WO2014002288A1 - 軟窒化処理用鋼板およびその製造方法 - Google Patents
軟窒化処理用鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2014002288A1 WO2014002288A1 PCT/JP2012/067025 JP2012067025W WO2014002288A1 WO 2014002288 A1 WO2014002288 A1 WO 2014002288A1 JP 2012067025 W JP2012067025 W JP 2012067025W WO 2014002288 A1 WO2014002288 A1 WO 2014002288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- steel
- soft nitriding
- treatment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a steel sheet for nitrocarburizing treatment that is suitable for machine structural parts that require fatigue strength and wear resistance, such as transmission parts for automobiles, and is particularly excellent in formability before soft nitriding treatment and is soft.
- the present invention relates to a steel sheet for soft nitriding that has excellent fatigue resistance after nitriding and a method for producing the same.
- Fatigue strength and wear resistance are required for mechanical structural parts that are used in a state where stress is continuously applied for a long time, such as transmission parts for automobiles. Therefore, these mechanical structural parts are usually manufactured by processing a steel material into a desired part shape and then subjecting it to a surface hardening heat treatment. When the surface hardening heat treatment is performed, the steel surface is hardened and compressive residual stress is introduced into the steel surface layer portion, so that fatigue strength and wear resistance are improved.
- Typical examples of the surface hardening heat treatment include carburizing treatment and nitriding treatment.
- Carburization the steel is heated to a temperature above A 3 transformation point, a process of diffusion and osmosis (carburized) carbon in the surface layer of the steel, usually, be directly quenching the steel after carburizing in a high temperature state Thus, the surface hardening of the steel is achieved.
- This carburization process for diffusing and spreading the carbon steel surface layer portion in A 3 high temperature range of lower than the transformation point, a result of carbon is diffused and penetrated to a relatively deep position from the steel surface, resulting a large surface hardened layer depth It is done.
- nitriding treatment the steel is heated to a temperature below the A 1 transformation point, a process of diffusion and osmosis (nitride) of nitrogen into the steel surface layer portion, the surface hardening of steel without quenching as carburizing It is intended.
- the nitriding treatment since the nitriding treatment has a relatively low processing temperature and does not involve a phase transformation of steel, if the nitriding treatment is performed to manufacture a part, the shape accuracy of the part can be kept good.
- gas nitriding using ammonia gas the time required for nitriding is as long as about 25 to 150 hours, so that it is not suitable for automobile parts and the like on the premise of mass production.
- the soft nitriding treatment is a nitriding treatment in which a nitriding reaction proceeds rapidly by using a carburizing atmosphere, and the object to be treated is held in a treatment atmosphere at 550 to 600 ° C. for several hours, and the formation of iron carbide is facilitated. Nitrogen is diffused and introduced from the steel surface into the steel. According to this soft nitriding treatment, the steel surface hardness obtained is lower than that of the conventional nitriding treatment (gas nitriding), but the nitriding treatment time can be greatly shortened.
- Soft nitriding is broadly classified into a method for treating in a salt bath and a method for treating in a gas.
- a salt bath salt bath soft nitriding treatment
- a cyan bath is used, measures to prevent environmental pollution are essential.
- gas soft nitriding treatment since a mixed gas containing ammonia as a main component is used, there are few emissions that cause environmental pollution.
- the spread rate of the gas soft nitriding treatment that is processed in a gas is increasing.
- Patent Document 1 and Patent Document 2 include C: 0.01 to less than 0.08% by weight, Si: 0.005 to 1.00%, Mn: 0.010 to 3.00%, P : 0.001 to 0.150%, N: 0.0002 to 0.0100%, Cr: more than 0.15 to 5.00%, Al: more than 0.060 to 2.00%, Ti: 0.010% or more and less than 4C [%], V: 0.010 to 1.00% of a steel containing a composition containing one or two, or after winding at 500 ° C.
- nitriding steel plate with excellent formability and a nitriding steel plate with excellent formability having the above-described composition are disclosed.
- the C content that adversely affects the formability is suppressed to less than 0.08%, and Cr, Al, and the like are contained as nitriding promoting elements, so that nitriding is excellent in formability and nitridability. It is supposed to be a steel plate for use.
- Patent Document 3 by mass, C: 0.03% or more and less than 0.10%, Si: 0.005 to 0.10%, Mn: 0.1 to 1.0%, Cr: 0 20 to 2.00%, and as impurities, S: 0.01% or less, P: 0.020% or less, sol.
- Nitriding steels have been proposed. And according to such a technique, it is said that an inexpensive steel plate is obtained because expensive elements such as Ti and V are not added, and a steel plate excellent in press workability is obtained by refining the crystal grain size of steel. ing.
- Patent Document 4 by mass%, C: more than 0.01%, 0.09% or less, Si: 0.005 to 0.5%, Mn: 0.01 to 3.0%, Al: 0.005 to 2.0%, Cr: 0.50 to 4.0%, P: 0.10% or less, S: 0.01% or less and N: 0.010% or less, or V: 0.0.
- a thin steel sheet for nitriding treatment having an interface area Sv of 80 mm ⁇ 1 or more and 1300 mm ⁇ 1 or less has been proposed.
- the grain interface area per unit volume is controlled within a predetermined range.
- Patent Document 5 discloses that C: 0.01 to 0.10 mass%, Si: 0.1 mass% or less, Mn: 0.1 to 1.0 mass%, P: 0.05 mass% or less, S: 0.0. 01 mass% or less, Al: 0.01 to 0.06 mass%, Cr: 0.05 to 0.50 mass%, V: 0.01 to 0.30 mass%, N: 0.01 mass% or less, with the balance being Fe Further, a steel sheet for soft nitriding made of inevitable impurities has been proposed.
- Patent Document 6 C: 0.04 to 0.08 mass%, Si: 0.1 mass% or less, Mn: 0.05 to 0.6 mass%, P: 0.03 mass% or less, S: 0.0. 01 mass% or less, Al: 0.1 mass% or less, Cr: 0.6 to 1.2 mass%, V: 0.002 to less than 0.01 mass% and N: 0.01 mass% or less, with the balance being Fe and
- a steel sheet for soft nitriding made of inevitable impurities has been proposed. According to such a technique, by containing a very small amount of V (less than 0.002 to 0.01 mass%), it is possible to form a nitrided layer having high hardness and less porous layer formation by soft nitriding. Therefore, it is said that a steel sheet for nitrocarburizing treatment that is excellent in workability and wear resistance is obtained.
- Patent Document 1 and Patent Document 2 contain a large amount of Al as a nitriding promoting element, there is a concern about the occurrence of internal defects and surface defects due to Al inclusions.
- a large amount of Al-based slag is produced during refining, there is also a problem that the melting cost increases.
- Patent Document 3 does not contain an expensive element, and thus an inexpensive steel sheet for soft nitriding treatment can be obtained.
- the tensile strength is about 420 MPa at most, so that it is in a high stress load state. Application to the parts used is limited.
- a high-quality nitride layer is formed by containing a very small amount of V (less than 0.002 to 0.01 mass%) together with Cr (0.6 to 1.2 mass%).
- V very small amount
- Cr 0.6 to 1.2 mass%.
- the steel sheet for nitrocarburizing treatment with excellent wear resistance can be obtained, its strength is at most about 400 MPa in tensile strength, so that it is used in a high stress load state as in the technique proposed in Patent Document 3.
- Application to the parts to be made is limited.
- the steel plate when the steel plate is subjected to soft nitriding treatment, the steel plate is usually heated to a processing temperature of about 550 to 600 ° C. and maintained at the processing temperature for about 1 to 5 hours. While the hardness increases remarkably, the strength inside the plate thickness (non-nitrided portion) of the steel sheet may decrease. Therefore, even if it has the desired strength (tensile strength) before the soft nitriding treatment, the strength inside the plate thickness (non-nitriding portion) of the steel sheet is greatly reduced by the soft nitriding treatment, It is assumed that desired strength and fatigue resistance cannot be imparted to the final product.
- one of the important properties of a steel sheet for nitrocarburizing treatment is that it has a desired strength within the thickness (non-nitriding portion) of the steel sheet even after nitronitriding treatment.
- no consideration has been given to a change in strength inside the plate thickness seen before and after soft nitriding.
- the present invention advantageously solves the above-described problems of the prior art, has a desired strength (tensile strength: 440 MPa or more), and has excellent fatigue resistance after nitrocarburizing treatment. And it aims at providing the manufacturing method.
- the present inventors have various factors affecting the strength and formability of a steel sheet for nitrocarburizing treatment, and the strength change inside the plate thickness (non-nitrided portion) of the steel sheet before and after the nitronitriding treatment.
- the following findings were obtained. 1) By making the steel sheet structure a composite structure containing ferrite and pearlite, a decrease in strength after nitrocarburizing treatment is suppressed, and a steel sheet having excellent strength stability is obtained.
- the steel plate composition a desired amount of V is contained, and a majority of the V content is made into solute V, whereby not only the surface layer portion of the steel plate but also the inside of the steel plate thickness (non- The strength of the nitrided part is also increased, and the fatigue resistance is improved. 3) After the soft nitriding treatment, the hardness inside the plate thickness (non-nitrided portion) of the steel sheet is increased by more than 5% of the hardness before the soft nitriding treatment, so that the fatigue resistance is stably improved.
- the present invention has been completed based on the above findings, and the gist thereof is as follows.
- heating the steel slab subjecting it to hot rolling consisting of rough rolling and finish rolling, cooling after completion of finish rolling, winding, and hot-rolled steel sheet
- the steel slab is in mass%, C: 0.05% or more and 0.10% or less, Si: 0.5% or less, Mn: 0.7% to 1.5%, P: 0.05% or less, S: 0.01% or less, Al: 0.01% or more and 0.06% or less, Cr: 0.5% to 1.5%, V: 0.03% to 0.30%, N: 0.005% or less, with the balance being composed of Fe and inevitable impurities, heating temperature of the hot rolling is 1100 ° C. or higher and 1300 ° C.
- finishing temperature of the finish rolling is Ar 3 transformation point Soft nitriding, characterized in that the above (Ar 3 transformation point + 100 ° C.) or less, the average cooling rate of the cooling is 30 ° C./s or more, and the winding temperature of the winding is 500 ° C. or more and 600 ° C. or less. Manufacturing method of steel plate for processing.
- Nb 0.005% or more and 0.025% or less are further contained in the mass%, The manufacturing method of the steel plate for nitrocarburizing treatment characterized by the above-mentioned.
- a steel sheet for nitrocarburizing treatment having a desired strength (tensile strength: 440 MPa or more) and excellent in formability before nitronitriding treatment and fatigue resistance after nitronitriding treatment is obtained.
- Such a steel plate can be used for parts used in high stress loads such as transmission parts of automobiles, and the manufacturing cost can be greatly reduced. Play.
- C 0.05% or more and 0.10% or less
- C is an element that contributes to increasing the strength of steel through solid solution strengthening and formation of the second phase.
- the C content is less than 0.05%, it is not possible to ensure the steel sheet strength required as a material for parts used in a high stress load state, such as a transmission part of an automobile.
- the C content is 0.05% or more and 0.10% or less. Preferably they are 0.05% or more and 0.08% or less.
- Si 0.5% or less
- Si is a solid solution strengthening element, is an element effective for increasing the strength of steel, and also acts as a deoxidizer. In order to acquire such an effect, it is preferable to make it contain 0.03% or more, but when Si content exceeds 0.5%, a hard-to-peel scale is generated and the surface properties of the steel sheet are remarkably deteriorated. To do. Therefore, the Si content is 0.5% or less. Preferably, it is 0.1% or less.
- Mn 0.7% or more and 1.5% or less
- Mn is a solid solution strengthening element and is an element effective for increasing the strength of steel.
- S which exists as an impurity in steel is fixed as a precipitate, and also acts as an element that reduces the adverse effects caused by S on steel. If the Mn content is less than 0.7%, the desired steel sheet strength cannot be ensured. On the other hand, when the Mn content exceeds 1.5%, the steel sheet strength is excessively increased and the formability is lowered. Therefore, the Mn content is 0.7% or more and 1.5% or less. Preferably they are 1.0% or more and 1.5% or less. More preferably, it is 1.2% or more and 1.5% or less.
- P 0.05% or less
- P is an element that lowers the formability and toughness of the steel sheet.
- the P content is 0.05% or less.
- S 0.01% or less
- S is an element that decreases the formability and toughness of the steel sheet.
- the S content is 0.01% or less.
- Al 0.01% or more and 0.06% or less
- Al is an element that acts as a deoxidizing agent, and the Al content is set to 0.01% or more in order to reliably obtain the effect.
- the Al content is 0.01% or more and 0.06% or less.
- they are 0.02% or more and 0.05% or less.
- Cr 0.5% or more and 1.5% or less
- Cr is an element that has the effect of forming nitrides in steel by soft nitriding and increasing the hardness of the steel sheet surface layer, and is an important element in the present invention. . In order to make such an effect remarkable, it is necessary to make Cr content 0.5% or more. On the other hand, when the Cr content exceeds 1.5%, embrittlement of the surface hardened layer (nitrided layer) obtained by soft nitriding becomes significant. Therefore, the Cr content is 0.5% or more and 1.5% or less. Preferably they are 0.5% or more and 1.0% or less.
- V 0.03% or more and 0.30% or less
- V has the effect of forming nitrides in the steel by soft nitriding to increase the hardness of the steel sheet surface layer portion, and the thickness of the steel sheet through soft nitriding. It is an element having an effect of increasing the strength of the inside (non-nitrided portion), and is the most important element in the present invention.
- V precipitated in the steel before soft nitriding also has the effect of increasing the strength of the steel for soft nitriding by particle dispersion strengthening (precipitation strengthening). When the V content is less than 0.03%, these effects cannot be sufficiently exhibited.
- the V content is 0.03% or more and 0.30% or less. Preferably they are 0.05% or more and 0.20% or less.
- N 0.005% or less
- N is a harmful element that lowers the formability of the steel sheet.
- N is also an element that combines with a nitriding promoting element such as Cr before the soft nitriding treatment and causes a reduction in the effective nitriding promoting element amount. Therefore, in the present invention, it is preferable to reduce the N content as much as possible, and set it to 0.005% or less. Preferably it is 0.003% or less.
- Ratio of solid solution V amount to V content (solid solution V amount / V content): more than 0.50
- the solid solution V in the steel sheet is obtained by subjecting the surface layer portion and the inside of the plate thickness (non-nitrided portion) through soft nitriding treatment. ), And plays an important role in ensuring fatigue resistance after soft nitriding. Therefore, in the present invention, the ratio between the solute V content and the V content in the steel sheet for soft nitriding treatment, that is, the steel sheet before soft nitriding treatment is set to more than 0.50.
- the strength inside the thickness of the steel sheet may decrease due to the thermal history of soft nitriding treatment. It is assumed that the characteristics cannot be obtained. For this reason, it is important that the steel sheet for soft nitriding has characteristics such that the thickness inside the non-nitrided portion of the steel sheet after the soft nitriding treatment has a desired strength.
- the strength reduction in the steel sheet thickness (non-nitriding part) due to the soft nitriding treatment is taken into account.
- a means for setting the strength of the steel sheet for nitriding treatment higher is also conceivable.
- the steel plate strength is excessively increased, the formability of the steel plate is lowered, which is disadvantageous in forming a desired part shape before the soft nitriding treatment.
- the strength inside the plate thickness (non-nitrided part) can be increased by applying soft nitriding treatment to the steel sheet for soft nitriding treatment, the formability before soft nitriding treatment is lowered. Therefore, the fatigue resistance after the soft nitriding treatment can be improved. Therefore, as a steel sheet for nitrocarburizing treatment that requires fatigue resistance after nitrocarburizing treatment as well as formability before nitrocarburizing treatment, the strength of the steel sheet thickness (non-nitrided part) increases through nitrocarburizing treatment. It is ideal to have
- the V content in the steel sheet is set to 0.03% or more and 0.30% or less, and the majority of the V content is set as the solute V, that is, the solute V It is essential that the ratio between the amount and the V content (solid V content / V content) exceeds 0.50.
- the ratio of the solute V amount to the V content solid solution V amount / V content
- the effect of increasing the strength inside the plate thickness (non-nitrided portion) of the steel sheet accompanying soft nitriding treatment It cannot be fully expressed.
- the upper limit of the ratio is preferably 0.80.
- Nb 0.005% or more and 0.025% or less
- Nb precipitates as carbonitride in steel and is an effective element for increasing the strength of the steel sheet by particle dispersion strengthening (precipitation strengthening). Can be contained.
- the Nb content is less than 0.005%, such an effect cannot be sufficiently exhibited.
- the Nb content exceeds 0.025%, the steel sheet strength is excessively increased and the formability is lowered. Therefore, the Nb content is 0.005% or more and 0.025% or less. Preferably they are 0.010% or more and 0.020% or less.
- components other than the above are Fe and inevitable impurities.
- unavoidable impurities for example, by mass, Cu: 0.05% or less, Ni: 0.05% or less, Mo: 0.05% or less, Co: 0.05% or less, Ti: 0.005%
- the steel sheet of the present invention has a composite structure containing ferrite and pearlite.
- the steel sheet has a ferrite single-phase structure
- the steel sheet strength is insufficient and can be used as a material for machine structural parts.
- the range is narrowed and the versatility becomes poor.
- the second phase is generated in the structure mainly composed of ferrite to ensure the strength of the steel sheet
- the hard low temperature transformation phase such as martensite and bainite
- the low temperature transformation phase is softened by the history, and the strength inside the plate thickness (non-nitrided portion) of the steel sheet is greatly reduced.
- the structure of the steel sheet has ferrite as the main phase and the second phase as pearlite in order to suppress the strength reduction of the steel sheet thickness (non-nitriding part) due to the thermal history of the soft nitriding treatment.
- a complex organization is assumed.
- the ferrite fraction in the steel sheet structure is 80% to 95% and the pearlite fraction is 5% to 20%.
- the steel sheet of the present invention is ideally a composite structure composed of ferrite and pearlite, but even if other phases (structures) are inevitably generated, the fractions are in total. 1% or less is acceptable.
- a steel slab having the above composition is heated, subjected to hot rolling consisting of rough rolling and finish rolling, cooled after completion of finish rolling, and wound into a hot rolled steel sheet.
- the heating temperature is set to 1100 ° C. or more and 1300 ° C. or less
- the finishing temperature is set to Ar 3 transformation point or more (Ar 3 transformation point + 100 ° C.) or less
- the average cooling rate of cooling is set to 30 ° C./s or more
- the coiling temperature is set. It is preferable to set it to 500 degreeC or more and 600 degrees C or less.
- the method for melting steel is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed.
- a known melting method such as a converter or an electric furnace
- various pretreatments, secondary refining, surface treatment of steel pieces, and the like may be performed.
- Steel slab heating temperature 1100 ° C or higher and 1300 ° C or lower
- V is sufficiently re-solidified in the steel slab before rough rolling. It needs to be dissolved.
- the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently decompose V carbonitride and re-dissolve V, and the above-described desired effect obtained by containing V is exhibited. There are times when you can't. In addition, it is difficult to secure a necessary finishing temperature.
- the heating temperature of the steel slab before rough rolling is 1100 ° C. or higher and 1300 ° C. or lower. Preferably they are 1150 degreeC or more and 1250 degrees C or less.
- the steel slab after casting When heating the steel slab before rough rolling, the steel slab after casting may be heated after cooling to room temperature, or the steel slab during cooling after casting may be additionally heated or kept warm. In addition, when the steel slab after casting maintains a sufficient temperature and V is sufficiently dissolved in the steel, direct rolling may be performed without heating the steel slab.
- the rough rolling conditions are not particularly limited.
- Finishing temperature Ar 3 transformation point or higher (Ar 3 transformation point + 100 ° C.) or lower
- Ar 3 transformation point Ar 3 transformation point or higher (Ar 3 transformation point + 100 ° C.) or lower
- the finishing temperature in the finish rolling is lower than the Ar 3 transformation point, a ferrite structure stretched in the rolling direction and an unrecrystallized ferrite structure are formed. As a result, the formability of the steel sheet is reduced. In addition, the in-plane anisotropy of the mechanical properties of the steel sheet becomes strong, and uniform forming becomes difficult.
- the finishing temperature exceeds (Ar 3 transformation point + 100 ° C.), tendency to surface properties of the steel sheet is deteriorated seen. Accordingly, the finishing temperature is set to less than the Ar 3 transformation point (Ar 3 transformation point + 100 ° C.).
- the finishing temperature refers to the steel plate temperature at the final pass exit side of finish rolling.
- a steel plate being rolled may be additionally heated using a heating device such as a sheet bar heater or an edge heater.
- a heating device such as a sheet bar heater or an edge heater.
- the Ar 3 transformation point of steel can be obtained by measuring the heat shrinkage in the cooling process from the austenite temperature range and creating a heat shrinkage curve, or by calculating from the alloy element content. Good.
- Average cooling rate 30 ° C./s or more Optimization of the average cooling rate is important for securing solid solution V in the steel sheet.
- cooling is performed immediately (within 1 s) immediately after finishing rolling.
- the average cooling rate from the finishing temperature to the coiling temperature is set to 30 ° C./s or higher.
- the average cooling rate is set to 30 ° C./s or more.
- it is 40 degrees C / s or more.
- the upper limit of the average cooling rate is not particularly specified, but is preferably 100 ° C./s or less in order to avoid the shape failure of the steel sheet due to strong water cooling.
- forced cooling by water injection or the like is not particularly necessary, and it may be allowed to cool in the atmosphere until winding.
- Winding temperature 500 ° C. or more and 600 ° C. or less Optimization of the winding temperature is important for securing the solid solution V in the steel sheet and making the steel sheet a desired structure.
- the coiling temperature is less than 500 ° C., a low-temperature transformation phase is generated, the steel sheet becomes hard, the formability decreases, and the strength inside the steel sheet thickness (non-nitrided part) decreases due to the thermal history of nitrocarburizing treatment. Is inevitable.
- the coiling temperature exceeds 600 ° C., a large amount of V carbonitride precipitates after coiling, and a desired amount of solute V may not remain in the steel sheet. Therefore, the coiling temperature is set to 500 ° C. or more and 600 ° C. or less. Preferably they are 520 degreeC or more and 580 degrees C or less.
- the hot-rolled steel sheet obtained as described above is used as a steel sheet for soft nitriding treatment after removing the oxide scale by pickling, shot peening or the like. Moreover, even if the temper rolling for the purpose of shape correction or surface roughness adjustment is performed, the effect of the present invention is not impaired.
- the steel sheet for soft nitriding of the present invention can be applied to both gas soft nitriding and salt bath soft nitriding.
- Solid solution V amount is the precipitation in steel obtained by taking a test piece from the 1/4 width position of the steel plate after temper rolling and subjecting the test piece to constant current electrolysis in an electrolytic solution. The amount of V in the product was determined by subtracting from the V content.
- the Vickers hardness (HV0.1) in the depth 0.1mm position from the plate surface was measured.
- regulation of JISG0562 (1993) was measured.
- Vickers hardness (HV0.1): 500 or more and practical nitrided layer depth: 0.40 mm or more were evaluated as having good surface hardening characteristics.
- the Vickers hardness (HVc ′) at the plate thickness 1/2 position (non-nitrided portion) is represented by the same method as in (iv) above, representing the hardness inside the plate thickness (non-nitrided portion) of the steel plate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
1)鋼板組織を、フェライトおよびパーライトを含む複合組織とすることにより、軟窒化処理後の強度低下が抑制され、強度安定性に優れた鋼板が得られること。
2)鋼板組成に関し、所望量のVを含有させ、該V含有量のうちの過半を固溶Vとすることにより、軟窒化処理を通じて、鋼板の表層部のみならず鋼板の板厚内部(非窒化部)の強度も増加し、耐疲労特性が向上すること。
3)軟窒化処理後に、鋼板の板厚内部(非窒化部)の硬さが、軟窒化処理前の硬さの5%超増加することにより、耐疲労特性が安定して向上すること。
(1)質量%で、
C :0.05%以上0.10%以下、 Si:0.5%以下、
Mn:0.7%以上1.5%以下、 P :0.05%以下、
S :0.01%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 V :0.03%以上0.30%以下、
N :0.005%以下
を含有し、且つ、固溶V量と前記V含有量との比(固溶V量/V含有量)が0.50超であり、残部がFeおよび不可避的不純物からなる組成と、フェライトおよびパーライトを含む複合組織とを有することを特徴とする、軟窒化処理用鋼板。
前記鋼片を、質量%で、
C :0.05%以上0.10%以下、 Si:0.5%以下、
Mn:0.7%以上1.5%以下、 P :0.05%以下、
S :0.01%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 V :0.03%以上0.30%以下、
N :0.005%以下
を含有し、残部がFeおよび不可避的不純物からなる組成とし、前記熱間圧延の加熱温度を1100℃以上1300℃以下とし、前記仕上げ圧延の仕上げ温度をAr3変態点以上(Ar3変態点+100℃)以下とし、前記冷却の平均冷却速度を30℃/s以上とし、前記巻取りの巻取り温度を500℃以上600℃以下とすることを特徴とする、軟窒化処理用鋼板の製造方法。
まず、本発明鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C :0.05%以上0.10%以下
Cは、固溶強化および第二相の形成を通じて、鋼の高強度化に寄与する元素である。C含有量が0.05%未満である場合、自動車の変速機部品等、高応力負荷状態で使用される部品の素材として要求される鋼板強度を確保することができない。一方、C含有量が0.10%を超えると、鋼板強度が過度に高まり、成形性が低下する。したがって、C含有量は0.05%以上0.10%以下とする。好ましくは0.05%以上0.08%以下である。
Siは、固溶強化元素であり、鋼の高強度化に有効な元素であるとともに、脱酸剤としても作用する。このような効果を得るためには、0.03%以上含有させることが好ましいが、Si含有量が0.5%を超えると、難剥離性スケールが生成して鋼板の表面性状が顕著に悪化する。したがって、Si含有量は0.5%以下とする。好ましくは、0.1%以下である。
Mnは、固溶強化元素であり、鋼の高強度化に有効な元素である。また、鋼中に不純物として存在するSを析出物として固定し、鋼に対するS起因の悪影響を低減する元素としても作用する。Mn含有量が0.7%未満である場合、所望の鋼板強度を確保することができない。一方、Mn含有量が1.5%を超えると、鋼板強度が過度に高まり、成形性が低下する。したがって、Mn含有量は0.7%以上1.5%以下とする。好ましくは1.0%以上1.5%以下である。更に好ましくは1.2%以上1.5%以下である。
Pは、鋼板の成形性や靭性を低下させる元素であり、本発明ではPを極力低減することが好ましい。したがって、P含有量は0.05%以下とする。好ましくは0.03%以下である。
Sは、Pと同様、鋼板の成形性や靭性を低下させる元素であり、本発明ではSを極力低減することが好ましい。したがって、S含有量は0.01%以下とする。好ましくは0.005%以下である。
Alは、脱酸剤として作用する元素であり、その効果を確実に得るためにAl含有量は0.01%以上とする。一方、Al含有量が0.06%を超えると、脱酸剤としての効果が飽和するうえ、Al系介在物が増加して鋼板の内部欠陥および表面欠陥を招来する。したがって、Al含有量は0.01%以上0.06%以下とする。好ましくは0.02%以上0.05%以下である。
Crは、軟窒化処理により鋼中に窒化物を形成し、鋼板表層部の硬度を高める効果を有する元素であり、本発明における重要な元素である。このような効果を顕著なものとするためには、Cr含有量を0.5%以上とする必要がある。一方、Cr含有量が1.5%を超えると、軟窒化処理により得られる表面硬化層(窒化層)の脆化が著しくなる。したがって、Cr含有量は0.5%以上1.5%以下とする。好ましくは0.5%以上1.0%以下である。
Vは、軟窒化処理により鋼中に窒化物を形成し、鋼板表層部の硬度を高める効果を有し、且つ、軟窒化処理を通じて鋼板の板厚内部(非窒化部)の強度を高める効果を有する元素であり、本発明における最も重要な元素である。また、軟窒化処理前の鋼中に析出しているVは、粒子分散強化(析出強化)によって軟窒化処理用鋼板の強度を高める効果も有する。V含有量が0.03%未満である場合、これらの効果を十分に発現することができない。一方、V含有量が0.30%を超えると、軟窒化処理により得られる表面硬化層(窒化層)の脆化が著しくなるうえ、鋼板の強度向上効果が飽和するため経済的にも不利となる。したがって、V含有量は0.03%以上0.30%以下とする。好ましくは0.05%以上0.20%以下である。
Nは、鋼板の成形性を低下させる有害な元素である。また、Nは、軟窒化処理前にCr等の窒化促進元素と化合し、有効な窒化促進元素量の低下を招く元素でもある。したがって、本発明ではN含有量を極力低減することが好ましく、0.005%以下とする。好ましくは0.003%以下である。
鋼板中の固溶Vは、軟窒化処理を通じて鋼板の表層部および板厚内部(非窒化部)の強度を向上させ、軟窒化処理後の耐疲労特性を確保するうえで重要な役割を担う。そこで、本発明では、軟窒化処理用鋼板、すなわち軟窒化処理前の鋼板における固溶V量とV含有量との比を0.50超とする。
Nb:0.005%以上0.025%以下
Nbは、鋼中に炭窒化物として析出し、粒子分散強化(析出強化)によって鋼板の強度を高めるうえで有効な元素であり、必要に応じて含有できる。Nb含有量が0.005%未満である場合、このような効果を十分に発現することができない。一方、Nb含有量が0.025%を超えると、鋼板強度が過度に高まり、成形性が低下する。したがって、Nb含有量は0.005%以上0.025%以下とする。好ましくは0.010%以上0.020%以下である。
本発明の鋼板は、フェライトおよびパーライトを含む複合組織を有する。
本発明は、上記した組成を有する鋼片を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻取り、熱延鋼板とする。この際、加熱温度を1100℃以上1300℃以下とし、仕上げ温度をAr3変態点以上(Ar3変態点+100℃)以下とし、冷却の平均冷却速度を30℃/s以上とし、巻取り温度を500℃以上600℃以下とすることが好ましい。
上記の如く得られた鋼片に、粗圧延および仕上げ圧延を施すが、本発明においては、粗圧延前の鋼片中にVを十分に再固溶させる必要がある。鋼片の加熱温度が1100℃未満である場合、V炭窒化物を十分に分解してVを再固溶させることが困難で、Vを含有することにより得られる前記した所望の効果を発現することができないことがある。また、必要な仕上げ温度の確保も困難となる。一方、鋼片の加熱温度が1300℃を超えると、鋼片の加熱に要するエネルギーが増大し、コスト面で不利となる。したがって、粗圧延前の鋼片の加熱温度は1100℃以上1300℃以下とする。好ましくは1150℃以上1250℃以下である。
仕上げ圧延における仕上げ温度がAr3変態点未満である場合、圧延方向に展伸したフェライト組織、および、未再結晶フェライト組織が形成され、鋼板の成形性が低下する。また、鋼板の機械的特性の面内異方性が強くなり、均質な成形加工が困難となる。一方、仕上げ温度が(Ar3変態点+100℃)を超えると、鋼板の表面性状が悪化する傾向が見られる。したがって、仕上げ温度はAr3変態点以上(Ar3変態点+100℃)以下とする。なお、仕上げ温度とは、仕上げ圧延の最終パス出側での鋼板温度をさす。
平均冷却速度の適正化は、鋼板中の固溶Vを確保するうえで重要であり、本発明においては、仕上げ圧延終了後、直ちに(1s以内に)冷却を開始し、仕上げ温度から巻取り温度までの平均冷却速度を30℃/s以上とする。この平均冷却速度が30℃/s未満である場合、冷却過程でVの炭窒化物が析出し、鋼板中に所望量の固溶Vが残存しなくなるおそれがある。また、結晶粒が過度に粗大化して、鋼板の強度や延性が低下する場合がある。したがって、上記平均冷却速度は30℃/s以上とする。好ましくは40℃/s以上である。
巻取り温度の適正化は、鋼板中の固溶Vを確保するとともに、鋼板を所望の組織とするうえで重要である。巻き取り温度が500℃未満である場合、低温変態相が生成して鋼板が硬質化し、成形性が低下するとともに、軟窒化処理の熱履歴による鋼板の板厚内部(非窒化部)の強度低下が避けられない。一方、巻取り温度が600℃を超えると、巻取り後にV炭窒化物が多量に析出し、鋼板中に所望量の固溶Vが残存しなくなるおそれがある。したがって、巻取り温度は500℃以上600℃以下とする。好ましくは520℃以上580℃以下である。
なお、本発明の軟窒化処理用鋼板は、ガス軟窒化処理および塩浴軟窒化処理の何れに対しても適用可能である。
(i)固溶V量
固溶V量は、調質圧延後鋼板の板幅1/4位置から試験片を採取し、該試験片を電解液中で定電流電解して得た鋼中析出物中のV量を、V含有量から差し引くことにより求めた。
調質圧延後鋼板の板幅1/4位置における、圧延方向に平行な板厚断面の試料を採取し、鏡面研磨してナイタールで腐食したのち、板厚1/4位置を、光学顕微鏡あるいは走査型電子顕微鏡で500~3000倍の適当な倍率にて撮影した。得られた組織写真を用い、画像解析により、組織全体に対するフェライト面積率、パーライト面積率、並びに、その他の組織の種類およびそれらの面積率を求め、それぞれの分率とした。得られた結果を、表3に示す。
調質圧延後鋼板の板幅1/4位置において、引張試験方向が圧延方向となるように採取したJIS Z 2201(1998)規定の5号試験片(標点距離L:50mm)を用い、JIS Z 2241(1998)の規定に準拠した引張試験を行い、引張強さ(TS)と伸び(El)を測定し、強度・伸びバランス(TS×El)を求めた。なお、本実施例においては、引張強さ(TS):440MPa以上、強度・伸びバランス(TS×El):17GPa・%以上の鋼板を、高強度かつ良好な成形性を有するものと評価した。
上記調質圧延後の鋼板から試験片を採取し、JIS Z 2244(2009)に準拠した方法により、板厚1/2位置におけるビッカース硬さ(HVc)を測定した。
<測定方法>
試験力 :0.98N
測定箇所:5箇所
上記調質圧延後の鋼板から小片を採取し、以下に示す条件のガス軟窒化処理を施した。
軟窒化雰囲気:アンモニアガスと吸熱型変成ガスの等量比混合ガス
処理温度 :580℃
処理時間 :2.5時間
なお、上記処理温度(580℃)に上記処理時間(2.5時間)保持したのち、小片を油冷した(油温:70℃)。そして、油冷後の小片を、以下の評価に供した。
また、鋼板の板厚内部(非窒化部)の硬さを代表して、板厚1/2位置(非窒化部)におけるビッカース硬さ(HVc’)を、上記(iv)と同様の方法により測定した。そして、上記(iv)で求めた軟窒化処理前の板厚1/2位置におけるビッカース硬さ(HVc)と、軟窒化処理後の板厚1/2位置におけるビッカース硬さ(HVc’)から、軟窒化処理による板厚中央部のビッカース硬さの上昇率:(HVc’−HVc)/HVc×100(%)を求めた。本実施例においては、ビッカース硬さの上昇率が5.0%超であるものを、軟窒化処理後の耐疲労特性が良好なもの(○)とし、それ以外を×として評価した。得られた結果を、表4に示す。
Claims (4)
- 質量%で、
C :0.05%以上0.10%以下、 Si:0.5%以下、
Mn:0.7%以上1.5%以下、 P :0.05%以下、
S :0.01%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 V :0.03%以上0.30%以下、
N :0.005%以下
を含有し、且つ、固溶V量と前記V含有量との比(固溶V量/V含有量)が0.50超であり、残部がFeおよび不可避的不純物からなる組成と、フェライトおよびパーライトを含む複合組織とを有することを特徴とする、軟窒化処理用鋼板。 - 前記組成に加えてさらに、質量%でNb:0.005%以上0.025%以下を含有することを特徴とする、請求項1に記載の軟窒化処理用鋼板。
- 鋼片を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻取り、熱延鋼板とするにあたり、
前記鋼片を、質量%で、
C :0.05%以上0.10%以下、 Si:0.5%以下、
Mn:0.7%以上1.5%以下、 P :0.05%以下、
S :0.01%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 V :0.03%以上0.30%以下、
N :0.005%以下
を含有し、残部がFeおよび不可避的不純物からなる組成とし、前記熱間圧延の加熱温度を1100℃以上1300℃以下とし、前記仕上げ圧延の仕上げ温度をAr3変態点以上(Ar3変態点+100℃)以下とし、前記冷却の平均冷却速度を30℃/s以上とし、前記巻取りの巻取り温度を500℃以上600℃以下とすることを特徴とする、軟窒化処理用鋼板の製造方法。 - 前記組成に加えてさらに、質量%でNb:0.005%以上0.025%以下を含有することを特徴とする、請求項3に記載の軟窒化処理用鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280074343.1A CN104411847A (zh) | 2012-06-27 | 2012-06-27 | 软氮化处理用钢板及其制造方法 |
PCT/JP2012/067025 WO2014002288A1 (ja) | 2012-06-27 | 2012-06-27 | 軟窒化処理用鋼板およびその製造方法 |
CN201911155721.9A CN110938773B (zh) | 2012-06-27 | 2012-06-27 | 软氮化处理用钢板及其制造方法 |
KR1020157000899A KR101735220B1 (ko) | 2012-06-27 | 2012-06-27 | 연질화 처리용 강판 및 그 제조 방법 |
EP12879635.6A EP2868762B1 (en) | 2012-06-27 | 2012-06-27 | Steel sheet for soft nitriding and process for producing same |
US14/409,549 US10077485B2 (en) | 2012-06-27 | 2012-06-27 | Steel sheet for soft-nitriding and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/067025 WO2014002288A1 (ja) | 2012-06-27 | 2012-06-27 | 軟窒化処理用鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014002288A1 true WO2014002288A1 (ja) | 2014-01-03 |
Family
ID=49782511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067025 WO2014002288A1 (ja) | 2012-06-27 | 2012-06-27 | 軟窒化処理用鋼板およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10077485B2 (ja) |
EP (1) | EP2868762B1 (ja) |
KR (1) | KR101735220B1 (ja) |
CN (2) | CN104411847A (ja) |
WO (1) | WO2014002288A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012177167A (ja) * | 2011-02-28 | 2012-09-13 | Jfe Steel Corp | 軟窒化処理用鋼板およびその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101638715B1 (ko) | 2012-01-31 | 2016-07-11 | 제이에프이 스틸 가부시키가이샤 | 발전기 림용 열연 강판 및 그 제조 방법 |
JP5630523B2 (ja) * | 2013-04-02 | 2014-11-26 | Jfeスチール株式会社 | 窒化処理用鋼板およびその製造方法 |
JP6300647B2 (ja) * | 2014-06-03 | 2018-03-28 | 山陽特殊製鋼株式会社 | 窒化特性に優れる窒化用鋼 |
WO2017094876A1 (ja) | 2015-12-04 | 2017-06-08 | 新日鐵住金株式会社 | 窒化プレート部品およびその製造方法 |
CN112410505B (zh) * | 2020-09-30 | 2022-06-14 | 盐城市联鑫钢铁有限公司 | 一种电炉高效低成本冶炼工艺 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5967365A (ja) * | 1982-10-08 | 1984-04-17 | Daido Steel Co Ltd | 機械部品の製造方法 |
JPH05171347A (ja) * | 1991-12-18 | 1993-07-09 | Aichi Steel Works Ltd | 冷間鍛造性に優れた軟窒化用鋼 |
JPH0925513A (ja) | 1995-07-12 | 1997-01-28 | Nippon Steel Corp | 成形性に優れた窒化用鋼板の製造方法 |
JPH0925543A (ja) | 1995-07-12 | 1997-01-28 | Nippon Steel Corp | 成形性に優れた窒化用鋼板およびそのプレス成形体 |
JP2001316759A (ja) * | 2000-05-11 | 2001-11-16 | Nkk Corp | 窒化用鋼板およびその製造方法 |
JP2003105489A (ja) | 2001-09-26 | 2003-04-09 | Sumitomo Metal Ind Ltd | 軟窒化処理用鋼およびその製造方法 |
JP2003277887A (ja) | 2002-03-26 | 2003-10-02 | Jfe Steel Kk | 窒化処理用薄鋼板 |
JP2004256831A (ja) * | 2003-02-24 | 2004-09-16 | Jfe Steel Kk | 窒化後の磁気特性に優れた窒化用鋼材およびその成形体 |
JP2005171331A (ja) | 2003-12-12 | 2005-06-30 | Jfe Steel Kk | 成形性に優れる軟窒化用鋼板およびその製造方法 |
JP2005264205A (ja) * | 2004-03-17 | 2005-09-29 | Jfe Steel Kk | 窒化処理用鋼板 |
JP2008280598A (ja) | 2007-05-14 | 2008-11-20 | Jfe Steel Kk | 軟窒化処理用鋼板およびその製造方法 |
JP2009068057A (ja) * | 2007-09-12 | 2009-04-02 | Jfe Steel Kk | 軟窒化処理用鋼板およびその製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100214A (ja) * | 1982-11-29 | 1984-06-09 | Nippon Kokan Kk <Nkk> | 厚肉高張力鋼の製造方法 |
JPH04154936A (ja) * | 1990-10-16 | 1992-05-27 | Aichi Steel Works Ltd | 析出硬化型窒化用鋼 |
JP3477955B2 (ja) * | 1995-11-17 | 2003-12-10 | Jfeスチール株式会社 | 極微細組織を有する高張力熱延鋼板の製造方法 |
JPH09279296A (ja) | 1996-04-16 | 1997-10-28 | Nippon Steel Corp | 冷間鍛造性に優れた軟窒化用鋼 |
JP4134355B2 (ja) * | 1997-03-25 | 2008-08-20 | Jfeスチール株式会社 | 靱性に優れた連続鋳造製調質型高張力鋼板の製造方法 |
JP3792341B2 (ja) * | 1997-04-28 | 2006-07-05 | 株式会社神戸製鋼所 | 冷間鍛造性及び耐ピッチング性に優れた軟窒化用鋼 |
JP4265133B2 (ja) * | 1999-09-28 | 2009-05-20 | Jfeスチール株式会社 | 高張力熱延鋼板およびその製造方法 |
EP1205570A4 (en) | 2000-03-02 | 2004-11-10 | Matsushita Electric Ind Co Ltd | COLOR CATHODE RANGE MASK FRAME, STEEL PLATE USEFUL IN THIS MASK, METHOD FOR PRODUCING THE SAME, AND COLOR CATHODE RANGE WITH THIS FRAME |
JP4291941B2 (ja) * | 2000-08-29 | 2009-07-08 | 新日本製鐵株式会社 | 曲げ疲労強度に優れた軟窒化用鋼 |
JP4154936B2 (ja) | 2002-06-25 | 2008-09-24 | 株式会社Sumco | 単結晶の無欠陥領域シミュレーション方法 |
JP4634885B2 (ja) * | 2005-07-26 | 2011-02-16 | 新日本製鐵株式会社 | 疲労特性と塗装焼付硬化性能と耐常温時効性に優れた高強度薄鋼板及びその製造方法 |
JP4502947B2 (ja) | 2005-12-27 | 2010-07-14 | 株式会社神戸製鋼所 | 溶接性に優れた鋼板 |
JP5326403B2 (ja) * | 2007-07-31 | 2013-10-30 | Jfeスチール株式会社 | 高強度鋼板 |
JP5171347B2 (ja) | 2008-03-31 | 2013-03-27 | ユニ・チャーム株式会社 | 清掃用具 |
JP5041084B2 (ja) * | 2010-03-31 | 2012-10-03 | Jfeスチール株式会社 | 加工性に優れた高張力熱延鋼板およびその製造方法 |
JP5041083B2 (ja) * | 2010-03-31 | 2012-10-03 | Jfeスチール株式会社 | 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法 |
JP4962594B2 (ja) | 2010-04-22 | 2012-06-27 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
-
2012
- 2012-06-27 EP EP12879635.6A patent/EP2868762B1/en not_active Not-in-force
- 2012-06-27 CN CN201280074343.1A patent/CN104411847A/zh active Pending
- 2012-06-27 WO PCT/JP2012/067025 patent/WO2014002288A1/ja active Application Filing
- 2012-06-27 US US14/409,549 patent/US10077485B2/en not_active Expired - Fee Related
- 2012-06-27 KR KR1020157000899A patent/KR101735220B1/ko active IP Right Grant
- 2012-06-27 CN CN201911155721.9A patent/CN110938773B/zh not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5967365A (ja) * | 1982-10-08 | 1984-04-17 | Daido Steel Co Ltd | 機械部品の製造方法 |
JPH05171347A (ja) * | 1991-12-18 | 1993-07-09 | Aichi Steel Works Ltd | 冷間鍛造性に優れた軟窒化用鋼 |
JPH0925513A (ja) | 1995-07-12 | 1997-01-28 | Nippon Steel Corp | 成形性に優れた窒化用鋼板の製造方法 |
JPH0925543A (ja) | 1995-07-12 | 1997-01-28 | Nippon Steel Corp | 成形性に優れた窒化用鋼板およびそのプレス成形体 |
JP2001316759A (ja) * | 2000-05-11 | 2001-11-16 | Nkk Corp | 窒化用鋼板およびその製造方法 |
JP2003105489A (ja) | 2001-09-26 | 2003-04-09 | Sumitomo Metal Ind Ltd | 軟窒化処理用鋼およびその製造方法 |
JP2003277887A (ja) | 2002-03-26 | 2003-10-02 | Jfe Steel Kk | 窒化処理用薄鋼板 |
JP2004256831A (ja) * | 2003-02-24 | 2004-09-16 | Jfe Steel Kk | 窒化後の磁気特性に優れた窒化用鋼材およびその成形体 |
JP2005171331A (ja) | 2003-12-12 | 2005-06-30 | Jfe Steel Kk | 成形性に優れる軟窒化用鋼板およびその製造方法 |
JP2005264205A (ja) * | 2004-03-17 | 2005-09-29 | Jfe Steel Kk | 窒化処理用鋼板 |
JP2008280598A (ja) | 2007-05-14 | 2008-11-20 | Jfe Steel Kk | 軟窒化処理用鋼板およびその製造方法 |
JP2009068057A (ja) * | 2007-09-12 | 2009-04-02 | Jfe Steel Kk | 軟窒化処理用鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2868762A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012177167A (ja) * | 2011-02-28 | 2012-09-13 | Jfe Steel Corp | 軟窒化処理用鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101735220B1 (ko) | 2017-05-12 |
CN110938773A (zh) | 2020-03-31 |
CN110938773B (zh) | 2022-04-05 |
KR20150023744A (ko) | 2015-03-05 |
CN104411847A (zh) | 2015-03-11 |
EP2868762A1 (en) | 2015-05-06 |
EP2868762A4 (en) | 2016-03-09 |
US10077485B2 (en) | 2018-09-18 |
EP2868762B1 (en) | 2019-05-22 |
US20150354034A1 (en) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2604715B1 (en) | Method for manufacturing a high-strength cold-rolled steel sheet having excellent formability and crashworthiness | |
EP2801636B1 (en) | High carbon hot-rolled steel sheet and method for producing same | |
JP5440203B2 (ja) | 高炭素熱延鋼板の製造方法 | |
KR20170086099A (ko) | 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
EP2792763A1 (en) | Steel sheet with excellent aging resistance, and method for producing same | |
WO2013180180A1 (ja) | 高強度冷延鋼板およびその製造方法 | |
TWI548755B (zh) | 氮化處理用鋼板及其製造方法 | |
CN110938773B (zh) | 软氮化处理用钢板及其制造方法 | |
WO2016113781A1 (ja) | 高強度鋼板およびその製造方法 | |
WO2016120914A1 (ja) | 高強度めっき鋼板およびその製造方法 | |
WO2016113780A1 (ja) | 高強度鋼板およびその製造方法 | |
KR101701652B1 (ko) | 연질화 처리용 강판 및 그 제조 방법 | |
JP5811725B2 (ja) | 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法 | |
JP5614329B2 (ja) | 軟窒化処理用鋼板およびその製造方法 | |
JP5614330B2 (ja) | 軟窒化処理用鋼板およびその製造方法 | |
JP6225733B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
EP2801633B1 (en) | High carbon hot-rolled steel sheet and method for producing same | |
JP5655436B2 (ja) | 深絞り性に優れた高強度鋼板およびその製造方法 | |
TW201400627A (zh) | 軟氮化處理用鋼板及其製造方法 | |
TW201400625A (zh) | 軟氮化處理用鋼板及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12879635 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157000899 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012879635 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201500453 Country of ref document: ID |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14409549 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |