WO2014003123A1 - 製鋼スラグ還元処理方法 - Google Patents

製鋼スラグ還元処理方法 Download PDF

Info

Publication number
WO2014003123A1
WO2014003123A1 PCT/JP2013/067665 JP2013067665W WO2014003123A1 WO 2014003123 A1 WO2014003123 A1 WO 2014003123A1 JP 2013067665 W JP2013067665 W JP 2013067665W WO 2014003123 A1 WO2014003123 A1 WO 2014003123A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
molten
electric furnace
hot
steelmaking
Prior art date
Application number
PCT/JP2013/067665
Other languages
English (en)
French (fr)
Inventor
俊哉 原田
新井 貴士
平田 浩
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13810302.3A priority Critical patent/EP2767597B1/en
Priority to US14/352,529 priority patent/US9217185B2/en
Priority to IN7659DEN2014 priority patent/IN2014DN07659A/en
Priority to KR1020147011767A priority patent/KR101560512B1/ko
Priority to CN201380003819.7A priority patent/CN104039987B/zh
Priority to CA2851604A priority patent/CA2851604C/en
Priority to BR112014011250-9A priority patent/BR112014011250B1/pt
Priority to JP2013547433A priority patent/JP5522320B1/ja
Publication of WO2014003123A1 publication Critical patent/WO2014003123A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5229Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • F27B3/183Charging of arc furnaces vertically through the roof, e.g. in three points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5229Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
    • C21C2005/5235Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace with bottom electrodes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/04Avoiding foam formation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a steelmaking slag reduction treatment method that recovers valuable components by reducing slag (steelmaking slag) generated in a steelmaking process and that modifies the properties of the steelmaking slag to suit various applications.
  • This application includes Japanese Patent Application No. 2012-144473 filed in Japan on June 27, 2012, Japanese Patent Application No. 2012-144557 filed in Japan on June 27, 2012, and October 25, 2012.
  • Steelmaking slag contains metal components such as Fe and Mn, and P.
  • metal components such as Fe and Mn, and P.
  • due to expansion and disintegration caused by containing a large amount of CaO its use for roadbed materials and aggregates has been limited. .
  • recycling of resources has been actively promoted, and many methods for recovering valuable materials from steelmaking slag have been disclosed so far.
  • Patent Document 1 to steel melt stored in a melting furnace, steel slag generated at the time of steel melting is added, and further, heat and reducing material are added to transform the steel slag, while Fe, Mn, and A steel slag treatment method is disclosed in which P is transferred to molten metal to obtain a modified slag, and then Mn and P in the molten metal are transferred to slag.
  • this processing method is poor in work efficiency because it is necessary to continuously perform several batch processes until a slag having a required component composition is obtained.
  • Patent Document 2 steel slag having an iron oxide content of more than 5 wt% is supplied to a steel bath having a carbon content of less than 1.5 wt%, and then carbon or a carbon carrier is introduced to carbonize the steel bath, A method is disclosed in which a reduction treatment is performed after obtaining a steel bath with a carbon content greater than 2.0 wt%.
  • Patent Document 2 suppresses the generation of a large amount of gas by setting the C concentration (carbon concentration) in molten iron to less than 1.5 wt% when molten slag is charged, and the C concentration is 2.0 wt% when performing smelting reduction.
  • the desired reduction is carried out by raising it to a very high level. Therefore, since decarburization heating and carburization reduction are repeated, batch processing is performed and work efficiency is poor.
  • Patent Document 2 Since the C concentration is increased to over 2.0 wt% during the reduction treatment, the method of Patent Document 2 promotes the reduction reaction mainly by the reaction between slag and metal. Conceivable.
  • Non-Patent Document 1 discloses a result of a reduction test in which steel-manufactured slag powder, carbonaceous material powder, and slag modifier powder are charged from a hollow electrode in an electric furnace.
  • the reduction test of Non-Patent Document 1 since the cold steel-making slag that has been solidified and pulverized is used as the object to be processed, the energy intensity is large.
  • Patent Document 3 discloses a method of recovering valuable metals by reducing molten slag generated by non-ferrous refining with a carbonaceous reducing material in an open DC electric furnace, separating it into a metal phase and a slag phase. Has been. However, since the method of Patent Document 3 similarly uses cold slag as a processing object, the energy intensity is large.
  • any of the methods for recovering valuable components from slag has a problem that the working efficiency is low or the energy intensity is large.
  • the conventional method of recycling hot steelmaking slag by batch processing has poor work efficiency, and the conventional method of melting cold steelmaking slag and recycling it as a resource has the disadvantages of high energy intensity. I have it.
  • the present invention performs reduction treatment of steelmaking slag as a method with good working efficiency and low energy intensity, and (i) various uses such as cement raw materials, earthwork materials, ceramic products, etc.
  • the purpose is to modify the material into a usable material.
  • the present invention simultaneously reduces (ii) valuable elements such as Fe, Mn, and P in molten iron, and then (ii-1) Fe and Mn are recycled to the iron making process.
  • ii-2) P is intended to be used as phosphoric acid fertilizer or phosphoric acid raw material by recovering it as an oxide by oxidizing molten iron.
  • the gist of the present invention is as follows. (1) The first aspect of the present invention is to adjust the inflow amount of hot steelmaking slag from a slag supply container toward the molten slag layer on the molten iron accommodated in the electric furnace by the slag supply container.
  • the amount of electric power supplied to the electric furnace is the amount of inflow of the hot steelmaking slag into the molten slag layer. You may adjust based on.
  • exhaust gas discharged from the electric furnace may be discharged through the slag supply container.
  • the slag modifier supply that continuously or intermittently supplies the slag modifier to the molten slag layer You may further provide a process.
  • the C concentration in the molten iron may be 3% by mass or less.
  • the steelmaking slag can be modified at low cost into a material that can be used for various uses such as a cement raw material, an earthwork material, and a ceramic product, and Fe, Mn, P, etc. These valuable elements can be reduced and recovered in molten iron. Then, Fe and Mn can be recycled to the iron making process, and P can be used as a phosphate fertilizer or phosphoric acid raw material.
  • (C) supplying carbon steel in an excessively suspended state in advance to hot steelmaking slag; and (D) reducing the C concentration of the molten iron to 3% by mass or less (provided that strong reduction is not required); Has also been found to be more suitable when used in combination with the above methods (a) and (b).
  • the present invention is based on the technical idea that if the steelmaking slag is subjected to reduction treatment while it is hot and fluid, the energy intensity can be kept low.
  • the present inventors reduced the steelmaking slag generated in the steelmaking process by flowing it into an electric furnace while it is hot and recovering valuable components and reforming the slag.
  • the idea was that steelmaking slag could be recycled with low energy intensity.
  • the steelmaking slag to be processed by the steelmaking slag treatment method according to the present embodiment may be slag generated in the steelmaking process, and is not limited to slag having a specific component composition.
  • a molten slag layer on molten iron accommodated in an electric furnace that is, a layer of molten slag on molten iron generated by subjecting the steelmaking slag to reduction treatment (hereinafter simply referred to as “ The hot steelmaking slag that is hot and fluid is allowed to flow continuously or intermittently from a slag supply container to be described later, and the reduction treatment is continued.
  • the electric furnace for example, 100 to 150 ton of molten iron is allowed to exist. Since the C concentration of the molten iron affects the reducing ability to reduce the iron oxide in the molten slag, it is preferable to set it according to the target reduced level of the molten slag.
  • the C concentration of molten iron is usually 1.5 to 4.5% by mass. It was experimentally found that the C concentration (mass%) of the molten iron correlates with (Total Fe) (mass%) of the molten slag after the reduction treatment. Specifically, by measuring the relationship of (Total Fe) (mass%) in the molten slag after the reduction treatment under the condition that the concentration of C concentration (mass%) in the molten iron was changed in a test furnace. I found it.
  • Figure 5 shows the results. It is understood that when the C concentration of the molten iron exceeds 3% by mass, the reduction of the iron oxide in the molten slag is further promoted, and (Total Fe) of the molten slag is reduced to 2% by mass or less. In this test, (Total Fe) of the steelmaking slag before the reduction treatment was 18.6% by mass.
  • the component composition of the molten iron is not particularly limited, but an example is shown in Table 1. However, the contents of Mn and P ([Mn], [P]) tend to increase as the molten slag is reduced.
  • FIG. 1 shows, as an example, an electric furnace 1 and a slag supply container 9 for carrying out the steelmaking slag reduction treatment method according to the present embodiment.
  • a slag supply container 9 through which hot steelmaking slag 6 ', which is hot (for example, 300 ° C or higher), flows into the electric furnace 1 via the slag supply part 4. It has been.
  • the slag supply container 9 can be tilted at an arbitrary angle around the tilt axis z, whereby the amount of hot steelmaking slag 6 ′ flowing into the electric furnace 1 can be adjusted.
  • This electric furnace 1 is a closed and fixed DC electric furnace with no opening in the furnace wall.
  • the slag supply container 9 is provided with an exhaust part 13, and exhaust gas generated in the electric furnace 1 is exhausted from the exhaust part 13 through the slag supply part 4.
  • the atmosphere of the slag supply container 9 can be always in a negative pressure state, which is preferable. In this case, even if the outside air enters from the gap between the connecting portions of the slag supply container 9 and the electric furnace 1, the outside air that has entered flows into the slag supply container 9.
  • the atmosphere in the electric furnace 1 includes CO gas generated by the reduction reaction and H 2 generated from the supplied reducing material (carbon material). Maintained in a non-oxidizing atmosphere (reducing atmosphere) as a main component. For this reason, the oxidation reaction on the surface of the molten slag 6 on the molten iron 5 accommodated in the electric furnace 1 can be prevented.
  • FIG. 6 shows a comparison of (Total Fe) (%) of the molten slag 6 with and without an opening in the furnace wall of the electric furnace 1.
  • Molten iron 5 is accommodated on the bottom side of the electric furnace 1, and a molten slag 6 layer obtained by reducing hot steelmaking slag 6 ′ flowing from the slag supply container 9 on the molten iron 5 ( Molten slag layer) is formed.
  • the inflow of the slag supply container 9 and the hot steelmaking slag 6 'into the electric furnace 1 will be described later.
  • the electric furnace 1 is a closed and fixed DC electric furnace, and includes an electrode 2 in which an upper electrode 2a and a furnace bottom electrode 2b are paired in a vertical direction. With this electrode 2, the molten iron 5 and molten slag 6 layers can be energized and heated.
  • the furnace side wall 1a of the electric furnace 1 is provided with a tap hole 7 for intermittently discharging the molten slag 6, and the furnace side wall 1b is provided with a tap hole 8 for intermittently discharging the molten iron 5. .
  • the tap hole 7 and the tap hole 8 are cooled by a jacket or sprinkling cooling (not shown).
  • the electric furnace 1 may be provided with a raw material supply device (not shown) for supplying iron raw materials such as small iron scraps and DRI (Direct Reduced Iron) to the molten iron 5.
  • molten iron 5 can be produced by melting and reducing small lump iron scrap, reduced iron, powdered dust and the like.
  • the electric furnace 1 may be provided with a secondary material supply pipe 14a that supplies a reducing material necessary for the reduction and a secondary material such as a modified powder that modifies the characteristics of the molten slag 5.
  • a secondary material supply pipe 14a that supplies a reducing material necessary for the reduction and a secondary material such as a modified powder that modifies the characteristics of the molten slag 5.
  • FIG. 2 the aspect which provided the auxiliary material supply pipe
  • the auxiliary material reducing material, modified powder, etc.
  • the upper electrode 2a of the electrode 2 may be a hollow electrode, and the hollow portion may be used as the auxiliary raw material supply pipe 14a. If the hollow electrode is used, auxiliary materials (reducing material, modified powder, etc.) can be directly blown into the arc spot.
  • An auxiliary material blowing lance 14b may be provided in the electric furnace 1, and powder (sub raw material) that is easily scattered may be supplied into the electric furnace 1.
  • powder sub raw material
  • FIG. 3 the aspect which provided the auxiliary
  • the slag supply container 9 includes an opening 13a for receiving supply of hot steelmaking slag 6 'from a slag pan (not shown), and the opening 13a is formed from the slag pan (not shown) of hot steelmaking slag 6'. When there is no supply, it may be closed with a lid 13b.
  • the slag supply container 9 may be provided with an adding device (not shown) for adding a modifier for modifying the hot steelmaking slag 6 '.
  • the slag supply container 9 can tilt at an arbitrary angle around the tilt axis z. Therefore, (I) The hot steelmaking slag 6 ′ flowing from the slag pan through the opening 13 a is temporarily stored and held, and then the molten iron is supplied to the electric furnace 1 from the slag supply unit 4 while adjusting the inflow amount. When flowing toward the layer of molten slag 6 above 5, (Ii) When the hot steelmaking slag 6 ′ flowing from the slag pan through the opening 13 a is temporarily stored and held, it flows as it is into the molten slag 6 layer on the molten iron 5. It is possible to cope with any of these cases. Depending on the amount of hot steelmaking slag 6 ′ supplied from the slag pan, a suitable inflow method can be appropriately used.
  • the lower wall 10 of the slag supply container 9 is preferably made of a refractory material, and the upper wall 11 is preferably made of a water-cooled refractory lining wall. Further, the slag supply container 9 is connected to the electric furnace 1 through the slag supply unit 4.
  • the slag supply container 9 may be provided with a nozzle 12 for blowing oxygen or an oxygen-containing gas into the exhaust gas containing CO and H 2 .
  • a nozzle 12 for blowing oxygen or an oxygen-containing gas into the exhaust gas containing CO and H 2 .
  • the temperature in the slag supply container 9 may not rise to a temperature at which the hot steelmaking slag 6 ′ does not adhere to the slag supply container 9, so the slag supply container 9 A combustion burner 12a may be provided.
  • the slag supply container 9 is provided with a tilting device (not shown). With the tilting device, the slag supply container 9 is tilted about the tilt axis z, and the steelmaking slag on the surface layer of the hot steelmaking slag 6 ′ is caused to flow into the electric furnace 1 from the slag supply unit 4. A specific supply method will be described later.
  • Hot steelmaking slag 6 ′ that is hot and fluid is temporarily stored in a device that can adjust the amount of inflow into the electric furnace 1, so that the hot steelmaking slag 6 ′ does not overflow in the electric furnace 1. As described above, the amount of flow into the electric furnace 1 is adjusted to flow in.
  • the hot steelmaking slag 6 ′ to be processed by the method according to the present embodiment only needs to have sufficient fluidity to be allowed to flow continuously or intermittently into the electric furnace 1, and is completely in a molten state. There is no need.
  • the solid phase ratio of the hot steelmaking slag 6 ′ is not particularly limited. For example, if it is about 30% or less at about 1400 ° C., it has fluidity that can flow into the electric furnace 1, and thus is suitable. It is.
  • the solid phase ratio can be calculated using commercially available software.
  • the slag supply container 9 is tilted to adjust the inflow amount so that the molten steel slag 6 ′ in the slag supply container 9 does not overflow from the electric furnace 1 continuously or intermittently.
  • To flow into. When hot steelmaking slag 6 'is allowed to flow intermittently, (I) A mode in which the inflow and interruption of hot steelmaking slag 6 'are repeated as appropriate, or (Ii) A mode in which a required amount of hot steelmaking slag 6 ′ is supplied at a predetermined time interval may be adopted.
  • the amount of inflow of hot steelmaking slag 6 ′ is determined by the amount of power supplied to the electrode 2. That is, the inflow amount of hot steelmaking slag 6 'that is allowed to flow continuously or intermittently is calculated based on the power consumption necessary for the steelmaking slag reduction process and the actual amount of supplied power.
  • the electric power basic unit required for the reduction process of steelmaking slag can be calculated
  • the power consumption rate is an estimated value based on the heat balance calculation, the error appears as a temperature change of the molten slag 6 in the electric furnace 1.
  • the fluctuation of the molten slag temperature can be controlled by adjusting the inflow amount of hot steelmaking slag 6 'and the reducing material supply amount.
  • the temperature in the electric furnace 1 can be controlled such that the molten iron temperature is 1400 to 1550 ° C. and the molten slag temperature is 1500 to 1650 ° C.
  • the hot steelmaking slag 6 ′ having a high temperature is introduced into the electric furnace 1.
  • the high temperature surface layer of the hot steelmaking slag 6 ′ in the slag supply container 9 is updated, and the efficiency of heat application to the hot steelmaking slag 6 ′ remaining in the slag supply container 9 is improved.
  • Whether or not an abnormal situation such as overflow occurs will be determined by monitoring the inside and outside of the furnace with a monitoring camera, monitoring the behavior of the hot steelmaking slag 6 'with a sound meter, and the surface level of the molten slag by microwave irradiation. It can be detected by monitoring or the like.
  • the following means (b) includes Therefore, (a) and (b) may be used in combination.
  • the presence of the molten slag 6 after the reduction treatment as a buffer zone on the upper surface of the molten iron 5 reduces the (FeO) concentration of the molten slag 6 and also reduces the chance of contact between the molten slag 6 and the molten iron 5. Therefore, forming of the molten slag 6 can be suppressed, and as a result, overflow of the molten slag 6 from the electric furnace 1 can be prevented.
  • the supply rate When hot steelmaking slag 6 'is continuously supplied to the electric furnace 1, the supply rate must match the power supply rate to the electrode 2 in the long term, but in the short term, the supply rate to the electrode It is not necessary to match the power supply speed. This is because when a predetermined amount of hot steelmaking slag 6 ′ is intermittently introduced into the electric furnace 1, the amount of inflow does not match the power supply speed to the electrode 2 in the short term.
  • an amount of reducing material corresponding to the amount of the hot steelmaking slag 6 ′ flowed into the electric furnace 1 is used. It is necessary to supply into the furnace 1.
  • Carbon materials are usually used as reducing materials.
  • As the carbon material coke powder, smokeless coal powder, graphite powder, carbon-containing dust powder, fly ash, or the like can be used.
  • a method of blowing the reducing material a method of continuously or intermittently supplying from the auxiliary material supply pipe 14a provided on the furnace ceiling 1c (see FIG. 2) may be used. It can also supply from a part or the auxiliary
  • the slag modifier is mainly used for adjusting (SiO 2 ) and (Al 2 O 3 ), it is necessary to select an appropriate material.
  • the slag modifier preferably contains one or more of SiO 2 , CaO, Al 2 O 3 , and MgO.
  • a slag modifier coal ash, slag powder containing a large amount of SiO 2 , Al 2 O 3 , brick waste, aluminum dross, and the like can be used.
  • the iron-containing raw material is preferably one or more of iron scrap, reduced iron, and powdered dust.
  • a technique of suspending the carbonaceous material excessively with respect to the amount necessary for the reduction treatment May be used in combination.
  • 1.1 to 1.6 times the reducing material (pulverized coal) of the stoichiometric amount necessary for the reduction reaction with the molten slag 6 is blown into the molten slag 6 and suspended. It is preferable to make it turbid.
  • the reducing material (pulverized coal) is less than 1.1 times the stoichiometric amount, the forming suppression effect due to the addition of the reducing material (pulverized coal) is difficult to express, and if the reducing material exceeds 1.6 times the stoichiometric amount, forming Suppressive effect is saturated.
  • (D) a method of reducing the C concentration of the molten iron 5 to 3% by mass or less, May be used in combination. It has been experimentally known that it is easy to suppress the molten slag 6 from entering the forming state and overflowing from the electric furnace 1 by reducing the C concentration of the molten iron 5 to 3% by mass or less. Based on that.
  • hot steelmaking slag 6 ′ that is hot and fluid is subjected to a reduction process while continuously or intermittently flowing into the electric furnace 1 from the slag supply container 9.
  • the molten slag 6 is intermittently discharged from the tap hole 7 provided in the furnace bottom side wall, and the molten iron 5 is intermittently discharged from the tap hole 8.
  • the reduction process of the molten slag 6 formed by flowing in the hot steelmaking slag 6 ′ which is hot and fluid can be continued without interruption.
  • Hot steelmaking slag 6 ' can be continuously or intermittently flowed into the electric furnace 1 according to the power supply speed, and the temperature fluctuation of the molten slag layer in the electric furnace 1 can be reduced
  • FIG. 4 shows a reaction mode in the molten slag layer when a hollow electrode is used.
  • carbon powder C reducing material
  • FIG. 4 shows a reaction mode in the molten slag layer when a hollow electrode is used.
  • carbon powder C reducing material
  • the power supply amount may be temporarily adjusted. good.
  • the hot steelmaking slag inflow rate and / or the carbonaceous material supply rate can be changed to keep the temperature of the molten slag 6 almost constant.
  • the layer thickness of the molten slag 6 in the electric furnace 1 is appropriately adjusted according to the operating conditions, but is preferably 100 to 800 mm, more preferably 100 to 600 mm.
  • the layer thickness of the molten slag 6 is thin, the arc frame is exposed and the loss of radiant heat increases.
  • the layer thickness of the molten slag 6 is thick, the contact area between the electrode and the molten slag 6 is increased, and consumption of the electrode 2 is promoted. If the thickness of the molten slag 6 is thick, the voltage must be increased. However, if the voltage is increased, it may become easy to discharge from the furnace wall. Therefore, it is important to set the upper limit of the voltage in consideration of this point.
  • the tap hole 7 is opened and the molten slag 6 is discharged out of the electric furnace 1.
  • the tap hole 8 below the tap hole 7 is opened, and the molten iron 5 is discharged.
  • the interface between the molten slag 6 and the molten iron 5 is close to the tap hole 7, the separation performance of the molten slag 6 and the molten iron 5 is deteriorated.
  • the molten slag 6 is reduced by carbon, the reduced iron is accumulated in the molten iron 5, and the reduced slag is accumulated in the molten slag layer on the molten iron 5.
  • the molten slag 6 is discharged from the tap hole 7 about 46 tons once an hour, and the molten iron 5 is discharged from the tap hole 8 about 44 tons once every five hours.
  • Tables 2 and 3 Examples of the composition of the discharged slag and the composition of the discharged molten iron 5 are shown in Tables 2 and 3.
  • the molten slag 6 discharged from the tap hole 7 is subjected to water granulation and rapid cooling treatment on the spot, or received in a container and subjected to gradual cooling treatment to obtain a product. That is, the discharged molten slag 6 prevents crystallization by rapid cooling and is used as a cement raw material, or promotes crystallization by slow cooling and is used for applications such as earthwork and natural stone replacement.
  • a method for rapid cooling there is a water granulation treatment
  • a method for slow cooling there is natural cooling in the mold.
  • the molten iron 5 discharged from the tap hole 8 has a high P concentration, oxygen or iron oxide and a dephosphorizing material are added to perform dephosphorization.
  • P After dephosphorizing the molten iron 5 to 0.080 to 0.150 mass%, in a molten state, the molten iron 5 is mixed with the blast furnace molten iron and recycled, or cast and used as a mold.
  • the target phosphorus concentration after dephosphorization is approximately the same as the blast furnace phosphorus concentration to avoid phosphorus accumulation in the steelmaking process.
  • converter slag is mainly used, and quick lime, dolomite, soda ash, ore powder, calcium-ferrite and the like are appropriately added. Further, when the temperature is low, oxygen blowing may be performed.
  • the molten iron 5 after dephosphorization is made into a mold or transferred to a kneading wheel or a molten iron pan and transferred to a steelmaking process. Since the dephosphorization slag produced by the dephosphorization treatment has a high P 2 O 5 content of 10% by mass or more, for example, it can be used as a raw material for phosphoric acid fertilizer or an industrial phosphoric acid raw material.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 In the apparatus shown in FIG. 2, the hot steelmaking slag 6 ′ discharged from the converter was introduced into the slag supply container 9 in a high-temperature molten state (solid phase ratio of 30% or less), and once accommodated and held. Next, the slag supply container 9 was tilted at a frequency of once every 10 minutes, and once: about 8 tons of hot steelmaking slag 6 ′ was intermittently flowed into the DC electric furnace 1.
  • hot steelmaking slag 6 ′ was allowed to flow under the condition that about 130 tons of pig iron and about 200 mm of a reduced slag layer existed thereon.
  • the reason why the inflow amount of the hot steelmaking slag 6 ′ is set to once: about 8 tons is because it has been confirmed by the previous actual machine test that forming does not occur vigorously under the present conditions.
  • the inflow speed of the hot steelmaking slag 6 ' was set to 800 kg / min on average. As will be described later, this is calculated from the power intensity required for the steelmaking slag reduction treatment obtained by the above-described method in order to continuously supply about 30 MW of power.
  • coke powder was supplied into the electric furnace 1 from the auxiliary raw material supply pipe 14a.
  • the supply rate was 85 kg / min corresponding to 1.5 times the stoichiometric supply rate.
  • the slag modifier has fly ash: 378 kg / t-slag, bauxite powder: 47 kg / t-slag in order to achieve the target basicity: 1.2 and the target (Al 2 O 3 ): 12% by mass.
  • the target (Al 2 O 3 ) 12% by mass.
  • the inside of the electric furnace 1 was controlled so that the molten iron temperature was 1450 ⁇ 5 ° C. and the slag temperature was 1550 ⁇ 5 ° C. Since the electric furnace 1 has no opening leading to the outside air, the inside of the electric furnace 1 was maintained in a reducing atmosphere.
  • Table 4 shows the composition and temperature of the molten slag 6 flowing into the electric furnace 1.
  • pig iron (C; 3.0% by mass) having the composition shown in Table 1 was always present at 100 to 150 tons, and the molten slag layer was present at a thickness of about 100 to 300 mm. .
  • About 30 MW of electric power was continuously supplied from the electrode 2 to the electric furnace 1, and the reduction treatment of the molten slag 6 could be performed continuously without causing the molten slag 6 to overflow.
  • the molten slag 6 was discharged about 46 tons from the tap hole 7 once an hour, and the molten iron 5 was discharged about 44 tons from the tap hole 8 once every five hours.
  • Example 2 Except for the use of the hollow electrode 3 for the electrode 2 and the use of the hollow portion of the hollow electrode 3 as the auxiliary raw material supply pipe 14a instead of the auxiliary raw material supply pipe 14a. Under the same conditions as in Example 1, the reduction reforming treatment of the molten slag 6 was performed.
  • the temperature in the electric furnace 1 was controlled to be a molten iron temperature: 1450 ⁇ 5 ° C. and a slag temperature: 1550 ⁇ 5 ° C.
  • the reduction treatment of the molten slag 6 could be continuously performed without causing the overflow of the molten slag 6 during the process.
  • the molten slag 6 discharged about 46 tons from the tap hole 7 once an hour, and the molten iron 5 discharged about 44 tons from the tap hole 8 once every five hours.
  • the component composition of the discharged molten slag 6 and the component composition of the molten iron 5 were almost the same as those shown in Tables 2 and 3.
  • Example 3 As shown in Table 7, in the electric furnace 1, pig iron (C; 4.1% by mass) having a higher component composition than that of Examples 1 and 2 was used, and 5 pieces of slag supply containers 9 were used. Slag reduction treatment was performed under the same conditions as in Example 1 except that the inflow amount of hot steelmaking slag 6 ′ was set to once: about 4 tons by tilting once every minute.
  • the inflow amount of hot steelmaking slag 6 ′ was set to 1 time: about 4 tons under the conditions of Example 3 in which the C concentration of the hot metal was higher than that of Examples 1 and 2 according to the previous actual machine test. This is because it was confirmed that the forming does not occur violently. As a result, the reduction treatment of the molten slag 6 could be continuously performed without causing the molten slag 6 to overflow.
  • the molten slag 6 discharged about 46 tons from the tap hole 7 once an hour, and the molten iron 5 discharged about 44 tons from the tap hole 8 once every five hours.
  • Tables 5 and 6 the component composition of the molten slag 6 discharged and the component composition of the molten iron 5 were reduced, and it was found that P and Mn were concentrated in the molten iron 5. .
  • Example 1 about 8 tons of hot steelmaking slag 6 ′ is allowed to flow in one batch at a time of 10 minutes, and in Example 3, about 4 tons per time at a time of 5 minutes. Even under the inflow conditions in which a ton of hot steelmaking slag 6 ′ was introduced all at once, the molten slag 6 was not overflowed and the reduction treatment of the molten slag 6 could be continued.
  • the inflow speed of the hot steelmaking slag 6 ′ on average was 800 kg / min.
  • hot steelmaking slag 6 ′ is a condition in which forming is less likely to occur when continuously flowing at a flow rate of 800 kg / min or a flow rate of 800 kg / min or less. This means that the reduction process of the molten slag 6 can be continued without causing the slag 6 to overflow. That is, Examples 1 to 3 of intermittent inflow are also examples demonstrating continuous inflow of hot steelmaking slag 6 '.
  • steelmaking slag is modified into a material that can be used for various applications such as cement raw materials, earthwork materials, ceramic products, and at the same time, valuable elements such as Fe, Mn, and P are used. Can be reduced and recovered in molten iron. And Fe and Mn can be recycled to the iron making process, and P can be used as a phosphate fertilizer or a phosphoric acid raw material. Therefore, the present invention has very high applicability in the refining technology of the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 この製鋼スラグ還元処理方法は、電気炉内に収容された溶鉄上の溶融スラグ層に向けて、スラグ供給容器から熱間製鋼スラグを、前記スラグ供給容器により流入量を調整しつつ連続的又は間歇的に流入させる熱間製鋼スラグ流入工程と;前記溶融スラグ層に還元材を供給する還元材供給工程と;前記溶鉄及び前記溶融スラグ層を通電して加熱する通電加熱工程と;前記溶融スラグ層の溶融スラグ及び前記溶鉄の少なくとも一方を間歇的に排出しながら、前記熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する還元処理工程と;を備える。

Description

製鋼スラグ還元処理方法
 本発明は、製鋼工程で発生するスラグ(製鋼スラグ)を還元して有価成分を回収するとともに、製鋼スラグの性状を各種用途に適合するように改質する製鋼スラグ還元処理方法に関する。 本願は、2012年6月27日に、日本に出願された特願2012-144473号と、2012年6月27日に、日本に出願された特願2012-144557号と、2012年10月25日に、日本に出願された特願2012-235692号とに基づき優先権を主張し、その内容をここに援用する。
 製鋼工程では、大量の製鋼スラグが発生する。製鋼スラグは、Fe、Mn等の金属成分、及び、P等を含むが、CaOを多量に含むことに起因する膨張・崩壊性のため、路盤材、骨材等への利用が制限されていた。しかし、近年、資源のリサイクルが積極的に推進されており、製鋼スラグから有価物を回収する方法が、これまで数多く開示されている。
 特許文献1には、溶解炉に収納した鉄鋼溶湯に対し、鉄鋼溶製時に発生する鉄鋼スラグを加え、さらに、熱及び還元材を加えて、鉄鋼スラグを変成しつつ、Fe、Mn、及び、Pを溶湯に移行させて変成スラグを得、次に、溶湯中のMn及びPをスラグに移行させる鉄鋼スラグの処理方法が開示されている。しかし、該処理方法は、所要の成分組成のスラグを得るまで、数回のバッチ処理を連続的に行う必要があるので、作業効率が悪い。
 特許文献2には、炭素含有率1.5wt%未満の鋼鉄浴に、酸化鉄含有率5wt%超の鋼鉄スラグを供給し、その後、炭素又は炭素キャリアを導入して、鋼鉄浴を炭化し、炭素含有率2.0wt%超の鋼鉄浴を得た後に、還元処理を行う方法が開示されている。
 しかし、特許文献2の方法は、溶融スラグ装入時には溶鉄中のC濃度(炭素濃度)を1.5wt%未満として、多量のガス発生を抑制し、溶融還元実施時にはC濃度を2.0wt%超に上昇させることで、所望の還元を行う。従って、脱炭昇熱と加炭還元を繰り返すため、バッチ処理となり、作業効率が悪い。
 なお、還元処理の実施時に、C濃度を2.0wt%超に上昇させていることから、特許文献2の方法は、主にスラグ-メタル間の反応により、還元反応を促進させているものと考えられる。
 また、特許文献2の方法においては、炭材を、還元材として使用する他、熱源としても使用するので、排ガス量が増加する。その結果、熱効率の低下や、ダスト発生量の増加が想定される。
 非特許文献1には、電気炉内に、製鋼スラグ粉、炭材粉、及び、スラグ改質材粉を中空電極から装入し、還元試験を行った結果が開示されている。しかし、非特許文献1の還元試験は、固化して粉砕した冷間の製鋼スラグを処理対象物とするので、エネルギー原単位が大きい。
 また、特許文献3には、開放型直流電気炉中で、非鉄精錬で発生した溶融スラグを炭素質還元材で還元して、金属相とスラグ相に分離し、有価金属を回収する方法が開示されている。しかし、特許文献3の方法は、同様に、冷間スラグを処理対象物とするので、エネルギー原単位が大きい。
 このように、スラグから有価成分を回収する方法は、いずれも、作業効率が悪いか、又は、エネルギー原単位が大きいという難点を抱えている。
日本国特開昭52-033897号公報 日本国特表2003-520899号公報 オーストラリア特許AU-B-20553/95号明細書
Scandinavian Journal of Metallurgy 2003;32:p.7-14
 前述したように、熱間製鋼スラグをバッチ処理でリサイクルする従来法は、作業効率が悪く、また、冷間製鋼スラグを溶融して資源としてリサイクルする従来法は、エネルギー原単位が高いという難点を抱えている。
 そこで、本発明は、作業効率が良好で、かつ、エネルギー原単位が低い方法として、製鋼スラグの還元処理を行い、(i)製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質することを目的とする。
 また、本発明は、同時に、(ii)Fe、Mn、及び、P等の有価元素を、溶鉄中に還元回収し、その後、(ii-1)Fe及びMnは、製鉄プロセスへリサイクルし、(ii-2)Pは溶鉄に酸化処理を施して酸化物として回収し、燐酸肥料や燐酸原料として利用することを目的とする。
 本発明の要旨は以下のとおりである。
(1)本発明の第一の態様は、電気炉内に収容された溶鉄上の溶融スラグ層に向けて、スラグ供給容器から熱間製鋼スラグを、前記スラグ供給容器により流入量を調整しつつ連続的又は間歇的に流入させる熱間製鋼スラグ流入工程と;前記溶融スラグ層に還元材を供給する還元材供給工程と;前記溶鉄及び前記溶融スラグ層を通電して加熱する通電加熱工程と;前記溶融スラグ層の溶融スラグ、又は、前記溶鉄を間歇的に排出しながら、前記熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する還元処理工程と;を備える製鋼スラグ還元処理方法である。
(2)上記(1)に記載の製鋼スラグ還元処理方法では、前記熱間製鋼スラグ流入工程において、前記熱間製鋼スラグの前記溶融スラグ層への流入量を、前記電気炉へ供給する電力量に基づいて調整してもよい。
(3)上記(1)又は(2)に記載の製鋼スラグ還元処理方法では、前記還元処理工程では、前記電気炉から排出される排ガスを、前記スラグ供給容器を経て排出してもよい。
(4)上記(1)~(3)のいずれか一項に記載の製鋼スラグ還元処理方法では、前記溶融スラグ層に、スラグ改質材を連続的又は間歇的に供給するスラグ改質材供給工程を更に備えてもよい。
(5)上記(1)~(4)のいずれか一項に記載の製鋼スラグ還元処理方法では、前記溶融スラグ層中に、前記溶融スラグとの還元反応に必要な化学量論量の1.1倍以上1.6倍以下の炭材を加えて懸濁させる懸濁工程を更に備えてもよい。
(6)上記(1)~(5)のいずれか一項に記載の製鋼スラグ還元処理方法では、前記溶鉄中のC濃度が3質量%以下であってもよい。
 上述の態様によれば、製鋼スラグを、低コストで、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質することができるとともに、Fe、Mn、及び、P等の有価元素を、溶鉄中に還元回収することができる。そして、Fe及びMnは、製鉄プロセスへリサイクルし、Pは、燐酸肥料や燐酸原料として利用することができる。
本発明の一実施形態に係る製鋼スラグ還元処理方法を実施するための電気炉及びスラグ供給容器の一例を示す模式図である。 本発明の一実施形態に係る製鋼スラグ還元処理方法を実施するための電気炉及びスラグ供給容器の他の例を示す模式図である。 本発明の一実施形態に係る製鋼スラグ還元処理方法を実施するための電気炉及びスラグ供給容器の他の例を示す模式図である。 中空電極を使用した場合における溶融スラグ層内の反応態様を示す図である。 溶鉄のC濃度と溶融スラグの(Total Fe)の関係を示す図である。 電気炉に開口部がある場合とない場合における溶融スラグの(Total Fe)の経時推移を比較して示す図である。
 本発明の目的である、作業効率が良好で、かつ、エネルギー原単位が低い方法を考えると、熱間製鋼スラグ(以下、単に製鋼スラグと呼ぶ場合がある)を用いることが、エネルギー原単位の低減の観点から有効である。しかし、熱間製鋼スラグを電気炉内に収容した溶鉄上に向けて流入する際、製鋼スラグが溶鉄と急激に反応して突沸する現象(スラグフォーミング)が起き、これが激しくなるとスラグが電気炉から溢れ出る場合(オーバーフロー)がある。
 前述したように、特許文献2の方法においては、突沸現象の解決策を、「溶鉄のC濃度低下による反応速度の緩和」に求めているが、この方法では作業効率が悪い。
 即ち、本発明においても、解決すべき課題として、同様の課題を抱えることになり、スラグ-メタル間の反応により、還元反応を促進させる還元炉(転炉等)では、溶鉄中のCが、スラグ中のFeOを還元する。このため、還元力を向上させるには、脱炭・加炭を繰り返して行う必要があり、その結果、作業効率は悪くなる。
 そこで、本発明者らは、鋭意、検討したところ、電気炉では、還元反応は、スラグ-メタル間の反応よりも、スラグ中のFeOとCとの反応が支配的であることを実験により新たに知見した。それ故、若干の還元力の低下はあるが、1.5質量%程度の低いC濃度であっても、加炭なしで、スラグの還元処理を行うことが可能であり、作業効率を良好にできることが判明した。
 したがって、電気炉を用いることにより、製鋼スラグの流入時に突発的に起きるスラグフォーミングを抑制でき、スラグのオーバーフローを防止する対策の一つとなり得る。
 しかし、溶鉄中のC濃度が高い場合もあり得るため、溶鉄中のC濃度が高くても、作業効率が良好で、かつ、エネルギー原単位が低い方法を検討した。
 その結果、熱間で流動性のある熱間製鋼スラグを、直接、電気炉に、オーバーフローを防止しつつ供給するための具体的な方法として、
(a)熱間で流動性のある熱間製鋼スラグを、電気炉への流入量を調整できる装置に一旦収容してから、熱間製鋼スラグが電気炉内でオーバーフローしないように、電気炉への流入量を調整して流入させること、及び、
(b)溶鉄上に溶融スラグ層、好ましくは不活性な溶融スラグ層(還元スラグ層)を緩衝帯として予め形成し、その上に熱間製鋼スラグを流入させること、
の二点が溶融スラグの突沸現象を抑制し、オーバーフローを回避する点で好適であることを、実験的に知見した。
 また、
(c)熱間製鋼スラグに、予め、炭材を過剰に懸濁させて供給すること、及び、
(d)溶鉄のC濃度を3質量%以下に低減する(ただし、強還元を必要としない場合)こと、
も上記の(a)、(b)の方法と併用することで、より好適であることを知見した。
 本発明は、製鋼スラグを熱間で流動性のある間に還元処理を行えば、エネルギー原単位を低く抑制することができるとの技術思想に立脚するものである。
 具体的には、本発明者らは、製鋼工程で発生する製鋼スラグを、熱間で流動性のある間に、電気炉に流入させて還元し、有価成分を回収するとともに、スラグを改質して、製鋼スラグを低いエネルギー原単位で資源化できると発想した。
 以下、本発明の一実施形態に係る製鋼スラグ処理方法について、図面を参照して詳細に説明する。
 本実施形態に係る製鋼スラグ処理方法が処理の対象とする製鋼スラグは、製鋼工程で発生したスラグであればよく、特定の成分組成のスラグに限定されない。
 本実施形態に係る製鋼スラグ処理方法では、電気炉内に収容された溶鉄上の溶融スラグ層、すなわち、製鋼スラグに還元処理を施して生成された溶鉄上の溶融スラグの層(以下、単に「溶融スラグ層」ということがある。)に、熱間で流動性のある熱間製鋼スラグを後述するスラグ供給容器から連続的又は間歇的に流入させて、還元処理を継続して行う。
 電気炉内には、例えば、100~150tonの溶鉄を存在させておく。溶鉄のC濃度は、溶融スラグ中の酸化鉄を還元する還元能力に影響するので、目標とする溶融スラグの還元レベルに応じて設定することが好適である。
 溶鉄のC濃度は、通常、1.5~4.5質量%である。溶鉄のC濃度(質量%)と還元処理後の溶融スラグの(Total Fe)(質量%)は相関することを試験的に見出した。具体的には、試験炉で、溶鉄中のC濃度(質量%)の濃度を変更させた条件で、還元処理後の溶融スラグ中の(Total Fe)(質量%)の関係を測定することにより見出した。
 図5に、その結果を示す。溶鉄のC濃度が3質量%を超えると、溶融スラグ中の酸化鉄の還元がより促進されて、溶融スラグの(Total Fe)が2質量%以下に減少することが解る。尚、この試験では、還元処理前の製鋼スラグの(Total Fe)は、18.6質量%であった。
 溶鉄の成分組成は特に限定されないが、一例を表1に示す。ただし、Mn及びPの含有量([Mn]、[P])は、溶融スラグの還元の進行とともに増加傾向となる。
Figure JPOXMLDOC01-appb-T000001
 図1に、本実施形態に係る製鋼スラグ還元処理方法を実施するための電気炉1及びスラグ供給容器9を一例として示す。
 電気炉1の左上部には、熱間(例えば300℃以上)で流動性のある熱間製鋼スラグ6’を、スラグ供給部4を介して電気炉1内に流入させるスラグ供給容器9が設けられている。このスラグ供給容器9は、例えば傾動軸zを中心に任意の角度に傾動可能な構成とすることで、熱間製鋼スラグ6’の電気炉1への流入量が調整できる。
 この電気炉1は、炉壁に開口のない、密閉型での固定式の直流電気炉である。また、スラグ供給容器9には排気部13が設けられ、この排気部13から、電気炉1内で発生した排ガスがスラグ供給部4を介して排気される。
 この排気部13が外部の集塵機(図示なし)に接続される場合には、スラグ供給容器9の雰囲気を常に負圧状態とすることができるため、好ましい。この場合、スラグ供給容器9と電気炉1との接続部の隙間等から外気が侵入しても、侵入した外気はスラグ供給容器9の内部へ流れる。
 電気炉1を密閉型とし、スラグ供給容器9を排気経路とすることで、電気炉1内の雰囲気は、還元反応によって生じるCOガスと、供給される還元材(炭材)から生じるHを主成分とする非酸化性雰囲気(還元雰囲気)に維持される。このため、電気炉1内に収容された溶鉄5上の溶融スラグ6の表面での酸化反応を防止できる。
 ここで、図6に、電気炉1の炉壁に開口がある場合とない場合における溶融スラグ6の(Total Fe)(%)を比較して示す。還元材(炭材)を電気炉1内に吹き込み、溶融スラグ6を還元処理することにより、溶融スラグ6の(Total Fe)は減少するが、電気炉1の炉壁に開口があると、電気炉1内が大気雰囲気となり、溶融スラグ6の表面で再酸化が起きる。還元材の吹込みが終了すると、再酸化の影響で、溶融スラグ6の(Total Fe)が増加し始めた。
 一方、電気炉1の炉壁に開口がないと、電気炉1内は還元雰囲気に維持されるので、溶融スラグ6の表面で再酸化は起きず、溶融スラグ6及び溶鉄5中のCによるFeOの還元反応が進行して、溶融スラグ6の(Total Fe)は減少した。
 電気炉1の底部側には、溶鉄5が収容され、溶鉄5の上には、スラグ供給容器9から流入させた熱間製鋼スラグ6’が還元処理されて得られた溶融スラグ6の層(溶融スラグ層)が形成されている。スラグ供給容器9と、熱間製鋼スラグ6’の電気炉1への流入については後述する。
 電気炉1は、前述したように、密閉型で固定式の直流電気炉で、上部電極2aと炉底電極2bが鉛直方向に対をなす電極2を備えている。この電極2により、溶鉄5及び溶融スラグ6の層を通電して加熱することができる。電気炉1の炉側壁1aには、溶融スラグ6を間歇的に出滓する出滓孔7を備え、炉側壁1bには、溶鉄5を間歇的に出銑する出銑孔8を備えている。
 炉側壁1aと炉側壁1bの溶損を防止するために、出滓孔7と出銑孔8は同一炉側壁近傍に設けないことが好ましく、炉側壁1aと炉側壁1bの溶損を防止可能な距離だけ離間していれば良い。なお、炉側壁1a、炉側壁1b、及び、炉天井1cは、ジャケット又は散水冷却(図示なし)で冷却されている。
 電気炉1は、溶鉄5に小塊鉄屑、DRI(Direct Reduced Iron)等の鉄原料を供給する原料供給装置(図示なし)を備えていてもよい。電気炉1で、小塊鉄屑、還元鉄、粉状ダスト等を溶解・還元して、溶鉄5を製造することができる。
 電気炉1には、還元に必要な還元材、及び、溶融スラグ5の特性を改質する改質粉体等の副原料を供給する副原料供給管14aが設けられていてもよい。図2に、炉天井1cに副原料供給管14aを設けた態様を示す。副原料供給管14aから副原料(還元材、改質粉体等)を電気炉1内に供給すると、電気炉1内で発生するガス量が少ないので、副原料は、重力で溶融スラグ6の表面に落下して、溶融スラグ6と混合する。
 また、電極2の上部電極2aを中空電極とし、中空部を副原料供給管14aとして使用してもよい。中空電極を用いれば、副原料(還元材、改質粉体等)を、直接、アークスポットに吹き込むことができる。
 電気炉1に副原料吹込ランス14bを設け、飛散し易い粉体(副原料)を電気炉1内に供給しても良い。図3に、電気炉1の炉天井1cに、炉天井1cを貫通して副原料吹込ランス14bを設けた態様を示す。
 スラグ供給容器9は、スラグ鍋(図示なし)から熱間製鋼スラグ6’の供給を受けるための開口部13aを備え、開口部13aは、スラグ鍋(図示なし)から熱間製鋼スラグ6’の供給がないとき、蓋13bで閉塞されていてもよい。スラグ供給容器9は、熱間製鋼スラグ6’を改質する改質材を添加する添加装置(図示なし)を備えていてもよい。
 スラグ供給容器9は、傾動軸zを中心に任意の角度に傾動可能である。したがって、
(i)スラグ鍋から開口部13aを経て流入される熱間製鋼スラグ6’を、一旦、貯留・保持し、その後、電気炉1に、流入量を調整しつつ、スラグ供給部4から、溶鉄5上の溶融スラグ6の層に向けて流入させる場合、
(ii)スラグ鍋から開口部13aを経て流入される熱間製鋼スラグ6’を、一旦、貯留・保持することなく、そのまま、溶鉄5上の溶融スラグ6の層に流入させる場合、
のいずれの場合にも対応可能である。スラグ鍋から供給される熱間製鋼スラグ6’の量に応じて、適宜、好適な流入方法を使い分けることができる。
 スラグ供給容器9の下壁10は、耐火物で構成され、上壁11は、水冷耐火物内張壁で構成されていることが好ましい。また、スラグ供給容器9は、スラグ供給部4を介して、電気炉1と連結されている。
 スラグ供給容器9には、CO及びHを含む排ガスに、酸素又は酸素含有ガスを吹き込むノズル12が設けられていてもよい。スラグ供給容器9内で排ガスを燃焼させることにより、熱間製鋼スラグ6’の凝固付着を防止し、また、熱間製鋼スラグ6’の温度を充分な流動性を確保できる温度に維持する。当該温度は、例えば、一般的な製鋼スラグであれば1300℃以上が例示できる。但し、流動性が確保できていれば、下限温度としてこの温度に限定されるものではなく、例えば800℃以上でも良く、さらには300℃以上であっても良い。 
 排ガスの顕熱及び燃焼熱を利用してもスラグ供給容器9内の温度が、熱間製鋼スラグ6’がスラグ供給容器9に付着しない温度まで上昇しない場合があるので、スラグ供給容器9に、燃焼バーナー12aを設けてもよい。
 スラグ供給容器9には、傾動装置(図示なし)が配備されている。傾動装置で、スラグ供給容器9を、傾動軸zを中心に傾動して、熱間製鋼スラグ6’の表層の製鋼スラグを、電気炉1内に、スラグ供給部4から流入させる。具体的な供給方法については、後述する。
 <電気炉への溶融スラグの流入方法>
 まず、手段(a)について、以下に詳述する。
 (a)熱間で流動性のある熱間製鋼スラグ6’を、電気炉1への流入量を調整できる装置に一旦収容してから、熱間製鋼スラグ6’が電気炉1内でオーバーフローしないように、電気炉1への流入量を調整して流入させる。
 本実施形態に係る方法が処理の対象とする熱間製鋼スラグ6’は、連続的又は間歇的に電気炉1に流入させ得るに足る流動性を有していればよく、完全に溶融状態にある必要はない。熱間製鋼スラグ6’の固相率は特に限定されるものではないが、例えば、1400℃位で30%以下程度であれば、電気炉1に流入させ得る流動性を備えているため、好適である。なお、固相率は、市販のソフトを用いて算出できる。
 スラグ供給容器9を傾動して、スラグ供給容器9内の熱間製鋼スラグ6’を、溶融スラグ6が電気炉1からオーバーフローしないように流入量を調整しつつ、連続的に、又は、間歇的に流入させる。熱間製鋼スラグ6’を間歇的に流入させる場合、
(i)熱間製鋼スラグ6’の流入と中断を適宜繰り返しながら流入させる態様、又は、
(ii)所要量の熱間製鋼スラグ6’を、所定の時間間隔で、一括して供給する態様
を採用し得る。
 熱間製鋼スラグ6’の流入量は、電極2への供給電力量で決定される。即ち、製鋼スラグ還元処理に必要な電力原単位と、供給実績電力量に基づいて、連続的又は間歇的に流入させる熱間製鋼スラグ6’の流入量が計算される。
 尚、製鋼スラグの還元処理に必要な電力原単位は、反応熱および放熱を考慮した熱バランス計算により、求めることができる。但し、上記の電力原単位は、熱バランス計算による推定値であるため、その誤差は、電気炉1内の溶融スラグ6の温度変化となって現れる。
 溶融スラグ温度の変動は、熱間製鋼スラグ6’の流入量や、還元材供給量を調整することで制御できる。通常、電気炉1内の温度は、溶鉄温度:1400~1550℃、溶融スラグ温度:1500~1650℃となるように制御されることが例示できる。
 スラグ供給容器9を傾動させて、熱間製鋼スラグ6’を電気炉1内に流入させる際、温度の高い表層の熱間製鋼スラグ6’から、電気炉1内に流入させる。これにより、スラグ供給容器9内の熱間製鋼スラグ6’の高温表面層が更新されて、このスラグ供給容器9内に残留する熱間製鋼スラグ6’への着熱効率が向上する。
 熱間製鋼スラグ6’を電気炉1へ流入させているとき、流入速度が速すぎると、発生ガス量が一時的に増加して溶融スラグ6がフォーミング状態になり、オーバーフロー等の異常事態になりそうな場合がある。その場合は、スラグ供給容器9の傾動角を小さくして、熱間製鋼スラグ6’の流入を一時停止するか、又は、還元材供給速度を増加させることで、沈静化を図ることが推奨される。
 なお、オーバーフロー等の異常事態に至るか否かは、監視カメラによる炉内状況及び炉外状況の監視、サウンドメーターによる熱間製鋼スラグ6’の挙動の監視、マイクロ波照射による溶融スラグ表面レベルの監視等で検知することができる。
 溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防する手段として、スラグ供給容器9の流入量の調整(前記手段(a)参照)の他に、以下の手段(b)があるため、(a)と(b)とを併用してもよい。
  (b)溶鉄5の上のスラグとして、還元されたスラグを存在させることで、緩衝帯としての機能を持たせることができ、これにより、流入させる熱間製鋼スラグ6’のFeO濃度を希釈低減するとともに、熱間製鋼スラグ6’と溶鉄5との接触機会を低減する。
 即ち、溶鉄5の上面に緩衝帯として還元処理後の溶融スラグ6を存在させることにより、この溶融スラグ6の(FeO)濃度が低減されているとともに、溶融スラグ6と溶鉄5の接触機会も低減できるため、溶融スラグ6のフォーミングを抑制し、結果的に、溶融スラグ6の電気炉1からのオーバーフローを防止することができる。
 次に、電気炉1内での溶融スラグ6の処理方法について説明する。
 <溶融スラグの処理>
 電気炉1内に、予め、相当量の溶鉄5を種湯として収容する。次に、電気炉1への電力供給速度に見合う量の熱間製鋼スラグ6’を、スラグ供給容器9から、溶鉄5上の溶融スラグ6に向けて流入させ、溶融スラグ6の層を継続的に維持する。
 熱間製鋼スラグ6’を連続的に電気炉1に供給する場合、供給速度は、長期的には、電極2への電力供給速度に合致させなければならないが、短期的には、電極への電力供給速度に合致させる必要はない。なぜなら、所定量の熱間製鋼スラグ6’を間歇的に電気炉1に流入させる場合、流入量は、短期的には、電極2への電力供給速度に合致していないからである。
 なお、熱間製鋼スラグ6’を間歇的に流入させる場合、1回に流入させる熱間製鋼スラグ6’の量は、スラグフォーミングによりオーバーフローが起こらない量であることを、事前に実験等で確認した上で設定することが重要である。
 熱間製鋼スラグ6’が流入された溶鉄5上の溶融スラグ6を還元処理するためには、電気炉1に流入された熱間製鋼スラグ6’の量に対応する量の還元材を、電気炉1内に供給する必要がある。
 還元材として、通常、炭材を用いる。炭材としては、コークス粉、無煙炭粉、グラファイト粉、炭素を含むダスト粉、飛灰(フライアッシュ)などを用いることができる。
 還元材の吹込方法は、炉天井1cに設けた副原料供給管14aから、連続的又は間歇的に供給する方法(図2、参照)を用いてもよく、前述したように、中空電極の中空部又は副原料吹込ランス14bから供給することもできる(図1、図3、参照)。このとき、還元材にスラグ改質材及び含鉄原料の少なくとも一方を混合して、連続的又は間歇的に吹き込んでもよい。
 スラグ改質材は、主として、(SiO)や(Al)の調整に用いるので、適切な材料を選択する必要がある。スラグ改質材は、SiO、CaO、Al、及び、MgOの1種又は2種以上を含むものが好ましい。また、スラグ改質剤として、石炭灰、SiO、Alを多く含むスラグ粉、レンガ屑、アルミドロスなども利用できる。含鉄原料は、鉄屑、還元鉄、及び、粉状ダストの1種又は2種以上が好ましい。
 また、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防する手段として、
(c)溶融スラグ層中に、炭材を還元処理に必要な量に対して過剰に懸濁させる手法、
を併用しても良い。
 還元処理に必要な量に対して過剰量として、溶融スラグ6との還元反応に必要な化学量論量の1.1~1.6倍の還元材(粉炭)を溶融スラグ6に吹き込んで懸濁させることが好適である。
 還元材(粉炭)が化学量論量の1.1倍未満であると、還元材(粉炭)の添加によるフォーミング抑制効果が発現し難く、化学量論量の1.6倍を超えると、フォーミング抑制効果が飽和する。
 また、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防する手段として、
(d)溶鉄5のC濃度を3質量%以下に低減する手法、
を併用してもよい。
 これは、溶鉄5のC濃度を3質量%以下に低減することにより、溶融スラグ6がフォーミング状態になって電気炉1から溢れ出ることを抑制し易くなることを、実験にて知見していることに基いている。
 本実施形態に係る方法においては、熱間で流動性のある熱間製鋼スラグ6’を、スラグ供給容器9から電気炉1内に連続的に、又は、間歇的に流入させながら、還元処理された溶融スラグ6を、炉底側壁に設けた出滓孔7から間歇的に出滓し、また、溶鉄5を出銑孔8から間歇的に出銑する。その結果、電気炉内1では、熱間で流動性のある熱間製鋼スラグ6’が流入されて形成される溶融スラグ6の還元処理を中断することなく継続することができる。
 即ち、本実施形態に係る方法においては、
(a)熱間製鋼スラグ6’を電力供給速度に応じて電気炉1内に連続的又は間歇的に流入させることができ、かつ、電気炉1内の溶融スラグ層の温度変動が小さくでき、また、
(b)溶融スラグ6と溶鉄5が急激に反応して突沸現象が生じる確率が減るので、還元処理後の溶融スラグ6を間歇的に出滓して、熱間製鋼スラグ6’が流入した電気炉1内の溶融スラグ6の還元処理を、中断することなく効率よく継続することができる。
 ここで、図4に、中空電極を使用した場合における溶融スラグ層内の反応態様を示す。図4に示す反応態様においては、中空電極3から、炭材粉C(還元材)を、アークAで加熱されている溶融スラグ6に吹き込んでいる。
 炭材粉Cは、溶鉄5に移行せず、溶融スラグ6中に懸濁するので、溶鉄5と溶融スラグ6の界面で、FeO+C→Fe+CO↑の反応は起き難く、溶融スラグ6の内部で、FeO+C→Fe+CO↑の反応が優先的に進行し、生成した還元鉄(図中、Fe)は、溶鉄5に移行する。
 溶融スラグ6の処理においては、溶融スラグ6の温度を常時監視することが好ましく、溶融スラグ6の温度が上昇傾向又は下降傾向にある場合には、一時的には電力供給量を調整しても良い。また、温度変動が小さい場合には、熱間製鋼スラグ流入速度、及び/又は、炭材供給速度を変更して、溶融スラグ6の温度をほぼ一定に保持することができる。
 電気炉1内での溶融スラグ6の層厚は、操業条件に合わせ適宜調整するが、100~800mmが好ましく、100~600mmがさらに好ましい。溶融スラグ6の層厚が薄い場合には、アークフレームが露出して、輻射熱の損失が増加する。溶融スラグ6の層厚が厚い場合には、電極と溶融スラグ6の接触面積が増え、電極2の消耗が助長される。溶融スラグ6の層厚が厚いと、電圧を上げなければならない。但し、電圧を上げると、炉壁と放電しやすくなることがあるため、この点を考慮して、電圧の上限を設定することが重要である。
 電気炉1内の溶融スラグ6の層厚が、所定のレベルに達した場合には、出滓孔7を開孔して、溶融スラグ6を電気炉1外に排出する。また、溶融スラグ6と溶鉄5との界面が出滓孔7近傍に近づいた場合には、出滓孔7より下方にある出銑孔8を開孔して、溶鉄5を排出する。溶融スラグ6と溶鉄5の界面が出滓孔7に近いと、溶融スラグ6と溶鉄5の分離性能が低下する。
 <排出後の溶融スラグと溶鉄の処理>
 電気炉1内で溶融スラグ6は炭素によって還元され、還元鉄は溶鉄5内に、還元されたスラグは、溶鉄5上の溶融スラグ層内に蓄積される。例えば、溶融スラグ6は、1時間に1回、約46トン、出滓孔7から排出され、溶鉄5は、5時間に1回、約44トン、出銑孔8から排出される。排出スラグの組成及び排出溶鉄5の組成の例を、表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、熱間製鋼スラグ6’の流入、還元処理後の溶融スラグ6の排出を繰り返していくと、溶鉄組成の[Mn](Mn濃度)及び[P](P濃度)は増加傾向となり、還元力が衰えるので、適宜、電気炉1内の溶鉄5を入れ替える。
 出滓孔7から排出された溶融スラグ6は、その場で水砕急冷処理するか、又は、容器に受けて徐冷処理をして、製品とする。即ち、排出した溶融スラグ6は、急速冷却により結晶化を阻止し、セメント原料とするか、又は、緩冷却により結晶化を促進して、土工用、天然石代替等の用途に利用する。急速冷却の方法としては、水砕処理があり、また、緩冷却方法としては、鋳型内自然冷却等がある。
 出銑孔8から排出された溶鉄5は、P濃度が高いので、酸素又は酸化鉄と脱燐材を添加して、脱燐処理を施す。P:0.080~0.150質量%まで溶鉄5を脱燐した後、溶融状態で、高炉溶鉄と混合してリサイクルするか、鋳造して型銑として利用する。脱燐後の目標燐濃度は、高炉の出銑燐濃度とほぼ同等とし、製鋼プロセス内での燐の蓄積を回避する。
 その際、脱燐材としては、転炉スラグを主体として、生石灰、ドロマイト、ソーダ灰、鉱石粉、カルシウム-フェライト等を適宜添加する。また、温度が低い場合には、酸素吹精を実施してよい。脱燐後の溶鉄5は、型銑にするか、又は、混銑車か溶鉄鍋に移し替えて、製鋼プロセスに移送する。脱燐処理によって生成した脱燐スラグは、例えば、Pが10質量%以上と高いため、燐酸肥料の原料とするか、又は、工業用燐酸原料として利用することができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1)
 図2に示す装置において、転炉から排出された熱間製鋼スラグ6’を高温溶融状態(固相率30%以下)で、スラグ供給容器9に流入させて、一旦、収容・保持した。次いで、スラグ供給容器9を、10分に1回の頻度で傾動して、1回:約8トンの熱間製鋼スラグ6’を、直流電気炉1に間歇的に流入させた。
 この電気炉1には、銑鉄が約130トンと、その上に還元処理された溶融スラグ層が約200mm存在している条件で、熱間製鋼スラグ6’を流入させた。なお、熱間製鋼スラグ6’の流入量を1回:約8トンと設定したのは、事前の実機試験により、今回の条件でフォーミングが激しく起こらないことを確認していたためである。
 また、熱間製鋼スラグ6’の流入速度は、平均すると、800kg/minと設定した。これは、後述の通り、約30MWの電力を連続して供給するため、前述の方法により求めておいた製鋼スラグの還元処理に必要な電力原単位から、算出したものである。
 電力を供給しながら、副原料供給管14aからコークス粉を電気炉1内に供給した。その供給速度は、化学量論的供給速度の1.5倍に相当する85kg/minとした。また、スラグ改質剤は、目標塩基度:1.2、目標(Al):12質量%を達成するために、フライアッシュ:378kg/t-slag、ボーキサイト粉:47kg/t-slagを、副原料供給管14aから溶融スラグ層に連続的に供給した。
 電気炉1内は、溶鉄温度:1450±5℃、スラグ温度:1550±5℃となるように制御した。電気炉1に、外気に通じる開口はないので、電気炉1内は還元雰囲気に維持された。電気炉1に流入された溶融スラグ6の組成及び温度を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 電気炉1内には、表1に示す成分組成の銑鉄(C;3.0質量%)を、常時、100~150トン存在させ、溶融スラグ層は約100~300mmの厚さで存在させた。電気炉1には、電極2から、約30MWの電力を連続して供給して、溶融スラグ6の還元処理を、溶融スラグ6のオーバーフローを起こすことなく連続的に行うことができた。
 溶融スラグ6は、1時間に1回、約46トンを、出滓孔7から排出し、溶鉄5は、5時間に1回、約44トンを、出銑孔8から排出した。
 排出した溶融スラグ6の成分組成及び溶鉄5の成分組成を、表2及び表3に示す通り、スラグは還元されており、溶鉄5中にはPやMnが濃化されていることが判った。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 溶融スラグ6の還元処理に必要な電力原単位は、1450℃の脱炭スラグの場合、607kWh/t-slagであった。一方、比較のために、同じ脱炭スラグを冷間で粉状にして供給したところ、電力原単位は1314kWh/t-slagであった。
 (実施例2)
 電極2に中空電極3を用いたこと、および、スラグ改質材と還元材の供給を、副原料供給管14aに替えて中空電極3の中空部を副原料供給管14aとして使用したこと以外は、実施例1と同様の条件で、溶融スラグ6の還元改質処理を行った。
 電気炉1内の温度は、溶鉄温度:1450±5℃、スラグ温度:1550±5℃となるように制御した。溶融スラグ6の還元処理は、途中、溶融スラグ6のオーバーフローを起こすことなく連続的に行うことができた。
 還元処理中、溶融スラグ6は、1時間に1回、約46トンを、出滓孔7から排出し、溶鉄5は、5時間に1回、約44トンを、出銑孔8から排出した。排出した溶融スラグ6の成分組成及び溶鉄5の成分組成は、表2及び表3に示す成分組成とほぼ同じであった。
 (実施例3)
 電気炉1内には、表7に示すようにC濃度が実施例1~2よりも高い成分組成の銑鉄(C;4.1質量%)を用いたこと、及び、スラグ供給容器9を5分に1回の頻度で傾動して、熱間製鋼スラグ6’の流入量を1回:約4トンと設定したこと以外は、実施例1と同じ条件で、スラグの還元処理を行った。
Figure JPOXMLDOC01-appb-T000007
 なお、熱間製鋼スラグ6’の流入量を1回:約4トンと設定したのは、事前の実機試験により、溶銑のC濃度が実施例1~2よりも高い実施例3の条件で、フォーミングが激しく起こらないことを確認していたためである。その結果、溶融スラグ6の還元処理を、溶融スラグ6のオーバーフローを起こすことなく連続的に行うことができた。
 還元処理中、溶融スラグ6は、1時間に1回、約46トンを、出滓孔7から排出し、溶鉄5は、5時間に1回、約44トンを、出銑孔8から排出した。排出した溶融スラグ6の成分組成及び溶鉄5の成分組成を、表5及び表6に示す通り、スラグが還元されており、溶鉄5中にはPやMnが濃化されていることが判った。
 実施例1~2においては、10分間隔で、1回当り、約8トンの熱間製鋼スラグ6’を一括で流入させ、実施例3においては、5分間隔で、1回当り、約4トンの熱間製鋼スラグ6’を一括で流入させるという流入条件下でも、溶融スラグ6のオーバーフローを起こさず、溶融スラグ6の還元処理を継続することができた。そして、熱間製鋼スラグ6’の流入速度は、平均すると、800kg/minであった。
 このことは、熱間製鋼スラグ6’を、流入速度:800kg/min、又は、流入速度:800kg/min以下で連続的に流入させた場合には、フォーミングがより起こりにくい条件となるため、溶融スラグ6のオーバーフローを起こさず、溶融スラグ6の還元処理を継続することができることを意味している。即ち、間歇流入の実施例1~3は、熱間製鋼スラグ6’の連続流入を実証する実施例でもある。
 (比較例)
 表4に示す成分組成の熱間製鋼スラグ6’を還元するため、表1に示す成分組成の溶鉄5を収容した電気炉1内に、製鋼スラグ20トンを、熱間状態で一括供給した。熱間製鋼スラグ6’を電気炉1内に供給した直後、スラグフォーミングが急激に生じ、操業を中止せざるを得なかった。
 前述したように、本発明によれば、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質すると同時に、Fe、Mn、及び、P等の有価元素を、溶鉄中に還元回収することができる。そして、Fe及びMnは、製鉄プロセスへリサイクルし、Pは、燐酸肥料や燐酸原料として利用することができるので、本発明は、鉄鋼産業の精錬技術において利用可能性が極めて高いものである。
 1  電気炉
 1a、1b  炉側壁
 1c  炉天井
 2  電極
 2a  上部電極
 2b  炉底電極
 3  中空電極
 4  スラグ供給部
 5  溶鉄
 6  溶融スラグ
 6’  熱間製鋼スラグ
 7  出滓孔
 8  出銑孔
 9  スラグ供給容器
 10  下壁
 11  上壁
 12  ノズル
 12a  燃焼バーナー
 13  排気部
 13a  開口部
 13b  蓋
 14a  副原料供給管
 14b  副原料吹込ランス 
  A  アーク
 C  炭材粉
 F  FeO粉
 z  傾動軸

Claims (6)

  1.  電気炉内に収容された溶鉄上の溶融スラグ層に向けて、スラグ供給容器から熱間製鋼スラグを、前記スラグ供給容器により流入量を調整しつつ連続的又は間歇的に流入させる熱間製鋼スラグ流入工程と;
     前記溶融スラグ層に還元材を供給する還元材供給工程と;
     前記溶鉄及び前記溶融スラグ層を通電して加熱する通電加熱工程と;
     前記溶融スラグ層の溶融スラグ、又は、前記溶鉄を間歇的に排出しながら、前記熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する還元処理工程と;
    を備えることを特徴とする製鋼スラグ還元処理方法。
  2.  前記熱間製鋼スラグ流入工程では、前記熱間製鋼スラグの前記溶融スラグ層への流入量を、前記電気炉へ供給する電力量に基づいて調整する
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。
  3.  前記還元処理工程では、前記電気炉から排出される排ガスを、前記スラグ供給容器を経て排出する
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。
  4.  前記溶融スラグ層に、スラグ改質材を連続的又は間歇的に供給するスラグ改質材供給工程を更に備える
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。
  5.  前記溶融スラグ層中に、前記溶融スラグとの還元反応に必要な化学量論量の1.1倍以上1.6倍以下の炭材を加えて懸濁させる懸濁工程を更に備える
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。
  6.  前記溶鉄中のC濃度が3質量%以下である
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理方法。
PCT/JP2013/067665 2012-06-27 2013-06-27 製鋼スラグ還元処理方法 WO2014003123A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13810302.3A EP2767597B1 (en) 2012-06-27 2013-06-27 Method of reduction processing of steel-making slag
US14/352,529 US9217185B2 (en) 2012-06-27 2013-06-27 Method of reduction processing of steel-making slag
IN7659DEN2014 IN2014DN07659A (ja) 2012-06-27 2013-06-27
KR1020147011767A KR101560512B1 (ko) 2012-06-27 2013-06-27 제강 슬래그 환원 처리 방법
CN201380003819.7A CN104039987B (zh) 2012-06-27 2013-06-27 炼钢炉渣还原处理方法
CA2851604A CA2851604C (en) 2012-06-27 2013-06-27 Method of reduction processing of steel-making slag
BR112014011250-9A BR112014011250B1 (pt) 2012-06-27 2013-06-27 Processo de redução de escória de fabricação de aço
JP2013547433A JP5522320B1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012144473 2012-06-27
JP2012144557 2012-06-27
JP2012-144473 2012-06-27
JP2012-144557 2012-06-27
JP2012235692 2012-10-25
JP2012-235692 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014003123A1 true WO2014003123A1 (ja) 2014-01-03

Family

ID=49783256

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2013/067665 WO2014003123A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理方法
PCT/JP2013/067675 WO2014003127A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
PCT/JP2013/067660 WO2014003119A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理用電気炉のスラグ供給容器

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/067675 WO2014003127A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
PCT/JP2013/067660 WO2014003119A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理用電気炉のスラグ供給容器

Country Status (9)

Country Link
US (3) US9238846B2 (ja)
EP (3) EP2759606B1 (ja)
JP (3) JP5541423B1 (ja)
KR (3) KR101531804B1 (ja)
CN (3) CN104039987B (ja)
BR (3) BR112014011428B1 (ja)
CA (3) CA2852500C (ja)
IN (3) IN2014DN07279A (ja)
WO (3) WO2014003123A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074942A (ja) * 2014-10-06 2016-05-12 新日鐵住金株式会社 傾動式スラグ供給装置のスラグ付着抑制方法
JP2016114317A (ja) * 2014-12-16 2016-06-23 新日鐵住金株式会社 製鋼スラグの溶融処理用の電気炉
WO2018110174A1 (ja) * 2016-12-16 2018-06-21 新日鐵住金株式会社 電気炉
WO2018110171A1 (ja) * 2016-12-16 2018-06-21 新日鐵住金株式会社 電気炉
CN108558244A (zh) * 2018-05-15 2018-09-21 鞍钢股份有限公司 一种利用热态转炉渣制备水泥混合料的装置及制备方法
US10703675B2 (en) * 2013-09-02 2020-07-07 Loesche Gmbh Method for processing steel slag and hydraulic mineral binder
JP2021084845A (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 コンクリートの製造方法
JP2021084091A (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 副生成物の処理方法
JP2021084092A (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 副生成物の処理方法
WO2023054345A1 (ja) 2021-09-30 2023-04-06 日本製鉄株式会社 溶銑製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249567B (zh) * 2010-09-27 2013-12-04 山东焦化集团有限公司 利用熔融炉渣生产还原石材原料的方法
JP5541423B1 (ja) 2012-06-27 2014-07-09 新日鐵住金株式会社 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
BR112016001146B1 (pt) 2013-07-24 2020-03-03 Nippon Steel Corporation Método de tratamento de gás de escape e instalação de tratamento de gás de escape
JP6446970B2 (ja) * 2014-10-06 2019-01-09 新日鐵住金株式会社 傾動式スラグ供給装置のスラグ付着抑制方法
CN105986054A (zh) * 2015-02-13 2016-10-05 鞍钢股份有限公司 一种对转炉终渣改性并还原的方法
FI127179B (fi) * 2015-09-15 2017-12-29 Outotec Finland Oy Menetelmä ja järjestely uuniprosessin ominaisuuksien seuraamiseksi ja prosessiseurantayksikkö
CN106702043B (zh) * 2015-11-17 2018-08-03 鞍钢股份有限公司 一种转炉终渣处理方法
CN106811566B (zh) * 2015-12-02 2019-02-26 鞍钢股份有限公司 一种含磷钢磷合金化方法
CN107012283B (zh) * 2016-01-27 2018-10-09 鞍钢股份有限公司 一种转炉留渣方法
CN106755665A (zh) * 2017-02-20 2017-05-31 中冶赛迪上海工程技术有限公司 一种利用高温熔渣处理垃圾焚烧飞灰的装置及方法
DE102017105551A1 (de) 2017-03-15 2018-09-20 Scholz Austria GmbH Verfahren zur Behandlung metallurgischer Schlacken
DE102017119675B4 (de) 2017-08-28 2019-07-04 Voestalpine Stahl Gmbh Verfahren zur Behandlung von Schlacke
CN109500048A (zh) * 2018-10-09 2019-03-22 中冶南方工程技术有限公司 垃圾焚烧飞灰的固化处理方法以及处理系统
CN113564297B (zh) * 2021-07-29 2022-06-21 广东韶钢松山股份有限公司 一种降低渣中氧化锰含量的方法
CN114111354B (zh) * 2021-11-03 2023-06-02 湖南博一环保科技有限公司 一种提锌回转窑铁渣的干法冷却装置及其工作方法
CN113913569A (zh) * 2021-11-10 2022-01-11 北京中冶设备研究设计总院有限公司 干法粒化储渣控流装置及储渣控流方法
CN115029488B (zh) * 2022-06-27 2023-10-03 北京崎基环保科技有限公司 钢渣处理系统及采用其处理钢渣的方法
EP4417713A1 (en) 2023-02-14 2024-08-21 Oterdoom, Harmen The novel two-step (semi-)continuous process for clean slag and steel or hot metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233897A (en) 1975-09-10 1977-03-15 Nippon Steel Corp Method for treatment of iron slag
JPS57177911A (en) * 1981-04-27 1982-11-01 Kawasaki Steel Corp Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components
AU2055395A (en) 1994-06-10 1995-12-21 Mintek The recovery of metal values from slags
JP2002069520A (ja) * 2000-08-29 2002-03-08 Nippon Steel Corp スラグ中クロムの回収方法
JP2002069526A (ja) * 2000-08-28 2002-03-08 Nippon Steel Corp 脱燐スラグの再生処理方法
JP2003520899A (ja) 2000-01-28 2003-07-08 ホルシム リミティド 鉄浴でのスラグ又はスラグ混合物の処理方法
JP2006528732A (ja) * 2003-05-16 2006-12-21 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ スラグの利用プロセス

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1291760B (de) 1963-11-08 1969-04-03 Suedwestfalen Ag Stahlwerke Verfahren und Vorrichtung zum diskontinuierlichen und kontinuierlichen Vakuum-Schmelzen und -Giessen von Staehlen und stahlaehnlichen Legierungen (Superiegierungen)
US3905589A (en) * 1972-03-27 1975-09-16 Pennsylvania Engineering Corp Steel production method and apparatus
US4149024A (en) 1974-07-23 1979-04-10 Asea Aktiebolag Arc furnace for reducing metal oxides and method for operating such a furnace
DE2522194A1 (de) 1975-05-17 1976-12-02 Vacmetal Gmbh Verfahren und vorrichtung zum herstellen von qualitaetsstaehlen
US4199350A (en) 1975-05-17 1980-04-22 Vacmetal Gesellschaft fur Vakuummetallurgie mbH Method for the production of quality steels
DE2847403A1 (de) * 1978-11-02 1980-05-14 Mannesmann Ag Verfahren zur herstellung von kohlenstoffarmem stahl aus vanadin- und/oder titanhaltigen eisenerzen
US4328388A (en) 1980-02-11 1982-05-04 Longenecker Levi S Electro furnace feeding and furnace fume utilization and control
JPS59189282A (ja) 1983-03-31 1984-10-26 新日鐵化学株式会社 高温溶融物の定量排出方法
FI72502C (fi) 1984-12-21 1987-06-08 Outokumpu Oy Saett och anordning foer framstaellning av vaermebestaendigt och/eller eldbestaendigt fibermaterial.
AT384669B (de) 1986-03-17 1987-12-28 Voest Alpine Ag Anlage zur herstellung von stahl aus schrott
US5173920A (en) 1989-08-21 1992-12-22 Asea Brown Boveri Ltd. Direct-current electric-arc furnace
AT395656B (de) * 1990-11-19 1993-02-25 Voest Alpine Ind Anlagen Anlage zur herstellung von fluessigen metallen
LU88517A7 (fr) 1993-12-15 1996-02-01 Wurth Paul Sa Dispositif de chargement d'un four électrique
FR2731712B1 (fr) 1995-03-14 1997-04-25 Usinor Sacilor Procede d'elaboration de l'acier dans un four electrique a arc, et four electrique a arc pour sa mise en oeuvre
JP3732561B2 (ja) 1995-09-29 2006-01-05 中央電気工業株式会社 電気炉における合金鉄製造及び焼却灰の溶融処理の同時実施方法
AT404942B (de) * 1997-06-27 1999-03-25 Voest Alpine Ind Anlagen Anlage und verfahren zum herstellen von metallschmelzen
LU90154B1 (fr) * 1997-10-17 1999-04-19 Wurth Paul Sa Procede pour la fusion en continu de produits metalliques solides
JP3796617B2 (ja) 1998-10-23 2006-07-12 日本坩堝株式会社 アルミニウムインゴット等の溶解保持炉
JP3644330B2 (ja) 1999-11-24 2005-04-27 住友金属工業株式会社 還元期スラグの処理方法
US6614831B2 (en) * 2000-02-10 2003-09-02 Process Technology International, Inc. Mounting arrangement for auxiliary burner or lance
ES2281384T3 (es) 2000-02-17 2007-10-01 John A. Vallomy Metodo para procesar de manera reductora la escoria liquida y el polvo de la camara de filtros del horno de arco electrico.
JP2002054812A (ja) 2000-08-08 2002-02-20 Nkk Corp 焼却灰の溶融処理方法
JP2002069626A (ja) * 2000-09-06 2002-03-08 Sumitomo Metal Mining Co Ltd スパッタリングターゲットおよびその製造方法
US6748004B2 (en) 2002-07-25 2004-06-08 Air Liquide America, L.P. Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system
DE10335847A1 (de) * 2003-07-31 2005-02-17 Sms Demag Ag Elektroreduktionsofen
JP2005195224A (ja) * 2004-01-06 2005-07-21 Nippon Steel Corp 製鋼スラグの溶融改質炉および溶融改質方法
JP4654886B2 (ja) 2005-11-11 2011-03-23 Jfeスチール株式会社 製鋼スラグのリサイクル方法
ATE541950T1 (de) 2006-02-23 2012-02-15 Anton Dipl-Ing Hulek Verfahren und anlage zur kontinuierlichen weiterverarbeitung schmelzflüssiger hüttenschlacken
JP2008049206A (ja) 2006-03-30 2008-03-06 Daido Steel Co Ltd 排ガス処理方法
DE102006052181A1 (de) 2006-11-02 2008-05-08 Sms Demag Ag Verfahren zur kontinuierlichen oder diskontinuierlichen Gewinnung eines Metalls oder mehrerer Metalle aus einer das Metall oder eine Verbindung des Metalls enthaltenden Schlacke
JP5541423B1 (ja) 2012-06-27 2014-07-09 新日鐵住金株式会社 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233897A (en) 1975-09-10 1977-03-15 Nippon Steel Corp Method for treatment of iron slag
JPS57177911A (en) * 1981-04-27 1982-11-01 Kawasaki Steel Corp Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components
AU2055395A (en) 1994-06-10 1995-12-21 Mintek The recovery of metal values from slags
JP2003520899A (ja) 2000-01-28 2003-07-08 ホルシム リミティド 鉄浴でのスラグ又はスラグ混合物の処理方法
JP2002069526A (ja) * 2000-08-28 2002-03-08 Nippon Steel Corp 脱燐スラグの再生処理方法
JP2002069520A (ja) * 2000-08-29 2002-03-08 Nippon Steel Corp スラグ中クロムの回収方法
JP2006528732A (ja) * 2003-05-16 2006-12-21 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ スラグの利用プロセス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCANDINAVIAN JOURNAL OF METALLURGY, vol. 32, 2003, pages 7 - 14
See also references of EP2767597A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703675B2 (en) * 2013-09-02 2020-07-07 Loesche Gmbh Method for processing steel slag and hydraulic mineral binder
JP2016074942A (ja) * 2014-10-06 2016-05-12 新日鐵住金株式会社 傾動式スラグ供給装置のスラグ付着抑制方法
JP2016114317A (ja) * 2014-12-16 2016-06-23 新日鐵住金株式会社 製鋼スラグの溶融処理用の電気炉
US11473841B2 (en) 2016-12-16 2022-10-18 Nippon Steel Corporation Electric furnace
WO2018110174A1 (ja) * 2016-12-16 2018-06-21 新日鐵住金株式会社 電気炉
CN110073160A (zh) * 2016-12-16 2019-07-30 日本制铁株式会社 电炉
CN110073161A (zh) * 2016-12-16 2019-07-30 日本制铁株式会社 电炉
JPWO2018110171A1 (ja) * 2016-12-16 2019-10-24 日本製鉄株式会社 電気炉
JPWO2018110174A1 (ja) * 2016-12-16 2019-10-24 日本製鉄株式会社 電気炉
WO2018110171A1 (ja) * 2016-12-16 2018-06-21 新日鐵住金株式会社 電気炉
US11898797B2 (en) 2016-12-16 2024-02-13 Nippon Steel Corporation Electric furnace
CN108558244B (zh) * 2018-05-15 2020-09-01 鞍钢股份有限公司 一种利用热态转炉渣制备水泥混合料的装置及制备方法
CN108558244A (zh) * 2018-05-15 2018-09-21 鞍钢股份有限公司 一种利用热态转炉渣制备水泥混合料的装置及制备方法
JP2021084091A (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 副生成物の処理方法
JP7095674B2 (ja) 2019-11-29 2022-07-05 Jfeスチール株式会社 コンクリートの製造方法
JP2021084092A (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 副生成物の処理方法
JP2021084845A (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 コンクリートの製造方法
JP7531273B2 (ja) 2019-11-29 2024-08-09 Jfeスチール株式会社 副生成物の処理方法
JP7531274B2 (ja) 2019-11-29 2024-08-09 Jfeスチール株式会社 副生成物の処理方法
WO2023054345A1 (ja) 2021-09-30 2023-04-06 日本製鉄株式会社 溶銑製造方法
KR20240035546A (ko) 2021-09-30 2024-03-15 닛폰세이테츠 가부시키가이샤 용선 제조 방법

Also Published As

Publication number Publication date
CA2851963C (en) 2015-05-19
BR112014011250A2 (pt) 2017-05-09
US20140247856A1 (en) 2014-09-04
JPWO2014003119A1 (ja) 2016-06-02
KR20140079805A (ko) 2014-06-27
EP2767597B1 (en) 2016-11-02
CN103930573A (zh) 2014-07-16
CN103930574A (zh) 2014-07-16
JP5522320B1 (ja) 2014-06-18
WO2014003119A1 (ja) 2014-01-03
BR112014011858A2 (pt) 2017-05-16
US20150135896A1 (en) 2015-05-21
EP2759606B1 (en) 2016-11-16
CA2852500C (en) 2015-06-23
CN103930574B (zh) 2015-08-19
KR20140085506A (ko) 2014-07-07
JP5574057B2 (ja) 2014-08-20
US9534266B2 (en) 2017-01-03
BR112014011428A2 (pt) 2017-05-02
KR101560513B1 (ko) 2015-10-14
KR101531804B1 (ko) 2015-06-25
BR112014011428B1 (pt) 2020-04-14
BR112014011858B1 (pt) 2019-06-25
EP2759606A4 (en) 2015-07-22
JPWO2014003127A1 (ja) 2016-06-02
KR20140085499A (ko) 2014-07-07
BR112014011250B1 (pt) 2019-07-02
IN2014DN07279A (ja) 2015-04-24
CN104039987B (zh) 2015-07-22
JPWO2014003123A1 (ja) 2016-06-02
EP2767597A4 (en) 2015-07-15
EP2757163A1 (en) 2014-07-23
JP5541423B1 (ja) 2014-07-09
WO2014003127A1 (ja) 2014-01-03
IN2014DN07281A (ja) 2015-04-24
IN2014DN07659A (ja) 2015-05-15
US9238846B2 (en) 2016-01-19
CA2851604C (en) 2015-11-10
KR101560512B1 (ko) 2015-10-14
CA2851963A1 (en) 2014-01-03
EP2767597A1 (en) 2014-08-20
US9217185B2 (en) 2015-12-22
US20140291901A1 (en) 2014-10-02
EP2757163A4 (en) 2015-07-15
CA2851604A1 (en) 2014-01-03
CA2852500A1 (en) 2014-01-03
EP2757163B1 (en) 2017-03-08
CN103930573B (zh) 2017-04-05
CN104039987A (zh) 2014-09-10
EP2759606A1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5522320B1 (ja) 製鋼スラグ還元処理方法
JP5954551B2 (ja) 転炉製鋼法
TWI609839B (zh) 熔鐵的脫磷劑、精煉劑及脫磷方法
CA2698888C (en) Method for manufacturing molten iron
JP5236926B2 (ja) 溶鋼の製造方法
JP2010265485A (ja) アーク炉の操業方法
JP5408379B2 (ja) 溶銑の予備処理方法
JP5625654B2 (ja) 溶銑の製造方法
JP2019151535A (ja) リン酸スラグ肥料の製造方法
JP2014101542A (ja) 溶銑の脱銅処理方法
JP2018003075A (ja) 酸化鉄含有鉄原料の還元・溶解方法
TW202035706A (zh) 增碳材及使用其之增碳方法
JP4630031B2 (ja) 酸化鉄含有鉄原料の還元・溶解方法
JP6221707B2 (ja) スラグ処理方法およびスラグ処理装置
JP6658241B2 (ja) 金属原料の溶解方法
JP2009228102A (ja) 出鋼後転炉内残留物の処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547433

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2851604

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013810302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14352529

Country of ref document: US

Ref document number: 2013810302

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147011767

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014011250

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014011250

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140509