WO2014002948A1 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
WO2014002948A1
WO2014002948A1 PCT/JP2013/067248 JP2013067248W WO2014002948A1 WO 2014002948 A1 WO2014002948 A1 WO 2014002948A1 JP 2013067248 W JP2013067248 W JP 2013067248W WO 2014002948 A1 WO2014002948 A1 WO 2014002948A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistant layer
thickness
wear
coated cutting
Prior art date
Application number
PCT/JP2013/067248
Other languages
English (en)
French (fr)
Inventor
瀬戸山 誠
彰彦 柴田
銀雪 肖
小林 啓
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2014501778A priority Critical patent/JP6014959B2/ja
Priority to US14/236,885 priority patent/US9211588B2/en
Priority to CN201380002492.1A priority patent/CN103717332B/zh
Priority to DE112013003182.5T priority patent/DE112013003182B4/de
Publication of WO2014002948A1 publication Critical patent/WO2014002948A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B9/00Automatic or semi-automatic turning-machines with a plurality of working-spindles, e.g. automatic multiple-spindle machines with spindles arranged in a drum carrier able to be moved into predetermined positions; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a surface-coated cutting tool in which a coating film is formed on a substrate.
  • Cutting tools such as drills have been used as surface-coated cutting tools in which various coating films are formed on a substrate for the purpose of improving wear resistance and fracture resistance.
  • high efficiency is required, and the difficulty of cutting along with the increase in the strength of the work material has progressed, and the wear of the coating film tends to be promoted as compared with the prior art.
  • Patent Document 1 discloses a surface-coated cutting in which alternating layers having a specific composition are formed as a coating film. A tool is proposed.
  • the surface-coated cutting tool of Patent Document 1 has succeeded in improving the characteristics of the coating film to some extent. However, in the recent cutting environment, further improvement in performance, in particular, coating on the coating film. There is a demand for reduction in welding of cutting materials.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to improve the wear resistance of the coating film and reduce welding of the work material.
  • An object of the present invention is to provide a surface-coated cutting tool that prevents breakage and breakage.
  • the present inventor has made extensive studies to solve the above problems, and as a result, it is most preferable to form a layer with excellent wear resistance on the inner layer of the coating film and a layer with excellent welding resistance on the surface layer.
  • the present invention has been completed by obtaining knowledge that it is effective and further examining the structure of each layer based on this knowledge.
  • the surface-coated cutting tool of the present invention includes a substrate and a coating film formed on the substrate, and the coating film includes at least a wear-resistant layer and a welding-resistant layer.
  • the wear-resistant layer has a multilayer structure in which an A layer made of a nitride containing Ti and Al and a B layer made of a nitride containing Al and Cr are alternately stacked, and the crystal structure is cubic.
  • the weld-resistant layer is located on the outermost surface of the coating film and is a nitride represented by (Al a Cr b Ti 1-ab ) N (where a + b ⁇ 0.99, b> 0 .01, 0.2b + 0.7 ⁇ a), and the crystal structure is wurtzite.
  • the atomic ratio of Al occupying all metal atoms exceeds 0.6 and is 0.8 or less, and the atomic ratio of Cr exceeds 0.15 and is 0.3 or less. It is preferable that
  • the coating film preferably has a thickness of 2 to 30 ⁇ m, and the welding-resistant layer preferably has a thickness of 0.5 to 8 ⁇ m.
  • the thickness ratio T2 / T1 preferably satisfies the relationship of 0.25 ⁇ T2 / T1 ⁇ 0.55.
  • the thickness ratio Tb / Ta preferably satisfies the relationship of 1.5 ⁇ Tb / Ta ⁇ 4.
  • the Ta is preferably 1 to 10 nm, and the Tb is preferably 1.5 to 30 nm.
  • the A layer is composed of a nitride represented by (Ti 1-c Al c ) N (where 0.3 ⁇ c ⁇ 0.7), and the B layer is (Al e Cr). 1-e ) It is preferably composed of a nitride represented by N (where 0.6 ⁇ e ⁇ 0.75).
  • the coating film has an intermediate layer between the base material and the wear-resistant layer, and the intermediate layer is made of a nitride containing Ti and Al and has a thickness of 0.01 to The thickness is preferably 0.5 ⁇ m.
  • the coating film has a first adhesion layer and a second adhesion layer between the wear-resistant layer and the welding-resistant layer, and the first adhesion layer includes the wear-resistant layer and the second adhesion layer.
  • the second adhesion layer is made of a nitride containing Ti and Al, and has a thickness of 30 nm to 0.1 ⁇ m, and the second adhesion layer has the same crystal structure as the wear-resistant layer. It is preferable to have a multilayer structure in which a C layer made of a nitride containing Al and a D layer having the same composition as the anti-welding layer are alternately stacked, and the thickness thereof is 10 nm to 0.2 ⁇ m.
  • the surface-coated cutting tool of the present invention exhibits excellent wear resistance and excellent welding resistance by having the above-described configuration, and thus has an excellent effect of being able to prevent defects and breakage extremely effectively. Have.
  • the surface-coated cutting tool of the present invention has a configuration including a base material and a coating film formed on the base material. It is preferable that such a coating film covers the entire surface of the base material. However, it is assumed that a part of the base material is not covered with the coating film or the configuration of the coating film is partially different. Does not depart from the scope of the present invention.
  • Such a surface-coated cutting tool of the present invention includes a drill, an end mill, a cutting edge replacement cutting tip for a drill, a cutting edge replacement cutting tip for an end mill, a cutting edge replacement cutting tip for milling, a cutting edge replacement cutting tip for turning, It can be suitably used as a cutting tool such as a metal saw, gear cutting tool, reamer, and tap. Among them, since the wear resistance of the coating film and the welding resistance to the work material are highly improved, it is particularly excellent for use as a drill.
  • any substrate can be used as the substrate used in the surface-coated cutting tool of the present invention as long as it is conventionally known as this type of substrate.
  • cemented carbide for example, WC-based cemented carbide, including WC, including Co, or including carbonitrides such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.) Component
  • high speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, diamond sintered body, and the like.
  • the coating film of the present invention is composed of a plurality of layers and includes at least a wear-resistant layer and a welding-resistant layer.
  • the coating film of the present invention exhibits excellent wear resistance and excellent welding resistance by synergistically exhibiting the action of each layer described later, thereby extremely effectively preventing tool breakage and breakage. It has an extremely excellent effect that it can be performed.
  • Such a coating film has a thickness of 2 to 30 ⁇ m (2 ⁇ m or more and 30 ⁇ m or less.
  • when two numerical values are connected by the symbol “ ⁇ ” to indicate a range, both the lower limit value and the upper limit value are indicated. Is preferable to have a thickness of 3 to 12 ⁇ m.
  • the thickness of the coating film is less than 2 ⁇ m, the effect of improving the wear resistance and welding resistance may not be sufficiently exhibited.
  • the thickness exceeds 30 ⁇ m, the coating film itself tends to peel off.
  • the welding-resistant layer of the present invention is located on the outermost surface of the coating film, and exhibits excellent welding resistance that extremely effectively prevents the work material from being welded to the tip portion or the blade edge portion of the tool.
  • Such an anti-welding layer is a nitride represented by (Al a Cr b Ti 1-ab ) N (wherein, a + b ⁇ 0.99, b> 0.01, 0.2b + 0.7 ⁇ a) And the crystal structure is wurtzite type (wurtzite type).
  • Such a weld-resistant layer is formed of AlN having a hexagonal crystal structure, it has excellent welding resistance and high-temperature slidability, but since it has low hardness, it disappears due to wear at the initial stage of cutting. It turned out that there was a problem with sustainability. Therefore, in the present invention, by adding specific amounts of Cr and Ti to this AlN, the hardness is improved and the durability of the welding resistance is drastically improved. When only Cr is added, a sufficient improvement in hardness cannot be obtained, and when only Ti is added, the stability at high temperature is lacking. Therefore, it is important to add both Cr and Ti to AlN.
  • a and b represent atomic ratios, but when a + b is 0.99 or more, the amount of Ti becomes relatively small, and thus sufficient hardness cannot be obtained. On the other hand, when b is 0.01 or less, the stability at high temperature is lacking. On the other hand, when 0.2b + 0.7 ⁇ a, a part or all of the crystal structure of the welding-resistant layer changes to a cubic type at high temperatures, and the welding resistance is lost.
  • the weld-resistant layer of the present invention has a wurtzite crystal structure, and excellent weld resistance cannot be obtained with other crystal structures such as a cubic crystal structure.
  • the welding resistant layer of the present invention preferably has a nanoparticle structure, and the average particle size of the nanoparticles is 40 nm or less. By refining the crystal grains, the hardness and toughness are improved, and the durability of the weld-resistant layer is improved.
  • average particle diameter of nanoparticles is measured as follows. First, the coating film is cut, and the cross section is observed at a magnification of 20000 to 1000000 using a TEM. At this time, it is preferable to adjust the magnification so that at least 20 crystal grains are included in the observation visual field. Next, regarding the 10 crystal grains randomly selected in the observation field, the maximum diameter of one crystal grain is set as the grain diameter of the crystal grain. The arithmetic average value of the particle diameters excluding the maximum value and the minimum value among the particle diameters of the crystal grains thus obtained is defined as “the average particle diameter of the nanoparticles”.
  • the ratio of (Al a Cr b Ti 1-ab ) to N is not particularly limited and can be any ratio.
  • the former is 1, the latter (ie, N) can be 0.8 to 1.1.
  • the welding resistant layer of the present invention exhibits extremely excellent welding resistance and is one of the features of the present invention.
  • Such a welding-resistant layer preferably has a thickness of 0.5 to 8 ⁇ m, more preferably 0.8 to 5 ⁇ m. If the thickness of the welding-resistant layer is less than 0.5 ⁇ m, sufficient welding resistance may not be exhibited, and if it exceeds 8 ⁇ m, the wear resistance may be reduced.
  • the wear-resistant layer of the present invention is located between the base material and the above-mentioned weld-resistant layer and has an action of improving the wear resistance.
  • Such an abrasion-resistant layer has a multilayer structure in which an A layer made of nitride containing Ti and Al and a B layer made of nitride containing Al and Cr are alternately stacked, and the crystal structure is cubic. Requires crystal form.
  • a layer made of a nitride containing Al and Cr is considered to be used as a wear-resistant layer because it has characteristics of excellent wear resistance and heat resistance.
  • this layer has the disadvantage of being hard and brittle. Therefore, the present invention has improved wear resistance by alternately laminating a layer made of nitride containing Ti and Al, which is known to have excellent toughness, and a layer made of nitride containing Al and Cr. It has succeeded in not only having heat resistance and toughness.
  • the wear resistant layer of the present invention contains Ti as a result, it contributes to suppressing chemical wear on the flank face in high speed machining.
  • the wear-resistant layer of the present invention has a cubic crystal structure, so that the hardness is improved and, in combination with the above composition, exhibits extremely excellent wear resistance.
  • the abrasion-resistant layer of this invention has a columnar crystal structure, and the average particle diameter of this columnar crystal exceeds 150 nm and is 250 nm or less. By strengthening the grain boundary, the hardness is improved and the wear resistance is improved.
  • the “average grain size of columnar crystals” is measured as follows. First, the coating film is cut, and the cross section is observed at a magnification of 20000 to 1000000 using a TEM. At this time, it is preferable to adjust the magnification so that at least 20 crystal grains (columnar crystals) are included in the observation visual field. Next, the maximum width (maximum diameter) among the widths (diameters) perpendicular to the extending direction of the columnar crystals is measured for 10 columnar crystals randomly selected in the observation field. And among the measured values obtained in this way, the arithmetic average value of the measured values excluding the maximum value and the minimum value is defined as “average particle diameter of columnar crystals”.
  • the thickness ratio Tb / Ta preferably satisfies the relationship 1.5 ⁇ Tb / Ta ⁇ 4. It is more preferable to satisfy the relationship of ⁇ Tb / Ta ⁇ 3.
  • the wear resistance may decrease.
  • the thickness ratio exceeds 4
  • the toughness may deteriorate and the wear resistance of the flank surface decreases during high-speed machining of a hard work material. There is a case.
  • the said average thickness means what remove
  • the average thickness Ta of the A layer is preferably 1 to 10 nm, more preferably 2 to 6 nm.
  • the average thickness Tb of the B layer is preferably 1.5 to 30 nm, and more preferably 7 to 20 nm. With such a thickness, particularly excellent toughness and wear resistance can be obtained.
  • the thickness of each layer is less than the above lower limit value, the effect of multilayer lamination cannot be obtained, and even when the upper limit value is exceeded, the effect of multilayer lamination cannot be obtained.
  • the thickness of such an abrasion-resistant layer is preferably such that the A layer and the B layer are alternately laminated by 100 to 10,000 layers. This is because the toughness is particularly increased.
  • the A layer is composed of a nitride represented by (Ti 1-c Al c ) N (where 0.3 ⁇ c ⁇ 0.7), and the B layer is (Al e Cr). 1-e ) It is preferably composed of a nitride represented by N (where 0.6 ⁇ e ⁇ 0.75).
  • the ratio between (Ti 1-c Al c ) and N is not particularly limited and can be any ratio.
  • the former when the former is 1, the latter (ie, N) can be 0.8 to 1.1.
  • the ratio of (Al e Cr 1-e ) to N is not particularly limited, and any ratio can be taken.
  • the former when the former is 1, the latter (ie, N) can be 0.8 to 1.1.
  • stacking is not specifically limited. That is, the base material side (lamination start side) may be an A layer or a B layer, and the welding layer side (lamination end side) may also be an A layer. B layer may be sufficient. Unless otherwise specified, the start of stacking is layer A, and the end of stacking is layer B.
  • the hardness of the coating film is such that the hardness ratio H2 / H1 is 0.7 ⁇ H2 / H1 ⁇ 1.1 when the hardness of the wear-resistant layer is H1 and the hardness measured from the surface of the weld-resistant layer is H2. It is preferable to satisfy, and it is more preferable to satisfy the relationship of 0.9 ⁇ H2 / H1 ⁇ 1.0.
  • the welding resistant layer of the present invention is characterized in that the hardness is improved as compared with AlN having a hexagonal crystal structure, but on the other hand, by making the hardness lower than the wear resistant layer, In the portion where wear progresses, the wear is smooth and chip discharge is improved. As a result, the cutting resistance is reduced, and the chipping and breakage of the tool can be suppressed. Further, when the hardness of the welding resistant layer of the present invention is higher than that of the wear resistant layer, the durability of the welding resistant layer is improved, and thus excellent welding resistance is obtained.
  • the weld-resistant layer and the wear-resistant layer of the present invention have greatly different characteristics such as hardness, heat resistance, and slidability due to different crystal structures, but have a relatively similar chemical composition, and therefore have a chemical reactivity. Similar, and therefore the chemical wear tendency is similar. For this reason, it is presumed that by setting the hardness ratio as described above, the balance of the hardness between the two layers is optimized and stable wearability is obtained, so that the chipping and breakage of the tool are suppressed.
  • the thickness ratio T2 / T1 preferably satisfies the relationship 0.17 ⁇ T2 / T1 ⁇ 0.55. That is, it is preferable to make the thickness of the welding resistant layer thinner than the thickness of the wear resistant layer.
  • the thickness ratio T2 / T1 is less than 0.17, sufficient welding resistance may not be obtained, and if it exceeds 0.55, sufficient wear resistance may not be obtained.
  • the coating film of the present invention can contain an arbitrary layer in addition to the wear-resistant layer and the welding-resistant layer.
  • the coating film of the present invention can have an intermediate layer between the substrate and the wear-resistant layer, and the intermediate layer is made of a nitride containing Ti and Al and has a thickness of 0.01. It is preferable that the thickness is 0.5 ⁇ m.
  • the adhesion between the base material and the coating film is improved, and the coating film can be effectively prevented from peeling off from the base material during cutting. If the thickness of the intermediate layer is less than 0.01 ⁇ m, sufficient adhesion may not be obtained. If the thickness exceeds 0.5 ⁇ m, the toughness is inferior to that of the wear-resistant layer, so that the adhesion layer itself is destroyed and the coating layer is peeled off. May lead to.
  • a more preferable thickness of such an intermediate layer is 0.05 to 0.3 ⁇ m.
  • the specific composition of the nitride containing Ti and Al constituting the intermediate layer is not particularly limited, and a conventionally known composition can be arbitrarily selected.
  • the coating film of the present invention can further have a first adhesion layer and a second adhesion layer between the wear-resistant layer and the welding-resistant layer.
  • the first adhesion layer is located between the wear-resistant layer and the second adhesion layer, is composed of a nitride containing Ti and Al, and can have a thickness of 30 nm to 0.1 ⁇ m.
  • the second adhesion layer has a multilayer structure in which a C layer made of nitride containing Ti and Al having the same crystal structure as the wear resistant layer and a D layer having the same composition as the weld resistant layer are alternately laminated. And having a thickness of 10 nm to 0.2 ⁇ m.
  • the wear-resistant layer and the welding-resistant layer of the present invention may be inferior in adhesion due to their crystal structures being different from each other, and the welding-resistant layer may be easily peeled off to obtain sufficient welding resistance. . Therefore, the C layer made of nitride containing Ti and Al having the same crystal structure as the wear resistant layer and the D layer having the same crystal structure as the weld resistant layer are alternately laminated because it has the same composition as the weld resistant layer.
  • the second adhesion layer is preferably formed between the wear-resistant layer and the welding-resistant layer, whereby the adhesion between the wear-resistant layer and the welding-resistant layer can be greatly improved.
  • Such a second adhesion layer is preferably formed by alternately laminating the C layer and the D layer 2 to 10 times and setting the thickness to 10 nm to 0.2 ⁇ m.
  • the thickness is preferably 0.2 ⁇ m or less, and this is because if the thickness exceeds 0.2 ⁇ m, the mechanical properties are deteriorated and self-destruction is easily caused. For this reason, when the thickness is taken into consideration, the upper limit of the number of repeated layers is preferably about 10 times.
  • the stacking order is not particularly limited. That is, the wear-resistant layer side (lamination start side) may be the C layer or the D layer, and the welding layer side (lamination end side) may be the C layer. , D layer. However, in consideration of adhesion to the wear-resistant layer, it is preferable to start from the C layer. Therefore, unless otherwise specified, the start of lamination is the C layer and the end of lamination is the D layer.
  • the adhesion between the wear resistant layer and the welding resistant layer can be further improved.
  • the wear-resistant layer has a high hardness as described above, it exhibits a tendency to be inferior in adhesion with other layers, and thus is composed of a nitride containing Ti and Al that are particularly excellent in adhesion with other layers.
  • the adhesion between the wear-resistant layer and the second adhesion layer is improved, and as a result, the adhesion between the abrasion-resistant layer and the welding-resistant layer is further improved.
  • the crystal structure of the nitride containing Ti and Al constituting the first adhesion layer is preferably the same cubic type as that of the wear resistant layer.
  • Such a first adhesion layer preferably has a thickness of 30 nm to 0.1 ⁇ m. If it exceeds 0.1 ⁇ m, the mechanical strength is inferior, and if it is less than 30 nm, sufficient adhesion is not exhibited.
  • the specific composition of the nitride containing Ti and Al constituting the first adhesion layer is not particularly limited, and a conventionally known composition can be arbitrarily selected.
  • the atomic ratio of Al in all metal atoms (that is, the atomic ratio of Al when the number of all metal atoms is 1) exceeds 0.6 and is 0.8 or less.
  • the atomic ratio of Cr is preferably more than 0.15 and not more than 0.3.
  • a more preferable range of the atomic ratio of Al is more than 0.65 and not more than 0.72.
  • the Cr atomic ratio within the above range as the average composition of the entire coating film, a coating film having excellent wear resistance can be obtained.
  • a more preferable range of the atomic ratio of Cr is more than 0.17 and 0.23 or less.
  • the wear resistance and welding resistance of the coating film can be improved to a high degree.
  • the “metal atom” is hydrogen, helium, neon, argon, krypton, xenon, radon, fluorine, chlorine, bromine, iodine, astatine, oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus, arsenic, An atom of an element other than antimony and carbon.
  • the coating film of the present invention measures stress as follows. First, the amount of warpage of a cemented carbide plate (20 mm ⁇ 10 mm ⁇ 1 mm) before and after film formation is measured using a surface roughness meter. Next, the film thickness of the coating film is measured using a Calotest. And the stress of a coating film is calculated using the obtained curvature amount and film thickness.
  • the coating film of the present invention preferably has a compressive stress of ⁇ 0.1 GPa or lower and ⁇ 3.0 GPa or higher, more preferably ⁇ 1.0 GPa or lower and ⁇ 2.5 GPa or higher.
  • the coating film of the present invention can suppress the progress of cracks that are considered to be the cause of defects by having the compressive stress as described above. That is, the coating film of the present invention has excellent fracture resistance.
  • ⁇ X-ray pattern> The X-ray diffraction pattern described in this specification is measured under the following conditions.
  • Drill flank X-ray Cu-K ⁇
  • Excitation conditions 45 kV 200 mA
  • Collimator used ⁇ 0.3mm
  • Measuring method ⁇ -2 ⁇ method.
  • the hexagonal (002) plane and the cubic (111) plane are the close-packed planes and the highest strength planes in each layer. Therefore, by having such an X-ray diffraction pattern, the durability of the weld-resistant layer and the wear resistance of the wear-resistant layer are excellent.
  • the cubic (111) plane is the close-packed plane and has the highest strength.
  • the hexagonal (101) plane appears to be less intense than the closest packed plane.
  • the wear resistant layer is weakly (111) oriented.
  • the cubic (111) plane is the close-packed plane and has the highest strength. Therefore, by having such an X-ray diffraction pattern, the wear resistance of the wear resistant layer is excellent.
  • the surface-coated cutting tool of the present invention can be produced by, for example, forming a coating film on a substrate using a physical vapor deposition method.
  • a physical vapor deposition method a conventionally known method can be used without any particular limitation.
  • the physical vapor deposition method is selected from the group consisting of an arc ion plating method, a balanced magnetron sputtering method, and an unbalanced magnetron sputtering method. At least one selected from the above can be used.
  • composition of each layer of the coating film of each of the following examples can be specified by EDS analysis (energy dispersive X-ray analysis) attached to the transmission electron microscope.
  • Examples 1 to 12 and Comparative Examples 1 to 5 The surface-coated cutting tools of Examples 1 to 12 and Comparative Examples 1 to 5 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. The other configuration except the second adhesion layer and the welding resistant layer is common.
  • the base material used was a cemented carbide drill (blade diameter: 8.0 mm diameter, full length: 115 mm, groove length: 65 mm, with oil holes).
  • this base material is set in an arc type ion plating apparatus, evacuated, heated to 500 ° C., then subjected to Ar ion etching, and then arc-deposited in an N 2 gas atmosphere first on the base material.
  • An intermediate layer (thickness 0.2 ⁇ m) made of nitride containing Ti and Al was formed.
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are as follows.
  • Target Ti 0.5 Al 0.5 Pressure: 6Pa Arc current: 120A Bias voltage: 50V
  • a target whose composition was adjusted so as to be the composition of each layer was used.
  • an abrasion-resistant layer (thickness: 3.9 ⁇ m) having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the A layer made of a nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness (Ta) of 4 nm.
  • the B layer made of nitride containing Al and Cr was Al 0.65 Cr 0.35 N having a thickness (Tb) of 10 nm.
  • the conditions for forming this wear-resistant layer are as follows.
  • Target Ti 0.5 Al 0.5 (A layer), Al 0.65 Cr 0.35 (B layer) Pressure: 5Pa Discharge current: 100 A (A layer), 180 A (B layer) Bias voltage: 40V
  • the target was set at a predetermined position in the furnace of the arc type ion plating apparatus, and the base material was rotated so that the base material was opposed to each target. And the abrasion-resistant layer which has a multilayer structure by which A layer and B layer were laminated
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness 30 nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are as follows.
  • a second adhesion layer (thickness 60 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness of 6 nm.
  • the D layer had a thickness of 6 nm, and the composition was the same as that of the welding resistant layer described in Table 1 below.
  • the number of layers of each of the C layer and the D layer is five.
  • the conditions for forming the second adhesion layer are as follows. Target: Ti 0.5 Al 0.5 (C layer), the same target (D layer) as the welding resistant layer described in Table 1 Discharge current: 100A (C layer), 100A (D layer) Bias voltage: 100V Similarly to the formation of the wear-resistant layer, the second adhesion layer having the above-described configuration is prepared by rotating the substrate so that the substrate faces each target and adjusting the rotation speed. Formed.
  • an anti-welding layer (thickness (T2) is 1.5 ⁇ m in common) was formed on the second adhesion layer formed above.
  • This anti-welding layer was located on the outermost surface of the coating layer and had the composition shown in Table 1 below.
  • the formation conditions are as follows.
  • Target A composition whose composition is adjusted to the composition shown in Table 1
  • Discharge current 150
  • a Bias voltage 100V
  • Table 1 shows the ratio T2 / T1 of the thickness T1 of the wear resistant layer and the thickness T2 of the weld resistant layer.
  • a surface-coated cutting tool was prepared in the same manner as in Example 6 except that the wear-resistant layer was configured as shown in Table 2 below (however, the weld-resistant layer in Comparative Example 10 was in Example 6). The composition was changed to Ti 0.5 Al 0.5 N (thickness 2 ⁇ m) instead of the composition of the welding-resistant layer. The crystal structures of the wear resistant layers of these comparative examples were all cubic.
  • Examples 13 to 16 The surface-coated cutting tools of Examples 13 to 16 were produced as follows. Each of these surface-coated cutting tools has a configuration in which an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistance layer are formed as a coating film on a base material in this order by an arc ion plating method. Other configurations except for the wear-resistant layer are common.
  • the substrate is the same as in Examples 1 to 12 above. And this base material was set to the arc type ion plating apparatus, and the abrasion-resistant layer which has the multilayer structure which laminated
  • the specific configuration of the wear-resistant layer is as shown in Table 3 below, and the formation conditions are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness 50nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.3 Al 0.7 N, and the formation conditions are the same as those in Examples 1 to 12 except for the composition of the target.
  • a second adhesion layer (thickness 60 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.3 Al 0.7 N having a thickness of 6 nm.
  • the layer D had a thickness of 6 nm, and the composition was the same as that of the following welding-resistant layer.
  • the number of layers of each of the C layer and the D layer is five.
  • the conditions for forming the second adhesion layer are the same as those in Examples 1 to 12 except for the composition of the target.
  • an anti-welding layer (thickness (T2) is 1.5 ⁇ m in common) was formed on the second adhesion layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and its composition is Al 0.84 Cr 0.1 Ti 0.06 N.
  • the formation conditions are the same as those in Examples 1 to 12 except for the target composition.
  • Table 3 shows the ratio T2 / T1 between the wear-resistant layer thickness T1 and the weld-resistant layer thickness T2.
  • Examples 17 to 24 The surface-coated cutting tools of Examples 17 to 24 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. Other configurations except for the thickness of the wear-resistant layer and the thickness of the welding-resistant layer are common.
  • the substrate is the same as in Examples 1 to 12 above.
  • this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • an abrasion resistant layer (thickness is as shown in Table 4 below) having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the A layer made of a nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness (Ta) of 4 nm.
  • the B layer made of nitride containing Al and Cr was Al 0.7 Cr 0.3 N having a thickness (Tb) of 10 nm.
  • Tb / Ta 2.5.
  • the conditions for forming this wear-resistant layer are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness 30 nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • a second adhesion layer (thickness 30 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness of 6 nm.
  • the layer D had a thickness of 9 nm, and the composition was the same as that of the following welding-resistant layer.
  • the number of layers of each of the C layer and the D layer is two.
  • the conditions for forming the second adhesion layer are the same as those in Examples 1-12.
  • a welding resistant layer (thickness (T2) is as shown in Table 4 below) was formed on the second adhesion layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and the composition is Al 0.85 Cr 0.1 Ti 0.05 N.
  • the formation conditions are the same as in Examples 1 to 12 above.
  • Table 4 shows the ratio T2 / T1 of the wear-resistant layer thickness T1 and the weld-resistant layer thickness T2.
  • Examples 25 to 30 The surface-coated cutting tools of Examples 25 to 30 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. Other configurations except for the thickness of the wear-resistant layer and the thickness of the welding-resistant layer are common.
  • the substrate is the same as in Examples 1 to 12 above.
  • this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.7 Al 0.3 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • an abrasion-resistant layer (thickness is as shown in Table 5 below) having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the layer A made of nitride containing Ti and Al was Ti 0.7 Al 0.3 N having a thickness (Ta) of 5 nm.
  • the B layer made of a nitride containing Al and Cr was Al 0.67 Cr 0.33 N having a thickness (Tb) of 19 nm.
  • the conditions for forming this wear-resistant layer are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness 70nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.33 Al 0.67 N, and the formation conditions are the same as those in Examples 1 to 12 above.
  • a second adhesion layer (thickness 70 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.33 Al 0.67 N having a thickness of 5 nm.
  • the layer D had a thickness of 5 nm, and the composition was the same as that of the following welding-resistant layer.
  • the number of layers of each of the C layer and the D layer is seven.
  • the conditions for forming the second adhesion layer are the same as those in Examples 1-12.
  • a welding resistant layer (thickness (T2) is as shown in Table 5 below) was formed on the second adhesion layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and the composition is Al 0.85 Cr 0.1 Ti 0.05 N.
  • the formation conditions are the same as in Examples 1 to 12 above.
  • Table 5 shows the ratio T2 / T1 of the wear-resistant layer thickness T1 and the weld-resistant layer thickness T2.
  • Examples 31 to 37 The surface-coated cutting tools of Examples 31 to 37 were produced as follows. Each of these surface-coated cutting tools has a structure in which an intermediate layer, an abrasion-resistant layer, and a welding-resistant layer are formed as a coating film on a base material in this order by an arc ion plating method. Other configurations are the same except for the configuration.
  • the substrate is the same as in Examples 1 to 12 above.
  • this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.45 Al 0.55 N, and the formation conditions are the same as those in Examples 1 to 12 above.
  • an abrasion-resistant layer having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the structure of the wear resistant layer is as shown in Table 6 below, and the formation conditions are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • a welding resistant layer (thickness (T2) is 1.5 ⁇ m) was formed on the abrasion resistant layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and the composition is Al 0.85 Cr 0.1 Ti 0.05 N.
  • the formation conditions are the same as in Examples 1 to 12 above.
  • Table 6 shows the ratio T2 / T1 of the wear-resistant layer thickness T1 and the weld-resistant layer thickness T2.
  • Examples 38 to 43 and Comparative Examples 11 to 12 The surface-coated cutting tools of Examples 38 to 43 and Comparative Examples 11 to 12 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. Other configurations except for the wear-resistant layer are common.
  • the substrate is the same as in Examples 1 to 12 above.
  • this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • an abrasion-resistant layer having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the structure of the wear-resistant layer is as shown in Table 7 below, and the formation conditions are the same as in Examples 1 to 12 above.
  • the 1st adhesion layer (thickness 40nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • a second adhesion layer (thickness: 90 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness of 5.5 nm.
  • the layer D had a thickness of 9.5 nm, and the composition was the same as that of the following welding-resistant layer.
  • the number of stacked layers of each of the C layer and the D layer is six.
  • the conditions for forming the second adhesion layer are the same as those in Examples 1-12.
  • T2 thickness (T2) of 1 ⁇ m) was formed on the second adhesion layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and the composition was Al 0.82 Cr 0.14 Ti 0.04 N.
  • the formation conditions are the same as in Examples 1 to 12 above.
  • the ratio T2 / T1 between the wear resistant layer thickness T1 and the weld resistant layer thickness T2 was 0.5 in common.
  • Examples 44 to 48 The surface-coated cutting tools of Examples 44 to 48 were produced as follows. Each of these surface-coated cutting tools has a structure in which an intermediate layer, an abrasion-resistant layer, and a welding-resistant layer are formed as a coating film on a base material in this order by an arc type ion plating method. Other configurations are common except that the thickness and the configuration of the wear-resistant layer are different.
  • the substrate is the same as in Examples 1 to 12 above. And this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as those in Examples 1 to 12 except that the thickness is adjusted.
  • the thickness of this intermediate layer was 0.005 ⁇ m in Example 44, 0.04 ⁇ m in Example 45, 0.15 ⁇ m in Example 46, 0.4 ⁇ m in Example 47, and 1 ⁇ m in Example 48.
  • an abrasion-resistant layer having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the structure of the wear resistant layer is as shown in Table 8 below, and the formation conditions are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • a welding resistant layer (thickness (T2) of 0.9 ⁇ m) was formed on the abrasion resistant layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and its composition is Al 0.88 Cr 0.1 Ti 0.02 N.
  • the formation conditions are the same as in Examples 1 to 12 above.
  • Table 8 shows the ratio T2 / T1 of the wear-resistant layer thickness T1 and the weld-resistant layer thickness T2.
  • Examples 49 to 55 The surface-coated cutting tools of Examples 49 to 55 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. Other configurations are common except that the first and second adhesion layers have different structures.
  • the substrate is the same as in Examples 1 to 12 above.
  • this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • an abrasion-resistant layer (thickness: 2.8 ⁇ m) having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the A layer made of a nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness (Ta) of 4 nm.
  • the B layer made of nitride containing Al and Cr was Al 0.7 Cr 0.3 N having a thickness (Tb) of 10 nm.
  • the conditions for forming this wear-resistant layer are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness is as Table 9) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.5 Al 0.5 N, and the formation conditions are the same as those in Examples 1 to 12 except that the thickness is adjusted.
  • a second adhesion layer (thickness and number of laminations as shown in Table 9) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.5 Al 0.5 N having a thickness of 9 nm.
  • the D layer had a thickness of 11 nm, and the composition was the same as that of the following welding-resistant layer.
  • the conditions for forming the second adhesion layer are the same as those in Examples 1-12.
  • T2 thickness (T2) of 1 ⁇ m) was formed on the second adhesion layer formed above.
  • This welding-resistant layer is located on the outermost surface of the coating layer, and the composition was Al 0.82 Cr 0.14 Ti 0.04 N.
  • the formation conditions are the same as in Examples 1 to 12 above.
  • the ratio T2 / T1 between the wear resistant layer thickness T1 and the weld resistant layer thickness T2 was 0.36.
  • ⁇ Cutting test 1> Using the surface-coated cutting tools of Examples 1 to 12, 25 to 30, and Comparative Examples 1 to 5 and 10, drilling was performed on the work material under the following conditions, and the number of holes until breakage was determined. Measured. The breakage of the drill is caused by the welding of the work material to the cutting edge and starting from the welding, so that the larger the number of holes, the better the welding resistance and the longer the tool life. The results are shown in Table 10.
  • ⁇ Cutting test 2> Using the surface-coated cutting tools of Examples 44 to 55, drilling was performed on the work material under the same conditions as the cutting test 1, and the state of the blade edge was observed every 50 holes. Then, the number of holes in which the peeling of the welding resistant layer or the entire coating film was observed for the first time was confirmed. It shows that the thing with many holes has excellent peeling resistance of a coating film. The results are shown in Table 11.
  • ⁇ Cutting test 3> Using the surface-coated cutting tools of Examples 4, 6, 17 to 43 and Comparative Examples 6 to 9, 11, and 12, drilling is performed on the work material under the following conditions, and the thinning portion or cutting edge is The number of holes until missing was measured. These defects are generated by welding the work material and starting from the welding, so that the larger the number of holes, the better the welding resistance and the longer the tool life. The results are shown in Table 12.
  • ⁇ Cutting test 4> Using each of the surface-coated cutting tools of Examples 13 to 24, a drilling process with the number of holes of 200 was performed on the work material under the same conditions as in the cutting test 3, and then margin damage was observed with a microscope. And the length (mm) from the front-end
  • the surface-coated cutting tool of the present invention exhibits excellent wear resistance and excellent welding resistance, and thus can effectively prevent defects and breakage. It was confirmed that an excellent effect was exhibited.
  • Examples 56 to 58 and Comparative Examples 13 to 14 The surface-coated cutting tools of Examples 56 to 58 and Comparative Examples 13 to 14 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. Other configurations except for the weld-resistant layer are common.
  • the base material used was a cemented carbide drill (blade diameter: diameter 6.0 mm, full length: 100 mm, groove length: 48 mm, with oil holes), and a cemented carbide plate (20 mm ⁇ 10 mm ⁇ 1 mm).
  • Each base material was set in an arc ion plating apparatus, and an intermediate layer (thickness 0.4 ⁇ m) composed of a nitride containing Ti and Al was first formed on the base material.
  • the composition of the nitride containing Ti and Al is Ti 0.6 Al 0.4 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • an abrasion-resistant layer (thickness (T1) 4.5 ⁇ m) having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the layer A made of nitride containing Ti and Al was Ti 0.6 Al 0.4 N having a thickness (Ta) of 8 nm.
  • the B layer made of a nitride containing Al and Cr was Al 0.7 Cr 0.3 N having a thickness (Tb) of 15 nm.
  • the conditions for forming this wear-resistant layer are the same as in Examples 1 to 12 above.
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness 60nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.6 Al 0.4 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • a second adhesion layer (thickness 40 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.6 Al 0.4 N having a thickness of 5 nm.
  • the layer D had a thickness of 5 nm, and the composition was the same as that of the following welding-resistant layer.
  • the number of layers of each of the C layer and the D layer is four.
  • the conditions for forming the second adhesion layer are the same as those in Examples 1-12.
  • T2 thickness (T2) is common at 1.5 ⁇ m) was formed on the second adhesion layer formed above.
  • This welding-resistant layer was located on the outermost surface of the coating film, and had the composition described in Table 15 below. The formation conditions are the same as in Examples 1 to 12 above.
  • the ratio T2 / T1 between the wear resistant layer thickness T1 and the weld resistant layer thickness T2 is 0.33.
  • the hardness of the coating film formed on the cemented carbide plate as the substrate was measured near the surfaces of the wear-resistant layer and the welding-resistant layer using a nanoindenter.
  • Table 15 shows the hardness ratio H2 / H1, which is the ratio between the hardness H1 of the wear-resistant layer and the hardness H2 of the weld-resistant layer (measured from the surface).
  • Example 59 to 63> A surface-coated cutting tool was prepared in the same manner as in Example 57 except that the bias voltage during film formation was as shown in Table 16 below.
  • the crystal structure of the wear-resistant layer in these examples was a cubic crystal.
  • the structures of the second adhesion layer and the welding resistant layer in these examples were all wurtzite type.
  • Examples 64 to 78 The surface-coated cutting tools of Examples 64-78 were produced as follows. All of these surface-coated cutting tools have an intermediate layer, an abrasion-resistant layer, a first adhesion layer, a second adhesion layer, and a welding-resistant layer as a coating film on a base material in this order by an arc ion plating method. It has the structure formed, and a structure is common.
  • the base material used was a cemented carbide drill (blade diameter: 6.0 mm, full length: 100 mm, groove length: 48 mm, with oil holes).
  • this base material was set to the arc type ion plating apparatus, and the intermediate
  • the composition of the nitride containing Ti and Al is Ti 0.55 Al 0.45 N, and the formation conditions are the same as in Examples 1 to 12 above.
  • an abrasion-resistant layer (thickness (T1) 4.5 ⁇ m) having a multilayer structure in which A layers and B layers were alternately laminated was formed on the intermediate layer formed above.
  • the A layer made of nitride containing Ti and Al was Ti 0.55 Al 0.45 N having a thickness (Ta) of 8 nm.
  • the B layer made of a nitride containing Al and Cr was Al 0.7 Cr 0.3 N having a thickness (Tb) of 15 nm.
  • the conditions for forming this wear-resistant layer are as follows.
  • Target Ti 0.55 Al 0.45 (A layer), Al 0.7 Cr 0.3 (B layer) Pressure: 5 Pa, 10% Ar in N 2 for film formation.
  • Discharge current 100 A (A layer), 180 A (B layer) Bias voltage: as shown in Table 17, Table 18, and Table 19
  • Deposition temperature As shown in Table 17, Table 18, and Table 19.
  • the above target was set at a predetermined position in the furnace of the arc type ion plating apparatus, and the base material was rotated so that the base material was opposed to each target.
  • the abrasion-resistant layer which has a multilayer structure by which A layer and B layer were laminated
  • this wear-resistant layer was measured using an X-ray diffractometer, it was confirmed that it was a cubic type.
  • the 1st adhesion layer (thickness 30 nm) comprised with the nitride containing Ti and Al was formed on the abrasion-resistant layer formed above.
  • the composition of the nitride containing Ti and Al is Ti 0.55 Al 0.45 N, and the formation conditions are the same as those of the wear-resistant layer.
  • a second adhesion layer (thickness 60 nm) having a multilayer structure in which C layers and D layers were alternately laminated was formed on the first adhesion layer formed above.
  • the C layer made of nitride containing Ti and Al was Ti 0.55 Al 0.45 N having a thickness of 6 nm.
  • the D layer had a thickness of 6 nm, and the composition was the same as that of the following welding-resistant layer.
  • the number of layers of each of the C layer and the D layer is 5 layers.
  • the conditions for forming the second adhesion layer are the same as those for the wear-resistant layer (C layer) and the following welding-resistant layer (D layer).
  • an anti-welding layer (thickness (T2) is 1.5 ⁇ m in common) was formed on the second adhesion layer formed above.
  • This welding resistant layer is located on the outermost surface of the coating film, and its composition is Al 0.85 Cr 0.11 Ti 0.04 N.
  • the formation conditions are as follows.
  • Deposition temperature As shown in Table 17, Table 18, and Table 19.
  • the ratio T2 / T1 between the wear resistant layer thickness T1 and the weld resistant layer thickness T2 is 0.33.
  • the measurement conditions of the X-ray diffraction pattern of the coating film thus formed are as follows. Measurement area: Drill flank use X-ray: Cu-K ⁇ Excitation conditions: 45 kV 200 mA Collimator used: ⁇ 0.3mm Measuring method: ⁇ -2 ⁇ method.
  • K1 represents the peak intensity of the hexagonal crystal (002) of the weld resistant layer
  • K2 is considered to represent the peak intensity of the cubic crystal (111) of the wear resistant layer.
  • K1 represents the peak intensity of cubic (111) of the wear resistant layer
  • K2 is considered to represent the peak intensity of hexagonal (101) of the weld resistant layer.
  • K1 represents the peak intensity of the cubic (111) of the wear-resistant layer
  • K2 is considered to represent the peak intensity of the cubic (200) of the weld-resistant layer.
  • Example 79 to 83> A surface-coated cutting tool was prepared in the same manner as in Example 57 except that the temperature for forming the wear-resistant layer was as shown in Table 20 below.
  • the crystal structure of the wear-resistant layer in these examples was a cubic crystal.
  • the structures of the second adhesion layer and the welding resistant layer in these examples were all wurtzite type.
  • Example 84 to 87> A surface-coated cutting tool was produced in the same manner as in Example 57 except that the composition of the welding-resistant layer and the film formation temperature were as shown in Table 21 below.
  • the crystal structure of the wear-resistant layer in these examples was a cubic crystal.
  • the structures of the second adhesion layer and the welding resistant layer in these examples were all wurtzite type.
  • the cross section of the thus formed anti-adhesion layer was observed using a transmission electron microscope (TEM), and it was confirmed that nanoparticles were formed.
  • TEM transmission electron microscope
  • the average particle diameters of the nanoparticles of the welding resistant layers of Examples 84 to 87 are shown in Table 21 (“Average particle diameter of welding resistant layer”).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明の表面被覆切削工具は、基材と該基材上に形成された被覆膜とを含むものであって、該被覆膜は、耐摩耗層と耐溶着層とを少なくとも含み、該耐摩耗層は、TiおよびAlを含む窒化物からなるA層とAlおよびCrを含む窒化物からなるB層とが交互に積層された多層構造を有し、かつその結晶構造が立方晶型であり、該耐溶着層は、該被覆膜の最表面に位置し、(AlaCrbTi1-a-b)Nで表わされる窒化物(式中、a+b<0.99、b>0.01、0.2b+0.7<aである)で構成され、かつその結晶構造がウルツァイト型であることを特徴とする。

Description

表面被覆切削工具
 本発明は、基材上に被覆膜を形成した表面被覆切削工具に関する。
 ドリルをはじめとする切削工具は、耐摩耗性や耐欠損性を向上させることを目的として基材上に種々の被覆膜を形成した表面被覆切削工具として用いられてきた。近年の切削加工においては、高能率化が要求されるとともに、被削材の高強度化に伴う難削化が進行し、被覆膜の摩耗が従来に比し促進される傾向にある。
 このため、このような被覆膜の改良が求められており、たとえば国際公開第2006/070730号パンフレット(特許文献1)は、被覆膜として特定の組成を有する交互層を形成した表面被覆切削工具を提案している。
国際公開第2006/070730号パンフレット
 特許文献1の表面被覆切削工具は、被覆膜の特性をある程度向上させることに成功したものであるが、昨今の切削加工環境下においては、更なる性能の向上、特に被覆膜への被削材の溶着の低減が求められている。
 これは、工具の先端部や刃先部に対して被削材が溶着すると、工具の欠損や折損の原因となるためである。工具の先端部等に一旦被削材が溶着すると、それが再度脱落する場合に被覆膜や基材の一部とともに脱落し、その脱落部分が摩耗の異常進行や亀裂発生の起点となり、工具の欠損や折損につながるものと推測される。
 また、このような表面被覆切削工具がドリルである場合、昨今のドリル加工においては、高能率化および被削材の難削化が更に進行しており、被覆膜の耐摩耗性が強く要求されている。
 本発明は、このような状況下に鑑みなされたものであって、その目的とするところは、被覆膜の耐摩耗性を向上させるとともに、被削材の溶着を低減させることにより、工具の欠損や折損を防止した表面被覆切削工具を提供することにある。
 本発明者は、上記課題を解決するために鋭意検討を重ねたところ、被覆膜の内層に耐摩耗性に優れる層を形成し、表面層に耐溶着性に優れる層を形成することが最も有効であるとの知見を得、この知見に基づき各層の構造をさらに検討することにより、本発明を完成させたものである。
 すなわち、本発明の表面被覆切削工具は、基材と該基材上に形成された被覆膜とを含むものであって、該被覆膜は、耐摩耗層と耐溶着層とを少なくとも含み、該耐摩耗層は、TiおよびAlを含む窒化物からなるA層とAlおよびCrを含む窒化物からなるB層とが交互に積層された多層構造を有し、かつその結晶構造が立方晶型であり、該耐溶着層は、該被覆膜の最表面に位置し、(AlaCrbTi1-a-b)Nで表わされる窒化物(式中、a+b<0.99、b>0.01、0.2b+0.7<aである)で構成され、かつその結晶構造がウルツァイト型であることを特徴とする。
 ここで、該被覆膜は、その全体において、全金属原子に占めるAlの原子比が0.6を超え0.8以下であり、かつCrの原子比が0.15を超え0.3以下であることが好ましい。
 また、該被覆膜は、2~30μmの厚みを有することが好ましく、該耐溶着層は、0.5~8μmの厚みを有することが好ましい。
 また、該耐摩耗層の厚みをT1とし、該耐溶着層の厚みをT2とする場合、厚み比T2/T1は、0.25≦T2/T1≦0.55という関係を満たすことが好ましい。また、上記A層の平均厚みをTaとし、上記B層の平均厚みをTbとする場合、厚み比Tb/Taは、1.5≦Tb/Ta≦4という関係を満たすことが好ましい。また、上記Taは、1~10nmであり、上記Tbは、1.5~30nmであることが好ましい。
 また、上記A層は、(Ti1-cAlc)Nで表わされる窒化物(式中、0.3<c≦0.7である)で構成され、上記B層は、(AleCr1-e)Nで表わされる窒化物(式中、0.6<e<0.75である)で構成されることが好ましい。
 また、該被覆膜は、該基材と該耐摩耗層との間に中間層を有し、該中間層は、TiおよびAlを含む窒化物で構成され、かつその厚みが0.01~0.5μmであることが好ましい。
 また、該被覆膜は、該耐摩耗層と該耐溶着層との間に第1付着層および第2付着層を有し、該第1付着層は、該耐摩耗層と該第2付着層との間に位置し、TiおよびAlを含む窒化物で構成され、かつその厚みが30nm~0.1μmであり、該第2付着層は、該耐摩耗層と同じ結晶構造を有するTiおよびAlを含む窒化物からなるC層と該耐溶着層と同じ組成を有するD層とが交互に積層された多層構造を有し、かつその厚みが10nm~0.2μmであることが好ましい。
 本発明の表面被覆切削工具は、上記の構成を有することにより優れた耐摩耗性と優れた耐溶着性を示し、以って欠損や折損を極めて有効に防止することができるという優れた効果を有する。
 以下、本発明についてさらに詳細に説明する。
 <表面被覆切削工具>
 本発明の表面被覆切削工具は、基材と該基材上に形成された被覆膜とを含む構成を有する。このような被覆膜は、基材の全面を被覆することが好ましいが、基材の一部がこの被覆膜で被覆されていなかったり、被覆膜の構成が部分的に異なっていたとしても本発明の範囲を逸脱するものではない。
 このような本発明の表面被覆切削工具は、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に使用することができる。中でも、被覆膜の耐摩耗性および被削材に対する耐溶着性が高度に向上したことにより、特にドリルとしての用途に優れる。
 <基材>
 本発明の表面被覆切削工具に用いられる基材は、この種の基材として従来公知のものであればいずれのものも使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化硼素焼結体、ダイヤモンド焼結体等を挙げることができる。
 <被覆膜>
 本発明の被覆膜は、複数の層により構成され、耐摩耗層と耐溶着層とを少なくとも含む。本発明の被覆膜は、後述する各層の作用が相乗的に発揮されることにより、優れた耐摩耗性と優れた耐溶着性を示し、以って工具の欠損や折損を極めて有効に防止することができるという極めて優れた効果を有する。
 このような被覆膜は、2~30μm(2μm以上30μm以下。なお、本発明において2つの数値をこのように符合「~」で結んで範囲を示す場合は、その下限値および上限値の両者をその範囲に含めるものとする)の厚みを有することが好ましく、3~12μmの厚みを有することがより好ましい。
 被覆膜の厚みが2μm未満であると、耐摩耗性および耐溶着性等の向上効果が十分に発揮されない場合があり、30μmを超えると被覆膜自体が剥離しやすくなる傾向を示す。
 以下、被覆膜を構成する各層について詳述する。
 <耐溶着層>
 本発明の耐溶着層は、被覆膜の最表面に位置し、被削材が工具の先端部や刃先部に溶着することを極めて有効に防止するという、優れた耐溶着性を示す。
 このような耐溶着層は、(AlaCrbTi1-a-b)Nで表わされる窒化物(式中、a+b<0.99、b>0.01、0.2b+0.7<aである)で構成され、かつその結晶構造がウルツァイト型(ウルツ鉱型)であることを要する。
 このような耐溶着層を、六方晶型の結晶構造のAlNで形成すると、耐溶着性および高温における摺動性には優れるものの、低硬度であることから切削加工の初期段階で摩耗により消失してしまい持続性に問題があることが判明した。そこで、本発明においては、このAlNに対し特定量のCrとTiとを添加することにより硬度を向上させ、耐溶着性の持続性を飛躍的に向上させたものである。Crのみを添加させた場合は、十分な硬度の向上を得ることができず、Tiのみを添加させた場合は、高温での安定性に欠けたものとなる。したがって、CrおよびTiの両者をAlNに対して添加させることが重要である。
 ここで、上記式中、aおよびbは原子比を表わすが、a+bが0.99以上になるとTiの量が相対的に少なくなることから十分な硬度の向上が得られなくなる。またbが0.01以下になると、高温での安定性に欠けることになる。一方、0.2b+0.7≧aとなると、高温時に耐溶着層の一部または全部の結晶構造が立方晶型に変化してしまい、耐溶着性が喪失する。
 すなわち、本発明の耐溶着層は、結晶構造がウルツァイト型であることが重要であり、立方晶型等の他の結晶構造では優れた耐溶着性を得ることができなくなる。また、本発明の耐溶着層は、ナノ粒子の組織を有し、かつ該ナノ粒子の平均粒径が40nm以下であることが好ましい。結晶粒を微細化することにより硬度、靱性が向上し、耐溶着層の持続性を向上させるものである。
 なお、本明細書において「ナノ粒子の平均粒径」は次のようにして測定するものとする。まず被覆膜を切断し、断面をTEMを用いて20000倍~1000000倍の倍率で観察する。この際、観察視野中に少なくとも20個の結晶粒が含まれるように倍率を調整することが好ましい。次に、観察視野中、無作為に選んだ10個の結晶粒について、1つの結晶粒の最大径を該結晶粒の粒径とする。そして、このように得られた各結晶粒の粒径のうち、最大値と最小値を除いた粒径の算術平均値を「ナノ粒子の平均粒径」とする。
 なお、上記式において、(AlaCrbTi1-a-b)とNとの比は、特に限定されず任意の比をとることができる。たとえば、前者を1とする場合、後者(すなわちN)を0.8~1.1とすることができる。
 このように本発明の耐溶着層は、極めて優れた耐溶着性を示すものであり本発明の特徴の一つとなるものである。
 このような耐溶着層は、0.5~8μmの厚みを有することが好ましく、0.8~5μmの厚みを有することがより好ましい。耐溶着層の厚みが0.5μm未満であると、十分な耐溶着性を示さない場合があり、8μmを超えると耐摩耗性が低下する場合がある。
 <耐摩耗層>
 本発明の耐摩耗層は、基材と上記耐溶着層との間に位置し、耐摩耗性を向上させる作用を有するものである。
 このような耐摩耗層は、TiおよびAlを含む窒化物からなるA層とAlおよびCrを含む窒化物からなるB層とが交互に積層された多層構造を有し、かつその結晶構造が立方晶型であることを要する。
 AlおよびCrを含む窒化物からなる層は、耐摩耗性および耐熱性に優れるという特性を有することから耐摩耗層として用いることが考えられる。しかしながらこの層は、硬くて脆いというデメリットを有している。そこで、本発明は、靭性に優れることが知られるTiおよびAlを含む窒化物からなる層とAlおよびCrを含む窒化物からなる層とを交互に積層させることにより、耐摩耗性を向上させただけではなく、耐熱性および靭性をも兼ね備えたものとすることに成功したものである。
 また、本発明の耐摩耗層は、結果的にTiを含んだものとなることから、高速加工における逃げ面の化学的な摩耗を抑制することにも貢献したものとなる。
 さらに、本発明の耐摩耗層は、結晶構造を立方晶型としたことにより、硬度が向上し、上記の組成と相俟って極めて優れた耐摩耗性を示すものとなる。そして、本発明の耐摩耗層は、柱状晶組織を有し、かつ該柱状晶の平均粒径が150nmを超え、250nm以下であることが好ましい。粒界の強化により、硬度が向上し、耐摩耗性を向上させるものである。
 なお、本明細書において「柱状晶の平均粒径」は次のようにして測定するものとする。まず被覆膜を切断し、断面をTEMを用いて20000倍~1000000倍の倍率で観察する。この際、観察視野中に少なくとも20個の結晶粒(柱状晶)が含まれるように倍率を調整することが好ましい。次に、観察視野中、無作為に選んだ10個の柱状晶について、柱状晶の伸長する方向に対して垂直な幅(直径)のうち、最大幅(最大径)を計測する。そして、このように得られた計測値のうち、最大値と最小値を除いた計測値の算術平均値を「柱状晶の平均粒径」とする。
 ここで、上記A層の平均厚みをTaとし、上記B層の平均厚みをTbとする場合、厚み比Tb/Taは、1.5≦Tb/Ta≦4という関係を満たすことが好ましく、2≦Tb/Ta≦3という関係を満たすことがより好ましい。厚み比をこのような範囲に設定することにより、B層による耐摩耗性および耐熱性が十分に発揮されるとともに、A層による靭性向上効果も十分に発揮されることになる。
 上記厚み比が1.5未満になると耐摩耗性が低下する場合があり、4を超えると靭性が悪化する場合があるとともに高硬度な被削材の高速加工時に逃げ面の耐摩耗性が低下する場合がある。
 なお、上記平均厚みとは、各層毎の総厚みを積層数で除したものをいう。
 また、上記A層の平均厚みTaは、1~10nmとすることが好ましく、2~6nmとすることがより好ましい。また、上記B層の平均厚みTbは、1.5~30nmとすることが好ましく、7~20nmとすることがより好ましい。このような厚みとすることで、特に優れた靭性および耐摩耗性を得ることができる。各層の厚みが上記の下限値未満になると、多層積層による効果が得られなくなり、また上限値を超えても多層積層による効果が得られなくなる。
 なお、このような耐摩耗層の厚みは、上記のA層およびB層をそれぞれ100~10000層交互に積層させることが好ましい。これにより靭性が特に高くなるからである。
 一方、上記A層は、(Ti1-cAlc)Nで表わされる窒化物(式中、0.3<c≦0.7である)で構成され、上記B層は、(AleCr1-e)Nで表わされる窒化物(式中、0.6<e<0.75である)で構成されることが好ましい。A層およびB層をこのような組成とすることにより、A層を特に靭性に優れ高硬度なものとし、B層を特に耐熱性に優れたものとすることができ、これらを交互積層させることにより、特に耐摩耗性に優れたものとすることができる。
 なお、上記(Ti1-cAlc)Nにおいて、(Ti1-cAlc)とNとの比は、特に限定されず任意の比をとることができる。たとえば、前者を1とする場合、後者(すなわちN)を0.8~1.1とすることができる。同様に、上記(AleCr1-e)Nにおいて、(AleCr1-e)とNとの比も、特に限定されず任意の比をとることができる。たとえば、前者を1とする場合、後者(すなわちN)を0.8~1.1とすることができる。
 なお、上記A層とB層とは、これらが交互に積層されている限り、その積層の順序は特に限定されない。すなわち、基材側(積層の開始側)はA層であってもよいし、B層であってもよく、また耐溶着層側(積層の終了側)もA層であってもよいし、B層であってもよい。特に断りのない限り、積層の開始はA層とし、積層の終了はB層とする。
 <硬度比>
 被覆膜の硬度は、耐摩耗層の硬度をH1とし、耐溶着層の表面から測定した硬度をH2とする場合、硬度比H2/H1が0.7<H2/H1<1.1という関係を満たすことが好ましく、0.9<H2/H1<1.0という関係を満たすことがより好ましい。
 上述の通り、本発明の耐溶着層は、六方晶型の結晶構造のAlNに比し硬度を向上させたことを特徴とするが、その一方で耐摩耗層よりも硬度を低くすることにより、摩耗が進行する部分では滑らかに摩耗し切り屑の排出性がよくなり、結果的に切削抵抗が低下し工具の欠損や折損を抑制することができる。また、本発明の耐溶着層は耐摩耗層より硬度が高い場合、耐溶着層の持続性を向上させるため、優れた耐溶着性が得られる。
 すなわち、本発明の耐溶着層と耐摩耗層は、結晶構造が異なるため硬度、耐熱性、摺動性等の特性が大きく異なるが、比較的化学組成が類似するため、化学的な反応性が類似し、以って化学的な摩耗の傾向が類似したものとなる。このため、上記のような硬度比とすることにより、両層間の硬度のバランスが最適化され、安定した摩耗性が得られることにより、工具の欠損や折損が抑制されるものと推測される。
 <厚み比T2/T1>
 上記耐摩耗層の厚みをT1とし、上記耐溶着層の厚みをT2とする場合、厚み比T2/T1は、0.17≦T2/T1≦0.55という関係を満たすことが好ましい。すなわち、このように耐溶着層の厚みを耐摩耗層の厚みよりも薄くすることが好ましい。
 厚み比T2/T1が0.17未満の場合、十分な耐溶着性が得られない場合があり、0.55を超えると十分な耐摩耗性が得られない場合がある。厚み比T2/T1を上記範囲とすることにより、耐溶着層の滑らかな摩耗と耐摩耗層の高度な耐摩耗性とのバランスが最適化され、工具の欠損や折損を高度に抑制することができる。
 <中間層>
 本発明の被覆膜は、上記の耐摩耗層および耐溶着層以外にも任意の層を含むことができる。
 たとえば本発明の被覆膜は、基材と耐摩耗層との間に中間層を有することができ、該中間層は、TiおよびAlを含む窒化物で構成され、かつその厚みが0.01~0.5μmとすることが好ましい。
 このような中間層を形成することにより、基材と被覆膜との密着性が向上し、切削加工時に被覆膜が基材から剥離することを効果的に防止することができる。中間層の厚みが0.01μm未満の場合、十分な密着性が得られない場合があり、0.5μmを超えると靭性が耐摩耗層に比し劣るため密着層自体が破壊し被覆層の剥離につながる場合がある。このような中間層のより好ましい厚みは、0.05~0.3μmである。
 なお、中間層を構成するTiおよびAlを含む窒化物の具体的組成は特に限定されず、従来公知の組成を任意に選択することができる。
 <付着層>
 本発明の被覆膜は、耐摩耗層と耐溶着層との間にさらに第1付着層および第2付着層を有することができる。
 該第1付着層は、耐摩耗層と第2付着層との間に位置し、TiおよびAlを含む窒化物で構成され、かつその厚みが30nm~0.1μmとすることができる。また、該第2付着層は、耐摩耗層と同じ結晶構造を有するTiおよびAlを含む窒化物からなるC層と耐溶着層と同じ組成を有するD層とが交互に積層された多層構造を有し、かつその厚みが10nm~0.2μmとすることができる。
 本発明の耐摩耗層と耐溶着層は、互いに結晶構造が異なるため密着性に劣る場合があり、耐溶着層が容易に剥離するなどして十分な耐溶着性を得ることができない場合がある。そこで、耐摩耗層と同じ結晶構造を有するTiおよびAlを含む窒化物からなるC層と耐溶着層と同じ組成を有することから耐溶着層と同じ結晶構造を有するD層とを交互に積層させた第2付着層を耐摩耗層と耐溶着層との間に形成することが好ましく、これにより耐摩耗層と耐溶着層との密着性を飛躍的に向上させることができる。
 このような第2付着層は、C層とD層とを交互に2~10回繰り返して積層させ、かつその厚みを10nm~0.2μmとすることが好ましい。2回以上積層させることにより、機械的な性質が向上し、密着性が向上する。また、厚みは0.2μm以下とすることが好ましく、これは0.2μmを超える厚みとすると機械的性質が低下し、容易に自己破壊を生じるためである。このため、厚みを考慮すると、積層の繰り返し数の上限は10回程度とすることが好ましい。
 なお、上記C層とD層とは、これらが交互に積層されている限り、その積層の順序は特に限定されない。すなわち、耐摩耗層側(積層の開始側)はC層であってもよいし、D層であってもよく、また耐溶着層側(積層の終了側)もC層であってもよいし、D層であってもよい。しかしながら、耐摩耗層との密着性を考慮するとC層から開始することが好ましく、このため特に断りのない限り、積層の開始はC層とし、積層の終了はD層とする。
 さらに、この第2付着層と耐摩耗層との間に第1付着層を形成することにより、耐摩耗層と耐溶着層との密着性をより一層向上させることができる。耐摩耗層は、上述の通り高硬度であることから、他の層との密着性に劣る傾向を示すため、特に他の層との密着性に優れるTiおよびAlを含む窒化物で構成される第1付着層を介在させることにより、耐摩耗層と第2付着層との密着性が向上し、その結果として耐摩耗層と耐溶着層との密着性がより一層向上することとなる。ここで、第1付着層を構成するTiおよびAlを含む窒化物の結晶構造は、耐摩耗層と同じ立方晶型とすることが好ましい。
 このような第1付着層は、その厚みを30nm~0.1μmとすることが好ましい。0.1μmを超えると機械的強度が劣り、30nm未満では十分な密着性を示さなくなるためである。なお、第1付着層を構成するTiおよびAlを含む窒化物の具体的組成は特に限定されず、従来公知の組成を任意に選択することができる。
 <原子比>
 本発明の被覆膜は、その全体において、全金属原子に占めるAlの原子比(すなわち全金属原子の数を1とした場合のAlの原子比)が0.6を超え0.8以下であり、かつCrの原子比が0.15を超え0.3以下であることが好ましい。
 被覆膜全体の平均組成としてAlの原子比を上記の範囲とすることにより、耐溶着性に優れるとともに耐熱性に優れた被覆膜とすることができる。Alの原子比のより好ましい範囲は、0.65を超え0.72以下である。
 一方、被覆膜全体の平均組成としてCrの原子比を上記の範囲とすることにより、耐摩耗性に優れた被覆膜とすることができる。Crの原子比のより好ましい範囲は、0.17を超え0.23以下である。
 このように被覆膜全体の平均組成として、AlとCrの原子比を上記範囲に設定することにより、被覆膜の耐摩耗性と耐溶着性を高度に向上させることができる。
 なお、本発明において「金属原子」とは、水素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、フッ素、塩素、臭素、ヨウ素、アスタチン、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素、アンチモンおよび炭素以外の元素の原子のことをいう。
 <応力>
 本発明の被覆膜は、次のようにして応力を計測する。まず、超硬合金製板(20mm×10mm×1mm)の成膜前後の反り量を面粗さ計を用いて測定する。次に、被覆膜の膜厚をカロテストを用いて測定する。そして、得られた反り量と膜厚を用いて被覆膜の応力を計算する。
 本発明の被覆膜は、-0.1GPa以下、-3.0GPa以上の圧縮応力を有することが好ましく、-1.0GPa以下、-2.5GPa以上の圧縮応力を有することがより好ましい。
 本発明の被覆膜は、上記のような圧縮応力を有することにより、欠損の原因と思われるクラックの進行を抑制することができる。すなわち、本発明の被覆膜は優れた耐欠損性を有する。
 <X線パターン>
 本明細書に記載するX線回折パターンは次のような条件で計測する。
 測定部位:ドリルの逃げ面
 使用X線:Cu-Kα
 励起条件:45kV 200mA
 使用コリメーター:φ0.3mm
 測定法:θ-2θ法。
 また、本明細書においては、次のようにしてピーク強度を測定する。まず、得られたX線回折パターンに対して、2θ=36°、37.4°、37.9°、43.2°にピーク位置を指定する。次に、ソフトウエアを用いて自動的にピーク分離を行なう。そして、このようにして分離されたピークの強度が得られる。
 本発明の被覆膜は、次のようなX線回折パターンを有することができる。すなわち、2θ=36°付近のピーク強度をK1とし、2θ=37.4°付近のピーク強度をK2とする場合、強度比K2/K1は0.2<K2/K1<0.35という関係を満たす。2θ=36°付近のピークは耐溶着層の六方晶(002)と対応し、2θ=37.4°付近のピークは耐摩耗層の立方晶(111)と対応する。すなわち、この場合、耐溶着層は(002)配向であり、耐摩耗層は(111)配向である。六方晶の(002)面と立方晶の(111)面は、それぞれの層において、最密面であり、強度が最も高い面でもある。従って、このようなX線回折パターンを有することにより、耐溶着層の持続性と耐摩耗層の耐摩耗性が優れる。
 また、本発明の被覆膜は、次のようなX線回折パターンを有することもできる。すなわち、2θ=37.4°付近のピーク強度をK1とし、2θ=37.9°付近のピーク強度をK2とする場合、強度比K2/K1は0.4<K2/K1<0.6という関係を満たす。2θ=37.4°付近のピークは耐摩耗層の立方晶(111)と対応し、2θ=37.9°付近のピークは耐溶着層の六方晶(101)と対応する。すなわち、この場合、耐溶着層は(101)配向であり、耐摩耗層は(111)配向である。立方晶の(111)面は最密面であり、強度が最も高い面である。六方晶の(101)面は強度が最密面より低いと思われる。このようなX線回折パターンを有することにより、耐摩耗層の耐摩耗性が優れており、耐溶着層の摩耗が進行する部分では滑らかに摩耗し切り屑の排出性が良くなり、結果的に切削抵抗が低下し工具の欠損や折損を抑制することができる。
 また、本発明の被覆膜は、次のようなX線回折パターンを有することもできる。すなわち、2θ=37.4°付近のピーク強度をK1とし、2θ=43.2°付近のピーク強度をK2とする場合、強度比K2/K1は0.6<K2/K1<0.75という関係を満たす。2θ=37.4°付近のピークは耐摩耗層の立方晶(111)と対応し、2θ=43.2°付近のピークは耐溶着層の立方晶(200)と対応する。この場合、耐摩耗層は弱(111)配向である。立方晶の(111)面は最密面であり、強度が最も高い面である。従って、このようなX線回折パターンを有することにより、耐摩耗層の耐摩耗性が優れる。
 <製造方法>
 本発明の表面被覆切削工具は、たとえば物理的蒸着法を用いて基材上に被覆膜を形成することにより製造することができる。ここで、物理的蒸着法としては、従来公知の方法を特に限定することなく用いることができ、たとえばアーク式イオンプレーティング法、バランスドマグネトロンスパッタリング法およびアンバランスドマグネトロンスパッタリング法からなる群から選択された少なくとも1種を用いることができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の各実施例の被覆膜各層の組成は、透過電子顕微鏡付属のEDS分析(エネルギー分散型X線分析)により特定することができる。
 <実施例1~12および比較例1~5>
 以下のようにして、実施例1~12および比較例1~5の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、第2付着層および耐溶着層を除く他の構成は共通である。
 基材は、超硬合金製ドリル(刃径:直径8.0mm、全長:115mm、溝長:65mm、油孔付き)を用いた。
 そして、この基材をアーク式イオンプレーティング装置にセットし、真空引きし、基材を500℃に加熱した後、Arイオンエッチングを行ない、その後N2ガス雰囲気でアーク蒸着により、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.2μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は以下の通りである。
ターゲット:Ti0.5Al0.5
圧力:6Pa
アーク電流:120A
バイアス電圧:50V
 なお、アーク式イオンプレーティング法で各層を形成する場合、ターゲットは、各層の組成となるように組成を調整したものを用いた。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層(厚み3.9μm)を形成した。TiおよびAlを含む窒化物からなるA層は、厚み(Ta)が4nmのTi0.5Al0.5Nとした。AlおよびCrを含む窒化物からなるB層は、厚み(Tb)が10nmのAl0.65Cr0.35Nとした。A層およびB層それぞれの積層数は、280層であり、Tb/Ta=2.5である。この耐摩耗層の形成条件は以下の通りである。
ターゲット:Ti0.5Al0.5(A層)、Al0.65Cr0.35(B層)
圧力:5Pa
放電電流:100A(A層)、180A(B層)
バイアス電圧:40V
 アーク式イオンプレーティング装置の炉内の所定の位置に上記のターゲットをセットし、各ターゲットに対し基材が対向するようにして基材を回転させた。そしてその回転速度を調整しながら、A層とB層とが交互に積層された多層構造を有する耐摩耗層を形成した。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚み30nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は以下の通りである。
ターゲット:Ti0.5Al0.5
放電電流:100A
バイアス電圧:100V
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み60nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが6nmのTi0.5Al0.5Nとした。D層は、厚み6nmであり、組成は以下の表1に記載の耐溶着層と同じ組成とした。C層およびD層それぞれの積層数は5層である。この第2付着層の形成条件は以下の通りである。
ターゲット:Ti0.5Al0.5(C層)、表1記載の耐溶着層と同じターゲット(D層)
放電電流:100A(C層)、100A(D層)
バイアス電圧:100V
 上記の耐摩耗層を形成したのと同様に、各ターゲットに対し基材が対向するようにして基材を回転させ、そしてその回転速度を調整しながら、上記のような構成の第2付着層を形成した。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)により測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 次いで、上記で形成した第2付着層上に耐溶着層(厚み(T2)は1.5μmで共通)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、以下の表1に記載の組成を有していた。形成条件は以下の通りである。
ターゲット:表1に記載の組成となるように組成を調整したもの
放電電流:150A
バイアス電圧:100V
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、比較例2~3を除きウルツァイト型であることが確認できた。比較例2~3の結晶構造は、立方晶型であった。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1をそれぞれ表1に示す。
Figure JPOXMLDOC01-appb-T000001
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例1~12および比較例1~5の表面被覆切削工具を得た。
 <比較例6~10>
 耐摩耗層の構成を以下の表2の構成とすることを除き、他は全て上記の実施例6と同様にして表面被覆切削工具を作製した(ただし比較例10の耐溶着層は実施例6の耐溶着層の構成に代えてその組成をTi0.5Al0.5N(厚み2μm)とした)。なお、これらの比較例の耐摩耗層の結晶構造は、いずれも立方晶型であった。
Figure JPOXMLDOC01-appb-T000002
 <実施例13~16>
 以下のようにして、実施例13~16の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、耐摩耗層を除く他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、A層とB層とを交互に積層させた多層構造を有する耐摩耗層を形成した。耐摩耗層の具体的な構成は以下の表3の通りであり、形成条件は上記の実施例1~12と同様である。
Figure JPOXMLDOC01-appb-T000003
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上にTiおよびAlを含む窒化物で構成される第1付着層(厚み50nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.3Al0.7Nとし、形成条件はターゲットの組成を除き上記の実施例1~12と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み60nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが6nmのTi0.3Al0.7Nとした。D層は、厚み6nmであり、組成は下記の耐溶着層と同じ組成とした。C層およびD層それぞれの積層数は5層である。この第2付着層の形成条件はターゲットの組成を除き上記の実施例1~12と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)により測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 次いで、上記で形成した第2付着層上に耐溶着層(厚み(T2)は1.5μmで共通)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.84Cr0.1Ti0.06Nとした。形成条件はターゲットの組成を除き上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1をそれぞれ表3に示す。
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例13~16の表面被覆切削工具を得た。
 <実施例17~24>
 以下のようにして、実施例17~24の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、耐摩耗層の厚みおよび耐溶着層の厚みを除く他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.3μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層(厚みは以下の表4の通り)を形成した。TiおよびAlを含む窒化物からなるA層は、厚み(Ta)が4nmのTi0.5Al0.5Nとした。AlおよびCrを含む窒化物からなるB層は、厚み(Tb)が10nmのAl0.7Cr0.3Nとした。A層およびB層それぞれの積層数は、以下の表4の通りであり、Tb/Ta=2.5である。この耐摩耗層の形成条件は上記の実施例1~12と同様である。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚み30nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は上記の実施例1~12と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み30nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが6nmのTi0.5Al0.5Nとした。D層は、厚み9nmであり、組成は以下の耐溶着層と同じ組成とした。C層およびD層それぞれの積層数は2層である。この第2付着層の形成条件は上記の実施例1~12と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)により測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 次いで、上記で形成した第2付着層上に耐溶着層(厚み(T2)は以下の表4の通り)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.85Cr0.1Ti0.05Nとした。形成条件は上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例17~24の表面被覆切削工具を得た。
 <実施例25~30>
 以下のようにして、実施例25~30の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、耐摩耗層の厚みおよび耐溶着層の厚みを除く他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.1μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.7Al0.3Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層(厚みは以下の表5の通り)を形成した。TiおよびAlを含む窒化物からなるA層は、厚み(Ta)が5nmのTi0.7Al0.3Nとした。AlおよびCrを含む窒化物からなるB層は、厚み(Tb)が19nmのAl0.67Cr0.33Nとした。A層およびB層それぞれの積層数は、以下の表5の通りであり、Tb/Ta=3.8である。この耐摩耗層の形成条件は上記の実施例1~12と同様である。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚み70nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.33Al0.67Nとし、形成条件は上記の実施例1~12と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み70nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが5nmのTi0.33Al0.67Nとした。D層は、厚み5nmであり、組成は以下の耐溶着層と同じ組成とした。C層およびD層それぞれの積層数は7層である。この第2付着層の形成条件は上記の実施例1~12と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)により測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 次いで、上記で形成した第2付着層上に耐溶着層(厚み(T2)は以下の表5の通り)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.85Cr0.1Ti0.05Nとした。形成条件は上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例25~30の表面被覆切削工具を得た。
 <実施例31~37>
 以下のようにして、実施例31~37の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、耐摩耗層の構成を除く他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.07μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.45Al0.55Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層を形成した。耐摩耗層の構成は以下の表6の通りであり、形成条件は上記の実施例1~12と同様である。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に耐溶着層(厚み(T2)は1.5μm)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.85Cr0.1Ti0.05Nとした。形成条件は上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例31~37の表面被覆切削工具を得た。
 <実施例38~43および比較例11~12>
 以下のようにして、実施例38~43および比較例11~12の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、耐摩耗層を除く他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.1μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層を形成した。耐摩耗層の構成は以下の表7の通りであり、形成条件は上記の実施例1~12と同様である。
Figure JPOXMLDOC01-appb-T000007
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、実施例のものは立方晶型であることが確認できたが、比較例のものは立方晶型と六方晶型が混在していた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚み40nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は上記の実施例1~12と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み90nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが5.5nmのTi0.5Al0.5Nとした。D層は、厚み9.5nmであり、組成は以下の耐溶着層と同じ組成とした。C層およびD層それぞれの積層数は6層である。この第2付着層の形成条件は上記の実施例1~12と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)により測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 続いて、上記で形成した第2付着層上に耐溶着層(厚み(T2)は1μm)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.82Cr0.14Ti0.04Nとした。形成条件は上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1は各共通で0.5であった。
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例38~43および比較例11~12の表面被覆切削工具を得た。
 <実施例44~48>
 以下のようにして、実施例44~48の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、中間層の厚みおよび耐摩耗層の構成が異なることを除き他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は厚みを調整することを除き上記の実施例1~12と同様である。この中間層の厚みは、実施例44は0.005μm、実施例45は0.04μm、実施例46は0.15μm、実施例47は0.4μm、実施例48は1μmであった。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層を形成した。耐摩耗層の構成は以下の表8の通りであり、形成条件は上記の実施例1~12と同様である。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に耐溶着層(厚み(T2)は0.9μm)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.88Cr0.1Ti0.02Nとした。形成条件は上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例44~48の表面被覆切削工具を得た。
 <実施例49~55>
 以下のようにして、実施例49~55の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、第1付着層および第2付着層の厚みが異なることを除き、他の構成は共通である。
 基材は、上記の実施例1~12と同様である。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.3μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層(厚み2.8μm)を形成した。TiおよびAlを含む窒化物からなるA層は、厚み(Ta)が4nmのTi0.5Al0.5Nとした。AlおよびCrを含む窒化物からなるB層は、厚み(Tb)が10nmのAl0.7Cr0.3Nとした。A層およびB層それぞれの積層数は、200層であり、Tb/Ta=2.5である。この耐摩耗層の形成条件は上記の実施例1~12と同様である。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚みは表9の通り)を形成した。TiおよびAlを含む窒化物の組成はTi0.5Al0.5Nとし、形成条件は厚みを調整することを除き上記の実施例1~12と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚みおよび積層数は表9の通り)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが9nmのTi0.5Al0.5Nとした。D層は、厚み11nmであり、組成は以下の耐溶着層と同じ組成とした。この第2付着層の形成条件は上記の実施例1~12と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)により測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
Figure JPOXMLDOC01-appb-T000009
 続いて、上記で形成した第2付着層上に耐溶着層(厚み(T2)は1μm)を形成した。この耐溶着層は、被覆層の最表面に位置するものであり、組成はAl0.82Cr0.14Ti0.04Nとした。形成条件は上記の実施例1~12と同様である。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1は0.36であった。
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例49~55の表面被覆切削工具を得た。
 <評価>
 以下の切削試験1~5を行なうことによって、実施例/比較例の表面被覆切削工具を評価した。
 <切削試験1>
 実施例1~12、25~30、比較例1~5、10の各表面被覆切削工具を用いて、以下の条件で被削材に対して穴開け加工を行ない、折損するまでの穴数を計測した。ドリルの折損は、刃先に被削材が溶着し、その溶着を起点として発生するため、穴数が多いものほど耐溶着性に優れており、工具寿命に優れていることを示す。結果を表10に示す。
 (加工条件)
被削材:SCM415生材
切削速度:V=80m/分
1回転当りの送り量:f=0.2mm/rev.
1穴の深さ:H=40mm
給油方式:外部給油方式(切削液=エマルジョン)
Figure JPOXMLDOC01-appb-T000010
 <切削試験2>
 実施例44~55の各表面被覆切削工具を用いて、切削試験1と同じ条件で被削材に対して穴開け加工を行ない、穴数が50毎に刃先の状態を観察した。そして、耐溶着層または被覆膜全体の剥離が初めて観察された穴数を確認した。穴数が多いものほど、被覆膜の耐剥離性に優れていることを示す。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 <切削試験3>
 実施例4、6、17~43、比較例6~9、11、12の各表面被覆切削工具を用いて、以下の条件で被削材に対して穴開け加工を行ない、シンニング部または刃先が欠損するまでの穴数を計測した。これらの欠損は、被削材が溶着し、その溶着を起点として発生するため、穴数が多いものほど耐溶着性に優れており、工具寿命に優れていることを示す。結果を表12に示す。
 (加工条件)
被削材:S50C(HB230)
切削速度:V=80m/分
1回転当りの送り量:f=0.25mm/rev.
1穴の深さ:H=40mm
給油方式:内部給油方式(切削液=エマルジョン)
Figure JPOXMLDOC01-appb-T000012
 <切削試験4>
 実施例13~24の各表面被覆切削工具を用いて、切削試験3と同じ条件で被削材に対して穴数が200となる穴開け加工を行なった後、マージン損傷を顕微鏡で観察した。そして、マージン部に送りマークや被覆膜の剥離が発生している範囲の、先端からの長さ(mm)を測定した。該長さが短いものほど、耐溶着性、耐摩耗性、靭性等の切削特性に優れていることを示す。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 <切削試験5>
 実施例31~37の各表面被覆切削工具を用いて、以下の条件で被削材に対して穴数が1000となる穴開け加工を行なった後、ドリルの顕微鏡観察により逃げ面外周側の摩耗幅(mm)を測定した。摩耗幅が小さいものほど耐摩耗性に優れていることを示す。結果を表14に示す。
 (加工条件)
被削材:S50C(HB230)
切削速度:V=130m/分
1回転当りの送り量:f=0.25mm/rev.
1穴の深さ:H=40mm
給油方式:内部給油方式(切削液=エマルジョン)
Figure JPOXMLDOC01-appb-T000014
 表10~表14より明らかなように、本発明の表面被覆切削工具が、優れた耐摩耗性と優れた耐溶着性を示し、以って欠損や折損を極めて有効に防止することができるという優れた効果を示すことが確認できた。
 <実施例56~58および比較例13~14>
 以下のようにして、実施例56~58および比較例13~14の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、耐溶着層を除く他の構成は共通である。
 基材は、超硬合金製ドリル(刃径:直径6.0mm、全長:100mm、溝長:48mm、油孔付き)、および超硬合金製板(20mm×10mm×1mm)を用いた。
 そして、この各基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.4μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.6Al0.4Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層(厚み(T1)4.5μm)を形成した。TiおよびAlを含む窒化物からなるA層は、厚み(Ta)が8nmのTi0.6Al0.4Nとした。AlおよびCrを含む窒化物からなるB層は、厚み(Tb)が15nmのAl0.7Cr0.3Nとした。A層およびB層それぞれの積層数は196層であり、厚み比Tb/Ta=1.9である。この耐摩耗層の形成条件は上記の実施例1~12と同様である。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚み60nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.6Al0.4Nとし、形成条件は上記の実施例1~12と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み40nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが5nmのTi0.6Al0.4Nとした。D層は、厚み5nmであり、組成は以下の耐溶着層と同じ組成とした。C層およびD層それぞれの積層数は4層である。この第2付着層の形成条件は上記の実施例1~12と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)を用いて測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 次いで、上記で形成した第2付着層上に耐溶着層(厚み(T2)は1.5μmで共通)を形成した。この耐溶着層は、被覆膜の最表面に位置するものであり、以下の表15に記載の組成を有していた。形成条件は上記の実施例1~12と同様である。
Figure JPOXMLDOC01-appb-T000015
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1は0.33である。
 基材としての超硬合金製板の上に形成された被覆膜をナノインデンターを用いて耐摩耗層と耐溶着層の表面付近の硬度測定を実施した。耐摩耗層の硬度H1と耐溶着層の硬度H2(表面から測定したもの)との比である硬度比H2/H1をそれぞれ表15に示す。
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例56~58および比較例13~14の表面被覆切削工具を得た。
 <実施例59~63>
 成膜時のバイアス電圧を以下の表16の通りとすることを除き、他は全て上記の実施例57と同様にして表面被覆切削工具を作製した。なお、これらの実施例の耐摩耗層の結晶構造は、いずれも立方晶であった。これらの実施例の第2付着層および耐溶着層の構造は、いずれもウルツァイト型であった。
 超硬合金製板(基材)の成膜前後の反り量を測定し、形成された被覆膜の膜厚をカロテストを用いて測定し、被覆膜の応力を計算した。その結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 <実施例64~78>
 以下のようにして、実施例64~78の表面被覆切削工具を作製した。これらの表面被覆切削工具はいずれも、基材上に被覆膜として中間層、耐摩耗層、第1付着層、第2付着層、および耐溶着層をこの順でアーク式イオンプレーティング法により形成した構成を有し、構成は共通である。
 基材は、超硬合金製ドリル(刃径:直径6.0mm、全長:100mm、溝長:48mm、油孔付き)を用いた。
 そして、この基材をアーク式イオンプレーティング装置にセットし、まず基材上にTiおよびAlを含む窒化物で構成される中間層(厚み0.3μm)を形成した。TiおよびAlを含む窒化物の組成はTi0.55Al0.45Nとし、形成条件は上記の実施例1~12と同様である。
 次いで、上記で形成した中間層上に、A層とB層とを交互に積層させた多層構造を有する耐摩耗層(厚み(T1)4.5μm)を形成した。TiおよびAlを含む窒化物からなるA層は、厚み(Ta)が8nmのTi0.55Al0.45Nとした。AlおよびCrを含む窒化物からなるB層は、厚み(Tb)が15nmのAl0.7Cr0.3Nとした。A層およびB層それぞれの積層数は196層であり、厚み比Tb/Ta=1.9である。この耐摩耗層の形成条件は以下の通りである。
ターゲット:Ti0.55Al0.45(A層)、Al0.7Cr0.3(B層)
圧力:5Pa、N2にArを10%入れて成膜。
放電電流:100A(A層)、180A(B層)
バイアス電圧:表17、表18、表19の通り
成膜温度:表17、表18、表19の通り。
 アーク式イオンプレーティング装置の炉内の所定の位置に上記のターゲットをセットし、各ターゲットに対し基材が対向するようにして基材を回転させた。そしてその回転速度を調整しながら、A層とB層とが交互に積層された多層構造を有する耐摩耗層を形成した。
 この耐摩耗層の結晶構造をX線回折装置を用いて測定したところ、立方晶型であることが確認できた。
 続いて、上記で形成した耐摩耗層上に、TiおよびAlを含む窒化物で構成される第1付着層(厚み30nm)を形成した。TiおよびAlを含む窒化物の組成はTi0.55Al0.45Nとし、形成条件は上記の耐摩耗層と同様である。
 引続き、上記で形成した第1付着層上に、C層とD層とを交互に積層させた多層構造を有する第2付着層(厚み60nm)を形成した。TiおよびAlを含む窒化物からなるC層は、厚みが6nmのTi0.55Al0.45Nとした。D層は、厚み6nmであり、組成は以下の耐溶着層と同じ組成とした。
 C層およびD層それぞれの積層数は5層である。この第2付着層の形成条件は上記の耐摩耗層(C層)および下記の耐溶着層(D層)と同様である。
 この第2付着層の結晶構造を透過電子顕微鏡付属の透過電子回折(TED)を用いて測定したところ、C層は立方晶型であり、D層はウルツァイト型であることが確認できた。
 次いで、上記で形成した第2付着層上に耐溶着層(厚み(T2)は1.5μmで共通)を形成した。この耐溶着層は、被覆膜の最表面に位置するものであり、組成はAl0.85Cr0.11Ti0.04Nとした。形成条件は以下の通りである。
ターゲット:Al0.85Cr0.11Ti0.04
放電電流:150A
バイアス電圧:表17、表18、表19の通り
成膜温度:表17、表18、表19の通り。
 このようにして形成された耐溶着層の結晶構造をX線回折装置を用いて測定したところ、ウルツァイト型であることが確認できた。
 なお、耐摩耗層の厚みT1と耐溶着層の厚みT2の比T2/T1は0.33である。
 このようにして、基材上に被覆層を形成した表面被覆切削工具を冷却後アーク式イオンプレーティング装置から取り出した後、砥粒を含有したブラシにより被覆膜の表面を平滑化処理することにより、実施例64~78の表面被覆切削工具を得た。
 このようにして形成された被覆膜のX線回折パターンの測定条件は以下の通りである。
測定部位:ドリルの逃げ面
使用X線:Cu-Kα
励起条件:45kV 200mA
使用コリメーター:φ0.3mm
測定法:θ-2θ法。
 実施例64~68において、2θ=36°付近のピーク強度をK1とし、2θ=37.4°付近のピーク強度をK2とする場合の強度比K2/K1をそれぞれ表17に示す。なお、K1は耐溶着層の六方晶(002)のピーク強度を表わし、K2は耐摩耗層の立方晶(111)のピーク強度を表わしていると考えられる。
 実施例69~73において、2θ=37.4°付近のピーク強度をK1とし、2θ=37.9°付近のピーク強度をK2とする場合の強度比K2/K1をそれぞれ表18に示す。なお、K1は耐摩耗層の立方晶(111)のピーク強度を表わし、K2は耐溶着層の六方晶(101)のピーク強度を表わしていると考えられる。
 実施例74~78において、2θ=37.4°付近のピーク強度をK1とし、2θ=43.2°付近のピーク強度をK2とする場合の強度比K2/K1をそれぞれ表19に示す。なお、K1は耐摩耗層の立方晶(111)のピーク強度を表わし、K2は耐溶着層の立方晶(200)のピーク強度を表わしていると考えられる。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 <実施例79~83>
 耐摩耗層の成膜温度を以下の表20の通りとすることを除き、他は全て上記の実施例57と同様にして表面被覆切削工具を作製した。なお、これらの実施例の耐摩耗層の結晶構造は、いずれも立方晶であった。これらの実施例の第2付着層および耐溶着層の構造は、いずれもウルツァイト型であった。
 このようにして形成された耐摩耗層の断面を透過型電子顕微鏡(TEM)も用いて観察したところ、柱状晶を形成したことを確認した。なお、実施例79~83の耐摩耗層の柱状晶の平均粒径を表20(「耐摩耗層の平均粒径」の項)に示す。
Figure JPOXMLDOC01-appb-T000020
 <実施例84~87>
 耐溶着層の組成と成膜温度を以下の表21の通りとすることを除き、他は全て上記の実施例57と同様にして表面被覆切削工具を作製した。なお、これらの実施例の耐摩耗層の結晶構造は、いずれも立方晶であった。これらの実施例の第2付着層および耐溶着層の構造は、いずれもウルツァイト型であった。
 このようにして形成された耐溶着層の断面を透過型電子顕微鏡(TEM)も用いて観察したところ、ナノ粒子を形成したことを確認した。なお、実施例84~87の耐溶着層のナノ粒子の平均粒径を表21(「耐溶着層の平均粒径」の項)に示す。
Figure JPOXMLDOC01-appb-T000021
 <切削試験6>
 実施例56~87、比較例13~14の各表面被覆切削工具(基材を超硬合金製ドリルとするもの)を用いて、以下の条件で被削材に対して穴開け加工を行ない、刃先が欠損するかまたはドリルが折損するまでの穴数を計測した。これらの欠損は、膜のハクリまたは耐溶着層の消耗により被削材が溶着し、その溶着を起点として発生するため、穴数が多いものほど耐溶着性に優れており、工具寿命に優れていることを示す。また、これらの折損は、耐溶着層がなくなり切り屑の排出性が悪くなることから発生するため、穴数が多いものほど耐溶着性に優れており、工具寿命に優れていることを示す。結果を表22に示す。
 <加工条件>
被削材:S50C(HB230)
切削速度:V=130m/分
1回転当りの送り量:f=0.25mm/rev.
1穴の深さ:H=40mm
給油方式:内部給油方式(切削液=エマルジョン)。
 ただし、実施例79~83については、切削試験5の条件で評価を行ない、その結果を表23に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (19)

  1.  基材と該基材上に形成された被覆膜とを含む表面被覆切削工具であって、
     前記被覆膜は、耐摩耗層と耐溶着層とを少なくとも含み、
     前記耐摩耗層は、TiおよびAlを含む窒化物からなるA層とAlおよびCrを含む窒化物からなるB層とが交互に積層された多層構造を有し、かつその結晶構造が立方晶型であり、
     前記耐溶着層は、前記被覆膜の最表面に位置し、(AlaCrbTi1-a-b)Nで表わされる窒化物(式中、a+b<0.99、b>0.01、0.2b+0.7<aである)で構成され、かつその結晶構造がウルツァイト型である、表面被覆切削工具。
  2.  前記被覆膜は、その全体において、全金属原子に占めるAlの原子比が0.6を超え0.8以下であり、かつCrの原子比が0.15を超え0.3以下である、請求項1に記載の表面被覆切削工具。
  3.  前記被覆膜は、2~30μmの厚みを有する、請求項1または2に記載の表面被覆切削工具。
  4.  前記耐溶着層は、0.5~8μmの厚みを有する、請求項1~3のいずれかに記載の表面被覆切削工具。
  5.  前記耐摩耗層の厚みをT1とし、前記耐溶着層の厚みをT2とする場合、厚み比T2/T1は、0.17≦T2/T1≦0.55という関係を満たす、請求項1~4のいずれかに記載の表面被覆切削工具。
  6.  前記A層の平均厚みをTaとし、前記B層の平均厚みをTbとする場合、厚み比Tb/Taは、1.5≦Tb/Ta≦4という関係を満たす、請求項1~5のいずれかに記載の表面被覆切削工具。
  7.  前記Taは、1~10nmであり、前記Tbは、1.5~30nmである、請求項6に記載の表面被覆切削工具。
  8.  前記A層は、(Ti1-cAlc)Nで表わされる窒化物(式中、0.3<c≦0.7である)で構成され、
     前記B層は、(AleCr1-e)Nで表わされる窒化物(式中、0.6<e<0.75である)で構成される、請求項1~7のいずれかに記載の表面被覆切削工具。
  9.  前記被覆膜は、前記基材と前記耐摩耗層との間に中間層を有し、
     前記中間層は、TiおよびAlを含む窒化物で構成され、かつその厚みが0.01~0.5μmである、請求項1~8のいずれかに記載の表面被覆切削工具。
  10.  前記被覆膜は、前記耐摩耗層と前記耐溶着層との間に第1付着層および第2付着層を有し、
     前記第1付着層は、前記耐摩耗層と前記第2付着層との間に位置し、TiおよびAlを含む窒化物で構成され、かつその厚みが30nm~0.1μmであり、
     前記第2付着層は、前記耐摩耗層と同じ結晶構造を有するTiおよびAlを含む窒化物からなるC層と前記耐溶着層と同じ組成を有するD層とが交互に積層された多層構造を有し、かつその厚みが10nm~0.2μmである、請求項1~9のいずれかに記載の表面被覆切削工具。
  11.  前記耐摩耗層の硬度をH1とし、前記耐溶着層の表面から測定した硬度をH2とする場合、硬度比H2/H1は、0.7<H2/H1<1.1という関係を満たす、請求項1~10のいずれかに記載の表面被覆切削工具。
  12.  前記耐摩耗層の硬度をH1とし、前記耐溶着層の表面から測定した硬度をH2とする場合、硬度比H2/H1は、0.9<H2/H1<1.0という関係を満たす、請求項1~10のいずれかに記載の表面被覆切削工具。
  13.  前記被覆膜は、-0.1GPa以下、-3.0GPa以上の圧縮応力を有する請求項1~12のいずれかに記載の表面被覆切削工具。
  14.  前記被覆膜は、-1.0GPa以下、-2.5GPa以上の圧縮応力を有する請求項1~12のいずれかに記載の表面被覆切削工具。
  15.  前記被覆膜は、2θ=36°付近のピーク強度をK1とし、2θ=37.4°付近のピーク強度をK2とする場合、強度比K2/K1が0.2<K2/K1<0.35という関係を満たすX線回折パターンを有する請求項1~14のいずれかに記載の表面被覆切削工具。
  16.  前記被覆膜は、2θ=37.4°付近のピーク強度をK1とし、2θ=37.9°付近のピーク強度をK2とする場合、強度比K2/K1が0.4<K2/K1<0.6という関係を満たすX線回折パターンを有する請求項1~14のいずれかに記載の表面被覆切削工具。
  17.  前記被覆膜は、2θ=37.4°付近のピーク強度をK1とし、2θ=43.2°付近の強度をK2とする場合、強度比K2/K1が0.6<K2/K1<0.75という関係を満たすX線回折パターンを有する請求項1~14のいずれかに記載の表面被覆切削工具。
  18.  前記耐摩耗層は、柱状晶組織を有し、かつその柱状晶の平均粒径が150nmを超え、250nm以下である、請求項1~17のいずれかに記載の表面被覆切削工具。
  19.  前記耐溶着層は、ナノ粒子の組織を有し、かつそのナノ粒子の平均粒径が40nm以下である、請求項1~17のいずれかに記載の表面被覆切削工具。
PCT/JP2013/067248 2012-06-29 2013-06-24 表面被覆切削工具 WO2014002948A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014501778A JP6014959B2 (ja) 2012-06-29 2013-06-24 表面被覆切削工具
US14/236,885 US9211588B2 (en) 2012-06-29 2013-06-24 Surface-coated cutting tool
CN201380002492.1A CN103717332B (zh) 2012-06-29 2013-06-24 表面被覆切削工具
DE112013003182.5T DE112013003182B4 (de) 2012-06-29 2013-06-24 Oberflächenbeschichtetes Schneidwerkzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012147211 2012-06-29
JP2012-147211 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002948A1 true WO2014002948A1 (ja) 2014-01-03

Family

ID=49783094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067248 WO2014002948A1 (ja) 2012-06-29 2013-06-24 表面被覆切削工具

Country Status (5)

Country Link
US (1) US9211588B2 (ja)
JP (1) JP6014959B2 (ja)
CN (1) CN103717332B (ja)
DE (1) DE112013003182B4 (ja)
WO (1) WO2014002948A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142190A1 (ja) * 2013-03-12 2014-09-18 日立ツール株式会社 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法
WO2018070195A1 (ja) * 2016-10-11 2018-04-19 住友電工ハードメタル株式会社 表面被覆切削工具
WO2019035220A1 (ja) 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
WO2019035219A1 (ja) 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
JP2020089923A (ja) * 2018-12-03 2020-06-11 株式会社タンガロイ 穴あけ加工用被覆切削工具
WO2020189252A1 (ja) 2019-03-18 2020-09-24 株式会社Moldino 被覆切削工具
JP2023014653A (ja) * 2021-07-19 2023-01-31 株式会社タンガロイ 被覆切削工具

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896157B2 (ja) * 2012-09-06 2016-03-30 三菱マテリアル株式会社 温度センサ
JP6015423B2 (ja) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
EP2935653B1 (en) * 2012-12-21 2022-06-29 Sandvik Intellectual Property AB Coated cutting tool and method for manufacturing the same
JP6015425B2 (ja) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120251B2 (ja) * 2013-06-05 2017-04-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308365B2 (ja) * 2013-06-05 2018-04-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120250B2 (ja) * 2013-06-05 2017-04-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311879B2 (ja) * 2013-08-12 2018-04-18 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311878B2 (ja) * 2013-08-12 2018-04-18 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6318915B2 (ja) * 2013-08-30 2018-05-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6318916B2 (ja) * 2013-08-30 2018-05-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
KR101537718B1 (ko) * 2014-04-23 2015-07-20 한국야금 주식회사 부분적으로 제거된 피막이 형성된 절삭공구
WO2016158717A1 (ja) * 2015-03-27 2016-10-06 株式会社タンガロイ 被覆切削工具
KR102072466B1 (ko) * 2015-04-27 2020-02-03 가부시키가이샤 탕가로이 피복절삭공구
CN104894512B (zh) * 2015-06-24 2017-07-14 洛阳理工学院 一种低摩擦系数的CrTiAlCN耐磨镀层及其制备方法
CN108028110B (zh) * 2015-09-16 2020-11-06 世美特株式会社 电阻器及温度传感器
JP6222675B2 (ja) * 2016-03-28 2017-11-01 住友電工ハードメタル株式会社 表面被覆切削工具、およびその製造方法
WO2018105403A1 (ja) * 2016-12-09 2018-06-14 住友電工ハードメタル株式会社 表面被覆切削工具
EP3769875A4 (en) * 2018-03-19 2021-11-24 Sumitomo Electric Hardmetal Corp. SURFACE-COATED CUTTING TOOL
JP6927431B2 (ja) 2018-05-30 2021-09-01 株式会社Moldino 被覆切削工具及びその製造方法
KR20210003913A (ko) * 2018-08-24 2021-01-12 스미또모 덴꼬오 하드메탈 가부시끼가이샤 절삭 공구
JP6743350B2 (ja) * 2018-08-24 2020-08-19 住友電工ハードメタル株式会社 切削工具
JP7256947B2 (ja) * 2018-10-11 2023-04-13 株式会社不二越 硬質皮膜被覆ドリル
EP3870733A1 (en) 2018-10-26 2021-09-01 Oerlikon Surface Solutions AG, Pfäffikon Vanadium aluminium nitride (vain) micro alloyed with ti and/or si

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071610A (ja) * 2000-12-28 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2005271133A (ja) * 2004-03-24 2005-10-06 Sumitomo Electric Hardmetal Corp 被覆切削工具
JP2011506115A (ja) * 2007-12-14 2011-03-03 ケンナメタル インコーポレイテッド ナノレイヤ被覆方式による被覆物
JP2011125984A (ja) * 2009-12-21 2011-06-30 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP5008984B2 (ja) * 2004-12-28 2012-08-22 住友電工ハードメタル株式会社 表面被覆切削工具および表面被覆切削工具の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2273772T3 (es) * 2000-12-28 2007-05-16 Kabushiki Kaisha Kobe Seiko Sho Una pelicula dura para herramientas de corte.
SE528108C2 (sv) * 2004-07-13 2006-09-05 Sandvik Intellectual Property Belagt hårdmetallskär, speciellt för svarvning av stål, samt sätt att tillverka detsamma
EP1842610B1 (en) 2004-12-28 2017-05-03 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
SE530861C2 (sv) 2006-12-15 2008-09-30 Sandvik Intellectual Property Belagd hårdmetallpinnfräs för medel- och finbearbetning av härdade stål och förfarande för dess framställning
CN101568399B (zh) 2006-12-26 2011-07-27 特固克有限会社 切削工具
SE0602814L (sv) * 2006-12-27 2008-06-28 Sandvik Intellectual Property Skärverktyg med multiskiktbeläggning
SE531971C2 (sv) * 2007-08-24 2009-09-15 Seco Tools Ab Belagt skärverktyg för allmän svarvning i varmhållfast superlegeringar (HRSA)
EP2042261A3 (en) * 2007-09-26 2015-02-18 Sandvik Intellectual Property AB Method of making a coated cutting tool
JP2009125832A (ja) * 2007-11-21 2009-06-11 Mitsubishi Materials Corp 表面被覆切削工具
JP5111600B2 (ja) * 2008-02-27 2013-01-09 京セラ株式会社 表面被覆部材および切削工具
WO2010150335A1 (ja) * 2009-06-22 2010-12-29 株式会社タンガロイ 被覆立方晶窒化硼素焼結体工具
WO2012005275A1 (ja) 2010-07-06 2012-01-12 株式会社タンガロイ 被覆cBN焼結体工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071610A (ja) * 2000-12-28 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2005271133A (ja) * 2004-03-24 2005-10-06 Sumitomo Electric Hardmetal Corp 被覆切削工具
JP5008984B2 (ja) * 2004-12-28 2012-08-22 住友電工ハードメタル株式会社 表面被覆切削工具および表面被覆切削工具の製造方法
JP2011506115A (ja) * 2007-12-14 2011-03-03 ケンナメタル インコーポレイテッド ナノレイヤ被覆方式による被覆物
JP2011125984A (ja) * 2009-12-21 2011-06-30 Sumitomo Electric Hardmetal Corp 表面被覆切削工具

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142190A1 (ja) * 2013-03-12 2014-09-18 日立ツール株式会社 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法
JPWO2014142190A1 (ja) * 2013-03-12 2017-02-16 三菱日立ツール株式会社 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法
WO2018070195A1 (ja) * 2016-10-11 2018-04-19 住友電工ハードメタル株式会社 表面被覆切削工具
WO2019035220A1 (ja) 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
WO2019035219A1 (ja) 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
KR20190142359A (ko) 2017-08-15 2019-12-26 미츠비시 히타치 쓰루 가부시키가이샤 피복 절삭 공구
US10974323B2 (en) 2017-08-15 2021-04-13 Moldino Tool Engineering, Ltd. Coated cutting tool
JP2020089923A (ja) * 2018-12-03 2020-06-11 株式会社タンガロイ 穴あけ加工用被覆切削工具
WO2020189252A1 (ja) 2019-03-18 2020-09-24 株式会社Moldino 被覆切削工具
KR20210104146A (ko) 2019-03-18 2021-08-24 가부시키가이샤 몰디노 피복 절삭 공구
JP2023014653A (ja) * 2021-07-19 2023-01-31 株式会社タンガロイ 被覆切削工具
JP7418714B2 (ja) 2021-07-19 2024-01-22 株式会社タンガロイ 被覆切削工具

Also Published As

Publication number Publication date
CN103717332A (zh) 2014-04-09
JP6014959B2 (ja) 2016-10-26
DE112013003182T5 (de) 2015-04-09
US9211588B2 (en) 2015-12-15
DE112013003182B4 (de) 2022-05-25
CN103717332B (zh) 2016-02-24
JPWO2014002948A1 (ja) 2016-05-30
US20140193623A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6014959B2 (ja) 表面被覆切削工具
JP5254552B2 (ja) 表面被覆切削工具
JP5008984B2 (ja) 表面被覆切削工具および表面被覆切削工具の製造方法
CN108286047B (zh) 被覆切削工具
JP5257750B2 (ja) 表面被覆切削工具
JP7061603B2 (ja) 多層硬質皮膜被覆切削工具
US10675690B2 (en) Hard coating and hard coating-covered member
EP3346022B1 (en) Hard coating and hard coating-covered member
JP5640242B2 (ja) 表面被覆切削工具
JP2010131741A (ja) 表面被覆切削工具
JP5074772B2 (ja) 表面被覆切削工具
JP5315527B2 (ja) 表面被覆切削工具
JP5315526B2 (ja) 表面被覆切削工具
JP5023369B2 (ja) 表面被覆切削工具
WO2013153614A1 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP5003947B2 (ja) 表面被覆切削工具
JP4921984B2 (ja) 表面被覆切削工具
JP5668262B2 (ja) 表面被覆切削工具
JP5070622B2 (ja) 表面被覆切削工具
WO2018037648A1 (ja) 表面被覆切削工具およびその製造方法
JP5640243B2 (ja) 表面被覆切削工具
JP5922546B2 (ja) 切削工具
JP2010076082A (ja) 表面被覆切削工具
JP5093917B2 (ja) 表面被覆切削工具
JP6092735B2 (ja) 表面被覆工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380002492.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014501778

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236885

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130031825

Country of ref document: DE

Ref document number: 112013003182

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808921

Country of ref document: EP

Kind code of ref document: A1