WO2014002820A1 - センサ付車輪用軸受装置 - Google Patents

センサ付車輪用軸受装置 Download PDF

Info

Publication number
WO2014002820A1
WO2014002820A1 PCT/JP2013/066659 JP2013066659W WO2014002820A1 WO 2014002820 A1 WO2014002820 A1 WO 2014002820A1 JP 2013066659 W JP2013066659 W JP 2013066659W WO 2014002820 A1 WO2014002820 A1 WO 2014002820A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
sensor
coefficient
wheel
bearing
Prior art date
Application number
PCT/JP2013/066659
Other languages
English (en)
French (fr)
Inventor
高橋亨
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP13809021.2A priority Critical patent/EP2869049A4/en
Priority to US14/411,116 priority patent/US9616708B2/en
Priority to KR1020147035946A priority patent/KR20150021064A/ko
Priority to CN201380033252.8A priority patent/CN104428645B/zh
Publication of WO2014002820A1 publication Critical patent/WO2014002820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/169Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a wheel bearing device with a sensor provided with a load sensor for detecting a load applied to a bearing portion of the wheel.
  • Patent Document 1 As a technology for detecting the load applied to each wheel of an automobile, a sensor-equipped wheel bearing has been proposed in which a strain gauge is attached to the outer ring outer diameter surface of the wheel bearing and the load is detected from the distortion of the outer ring outer diameter surface.
  • Patent Document 2 a calculation method for estimating a load applied to a wheel from output signals of a plurality of strain sensors provided on the wheel has been proposed (for example, Patent Document 2).
  • a plurality of sensor units are provided on the bearing fixed ring, the difference in amplitude is obtained for the output signals of the sensor units arranged opposite to each other, and the input load is estimated by dividing the calculation according to the value.
  • a sensor-equipped bearing device for a wheel has also been proposed (Patent Document 3). It is also possible to execute calculation processing by switching the load estimation coefficient used for load calculation in such a sensor-equipped wheel bearing device according to brake ON / OFF information that affects the calculation processing result. .
  • the load estimation coefficient used in the load calculation is calculated based on the load estimation coefficient obtained in advance with a load tester. Is required.
  • An object of the present invention is to provide a sensor-equipped wheel bearing device capable of calculating and outputting an accurate load using a load estimation coefficient corresponding to a use condition of the wheel bearing.
  • the sensor-equipped wheel bearing device includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, and both A wheel bearing having a double row rolling element interposed between facing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, and a load applied to the bearing attached to the wheel bearing.
  • the load calculation processing means 32 is a coefficient for calculating an actual load estimation coefficient MC, which is a load estimation coefficient in a state of being attached to an actual vehicle, from a standard load estimation coefficient MB, which is a standard load estimation coefficient of a determined bearing. It has the conversion process part 33, and the load calculating part 34 which calculates the load added to the said wheel from the actual load estimation coefficient MC calculated by this coefficient conversion process part 33, and the said signal vector.
  • the above-described standard load estimation coefficient MB is, for example, a load estimation coefficient obtained by a load test performed on a bearing before being attached to the vehicle.
  • the sensor (20) is attached to the wheel bearing, but the signal processing means 31 and the load calculation processing means 32 may be attached to the wheel bearing or separated from the wheel bearing and Or an inverter device or the like.
  • the coefficient conversion processing unit 33 of the load calculation processing means 32 can use the bearings.
  • the actual load estimation coefficient MC corresponding to the use conditions is calculated by correcting the difference in characteristics depending on the use conditions such as the material and shape of the knuckle member to be fixed, the difference between the left and right wheels and the difference in the bearing mounting posture by the conversion coefficient. Can do. Therefore, an accurate load can be calculated and output using a load estimation coefficient corresponding to the use condition of the wheel bearing.
  • the coefficient conversion processing unit 33 of the load calculation processing means 32 is a conversion coefficient storage unit in which a conversion coefficient T (k) for converting the standard load estimation coefficient MB to the actual load estimation coefficient MC is written. 35 and a parameter storage unit 36 in which a parameter k for designating a state in which the bearing is attached to the vehicle is written.
  • the parameter k written in the parameter storage unit 36 may include at least one of a vehicle type, a mounting position of the bearing, and an on / off state of the brake. good.
  • the coefficient conversion processing unit 33 of the load calculation processing unit 32 is configured to output a signal vector input from the signal processing unit 31 to the load calculation unit of the load calculation processing unit 32 according to the left and right mounting positions of the wheels. It may have a wheel position corresponding conversion command section for commanding array conversion and array conversion of the actual load estimation coefficient MC given from the coefficient conversion processing section 33 to the load calculation section.
  • the bearing has a bilaterally symmetric shape, it can be dealt with by executing the signal vector array replacement process and the actual load estimation coefficient MC array conversion process according to a command from the wheel position corresponding conversion command unit. Therefore, it is only necessary to prepare conversion coefficients for one of the mounting positions, and it is not necessary to prepare all the conversion coefficients, so that the memory area can be saved.
  • the signal processing means 31 may include a swap circuit 43 that performs signal vector array conversion in response to a command from the wheel position corresponding conversion command unit.
  • a series of sequence processes for calculating the actual load estimation coefficient MC in the coefficient conversion processing unit 33 of the load calculation processing means 32 may be executed in the initialization process.
  • an ID memory 38 in which ID information for specifying the bearing is written is provided on the bearing, and the coefficient conversion processing unit 33 of the load calculation processing means 32 performs the ID memory 38 during the initialization process. It is good also as what has ID non-volatile memory 40 which reads and memorize
  • the coefficient conversion processing unit 33 of the load calculation processing unit 32 reads the ID information from the ID memory 38 and compares it with the ID information stored in the ID nonvolatile memory 40 when the power is turned on. It is good also as what has a function which confirms whether it implements and is connected with the regular bearing linked
  • the “when the power is turned on” is when the power of the load calculation processing means 32 is turned on, for example, when the accessory mode in the start switch of the vehicle is turned on.
  • an MB memory 39 in which the standard load estimation coefficient MB is written on the bearing is provided, and the coefficient conversion processing unit 33 of the load calculation processing means 32 receives the standard load estimation coefficient MB from the MB memory 39. Can be read out.
  • the data file of the standard load estimation coefficient MB specified by the ID information for specifying the bearing may be separately supplied to the coefficient conversion processing unit 33 of the load calculation processing means 32 from the outside.
  • the load calculation processing means 32 is a vertical acting on the wheel bearing from the output signals of the three or more sensors (20).
  • the directional load Fz, the longitudinal load Fx, and the axial load Fy may be calculated.
  • the senor (20) for detecting a load applied to the bearing may detect a relative displacement between the outer member and the inner member.
  • the sensor (20) for detecting a load applied to the bearing may detect a distortion of a fixed side member of the outer member and the inner member.
  • the senor (20) is a sensor unit 20 provided on the outer diameter surface of the fixed side member of the outer member and the inner member, and the sensor unit 20 is an outer side of the fixed side member.
  • a strain generating member fixed in contact with the radial surface and one or more strain detecting elements for detecting strain of the strain generating member may be provided.
  • the sensor unit 20 is positioned at 90 degrees in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the left and right positions with respect to the tire ground contact surface. You may distribute four equally by phase difference. By arranging the four sensor units 20 in this way, it is possible to estimate the vertical load Fz, the longitudinal load Fx, and the axial load Fy acting on the wheel bearing. Moreover, even when the load state of the bearing changes, the rolling element cycle can be detected stably from the output signal of the sensor unit 20 arranged on the load zone side, and the accuracy of the load estimation output can be improved.
  • the sensor unit 20 includes a strain generating member having three or more contact fixing portions fixed in contact with the outer diameter surface of the fixed side member, and the strain generating member attached to the strain generating member. It is good also as what has two or more strain detection elements which detect distortion of a strain generating member.
  • the strain detecting elements are provided between the adjacent first and second contact fixing portions of the strain generating member and between the adjacent second and third contact fixing portions, respectively, and adjacent to each other. You may set the space
  • FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. It is a block diagram which shows the other structural example of a detection system. It is explanatory drawing which shows the arrangement
  • This embodiment is a third generation type inner ring rotation type, and is applied to a wheel bearing 100 for driving wheel support.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the wheel bearing 100 in this sensor-equipped wheel bearing device includes, as shown in a cross-sectional view in FIG. 1, an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and each rolling surface 3. It is comprised by the inner member 2 which formed the rolling surface 4 which opposes in an outer periphery, and the double row rolling element 5 interposed between the rolling surfaces 3 and 4 of these outer member 1 and the inner member 2.
  • the wheel bearing 100 is a double-row angular ball bearing type, and the rolling elements 5 are formed of balls and are held by a cage 6 for each row.
  • the rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.
  • the outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part.
  • the flange 1a is provided with screw holes 14 for attaching a knuckle at a plurality of locations in the circumferential direction, and knuckle bolts (not shown) inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the screw holes 14.
  • the vehicle body mounting flange 1a is attached to the knuckle 16.
  • the inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become.
  • the hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows.
  • An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12.
  • a through hole 11 is provided at the center of the hub wheel 9.
  • the hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.
  • FIG. 2 shows a front view of the outer member 1 of the wheel bearing 100 as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion.
  • sensor units 20 that are sensors for load detection are provided on the outer diameter surface of the outer member 1 that is a fixed member.
  • these sensor units 20 are provided on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the front-rear position with respect to the tire ground contact surface.
  • the strain detection element 22 of each sensor unit 20 is connected to a detection system unit 30 shown in a block diagram in FIG.
  • the detection system unit 30 includes signal processing means 31 that processes the output signals of the sensor units 20 to generate a signal vector, and load calculation processing means 32 that calculates a load applied to the wheel from the signal vector.
  • the signal processing means 31 and the load calculation processing means 32 do not necessarily have to be integrated as the detection system unit 30 and may be provided separately from each other.
  • the signal processing means 31 and the load calculation processing means 32 may be mounted on the wheel bearing 100, and are located away from the wheel bearing 100 in the vehicle, in the vicinity of the main ECU (electric control unit) or the like. Alternatively, it may be installed as a lower control unit of the overall control unit of the ECU.
  • the sensor unit 20 shown in one configuration example in FIGS. 2 to 4 is used as a sensor for detecting a load in each direction applied to the wheel.
  • each sensor unit 20 detects the strain of the strain generating member 21 attached to the strain generating member 21 and the strain generating member 21 fixed to the outer member 1 by the contact fixing portion 21a.
  • the strain detection element 22 (22A, 22B) is used (FIGS. 3 and 4). 3 and 4, two strain detection elements 22 (22A and 22B) are used for one sensor unit 20, but one strain detection element 22 is used for one sensor unit 20. There may be.
  • the sensor for detecting the load is not limited to the one shown in FIGS. 2 to 4.
  • the displacement sensor eddy current sensor, magnetic sensor, reluctance sensor, etc.
  • the outer member 1 and the inner member It is installed on the fixed side member of the side member 2, the detection target is arranged on the rotating wheel, the relative displacement amount between the outer member 1 and the inner member 2 is obtained, and the relationship between the load and the displacement obtained in advance. Therefore, the applied load may be obtained. That is, in the configuration of this embodiment, the force acting between the inner member 2 and the outer member 1 of the bearing is detected directly or indirectly by a sensor provided on the fixed side member, and the input load is calculated by calculation. It is applied to a load sensor of a method for estimating
  • the load estimation calculation process can be performed. If a linear approximation range is appropriately set corresponding to the load input range, a wide range of input loads can be estimated by the load estimation coefficient.
  • the relationship between the input load and the signal vector S of the sensor signal is determined by adding loads such as loads Fx, Fy, Fz in each direction and moment loads Mx, Mz in each direction, for example, with a testing machine that applies the load. It can be obtained by measuring a sensor signal for the load.
  • a standard load estimation coefficient (hereinafter referred to as a standard load estimation coefficient) obtained by a test machine by combining the coefficient M and the offset Mo in the equation (1) is expressed as MB.
  • the cause is due to the difference in the mounting posture of the wheel bearing 100 between the test machine and the actual vehicle and the difference in the rigidity of the peripheral member to which the bearing 100 is attached. This is because a difference occurs in the strain and deformation state generated in the bearing 100.
  • the load calculation processing means 32 in FIG. 1 performs a conversion operation in accordance with the actual use conditions on the standard load estimation coefficient MB obtained by the test machine, so that the actual vehicle A coefficient conversion processing unit 33 for calculating a load estimation coefficient (hereinafter referred to as an actual load estimation coefficient) MC at the, and an actual load designation coefficient MC calculated by the coefficient conversion processing unit 33 and the signal processing means 31
  • a load calculation unit 34 is provided for calculating a load applied to the wheel from the signal vector.
  • the coefficient conversion processing unit 33 includes a conversion coefficient storage unit 35 in which a conversion coefficient T (k) for converting the standard load estimation coefficient MB to the actual load estimation coefficient MC is written, and a vehicle on which the bearing 100 is mounted.
  • the parameter storage unit 36 in which the parameter k for designating information such as the type of the vehicle, the position of the mounted wheel, the state in which the bearing 100 is attached to the vehicle, and the like, and the actual load estimation coefficient MC obtained by the conversion are stored.
  • a storage unit 37 a storage unit 37.
  • the conversion coefficient storage unit 35, the parameter storage unit 36, and the MC storage unit are composed of a nonvolatile memory.
  • the parameter k includes one that designates the ON / OFF state of the brake.
  • an ID memory 38 in which ID information for specifying the bearing 100 is written and an MB memory 39 in which the standard load estimation coefficient MB is written are provided on the wheel bearing 100.
  • the coefficient conversion processing unit 33 of the load calculation processing unit 32 stores the ID information and the standard load estimation coefficient MB from the ID memory 38 and the MB memory 39 by the communication unit and stores them.
  • a nonvolatile memory 41 is provided.
  • the coefficient conversion processing unit 33 of the load calculation processing means 32 when the bearing 100 is mounted on the vehicle and connected to the detection system unit 30, first, the following initialization process is executed.
  • the ID information and the standard load estimation coefficient MB are read from the ID memory 38 and the MB memory 39 on the bearing 100 and copied to the ID nonvolatile memory 40 and the MB nonvolatile memory 41.
  • a process for converting the standard load estimation coefficient MB into the actual load estimation coefficient MC is performed using the parameter k that specifies the vehicle information, the mounted wheel position, and the like written in the parameter storage unit 36.
  • a conversion coefficient T (k) that matches a set use condition that is, a parameter k is selected from the conversion coefficients T (k) written in advance in the conversion coefficient storage unit 35, and the standard load estimation coefficient MB is selected. Process to make changes.
  • MC MB + T (k) (3)
  • T (k) MC-MB (4) And so on.
  • the actual load estimation coefficient MC is expressed as only one type. However, in actuality, the input load state, for example, turning inside / outside, wheel rotation, etc. A plurality of actual load estimation coefficients MC are prepared in order to perform calculation processing by switching several types of coefficients depending on the speed, the ON / OFF state of the brake, and the like. Similarly, with respect to the standard load estimation coefficient MB, a plurality of standard load estimation coefficients MB corresponding to the state of the input load are set.
  • the coefficient conversion processing unit 33 obtains a plurality of actual load estimation coefficients MC converted according to the use conditions from the standard load estimation coefficient MB read from the MB memory 39 of the bearing 100 and stores them in the MC storage unit 37.
  • the load calculation unit 34 obtains the estimated load in accordance with the signal vector of the input sensor output signal, and the state is output.
  • the ID memory 38 that stores ID information is mounted on the bearing 100, and the data of the standard load estimation coefficient MB itself is supplied to the coefficient conversion processing unit 33 as a separate data file. It is also possible. In this case, if the data file corresponding to the ID information is supplied on the network or the like, the data of the standard load estimation coefficient MB matching the ID information read from the ID memory 38 can be read, and the bearing 100 is loaded. It is not necessary to install a large memory for the standard load estimation coefficient MB.
  • the ID information read from the ID memory 39 on the bearing 100 and stored in the ID nonvolatile memory 40 can be used for confirming the connection between the bearing 100 and the detection system unit 30. That is, when the power is turned on, the ID information is once read from the ID memory 39 on the bearing 100, and this value is stored in the ID nonvolatile memory 40 of the coefficient conversion processing unit 33 during the initialization process. If they match, if they are different, it can be determined that there is a connection error or that the bearing 100 has been changed. Then, based on the determination result, it is possible to execute a measure such as outputting error information to prompt confirmation, or executing the initialization process again if necessary.
  • the “when the power is turned on” is when the power of the detection system unit 30 or the load calculation processing means 32 is turned on, for example, when the accessory mode in the vehicle start switch is turned on. It is.
  • FIG. 6A and 6B show the difference in the arrangement of sensor output signals when the same wheel bearing 100 is attached to the left wheel and the right wheel
  • FIG. 6A shows the case where the same wheel bearing 100 is attached to the left wheel
  • FIG. 6B shows the case where it is attached to the right wheel.
  • the load estimation coefficient can be obtained only by converting the coordinate system.
  • the sensor output signal corresponding to the sensor located in front of the vehicle is S4
  • the signal vector S consisting of the output signals of all the sensors is (S1, S2, S3, S4)
  • the sensor output signals are arranged in the order of (up, back, down, front).
  • the signal vector S consisting of the output signals of all the sensors is ( S1, S2, S3, S4) and arranged in the order of (upper, front, lower, rear).
  • the signal vector S ′ having the arrangement (S1, S4, S3, S2) is rearranged, the signal configuration is the same as that of the signal vector S when mounted on the left wheel, and can be directly input to the arithmetic processing. It becomes possible.
  • the coefficient conversion processing unit 33 performs an arithmetic process corresponding to affine transformation (sign inversion processing, etc.) of the standard load estimation coefficient MB of the bearing 100 as necessary. To do. Therefore, if the conversion coefficient T (k) for the left wheel is calculated by comparing the running data with the data from the test machine, it is not necessary to prepare all the conversion coefficients T (k) for the right wheel. The memory capacity for the conversion coefficient can be reduced.
  • FIG. 5 shows a configuration example of the detection system unit 30 with such measures taken.
  • the coefficient conversion processing unit 33 in the load calculation processing unit 32 receives the signal vector input from the signal processing unit 31 to the load calculation unit 34 of the load calculation processing unit 32 according to the left and right mounting positions of the wheels.
  • a wheel position corresponding conversion command section 42 for commanding array conversion and array conversion of the actual load estimation coefficient MC given from the coefficient conversion processing section 33 to the load calculation section 34.
  • the signal processing means 31 is provided with a swap circuit 43 that performs signal vector array conversion in response to a command from the wheel position corresponding conversion command unit 42.
  • Other configurations are the same as those in the configuration example of FIG.
  • the conversion coefficient T (k) for the left wheel of the actual vehicle is used for the left wheel of the actual vehicle from the standard load estimation coefficient MB of the bearing 100.
  • the actual load estimation coefficient MC is calculated.
  • the parameter (LtoR Transform) in the wheel position corresponding conversion command unit 42 is set to ON, conversion to the right wheel is set.
  • the swap circuit 43 of the signal processing means 31 is turned on, and the arrangement of the signal vectors is converted for the right wheel, and the affine transformation processing of the actual load estimation coefficient MC is performed. A reset process is performed.
  • Each sensor unit 20 provided at four locations in FIG. 2 includes a strain generating member 21 and a strain generating member 21, as shown in an enlarged plan view and an enlarged sectional view in FIGS. 3 and 4. It consists of two strain detection elements 22 (22A, 22B) that detect the strain of the member 21.
  • the strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material of 2 mm or less, and has a planar shape with a uniform width over the entire length.
  • the strain generating member 21 has three contact fixing portions 21 a that are contact-fixed to the outer diameter surface of the outer member 1 via the spacers 23.
  • the three contact fixing portions 21 a are arranged in a line in the longitudinal direction of the strain generating member 21.
  • one strain detection element 22A of the two strain detection elements 22 is disposed between the contact fixing portion 21a at the left end and the contact fixing portion 21a at the center, and the contact fixing portion 21a at the center and the contact at the right end.
  • Another strain detection element 22B is arranged between the fixed portion 21a.
  • cutout portions 21b are formed at two positions corresponding to the placement portions of the strain detection elements 22A and 22B on both sides of the strain generating member 21, respectively.
  • the corner of the notch 21b has an arcuate cross section.
  • the strain detection element 22 detects a circumferential strain around the notch 21b. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when the plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain.
  • the assumed maximum force is, for example, the maximum force within a range in which the normal functioning of the wheel bearing 100 is restored when the force is removed without the wheel bearing 100 being damaged. It is.
  • the three contact fixing portions 21a of the strain generating member 21 are at the same dimension in the axial direction of the outer member 1, and the contact fixing portions 21a are separated from each other in the circumferential direction.
  • These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 via spacers 23, respectively.
  • Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a screw hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on.
  • each portion having the cutout portion 21b in the strain generating member 21 which is a thin plate shape becomes the outer member 1. It becomes a state away from the outer diameter surface of this, and distortion deformation around the notch 21b becomes easy.
  • an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here.
  • the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is.
  • a flat portion 1 b is formed at a location where the spacer 23 is contacted and fixed on the outer diameter surface of the outer member 1.
  • the spacer 23 is formed by providing a groove (not shown) in each of the three intermediate portions where the three contact fixing portions 21a of the strain generating member 21 are fixed on the outer diameter surface of the outer member 1. It may be omitted and each part where the notch 21 b of the strain generating member 21 is located may be separated from the outer diameter surface of the outer member 1.
  • the strain detection element 22 various elements can be used.
  • the strain detection element 22 can be formed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. Further, the strain detecting element 22 can be formed on the strain generating member 21 with a thick film resistor.
  • the interval between the fixed portions 21 a is set to be the same as the arrangement pitch P of the rolling elements 5.
  • the circumferential interval between the two strain detection elements 22A and 22B respectively disposed at the intermediate positions of the adjacent contact fixing portions 21a is approximately 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5.
  • the output signals S0 and S1 of the two strain detection elements 22A and 22B have a phase difference of about 180 degrees.
  • the interval between the contact fixing portions 21a located at both ends of the arrangement is set to be the same as the arrangement pitch P of the rolling elements 5, and is set at an intermediate position between the adjacent contact fixing portions 21a.
  • the circumferential interval between the two strain detection elements 22A and 22B becomes approximately 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5. I did it.
  • the circumferential interval between the two strain detection elements 22A and 22B may be directly set to 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5.
  • the circumferential interval between the two strain detection elements 22A and 22B is ⁇ 1/2 + n (n: integer) ⁇ times the arrangement pitch P of the rolling elements 5, or a value approximated to these values. Also good.
  • the output signals of the strain detection elements 22A and 22B are in the vicinity of the installation portion of the sensor unit 20. Affected by the rolling element 5 passing through Even when the bearing is stopped, the output signals of the strain detection elements 22 ⁇ / b> A and 22 ⁇ / b> B are affected by the position of the rolling element 5. That is, when the rolling element 5 passes the position closest to the strain detection elements 22A and 22B in the sensor unit 20 (or when the rolling element 5 is at that position), the output signals of the strain detection elements 22A and 22B are maximum values. And decreases as the rolling element 5 moves away from the position (or when the rolling element 5 is located away from the position).
  • the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 20 at a predetermined arrangement pitch P. Therefore, the output signals of the strain detection elements 22A and 22B are periodic with the arrangement pitch of the rolling elements 5 as a period.
  • the waveform is close to a sine wave that changes to. Further, the output signals of the strain detection elements 22A and 22B are affected by temperature and hysteresis due to slippage between the knuckle 16 and the surface of the mounting flange 1a (FIG. 1).
  • the signal processing unit 31 calculates a difference between the output signals of the two strain detection elements 22A and 22B and outputs a signal vector as an amplitude value. You may make it do. In this case, since the output signals of the two strain detection elements 22A and 22B have a phase difference of about 180 degrees as described above, the signal vector as an amplitude value appears in the output signals of the two strain detection elements 22A and 22B. It is a value that offsets the effects of temperature and the effects of slippage between the knuckle and flange surfaces. Therefore, by using this signal vector as a variable in the calculation of the load calculation processing means 32 in the next stage, the load acting on the wheel bearing 100 and the tire ground contact surface can be calculated and estimated more accurately.
  • the actual load estimation coefficient MC corresponding to the actual use conditions can be calculated using the standard load estimation coefficient MB obtained by the test machine, all the bearings 100 for each condition for mounting the wheel bearing 100 on the actual vehicle. There is no need to conduct a load application test.
  • the parameter to be managed at the time of shipment of the wheel bearing 100 is only the standard load estimation coefficient MB, and management and handling become easy. As a result, the management cost can be reduced.
  • one or more sensor units 20 are provided as sensors for detecting the load applied to the bearing 100, and the output signal S of each sensor unit 20 is processed by the signal processing means 31.
  • a signal vector is generated, and a load applied to the wheel from the signal vector is calculated by the load calculation processing means 32.
  • the load calculation processing means 32 is a standard load that is a standard load estimation coefficient of the bearing 100 determined.
  • a coefficient change processing unit 33 that calculates an actual load estimation coefficient MC that is a load estimation coefficient in a state of being attached to an actual vehicle from the estimation coefficient MB, the actual load estimation coefficient MC calculated by the coefficient conversion processing unit 33, and the above-described Since it has the load calculation part 34 which calculates the load added to the said wheel from a signal vector, according to the use conditions of the bearing 100 Using a load estimation coefficient can be calculated outputs an accurate load.
  • the load When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 which is a fixed member of the wheel bearing 100, and deformation occurs.
  • the three contact fixing portions 21 a of the strain generating member 21 in the sensor unit 20 are fixed in contact with the outer member 1, so that the distortion of the outer member 1 is caused by the strain generating member 21.
  • the distortion is easily transmitted and the distortion is detected with high sensitivity by the distortion detection elements 22A and 22B.
  • each sensor unit 20 is provided with an upper surface portion, a lower surface portion, a right surface portion of the outer diameter surface of the outer member 1 that is in a vertical position and a left and right position with respect to the tire ground contact surface.
  • the left surface portion is equally arranged with a phase difference of 90 degrees in the circumferential direction, the vertical load Fz, the front-rear load Fx, and the axial load Fy acting on the wheel bearing 100 can be estimated.
  • the present invention can also be applied to a wheel bearing in which the inner member is a fixed side member.
  • the sensor unit 20 is provided on the peripheral surface that is the inner periphery of the inner member.
  • the present invention is for the first or second generation type wheel in which the bearing portion and the hub are independent parts.
  • the present invention can also be applied to a bearing or a fourth-generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint.
  • the sensor-equipped wheel bearing device can also be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 本発明のセンサ付車輪用軸受装置は、車輪用軸受(100)に、これに加わる荷重を検出する複数のセンサ(20)を設け、その出力信号を処理して信号ベクトルを生成する信号処理手段(31)と、前記信号ベクトルから車輪に加わる荷重を演算する荷重演算処理手段(32)を設ける。荷重演算処理手段(32)は、定められた軸受(100)の標準的な荷重推定係数である標準荷重推定係数MBから、実際の車両に取付けた状態における荷重推定係数である実状荷重推定係数MCを算出する係数変換処理部(33)と、この係数変換処理部(33)で算出された実状荷重推定係数MCと前記信号ベクトルとから車輪に加わる荷重を演算する荷重演算部(34)とを有する。

Description

センサ付車輪用軸受装置 関連出願
 この出願は、2012年6月27日出願の特願2012-144458の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを備えたセンサ付車輪用軸受装置に関する。
 自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の外輪外径面に歪みゲージを貼り付け、外輪外径面の歪みから荷重を検出するようにしたセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、車輪に設けた複数の歪みセンサの出力信号から、車輪にかかる荷重を推定する演算方法も提案されている(例えば特許文献2)。
特表2003-530565号公報 特表2008-542735号公報 特開2010-242902号公報
 特許文献1,2に開示の技術のように、歪みセンサを用いて車輪にかかる荷重を推定する場合、環境温度によるセンサのドリフトや、センサの取付けに伴う歪みによる初期ドリフトが問題となる。
 上記課題を解決するものとして、軸受固定輪に複数のセンサユニットを設け、対向配置されたセンサユニットの出力信号について振幅の差分を求め、その値によって演算を場合分けすることで入力荷重を推定するようにしたセンサ付車輪用軸受装置も提案されている(特許文献3)。また、このようなセンサ付車輪用軸受装置での荷重演算に用いる荷重推定係数を、その演算処理結果に影響を与えるブレーキのON・OFF情報などにより切り替えて演算処理を実行することも可能である。
 しかし、特許文献3に開示のセンサ付車輪用軸受装置では、荷重演算に用いる荷重推定係数として、以下に述べるように、予め荷重試験機で求めた荷重推定係数から、異なる使用条件における荷重推定係数を求める処理が必要である。
 試験機による荷重試験の結果から、車輪用軸受に加わる各方向の荷重Fx 、Fy 、Fz 、あるいはモーメント荷重Mx 、Mz 等と、センサ出力信号との対応関係を求めることができる。しかし、試験機で求めた荷重推定係数MBを荷重演算にそのまま用いても、車の走行状態では荷重が正確に求められなかった。その原因は、試験機と実車の場合とで、車輪用軸受の取付け姿勢の違いや、取付け部材周辺の剛性の違いが有ることによる。
 試験機で様々な取付け姿勢における荷重印加試験を実施することは可能であるが、実車のナックル部材やサスペンション部材の剛性の影響についても再現する必要があり、試験の手間がかかってしまい現実的でないという問題がある。また、同じ軸受を車両の任意の位置に取付けて使用する場合もあり、車の前後左右のどの位置に取付けても荷重を求められることが望まれる。そのため、試験機で取得した標準的な荷重推定係数MBを用いて、実際の使用条件に応じた荷重推定係数MCを算出する処理が必要である。
 この発明の目的は、車輪用軸受の使用条件に応じた荷重推定係数を用いて、正確な荷重を演算出力することができるセンサ付車輪用軸受装置を提供することである。
 この発明のセンサ付車輪用軸受装置は、複列の転走面が内周に形成された外方部材、前記転走面と対向する転走面が外周に形成された内方部材、および両部材の対向する転走面間に介在した複列の転動体を有し、車体に対して車輪を回転自在に支持する車輪用軸受と、この車輪用軸受に取付けられてこの軸受に加わる荷重を検出する複数のセンサ(20)と、前記各センサ(20)の出力信号を処理して信号ベクトルを生成する信号処理手段31と、前記信号ベクトルから前記車輪に加わる荷重を演算する荷重演算処理手段32とを備える。
 前記荷重演算処理手段32は、定められた軸受の標準的な荷重推定係数である標準荷重推定係数MBから、実際の車両に取付けた状態における荷重推定係数である実状荷重推定係数MCを算出する係数変換処理部33と、この係数変換処理部33で算出された実状荷重推定係数MCと前記信号ベクトルとから前記車輪に加わる荷重を演算する荷重演算部34とを有する。ここで、上記した定められた標準荷重推定係数MBとは、例えば、車両に取付ける前の軸受に対して行った荷重試験により求められた荷重推定係数である。前記センサ(20)は前記車輪用軸受に取付けられるが、前記信号処理手段31および荷重演算処理手段32は、前記車輪用軸受に取付けられていても、また車輪用軸受から離れて、車両のECUやインバータ装置等に設けられていても良い。
 この構成によると、車輪用軸受の個体差を含めた特性を試験機で求めて個別の標準荷重推定係数MBを用意しておけば、荷重演算処理手段32の係数変換処理部33において、軸受が固定されるナックル部材の材質や形状、および左右輪の差や軸受取付け姿勢の違いなど、使用条件による特性の違いを変換係数によって補正し、使用条件に応じた実状荷重推定係数MCを算出することができる。そのため、車輪用軸受の使用条件に応じた荷重推定係数を用いて、正確な荷重を演算出力することができる。
 この発明において、前記荷重演算処理手段32の係数変換処理部33は、前記標準荷重推定係数MBから前記実状荷重推定係数MCに変換するための変換係数T(k)が書き込まれた変換係数記憶部35と、車両に前記軸受を取付けた状態を指定するパラメータkが書き込まれたパラメータ記憶部36とを有するものとしても良い。
 この発明において、前記パラメータ記憶部36に書き込まれたパラメータkは、車両の種類、前記軸受の搭載位置、およびブレーキのON・OFF状態を指定するもののうち、少なくともいずれか1つを含むものとしても良い。
 この発明において、前記荷重演算処理手段32の係数変換処理部33は、車輪の左右搭載位置に応じて、前記信号処理手段31から荷重演算処理手段32の前記荷重演算部に入力される信号ベクトルの配列変換、および係数変換処理部33から荷重演算部に与えられる前記実状荷重推定係数MCの配列変換を指令する車輪位置対応変換指令部を有するものとしても良い。
 この構成の場合、軸受が左右対称形状の場合に、車輪位置対応変換指令部からの指令によって、信号ベクトルの配列の入れ替え処理と、実状荷重推定係数MCの配列変換処理とを実施することにより対応できるため、片方の搭載位置の変換係数だけを用意すれば良く、すべての変換係数を用意する必要がないため、メモリ領域を節約することができる。
 この場合に、前記信号処理手段31は、前記車輪位置対応変換指令部からの指令に応じて、信号ベクトルの配列変換を行うスワップ回路43を有するものとしても良い。
 この発明において、前記荷重演算処理手段32の係数変換処理部33における前記実状荷重推定係数MCを算出するための一連のシーケンス処理は、初期化処理において実行されるものとしても良い。
 この発明において、前記軸受上にその軸受を特定するID情報が書き込まれたIDメモリ38が設けられ、前記荷重演算処理手段32の係数変換処理部33は、初期化処理のときに前記IDメモリ38からID情報を読み出して記憶するID不揮発メモリ40を有するものとしても良い。
 この場合に、前記荷重演算処理手段32の係数変換処理部33は、電源ONのときに、前記IDメモリ38からID情報を読み出し、前記ID不揮発メモリ40が記憶しているID情報との比較を実施して、初期設定で関連付けられた正規の軸受と接続されているかどうかを確認する機能を有するものとしても良い。前記の「電源ONのとき」は、前記荷重演算処理手段32の電源がONになったときであり、例えば、車両の始動スイッチにおけるアクセサリモードがONとなったときである。
 この発明において、前記軸受上に前記標準荷重推定係数MBが書き込まれたMBメモリ39が設けられ、前記荷重演算処理手段32の係数変換処理部33は、前記MBメモリ39から前記標準荷重推定係数MBを読み出し可能としても良い。
 この発明において、前記荷重演算処理手段32の係数変換処理部33には、前記軸受を特定するID情報によって指定される標準荷重推定係数MBのデータファイルが外部から別途供給されるものとしても良い。
 この発明において、軸受に加わる荷重を検出するセンサ(20)を3つ以上設け、前記荷重演算処理手段32は、前記3つ以上のセンサ(20)の出力信号から、車輪用軸受に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、および軸方向荷重Fy を演算するものとしても良い。
 この発明において、軸受に加わる荷重を検出する前記センサ(20)は、前記外方部材と内方部材の間の相対変位を検出するものであっても良い。
 この発明において、軸受に加わる荷重を検出する前記センサ(20)は、前記外方部材および内方部材のうちの固定側部材の歪みを検出するものであっても良い。
 この場合に、前記センサ(20)は、前記外方部材および内方部材のうちの固定側部材の外径面に設けたセンサユニット20であり、このセンサユニット20は、前記固定側部材の外径面に接触して固定される歪み発生部材と、この歪み発生部材の歪みを検出する1つ以上の歪検出素子とを有するものとしても良い。
 この場合に、センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
 このように4つのセンサユニット20を配置することで、車輪用軸受に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、軸方向荷重Fy を推定することができる。また、軸受の荷重状態が変化した場合においても、負荷圏側に配置されたセンサユニット20の出力信号から安定して転動体周期を検出でき、荷重推定出力の精度を向上させることができる。
 また、この場合に、前記センサユニット20は、前記固定側部材の外径面に接触して固定される3つ以上の接触固定部を有する歪み発生部材と、この歪み発生部材に取り付けられてこの歪み発生部材の歪みを検出する2つ以上の歪検出素子を有するものとしても良い。
 この場合に、前記歪検出素子を、前記歪み発生部材の隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間にそれぞれ設け、隣り合う前記接触固定部の間隔、もしくは隣り合う前記歪検出素子の間隔を、転動体の配列ピッチの{n+1/2(n:整数)}倍に設定しても良い。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の一実施形態にかかるセンサ付車輪用軸受装置の軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同軸受の外方部材をアウトボード側から見た正面図である。 同センサ付車輪用軸受装置におけるセンサユニットの一例の拡大断面図である。 図3におけるIV-IV矢視断面図である。 検出系の他の構成例を示すブロック図である。 同じ車輪用軸受を左側車輪へ取付けた場合のセンサ出力信号の配列を示す説明図である。 同じ車輪用軸受を右側車輪へ取付けた場合のセンサ出力信号の配列を示す説明図である。
 この発明の一実施形態を図1ないし図6A,6Bと共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受100に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 このセンサ付車輪用軸受装置における車輪用軸受100は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受100は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。
 外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
 内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
 図2は、この車輪用軸受100の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI-I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。
 固定側部材である外方部材1の外径面には、荷重検出用センサである4つのセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に設けられている。
 各センサユニット20の歪検出素子22は、図1にブロック図で示す検出系ユニット30に接続される。この検出系ユニット30は、前記各センサユニット20の出力信号を処理して信号ベクトルを生成する信号処理手段31と、前記信号ベクトルから車輪に加わる荷重を演算する荷重演算処理手段32とでなる。信号処理手段31および荷重演算処理手段32は、必ずしも検出系ユニット30として一体化しなくても良く、互いに分離して設けて良い。また、これら信号処理手段31や荷重演算処理手段32は車輪用軸受100に搭載しても良く、また車輪用軸受100とは離れて車両に、メインのECU(電気制御ユニット)の近傍等に位置して、あるいはECUの統括制御部の下位制御部等として設置しても良い。
 この実施形態では、車輪に加わる各方向の荷重を検出するセンサとして、図2~図4に一構成例を示した前記センサユニット20が用いられる。各センサユニット20は、後に詳述するように、接触固定部21aで外方部材1に固定された歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪検出素子22(22A,22B)とでなる(図3,図4)。図3,図4の構成例では1つのセンサユニット20に2つの歪検出素子22(22A,22B)が用いられているが、1つのセンサユニット20に1つの歪検出素子22を用いた構成であっても良い。
 荷重検出用のセンサは、上記図2~図4の形態のものに限定されるものではなく、例えば、変位センサ(渦電流センサ、磁気センサ、リラクタンスセンサ、など)を、外方部材1および内方部材2のうちの固定側部材に設置し、検出ターゲットを回転輪に配置して外方部材1と内方部材2間の相対変位量を求め、あらかじめ求めておいた荷重と変位との関係から、印加されている荷重を求めるものとしても良い。すなわち、この実施形態の構成は、軸受の内方部材2と外方部材1間に作用している力を、固定側部材に設けたセンサによって直接的・間接的に検出し、演算によって入力荷重を演算で推定する方式の荷重センサに適用されるものである。
 なお、X,Y,Z方向の3方向の各荷重Fx 、Fy 、Fz 、あるいはそれぞれの方向のモーメント荷重を算出するためには、少なくとも3つ以上のセンサ情報(センサの出力信号)を用いた演算処理構成が必要となる。すなわち、複数のセンサ信号を必要に応じて加工・信号処理して抽出した信号ベクトルを生成し、これを用いて荷重推定演算処理を実行して入力荷重F(={Fx, Fy, Fz, …} )を求める荷重検出系ユニット30を備えた構成となる。
 このような構成の荷重検出系ユニット30においては、線形近似が成立する範囲において、各センサ信号の信号ベクトルをSで表すと、この信号ベクトルSを入力とし、次式
 F=M・S+Mo……(1)
の関係式を満たすように、数値解析や実験によって演算係数行列MとオフセットMoを決定することにより、荷重推定演算処理が可能になる。荷重入力範囲に対応させて適切に線形近似範囲を設定すれば、荷重推定係数によって幅広い入力荷重を推定することができる。
 ここで、入力荷重とセンサ信号の信号ベクトルSとの関係は、例えば、荷重を印加する試験機で各方向の荷重Fx 、Fy 、Fz や、各方向のモーメント荷重Mx 、Mz 等の荷重を加え、その荷重に対するセンサ信号を測定することにより求めることができる。ここでは、式(1)における係数MとオフセットMoを合わせて、試験機で求めた標準的な荷重推定係数(以下、標準荷重推定係数と呼ぶ)をMBと表現する。すると、式(1)は、次式、
 F=MB・S……(2)
という関係式で表現されることになる。
 しかしながら、ここで求められた標準荷重推定係数MBを、実際の車両で走行したときに得られるセンサデータに対してそのまま適用した場合には、実際の入力荷重値とは異なった荷重推定値が算出されてしまい、荷重を正確に求めることができない。その原因は、〔発明が解決しようとする課題〕でも説明したように、試験機と実車とでの、車輪用軸受100の取付け姿勢の違いや、軸受100を取付ける周辺部材の剛性の違いによって、軸受100に発生する歪みや変形状態に差が発生してしまうことにある。試験機に実車への取付け状態を再現し、様々な取付け姿勢における荷重印加試験を実施することは可能であるが、実車のナックル部材やサスペンション部材の影響について詳細に再現するためには、複雑なセッティングと大規模な装置が必要で、試験に手間がかかって現実的なキャリブレーションができないという問題がある。
 そこで、このセンサ付車輪用軸受装置では、図1の荷重演算処理手段32において、試験機で取得した標準荷重推定係数MBに対して、実際の使用条件に応じた変換操作を行い、実際の車両における荷重推定係数(以下、実状荷重推定係数と呼ぶ)MCを算出する係数変換処理部33と、この係数変換処理部33で算出された実状荷重指定係数MCと前記信号処理手段31で生成される信号ベクトルとから車輪に加わる荷重を演算する荷重演算部34とを設けている。
 前記係数変換処理部33は、前記標準荷重推定係数MBから前記実状荷重推定係数MCに変換するための変換係数T(k)が書き込まれた変換係数記憶部35と、軸受100の搭載される車両の種類等の情報や、搭載車輪位置、車両に軸受100を取付けた状態などを指定するパラメータkが書き込まれたパラメータ記憶部36と、変換して得られた実状荷重推定係数MCを記憶するMC記憶部37とを有する。変換係数記憶部35、パラメータ記憶部36、およびMC記憶部は不揮発性メモリからなる。前記パラメータkとしては、このほかブレーキのON・OFF状態を指定するものも含まれる。
 一方、車輪用軸受100上には、その軸受100を特定するID情報が書き込まれたIDメモリ38と、前記標準荷重推定係数MBが書き込まれたMBメモリ39が設けられる。また、荷重演算処理手段32の係数変換処理部33には、これらのID情報および標準荷重推定係数MBを、通信手段により前記IDメモリ38およびMBメモリ39から読み出して記憶するID不揮発メモリ40およびMB不揮発メモリ41が設けられている。
 荷重演算処理手段32の係数変換処理部33では、軸受100が車両に搭載されて検出系ユニット30と接続された状態になると、まず、次のような初期化処理を実行する。初期化処理では、軸受100上のIDメモリ38およびMBメモリ39からID情報および標準荷重推定係数MBを読み出して、ID不揮発メモリ40およびMB不揮発メモリ41にコピーする。その後、パラメータ記憶部36に書き込まれている車両情報、搭載車輪位置などを指定するパラメータkを用いて、標準荷重推定係数MBを実状荷重推定係数MCに変換する処理を行う。この変換では、変換係数記憶部35に予め書き込まれている変換係数T(k)から、設定された使用条件つまりパラメータkに適合する変換係数T(k)を選択し、標準荷重推定係数MBに変更を加える処理を行う。
 例えば、次式、
 MC=MB+T(k)……(3)
のように変換係数を加算する構成として処理することができる。変換係数T(k)の値は、実車条件で求めたセンサ出力信号の実状荷重推定係数MCと、標準状態の試験条件で求めた標準荷重推定係数MBとを用いて、次式、
 T(k)=MC-MB……(4)
などとして求めることができる。
 なお、図1に示す係数変換処理部33では、実状荷重推定係数MCが1種類しかないような表現となっているが、実際には入力荷重の状態、例えば、旋回内側/外側、車輪の回転速度、ブレーキのON・OFF状態などによって数種類の係数を切り替えて演算処理するため、複数の実状荷重推定係数MCが用意されている。標準荷重推定係数MBについても同様に、入力荷重の状態に応じた複数の標準荷重推定係数MBが設定されている。
 初期化処理において、係数変換処理部33では、軸受100のMBメモリ39から読み出した標準荷重推定係数MBから、使用条件に合わせ変換された複数の実状荷重推定係数MCを求めてMC記憶部37に記憶する。このようにして、初期化処理を終えた後は、入力されるセンサ出力信号の信号ベクトルに応じて荷重演算部34で推定荷重が求められ、出力される状態となる。
 上記構成のほか、軸受100上にはID情報を記憶するIDメモリ38だけを搭載しておき、標準荷重推定係数MBのデータ自体は別途データファイルで係数変換処理部33に供給するように構成することも可能である。この場合に、ID情報と対応するデータファイルがネットワーク上などに供給されていれば、IDメモリ38から読み出したID情報に一致する標準荷重推定係数MBのデータを読み込むことができ、軸受100上に標準荷重推定係数MBのための大きなメモリを搭載しておく必要がなくなる。
 ここで、軸受100上のIDメモリ39から読み出してID不揮発メモリ40に記憶したID情報は、軸受100と検出系ユニット30との接続を確認するために用いることができる。すなわち、電源がONとなった時に、一度ID情報を軸受100上のIDメモリ39から読み出し、この値が初期化処理のときに係数変換処理部33のID不揮発メモリ40に記憶されたID情報と一致するか確認し、異なっている場合には、接続間違いがあったか、あるいは軸受100が変更されている、などと判断できる。そして、この判断結果から、エラー情報を出力して確認を促す、あるいは必要に応じて初期化処理を再度実行するなどの処置を実施することができる。なお、前記の「電源ONのとき」は、前記検出系ユニット30または前記荷重演算処理手段32の電源がONになったときであり、例えば、車両の始動スイッチにおけるアクセサリモードがONとなったときである。
 図6A,6Bは、同じ車輪用軸受100を左側車輪へ取付けた場合と右側車輪へ取付けた場合のセンサ出力信号の配列の違いを示したものであり、図6Aは左側車輪に取付けた場合を、図6Bは右側車輪に取付けた場合を示す。この例のように、軸受100の取付け姿勢が異なるたけで他の特性が対称である場合には、座標系を変換するだけで荷重推定係数を求めることができる。左側車輪に取付けた場合を示す図6Aの場合には、車両前方に位置するセンサに対応するセンサ出力信号がS4であり、全センサの出力信号からなる信号ベクトルSでは(S1,S2,S3,S4)と並べられているので、(上、後、下、前)の順にセンサ出力信号が並べられた構成になっている。
 これに対して、右側車輪に取付けた場合を示す図6Bの場合には、車両前方に位置するセンサに対応するセンサ出力信号がS2となるため、全センサの出力信号からなる信号ベクトルSでは(S1,S2,S3,S4)の配列となり、(上、前、下、後)の順に並べられたものとなる。これを並べ替える操作を行って(S1,S4,S3,S2)の配列の信号ベクトルS’とすると、左側車輪に取付け場合の信号ベクトルSと同じ信号構成となり、演算処理にそのまま入力することが可能になる。
 また、左右反転によって荷重の方向が反転する場合もあるため、軸受100の標準荷重推定係数MBのアフィン変換(符号反転処理など)に相当する演算処理を、前記係数変換処理部33において必要に応じて実施すれば良い。したがって、走行データと試験機でのデータとの比較によって左側車輪の変換係数T(k)を算出しておけば、右側車輪に対してはすべての変換係数T(k)を用意する必要がなく、変換係数のためのメモリ容量を削減することができる。
 図5では、このような対策を施した検出系ユニット30の構成例を示している。この構成例では、荷重演算処理手段32における係数変換処理部33に、車輪の左右搭載位置に応じて、前記信号処理手段31から荷重演算処理手段32の荷重演算部34に入力される信号ベクトルの配列変換、および係数変換処理部33から前記荷重演算部34に与えられる実状荷重推定係数MCの配列変換を指令する車輪位置対応変換指令部42が設けられている。また、これに対応して、信号処理手段31には、前記車輪位置対応変換指令部42からの指令に応じて、信号ベクトルの配列変換を行うスワップ回路43が設けられている。その他の構成は、図1の構成例の場合と同様である。
 この構成例の場合にも、先に述べた初期化処理と同様にして、軸受100の標準荷重推定係数MBから、実車の左側車輪用の変換係数T(k)を用いて実車の左側車輪用の実状荷重推定係数MCを算出する。それに引き続いて、前記車輪位置対応変換指令部42でのパラメータ(LtoR Transform)がONに設定されていることにより、右側車輪への変換設定が実施される。これにより、信号処理手段31のスワップ回路43がONとなり、信号ベクトルの配列が右側車輪用の並びに変換されると共に、実状荷重推定係数MCのアフィン変換処理が実施されて、実状荷重推定係数MCの再設定処理が行われる。
 次に、図1のセンサユニット20の一構成例について、その具体的構造を説明する。図2の4箇所に設けられた各センサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する2つの歪検出素子22(22A,22B)とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状である。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される3つの接触固定部21aを有する。3つの接触固定部21aは、歪み発生部材21の長手方向に向けて1列に並べて配置される。2つの歪検出素子22のうち1つの歪検出素子22Aは、図4において、左端の接触固定部21aと中央の接触固定部21aとの間に配置され、中央の接触固定部21aと右端の接触固定部21aとの間に他の1つの歪検出素子22Bが配置される。
 図3のように、歪み発生部材21の両側辺部における前記各歪検出素子22A,22Bの配置部に対応する2箇所の位置にそれぞれ切欠き部21bが形成されている。切欠き部21bの隅部は断面円弧状とされている。歪検出素子22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、例えば、その力が作用しても車輪用軸受100は損傷せず、その力が除去されると車輪用軸受100の正常な機能が復元される範囲で最大の力である。
 前記センサユニット20は、その歪み発生部材21の3つの接触固定部21aが、外方部材1の軸方向の同寸法の位置で、かつ各接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する各部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。
 接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。
 このほか、外方部材1の外径面における前記歪み発生部材21の3つの接触固定部21aが固定される3箇所の各中間部に溝(図示せず)を設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する各部位を外方部材1の外径面から離すようにしても良い。
 歪検出素子22としては、種々のものを使用することができる。例えば、歪検出素子22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪検出素子22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。
 また、図3および図4に示す構成では、固定側部材である外方部材1の外径面の円周方向に並ぶ3つの接触固定部21aのうち、その配列の両端に位置する2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部21aの中間位置にそれぞれ配置される2つの歪検出素子22A,22Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪検出素子22A,22Bの出力信号S0 ,S1 は略180度の位相差を有することになる。
 なお、図3および図4に示す構成では、その配列の両端に位置する接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定し、隣り合う接触固定部21aの中間位置に各1つの歪検出素子22A,22Bをそれぞれ配置することで、2つの歪検出素子22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの略1/2となるようにした。これとは別に、直接、2つの歪検出素子22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定しても良い。
 この場合に、2つの歪検出素子22A,22Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。
 センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪検出素子22A,22Bの出力信号は、センサユニット20の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪検出素子22A,22Bの出力信号は、転動体5の位置の影響を受ける。すなわち、転動体5がセンサユニット20における歪検出素子22A,22Bに最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪検出素子22A,22Bの出力信号は最大値となり、転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPでセンサユニット20の設置部の近傍を順次通過するので、歪検出素子22A,22Bの出力信号は、転動体5の配列ピッチを周期として周期的に変化する正弦波に近い波形となる。また、歪検出素子22A,22Bの出力信号は、温度の影響やナックル16と車体取付用フランジ1a(図1)の面間などの滑りによるヒステリシスの影響を受ける。
 このように構成されたセンサユニット20を荷重検出センサとして用いる場合、例えば信号処理手段31において、前記2つの歪検出素子22A,22Bの出力信号の差分を演算して振幅値となる信号ベクトルを出力するようにしても良い。この場合、上記したように2つの歪検出素子22A,22Bの出力信号は略180度の位相差を有するので、振幅値となる信号ベクトルは2つの歪検出素子22A,22Bの各出力信号に現れる温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。したがって、この信号ベクトルを次段の荷重演算処理手段32の演算での変数として用いることにより、車輪用軸受100やタイヤ接地面に作用する荷重をより正確に演算・推定することができる。
 この発明の実施形態により得られる効果を整理して次に示す。
・車輪用軸受100の個体差を含めた特性を試験機で求めて個別の標準荷重推定係数MBを用意しておけば、軸受100が固定されるナックル部材の材質や形状、および左右輪の差や軸受取付け姿勢の違いなど、使用条件による特性の違いを変換係数T(k)によって補正し、使用条件に応じた実状荷重推定係数MCを算出することができる。
・試験機で取得した標準荷重推定係数MBを用いて、実際の使用条件に応じた実状荷重推定係数MCを算出できるため、実車に車輪用軸受100を搭載する各条件に対し、すべての軸受100で荷重印加試験を実施する必要がない。
・最低限の試験により効率的なキャリブレーションが可能になり、製造コストを下げることができる。
・車輪用軸受100の出荷時に管理するパラメータは標準荷重推定係数MBだけであり、管理および取扱いが容易になる。その結果、管理コストを下げることができる。
・同種の車輪用軸受100を異なる車輪位置や、異なる車種に取付ける場合であっても、軸受個別のパラメータと車両の使用条件に関するパラメータが別で管理されているため、軸受100に記録された個体情報に基づいて関連付けられた変化処理が自動的に実施され、適切な設定を確実に実現することができる。
・図5の構成例では、軸受100が左右対称形状の場合に、入力センサ信号の入れ替え処理と、実状荷重推定係数MCのアフィン変換処理(係数の符号入れ替え処理など)を実施する機能により、片方の搭載位置の変換係数だけを用意すれば良く、すべての変換係数を用意する必要がないため、メモリ領域を節約することができる。
 このように、このセンサ付車輪用軸受装置によると、軸受100に加わる荷重を検出するセンサとして1つ以上のセンサユニット20設け、各センサユニット20の出力信号Sを信号処理手段31で処理して信号ベクトルを生成し、その信号ベクトルから車輪に加わる荷重を荷重演算処理手段32で演算するものとし、前記荷重演算処理手段32は、定められた軸受100の標準的な荷重推定係数である標準荷重推定係数MBから、実際の車両に取付けた状態における荷重推定係数である実状荷重推定係数MCを算出する係数変化処理部33と、この係数変換処理部33で算出された実状荷重推定係数MCと前記信号ベクトルとから前記車輪に加わる荷重を演算する荷重演算部34とを有するものとしたため、軸受100の使用条件に応じた荷重推定係数を用いて、正確な荷重を演算出力することができる。
 車輪のタイヤと路面間に荷重が作用すると、車輪用軸受100の固定側部材である外方部材1にも荷重が印加されて変形が生じる。図3および図4の構成例では、センサユニット20における歪み発生部材21の3つの接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪検出素子22A,22Bで感度良く検出される。
 この実施形態では前記センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受100に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、軸方向荷重Fy を推定することができる。
 なお、この実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット20は内方部材の内周となる周面に設ける。
 また、この実施形態では第3世代型の車輪用軸受100に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受装置は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…外方部材
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
22,22A,22B…歪検出素子
31…信号処理手段
32…荷重演算処理手段
33…係数変換処理部
34…荷重演算部
35…変換係数記憶部
36…パラメータ記憶部
37…MC記憶部
38…IDメモリ
39…MBメモリ
40…ID不揮発メモリ
41…MB不揮発メモリ
42…車輪位置対応変換指令部
43…スワップ回路
100…車輪用軸受

Claims (17)

  1.  複列の転走面が内周に形成された外方部材、前記転走面と対向する転走面が外周に形成された内方部材、および両部材の対向する転走面間に介在した複列の転動体を有し、車体に対して車輪を回転自在に支持する車輪用軸受と、
     この車輪用軸受に取付けられてこの軸受に加わる荷重を検出する複数のセンサと、前記各センサの出力信号を処理して信号ベクトルを生成する信号処理手段と、前記信号ベクトルから前記車輪に加わる荷重を演算する荷重演算処理手段とを備え、
     前記荷重演算処理手段は、定められた軸受の標準的な荷重推定係数である標準荷重推定係数MBから、実際の車両に取付けた状態における荷重推定係数である実状荷重推定係数MCを算出する係数変換処理部と、この係数変換処理部で算出された実状荷重推定係数MCと前記信号ベクトルとから前記車輪に加わる荷重を演算する荷重演算部とを有するセンサ付車輪用軸受装置。
  2.  請求項1において、前記荷重演算処理手段の前記係数変換処理部は、前記標準荷重推定係数MBから前記実状荷重推定係数MCに変換するための変換係数T(k)が書き込まれた変換係数記憶部と、車両に前記軸受を取付けた状態を指定するパラメータkが書き込まれたパラメータ記憶部とを有するセンサ付車輪用軸受装置。
  3.  請求項2において、前記パラメータ記憶部に書き込まれたパラメータkは、車両の種類、前記軸受の搭載位置、およびブレーキのON・OFF状態を指定するもののうち、少なくともいずれか1つを含むセンサ付車輪用軸受装置。
  4.  請求項1において、前記荷重演算処理手段の係数変換処理部は、車輪の左右搭載位置に応じて、前記信号処理手段から荷重演算処理手段の前記荷重演算部に入力される信号ベクトルの配列変換、および係数変換処理部から荷重演算部に与えられる前記実状荷重推定係数MCの配列変換を指令する車輪位置対応変換指令部を有するセンサ付車輪用軸受装置。
  5.  請求項4において、前記信号処理手段は、前記車輪位置対応変換指令部からの指令に応じて、信号ベクトルの配列変換を行うスワップ回路を有するセンサ付車輪用軸受装置。
  6.  請求項1において、前記荷重演算処理手段の係数変換処理部における前記実状荷重推定係数MCを算出するための一連のシーケンス処理は、初期化処理において実行されるセンサ付車輪用軸受装置。
  7.  請求項1において、前記軸受上にその軸受を特定するID情報が書き込まれたIDメモリが設けられ、前記荷重演算処理手段の係数変換処理部は、初期化処理のときに前記IDメモリからID情報を読み出して記憶するID不揮発メモリを有するセンサ付車輪用軸受装置。
  8.  請求項7において、前記荷重演算処理手段の係数変換処理部は、前記荷重演算処理手段の電源ONのときに、前記IDメモリからID情報を読み出し、前記ID不揮発メモリが記憶しているID情報との比較を実施して、初期設定で関連付けられた正規の軸受と接続されているかどうかを確認する機能を有するセンサ付車輪用軸受装置。
  9.  請求項1において、前記軸受上に前記標準荷重推定係数MBが書き込まれたMBメモリが設けられ、前記荷重演算処理手段の係数変換処理部は、前記MBメモリから前記標準荷重推定係数MBを読み出し可能であるセンサ付車輪用軸受装置。
  10.  請求項1において、前記荷重演算処理手段の係数変換処理部には、前記軸受を特定するID情報によって指定される標準荷重推定係数MBのデータファイルが外部から別途供給されるセンサ付車輪用軸受装置。
  11.  請求項1において、軸受に加わる荷重を検出するセンサを3つ以上設け、前記荷重演算処理手段は、前記3つ以上のセンサの出力信号から、車輪用軸受に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、および軸方向荷重Fy を演算するものとしたセンサ付車輪用軸受装置。
  12.  請求項1において、軸受に加わる荷重を検出する前記センサは、前記外方部材と内方部材の間の相対変位を検出するものであるセンサ付車輪用軸受装置。
  13.  請求項1において、軸受に加わる荷重を検出する前記センサは、前記外方部材および内方部材のうちの固定側部材の歪みを検出するものであるセンサ付車輪用軸受装置。
  14.  請求項13において、前記センサは、前記外方部材および内方部材のうちの固定側部材の外径面に設けたセンサユニットであり、このセンサユニットは、前記固定側部材の外径面に接触して固定される歪み発生部材と、この歪み発生部材の歪みを検出する1つ以上の歪検出素子とを有するものとしたセンサ付車輪用軸受装置。
  15.  請求項14において、センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配したセンサ付車輪用軸受装置。
  16.  請求項14において、前記センサユニットは、前記固定側部材の外径面に接触して固定される3つ以上の接触固定部を有する歪み発生部材と、この歪み発生部材に取り付けられてこの歪み発生部材の歪みを検出する2つ以上の歪検出素子を有するセンサ付車輪用軸受装置。
  17.  請求項16において、前記歪検出素子を、前記歪み発生部材の隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間にそれぞれ設け、隣り合う前記接触固定部の間隔、もしくは隣り合う前記歪検出素子の間隔を、転動体の配列ピッチの{n+1/2(n:整数)}倍に設定したセンサ付車輪用軸受装置。
PCT/JP2013/066659 2012-06-27 2013-06-18 センサ付車輪用軸受装置 WO2014002820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13809021.2A EP2869049A4 (en) 2012-06-27 2013-06-18 VEHICLE WHEEL BEARING DEVICE HAVING A SENSOR
US14/411,116 US9616708B2 (en) 2012-06-27 2013-06-18 Vehicle-wheel bearing device with sensor
KR1020147035946A KR20150021064A (ko) 2012-06-27 2013-06-18 센서가 장착된 베어링 장치
CN201380033252.8A CN104428645B (zh) 2012-06-27 2013-06-18 带有传感器的车轮用轴承装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012144458A JP5911761B2 (ja) 2012-06-27 2012-06-27 センサ付車輪用軸受装置
JP2012-144458 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014002820A1 true WO2014002820A1 (ja) 2014-01-03

Family

ID=49782980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066659 WO2014002820A1 (ja) 2012-06-27 2013-06-18 センサ付車輪用軸受装置

Country Status (6)

Country Link
US (1) US9616708B2 (ja)
EP (1) EP2869049A4 (ja)
JP (1) JP5911761B2 (ja)
KR (1) KR20150021064A (ja)
CN (1) CN104428645B (ja)
WO (1) WO2014002820A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031126A (ja) * 2017-08-04 2019-02-28 株式会社ジェイテクト 操舵制御装置
KR20210121657A (ko) * 2020-03-31 2021-10-08 현대자동차주식회사 차량용 노면입력 하중 측정 시스템 및 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530565A (ja) 2000-04-10 2003-10-14 ザ テイムケン コンパニー 荷重を監視するためのセンサを備えたベアリングアセンブリ
JP2005140606A (ja) * 2003-11-06 2005-06-02 Nsk Ltd 転がり軸受ユニットの荷重測定装置及びその製造装置
JP2007309711A (ja) * 2006-05-17 2007-11-29 Nsk Ltd 転がり軸受ユニットの荷重測定装置とその製造方法及び製造装置
JP2008542735A (ja) 2005-05-30 2008-11-27 インターフリート テクノロジー アーベー 車輪に働く複数の荷重成分を決定する方法及びシステム
JP2010002313A (ja) * 2008-06-20 2010-01-07 Jtekt Corp 回転トルク検出装置
JP2010181154A (ja) * 2009-02-03 2010-08-19 Ntn Corp センサ付車輪用軸受
JP2010242902A (ja) 2009-04-08 2010-10-28 Ntn Corp センサ付車輪用軸受
JP2012103221A (ja) * 2010-11-15 2012-05-31 Ntn Corp センサ付車輪用軸受

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39838E1 (en) 2000-04-10 2007-09-18 The Timken Company Bearing assembly with sensors for monitoring loads
US7501811B2 (en) * 2007-03-26 2009-03-10 Nsk Ltd. Displacement measuring apparatus and load measuring apparatus of rotating member
WO2010044228A1 (ja) 2008-10-15 2010-04-22 Ntn株式会社 センサ付車輪用軸受
EP2413121B1 (en) 2009-03-26 2020-08-26 NTN Corporation Sensor-equipped bearing for wheel
US10066665B2 (en) 2010-11-15 2018-09-04 Ntn Corporation Wheel bearing with sensor
US9011013B2 (en) 2011-05-09 2015-04-21 Ntn Corporation Sensor-equipped wheel bearing
WO2013047346A1 (ja) 2011-09-29 2013-04-04 Ntn株式会社 センサ付車輪用軸受装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530565A (ja) 2000-04-10 2003-10-14 ザ テイムケン コンパニー 荷重を監視するためのセンサを備えたベアリングアセンブリ
JP2005140606A (ja) * 2003-11-06 2005-06-02 Nsk Ltd 転がり軸受ユニットの荷重測定装置及びその製造装置
JP2008542735A (ja) 2005-05-30 2008-11-27 インターフリート テクノロジー アーベー 車輪に働く複数の荷重成分を決定する方法及びシステム
JP2007309711A (ja) * 2006-05-17 2007-11-29 Nsk Ltd 転がり軸受ユニットの荷重測定装置とその製造方法及び製造装置
JP2010002313A (ja) * 2008-06-20 2010-01-07 Jtekt Corp 回転トルク検出装置
JP2010181154A (ja) * 2009-02-03 2010-08-19 Ntn Corp センサ付車輪用軸受
JP2010242902A (ja) 2009-04-08 2010-10-28 Ntn Corp センサ付車輪用軸受
JP2012103221A (ja) * 2010-11-15 2012-05-31 Ntn Corp センサ付車輪用軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869049A4 *

Also Published As

Publication number Publication date
JP5911761B2 (ja) 2016-04-27
EP2869049A1 (en) 2015-05-06
US9616708B2 (en) 2017-04-11
KR20150021064A (ko) 2015-02-27
JP2014009953A (ja) 2014-01-20
US20150375563A1 (en) 2015-12-31
EP2869049A4 (en) 2016-02-24
CN104428645A (zh) 2015-03-18
CN104428645B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5274343B2 (ja) センサ付車輪用軸受
JP5143039B2 (ja) センサ付車輪用軸受
JP5268756B2 (ja) センサ付車輪用軸受
JP5911761B2 (ja) センサ付車輪用軸受装置
JP5731314B2 (ja) センサ付車輪用軸受
WO2009101793A1 (ja) センサ付車輪用軸受
JP5638310B2 (ja) センサ付車輪用軸受
WO2014087871A1 (ja) センサ付車輪用軸受装置
JP5268755B2 (ja) センサ付車輪用軸受
JP6195768B2 (ja) センサ付車輪用軸受のキャリブレーション方法
JP2010230406A (ja) センサ付車輪用軸受
JP2013076573A (ja) センサ付車輪用軸受装置
JP5882699B2 (ja) センサ付車輪用軸受装置
JP2010127376A (ja) センサ付車輪用軸受
JP5996297B2 (ja) センサ付車輪用軸受装置
WO2015005282A1 (ja) センサ付車輪用軸受装置
JP2010101720A (ja) センサ付車輪用軸受
JP5489929B2 (ja) センサ付車輪用軸受
JP2010243190A (ja) センサ付車輪用軸受
JP2010121745A (ja) センサ付車輪用軸受
JP5300429B2 (ja) センサ付車輪用軸受
JP5864331B2 (ja) センサ付車輪用軸受装置
JP2011085440A (ja) センサ付車輪用軸受
JP2009185888A (ja) センサ付車輪用軸受
JP2010138959A (ja) センサ付車輪用軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035946

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411116

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013809021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013809021

Country of ref document: EP