WO2014002288A1 - 軟窒化処理用鋼板およびその製造方法 - Google Patents

軟窒化処理用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014002288A1
WO2014002288A1 PCT/JP2012/067025 JP2012067025W WO2014002288A1 WO 2014002288 A1 WO2014002288 A1 WO 2014002288A1 JP 2012067025 W JP2012067025 W JP 2012067025W WO 2014002288 A1 WO2014002288 A1 WO 2014002288A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel
soft nitriding
treatment
Prior art date
Application number
PCT/JP2012/067025
Other languages
English (en)
French (fr)
Inventor
崇 小林
中村 展之
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280074343.1A priority Critical patent/CN104411847A/zh
Priority to PCT/JP2012/067025 priority patent/WO2014002288A1/ja
Priority to CN201911155721.9A priority patent/CN110938773B/zh
Priority to KR1020157000899A priority patent/KR101735220B1/ko
Priority to EP12879635.6A priority patent/EP2868762B1/en
Priority to US14/409,549 priority patent/US10077485B2/en
Publication of WO2014002288A1 publication Critical patent/WO2014002288A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel sheet for nitrocarburizing treatment that is suitable for machine structural parts that require fatigue strength and wear resistance, such as transmission parts for automobiles, and is particularly excellent in formability before soft nitriding treatment and is soft.
  • the present invention relates to a steel sheet for soft nitriding that has excellent fatigue resistance after nitriding and a method for producing the same.
  • Fatigue strength and wear resistance are required for mechanical structural parts that are used in a state where stress is continuously applied for a long time, such as transmission parts for automobiles. Therefore, these mechanical structural parts are usually manufactured by processing a steel material into a desired part shape and then subjecting it to a surface hardening heat treatment. When the surface hardening heat treatment is performed, the steel surface is hardened and compressive residual stress is introduced into the steel surface layer portion, so that fatigue strength and wear resistance are improved.
  • Typical examples of the surface hardening heat treatment include carburizing treatment and nitriding treatment.
  • Carburization the steel is heated to a temperature above A 3 transformation point, a process of diffusion and osmosis (carburized) carbon in the surface layer of the steel, usually, be directly quenching the steel after carburizing in a high temperature state Thus, the surface hardening of the steel is achieved.
  • This carburization process for diffusing and spreading the carbon steel surface layer portion in A 3 high temperature range of lower than the transformation point, a result of carbon is diffused and penetrated to a relatively deep position from the steel surface, resulting a large surface hardened layer depth It is done.
  • nitriding treatment the steel is heated to a temperature below the A 1 transformation point, a process of diffusion and osmosis (nitride) of nitrogen into the steel surface layer portion, the surface hardening of steel without quenching as carburizing It is intended.
  • the nitriding treatment since the nitriding treatment has a relatively low processing temperature and does not involve a phase transformation of steel, if the nitriding treatment is performed to manufacture a part, the shape accuracy of the part can be kept good.
  • gas nitriding using ammonia gas the time required for nitriding is as long as about 25 to 150 hours, so that it is not suitable for automobile parts and the like on the premise of mass production.
  • the soft nitriding treatment is a nitriding treatment in which a nitriding reaction proceeds rapidly by using a carburizing atmosphere, and the object to be treated is held in a treatment atmosphere at 550 to 600 ° C. for several hours, and the formation of iron carbide is facilitated. Nitrogen is diffused and introduced from the steel surface into the steel. According to this soft nitriding treatment, the steel surface hardness obtained is lower than that of the conventional nitriding treatment (gas nitriding), but the nitriding treatment time can be greatly shortened.
  • Soft nitriding is broadly classified into a method for treating in a salt bath and a method for treating in a gas.
  • a salt bath salt bath soft nitriding treatment
  • a cyan bath is used, measures to prevent environmental pollution are essential.
  • gas soft nitriding treatment since a mixed gas containing ammonia as a main component is used, there are few emissions that cause environmental pollution.
  • the spread rate of the gas soft nitriding treatment that is processed in a gas is increasing.
  • Patent Document 1 and Patent Document 2 include C: 0.01 to less than 0.08% by weight, Si: 0.005 to 1.00%, Mn: 0.010 to 3.00%, P : 0.001 to 0.150%, N: 0.0002 to 0.0100%, Cr: more than 0.15 to 5.00%, Al: more than 0.060 to 2.00%, Ti: 0.010% or more and less than 4C [%], V: 0.010 to 1.00% of a steel containing a composition containing one or two, or after winding at 500 ° C.
  • nitriding steel plate with excellent formability and a nitriding steel plate with excellent formability having the above-described composition are disclosed.
  • the C content that adversely affects the formability is suppressed to less than 0.08%, and Cr, Al, and the like are contained as nitriding promoting elements, so that nitriding is excellent in formability and nitridability. It is supposed to be a steel plate for use.
  • Patent Document 3 by mass, C: 0.03% or more and less than 0.10%, Si: 0.005 to 0.10%, Mn: 0.1 to 1.0%, Cr: 0 20 to 2.00%, and as impurities, S: 0.01% or less, P: 0.020% or less, sol.
  • Nitriding steels have been proposed. And according to such a technique, it is said that an inexpensive steel plate is obtained because expensive elements such as Ti and V are not added, and a steel plate excellent in press workability is obtained by refining the crystal grain size of steel. ing.
  • Patent Document 4 by mass%, C: more than 0.01%, 0.09% or less, Si: 0.005 to 0.5%, Mn: 0.01 to 3.0%, Al: 0.005 to 2.0%, Cr: 0.50 to 4.0%, P: 0.10% or less, S: 0.01% or less and N: 0.010% or less, or V: 0.0.
  • a thin steel sheet for nitriding treatment having an interface area Sv of 80 mm ⁇ 1 or more and 1300 mm ⁇ 1 or less has been proposed.
  • the grain interface area per unit volume is controlled within a predetermined range.
  • Patent Document 5 discloses that C: 0.01 to 0.10 mass%, Si: 0.1 mass% or less, Mn: 0.1 to 1.0 mass%, P: 0.05 mass% or less, S: 0.0. 01 mass% or less, Al: 0.01 to 0.06 mass%, Cr: 0.05 to 0.50 mass%, V: 0.01 to 0.30 mass%, N: 0.01 mass% or less, with the balance being Fe Further, a steel sheet for soft nitriding made of inevitable impurities has been proposed.
  • Patent Document 6 C: 0.04 to 0.08 mass%, Si: 0.1 mass% or less, Mn: 0.05 to 0.6 mass%, P: 0.03 mass% or less, S: 0.0. 01 mass% or less, Al: 0.1 mass% or less, Cr: 0.6 to 1.2 mass%, V: 0.002 to less than 0.01 mass% and N: 0.01 mass% or less, with the balance being Fe and
  • a steel sheet for soft nitriding made of inevitable impurities has been proposed. According to such a technique, by containing a very small amount of V (less than 0.002 to 0.01 mass%), it is possible to form a nitrided layer having high hardness and less porous layer formation by soft nitriding. Therefore, it is said that a steel sheet for nitrocarburizing treatment that is excellent in workability and wear resistance is obtained.
  • Patent Document 1 and Patent Document 2 contain a large amount of Al as a nitriding promoting element, there is a concern about the occurrence of internal defects and surface defects due to Al inclusions.
  • a large amount of Al-based slag is produced during refining, there is also a problem that the melting cost increases.
  • Patent Document 3 does not contain an expensive element, and thus an inexpensive steel sheet for soft nitriding treatment can be obtained.
  • the tensile strength is about 420 MPa at most, so that it is in a high stress load state. Application to the parts used is limited.
  • a high-quality nitride layer is formed by containing a very small amount of V (less than 0.002 to 0.01 mass%) together with Cr (0.6 to 1.2 mass%).
  • V very small amount
  • Cr 0.6 to 1.2 mass%.
  • the steel sheet for nitrocarburizing treatment with excellent wear resistance can be obtained, its strength is at most about 400 MPa in tensile strength, so that it is used in a high stress load state as in the technique proposed in Patent Document 3.
  • Application to the parts to be made is limited.
  • the steel plate when the steel plate is subjected to soft nitriding treatment, the steel plate is usually heated to a processing temperature of about 550 to 600 ° C. and maintained at the processing temperature for about 1 to 5 hours. While the hardness increases remarkably, the strength inside the plate thickness (non-nitrided portion) of the steel sheet may decrease. Therefore, even if it has the desired strength (tensile strength) before the soft nitriding treatment, the strength inside the plate thickness (non-nitriding portion) of the steel sheet is greatly reduced by the soft nitriding treatment, It is assumed that desired strength and fatigue resistance cannot be imparted to the final product.
  • one of the important properties of a steel sheet for nitrocarburizing treatment is that it has a desired strength within the thickness (non-nitriding portion) of the steel sheet even after nitronitriding treatment.
  • no consideration has been given to a change in strength inside the plate thickness seen before and after soft nitriding.
  • the present invention advantageously solves the above-described problems of the prior art, has a desired strength (tensile strength: 440 MPa or more), and has excellent fatigue resistance after nitrocarburizing treatment. And it aims at providing the manufacturing method.
  • the present inventors have various factors affecting the strength and formability of a steel sheet for nitrocarburizing treatment, and the strength change inside the plate thickness (non-nitrided portion) of the steel sheet before and after the nitronitriding treatment.
  • the following findings were obtained. 1) By making the steel sheet structure a composite structure containing ferrite and pearlite, a decrease in strength after nitrocarburizing treatment is suppressed, and a steel sheet having excellent strength stability is obtained.
  • the steel plate composition a desired amount of V is contained, and a majority of the V content is made into solute V, whereby not only the surface layer portion of the steel plate but also the inside of the steel plate thickness (non- The strength of the nitrided part is also increased, and the fatigue resistance is improved. 3) After the soft nitriding treatment, the hardness inside the plate thickness (non-nitrided portion) of the steel sheet is increased by more than 5% of the hardness before the soft nitriding treatment, so that the fatigue resistance is stably improved.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • heating the steel slab subjecting it to hot rolling consisting of rough rolling and finish rolling, cooling after completion of finish rolling, winding, and hot-rolled steel sheet
  • the steel slab is in mass%, C: 0.05% or more and 0.10% or less, Si: 0.5% or less, Mn: 0.7% to 1.5%, P: 0.05% or less, S: 0.01% or less, Al: 0.01% or more and 0.06% or less, Cr: 0.5% to 1.5%, V: 0.03% to 0.30%, N: 0.005% or less, with the balance being composed of Fe and inevitable impurities, heating temperature of the hot rolling is 1100 ° C. or higher and 1300 ° C.
  • finishing temperature of the finish rolling is Ar 3 transformation point Soft nitriding, characterized in that the above (Ar 3 transformation point + 100 ° C.) or less, the average cooling rate of the cooling is 30 ° C./s or more, and the winding temperature of the winding is 500 ° C. or more and 600 ° C. or less. Manufacturing method of steel plate for processing.
  • Nb 0.005% or more and 0.025% or less are further contained in the mass%, The manufacturing method of the steel plate for nitrocarburizing treatment characterized by the above-mentioned.
  • a steel sheet for nitrocarburizing treatment having a desired strength (tensile strength: 440 MPa or more) and excellent in formability before nitronitriding treatment and fatigue resistance after nitronitriding treatment is obtained.
  • Such a steel plate can be used for parts used in high stress loads such as transmission parts of automobiles, and the manufacturing cost can be greatly reduced. Play.
  • C 0.05% or more and 0.10% or less
  • C is an element that contributes to increasing the strength of steel through solid solution strengthening and formation of the second phase.
  • the C content is less than 0.05%, it is not possible to ensure the steel sheet strength required as a material for parts used in a high stress load state, such as a transmission part of an automobile.
  • the C content is 0.05% or more and 0.10% or less. Preferably they are 0.05% or more and 0.08% or less.
  • Si 0.5% or less
  • Si is a solid solution strengthening element, is an element effective for increasing the strength of steel, and also acts as a deoxidizer. In order to acquire such an effect, it is preferable to make it contain 0.03% or more, but when Si content exceeds 0.5%, a hard-to-peel scale is generated and the surface properties of the steel sheet are remarkably deteriorated. To do. Therefore, the Si content is 0.5% or less. Preferably, it is 0.1% or less.
  • Mn 0.7% or more and 1.5% or less
  • Mn is a solid solution strengthening element and is an element effective for increasing the strength of steel.
  • S which exists as an impurity in steel is fixed as a precipitate, and also acts as an element that reduces the adverse effects caused by S on steel. If the Mn content is less than 0.7%, the desired steel sheet strength cannot be ensured. On the other hand, when the Mn content exceeds 1.5%, the steel sheet strength is excessively increased and the formability is lowered. Therefore, the Mn content is 0.7% or more and 1.5% or less. Preferably they are 1.0% or more and 1.5% or less. More preferably, it is 1.2% or more and 1.5% or less.
  • P 0.05% or less
  • P is an element that lowers the formability and toughness of the steel sheet.
  • the P content is 0.05% or less.
  • S 0.01% or less
  • S is an element that decreases the formability and toughness of the steel sheet.
  • the S content is 0.01% or less.
  • Al 0.01% or more and 0.06% or less
  • Al is an element that acts as a deoxidizing agent, and the Al content is set to 0.01% or more in order to reliably obtain the effect.
  • the Al content is 0.01% or more and 0.06% or less.
  • they are 0.02% or more and 0.05% or less.
  • Cr 0.5% or more and 1.5% or less
  • Cr is an element that has the effect of forming nitrides in steel by soft nitriding and increasing the hardness of the steel sheet surface layer, and is an important element in the present invention. . In order to make such an effect remarkable, it is necessary to make Cr content 0.5% or more. On the other hand, when the Cr content exceeds 1.5%, embrittlement of the surface hardened layer (nitrided layer) obtained by soft nitriding becomes significant. Therefore, the Cr content is 0.5% or more and 1.5% or less. Preferably they are 0.5% or more and 1.0% or less.
  • V 0.03% or more and 0.30% or less
  • V has the effect of forming nitrides in the steel by soft nitriding to increase the hardness of the steel sheet surface layer portion, and the thickness of the steel sheet through soft nitriding. It is an element having an effect of increasing the strength of the inside (non-nitrided portion), and is the most important element in the present invention.
  • V precipitated in the steel before soft nitriding also has the effect of increasing the strength of the steel for soft nitriding by particle dispersion strengthening (precipitation strengthening). When the V content is less than 0.03%, these effects cannot be sufficiently exhibited.
  • the V content is 0.03% or more and 0.30% or less. Preferably they are 0.05% or more and 0.20% or less.
  • N 0.005% or less
  • N is a harmful element that lowers the formability of the steel sheet.
  • N is also an element that combines with a nitriding promoting element such as Cr before the soft nitriding treatment and causes a reduction in the effective nitriding promoting element amount. Therefore, in the present invention, it is preferable to reduce the N content as much as possible, and set it to 0.005% or less. Preferably it is 0.003% or less.
  • Ratio of solid solution V amount to V content (solid solution V amount / V content): more than 0.50
  • the solid solution V in the steel sheet is obtained by subjecting the surface layer portion and the inside of the plate thickness (non-nitrided portion) through soft nitriding treatment. ), And plays an important role in ensuring fatigue resistance after soft nitriding. Therefore, in the present invention, the ratio between the solute V content and the V content in the steel sheet for soft nitriding treatment, that is, the steel sheet before soft nitriding treatment is set to more than 0.50.
  • the strength inside the thickness of the steel sheet may decrease due to the thermal history of soft nitriding treatment. It is assumed that the characteristics cannot be obtained. For this reason, it is important that the steel sheet for soft nitriding has characteristics such that the thickness inside the non-nitrided portion of the steel sheet after the soft nitriding treatment has a desired strength.
  • the strength reduction in the steel sheet thickness (non-nitriding part) due to the soft nitriding treatment is taken into account.
  • a means for setting the strength of the steel sheet for nitriding treatment higher is also conceivable.
  • the steel plate strength is excessively increased, the formability of the steel plate is lowered, which is disadvantageous in forming a desired part shape before the soft nitriding treatment.
  • the strength inside the plate thickness (non-nitrided part) can be increased by applying soft nitriding treatment to the steel sheet for soft nitriding treatment, the formability before soft nitriding treatment is lowered. Therefore, the fatigue resistance after the soft nitriding treatment can be improved. Therefore, as a steel sheet for nitrocarburizing treatment that requires fatigue resistance after nitrocarburizing treatment as well as formability before nitrocarburizing treatment, the strength of the steel sheet thickness (non-nitrided part) increases through nitrocarburizing treatment. It is ideal to have
  • the V content in the steel sheet is set to 0.03% or more and 0.30% or less, and the majority of the V content is set as the solute V, that is, the solute V It is essential that the ratio between the amount and the V content (solid V content / V content) exceeds 0.50.
  • the ratio of the solute V amount to the V content solid solution V amount / V content
  • the effect of increasing the strength inside the plate thickness (non-nitrided portion) of the steel sheet accompanying soft nitriding treatment It cannot be fully expressed.
  • the upper limit of the ratio is preferably 0.80.
  • Nb 0.005% or more and 0.025% or less
  • Nb precipitates as carbonitride in steel and is an effective element for increasing the strength of the steel sheet by particle dispersion strengthening (precipitation strengthening). Can be contained.
  • the Nb content is less than 0.005%, such an effect cannot be sufficiently exhibited.
  • the Nb content exceeds 0.025%, the steel sheet strength is excessively increased and the formability is lowered. Therefore, the Nb content is 0.005% or more and 0.025% or less. Preferably they are 0.010% or more and 0.020% or less.
  • components other than the above are Fe and inevitable impurities.
  • unavoidable impurities for example, by mass, Cu: 0.05% or less, Ni: 0.05% or less, Mo: 0.05% or less, Co: 0.05% or less, Ti: 0.005%
  • the steel sheet of the present invention has a composite structure containing ferrite and pearlite.
  • the steel sheet has a ferrite single-phase structure
  • the steel sheet strength is insufficient and can be used as a material for machine structural parts.
  • the range is narrowed and the versatility becomes poor.
  • the second phase is generated in the structure mainly composed of ferrite to ensure the strength of the steel sheet
  • the hard low temperature transformation phase such as martensite and bainite
  • the low temperature transformation phase is softened by the history, and the strength inside the plate thickness (non-nitrided portion) of the steel sheet is greatly reduced.
  • the structure of the steel sheet has ferrite as the main phase and the second phase as pearlite in order to suppress the strength reduction of the steel sheet thickness (non-nitriding part) due to the thermal history of the soft nitriding treatment.
  • a complex organization is assumed.
  • the ferrite fraction in the steel sheet structure is 80% to 95% and the pearlite fraction is 5% to 20%.
  • the steel sheet of the present invention is ideally a composite structure composed of ferrite and pearlite, but even if other phases (structures) are inevitably generated, the fractions are in total. 1% or less is acceptable.
  • a steel slab having the above composition is heated, subjected to hot rolling consisting of rough rolling and finish rolling, cooled after completion of finish rolling, and wound into a hot rolled steel sheet.
  • the heating temperature is set to 1100 ° C. or more and 1300 ° C. or less
  • the finishing temperature is set to Ar 3 transformation point or more (Ar 3 transformation point + 100 ° C.) or less
  • the average cooling rate of cooling is set to 30 ° C./s or more
  • the coiling temperature is set. It is preferable to set it to 500 degreeC or more and 600 degrees C or less.
  • the method for melting steel is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed.
  • a known melting method such as a converter or an electric furnace
  • various pretreatments, secondary refining, surface treatment of steel pieces, and the like may be performed.
  • Steel slab heating temperature 1100 ° C or higher and 1300 ° C or lower
  • V is sufficiently re-solidified in the steel slab before rough rolling. It needs to be dissolved.
  • the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently decompose V carbonitride and re-dissolve V, and the above-described desired effect obtained by containing V is exhibited. There are times when you can't. In addition, it is difficult to secure a necessary finishing temperature.
  • the heating temperature of the steel slab before rough rolling is 1100 ° C. or higher and 1300 ° C. or lower. Preferably they are 1150 degreeC or more and 1250 degrees C or less.
  • the steel slab after casting When heating the steel slab before rough rolling, the steel slab after casting may be heated after cooling to room temperature, or the steel slab during cooling after casting may be additionally heated or kept warm. In addition, when the steel slab after casting maintains a sufficient temperature and V is sufficiently dissolved in the steel, direct rolling may be performed without heating the steel slab.
  • the rough rolling conditions are not particularly limited.
  • Finishing temperature Ar 3 transformation point or higher (Ar 3 transformation point + 100 ° C.) or lower
  • Ar 3 transformation point Ar 3 transformation point or higher (Ar 3 transformation point + 100 ° C.) or lower
  • the finishing temperature in the finish rolling is lower than the Ar 3 transformation point, a ferrite structure stretched in the rolling direction and an unrecrystallized ferrite structure are formed. As a result, the formability of the steel sheet is reduced. In addition, the in-plane anisotropy of the mechanical properties of the steel sheet becomes strong, and uniform forming becomes difficult.
  • the finishing temperature exceeds (Ar 3 transformation point + 100 ° C.), tendency to surface properties of the steel sheet is deteriorated seen. Accordingly, the finishing temperature is set to less than the Ar 3 transformation point (Ar 3 transformation point + 100 ° C.).
  • the finishing temperature refers to the steel plate temperature at the final pass exit side of finish rolling.
  • a steel plate being rolled may be additionally heated using a heating device such as a sheet bar heater or an edge heater.
  • a heating device such as a sheet bar heater or an edge heater.
  • the Ar 3 transformation point of steel can be obtained by measuring the heat shrinkage in the cooling process from the austenite temperature range and creating a heat shrinkage curve, or by calculating from the alloy element content. Good.
  • Average cooling rate 30 ° C./s or more Optimization of the average cooling rate is important for securing solid solution V in the steel sheet.
  • cooling is performed immediately (within 1 s) immediately after finishing rolling.
  • the average cooling rate from the finishing temperature to the coiling temperature is set to 30 ° C./s or higher.
  • the average cooling rate is set to 30 ° C./s or more.
  • it is 40 degrees C / s or more.
  • the upper limit of the average cooling rate is not particularly specified, but is preferably 100 ° C./s or less in order to avoid the shape failure of the steel sheet due to strong water cooling.
  • forced cooling by water injection or the like is not particularly necessary, and it may be allowed to cool in the atmosphere until winding.
  • Winding temperature 500 ° C. or more and 600 ° C. or less Optimization of the winding temperature is important for securing the solid solution V in the steel sheet and making the steel sheet a desired structure.
  • the coiling temperature is less than 500 ° C., a low-temperature transformation phase is generated, the steel sheet becomes hard, the formability decreases, and the strength inside the steel sheet thickness (non-nitrided part) decreases due to the thermal history of nitrocarburizing treatment. Is inevitable.
  • the coiling temperature exceeds 600 ° C., a large amount of V carbonitride precipitates after coiling, and a desired amount of solute V may not remain in the steel sheet. Therefore, the coiling temperature is set to 500 ° C. or more and 600 ° C. or less. Preferably they are 520 degreeC or more and 580 degrees C or less.
  • the hot-rolled steel sheet obtained as described above is used as a steel sheet for soft nitriding treatment after removing the oxide scale by pickling, shot peening or the like. Moreover, even if the temper rolling for the purpose of shape correction or surface roughness adjustment is performed, the effect of the present invention is not impaired.
  • the steel sheet for soft nitriding of the present invention can be applied to both gas soft nitriding and salt bath soft nitriding.
  • Solid solution V amount is the precipitation in steel obtained by taking a test piece from the 1/4 width position of the steel plate after temper rolling and subjecting the test piece to constant current electrolysis in an electrolytic solution. The amount of V in the product was determined by subtracting from the V content.
  • the Vickers hardness (HV0.1) in the depth 0.1mm position from the plate surface was measured.
  • regulation of JISG0562 (1993) was measured.
  • Vickers hardness (HV0.1): 500 or more and practical nitrided layer depth: 0.40 mm or more were evaluated as having good surface hardening characteristics.
  • the Vickers hardness (HVc ′) at the plate thickness 1/2 position (non-nitrided portion) is represented by the same method as in (iv) above, representing the hardness inside the plate thickness (non-nitrided portion) of the steel plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

成形性および耐疲労特性に優れた軟窒化処理用鋼板を提供する。質量%で、C :0.05%以上0.10%以下、Si:0.5%以下、Mn:0.7%以上1.5%以下、P :0.05%以下、S :0.01%以下、Al:0.01%以上0.06%以下、Cr:0.5%以上1.5%以下、V :0.03%以上0.30%以下、N :0.005%以下を含有し、且つ、固溶V量と前記V含有量との比(固溶V量/V含有量)が0.50超であり、残部がFeおよび不可避的不純物からなる組成と、フェライトおよびパーライトを含む複合組織とを有する軟窒化処理用鋼板とする。

Description

軟窒化処理用鋼板およびその製造方法
 本発明は、自動車の変速機部品等、疲労強度や耐摩耗性が要求される機械構造用部品に好適な軟窒化処理用鋼板に係り、特に軟窒化処理前の成形性に優れ、且つ、軟窒化処理後の耐疲労特性に優れた軟窒化処理用鋼板およびその製造方法に関する。
 自動車用の変速機部品等、長時間継続して応力負荷された状態で使用される機械構造用部品には、疲労強度や耐摩耗性が要求される。そのため、これらの機械構造用部品は通常、鋼素材を所望の部品形状に加工したのち、表面硬化熱処理を施すことにより製造される。表面硬化熱処理を施すと、鋼表面が硬化するとともに鋼表層部に圧縮残留応力が導入されるため、疲労強度および耐摩耗性が向上する。
 上記表面硬化熱処理の代表的なものとしては、浸炭処理と窒化処理が挙げられる。浸炭処理は、鋼をA変態点以上の温度に加熱し、鋼の表層部に炭素を拡散・浸透(浸炭)させる処理であり、通常、高温状態にある浸炭後の鋼をそのまま焼入れすることにより、鋼の表面硬化を図っている。この浸炭処理では、A変態点以上の高温域で鋼表層部に炭素を拡散・浸透させるため、炭素が鋼表面から比較的深い位置まで拡散・浸透する結果、大きな表面硬化層深さが得られる。
 しかしながら、上記表面硬化熱処理として浸炭処理を採用した場合、焼入れ時の変態歪や熱歪に起因する部品形状精度の低下が避けられない。また、浸炭後に焼入れしたままの状態では、鋼の靭性が著しく低下する。そのため、浸炭処理を施して部品を製造する場合、焼入れ後に、部品形状の矯正や靭性回復を目的とした焼戻し(例えばプレステンパー処理)を施すことが必須となり、製造工程数が多くなるため、製造コスト面で極めて不利となる。
 一方、窒化処理は、鋼をA変態点以下の温度に加熱し、鋼表層部に窒素を拡散・浸透(窒化)させる処理であり、浸炭処理のように焼入れすることなく鋼の表面硬化を図るものである。すなわち、窒化処理は処理温度が比較的低温であるうえ、鋼の相変態を伴わないため、窒化処理を施して部品を製造すれば、部品の形状精度を良好に保つことができる。但し、アンモニアガスを用いるガス窒化の場合、窒化に要する時間が約25~150時間と著しく長いため、大量生産を前提とする自動車部品等には適さない。
 ガス窒化に見られる上記問題を有利に解決するものとして、近年、普及しつつあるのが軟窒化処理である。軟窒化処理は、浸炭性雰囲気を利用することによって窒化反応を迅速に進行させる窒化処理であり、被処理物は550~600℃の処理雰囲気中に数時間保持され、鉄炭化物の生成をなかだちとして、鋼表面から鋼中に向けて窒素が拡散導入される。この軟窒化処理によると、得られる鋼表面硬度は従来の窒化処理(ガス窒化)よりも低くなるものの、窒化処理時間の大幅な短縮が可能となる。
 軟窒化処理は、塩浴中で処理する方法とガス中で処理する方法とに大きく分類される。塩浴中で処理する方法(塩浴軟窒化処理)では、シアン系の浴が用いられるため、環境汚染防止対策が必須となる。一方、ガス中で処理する方法(ガス軟窒化処理)では、アンモニアを主成分とする混合ガスを用いるため、環境汚染の原因となる排出物が少ない。以上の理由により、軟窒化処理のうち、特にガス中で処理するガス軟窒化処理の普及率が高まりつつある。
 一方、自動車の変速機部品をはじめとする機械構造用部品は、従来、鋳造や鍛造により得られた中間品に機械加工を施し、所望の形状に加工・接合して製造されるのが一般的であったが、近年、素材として鋼板(薄鋼板)が積極的に用いられるようになり、鋼板(薄鋼板)にプレス加工等を施し、所望の形状に成形して製造するようになっている。これにより、従来よりも製造工程が短縮され、製造コストの大幅な削減が可能となっている。このような背景から、自動車の変速機部品等、機械構造用部品の素材に好適な、成形性に優れた軟窒化処理用鋼板の要望が高まり、現在までに様々な技術が提案されている。
 例えば、特許文献1および特許文献2には、重量比でC:0.01~0.08%未満、Si:0.005~1.00%、Mn:0.010~3.00%、P:0.001~0.150%、N:0.0002~0.0100%、Cr:0.15超~5.00%、Al:0.060超~2.00%を含有し、さらに、Ti:0.010%以上および4C[%]未満、V:0.010~1.00%の1種または2種を含有する組成の鋼を、熱間圧延後500℃以上で巻き取るか、その後50%以上の圧下率で冷間圧延を施し、再結晶焼鈍を行う、成形性に優れた窒化用鋼板の製造方法、および、上記した組成を有する成形性に優れた窒化用鋼板が開示されている。また、係る技術によると、成形性に悪影響を及ぼすC含有量を0.08%未満に抑制するとともに、Cr、Al等を窒化促進元素として含有することにより、成形性および窒化性に優れた窒化用鋼板となるとされている。
 また、特許文献3には、質量%で、C:0.03%以上0.10%未満、Si:0.005~0.10%、Mn:0.1~1.0%、Cr:0.20~2.00%を含有し、不純物として、S:0.01%以下、P:0.020%以下、sol.Al:0.10%以下、N:0.01%以下であり、残部が実質的にFeからなる組成とし、JIS G 0552で規定されるフェライト結晶粒度を粒度番号で5以上12以下とする軟窒化処理用鋼が提案されている。そして、係る技術によると、Ti、V等の高価な元素を添加しないため安価な鋼板が得られるとともに、鋼の結晶粒径を微細化することによりプレス加工性に優れた鋼板が得られるとされている。
 また、特許文献4には、質量%で、C:0.01%超、0.09%以下、Si:0.005~0.5%、Mn:0.01~3.0%、Al:0.005~2.0%、Cr:0.50~4.0%、P:0.10%以下、S:0.01%以下およびN:0.010%以下、或いは更にV:0.01~1.0%、Ti:0.01~1.0%およびNb:0.01~1.0%のうちから選んだ1種または2種以上を含有する組成とし、単位体積当たりの粒界面積Svを80mm−1以上、1300mm−1以下とする窒化処理用薄鋼板が提案されている。そして、係る技術によると、Cr,Al,V,Ti,Nbといった窒化物形成元素を鋼板の成形性を阻害しない範囲で含有させたうえで、単位体積当たりの粒界面積を所定の範囲に制御することにより、窒化処理後に高い表面硬さと十分な硬化深さの両者が併せて得られるとされている。
 また、特許文献5には、C:0.01~0.10mass%、Si:0.1mass%以下、Mn:0.1~1.0mass%、P:0.05mass%以下、S:0.01mass%以下、Al:0.01~0.06mass%、Cr:0.05~0.50mass%、V:0.01~0.30mass%、N:0.01mass%以下を含み、残部がFeおよび不可避的不純物からなる軟窒化用鋼板が提案されている。そして、係る技術によると、窒化促進元素としてCr:0.05~0.50mass%およびV:0.01~0.30mass%を含有することにより軟窒化処理による表面硬化特性が向上し、多量の合金元素を添加することなく、軟窒化処理前の成形性に優れ、軟窒化処理による表面硬化特性にも優れる軟窒化処理鋼板を安価に製造することができるとされている。
 また、特許文献6には、C:0.04~0.08mass%、Si:0.1mass%以下、Mn:0.05~0.6mass%、P:0.03mass%以下、S:0.01mass%以下、Al:0.1mass%以下、Cr:0.6~1.2mass%、V:0.002~0.01mass%未満およびN:0.01mass%以下を含有し、残部がFeおよび不可避的不純物からなる軟窒化処理用鋼板が提案されている。そして、係る技術によると、極微量のV(0.002~0.01mass%未満)を含有することにより、軟窒化処理によって高硬度であり且つポーラス層の形成が少ない窒化層を形成することができるため、加工性に優れるとともに耐摩耗性にも優れる軟窒化処理用鋼板が得られるとされている。
特開平9−25513号公報 特開平9−25543号公報 特開2003−105489号公報 特開2003−277887号公報 特開2005−171331号公報 特開2008−280598号公報
 しかしながら、特許文献1および特許文献2で提案された技術では、窒化促進元素として多量のAlを含有するため、Al介在物に起因する内部欠陥および表面欠陥の発生が懸念される。また、精錬時にAl系スラグが多く生成するため、溶製コストの高騰を招くという問題も見られる。
 また、特許文献3で提案された技術では、高価な元素を含まないため安価な軟窒化処理用鋼板が得られるものの、その強度は引張強さで高々420MPa程度であるため、高応力負荷状態で使用される部品への適用は制限される。
 また、特許文献4で提案された技術では、500MPaを超える引張強さを有する窒化処理用薄鋼板が得られるものの、窒化処理後の板厚方向の硬度分布についての考慮がなされておらず、実際に窒化処理が施された場合の部品耐久性能が必要十分な水準に達しない場合が多い。
 また、特許文献5で提案された技術では、軟窒化処理による表面硬化特性に優れた軟窒化処理用鋼板が得られるものの、その引張強さは390MPaにも満たない。そのため、高い応力が負荷される機械構造用部品への適用は困難であり、汎用性に乏しい。
 また、特許文献6で提案された技術では、Cr(0.6~1.2mass%)とともに極微量のV(0.002~0.01mass%未満)を含有することにより良質な窒化層を形成し、耐摩耗性に優れた軟窒化処理用鋼板が得られるものの、その強度は引張強さで高々400MPa程度であるため、特許文献3で提案された技術と同様に、高応力負荷状態で使用される部品への適用は制限される。
 更に、鋼板に軟窒化処理を施す場合、通常、鋼板は約550~600℃の処理温度に加熱され、該処理温度に約1~5時間保持されるため、軟窒化処理により、鋼板表層部の硬さが著しく上昇する一方、鋼板の板厚内部(非窒化部)の強度は低下することがある。そのため、たとえ軟窒化処理前に所望の強度(引張強さ)を有していても、軟窒化処理により鋼板の板厚内部(非窒化部)の強度が大幅に低下し、軟窒化処理後の最終製品に所望の強度、並びに耐疲労特性を付与することができない場合が想定される。
 以上の理由により、軟窒化処理用鋼板においては、軟窒化処理後であっても鋼板の板厚内部(非窒化部)で所望の強度を有することが、重要な特性の1つとなる。しかしながら、上記した何れの従来技術においても、軟窒化処理前後に見られる板厚内部の強度変化について、何ら検討されていない。
 本発明は、上記した従来技術が抱える問題を有利に解決し、所望の強度(引張強さ:440MPa以上)を有し、且つ、軟窒化処理後の耐疲労特性に優れた軟窒化処理用鋼板およびその製造方法を提供することを目的とする。
 上記課題を解決すべく、本発明者らは、軟窒化処理用鋼板の強度、成形性、並びに、軟窒化処理前後に見られる鋼板の板厚内部(非窒化部)の強度変化に及ぼす各種要因について鋭意検討した。その結果、以下のような知見を得た。
1)鋼板組織を、フェライトおよびパーライトを含む複合組織とすることにより、軟窒化処理後の強度低下が抑制され、強度安定性に優れた鋼板が得られること。
2)鋼板組成に関し、所望量のVを含有させ、該V含有量のうちの過半を固溶Vとすることにより、軟窒化処理を通じて、鋼板の表層部のみならず鋼板の板厚内部(非窒化部)の強度も増加し、耐疲労特性が向上すること。
3)軟窒化処理後に、鋼板の板厚内部(非窒化部)の硬さが、軟窒化処理前の硬さの5%超増加することにより、耐疲労特性が安定して向上すること。
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
(1)質量%で、
C :0.05%以上0.10%以下、  Si:0.5%以下、
Mn:0.7%以上1.5%以下、    P :0.05%以下、
S :0.01%以下、        Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、    V :0.03%以上0.30%以下、
N :0.005%以下
を含有し、且つ、固溶V量と前記V含有量との比(固溶V量/V含有量)が0.50超であり、残部がFeおよび不可避的不純物からなる組成と、フェライトおよびパーライトを含む複合組織とを有することを特徴とする、軟窒化処理用鋼板。
(2)(1)において、前記組成に加えてさらに、質量%でNb:0.005%以上0.025%以下を含有することを特徴とする、軟窒化処理用鋼板。
(3)鋼片を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻取り、熱延鋼板とするにあたり、
前記鋼片を、質量%で、
C :0.05%以上0.10%以下、  Si:0.5%以下、
Mn:0.7%以上1.5%以下、    P :0.05%以下、
S :0.01%以下、         Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、    V :0.03%以上0.30%以下、
N :0.005%以下
を含有し、残部がFeおよび不可避的不純物からなる組成とし、前記熱間圧延の加熱温度を1100℃以上1300℃以下とし、前記仕上げ圧延の仕上げ温度をAr変態点以上(Ar変態点+100℃)以下とし、前記冷却の平均冷却速度を30℃/s以上とし、前記巻取りの巻取り温度を500℃以上600℃以下とすることを特徴とする、軟窒化処理用鋼板の製造方法。
(4)(3)において、前記組成に加えてさらに、質量%でNb:0.005%以上0.025%以下を含有することを特徴とする、軟窒化処理用鋼板の製造方法。
 本発明によれば、所望の強度(引張強さ:440MPa以上)を有し、且つ、軟窒化処理前の成形性および軟窒化処理後の耐疲労特性に優れた軟窒化処理用鋼板が得られる。このような鋼板であれば、自動車の変速機部品等、高応力負荷状態で使用される部品にも使用することができ、製造コストを大幅に削減することが可能となり、産業上格段の効果を奏する。
 以下、本発明について詳細に説明する。
 まず、本発明鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
 C :0.05%以上0.10%以下
 Cは、固溶強化および第二相の形成を通じて、鋼の高強度化に寄与する元素である。C含有量が0.05%未満である場合、自動車の変速機部品等、高応力負荷状態で使用される部品の素材として要求される鋼板強度を確保することができない。一方、C含有量が0.10%を超えると、鋼板強度が過度に高まり、成形性が低下する。したがって、C含有量は0.05%以上0.10%以下とする。好ましくは0.05%以上0.08%以下である。
 Si:0.5%以下
 Siは、固溶強化元素であり、鋼の高強度化に有効な元素であるとともに、脱酸剤としても作用する。このような効果を得るためには、0.03%以上含有させることが好ましいが、Si含有量が0.5%を超えると、難剥離性スケールが生成して鋼板の表面性状が顕著に悪化する。したがって、Si含有量は0.5%以下とする。好ましくは、0.1%以下である。
 Mn:0.7%以上1.5%以下
 Mnは、固溶強化元素であり、鋼の高強度化に有効な元素である。また、鋼中に不純物として存在するSを析出物として固定し、鋼に対するS起因の悪影響を低減する元素としても作用する。Mn含有量が0.7%未満である場合、所望の鋼板強度を確保することができない。一方、Mn含有量が1.5%を超えると、鋼板強度が過度に高まり、成形性が低下する。したがって、Mn含有量は0.7%以上1.5%以下とする。好ましくは1.0%以上1.5%以下である。更に好ましくは1.2%以上1.5%以下である。
 P :0.05%以下
 Pは、鋼板の成形性や靭性を低下させる元素であり、本発明ではPを極力低減することが好ましい。したがって、P含有量は0.05%以下とする。好ましくは0.03%以下である。
 S :0.01%以下
 Sは、Pと同様、鋼板の成形性や靭性を低下させる元素であり、本発明ではSを極力低減することが好ましい。したがって、S含有量は0.01%以下とする。好ましくは0.005%以下である。
 Al:0.01%以上0.06%以下
 Alは、脱酸剤として作用する元素であり、その効果を確実に得るためにAl含有量は0.01%以上とする。一方、Al含有量が0.06%を超えると、脱酸剤としての効果が飽和するうえ、Al系介在物が増加して鋼板の内部欠陥および表面欠陥を招来する。したがって、Al含有量は0.01%以上0.06%以下とする。好ましくは0.02%以上0.05%以下である。
 Cr:0.5%以上1.5%以下
 Crは、軟窒化処理により鋼中に窒化物を形成し、鋼板表層部の硬度を高める効果を有する元素であり、本発明における重要な元素である。このような効果を顕著なものとするためには、Cr含有量を0.5%以上とする必要がある。一方、Cr含有量が1.5%を超えると、軟窒化処理により得られる表面硬化層(窒化層)の脆化が著しくなる。したがって、Cr含有量は0.5%以上1.5%以下とする。好ましくは0.5%以上1.0%以下である。
 V :0.03%以上0.30%以下
 Vは、軟窒化処理により鋼中に窒化物を形成し、鋼板表層部の硬度を高める効果を有し、且つ、軟窒化処理を通じて鋼板の板厚内部(非窒化部)の強度を高める効果を有する元素であり、本発明における最も重要な元素である。また、軟窒化処理前の鋼中に析出しているVは、粒子分散強化(析出強化)によって軟窒化処理用鋼板の強度を高める効果も有する。V含有量が0.03%未満である場合、これらの効果を十分に発現することができない。一方、V含有量が0.30%を超えると、軟窒化処理により得られる表面硬化層(窒化層)の脆化が著しくなるうえ、鋼板の強度向上効果が飽和するため経済的にも不利となる。したがって、V含有量は0.03%以上0.30%以下とする。好ましくは0.05%以上0.20%以下である。
 N :0.005%以下
 Nは、鋼板の成形性を低下させる有害な元素である。また、Nは、軟窒化処理前にCr等の窒化促進元素と化合し、有効な窒化促進元素量の低下を招く元素でもある。したがって、本発明ではN含有量を極力低減することが好ましく、0.005%以下とする。好ましくは0.003%以下である。
 固溶V量とV含有量との比(固溶V量/V含有量):0.50超
 鋼板中の固溶Vは、軟窒化処理を通じて鋼板の表層部および板厚内部(非窒化部)の強度を向上させ、軟窒化処理後の耐疲労特性を確保するうえで重要な役割を担う。そこで、本発明では、軟窒化処理用鋼板、すなわち軟窒化処理前の鋼板における固溶V量とV含有量との比を0.50超とする。
 先述のとおり、鋼板に軟窒化処理を施すと、軟窒化処理の熱履歴を経ることにより鋼板の板厚内部(非窒化部)の強度が低下することがあり、軟窒化処理後に所望の耐疲労特性が得られない場合が想定される。そのため、軟窒化処理用鋼板においては、軟窒化処理を施した後の鋼板の板厚内部(非窒化部)が所望の強度を有するような特性を具えていることが重要である。
 軟窒化処理を施した後の鋼板の板厚内部(非窒化部)の強度を確保する手段としては、軟窒化処理による鋼板の板厚内部(非窒化部)の強度低下分を考慮して軟窒化処理用鋼板の強度を高めに設定する手段も考えられる。しかしながら、鋼板強度を過度に高めると、鋼板の成形性が低下し、軟窒化処理前に所望の部品形状に成形するうえで不利となる。
 疲労強度や耐摩耗性が要求される機械構造用部品を、軟窒化処理用鋼板を素材として用いて製造するに際しては、軟窒化処理用鋼板をプレス加工等により所望の部品形状に成形したのち、軟窒化処理を施して最終製品とする。そのため、軟窒化処理用鋼板(軟窒化処理前の鋼板)の強度を必要以上に高めることは、軟窒化処理前の成形性に悪影響を及ぼし、好ましくない。
 一方、軟窒化処理用鋼板に軟窒化処理を施すことにより、その板厚内部(非窒化部)の強度を軟窒化処理前よりも上昇させることができれば、軟窒化処理前の成形性を低下させることなく、軟窒化処理後の耐疲労特性を向上させることができる。そのため、軟窒化処理前の成形性とともに軟窒化処理後の耐疲労特性が要求される軟窒化処理用鋼板としては、軟窒化処理を通じて鋼板の板厚内部(非窒化部)の強度が上昇する特性を有するのが理想的である。
 そこで、軟窒化処理を通じて、鋼板の板厚内部(非窒化層)の強度を向上させる手段について、本発明者らが検討した結果、軟窒化処理前の鋼板中に所望量の固溶Vを含有させ、軟窒化処理時に固溶Vを炭化物として析出させることが有効であることを知見した。
 係る知見に基づき、本発明においては、鋼板中のV含有量を0.03%以上0.30%以下としたうえで、V含有量の過半を固溶Vとすること、すなわち、固溶V量とV含有量との比(固溶V量/V含有量)を0.50超とすることを必須とする。固溶V量とV含有量との比(固溶V量/V含有量)が0.50以下である場合、軟窒化処理に伴う鋼板の板厚内部(非窒化部)の強度上昇効果を十分に発現することができない。なお、軟窒化処理前の鋼中に炭窒化物として析出させ、軟窒化処理前の鋼板強度の確保と軟窒化処理による硬化量の確保を両立させる観点から、固溶V量とV含有量との比(固溶V量/V含有量)の上限値は、0.80とすることが好ましい。
 以上が、本発明における基本組成であるが、基本組成に加えてさらにNbを含有することができる。
 Nb:0.005%以上0.025%以下
 Nbは、鋼中に炭窒化物として析出し、粒子分散強化(析出強化)によって鋼板の強度を高めるうえで有効な元素であり、必要に応じて含有できる。Nb含有量が0.005%未満である場合、このような効果を十分に発現することができない。一方、Nb含有量が0.025%を超えると、鋼板強度が過度に高まり、成形性が低下する。したがって、Nb含有量は0.005%以上0.025%以下とする。好ましくは0.010%以上0.020%以下である。
 本発明の鋼板において、上記以外の成分は、Feおよび不可避的不純物である。不可避的不純物としては、例えば、質量%で、Cu:0.05%以下、Ni:0.05%以下、Mo:0.05%以下、Co:0.05%以下、Ti:0.005%以下、Zr:0.005%以下、Ca:0.005%以下、Sn:0.005%以下、O:0.005%以下、B:0.0005%以下等が許容できる。
 次に、本発明鋼板の組織の限定理由について説明する。
 本発明の鋼板は、フェライトおよびパーライトを含む複合組織を有する。
 鋼板組織に占めるフェライトの割合を高めることは、鋼板の成形性を確保するうえで有効であるが、鋼板をフェライト単相組織とすると、鋼板強度が不足し、機械構造用部品の素材としての適用範囲が狭まり、汎用性に乏しくなる。一方、フェライト主体の組織中に第二相を生成させて鋼板強度を確保する場合において、マルテンサイト、ベイナイト等の硬質な低温変態相を第二相とした場合には、軟窒化処理時の熱履歴によって上記低温変態相が軟化してしまい、鋼板の板厚内部(非窒化部)の強度が大幅に低下してしまう。
 そこで、本発明においては、軟窒化処理の熱履歴による鋼板の板厚内部(非窒化部)の強度低下を抑制すべく、鋼板の組織を、フェライトを主相とし、第二相をパーライトとした複合組織とする。なお、本発明においては、鋼板組織中のフェライト分率を80%以上95%以下とし、パーライト分率を5%以上20%以下とすることが好ましい。また、本発明の鋼板は、フェライトとパーライトからなる複合組織とすることが理想的であるが、その他の相(組織)が不可避的に生じてしまう場合であっても、その分率が合計で1%以下であれば許容できる。
 次に、本発明鋼板の製造方法について説明する。
 本発明は、上記した組成を有する鋼片を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻取り、熱延鋼板とする。この際、加熱温度を1100℃以上1300℃以下とし、仕上げ温度をAr変態点以上(Ar変態点+100℃)以下とし、冷却の平均冷却速度を30℃/s以上とし、巻取り温度を500℃以上600℃以下とすることが好ましい。
 本発明において、鋼の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、偏析等の問題から連続鋳造法により鋼片(スラブ)とするのが好ましいが、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法で鋼片としてもよい。更に、必要に応じて、各種予備処理や二次精錬、鋼片の表面手入等を施してもよい。
 鋼片の加熱温度:1100℃以上1300℃以下
 上記の如く得られた鋼片に、粗圧延および仕上げ圧延を施すが、本発明においては、粗圧延前の鋼片中にVを十分に再固溶させる必要がある。鋼片の加熱温度が1100℃未満である場合、V炭窒化物を十分に分解してVを再固溶させることが困難で、Vを含有することにより得られる前記した所望の効果を発現することができないことがある。また、必要な仕上げ温度の確保も困難となる。一方、鋼片の加熱温度が1300℃を超えると、鋼片の加熱に要するエネルギーが増大し、コスト面で不利となる。したがって、粗圧延前の鋼片の加熱温度は1100℃以上1300℃以下とする。好ましくは1150℃以上1250℃以下である。
 粗圧延前の鋼片を加熱するに際しては、鋳造後の鋼片を常温まで冷却してから加熱してもよいし、鋳造後冷却途中の鋼片を追加加熱或いは保熱してもよい。また、鋳造後の鋼片が十分な温度を保持しており、鋼中にVが十分に固溶している場合には、鋼片を加熱することなく直送圧延しても良い。なお、粗圧延条件については特に限定する必要はない。
 仕上げ温度:Ar変態点以上(Ar変態点+100℃)以下
 仕上げ圧延における仕上げ温度がAr変態点未満である場合、圧延方向に展伸したフェライト組織、および、未再結晶フェライト組織が形成され、鋼板の成形性が低下する。また、鋼板の機械的特性の面内異方性が強くなり、均質な成形加工が困難となる。一方、仕上げ温度が(Ar変態点+100℃)を超えると、鋼板の表面性状が悪化する傾向が見られる。したがって、仕上げ温度はAr変態点以上(Ar変態点+100℃)以下とする。なお、仕上げ温度とは、仕上げ圧延の最終パス出側での鋼板温度をさす。
 上記仕上げ温度を確保すべく、シートバーヒーター、エッジヒーター等の加熱装置を利用して、圧延中の鋼板を追加加熱してもよい。なお、鋼のAr変態点については、オーステナイト温度域からの冷却過程における熱収縮を測定して熱収縮曲線を作成して求めても、或いは、合金元素の含有量から概算して求めてもよい。
 平均冷却速度:30℃/s以上
 平均冷却速度の適正化は、鋼板中の固溶Vを確保するうえで重要であり、本発明においては、仕上げ圧延終了後、直ちに(1s以内に)冷却を開始し、仕上げ温度から巻取り温度までの平均冷却速度を30℃/s以上とする。この平均冷却速度が30℃/s未満である場合、冷却過程でVの炭窒化物が析出し、鋼板中に所望量の固溶Vが残存しなくなるおそれがある。また、結晶粒が過度に粗大化して、鋼板の強度や延性が低下する場合がある。したがって、上記平均冷却速度は30℃/s以上とする。好ましくは40℃/s以上である。
 上記平均冷却速度の上限は特に規定されないが、強水冷に起因する鋼板の形状不良を避けるためには、100℃/s以下とすることが好ましい。なお、鋼板が巻取り温度に達するまで冷却された後は、注水等による強制冷却は特に不要であり、巻取りまで大気中で放冷すればよい。
 巻取り温度:500℃以上600℃以下
 巻取り温度の適正化は、鋼板中の固溶Vを確保するとともに、鋼板を所望の組織とするうえで重要である。巻き取り温度が500℃未満である場合、低温変態相が生成して鋼板が硬質化し、成形性が低下するとともに、軟窒化処理の熱履歴による鋼板の板厚内部(非窒化部)の強度低下が避けられない。一方、巻取り温度が600℃を超えると、巻取り後にV炭窒化物が多量に析出し、鋼板中に所望量の固溶Vが残存しなくなるおそれがある。したがって、巻取り温度は500℃以上600℃以下とする。好ましくは520℃以上580℃以下である。
 上記によって得られた熱延鋼板は、酸洗、ショットピーニング等により酸化スケールを除去したのちに、軟窒化処理用鋼板として使用される。また、形状矯正や表面粗度の調整を目的とした調質圧延を施しても、本発明の効果が損なわれることはない。
 なお、本発明の軟窒化処理用鋼板は、ガス軟窒化処理および塩浴軟窒化処理の何れに対しても適用可能である。
 表1に示す化学成分を含有する鋼を溶製し、造塊・分塊圧延して鋼片とした。これらの鋼片を加熱したのち、粗圧延および仕上げ圧延を施し、仕上げ圧延終了後、直ちに冷却し、巻取り、板厚:3.2mmの熱延鋼板とした。なお、上記における鋼片の加熱温度、仕上げ温度、仕上げ温度から巻取り温度までの平均冷却速度、巻取り温度は、表2に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記により得られた熱延鋼板を酸洗してデスケーリングし、伸長率:0.5%の調質圧延を施した。そして、調質圧延後の鋼板から試験片を採取し、以下の評価に供した。
(i)固溶V量
 固溶V量は、調質圧延後鋼板の板幅1/4位置から試験片を採取し、該試験片を電解液中で定電流電解して得た鋼中析出物中のV量を、V含有量から差し引くことにより求めた。
(ii)組織観察
 調質圧延後鋼板の板幅1/4位置における、圧延方向に平行な板厚断面の試料を採取し、鏡面研磨してナイタールで腐食したのち、板厚1/4位置を、光学顕微鏡あるいは走査型電子顕微鏡で500~3000倍の適当な倍率にて撮影した。得られた組織写真を用い、画像解析により、組織全体に対するフェライト面積率、パーライト面積率、並びに、その他の組織の種類およびそれらの面積率を求め、それぞれの分率とした。得られた結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
(iii)引張試験
 調質圧延後鋼板の板幅1/4位置において、引張試験方向が圧延方向となるように採取したJIS Z 2201(1998)規定の5号試験片(標点距離L:50mm)を用い、JIS Z 2241(1998)の規定に準拠した引張試験を行い、引張強さ(TS)と伸び(El)を測定し、強度・伸びバランス(TS×El)を求めた。なお、本実施例においては、引張強さ(TS):440MPa以上、強度・伸びバランス(TS×El):17GPa・%以上の鋼板を、高強度かつ良好な成形性を有するものと評価した。
(iv)断面硬さ試験
 上記調質圧延後の鋼板から試験片を採取し、JIS Z 2244(2009)に準拠した方法により、板厚1/2位置におけるビッカース硬さ(HVc)を測定した。
 <測定方法>
 試験力 :0.98N
 測定箇所:5箇所
(v)軟窒化処理試験
 上記調質圧延後の鋼板から小片を採取し、以下に示す条件のガス軟窒化処理を施した。
 軟窒化雰囲気:アンモニアガスと吸熱型変成ガスの等量比混合ガス
 処理温度  :580℃
 処理時間  :2.5時間
 なお、上記処理温度(580℃)に上記処理時間(2.5時間)保持したのち、小片を油冷した(油温:70℃)。そして、油冷後の小片を、以下の評価に供した。
 油冷後の小片について、JIS G 0563(1993)に準拠して、板表面から深さ0.1mm位置におけるビッカース硬さ(HV0.1)を測定した。また、JIS G 0562(1993)の規定に準拠した実用窒化層深さを測定した。本実施例においては、ビッカース硬さ(HV0.1):500以上であり且つ実用窒化層深さ:0.40mm以上のものを表面硬化特性が良好なものと評価した。
 また、鋼板の板厚内部(非窒化部)の硬さを代表して、板厚1/2位置(非窒化部)におけるビッカース硬さ(HVc’)を、上記(iv)と同様の方法により測定した。そして、上記(iv)で求めた軟窒化処理前の板厚1/2位置におけるビッカース硬さ(HVc)と、軟窒化処理後の板厚1/2位置におけるビッカース硬さ(HVc’)から、軟窒化処理による板厚中央部のビッカース硬さの上昇率:(HVc’−HVc)/HVc×100(%)を求めた。本実施例においては、ビッカース硬さの上昇率が5.0%超であるものを、軟窒化処理後の耐疲労特性が良好なもの(○)とし、それ以外を×として評価した。得られた結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかであるように、本発明例では、強度、成形性、軟窒化処理による表面硬化特性、耐疲労特性の全てにおいて、良好な結果が得られている。一方、鋼組成や組織が本発明の要件を満足しない比較例では、上記何れかの特性において十分な結果が得られていない。

Claims (4)

  1.  質量%で、
    C :0.05%以上0.10%以下、  Si:0.5%以下、
    Mn:0.7%以上1.5%以下、    P :0.05%以下、
    S :0.01%以下、         Al:0.01%以上0.06%以下、
    Cr:0.5%以上1.5%以下、    V :0.03%以上0.30%以下、
    N :0.005%以下
    を含有し、且つ、固溶V量と前記V含有量との比(固溶V量/V含有量)が0.50超であり、残部がFeおよび不可避的不純物からなる組成と、フェライトおよびパーライトを含む複合組織とを有することを特徴とする、軟窒化処理用鋼板。
  2.  前記組成に加えてさらに、質量%でNb:0.005%以上0.025%以下を含有することを特徴とする、請求項1に記載の軟窒化処理用鋼板。
  3.  鋼片を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻取り、熱延鋼板とするにあたり、
    前記鋼片を、質量%で、
    C :0.05%以上0.10%以下、  Si:0.5%以下、
    Mn:0.7%以上1.5%以下、    P :0.05%以下、
    S :0.01%以下、         Al:0.01%以上0.06%以下、
    Cr:0.5%以上1.5%以下、    V :0.03%以上0.30%以下、
    N :0.005%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成とし、前記熱間圧延の加熱温度を1100℃以上1300℃以下とし、前記仕上げ圧延の仕上げ温度をAr変態点以上(Ar変態点+100℃)以下とし、前記冷却の平均冷却速度を30℃/s以上とし、前記巻取りの巻取り温度を500℃以上600℃以下とすることを特徴とする、軟窒化処理用鋼板の製造方法。
  4.  前記組成に加えてさらに、質量%でNb:0.005%以上0.025%以下を含有することを特徴とする、請求項3に記載の軟窒化処理用鋼板の製造方法。
PCT/JP2012/067025 2012-06-27 2012-06-27 軟窒化処理用鋼板およびその製造方法 WO2014002288A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280074343.1A CN104411847A (zh) 2012-06-27 2012-06-27 软氮化处理用钢板及其制造方法
PCT/JP2012/067025 WO2014002288A1 (ja) 2012-06-27 2012-06-27 軟窒化処理用鋼板およびその製造方法
CN201911155721.9A CN110938773B (zh) 2012-06-27 2012-06-27 软氮化处理用钢板及其制造方法
KR1020157000899A KR101735220B1 (ko) 2012-06-27 2012-06-27 연질화 처리용 강판 및 그 제조 방법
EP12879635.6A EP2868762B1 (en) 2012-06-27 2012-06-27 Steel sheet for soft nitriding and process for producing same
US14/409,549 US10077485B2 (en) 2012-06-27 2012-06-27 Steel sheet for soft-nitriding and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067025 WO2014002288A1 (ja) 2012-06-27 2012-06-27 軟窒化処理用鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2014002288A1 true WO2014002288A1 (ja) 2014-01-03

Family

ID=49782511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067025 WO2014002288A1 (ja) 2012-06-27 2012-06-27 軟窒化処理用鋼板およびその製造方法

Country Status (5)

Country Link
US (1) US10077485B2 (ja)
EP (1) EP2868762B1 (ja)
KR (1) KR101735220B1 (ja)
CN (2) CN104411847A (ja)
WO (1) WO2014002288A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177167A (ja) * 2011-02-28 2012-09-13 Jfe Steel Corp 軟窒化処理用鋼板およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638715B1 (ko) 2012-01-31 2016-07-11 제이에프이 스틸 가부시키가이샤 발전기 림용 열연 강판 및 그 제조 방법
JP5630523B2 (ja) * 2013-04-02 2014-11-26 Jfeスチール株式会社 窒化処理用鋼板およびその製造方法
JP6300647B2 (ja) * 2014-06-03 2018-03-28 山陽特殊製鋼株式会社 窒化特性に優れる窒化用鋼
WO2017094876A1 (ja) 2015-12-04 2017-06-08 新日鐵住金株式会社 窒化プレート部品およびその製造方法
CN112410505B (zh) * 2020-09-30 2022-06-14 盐城市联鑫钢铁有限公司 一种电炉高效低成本冶炼工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967365A (ja) * 1982-10-08 1984-04-17 Daido Steel Co Ltd 機械部品の製造方法
JPH05171347A (ja) * 1991-12-18 1993-07-09 Aichi Steel Works Ltd 冷間鍛造性に優れた軟窒化用鋼
JPH0925513A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板の製造方法
JPH0925543A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板およびそのプレス成形体
JP2001316759A (ja) * 2000-05-11 2001-11-16 Nkk Corp 窒化用鋼板およびその製造方法
JP2003105489A (ja) 2001-09-26 2003-04-09 Sumitomo Metal Ind Ltd 軟窒化処理用鋼およびその製造方法
JP2003277887A (ja) 2002-03-26 2003-10-02 Jfe Steel Kk 窒化処理用薄鋼板
JP2004256831A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk 窒化後の磁気特性に優れた窒化用鋼材およびその成形体
JP2005171331A (ja) 2003-12-12 2005-06-30 Jfe Steel Kk 成形性に優れる軟窒化用鋼板およびその製造方法
JP2005264205A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 窒化処理用鋼板
JP2008280598A (ja) 2007-05-14 2008-11-20 Jfe Steel Kk 軟窒化処理用鋼板およびその製造方法
JP2009068057A (ja) * 2007-09-12 2009-04-02 Jfe Steel Kk 軟窒化処理用鋼板およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100214A (ja) * 1982-11-29 1984-06-09 Nippon Kokan Kk <Nkk> 厚肉高張力鋼の製造方法
JPH04154936A (ja) * 1990-10-16 1992-05-27 Aichi Steel Works Ltd 析出硬化型窒化用鋼
JP3477955B2 (ja) * 1995-11-17 2003-12-10 Jfeスチール株式会社 極微細組織を有する高張力熱延鋼板の製造方法
JPH09279296A (ja) 1996-04-16 1997-10-28 Nippon Steel Corp 冷間鍛造性に優れた軟窒化用鋼
JP4134355B2 (ja) * 1997-03-25 2008-08-20 Jfeスチール株式会社 靱性に優れた連続鋳造製調質型高張力鋼板の製造方法
JP3792341B2 (ja) * 1997-04-28 2006-07-05 株式会社神戸製鋼所 冷間鍛造性及び耐ピッチング性に優れた軟窒化用鋼
JP4265133B2 (ja) * 1999-09-28 2009-05-20 Jfeスチール株式会社 高張力熱延鋼板およびその製造方法
EP1205570A4 (en) 2000-03-02 2004-11-10 Matsushita Electric Ind Co Ltd COLOR CATHODE RANGE MASK FRAME, STEEL PLATE USEFUL IN THIS MASK, METHOD FOR PRODUCING THE SAME, AND COLOR CATHODE RANGE WITH THIS FRAME
JP4291941B2 (ja) * 2000-08-29 2009-07-08 新日本製鐵株式会社 曲げ疲労強度に優れた軟窒化用鋼
JP4154936B2 (ja) 2002-06-25 2008-09-24 株式会社Sumco 単結晶の無欠陥領域シミュレーション方法
JP4634885B2 (ja) * 2005-07-26 2011-02-16 新日本製鐵株式会社 疲労特性と塗装焼付硬化性能と耐常温時効性に優れた高強度薄鋼板及びその製造方法
JP4502947B2 (ja) 2005-12-27 2010-07-14 株式会社神戸製鋼所 溶接性に優れた鋼板
JP5326403B2 (ja) * 2007-07-31 2013-10-30 Jfeスチール株式会社 高強度鋼板
JP5171347B2 (ja) 2008-03-31 2013-03-27 ユニ・チャーム株式会社 清掃用具
JP5041084B2 (ja) * 2010-03-31 2012-10-03 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
JP5041083B2 (ja) * 2010-03-31 2012-10-03 Jfeスチール株式会社 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP4962594B2 (ja) 2010-04-22 2012-06-27 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967365A (ja) * 1982-10-08 1984-04-17 Daido Steel Co Ltd 機械部品の製造方法
JPH05171347A (ja) * 1991-12-18 1993-07-09 Aichi Steel Works Ltd 冷間鍛造性に優れた軟窒化用鋼
JPH0925513A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板の製造方法
JPH0925543A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板およびそのプレス成形体
JP2001316759A (ja) * 2000-05-11 2001-11-16 Nkk Corp 窒化用鋼板およびその製造方法
JP2003105489A (ja) 2001-09-26 2003-04-09 Sumitomo Metal Ind Ltd 軟窒化処理用鋼およびその製造方法
JP2003277887A (ja) 2002-03-26 2003-10-02 Jfe Steel Kk 窒化処理用薄鋼板
JP2004256831A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk 窒化後の磁気特性に優れた窒化用鋼材およびその成形体
JP2005171331A (ja) 2003-12-12 2005-06-30 Jfe Steel Kk 成形性に優れる軟窒化用鋼板およびその製造方法
JP2005264205A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 窒化処理用鋼板
JP2008280598A (ja) 2007-05-14 2008-11-20 Jfe Steel Kk 軟窒化処理用鋼板およびその製造方法
JP2009068057A (ja) * 2007-09-12 2009-04-02 Jfe Steel Kk 軟窒化処理用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868762A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177167A (ja) * 2011-02-28 2012-09-13 Jfe Steel Corp 軟窒化処理用鋼板およびその製造方法

Also Published As

Publication number Publication date
KR101735220B1 (ko) 2017-05-12
CN110938773A (zh) 2020-03-31
CN110938773B (zh) 2022-04-05
KR20150023744A (ko) 2015-03-05
CN104411847A (zh) 2015-03-11
EP2868762A1 (en) 2015-05-06
EP2868762A4 (en) 2016-03-09
US10077485B2 (en) 2018-09-18
EP2868762B1 (en) 2019-05-22
US20150354034A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
EP2604715B1 (en) Method for manufacturing a high-strength cold-rolled steel sheet having excellent formability and crashworthiness
EP2801636B1 (en) High carbon hot-rolled steel sheet and method for producing same
JP5440203B2 (ja) 高炭素熱延鋼板の製造方法
KR20170086099A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
EP2792763A1 (en) Steel sheet with excellent aging resistance, and method for producing same
WO2013180180A1 (ja) 高強度冷延鋼板およびその製造方法
TWI548755B (zh) 氮化處理用鋼板及其製造方法
CN110938773B (zh) 软氮化处理用钢板及其制造方法
WO2016113781A1 (ja) 高強度鋼板およびその製造方法
WO2016120914A1 (ja) 高強度めっき鋼板およびその製造方法
WO2016113780A1 (ja) 高強度鋼板およびその製造方法
KR101701652B1 (ko) 연질화 처리용 강판 및 그 제조 방법
JP5811725B2 (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP5614329B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP5614330B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP6225733B2 (ja) 高強度熱延鋼板およびその製造方法
EP2801633B1 (en) High carbon hot-rolled steel sheet and method for producing same
JP5655436B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
TW201400627A (zh) 軟氮化處理用鋼板及其製造方法
TW201400625A (zh) 軟氮化處理用鋼板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157000899

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012879635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201500453

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14409549

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP