WO2014001597A1 - Procedimiento de obtención de alcoholes superiores - Google Patents
Procedimiento de obtención de alcoholes superiores Download PDFInfo
- Publication number
- WO2014001597A1 WO2014001597A1 PCT/ES2013/070448 ES2013070448W WO2014001597A1 WO 2014001597 A1 WO2014001597 A1 WO 2014001597A1 ES 2013070448 W ES2013070448 W ES 2013070448W WO 2014001597 A1 WO2014001597 A1 WO 2014001597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- procedure according
- previous
- catalyst
- list
- ethanol
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 79
- 150000001298 alcohols Chemical class 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 claims abstract description 97
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 45
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 14
- 150000004706 metal oxides Chemical group 0.000 claims abstract description 13
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 11
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 4
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 135
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 93
- 239000003153 chemical reaction reagent Substances 0.000 claims description 46
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 43
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 32
- 229960001545 hydrotalcite Drugs 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 32
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 23
- 238000005470 impregnation Methods 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 238000001354 calcination Methods 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 238000000975 co-precipitation Methods 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 150000001450 anions Chemical class 0.000 claims description 10
- 239000013067 intermediate product Substances 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000000543 intermediate Substances 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 238000001556 precipitation Methods 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 5
- 150000004703 alkoxides Chemical class 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 3
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 claims description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 3
- UETZVSHORCDDTH-UHFFFAOYSA-N iron(2+);hexacyanide Chemical compound [Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] UETZVSHORCDDTH-UHFFFAOYSA-N 0.000 claims description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims 4
- 229910052733 gallium Inorganic materials 0.000 abstract description 20
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 92
- 239000000463 material Substances 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- 239000011777 magnesium Substances 0.000 description 27
- 230000003197 catalytic effect Effects 0.000 description 26
- 239000000243 solution Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 22
- 238000003786 synthesis reaction Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 238000010348 incorporation Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 239000011148 porous material Substances 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000011734 sodium Substances 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 5
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- -1 C 4 alcohols Chemical class 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000007306 turnover Effects 0.000 description 4
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 3
- 238000004438 BET method Methods 0.000 description 3
- 238000007869 Guerbet synthesis reaction Methods 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 3
- NMRPBPVERJPACX-UHFFFAOYSA-N octan-3-ol Chemical compound CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- CETWDUZRCINIHU-UHFFFAOYSA-N 2-heptanol Chemical compound CCCCCC(C)O CETWDUZRCINIHU-UHFFFAOYSA-N 0.000 description 2
- YVBCULSIZWMTFY-UHFFFAOYSA-N 4-Heptanol Natural products CCCC(O)CCC YVBCULSIZWMTFY-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical group O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- RZKSECIXORKHQS-UHFFFAOYSA-N Heptan-3-ol Chemical compound CCCCC(O)CC RZKSECIXORKHQS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- WOFPPJOZXUTRAU-UHFFFAOYSA-N octan-4-ol Chemical compound CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 2
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229940083957 1,2-butanediol Drugs 0.000 description 1
- AREPHAPHABGCQP-UHFFFAOYSA-N 1-(dimethylamino)-3-[2-[2-(4-methoxyphenyl)ethyl]phenoxy]propan-2-ol Chemical compound C1=CC(OC)=CC=C1CCC1=CC=CC=C1OCC(O)CN(C)C AREPHAPHABGCQP-UHFFFAOYSA-N 0.000 description 1
- PFHLGQKVKALLMD-UHFFFAOYSA-N 2,2-dimethylhexan-3-ol Chemical compound CCCC(O)C(C)(C)C PFHLGQKVKALLMD-UHFFFAOYSA-N 0.000 description 1
- HMSVXZJWPVIVIV-UHFFFAOYSA-N 2,2-dimethylpentan-3-ol Chemical compound CCC(O)C(C)(C)C HMSVXZJWPVIVIV-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-LURJTMIESA-N 2-Hexanol Natural products CCCC[C@H](C)O QNVRIHYSUZMSGM-LURJTMIESA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- KRIMXCDMVRMCTC-UHFFFAOYSA-N 2-methylhexan-2-ol Chemical compound CCCCC(C)(C)O KRIMXCDMVRMCTC-UHFFFAOYSA-N 0.000 description 1
- NMRPBPVERJPACX-QMMMGPOBSA-N 3-Octanol Natural products CCCCC[C@@H](O)CC NMRPBPVERJPACX-QMMMGPOBSA-N 0.000 description 1
- LWWJDXKGQVEZKT-UHFFFAOYSA-N 3-ethylhexan-1-ol Chemical compound CCCC(CC)CCO LWWJDXKGQVEZKT-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- YHGREDQDBYVEOS-UHFFFAOYSA-N [acetyloxy-[2-(diacetyloxyamino)ethyl]amino] acetate Chemical class CC(=O)ON(OC(C)=O)CCN(OC(C)=O)OC(C)=O YHGREDQDBYVEOS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N n-butyl methyl ketone Natural products CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/32—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/007—Mixed salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/62—Platinum group metals with gallium, indium, thallium, germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/656—Manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/656—Manganese, technetium or rhenium
- B01J23/6562—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/896—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J25/00—Catalysts of the Raney type
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/32—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
- C07C29/34—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Definitions
- the present invention relates to obtaining higher alcohols by using a catalyst of the metal oxide type comprising gallium and a noble metal. Therefore, the present invention belongs to the field of catalytic processes for obtaining higher alcohols.
- US5300695 describes zeolites exchanged with cations of K, Na, Ba and Cs among others as catalysts in the condensation of low molecular weight alcohols, obtaining iso-butanol selectivities of 30-35% to a methanol conversion of 45 %.
- Several basic oxides containing Cu commonly used in the production of high molecular weight alcohols from synthesis gas (CO / H 2 ), have been tested in condensation reactions of methanol and ethanol to produce high molecular weight alcohols, however with a production of C 4 alcohols quite low.
- Another group of catalysts used are calcium phosphate based materials of the hydroxyapatite type (US20070255079).
- hydrotalcite-like materials as catalysts in alcohol condensation reactions, such as the Guerbet reaction, both in batch systems and in continuous fixed-bed reactors.
- Studies carried out with these mixed oxides of Mg and Al revealed that the catalytic activity of these materials depends on the nature, density and strength of the basic surface sites which, in turn, depend on the Mg / AI molar composition in the solid
- the international application WO2009026510 describes a process for the synthesis of n-butanol by a material derived from the thermal decomposition of a hydrotalcite preferably comprising magnesium and aluminum.
- the present invention relates to a process for obtaining higher alcohols in the presence of a catalyst that is a metal oxide comprising gallium.
- catalysts derived from hydrotalcite comprising gallium in its structure provide higher yields to n-butanol than its analogs without gallium,
- one aspect of the present invention relates to a method of obtaining (from now on the process of the invention) of higher C3-C15 alcohols, preferably between C 3 -C 8 , which comprises a contact step between at least a reagent selected from the list comprising methanol, ethanol (EtOH), propanol and isopropanol and a catalyst, wherein said catalyst is a metal oxide comprising the following metals:
- M1 is at least one bivalent metal selected from the list comprising Mg, Zn, Cu, Co, Mn, Fe, Ni and Ca,
- said catalyst contains a noble metal selected from the list comprising Pd, Pt, Ru, Rh and Re, preferably Pd.
- C3-C15 higher alcohols means any linear or branched alkyl chain with at least one hydroxy functional group and having between 3 and 15 carbon atoms.
- C3-C8 higher alcohols means any linear or branched alkyl chain with at least one hydroxy functional group and having between 3 and 8 carbon atoms.
- the higher alcohol will preferably be a C3, C 4 , C 5 , C6, C 7 or Cs.
- Non-limiting examples would be propanol, isopropanol, n-butanol, 2-butanol, 2-methyl-2-butanol, 3- methyl-1 -butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2,2-dimethyl- 1-Propanol, 3-methyl-
- 2-butanol 1,5-pentanediol, 2,4-pentanediol, 2,2-dimethyl-1, 3-propanediol, 1, 2- butanediol, 1,3-butanediol, 1,4-butanediol, 2,3- butanediol, 1-heptane, 2-heptanol,
- bivalent metal or “trivalent metal” is meant a metal cation with a +2 or +3 charge, respectively.
- the catalyst is the metallic oxide which further comprises a metal M3, where M3 is at least one trivalent metal selected from the list comprising Al, La, Fe, Cr, Mn, Co and Ni.
- the metal oxide is obtained from the total or partial thermal decomposition of a hydrotalcite of the formula [M1 1- (x + y) M2 and M3 x (OH) 2 ] [A m " ( x + y ) / m .nH 2 0], where M1, M2 and M3 have been described above, A is at least one anion selected from the list comprising hydroxide, chloride, fluoride, bromide, iodide, nitrate, perchlorate, chlorate, bicarbonate, acetate, benzoate, methanesulfonate, p-toluenesulfonate, phenoxide, alkoxide, carbonate, sulfate, terephthalate, phosphate, hexacyanoferrate (III) and hexacyanoferrate (II), x is a value between 0 and 0.5, preferably x is a value between 0.1
- thermal decomposition means a chemical decomposition or structural change caused by the action of heat. This decomposition can be total or partial, depending on whether said decomposition is carried out in its entirety or if, on the contrary, it is partially carried out. This thermal decomposition can be carried out at temperatures above 150 ° C and in the presence of an oxidizing or non-oxidizing gas.
- the hydrotalcite is obtained by coprecipitation of at least one M1 compound and at least one composed of a trivalent metal selected from the list comprising M2 and M3, preferably the hydrotalcite is obtained by coprecipitation of compounds of M1, M2 and M3.
- This anion A can be introduced between the sheets of the resulting hydrotalcite.
- sodium and / or potassium salts thereof can be used.
- A is at least one anion selected from the list comprising carbonate, bicarbonate and hydroxide. The best results are obtained when coprecipitation is carried out at a pH greater than 7, preferably between 10 and 14.
- sodium and / or potassium hydroxide are preferably used to regulate the pH.
- soluble compound of M1, M2 and M3 is meant any salt which in contact with a solvent dissociates, preferably a polar solvent, more preferably water.
- soluble compounds of M1, M2 and M3 may be nitrates, halides, sulfates, carboxylates and in general oxoacids comprising M1, M2 or M3, preferably the soluble compounds of M1, M2 and M3 are nitrates.
- A is preferably at least one anion selected from the list comprising C0 3 2 “ , HC0 3 “ , 0 2 “ , OH “ , CI “ , NO 3 2” , CI “ , F, Br “ , I “ , CIO 4 “ , CH 3 COO “ , C 6 H 5 COO “ , and SO 4 2” , even more preferably CO3 2 “ , HCO 3 “ , O 2 " and OH “ .
- Another embodiment of the present invention is the process as described above where the thermal decomposition of the hydrotalcite is carried out by a calcination, preferably by an calcination in the atmosphere of oxygen, nitrogen or any of its mixtures.
- the calcination is carried out at a temperature between 250 ° C and 650 ° C, preferably between 350 ° C and 550 ° C.
- the thermal decomposition of the hydrotalcite is preferably carried out over a range of 0.5 to 48 hours, preferably 1 to 24 hours.
- This process can be carried out by heating hydrotalcite in a gaseous atmosphere and can be carried out in a static oven or in a calcination reactor with controlled gas flow, the latter being the preferred system.
- the gas can be an oxidizing gas or a non-oxidizing gas.
- oxidizing gases may include air and oxygen.
- non-oxidizing gases can be inert gases, such as nitrogen, argon, helium and reducing gases such as carbon dioxide, hydrogen and ammonia.
- the calcination is carried out in the presence of oxygen, nitrogen or mixtures thereof and even more preferably in the presence of oxygen and nitrogen.
- hydrotalcite type structure can be corroborated by X-ray diffraction analysis (XRD); while the composition (quantity and type of constituent) of the hydrotalcite or the corresponding mixed oxide obtained by thermal decomposition of said hydrotalcite can be determined by mass spectrometry with inductive coupling plasma source (ICP-MS) and chemical analysis, among others.
- ICP-MS inductive coupling plasma source
- the noble metal is added to the metal oxide by wet impregnation, impregnation at incipient volume or deposition-precipitation, even more preferably by impregnation at incipient volume.
- the incipient volume impregnation method or also called the incipient wetness impregnation method is based on the use of a minimum amount of liquid for impregnation, only that necessary to reach the maximum saturation of the solid correspondent.
- the best yields of n-butanol have been obtained when hydrotalcites with Ga are impregnated with Pd.
- Another embodiment of the present invention is the process as described above where the concentration of the noble metal in the metal oxide is 0.001% to 10% by weight with respect to the total metal oxide, preferably 0.01% to 5%.
- M2 in the event that M2 has not been incorporated into the hydrotalcite in the coprecipitation stage, M2 can be incorporated into the metal oxide at a post-synthesis stage by wet impregnation, impregnation at incipient volume. and / or deposition-precipitation. This incorporation can be carried out in a previous step or simultaneously to the addition of at least one noble metal selected from the list comprising Pd, Pt, Ru, Rh, preferably Pd and Pt, and even more preferably Pd.
- hydrotalcite-derived catalysts comprising gallium in their structure provide higher yields of n-butanol under a nitrogen atmosphere than their gallium-free analogs. Not only that, but they also show a higher TON than catalysts that have the same concentration of Pd without gallium in the structure. This data is an indication of the greater stability in reaction conditions of the catalysts of the invention.
- the catalysts of the invention exhibit butanol selectivities at a certain higher ethanol conversion than prior art catalysts.
- a calcination step is preferably a calcination in the atmosphere of oxygen, nitrogen or any of its mixtures.
- This calcination is preferably carried out at a temperature of 250 ° C to 650 ° C, and even more preferably from 350 ° C to 550 ° C.
- This calcination is preferably carried out over a range of 0.5 to 48 hours, preferably 1 to 24 hours, and even more preferably 1 to 6 hours.
- This process can be carried out by heating hydrotalcite in a gaseous atmosphere and can be carried out in a static oven or in a calcination reactor with controlled gas flow, the latter being the preferred system.
- the gas can be an oxidizing gas or a non-oxidizing gas.
- oxidizing gases may include air and oxygen.
- non-oxidizing gases can be inert gases, such as nitrogen, argon, helium and reducing gases such as carbon dioxide, hydrogen and ammonia.
- the calcination is carried out in the presence of oxygen, nitrogen or mixtures thereof and even more preferably in the presence of oxygen and nitrogen.
- the process of the invention further comprises a step of reduction after calcination of the hydrotalcite.
- the noble metal is reduced, which acts as one of the main active sites in the process.
- This reduction step is preferably carried out under an H 2 atmosphere and preferably at a temperature of 200 ° C to 500 ° C, more preferably 250 ° C to 450 ° C.
- This reduction is preferably carried out over a range of 0.5 to 48 hours, preferably 1 to 24 hours, and even more preferably 1 to 6 hours.
- the reduction takes place immediately before the step of contact with the reagent.
- Another embodiment of the present invention is the process as described. above where the higher alcohol is a C 4 , preferably n-butanol.
- higher C 3 -C 20 primary alcohols preferably C-C 2
- higher secondary alcohols C3-C 2 or, preferably C3-C11 can also be obtained.
- the superior alcohol that will be obtained will be at least a C 4 .
- the hydroxy function of said upper secondary alcohols will preferably be located in C 2 .
- C 2 -C 6 aldehydes can also be obtained.
- the major by-products are preferably ethanal, 2-butanol, butanal, 1-hexanol, 2-hexanol, hexanal, 1-octanol, 2-octanol and octanal.
- the reagent is ethanol, methanol or any of its mixtures, preferably ethanol.
- the contact between the reagent and the catalyst is carried out in a reactor selected from the list comprising discontinuous reactor, continuous stirred tank reactor, continuous fixed bed reactor and continuous boiling bed reactor , preferably in a batch reactor.
- the contact between the reagent and the catalyst is carried out at a temperature between 50 ° C and 450 ° C, preferably between 100 ° C and 300 ° C.
- the weight ratio of the reagent to the catalyst is preferably from 2 to 200, preferably from 5 to 100.
- it is carried out for a period of time between 2 minutes and 200 hours, preferably between 1 hour and 100 hours.
- the contact between the reagent and the catalyst is carried out at a pressure of up to 120 bars, preferably between 20 and 80 bars.
- the contact between the reagent and the catalyst is carried out under an atmosphere of nitrogen, argon, hydrogen or any of its mixtures, preferably under an atmosphere of nitrogen and hydrogen.
- nitrogen, argon, hydrogen or any of its mixtures preferably under an atmosphere of nitrogen and hydrogen.
- Another embodiment of the present invention is the process as described above, which further comprises a step of separating the unreacted reagents from the higher C3-C15 alcohols obtained.
- said unreacted reagents are recycled to the contact step between reagents and catalyst, and more preferably, the unreacted reagent comprises ethanol. Even more preferably, the unreacted reagent is ethanol. Recirculation of unreacted reagents decreases waste production.
- Another embodiment of the present invention is the process as described above, which further comprises a step of separating intermediates from the higher C3-C15 alcohols obtained.
- said intermediate products are recirculated to the contact stage between reagents and catalyst.
- intermediate product in the context of the invention refers to any compound that is formed from the reagents and which can then be converted into higher C3-C15 alcohols. If it does not later become higher C3-C15 alcohols, the intermediate product can also be called a byproduct.
- the term “intermediate product” refers to aldehyde intermediates.
- the intermediate aldehyde is methanal, if it is ethanol, it is acetaldehyde (also called ethanal) and if it is propanol, propanal. More preferably, the intermediate product comprises acetaldehyde. Even more preferably, the intermediate product is acetaldehyde.
- Acetaldehyde is formed as an intermediate in the dimerization of ethanol as shown:
- acetaldehyde can optionally be recirculated and / or fed from an external source.
- acetaldehyde is obtained from the dehydration of ethanol. More preferably, this ethanol dehydration process is carried out at the same time as the main procedure to obtain higher C3-C15 alcohols.
- Fig. 1 Comparative graph of the selectivities of the Pd / HT-4 and Pd / Ga-HT-4 catalysts under N 2 atmosphere as a function of conversion.
- Fig. 2 Comparative graph of the selectivities of the catalysts Pd / HT-4 and Pd / Ga-HT-4 in an atmosphere of N 2 and H2 depending on the conversion. Legend as in Fig. 1.
- Fig. 3 Procedure diagram for obtaining butanol from ethanol with unreacted ethanol recirculation and acetaldehyde, B: Pump; C: heat exchanger; EtOH: ethanol; EtOH + CH 3 CHO: recirculation of ethanol and acetaldehyde; C: compressor; ButOH: butanol; Pg: purge; A: water; SP: other by-products; 1: Catalytic condensation reactor; 2: gas / liquid separation; 3: Dehydration; 4: Ethanol column; 5: Butanol refining.
- the first solution contained 36.45g of Mg (NO 3 ) 2 .6H 2 O and 13.60g of AI (NO 3 ) 3 .9H 2 O, dissolved in 67.79 g of MilliQ water, having a molar concentration of Al + Mg of 1.5.
- the second solution contained 12.53g of NaOH and 16.16g of Na 2 C0 3 in 89.63g of MilliQ water, and was used to produce adequate precipitation of the Al and Mg species, and to set the pH of the mixture total at " 13. Both solutions were added at a total flow rate of 30 ml / h for approx. 4 h, to a vessel under vigorous stirring at room temperature.
- the gel formed was aged at room temperature for 1-2 hours, then filtered and washed with distilled water until the carbonate was not detected in the filtered liquid (at pH ⁇ 7). Subsequently, the solid was dried in an oven at 60 ° C for 14-16 h, obtaining a mixed oxide called HT-4 with a Mg / AI ⁇ 3.8 molar ratio and a surface area (BET method) of 257 m 2 / g.
- the BET method refers to the Brunauer-Emmett-Teller isotherm method.
- the first solution contained 29.89 g of Mg (NO 3 ) 2 .6H 2 O, 10.90 g of AI (NO 3 ) 3 .9H 2 O and 0.06 g of Ga (NO 3 ) 3 .9H 2 Or, dissolved in 55.18 g of MilliQ water, having a molar concentration of (AL + Mg + Ga) of 1.5.
- the second solution contained 12.52g of NaOH and 10.52g of Na 2 C0 3 in 72.60g of MilliQ water, and was used to produce adequate precipitation of the Mg, Al and Ga species, and to fix the pH of the total mixture at * 13.
- Both solutions were added at a total flow rate of 30 ml / h for approximately 4 hours to a vessel under vigorous stirring at room temperature.
- the gel formed was aged at room temperature for 1-2 hours, then filtered and washed with distilled water until the carbonate was not detected in the filtered liquid (at pH ⁇ 7). Subsequently, the solid was dried in an oven at 60 ° C for 14-16h.
- the hydrotalcite (Ga-HT-4) obtained was calcined in air at 450 ° C for 3-4 h, obtaining a mixed oxide with a Mg / AI ⁇ 3.8 molar ratio, with a Ga content of 0.29% by weight (measured by chemical analysis and by ICP-MS), and with a surface area (BET method) of 262 m 2 / g.
- the resulting Pd / Ga / HT-4 material characterized by chemical analysis and by ICP-MS, contained " 0.74% by weight of Pd and ⁇ 0.48% by weight of Ga.
- Example 12 Catalyst synthesis 0.74% Pd / 0.29% Ga / HT-4
- the incorporation of Pd (1.0% by weight, theoretical) to the solid obtained was carried out by the incipient impregnation method at pore volume, using in this case 0.095g of Pd (NH 3 ) 4CI 2 .6H 2 0 dissolved in 1,500g of MilliQ water to impregnate 1,540g of solid obtained in the first impregnation.
- the final solid was dried in an oven at 100 ° C for 14-16h, then calcined in air at 450 ° C for 3-4h, and then reduced to 350 ° C in an H 2 atmosphere for 3 h before its catalytic application.
- the resulting Pd / Ga / HT-4 material characterized by chemical analysis and by ICP-MS, contained " 0.74% by weight of Pd and " 0.29% by weight of Ga.
- This catalyst was synthesized to illustrate the hydrotalcite type Cu catalysts, such as those mentioned in the application WO2009026523.
- Various catalysts with different concentrations of Cu were synthesized, and the catalyst that provided the best results, selectivity and conversion, was chosen for comparison with the catalysts of the invention.
- the first solution contained 28.73 g of Mg (N0 3 ) 2 .6H 2 0, 10.50 g of AI (N0 3 ) 3 .9H 2 0 and 1.20 g of Cu (N0 3 ) 2 .3H 2 0, dissolved in 56.25 g of MilliQ water, having a molar concentration of (Al + Mg + Cu) of 1.5.
- the second solution contained 12.72 g of NaOH and 10.25 g of Na 2 CO 3 in 73.71 g of water MilliQ, and was used to produce adequate precipitation of the Mg, Al and Cu species, and to set the pH of the total mixture to " 13.
- This catalyst was synthesized to illustrate the hydrotalcite-type catalysts with Co, such as those mentioned in US20100160693.
- Various catalysts with different concentrations of Co were synthesized, and the catalyst that provided the best results, selectivity and conversion, was chosen for comparison with the catalysts of the invention.
- the first solution contained 28.82 g of Mg (NO 3 ) 2 » 6H2O, 14.05 g of ⁇ ( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 20 and 1.17 g of Co (NO 3 ) 2 « 6H2O dissolved in 58.54 g of MilliQ water, having a molar concentration of (Al + Mg + Cu) of 1.5.
- the second solution contained 13.81 g of NaOH and 10.87 g of Na 2 C0 3 in 77.91 g of MilliQ water, and was used to produce adequate precipitation of the Mg, Al and Cu species, and to fix the pH of the total mixture at " 13.
- This catalyst was synthesized to illustrate the hydrotalcite type catalysts with Ni, such as those cited in US20100160693. Various catalysts with different concentrations of Ni were synthesized, and the catalyst that provided the best results, selectivity and conversion, was chosen for comparison with the catalysts of the invention.
- the first solution contained 29.71 g of Mg (N0 3 ) 2 * 6H 2 0, 10.81 g of ⁇ ( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0 and 0.78 g of ⁇ ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 0, dissolved in 56.54 g of MilliQ water, having a molar concentration of (Al + Mg + Cu) of 1.5.
- the second solution contained 12.85 g of NaOH and 10.37 g of Na 2 C0 3 in 74.33 g of MilliQ water, and was used to produce adequate precipitation of the Mg, Al and Ni species, and to fix the pH of the total mixture at " 13.
- Example 16 Comparison of catalytic activity of the catalysts of examples 1, 2, 5, 7 and 13-15 under N 2 atmosphere
- a 12-ml stainless steel autoclave reactor with Teflon-coated interior and with magnetic stirrer, 3500 mg of ethanol and 200 mg of one of the catalytic materials of examples 1, 2, 5, 7 and 13- were introduced fifteen.
- the reactor was hermetically sealed, the system containing a connection to a pressure gauge (pressure gauge), another connection for the loading of gases and a third outlet that allowed samples to be taken at different time intervals.
- Liquid samples ( « 50 ⁇ ) were taken at different time intervals until 17-24 hours of reaction.
- the samples were filtered and diluted in a standard solution of 2% by weight chlorobenzene in acetonitrile and analyzed by gas chromatography on a GC-3900. They are equipped with an FID detector and a 60 m TRB-624 capillary column, calculating from the composition of the mixture obtained the conversion of ethanol into molar percentage (Conv. EtOH):
- Table 1 Catalytic activity of various mixed metal oxides in the transformation of ethanol to n-butanol in a nitrogen atmosphere.
- a TON Turn Over Number in (mol / mol Pd or Pt).
- Example 17 Comparison of catalytic activity of the catalysts of Examples 2-5 and 7-12 under N 2 atmosphere
- the samples were filtered and diluted in a standard solution of 2% by weight chlorobenzene in acetonitrile and analyzed by gas chromatography on a GC-3900. They are equipped with an FID detector and a 60 m TRB-624 capillary column, calculating from the composition of the mixture obtained the conversion of ethanol into molar percentage (Conv. EtOH): (initial moles of reagent - final moles of reagent) / (initial moles of reagent * 100), and the selectivities to n-butanol obtained in mole percent (Select. n-ButOH): (moles of n-butanol / moles of products Total) * 100. The total yield to n-butanol (Yield n-ButOH) is calculated:
- the catalysts of the invention exhibit butanol selectivities at a certain higher ethanol conversion than the state of the art catalysts in N 2 atmosphere.
- the catalysts of the invention allow lower concentrations of Pd to be achieved while maintaining high yields of n-butanol, compared to the prior art catalysts.
- Example 18 Comparison of catalytic activity of the catalysts of Examples 2-5 and 7-12 in the atmosphere of N2 and H2.
- the catalysts of the invention allow lower concentrations of Pd to be achieved while maintaining high yields of n-butanol, compared to the prior art catalysts.
- Example 19 Effect of co-absorption of intermediate acetaldehyde on the contact stage between the reagents and the catalyst of the invention
- a constant flow of the reagents described in Table 4 and 50 ml / min of N 2 was fed into a fixed bed stainless steel reactor 33 cm long and 0.83 cm in diameter, with a catalyst mass charge of 3300 mg of the catalytic material described in Example 7.
- the reactor was then connected to the synthesis loop, which contained a connector to a pressure gauge (gauge), another connector for reagent inlet and a third for outlet.
- the operating pressure in the reactor was controlled by a valve located in the output stream. Once the operating temperature was reached, the input current was fed to the reactor synthesis loop.
- LHSV liquid hourly space velocity
- LHSV liquid hourly space velocity
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157002188A KR102100714B1 (ko) | 2012-06-29 | 2013-07-01 | 고급 알코올의 제조방법 |
RU2014152879A RU2014152879A (ru) | 2012-06-29 | 2013-07-01 | Способ получения высших спиртов |
EP13756520.6A EP2767336B1 (en) | 2012-06-29 | 2013-07-01 | Method for obtaining higher alcohols |
CN201380034303.9A CN104736239B (zh) | 2012-06-29 | 2013-07-01 | 用于获得高级醇的方法 |
MX2015000224A MX346356B (es) | 2012-06-29 | 2013-07-01 | Procedimiento de obtencion de alcoholes superiores. |
US14/411,752 US9475741B2 (en) | 2012-06-29 | 2013-07-01 | Method for obtaining higher alcohols |
ES13756520.6T ES2545132T3 (es) | 2012-06-29 | 2013-07-01 | Procedimiento de obtención de alcoholes superiores |
IN2648MUN2014 IN2014MN02648A (es) | 2012-06-29 | 2013-07-01 | |
BR112014032466-2A BR112014032466B1 (pt) | 2012-06-29 | 2013-07-01 | Catalisador para a obtenção de alcoóis superiores |
CA2877974A CA2877974C (en) | 2012-06-29 | 2013-07-01 | Method for obtaining higher alcohols |
ZA2014/09539A ZA201409539B (en) | 2012-06-29 | 2014-12-23 | Method for obtaining higher alcohols |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12382261.1A EP2679304A1 (en) | 2012-06-29 | 2012-06-29 | Process for obtaining higher alcohols in the presence of a gallium containing mixed oxide |
EP12382261.1 | 2012-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014001597A1 true WO2014001597A1 (es) | 2014-01-03 |
Family
ID=49111231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2013/070448 WO2014001597A1 (es) | 2012-06-29 | 2013-07-01 | Procedimiento de obtención de alcoholes superiores |
Country Status (13)
Country | Link |
---|---|
US (1) | US9475741B2 (es) |
EP (2) | EP2679304A1 (es) |
KR (1) | KR102100714B1 (es) |
CN (1) | CN104736239B (es) |
BR (1) | BR112014032466B1 (es) |
CA (1) | CA2877974C (es) |
ES (1) | ES2545132T3 (es) |
HU (1) | HUE025461T2 (es) |
IN (1) | IN2014MN02648A (es) |
MX (1) | MX346356B (es) |
RU (1) | RU2014152879A (es) |
WO (1) | WO2014001597A1 (es) |
ZA (1) | ZA201409539B (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104892361A (zh) * | 2014-03-04 | 2015-09-09 | 中国科学院大连化学物理研究所 | 一种催化转化甲醇制备丙醇的方法 |
CN104892362A (zh) * | 2014-03-04 | 2015-09-09 | 中国科学院大连化学物理研究所 | 一种催化转化甲醇制备丁醇的方法 |
US9475741B2 (en) | 2012-06-29 | 2016-10-25 | Abengoa Bioenergía Nuevas Technologías, S. A. | Method for obtaining higher alcohols |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6301481B2 (ja) * | 2013-09-17 | 2018-03-28 | エルジー・ケム・リミテッド | アルカノールの製造方法 |
EP3087048B1 (en) | 2013-12-27 | 2019-03-20 | Abengoa Bioenergía Nuevas Tecnologías, S. A. | Process for the preparation of higher alcohols from lower alcohols by guerbet condensation |
ES2570233B1 (es) * | 2014-11-14 | 2017-02-22 | Abengoa Bioenergía Nuevas Tecnologías, S.A. | Procedimiento de obtención de 1-octanol |
ES2570231B1 (es) * | 2014-11-14 | 2017-04-19 | Abengoa Bioenergia Nuevas Tecnologias, S.A. | Proceso para la preparación de alcoholes superiores a partir de etanol y n-hexanol mediante condensación de guerbet |
ES2570227B1 (es) * | 2014-11-14 | 2017-04-19 | Abengoa Bioenergia Nuevas Tecnologias, S.A. | Proceso para la preparación de alcoholes superiores a partir de etanol y n-hexanol mediante condensación de guerbet |
WO2016075531A1 (en) * | 2014-11-14 | 2016-05-19 | Abengoa Bioenergia Nuevas Tecnologias, S.A. | Process for the preparation of higher alcohols from ethanol and n-hexanol by guerbet condensation |
EP3337611A4 (en) * | 2015-08-19 | 2019-05-15 | Rescurve, LLC | CATALYST COMPOSITION FOR THE CONVERSION OF ETHANOL TO N-BUTANOL AND ALCOHOLS OF HIGH MOLECULAR WEIGHT |
ES2647963B1 (es) | 2016-05-26 | 2018-10-03 | Abengoa Bioenergía Nuevas Tecnologías, S.A. | Procedimiento de obtención de 1-octanol |
CN108686671A (zh) * | 2018-06-11 | 2018-10-23 | 福州大学 | 一种低温甲醇分解催化剂的制备 |
CN109529897B (zh) * | 2018-12-04 | 2020-07-31 | 西南化工研究设计院有限公司 | 一种生产正丁醇的钯镓双金属催化剂及其制备方法及应用 |
CN111715252B (zh) * | 2019-03-21 | 2022-03-25 | 北京大学 | 一种催化合成有机化合物的方法及其催化剂和应用 |
WO2022055509A1 (en) * | 2020-09-14 | 2022-03-17 | Uop Llc | Catalysts for isobutanol synthesis from syngas and ethanol or propanol |
CN113019404B (zh) * | 2021-03-23 | 2022-02-18 | 中国科学院兰州化学物理研究所 | 用于合成高碳醇的镍基催化剂及其制备方法与应用 |
CN114588904A (zh) * | 2022-03-08 | 2022-06-07 | 中国科学院青岛生物能源与过程研究所 | Cu基金属氧化物催化剂、其制备方法以及采用其的2,3-丁二醇的合成方法 |
CN115445630B (zh) * | 2022-08-30 | 2023-11-17 | 广东工业大学 | 一种聚丙烯基锡掺杂碳包镍催化剂及其制备方法和应用 |
CN118059885B (zh) * | 2024-01-30 | 2024-09-27 | 南京工业大学 | 一种负载金多相催化剂及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5300695A (en) | 1992-12-07 | 1994-04-05 | Amoco Corporation | Process for preparing alcohols |
US5387570A (en) | 1993-05-07 | 1995-02-07 | Exxon Research & Engineering Co. | Catalysts for iso-alcohol synthesis from CO + H2 |
WO2000038832A1 (en) * | 1998-12-23 | 2000-07-06 | Den Norske Stats Oljeselskap A.S | Catalysts consisting of metals on hydrotalcite-based carrier materials, and method for the preparation thereof |
US20070255079A1 (en) | 2004-12-03 | 2007-11-01 | Takashi Tsuchida | Method of Synthesizing Higher-Molecular Alcohol |
WO2009026523A1 (en) | 2007-08-22 | 2009-02-26 | E.I. Du Pont De Nemours And Company | Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite/metal carbonate |
WO2009026510A1 (en) | 2007-08-22 | 2009-02-26 | E. I. Du Pont De Nemours And Company | Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite catalyst |
WO2009097310A1 (en) | 2008-01-28 | 2009-08-06 | E. I. Du Pont De Nemours And Company | Catalytic conversion of ethanol and hydrogen to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite containing the anion of ethylenediaminetetraacetic acid |
WO2009097312A1 (en) | 2008-01-28 | 2009-08-06 | E.I. Du Pont De Nemours And Company | Catalytic conversion of ethanol and hydrogen to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite/metal carbonate |
US20100160693A1 (en) | 2008-12-22 | 2010-06-24 | E.I. Du Pont De Nemours And Company | Process for producing guerbet alcohols using water tolerant basic catalysts |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2679304A1 (en) | 2012-06-29 | 2014-01-01 | Abengoa Bioenergía Nuevas Tecnologías, S. A. | Process for obtaining higher alcohols in the presence of a gallium containing mixed oxide |
US20140179958A1 (en) * | 2012-12-20 | 2014-06-26 | Celanese International Corporation | Catalysts and processes for producing butanol |
-
2012
- 2012-06-29 EP EP12382261.1A patent/EP2679304A1/en not_active Withdrawn
-
2013
- 2013-07-01 BR BR112014032466-2A patent/BR112014032466B1/pt active IP Right Grant
- 2013-07-01 ES ES13756520.6T patent/ES2545132T3/es active Active
- 2013-07-01 CA CA2877974A patent/CA2877974C/en active Active
- 2013-07-01 HU HUE13756520A patent/HUE025461T2/en unknown
- 2013-07-01 WO PCT/ES2013/070448 patent/WO2014001597A1/es active Application Filing
- 2013-07-01 KR KR1020157002188A patent/KR102100714B1/ko active IP Right Grant
- 2013-07-01 MX MX2015000224A patent/MX346356B/es active IP Right Grant
- 2013-07-01 EP EP13756520.6A patent/EP2767336B1/en active Active
- 2013-07-01 US US14/411,752 patent/US9475741B2/en active Active
- 2013-07-01 RU RU2014152879A patent/RU2014152879A/ru unknown
- 2013-07-01 CN CN201380034303.9A patent/CN104736239B/zh active Active
- 2013-07-01 IN IN2648MUN2014 patent/IN2014MN02648A/en unknown
-
2014
- 2014-12-23 ZA ZA2014/09539A patent/ZA201409539B/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5300695A (en) | 1992-12-07 | 1994-04-05 | Amoco Corporation | Process for preparing alcohols |
US5387570A (en) | 1993-05-07 | 1995-02-07 | Exxon Research & Engineering Co. | Catalysts for iso-alcohol synthesis from CO + H2 |
WO2000038832A1 (en) * | 1998-12-23 | 2000-07-06 | Den Norske Stats Oljeselskap A.S | Catalysts consisting of metals on hydrotalcite-based carrier materials, and method for the preparation thereof |
US20070255079A1 (en) | 2004-12-03 | 2007-11-01 | Takashi Tsuchida | Method of Synthesizing Higher-Molecular Alcohol |
WO2009026523A1 (en) | 2007-08-22 | 2009-02-26 | E.I. Du Pont De Nemours And Company | Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite/metal carbonate |
WO2009026510A1 (en) | 2007-08-22 | 2009-02-26 | E. I. Du Pont De Nemours And Company | Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite catalyst |
WO2009097310A1 (en) | 2008-01-28 | 2009-08-06 | E. I. Du Pont De Nemours And Company | Catalytic conversion of ethanol and hydrogen to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite containing the anion of ethylenediaminetetraacetic acid |
WO2009097312A1 (en) | 2008-01-28 | 2009-08-06 | E.I. Du Pont De Nemours And Company | Catalytic conversion of ethanol and hydrogen to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite/metal carbonate |
US20100160693A1 (en) | 2008-12-22 | 2010-06-24 | E.I. Du Pont De Nemours And Company | Process for producing guerbet alcohols using water tolerant basic catalysts |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9475741B2 (en) | 2012-06-29 | 2016-10-25 | Abengoa Bioenergía Nuevas Technologías, S. A. | Method for obtaining higher alcohols |
CN104892361A (zh) * | 2014-03-04 | 2015-09-09 | 中国科学院大连化学物理研究所 | 一种催化转化甲醇制备丙醇的方法 |
CN104892362A (zh) * | 2014-03-04 | 2015-09-09 | 中国科学院大连化学物理研究所 | 一种催化转化甲醇制备丁醇的方法 |
Also Published As
Publication number | Publication date |
---|---|
US9475741B2 (en) | 2016-10-25 |
CN104736239A (zh) | 2015-06-24 |
HUE025461T2 (en) | 2016-02-29 |
ZA201409539B (en) | 2015-11-25 |
EP2679304A1 (en) | 2014-01-01 |
KR102100714B1 (ko) | 2020-04-16 |
CN104736239B (zh) | 2018-06-08 |
BR112014032466B1 (pt) | 2021-11-30 |
EP2767336A1 (en) | 2014-08-20 |
RU2014152879A (ru) | 2016-08-20 |
CA2877974C (en) | 2021-06-22 |
EP2767336B1 (en) | 2015-07-01 |
MX2015000224A (es) | 2015-10-09 |
US20150166443A1 (en) | 2015-06-18 |
ES2545132T3 (es) | 2015-09-08 |
CA2877974A1 (en) | 2014-01-03 |
IN2014MN02648A (es) | 2015-08-21 |
MX346356B (es) | 2017-03-15 |
BR112014032466A2 (pt) | 2017-08-01 |
KR20150088235A (ko) | 2015-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014001597A1 (es) | Procedimiento de obtención de alcoholes superiores | |
ES2855323T3 (es) | Catalizador para la obtención de alcoholes superiores | |
ES2628881T3 (es) | Procedimiento para preparar un catalizador de desplazamiento de gas de agua que funciona a temperaturas medias | |
ES2872387T3 (es) | Procedimiento de obtención de 1-octanol | |
US9051234B2 (en) | Method for producing alkanediol | |
ES2647963B1 (es) | Procedimiento de obtención de 1-octanol | |
JPH06319999A (ja) | 一酸化炭素及び水素からイソ−アルコールを合成するための触媒 | |
EP2694205A1 (en) | Catalysts for the conversion of synthesis gas to alcohols | |
JP3837520B2 (ja) | Coシフト反応用触媒 | |
JP4512748B2 (ja) | 水性ガス転化反応用触媒 | |
JP4012965B2 (ja) | 高温coシフト反応用触媒 | |
JP2023167855A (ja) | アセトン水素化触媒及びイソプロパノールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13756520 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013756520 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2877974 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14411752 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/000224 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201500316 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 20157002188 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014152879 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014032466 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014032466 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141223 |