Patent Document 3 discloses a method of recovering valuable metals by reducing molten slag generated by non-ferrous refining with a carbonaceous reducing material in an open DC electric furnace, separating it into a metal phase and a slag phase. Has been. However, since the method of Patent Document 3 similarly uses cold slag as a processing object, the energy intensity is large.
- any of the methods for recovering valuable components from slag has a problem that the working efficiency is low or the energy intensity is large.
- the conventional method of recycling hot steelmaking slag by batch processing has poor work efficiency, and the conventional method of melting cold steelmaking slag and recycling it as a resource has the disadvantages of high energy intensity. I have it.
- the present invention performs reduction treatment of steelmaking slag as a method with good working efficiency and low energy intensity, and (i) various uses such as cement raw materials, earthwork materials, ceramic products, etc.
- the purpose is to modify the material into a usable material.
- the present invention simultaneously reduces (ii) valuable elements such as Fe, Mn, and P in molten iron, and then (ii-1) Fe and Mn are recycled to the iron making process.
- ii-2) P is intended to be used as phosphoric acid fertilizer or phosphoric acid raw material by recovering it as an oxide by oxidizing molten iron.
- the gist of the present invention is as follows. (1) The first aspect of the present invention is to adjust the inflow amount of hot steelmaking slag from a slag supply container toward the molten slag layer on the molten iron accommodated in the electric furnace by the slag supply container.
- the amount of electric power supplied to the electric furnace is the amount of inflow of the hot steelmaking slag into the molten slag layer. You may adjust based on.
- exhaust gas discharged from the electric furnace may be discharged through the slag supply container.
- the slag modifier supply that continuously or intermittently supplies the slag modifier to the molten slag layer You may further provide a process.
- the C concentration in the molten iron may be 3% by mass or less.
- the steelmaking slag can be modified at low cost into a material that can be used for various uses such as a cement raw material, an earthwork material, and a ceramic product, and Fe, Mn, P, etc. These valuable elements can be reduced and recovered in molten iron. Then, Fe and Mn can be recycled to the iron making process, and P can be used as a phosphate fertilizer or phosphoric acid raw material.
- (C) supplying carbon steel in an excessively suspended state in advance to hot steelmaking slag; and (D) reducing the C concentration of the molten iron to 3% by mass or less (provided that strong reduction is not required); Has also been found to be more suitable when used in combination with the above methods (a) and (b).
- the present invention is based on the technical idea that if the steelmaking slag is subjected to reduction treatment while it is hot and fluid, the energy intensity can be kept low.
- the present inventors reduced the steelmaking slag generated in the steelmaking process by flowing it into an electric furnace while it is hot and recovering valuable components and reforming the slag.
- the idea was that steelmaking slag could be recycled with low energy intensity.
- the steelmaking slag to be processed by the steelmaking slag treatment method according to the present embodiment may be slag generated in the steelmaking process, and is not limited to slag having a specific component composition.
- a molten slag layer on molten iron accommodated in an electric furnace that is, a layer of molten slag on molten iron generated by subjecting the steelmaking slag to reduction treatment (hereinafter simply referred to as “ The hot steelmaking slag that is hot and fluid is allowed to flow continuously or intermittently from a slag supply container to be described later, and the reduction treatment is continued.
- the electric furnace for example, 100 to 150 ton of molten iron is allowed to exist. Since the C concentration of the molten iron affects the reducing ability to reduce the iron oxide in the molten slag, it is preferable to set it according to the target reduced level of the molten slag.
- the C concentration of molten iron is usually 1.5 to 4.5% by mass. It was experimentally found that the C concentration (mass%) of the molten iron correlates with (Total Fe) (mass%) of the molten slag after the reduction treatment. Specifically, by measuring the relationship of (Total Fe) (mass%) in the molten slag after the reduction treatment under the condition that the concentration of C concentration (mass%) in the molten iron was changed in a test furnace. I found it.
- Figure 5 shows the results. It is understood that when the C concentration of the molten iron exceeds 3% by mass, the reduction of the iron oxide in the molten slag is further promoted, and (Total Fe) of the molten slag is reduced to 2% by mass or less. In this test, (Total Fe) of the steelmaking slag before the reduction treatment was 18.6% by mass.
- the component composition of the molten iron is not particularly limited, but an example is shown in Table 1. However, the contents of Mn and P ([Mn], [P]) tend to increase as the molten slag is reduced.
- FIG. 1 shows, as an example, an electric furnace 1 and a slag supply container 9 for carrying out the steelmaking slag reduction treatment method according to the present embodiment.
- a slag supply container 9 through which hot steelmaking slag 6 ', which is hot (for example, 300 ° C or higher), flows into the electric furnace 1 via the slag supply part 4. It has been.
- the slag supply container 9 can be tilted at an arbitrary angle around the tilt axis z, whereby the amount of hot steelmaking slag 6 ′ flowing into the electric furnace 1 can be adjusted.
- This electric furnace 1 is a closed and fixed DC electric furnace with no opening in the furnace wall.
- the slag supply container 9 is provided with an exhaust part 13, and exhaust gas generated in the electric furnace 1 is exhausted from the exhaust part 13 through the slag supply part 4.
- the atmosphere of the slag supply container 9 can be always in a negative pressure state, which is preferable. In this case, even if the outside air enters from the gap between the connecting portions of the slag supply container 9 and the electric furnace 1, the outside air that has entered flows into the slag supply container 9.
- the atmosphere in the electric furnace 1 includes CO gas generated by the reduction reaction and H 2 generated from the supplied reducing material (carbon material). Maintained in a non-oxidizing atmosphere (reducing atmosphere) as a main component. For this reason, the oxidation reaction on the surface of the molten slag 6 on the molten iron 5 accommodated in the electric furnace 1 can be prevented.
- FIG. 6 shows a comparison of (Total Fe) (%) of the molten slag 6 with and without an opening in the furnace wall of the electric furnace 1.
- Molten iron 5 is accommodated on the bottom side of the electric furnace 1, and a molten slag 6 layer obtained by reducing hot steelmaking slag 6 ′ flowing from the slag supply container 9 on the molten iron 5 ( Molten slag layer) is formed.
- the inflow of the slag supply container 9 and the hot steelmaking slag 6 'into the electric furnace 1 will be described later.
- the electric furnace 1 is a closed and fixed DC electric furnace, and includes an electrode 2 in which an upper electrode 2a and a furnace bottom electrode 2b are paired in a vertical direction. With this electrode 2, the molten iron 5 and molten slag 6 layers can be energized and heated.
- the furnace side wall 1a of the electric furnace 1 is provided with a tap hole 7 for intermittently discharging the molten slag 6, and the furnace side wall 1b is provided with a tap hole 8 for intermittently discharging the molten iron 5. .
- the tap hole 7 and the tap hole 8 are cooled by a jacket or sprinkling cooling (not shown).
- the electric furnace 1 may be provided with a raw material supply device (not shown) for supplying iron raw materials such as small iron scraps and DRI (Direct Reduced Iron) to the molten iron 5.
- molten iron 5 can be produced by melting and reducing small lump iron scrap, reduced iron, powdered dust and the like.
- the electric furnace 1 may be provided with a secondary material supply pipe 14a that supplies a reducing material necessary for the reduction and a secondary material such as a modified powder that modifies the characteristics of the molten slag 5.
- a secondary material supply pipe 14a that supplies a reducing material necessary for the reduction and a secondary material such as a modified powder that modifies the characteristics of the molten slag 5.
- FIG. 2 the aspect which provided the auxiliary material supply pipe
- the auxiliary material reducing material, modified powder, etc.
- the upper electrode 2a of the electrode 2 may be a hollow electrode, and the hollow portion may be used as the auxiliary raw material supply pipe 14a. If the hollow electrode is used, auxiliary materials (reducing material, modified powder, etc.) can be directly blown into the arc spot.
- An auxiliary material blowing lance 14b may be provided in the electric furnace 1, and powder (sub raw material) that is easily scattered may be supplied into the electric furnace 1.
- powder sub raw material
- FIG. 3 the aspect which provided the auxiliary
- the slag supply container 9 includes an opening 13a for receiving supply of hot steelmaking slag 6 'from a slag pan (not shown), and the opening 13a is formed from the slag pan (not shown) of hot steelmaking slag 6'. When there is no supply, it may be closed with a lid 13b.
- the slag supply container 9 may be provided with an adding device (not shown) for adding a modifier for modifying the hot steelmaking slag 6 '.
- the slag supply container 9 can tilt at an arbitrary angle around the tilt axis z. Therefore, (I) The hot steelmaking slag 6 ′ flowing from the slag pan through the opening 13 a is temporarily stored and held, and then the molten iron is supplied to the electric furnace 1 from the slag supply unit 4 while adjusting the inflow amount. When flowing toward the layer of molten slag 6 above 5, (Ii) When the hot steelmaking slag 6 ′ flowing from the slag pan through the opening 13 a is temporarily stored and held, it flows as it is into the molten slag 6 layer on the molten iron 5. It is possible to cope with any of these cases. Depending on the amount of hot steelmaking slag 6 ′ supplied from the slag pan, a suitable inflow method can be appropriately used.
- the lower wall 10 of the slag supply container 9 is preferably made of a refractory material, and the upper wall 11 is preferably made of a water-cooled refractory lining wall. Further, the slag supply container 9 is connected to the electric furnace 1 through the slag supply unit 4.
- the slag supply container 9 may be provided with a nozzle 12 for blowing oxygen or an oxygen-containing gas into the exhaust gas containing CO and H 2 .
- a nozzle 12 for blowing oxygen or an oxygen-containing gas into the exhaust gas containing CO and H 2 .
- the temperature in the slag supply container 9 may not rise to a temperature at which the hot steelmaking slag 6 ′ does not adhere to the slag supply container 9, so the slag supply container 9 A combustion burner 12a may be provided.
- the slag supply container 9 is provided with a tilting device (not shown). With the tilting device, the slag supply container 9 is tilted about the tilt axis z, and the steelmaking slag on the surface layer of the hot steelmaking slag 6 ′ is caused to flow into the electric furnace 1 from the slag supply unit 4. A specific supply method will be described later.
- Hot steelmaking slag 6 ′ that is hot and fluid is temporarily stored in a device that can adjust the amount of inflow into the electric furnace 1, so that the hot steelmaking slag 6 ′ does not overflow in the electric furnace 1. As described above, the amount of flow into the electric furnace 1 is adjusted to flow in.
- the hot steelmaking slag 6 ′ to be processed by the method according to the present embodiment only needs to have sufficient fluidity to be allowed to flow continuously or intermittently into the electric furnace 1, and is completely in a molten state. There is no need.
- the solid phase ratio of the hot steelmaking slag 6 ′ is not particularly limited. For example, if it is about 30% or less at about 1400 ° C., it has fluidity that can flow into the electric furnace 1, and thus is suitable. It is.
- the solid phase ratio can be calculated using commercially available software.
- the slag supply container 9 is tilted to adjust the inflow amount so that the molten steel slag 6 ′ in the slag supply container 9 does not overflow from the electric furnace 1 continuously or intermittently.
- To flow into. When hot steelmaking slag 6 'is allowed to flow intermittently, (I) A mode in which the inflow and interruption of hot steelmaking slag 6 'are repeated as appropriate, or (Ii) A mode in which a required amount of hot steelmaking slag 6 ′ is supplied at a predetermined time interval may be adopted.
- the amount of inflow of hot steelmaking slag 6 ′ is determined by the amount of power supplied to the electrode 2. That is, the inflow amount of hot steelmaking slag 6 'that is allowed to flow continuously or intermittently is calculated based on the power consumption necessary for the steelmaking slag reduction process and the actual amount of supplied power.
- the electric power basic unit required for the reduction process of steelmaking slag can be calculated
- the power consumption rate is an estimated value based on the heat balance calculation, the error appears as a temperature change of the molten slag 6 in the electric furnace 1.
- the fluctuation of the molten slag temperature can be controlled by adjusting the inflow amount of hot steelmaking slag 6 'and the reducing material supply amount.
- the temperature in the electric furnace 1 can be controlled such that the molten iron temperature is 1400 to 1550 ° C. and the molten slag temperature is 1500 to 1650 ° C.
- the hot steelmaking slag 6 ′ having a high temperature is introduced into the electric furnace 1.
- the high temperature surface layer of the hot steelmaking slag 6 ′ in the slag supply container 9 is updated, and the efficiency of heat application to the hot steelmaking slag 6 ′ remaining in the slag supply container 9 is improved.
- Whether or not an abnormal situation such as overflow occurs will be determined by monitoring the inside and outside of the furnace with a monitoring camera, monitoring the behavior of the hot steelmaking slag 6 'with a sound meter, and the surface level of the molten slag by microwave irradiation. It can be detected by monitoring or the like.
- the following means (b) includes Therefore, (a) and (b) may be used in combination.
- the presence of the molten slag 6 after the reduction treatment as a buffer zone on the upper surface of the molten iron 5 reduces the (FeO) concentration of the molten slag 6 and also reduces the chance of contact between the molten slag 6 and the molten iron 5. Therefore, forming of the molten slag 6 can be suppressed, and as a result, overflow of the molten slag 6 from the electric furnace 1 can be prevented.
- the supply rate When hot steelmaking slag 6 'is continuously supplied to the electric furnace 1, the supply rate must match the power supply rate to the electrode 2 in the long term, but in the short term, the supply rate to the electrode It is not necessary to match the power supply speed. This is because when a predetermined amount of hot steelmaking slag 6 ′ is intermittently introduced into the electric furnace 1, the amount of inflow does not match the power supply speed to the electrode 2 in the short term.
- an amount of reducing material corresponding to the amount of the hot steelmaking slag 6 ′ flowed into the electric furnace 1 is used. It is necessary to supply into the furnace 1.
- Carbon materials are usually used as reducing materials.
- As the carbon material coke powder, smokeless coal powder, graphite powder, carbon-containing dust powder, fly ash, or the like can be used.
- a method of blowing the reducing material a method of continuously or intermittently supplying from the auxiliary material supply pipe 14a provided on the furnace ceiling 1c (see FIG. 2) may be used. It can also supply from a part or the auxiliary
- the slag modifier is mainly used for adjusting (SiO 2 ) and (Al 2 O 3 ), it is necessary to select an appropriate material.
- the slag modifier preferably contains one or more of SiO 2 , CaO, Al 2 O 3 , and MgO.
- a slag modifier coal ash, slag powder containing a large amount of SiO 2 , Al 2 O 3 , brick waste, aluminum dross, and the like can be used.
- the iron-containing raw material is preferably one or more of iron scrap, reduced iron, and powdered dust.
- a technique of suspending the carbonaceous material excessively with respect to the amount necessary for the reduction treatment May be used in combination.
- 1.1 to 1.6 times the reducing material (pulverized coal) of the stoichiometric amount necessary for the reduction reaction with the molten slag 6 is blown into the molten slag 6 and suspended. It is preferable to make it turbid.
- the reducing material (pulverized coal) is less than 1.1 times the stoichiometric amount, the forming suppression effect due to the addition of the reducing material (pulverized coal) is difficult to express, and if the reducing material exceeds 1.6 times the stoichiometric amount, forming Suppressive effect is saturated.
- (D) a method of reducing the C concentration of the molten iron 5 to 3% by mass or less, May be used in combination. It has been experimentally known that it is easy to suppress the molten slag 6 from entering the forming state and overflowing from the electric furnace 1 by reducing the C concentration of the molten iron 5 to 3% by mass or less. Based on that.
- hot steelmaking slag 6 ′ that is hot and fluid is subjected to a reduction process while continuously or intermittently flowing into the electric furnace 1 from the slag supply container 9.
- the molten slag 6 is intermittently discharged from the tap hole 7 provided in the furnace bottom side wall, and the molten iron 5 is intermittently discharged from the tap hole 8.
- the reduction process of the molten slag 6 formed by flowing in the hot steelmaking slag 6 ′ which is hot and fluid can be continued without interruption.
- Hot steelmaking slag 6 ' can be continuously or intermittently flowed into the electric furnace 1 according to the power supply speed, and the temperature fluctuation of the molten slag layer in the electric furnace 1 can be reduced
- FIG. 4 shows a reaction mode in the molten slag layer when a hollow electrode is used.
- carbon powder C reducing material
- FIG. 4 shows a reaction mode in the molten slag layer when a hollow electrode is used.
- carbon powder C reducing material
- the power supply amount may be temporarily adjusted. good.
- the hot steelmaking slag inflow rate and / or the carbonaceous material supply rate can be changed to keep the temperature of the molten slag 6 almost constant.
- the layer thickness of the molten slag 6 in the electric furnace 1 is appropriately adjusted according to the operating conditions, but is preferably 100 to 800 mm, more preferably 100 to 600 mm.
- the layer thickness of the molten slag 6 is thin, the arc frame is exposed and the loss of radiant heat increases.
- the layer thickness of the molten slag 6 is thick, the contact area between the electrode and the molten slag 6 is increased, and consumption of the electrode 2 is promoted. If the thickness of the molten slag 6 is thick, the voltage must be increased. However, if the voltage is increased, it may become easy to discharge from the furnace wall. Therefore, it is important to set the upper limit of the voltage in consideration of this point.
- the tap hole 7 is opened and the molten slag 6 is discharged out of the electric furnace 1.
- the tap hole 8 below the tap hole 7 is opened, and the molten iron 5 is discharged.
- the interface between the molten slag 6 and the molten iron 5 is close to the tap hole 7, the separation performance of the molten slag 6 and the molten iron 5 is deteriorated.
- the molten slag 6 is reduced by carbon, the reduced iron is accumulated in the molten iron 5, and the reduced slag is accumulated in the molten slag layer on the molten iron 5.
- the molten slag 6 is discharged from the tap hole 7 about 46 tons once an hour, and the molten iron 5 is discharged from the tap hole 8 about 44 tons once every five hours.
- Tables 2 and 3 Examples of the composition of the discharged slag and the composition of the discharged molten iron 5 are shown in Tables 2 and 3.
- the molten slag 6 discharged from the tap hole 7 is subjected to water granulation and rapid cooling treatment on the spot, or received in a container and subjected to gradual cooling treatment to obtain a product. That is, the discharged molten slag 6 prevents crystallization by rapid cooling and is used as a cement raw material, or promotes crystallization by slow cooling and is used for applications such as earthwork and natural stone replacement.
- a method for rapid cooling there is a water granulation treatment
- a method for slow cooling there is natural cooling in the mold.
- the molten iron 5 discharged from the tap hole 8 has a high P concentration, oxygen or iron oxide and a dephosphorizing material are added to perform dephosphorization.
- P After dephosphorizing the molten iron 5 to 0.080 to 0.150 mass%, in a molten state, the molten iron 5 is mixed with the blast furnace molten iron and recycled, or cast and used as a mold.
- the target phosphorus concentration after dephosphorization is approximately the same as the blast furnace phosphorus concentration to avoid phosphorus accumulation in the steelmaking process.
- converter slag is mainly used, and quick lime, dolomite, soda ash, ore powder, calcium-ferrite and the like are appropriately added. Further, when the temperature is low, oxygen blowing may be performed.
- the molten iron 5 after dephosphorization is made into a mold or transferred to a kneading wheel or a molten iron pan and transferred to a steelmaking process. Since the dephosphorization slag produced by the dephosphorization treatment has a high P 2 O 5 content of 10% by mass or more, for example, it can be used as a raw material for phosphoric acid fertilizer or an industrial phosphoric acid raw material.
- the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- Example 1 In the apparatus shown in FIG. 2, the hot steelmaking slag 6 ′ discharged from the converter was introduced into the slag supply container 9 in a high-temperature molten state (solid phase ratio of 30% or less), and once accommodated and held. Next, the slag supply container 9 was tilted at a frequency of once every 10 minutes, and once: about 8 tons of hot steelmaking slag 6 ′ was intermittently flowed into the DC electric furnace 1.
- hot steelmaking slag 6 ′ was allowed to flow under the condition that about 130 tons of pig iron and about 200 mm of a reduced slag layer existed thereon.
- the reason why the inflow amount of the hot steelmaking slag 6 ′ is set to once: about 8 tons is because it has been confirmed by the previous actual machine test that forming does not occur vigorously under the present conditions.
- the inflow speed of the hot steelmaking slag 6 ' was set to 800 kg / min on average. As will be described later, this is calculated from the power intensity required for the steelmaking slag reduction treatment obtained by the above-described method in order to continuously supply about 30 MW of power.
- coke powder was supplied into the electric furnace 1 from the auxiliary raw material supply pipe 14a.
- the supply rate was 85 kg / min corresponding to 1.5 times the stoichiometric supply rate.
- the slag modifier has fly ash: 378 kg / t-slag, bauxite powder: 47 kg / t-slag in order to achieve the target basicity: 1.2 and the target (Al 2 O 3 ): 12% by mass.
- the target (Al 2 O 3 ) 12% by mass.
- the inside of the electric furnace 1 was controlled so that the molten iron temperature was 1450 ⁇ 5 ° C. and the slag temperature was 1550 ⁇ 5 ° C. Since the electric furnace 1 has no opening leading to the outside air, the inside of the electric furnace 1 was maintained in a reducing atmosphere.
- Table 4 shows the composition and temperature of the molten slag 6 flowing into the electric furnace 1.
- pig iron (C; 3.0% by mass) having the composition shown in Table 1 was always present at 100 to 150 tons, and the molten slag layer was present at a thickness of about 100 to 300 mm. .
- About 30 MW of electric power was continuously supplied from the electrode 2 to the electric furnace 1, and the reduction treatment of the molten slag 6 could be performed continuously without causing the molten slag 6 to overflow.
- the molten slag 6 was discharged about 46 tons from the tap hole 7 once an hour, and the molten iron 5 was discharged about 44 tons from the tap hole 8 once every five hours.
- Example 2 Except for the use of the hollow electrode 3 for the electrode 2 and the use of the hollow portion of the hollow electrode 3 as the auxiliary raw material supply pipe 14a instead of the auxiliary raw material supply pipe 14a. Under the same conditions as in Example 1, the reduction reforming treatment of the molten slag 6 was performed.
- the temperature in the electric furnace 1 was controlled to be a molten iron temperature: 1450 ⁇ 5 ° C. and a slag temperature: 1550 ⁇ 5 ° C.
- the reduction treatment of the molten slag 6 could be continuously performed without causing the overflow of the molten slag 6 during the process.
- the molten slag 6 discharged about 46 tons from the tap hole 7 once an hour, and the molten iron 5 discharged about 44 tons from the tap hole 8 once every five hours.
- the component composition of the discharged molten slag 6 and the component composition of the molten iron 5 were almost the same as those shown in Tables 2 and 3.
- Example 3 As shown in Table 7, in the electric furnace 1, pig iron (C; 4.1% by mass) having a higher component composition than that of Examples 1 and 2 was used, and 5 pieces of slag supply containers 9 were used. Slag reduction treatment was performed under the same conditions as in Example 1 except that the inflow amount of hot steelmaking slag 6 ′ was set to once: about 4 tons by tilting once every minute.
- the inflow amount of hot steelmaking slag 6 ′ was set to 1 time: about 4 tons under the conditions of Example 3 in which the C concentration of the hot metal was higher than that of Examples 1 and 2 according to the previous actual machine test. This is because it was confirmed that the forming does not occur violently. As a result, the reduction treatment of the molten slag 6 could be continuously performed without causing the molten slag 6 to overflow.
- the molten slag 6 discharged about 46 tons from the tap hole 7 once an hour, and the molten iron 5 discharged about 44 tons from the tap hole 8 once every five hours.
- Tables 5 and 6 the component composition of the molten slag 6 discharged and the component composition of the molten iron 5 were reduced, and it was found that P and Mn were concentrated in the molten iron 5. .
- Example 1 about 8 tons of hot steelmaking slag 6 ′ is allowed to flow in one batch at a time of 10 minutes, and in Example 3, about 4 tons per time at a time of 5 minutes. Even under the inflow conditions in which a ton of hot steelmaking slag 6 ′ was introduced all at once, the molten slag 6 was not overflowed and the reduction treatment of the molten slag 6 could be continued.
- the inflow speed of the hot steelmaking slag 6 ′ on average was 800 kg / min.
- hot steelmaking slag 6 ′ is a condition in which forming is less likely to occur when continuously flowing at a flow rate of 800 kg / min or a flow rate of 800 kg / min or less. This means that the reduction process of the molten slag 6 can be continued without causing the slag 6 to overflow. That is, Examples 1 to 3 of intermittent inflow are also examples demonstrating continuous inflow of hot steelmaking slag 6 '.
- steelmaking slag is modified into a material that can be used for various applications such as cement raw materials, earthwork materials, ceramic products, and at the same time, valuable elements such as Fe, Mn, and P are used. Can be reduced and recovered in molten iron. And Fe and Mn can be recycled to the iron making process, and P can be used as a phosphate fertilizer or a phosphoric acid raw material. Therefore, the present invention has very high applicability in the refining technology of the steel industry.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Analytical Chemistry (AREA)
- Structural Engineering (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
(1)本発明の第一の態様は、電気炉内に収容された溶鉄上の溶融スラグ層に向けて、スラグ供給容器から熱間製鋼スラグを、前記スラグ供給容器により流入量を調整しつつ連続的又は間歇的に流入させる熱間製鋼スラグ流入工程と;前記溶融スラグ層に還元材を供給する還元材供給工程と;前記溶鉄及び前記溶融スラグ層を通電して加熱する通電加熱工程と;前記溶融スラグ層の溶融スラグ、又は、前記溶鉄を間歇的に排出しながら、前記熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する還元処理工程と;を備える製鋼スラグ還元処理方法である。
(2)上記(1)に記載の製鋼スラグ還元処理方法では、前記熱間製鋼スラグ流入工程において、前記熱間製鋼スラグの前記溶融スラグ層への流入量を、前記電気炉へ供給する電力量に基づいて調整してもよい。
(3)上記(1)又は(2)に記載の製鋼スラグ還元処理方法では、前記還元処理工程では、前記電気炉から排出される排ガスを、前記スラグ供給容器を経て排出してもよい。
(4)上記(1)~(3)のいずれか一項に記載の製鋼スラグ還元処理方法では、前記溶融スラグ層に、スラグ改質材を連続的又は間歇的に供給するスラグ改質材供給工程を更に備えてもよい。
(5)上記(1)~(4)のいずれか一項に記載の製鋼スラグ還元処理方法では、前記溶融スラグ層中に、前記溶融スラグとの還元反応に必要な化学量論量の1.1倍以上1.6倍以下の炭材を加えて懸濁させる懸濁工程を更に備えてもよい。
(6)上記(1)~(5)のいずれか一項に記載の製鋼スラグ還元処理方法では、前記溶鉄中のC濃度が3質量%以下であってもよい。
前述したように、特許文献2の方法においては、突沸現象の解決策を、「溶鉄のC濃度低下による反応速度の緩和」に求めているが、この方法では作業効率が悪い。
(a)熱間で流動性のある熱間製鋼スラグを、電気炉への流入量を調整できる装置に一旦収容してから、熱間製鋼スラグが電気炉内でオーバーフローしないように、電気炉への流入量を調整して流入させること、及び、
(b)溶鉄上に溶融スラグ層、好ましくは不活性な溶融スラグ層(還元スラグ層)を緩衝帯として予め形成し、その上に熱間製鋼スラグを流入させること、
の二点が溶融スラグの突沸現象を抑制し、オーバーフローを回避する点で好適であることを、実験的に知見した。
(c)熱間製鋼スラグに、予め、炭材を過剰に懸濁させて供給すること、及び、
(d)溶鉄のC濃度を3質量%以下に低減する(ただし、強還元を必要としない場合)こと、
も上記の(a)、(b)の方法と併用することで、より好適であることを知見した。
本実施形態に係る製鋼スラグ処理方法が処理の対象とする製鋼スラグは、製鋼工程で発生したスラグであればよく、特定の成分組成のスラグに限定されない。
電気炉内には、例えば、100~150tonの溶鉄を存在させておく。溶鉄のC濃度は、溶融スラグ中の酸化鉄を還元する還元能力に影響するので、目標とする溶融スラグの還元レベルに応じて設定することが好適である。
(i)スラグ鍋から開口部13aを経て流入される熱間製鋼スラグ6’を、一旦、貯留・保持し、その後、電気炉1に、流入量を調整しつつ、スラグ供給部4から、溶鉄5上の溶融スラグ6の層に向けて流入させる場合、
(ii)スラグ鍋から開口部13aを経て流入される熱間製鋼スラグ6’を、一旦、貯留・保持することなく、そのまま、溶鉄5上の溶融スラグ6の層に流入させる場合、
のいずれの場合にも対応可能である。スラグ鍋から供給される熱間製鋼スラグ6’の量に応じて、適宜、好適な流入方法を使い分けることができる。
まず、手段(a)について、以下に詳述する。
(a)熱間で流動性のある熱間製鋼スラグ6’を、電気炉1への流入量を調整できる装置に一旦収容してから、熱間製鋼スラグ6’が電気炉1内でオーバーフローしないように、電気炉1への流入量を調整して流入させる。
(i)熱間製鋼スラグ6’の流入と中断を適宜繰り返しながら流入させる態様、又は、
(ii)所要量の熱間製鋼スラグ6’を、所定の時間間隔で、一括して供給する態様
を採用し得る。
電気炉1内に、予め、相当量の溶鉄5を種湯として収容する。次に、電気炉1への電力供給速度に見合う量の熱間製鋼スラグ6’を、スラグ供給容器9から、溶鉄5上の溶融スラグ6に向けて流入させ、溶融スラグ6の層を継続的に維持する。
(c)溶融スラグ層中に、炭材を還元処理に必要な量に対して過剰に懸濁させる手法、
を併用しても良い。
還元処理に必要な量に対して過剰量として、溶融スラグ6との還元反応に必要な化学量論量の1.1~1.6倍の還元材(粉炭)を溶融スラグ6に吹き込んで懸濁させることが好適である。
(d)溶鉄5のC濃度を3質量%以下に低減する手法、
を併用してもよい。
これは、溶鉄5のC濃度を3質量%以下に低減することにより、溶融スラグ6がフォーミング状態になって電気炉1から溢れ出ることを抑制し易くなることを、実験にて知見していることに基いている。
(a)熱間製鋼スラグ6’を電力供給速度に応じて電気炉1内に連続的又は間歇的に流入させることができ、かつ、電気炉1内の溶融スラグ層の温度変動が小さくでき、また、
(b)溶融スラグ6と溶鉄5が急激に反応して突沸現象が生じる確率が減るので、還元処理後の溶融スラグ6を間歇的に出滓して、熱間製鋼スラグ6’が流入した電気炉1内の溶融スラグ6の還元処理を、中断することなく効率よく継続することができる。
電気炉1内で溶融スラグ6は炭素によって還元され、還元鉄は溶鉄5内に、還元されたスラグは、溶鉄5上の溶融スラグ層内に蓄積される。例えば、溶融スラグ6は、1時間に1回、約46トン、出滓孔7から排出され、溶鉄5は、5時間に1回、約44トン、出銑孔8から排出される。排出スラグの組成及び排出溶鉄5の組成の例を、表2及び表3に示す。
図2に示す装置において、転炉から排出された熱間製鋼スラグ6’を高温溶融状態(固相率30%以下)で、スラグ供給容器9に流入させて、一旦、収容・保持した。次いで、スラグ供給容器9を、10分に1回の頻度で傾動して、1回:約8トンの熱間製鋼スラグ6’を、直流電気炉1に間歇的に流入させた。
電極2に中空電極3を用いたこと、および、スラグ改質材と還元材の供給を、副原料供給管14aに替えて中空電極3の中空部を副原料供給管14aとして使用したこと以外は、実施例1と同様の条件で、溶融スラグ6の還元改質処理を行った。
電気炉1内には、表7に示すようにC濃度が実施例1~2よりも高い成分組成の銑鉄(C;4.1質量%)を用いたこと、及び、スラグ供給容器9を5分に1回の頻度で傾動して、熱間製鋼スラグ6’の流入量を1回:約4トンと設定したこと以外は、実施例1と同じ条件で、スラグの還元処理を行った。
表4に示す成分組成の熱間製鋼スラグ6’を還元するため、表1に示す成分組成の溶鉄5を収容した電気炉1内に、製鋼スラグ20トンを、熱間状態で一括供給した。熱間製鋼スラグ6’を電気炉1内に供給した直後、スラグフォーミングが急激に生じ、操業を中止せざるを得なかった。
1a、1b 炉側壁
1c 炉天井
2 電極
2a 上部電極
2b 炉底電極
3 中空電極
4 スラグ供給部
5 溶鉄
6 溶融スラグ
6’ 熱間製鋼スラグ
7 出滓孔
8 出銑孔
9 スラグ供給容器
10 下壁
11 上壁
12 ノズル
12a 燃焼バーナー
13 排気部
13a 開口部
13b 蓋
14a 副原料供給管
14b 副原料吹込ランス
A アーク
C 炭材粉
F FeO粉
z 傾動軸
Claims (6)
- 電気炉内に収容された溶鉄上の溶融スラグ層に向けて、スラグ供給容器から熱間製鋼スラグを、前記スラグ供給容器により流入量を調整しつつ連続的又は間歇的に流入させる熱間製鋼スラグ流入工程と;
前記溶融スラグ層に還元材を供給する還元材供給工程と;
前記溶鉄及び前記溶融スラグ層を通電して加熱する通電加熱工程と;
前記溶融スラグ層の溶融スラグ、又は、前記溶鉄を間歇的に排出しながら、前記熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する還元処理工程と;
を備えることを特徴とする製鋼スラグ還元処理方法。 - 前記熱間製鋼スラグ流入工程では、前記熱間製鋼スラグの前記溶融スラグ層への流入量を、前記電気炉へ供給する電力量に基づいて調整する
ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。 - 前記還元処理工程では、前記電気炉から排出される排ガスを、前記スラグ供給容器を経て排出する
ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。 - 前記溶融スラグ層に、スラグ改質材を連続的又は間歇的に供給するスラグ改質材供給工程を更に備える
ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。 - 前記溶融スラグ層中に、前記溶融スラグとの還元反応に必要な化学量論量の1.1倍以上1.6倍以下の炭材を加えて懸濁させる懸濁工程を更に備える
ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。 - 前記溶鉄中のC濃度が3質量%以下である
ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13810302.3A EP2767597B1 (en) | 2012-06-27 | 2013-06-27 | Method of reduction processing of steel-making slag |
US14/352,529 US9217185B2 (en) | 2012-06-27 | 2013-06-27 | Method of reduction processing of steel-making slag |
IN7659DEN2014 IN2014DN07659A (ja) | 2012-06-27 | 2013-06-27 | |
KR1020147011767A KR101560512B1 (ko) | 2012-06-27 | 2013-06-27 | 제강 슬래그 환원 처리 방법 |
CN201380003819.7A CN104039987B (zh) | 2012-06-27 | 2013-06-27 | 炼钢炉渣还原处理方法 |
CA2851604A CA2851604C (en) | 2012-06-27 | 2013-06-27 | Method of reduction processing of steel-making slag |
BR112014011250-9A BR112014011250B1 (pt) | 2012-06-27 | 2013-06-27 | Processo de redução de escória de fabricação de aço |
JP2013547433A JP5522320B1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012144473 | 2012-06-27 | ||
JP2012144557 | 2012-06-27 | ||
JP2012-144473 | 2012-06-27 | ||
JP2012-144557 | 2012-06-27 | ||
JP2012235692 | 2012-10-25 | ||
JP2012-235692 | 2012-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014003123A1 true WO2014003123A1 (ja) | 2014-01-03 |
Family
ID=49783256
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067665 WO2014003123A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理方法 |
PCT/JP2013/067675 WO2014003127A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
PCT/JP2013/067660 WO2014003119A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理用電気炉のスラグ供給容器 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067675 WO2014003127A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
PCT/JP2013/067660 WO2014003119A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理用電気炉のスラグ供給容器 |
Country Status (9)
Country | Link |
---|---|
US (3) | US9238846B2 (ja) |
EP (3) | EP2759606B1 (ja) |
JP (3) | JP5541423B1 (ja) |
KR (3) | KR101531804B1 (ja) |
CN (3) | CN104039987B (ja) |
BR (3) | BR112014011428B1 (ja) |
CA (3) | CA2852500C (ja) |
IN (3) | IN2014DN07279A (ja) |
WO (3) | WO2014003123A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016074942A (ja) * | 2014-10-06 | 2016-05-12 | 新日鐵住金株式会社 | 傾動式スラグ供給装置のスラグ付着抑制方法 |
JP2016114317A (ja) * | 2014-12-16 | 2016-06-23 | 新日鐵住金株式会社 | 製鋼スラグの溶融処理用の電気炉 |
WO2018110174A1 (ja) * | 2016-12-16 | 2018-06-21 | 新日鐵住金株式会社 | 電気炉 |
WO2018110171A1 (ja) * | 2016-12-16 | 2018-06-21 | 新日鐵住金株式会社 | 電気炉 |
CN108558244A (zh) * | 2018-05-15 | 2018-09-21 | 鞍钢股份有限公司 | 一种利用热态转炉渣制备水泥混合料的装置及制备方法 |
US10703675B2 (en) * | 2013-09-02 | 2020-07-07 | Loesche Gmbh | Method for processing steel slag and hydraulic mineral binder |
JP2021084845A (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | コンクリートの製造方法 |
JP2021084091A (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | 副生成物の処理方法 |
JP2021084092A (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | 副生成物の処理方法 |
WO2023054345A1 (ja) | 2021-09-30 | 2023-04-06 | 日本製鉄株式会社 | 溶銑製造方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249567B (zh) * | 2010-09-27 | 2013-12-04 | 山东焦化集团有限公司 | 利用熔融炉渣生产还原石材原料的方法 |
JP5541423B1 (ja) | 2012-06-27 | 2014-07-09 | 新日鐵住金株式会社 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
BR112016001146B1 (pt) | 2013-07-24 | 2020-03-03 | Nippon Steel Corporation | Método de tratamento de gás de escape e instalação de tratamento de gás de escape |
JP6446970B2 (ja) * | 2014-10-06 | 2019-01-09 | 新日鐵住金株式会社 | 傾動式スラグ供給装置のスラグ付着抑制方法 |
CN105986054A (zh) * | 2015-02-13 | 2016-10-05 | 鞍钢股份有限公司 | 一种对转炉终渣改性并还原的方法 |
FI127179B (fi) * | 2015-09-15 | 2017-12-29 | Outotec Finland Oy | Menetelmä ja järjestely uuniprosessin ominaisuuksien seuraamiseksi ja prosessiseurantayksikkö |
CN106702043B (zh) * | 2015-11-17 | 2018-08-03 | 鞍钢股份有限公司 | 一种转炉终渣处理方法 |
CN106811566B (zh) * | 2015-12-02 | 2019-02-26 | 鞍钢股份有限公司 | 一种含磷钢磷合金化方法 |
CN107012283B (zh) * | 2016-01-27 | 2018-10-09 | 鞍钢股份有限公司 | 一种转炉留渣方法 |
CN106755665A (zh) * | 2017-02-20 | 2017-05-31 | 中冶赛迪上海工程技术有限公司 | 一种利用高温熔渣处理垃圾焚烧飞灰的装置及方法 |
DE102017105551A1 (de) | 2017-03-15 | 2018-09-20 | Scholz Austria GmbH | Verfahren zur Behandlung metallurgischer Schlacken |
DE102017119675B4 (de) | 2017-08-28 | 2019-07-04 | Voestalpine Stahl Gmbh | Verfahren zur Behandlung von Schlacke |
CN109500048A (zh) * | 2018-10-09 | 2019-03-22 | 中冶南方工程技术有限公司 | 垃圾焚烧飞灰的固化处理方法以及处理系统 |
CN113564297B (zh) * | 2021-07-29 | 2022-06-21 | 广东韶钢松山股份有限公司 | 一种降低渣中氧化锰含量的方法 |
CN114111354B (zh) * | 2021-11-03 | 2023-06-02 | 湖南博一环保科技有限公司 | 一种提锌回转窑铁渣的干法冷却装置及其工作方法 |
CN113913569A (zh) * | 2021-11-10 | 2022-01-11 | 北京中冶设备研究设计总院有限公司 | 干法粒化储渣控流装置及储渣控流方法 |
CN115029488B (zh) * | 2022-06-27 | 2023-10-03 | 北京崎基环保科技有限公司 | 钢渣处理系统及采用其处理钢渣的方法 |
EP4417713A1 (en) | 2023-02-14 | 2024-08-21 | Oterdoom, Harmen | The novel two-step (semi-)continuous process for clean slag and steel or hot metal |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233897A (en) | 1975-09-10 | 1977-03-15 | Nippon Steel Corp | Method for treatment of iron slag |
JPS57177911A (en) * | 1981-04-27 | 1982-11-01 | Kawasaki Steel Corp | Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components |
AU2055395A (en) | 1994-06-10 | 1995-12-21 | Mintek | The recovery of metal values from slags |
JP2002069520A (ja) * | 2000-08-29 | 2002-03-08 | Nippon Steel Corp | スラグ中クロムの回収方法 |
JP2002069526A (ja) * | 2000-08-28 | 2002-03-08 | Nippon Steel Corp | 脱燐スラグの再生処理方法 |
JP2003520899A (ja) | 2000-01-28 | 2003-07-08 | ホルシム リミティド | 鉄浴でのスラグ又はスラグ混合物の処理方法 |
JP2006528732A (ja) * | 2003-05-16 | 2006-12-21 | ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ | スラグの利用プロセス |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1291760B (de) | 1963-11-08 | 1969-04-03 | Suedwestfalen Ag Stahlwerke | Verfahren und Vorrichtung zum diskontinuierlichen und kontinuierlichen Vakuum-Schmelzen und -Giessen von Staehlen und stahlaehnlichen Legierungen (Superiegierungen) |
US3905589A (en) * | 1972-03-27 | 1975-09-16 | Pennsylvania Engineering Corp | Steel production method and apparatus |
US4149024A (en) | 1974-07-23 | 1979-04-10 | Asea Aktiebolag | Arc furnace for reducing metal oxides and method for operating such a furnace |
DE2522194A1 (de) | 1975-05-17 | 1976-12-02 | Vacmetal Gmbh | Verfahren und vorrichtung zum herstellen von qualitaetsstaehlen |
US4199350A (en) | 1975-05-17 | 1980-04-22 | Vacmetal Gesellschaft fur Vakuummetallurgie mbH | Method for the production of quality steels |
DE2847403A1 (de) * | 1978-11-02 | 1980-05-14 | Mannesmann Ag | Verfahren zur herstellung von kohlenstoffarmem stahl aus vanadin- und/oder titanhaltigen eisenerzen |
US4328388A (en) | 1980-02-11 | 1982-05-04 | Longenecker Levi S | Electro furnace feeding and furnace fume utilization and control |
JPS59189282A (ja) | 1983-03-31 | 1984-10-26 | 新日鐵化学株式会社 | 高温溶融物の定量排出方法 |
FI72502C (fi) | 1984-12-21 | 1987-06-08 | Outokumpu Oy | Saett och anordning foer framstaellning av vaermebestaendigt och/eller eldbestaendigt fibermaterial. |
AT384669B (de) | 1986-03-17 | 1987-12-28 | Voest Alpine Ag | Anlage zur herstellung von stahl aus schrott |
US5173920A (en) | 1989-08-21 | 1992-12-22 | Asea Brown Boveri Ltd. | Direct-current electric-arc furnace |
AT395656B (de) * | 1990-11-19 | 1993-02-25 | Voest Alpine Ind Anlagen | Anlage zur herstellung von fluessigen metallen |
LU88517A7 (fr) | 1993-12-15 | 1996-02-01 | Wurth Paul Sa | Dispositif de chargement d'un four électrique |
FR2731712B1 (fr) | 1995-03-14 | 1997-04-25 | Usinor Sacilor | Procede d'elaboration de l'acier dans un four electrique a arc, et four electrique a arc pour sa mise en oeuvre |
JP3732561B2 (ja) | 1995-09-29 | 2006-01-05 | 中央電気工業株式会社 | 電気炉における合金鉄製造及び焼却灰の溶融処理の同時実施方法 |
AT404942B (de) * | 1997-06-27 | 1999-03-25 | Voest Alpine Ind Anlagen | Anlage und verfahren zum herstellen von metallschmelzen |
LU90154B1 (fr) * | 1997-10-17 | 1999-04-19 | Wurth Paul Sa | Procede pour la fusion en continu de produits metalliques solides |
JP3796617B2 (ja) | 1998-10-23 | 2006-07-12 | 日本坩堝株式会社 | アルミニウムインゴット等の溶解保持炉 |
JP3644330B2 (ja) | 1999-11-24 | 2005-04-27 | 住友金属工業株式会社 | 還元期スラグの処理方法 |
US6614831B2 (en) * | 2000-02-10 | 2003-09-02 | Process Technology International, Inc. | Mounting arrangement for auxiliary burner or lance |
ES2281384T3 (es) | 2000-02-17 | 2007-10-01 | John A. Vallomy | Metodo para procesar de manera reductora la escoria liquida y el polvo de la camara de filtros del horno de arco electrico. |
JP2002054812A (ja) | 2000-08-08 | 2002-02-20 | Nkk Corp | 焼却灰の溶融処理方法 |
JP2002069626A (ja) * | 2000-09-06 | 2002-03-08 | Sumitomo Metal Mining Co Ltd | スパッタリングターゲットおよびその製造方法 |
US6748004B2 (en) | 2002-07-25 | 2004-06-08 | Air Liquide America, L.P. | Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system |
DE10335847A1 (de) * | 2003-07-31 | 2005-02-17 | Sms Demag Ag | Elektroreduktionsofen |
JP2005195224A (ja) * | 2004-01-06 | 2005-07-21 | Nippon Steel Corp | 製鋼スラグの溶融改質炉および溶融改質方法 |
JP4654886B2 (ja) | 2005-11-11 | 2011-03-23 | Jfeスチール株式会社 | 製鋼スラグのリサイクル方法 |
ATE541950T1 (de) | 2006-02-23 | 2012-02-15 | Anton Dipl-Ing Hulek | Verfahren und anlage zur kontinuierlichen weiterverarbeitung schmelzflüssiger hüttenschlacken |
JP2008049206A (ja) | 2006-03-30 | 2008-03-06 | Daido Steel Co Ltd | 排ガス処理方法 |
DE102006052181A1 (de) | 2006-11-02 | 2008-05-08 | Sms Demag Ag | Verfahren zur kontinuierlichen oder diskontinuierlichen Gewinnung eines Metalls oder mehrerer Metalle aus einer das Metall oder eine Verbindung des Metalls enthaltenden Schlacke |
JP5541423B1 (ja) | 2012-06-27 | 2014-07-09 | 新日鐵住金株式会社 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
-
2013
- 2013-06-27 JP JP2013550690A patent/JP5541423B1/ja active Active
- 2013-06-27 CN CN201380003819.7A patent/CN104039987B/zh active Active
- 2013-06-27 CA CA2852500A patent/CA2852500C/en not_active Expired - Fee Related
- 2013-06-27 IN IN7279DEN2014 patent/IN2014DN07279A/en unknown
- 2013-06-27 BR BR112014011428A patent/BR112014011428B1/pt active IP Right Grant
- 2013-06-27 EP EP13808713.5A patent/EP2759606B1/en not_active Not-in-force
- 2013-06-27 WO PCT/JP2013/067665 patent/WO2014003123A1/ja active Application Filing
- 2013-06-27 US US14/353,961 patent/US9238846B2/en active Active
- 2013-06-27 WO PCT/JP2013/067675 patent/WO2014003127A1/ja active Application Filing
- 2013-06-27 US US14/352,529 patent/US9217185B2/en active Active
- 2013-06-27 CA CA2851604A patent/CA2851604C/en not_active Expired - Fee Related
- 2013-06-27 EP EP13809399.2A patent/EP2757163B1/en not_active Not-in-force
- 2013-06-27 KR KR1020147012820A patent/KR101531804B1/ko active IP Right Grant
- 2013-06-27 CA CA2851963A patent/CA2851963C/en not_active Expired - Fee Related
- 2013-06-27 IN IN7659DEN2014 patent/IN2014DN07659A/en unknown
- 2013-06-27 CN CN201380003875.0A patent/CN103930573B/zh active Active
- 2013-06-27 US US14/352,925 patent/US9534266B2/en active Active
- 2013-06-27 JP JP2013547433A patent/JP5522320B1/ja active Active
- 2013-06-27 BR BR112014011858-2A patent/BR112014011858B1/pt active IP Right Grant
- 2013-06-27 EP EP13810302.3A patent/EP2767597B1/en not_active Not-in-force
- 2013-06-27 KR KR1020147012214A patent/KR101560513B1/ko active IP Right Grant
- 2013-06-27 KR KR1020147011767A patent/KR101560512B1/ko active IP Right Grant
- 2013-06-27 IN IN7281DEN2014 patent/IN2014DN07281A/en unknown
- 2013-06-27 WO PCT/JP2013/067660 patent/WO2014003119A1/ja active Application Filing
- 2013-06-27 JP JP2013546469A patent/JP5574057B2/ja active Active
- 2013-06-27 BR BR112014011250-9A patent/BR112014011250B1/pt active IP Right Grant
- 2013-06-27 CN CN201380003825.2A patent/CN103930574B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233897A (en) | 1975-09-10 | 1977-03-15 | Nippon Steel Corp | Method for treatment of iron slag |
JPS57177911A (en) * | 1981-04-27 | 1982-11-01 | Kawasaki Steel Corp | Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components |
AU2055395A (en) | 1994-06-10 | 1995-12-21 | Mintek | The recovery of metal values from slags |
JP2003520899A (ja) | 2000-01-28 | 2003-07-08 | ホルシム リミティド | 鉄浴でのスラグ又はスラグ混合物の処理方法 |
JP2002069526A (ja) * | 2000-08-28 | 2002-03-08 | Nippon Steel Corp | 脱燐スラグの再生処理方法 |
JP2002069520A (ja) * | 2000-08-29 | 2002-03-08 | Nippon Steel Corp | スラグ中クロムの回収方法 |
JP2006528732A (ja) * | 2003-05-16 | 2006-12-21 | ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ | スラグの利用プロセス |
Non-Patent Citations (2)
Title |
---|
SCANDINAVIAN JOURNAL OF METALLURGY, vol. 32, 2003, pages 7 - 14 |
See also references of EP2767597A4 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10703675B2 (en) * | 2013-09-02 | 2020-07-07 | Loesche Gmbh | Method for processing steel slag and hydraulic mineral binder |
JP2016074942A (ja) * | 2014-10-06 | 2016-05-12 | 新日鐵住金株式会社 | 傾動式スラグ供給装置のスラグ付着抑制方法 |
JP2016114317A (ja) * | 2014-12-16 | 2016-06-23 | 新日鐵住金株式会社 | 製鋼スラグの溶融処理用の電気炉 |
US11473841B2 (en) | 2016-12-16 | 2022-10-18 | Nippon Steel Corporation | Electric furnace |
WO2018110174A1 (ja) * | 2016-12-16 | 2018-06-21 | 新日鐵住金株式会社 | 電気炉 |
CN110073160A (zh) * | 2016-12-16 | 2019-07-30 | 日本制铁株式会社 | 电炉 |
CN110073161A (zh) * | 2016-12-16 | 2019-07-30 | 日本制铁株式会社 | 电炉 |
JPWO2018110171A1 (ja) * | 2016-12-16 | 2019-10-24 | 日本製鉄株式会社 | 電気炉 |
JPWO2018110174A1 (ja) * | 2016-12-16 | 2019-10-24 | 日本製鉄株式会社 | 電気炉 |
WO2018110171A1 (ja) * | 2016-12-16 | 2018-06-21 | 新日鐵住金株式会社 | 電気炉 |
US11898797B2 (en) | 2016-12-16 | 2024-02-13 | Nippon Steel Corporation | Electric furnace |
CN108558244B (zh) * | 2018-05-15 | 2020-09-01 | 鞍钢股份有限公司 | 一种利用热态转炉渣制备水泥混合料的装置及制备方法 |
CN108558244A (zh) * | 2018-05-15 | 2018-09-21 | 鞍钢股份有限公司 | 一种利用热态转炉渣制备水泥混合料的装置及制备方法 |
JP2021084091A (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | 副生成物の処理方法 |
JP7095674B2 (ja) | 2019-11-29 | 2022-07-05 | Jfeスチール株式会社 | コンクリートの製造方法 |
JP2021084092A (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | 副生成物の処理方法 |
JP2021084845A (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | コンクリートの製造方法 |
JP7531273B2 (ja) | 2019-11-29 | 2024-08-09 | Jfeスチール株式会社 | 副生成物の処理方法 |
JP7531274B2 (ja) | 2019-11-29 | 2024-08-09 | Jfeスチール株式会社 | 副生成物の処理方法 |
WO2023054345A1 (ja) | 2021-09-30 | 2023-04-06 | 日本製鉄株式会社 | 溶銑製造方法 |
KR20240035546A (ko) | 2021-09-30 | 2024-03-15 | 닛폰세이테츠 가부시키가이샤 | 용선 제조 방법 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522320B1 (ja) | 製鋼スラグ還元処理方法 | |
JP5954551B2 (ja) | 転炉製鋼法 | |
TWI609839B (zh) | 熔鐵的脫磷劑、精煉劑及脫磷方法 | |
CA2698888C (en) | Method for manufacturing molten iron | |
JP5236926B2 (ja) | 溶鋼の製造方法 | |
JP2010265485A (ja) | アーク炉の操業方法 | |
JP5408379B2 (ja) | 溶銑の予備処理方法 | |
JP5625654B2 (ja) | 溶銑の製造方法 | |
JP2019151535A (ja) | リン酸スラグ肥料の製造方法 | |
JP2014101542A (ja) | 溶銑の脱銅処理方法 | |
JP2018003075A (ja) | 酸化鉄含有鉄原料の還元・溶解方法 | |
TW202035706A (zh) | 增碳材及使用其之增碳方法 | |
JP4630031B2 (ja) | 酸化鉄含有鉄原料の還元・溶解方法 | |
JP6221707B2 (ja) | スラグ処理方法およびスラグ処理装置 | |
JP6658241B2 (ja) | 金属原料の溶解方法 | |
JP2009228102A (ja) | 出鋼後転炉内残留物の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013547433 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13810302 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2851604 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2013810302 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14352529 Country of ref document: US Ref document number: 2013810302 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147011767 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014011250 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112014011250 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140509 |