WO2014000216A1 - 一种玻璃基板传送装置及检测被传动轴转动同步性的方法 - Google Patents

一种玻璃基板传送装置及检测被传动轴转动同步性的方法 Download PDF

Info

Publication number
WO2014000216A1
WO2014000216A1 PCT/CN2012/077728 CN2012077728W WO2014000216A1 WO 2014000216 A1 WO2014000216 A1 WO 2014000216A1 CN 2012077728 W CN2012077728 W CN 2012077728W WO 2014000216 A1 WO2014000216 A1 WO 2014000216A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected light
glass substrate
intensity value
rotation
driven
Prior art date
Application number
PCT/CN2012/077728
Other languages
English (en)
French (fr)
Inventor
陈增宏
吴俊豪
林昆贤
李贤德
汪永强
杨卫兵
齐明虎
郭振华
蒋运芍
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/578,257 priority Critical patent/US8662289B2/en
Publication of WO2014000216A1 publication Critical patent/WO2014000216A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/04Control devices, e.g. for safety, warning or fault-correcting detecting slip between driving element and load-carrier, e.g. for interrupting the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G13/00Roller-ways
    • B65G13/02Roller-ways having driven rollers
    • B65G13/04Roller-ways having driven rollers all rollers driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0214Articles of special size, shape or weigh
    • B65G2201/022Flat

Definitions

  • the present invention relates to the field of display technology, and in particular, to a glass substrate transfer device and a method for detecting rotational synchronism of a drive shaft.
  • the conveyor belt (Conveyor) is generally used as the conveying device for the flow film.
  • the current conveyor belt mainly uses low-dust and anti-static such as polyacetal resin (POM) and Teflon. Roller for glass transfer.
  • each of the driven shafts may be affected by factors such as the quality difference of the main transmission wheel of the magnetic force, the on-site impact, and the sudden temperature change. .
  • the glass substrate is transported by rolling friction.
  • sliding friction occurs at the contact point between the roller and the glass substrate on the driven shaft. force.
  • the sliding friction is much larger than the rolling friction, it may leave marks on the glass or scratch the product.
  • the added sliding friction destroys the force balance of the glass substrate and causes the glass substrate to occur. Jitter and flow deviation, resulting in fragmentation of the glass substrate.
  • the technical problem to be solved by the present invention is to provide a glass substrate transfer device and a method for detecting the rotational synchronization of the driven shaft.
  • the glass substrate transfer device and the method for detecting the rotational synchronization of the drive shaft can automatically and timely detect the respective Whether the rotation of the drive shaft is synchronized.
  • the present invention adopts a technical solution to provide a glass substrate transfer device including: a plurality of driven shafts, a plurality of driven shafts are arranged in parallel along the first direction and along a second direction extending, and a through hole penetrating through the driven shaft is disposed in the first direction, the first direction is perpendicular to the second direction; the plurality of rollers, the plurality of rollers are fixed to the driven shaft at intervals in the second direction, and Rollers are used to carry the glass substrate and rotate with the rotation of the drive shaft to drive the glass substrate to flow; the reflector is disposed on one side of the driven shaft along the first direction; the infrared sensing unit is disposed along the first direction The other side of the transmission shaft, and the through hole and the reflection plate are located in the propagation direction of the infrared ray emitted by the infrared ray sensing unit, and the infrared ray sensing unit emits infrared ray, and receives the
  • the infrared sensing unit comprises: a transmitting module for emitting infrared rays; and a receiving module, configured to receive reflected light emitted by the transmitting module and reflected back by the obstacle; and the determining module is connected with the receiving module according to the intensity of the reflected light. The value determines whether the rotation of the plurality of driven shafts is synchronized.
  • the determining module determines the distance of the obstacle according to the intensity value of the reflected light, and the closer the intensity of the reflected light is, the closer the obstacle is.
  • the determining module stores a plurality of preset reflected light intensity values, and each of the preset reflected light intensity values respectively corresponds to the intensity values of the infrared light emitted by the infrared transmitting module reflected by the driving shaft and the reflecting plate, and the determining module determines the reflection. Whether the intensity value of the light matches the preset reflected light intensity value corresponding to the reflector, if it matches, the judging module judges that the rotation of the plurality of driven shafts is synchronized; if not, the judging module judges the plurality of driven shafts Turn to not sync.
  • the determining module searches for the preset reflected light intensity value matched according to the intensity value of the reflected light, and judges according to the searched matched preset reflected light intensity value The rotation of the corresponding driven shaft is not synchronized.
  • the infrared sensing unit further includes an alarm module.
  • the alarm module issues an alarm.
  • the size of the through hole is set according to the diameter of the driven shaft and the requirement of infrared rays.
  • the glass substrate transfer device includes: a plurality of driven shafts, and a plurality of driven shafts are arranged in parallel along the first direction And extending in the second direction, and providing a through hole penetrating through the driven shaft in the first direction, the first direction is perpendicular to the second direction; the plurality of rollers, the plurality of rollers are fixed on the driven shaft at intervals in the second direction a plurality of rollers are used to carry the glass substrate, and rotate with the rotation of the drive shaft to drive the glass substrate to flow; the driving unit is configured to drive the driven shaft to rotate; and the reflector is disposed in the first direction on the driven shaft
  • the infrared sensing unit is disposed on the other side of the driven shaft along the first direction, and the through hole and the reflecting plate are located in the propagation direction of the infrared rays emitted by the infrared sensing unit, and the infrare
  • the infrared sensing unit comprises: a transmitting module for emitting infrared rays; and a receiving module, configured to receive reflected light emitted by the transmitting module and reflected back by the obstacle; and the determining module is connected with the receiving module according to the intensity of the reflected light. The value determines whether the rotation of the plurality of driven shafts is synchronized.
  • the determining module determines the distance of the obstacle according to the intensity value of the reflected light, and the closer the intensity of the reflected light is, the closer the obstacle is.
  • the determining module stores a plurality of preset reflected light intensity values, and each of the preset reflected light intensity values respectively corresponds to the intensity values of the infrared light emitted by the infrared transmitting module reflected by the driving shaft and the reflecting plate, and the determining module determines the reflection. Whether the intensity value of the light matches the preset reflected light intensity value corresponding to the reflector, if it matches, the judging module judges that the rotation of the plurality of driven shafts is synchronized; if not, the judging module judges the plurality of driven shafts Turn to not sync.
  • the determining module searches for the preset reflected light intensity value matched according to the intensity value of the reflected light, and judges according to the searched matched preset reflected light intensity value The rotation of the corresponding driven shaft is not synchronized.
  • the infrared sensing unit further includes an alarm module.
  • the alarm module issues an alarm.
  • the driving unit comprises: a main drive shaft, the main drive shaft is rotatable; a plurality of main drive wheels are magnetic, and the plurality of main drive wheels are fixed on the main drive shaft at intervals along the extending direction of the main drive shaft, and follow the main drive shaft Rotating and rotating; a plurality of driven wheels having magnetic properties, each of which is fixed to a non-through hole region of each of the driven shafts and close to one end of the main transmission shaft, and the transmission wheel is magnetically coupled by the main transmission wheel The action is driven to rotate and drive the shaft to rotate.
  • the plurality of driven shafts are arranged at intervals along the extending direction of the main propeller shaft, and the extending direction of the propeller shaft is perpendicular to the extending direction of the main propeller shaft in the horizontal direction.
  • another technical solution adopted by the present invention is to provide a method for detecting the synchronism of rotation of a drive shaft in a glass substrate transfer apparatus, the method comprising: a plurality of parallelly arranged intervals along the first direction a through hole penetrating through the driven shaft is disposed on the transmission shaft in a first direction, the plurality of driven shafts extending in the second direction, and the first direction is perpendicular to the second direction; and in the first direction, in the plurality of driven shafts
  • An infrared sensing unit and a transmitting plate are respectively provided on both sides, and the through hole and the reflecting plate are located in the propagation direction of the infrared rays emitted by the infrared sensing unit; the infrared sensing unit emits infrared rays, and receives the infrared rays emitted by the infrared obstacle through the obstacle The reflected light reflected back; the synchronization of the plurality of rotations of the transmission
  • the step of determining the synchronism of the plurality of rotations of the transmission shaft according to the intensity value of the reflected light includes determining the distance of the obstacle according to the intensity value of the reflected light, and the closer the intensity of the reflected light is, the closer the distance of the obstacle is.
  • the step of determining the synchronization of the plurality of rotations of the transmission shaft according to the intensity value of the reflected light includes: storing a plurality of preset reflected light intensity values, each of the preset reflected light intensity values respectively corresponding to the plurality of driven shafts and the reflection
  • the plate reflects the intensity value of the infrared light emitted by the infrared emitting module; determines whether the intensity value of the reflected light matches the preset reflected light intensity value corresponding to the reflecting plate, and if matched, determines that the rotation of the plurality of driven shafts is synchronized, if If there is no match, it is judged that the rotation of the plurality of driven shafts is not synchronized.
  • determining the synchronization of the plurality of rotations of the driven shaft according to the intensity value of the reflected light comprises: searching for the preset reflected light matched thereto according to the intensity value of the reflected light The intensity value is determined according to the searched matching preset reflected light intensity value to determine that the rotation of the corresponding driven shaft is out of synchronization.
  • the invention has the beneficial effects that the glass substrate conveying device of the present invention and the method for detecting the rotation synchronization of the transmission shaft are provided by the infrared sensing unit and the transmitting plate on both sides of each driven shaft, which are different from the prior art. Timely check whether the rotation of each driven shaft is synchronized or stopped to avoid scratching or fragmentation of the glass substrate.
  • FIG. 1 is a schematic structural view of a glass substrate transfer apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the infrared sensing unit 40 of FIG. 1;
  • Figure 3 is a partial enlarged view of the glass substrate transfer device of Figure 1 when the drive shaft 10 is rotated synchronously;
  • Figure 3 is a left side view of the glass substrate transfer device of Figure 3;
  • Figure 5 is a partial enlarged view of the glass substrate transfer device of Figure 1 when the drive shaft 10 is rotated asynchronously;
  • Figure 6 is a left side view of the glass substrate transfer device of Figure 4.
  • Fig. 7 is a flow chart showing a method of conveying a glass substrate according to an embodiment of the present invention.
  • the glass substrate transfer apparatus 1 is a schematic structural view of a glass substrate transfer apparatus according to an embodiment of the present invention. As shown in FIG. 1, the glass substrate transfer apparatus 1 includes a plurality of driven shafts 10, a plurality of rollers 20, a reflecting plate 30, and an infrared sensing unit 40.
  • the plurality of driven shafts 10 are arranged in parallel along the first direction X and extend along the second direction Y, and a through hole 11 penetrating through the driven shaft 10 is disposed in the first direction X, the first direction X and the second direction
  • the direction Y is vertical.
  • the through hole 11 is for passing infrared rays, and the size of the through hole 11 is set in accordance with the diameter of the driven shaft 10 and the requirement of infrared rays.
  • a plurality of rollers 20 are fixed to the driven shaft 10 at intervals in the second direction Y.
  • the rollers 20 are used to carry the glass substrate 2, and rotate with the rotation of the drive shaft 10 to drive the glass substrate 2 to flow.
  • the roller 20 is made of a low dusting and antistatic material such as acetal resin or Teflon, and the roller 20 drives the glass to flow forward by rolling friction.
  • the reflecting plate 30 is disposed on the side of the driven shaft 10 in the first direction X for reflecting infrared rays.
  • the infrared sensing unit 40 is disposed on the other side of the driven shaft 10 in the first direction X. Both the through hole 11 and the reflection plate 30 are located in the propagation direction of the infrared ray emitted from the infrared ray sensing unit 40.
  • the infrared sensing unit 40 is configured to emit infrared rays, and receive the reflected light reflected by the infrared rays emitted from the infrared sensing unit 40 through the obstacle, and determine the synchronization of the plurality of rotations of the transmission shaft 10 according to the intensity value of the reflected light.
  • FIG. 2 is a schematic structural view of the infrared sensing unit 40 of FIG. 1.
  • the infrared sensing unit 40 in this embodiment includes a transmitting module 41, a receiving module 42, a determining module 43, and an alarm module 44.
  • the transmitting module 41 is configured to emit infrared rays, and the transmitting module 41 is, for example, an infrared transmitting circuit or the like.
  • the receiving module 42 is configured to receive the reflected light reflected by the infrared ray emitted by the transmitting module 41, and the receiving module 42 is, for example, an infrared receiving module.
  • FIG. 3 is a partially enlarged view of the glass substrate transfer device of FIG. 1 when the drive shaft 10 is rotated in synchronization
  • FIG. 4 is a left side view of the glass substrate transfer device of FIG.
  • the respective through holes 11 are aligned and form a passage through which the infrared rays pass, and the infrared rays emitted from the infrared sensing unit 40 pass through the passage formed by the respective through holes 11 to reach.
  • the reflecting plate 30 is reflected back to the infrared sensing unit 40 via the reflecting plate 30.
  • FIG. 5 is a partial enlarged view of the glass substrate transfer device of FIG. 1 when the drive shaft 10 is rotated out of synchronization
  • FIG. 6 is a left side view of the glass substrate transfer device of FIG.
  • the infrared rays emitted from the infrared sensing unit 40 can only pass through the partial through holes 11 and are rotated asynchronously. Or the stopped drive shaft 10 is reflected back to the infrared sensing unit 40.
  • a rotation mark 21 may be further disposed on the roller 20.
  • the roller 20 When the roller 20 is mounted, all the rollers 20 in the same row in the first direction X are aligned according to the rotation mark 21, and then the roller 20 is fixed to It is driven on the shaft 10 so as to visually judge whether the rotation of the respective rollers 20 is synchronized.
  • the judging module 43 is connected to the receiving module 42 for judging whether the rotation of the plurality of driven shafts 10 is synchronized according to the intensity value of the reflected light. Since the intensity of the reflected light received by the receiving module 42 changes with the distance of the reflected object (ie, the obstacle), the distance of the reflected object is close to the reflected light intensity, and the distance is far, the reflected light is weak, and the determining module 43 can be based on the intensity value of the reflected light. Judging the distance of the obstacle, the closer the intensity of the reflected light is, the closer the distance of the obstacle is. Therefore, it can be determined whether the front of the transmission shaft 10 is not synchronized, and the rotation is not further determined according to the intensity of the reflected light. The synchronized distances of the driven shaft 10 are determined, and it is determined which ones are not synchronized by the rotation of the drive shaft 10 according to different distances.
  • the determining module 43 stores a plurality of preset reflected light intensity values, and each of the preset reflected light intensity values respectively corresponds to the infrared light emitted by the infrared transmitting module 40 reflected by the driving shaft 10 and the reflecting plate 30 respectively.
  • Strength value a value that corresponds to the infrared light emitted by the infrared transmitting module 40 reflected by the driving shaft 10 and the reflecting plate 30 respectively.
  • the determining module 43 determines whether the intensity value of the reflected light matches the preset reflected light intensity value corresponding to the reflecting plate 30. If the matching, the determining module 43 determines that the rotation of the plurality of driven shafts 10 is synchronized, if not, then The judging module 43 judges that the rotation of the plurality of driven shafts 10 is out of synchronization. When it is determined that the rotation of the plurality of driven shafts 10 is out of synchronization, the determining module 43 searches for the preset reflected light intensity values matched according to the intensity values of the reflected light, and judges according to the searched matched preset reflected light intensity values. The rotation of the driven shaft 10 corresponding thereto is not synchronized.
  • the alarm module 44 issues an alarm to remind the user to inspect the glass substrate conveying device 1.
  • the glass substrate transfer device 1 further includes a driving unit 50 for driving the rotation of the drive shaft 10.
  • the drive unit 50 includes a main drive shaft 51, a plurality of main drive wheels 52, and a plurality of driven wheels 53.
  • the extending direction of the main propeller shaft 51 is perpendicular to the extending direction of the driven shaft 10, the main propeller shaft 51 is rotatable, and the plurality of driven shafts 10 are arranged at intervals along the extending direction of the main propeller shaft 51.
  • a plurality of main transmission wheels 52 are fixed to the main transmission shaft 51 at intervals along the extending direction of the main transmission shaft 51, and rotate with the rotation of the main transmission shaft 51, and the main transmission wheels 52 are magnetic.
  • the driven wheel 53 is also magnetic, and each of the driven wheels 53 is fixed to a non-through hole region of each of the driven shafts 10 and close to one end of the main drive shaft 51, and the driven wheels 53 are magnetically coupled by the main drive wheels 52. The drive is rotated and finally driven to rotate by the drive shaft 10.
  • Fig. 7 is a flow chart showing a method of conveying a glass substrate according to an embodiment of the present invention.
  • the method for detecting the synchronization of the rotation of the drive shaft in the glass substrate transfer apparatus according to the embodiment of the present invention includes:
  • Step S1 a through hole penetrating the driven shaft is disposed in the first direction on the plurality of driven shafts disposed in parallel along the first direction, and the plurality of driven shafts extend in the second direction, and the first direction and the second direction vertical;
  • Step S2 providing an infrared sensing unit and a transmitting plate on both sides of the plurality of driven shafts in the first direction, and the through holes and the reflecting plate are located in the propagation direction of the infrared rays emitted by the infrared detecting unit;
  • Step S3 using an infrared sensing unit to emit infrared rays, and receiving reflected light reflected by the obstacles reflected by the infrared rays emitted by the infrared sensing unit;
  • Step S4 judging the synchronism of the plurality of rotations of the transmission shaft according to the intensity value of the reflected light.
  • the step S4 includes: determining the distance of the obstacle according to the intensity value of the reflected light, and the closer the intensity of the reflected light is, the closer the obstacle is.
  • step S4 includes: storing a plurality of preset reflected light intensity values, each of the preset reflected light intensity values respectively corresponding to the intensity values of the infrared light emitted by the plurality of driven shafts and the reflecting plate reflecting the infrared emitting module.
  • step S4 further includes: searching for a preset reflected light intensity value matched according to the intensity value of the reflected light, and according to the searched preset preset reflection The light intensity value is judged to be out of sync with the corresponding rotation of the driven shaft.
  • the glass substrate transfer device of the present invention and the method for detecting the rotational synchronization of the drive shaft can detect whether the rotation of each driven shaft is synchronized or not by providing an infrared sensing unit and a transmitting plate on both sides of each driven shaft. Stop and avoid scratching or fragmentation of the glass substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rollers For Roller Conveyors For Transfer (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Control Of Conveyors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

公开了一种玻璃基板传送装置及检测被传动轴转动同步性的方法,该装置包括:多个被传动轴(10),多个被传动轴(10)沿第一方向(X)平行间隔设置,并在第一方向(X)上设置有贯穿被传动轴(10)的通孔(11);多个滚轮(20),间隔固定在被传动轴(10)上,用于承载玻璃基板(2),并随被传动轴(10)的转动而转动以传动玻璃基板(2)流动;反射板(30);红外线传感单元(40),发出红外线且接收其所发射出的红外线经障碍物反射回的反射光,并根据反射光的强度值判断多个被传动轴(10)转动的同步性,通孔(11)及反射板(30)位于红外线传感单元(40)发出的红外线的传播方向上。通过上述方式,所述装置能够及时检测各被传动轴的转动是否同步或者停止,避免玻璃基板产生刮伤或破片。

Description

一种玻璃基板传送装置及检测被传动轴转动同步性的方法
【技术领域】
本发明涉及显示技术领域,特别是涉及一种玻璃基板传送装置及检测被传动轴转动同步性的方法。
【背景技术】
液晶面板生产过程中,在对TFT-LCD玻璃基板传送时,一般采用传送带(Conveyor)作为传送装置进行流片,目前的传送带主要采用聚甲醛树脂(POM)及铁氟龙等低发尘防静电滚轮进行玻璃传送。
在对玻璃传送过程中,要求平稳流片、无抖动、无流偏且玻璃基板无划伤,这就要求各个被传送轴相对速度相同,并且各滚轮与玻璃接触点在同一等高面。通常可以通过调整来保证各滚轮与玻璃接触点的高度在允许的误差范围内,但是,各被传动轴则可能受磁力的主传动轮品质差异、现场撞击以及温度骤变等因素而不能保证同步。
玻璃基板依靠滚动摩擦力进行传送,传送过程中,当某一被传动轴因故障停止转动或转速与其它被传动轴不同步时,该被传动轴上的滚轮与玻璃基板接触点处产生滑动摩擦力。一方面,当滑动摩擦力远大于滚动摩擦力时,可能会在玻璃上留下痕迹或刮伤产品,另一方面,新增的滑动摩擦力破坏了玻璃基板的力平衡,并使玻璃基板发生抖动和流偏,从而造成玻璃基板破片。
当各被传动轴转动不同步产生滑动摩擦力时,仅凭肉眼很难察觉,一般很难及时发现,目前往往是出现破片或者不良品后去检测才知道设备需要维修。
因此,有必要提供一种玻璃基板传送装置及检测被传动轴转动同步性的方法,以解决现有技术的玻璃基板传送带无法快速检测各个被传动轴的转动是否同步的技术问题。
【发明内容】
本发明主要解决的技术问题是提供一种玻璃基板传送装置及检测被传动轴转动同步性的方法,该玻璃基板传送装置及检测被传动轴转动同步性的方法能自动并及时地检测出各个被传动轴的转动是否为同步。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种玻璃基板传送装置,该玻璃基板传送装置包括:多个被传动轴,多个被传动轴沿第一方向平行间隔设置并沿第二方向延伸,并在第一方向上设置有贯穿被传动轴的通孔,第一方向与第二方向垂直;多个滚轮,多个滚轮沿第二方向间隔固定在被传动轴上,多个滚轮用于承载玻璃基板,并随被传动轴的转动而转动以传动玻璃基板流动;反射板,沿第一方向设置在被传动轴的一侧;红外线传感单元,沿第一方向设置在被传动轴的另一侧,且通孔及反射板位于红外线传感单元发出的红外线的传播方向上,红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光,并根据反射光的强度值判断多个被传动轴转动的同步性。
其中,红外线传感单元包括:发射模块,用于发射红外线;接收模块,用于接收发射模块发射出的红外线经障碍物反射回的反射光;判断模块,与接收模块连接,根据反射光的强度值判断多个被传动轴的转动是否同步。
其中,判断模块根据反射光的强度值判断障碍物的距离,反射光的强度值越大则障碍物的距离越近。
其中,判断模块存储有多个预设反射光强度值,每一预设反射光强度值分别对应于多个被传动轴及反射板反射红外线发射模块发出的红外光的强度值,判断模块判断反射光的强度值与对应于反射板的预设反射光强度值是否匹配,若匹配,则判断模块判断多个被传动轴的转动为同步;若不匹配,则判断模块判断多个被传动轴的转动为不同步。
其中,当判断多个被传动轴的转动为不同步时,判断模块根据反射光的强度值搜索与其匹配的预设反射光强度值,并根据搜索到的匹配的预设反射光强度值判断与其对应的被传动轴的转动为不同步。
其中,红外线传感单元进一步包括告警模块,当判断模块判断多个被传动轴的转动为不同步时,告警模块发出告警。
其中,通孔的尺寸根据被传动轴的直径和红外线的要求而设置。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种玻璃基板传送装置,其中,玻璃基板传送装置包括:多个被传动轴,多个被传动轴沿第一方向平行间隔设置并沿第二方向延伸,并在第一方向上设置有贯穿被传动轴的通孔,第一方向与第二方向垂直;多个滚轮,多个滚轮沿第二方向间隔固定在被传动轴上,多个滚轮用于承载玻璃基板,并随被传动轴的转动而转动以传动玻璃基板流动;驱动单元,用于驱动被传动轴转动;反射板,沿第一方向设置在被传动轴的一侧;红外线传感单元,沿第一方向设置在被传动轴的另一侧,且通孔及反射板位于红外线传感单元发出的红外线的传播方向上,红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光,并根据反射光的强度值判断多个被传动轴转动的同步性。
其中,红外线传感单元包括:发射模块,用于发射红外线;接收模块,用于接收发射模块发射出的红外线经障碍物反射回的反射光;判断模块,与接收模块连接,根据反射光的强度值判断多个被传动轴的转动是否同步。
其中,判断模块根据反射光的强度值判断障碍物的距离,反射光的强度值越大则障碍物的距离越近。
其中,判断模块存储有多个预设反射光强度值,每一预设反射光强度值分别对应于多个被传动轴及反射板反射红外线发射模块发出的红外光的强度值,判断模块判断反射光的强度值与对应于反射板的预设反射光强度值是否匹配,若匹配,则判断模块判断多个被传动轴的转动为同步;若不匹配,则判断模块判断多个被传动轴的转动为不同步。
其中,当判断多个被传动轴的转动为不同步时,判断模块根据反射光的强度值搜索与其匹配的预设反射光强度值,并根据搜索到的匹配的预设反射光强度值判断与其对应的被传动轴的转动为不同步。
其中,红外线传感单元进一步包括告警模块,当判断模块判断多个被传动轴的转动为不同步时,告警模块发出告警。
其中,驱动单元包括:主传动轴,主传动轴可转动;多个主传动轮,具有磁性,多个主传动轮沿主传动轴的延伸方向间隔固定在主传动轴上,并随主传动轴的转动而转动;多个被传动轮,具有磁性,每一被传动轮固定在每一被传动轴的非通孔区域且靠近主传动轴的一端上,被传动轮由主传动轮通过磁耦合作用驱动而转动,并带动被传动轴转动。
其中,多个被传动轴沿主传动轴的延伸方向间隔排列设置,且被传动轴的延伸方向在水平方向上垂直于主传动轴的延伸方向。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种检测玻璃基板传送装置中被传动轴转动的同步性的方法,该方法包括:在沿第一方向平行间隔设置的多个被传动轴上沿第一方向设置贯穿被传动轴的通孔,多个被传动轴沿第二方向延伸,且第一方向与第二方向垂直;沿第一方向,在多个被传动轴的两侧分别提供红外线传感单元和发射板,且通孔及反射板位于红外线传感单元发出的红外线的传播方向上;利用红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光;根据反射光的强度值判断多个被传动轴转动的同步性。
其中,根据反射光的强度值判断多个被传动轴转动的同步性的步骤包括:根据反射光的强度值判断障碍物的距离,反射光的强度值越大则障碍物的距离越近。
其中,根据反射光的强度值判断多个被传动轴转动的同步性的步骤包括:存储多个预设反射光强度值,每一预设反射光强度值分别对应于多个被传动轴及反射板反射红外线发射模块发出的红外光的强度值;判断反射光的强度值与对应于反射板的预设反射光强度值是否匹配,若匹配,则判断多个被传动轴的转动为同步,若不匹配,则判断多个被传动轴的转动为不同步。
其中,当判断多个被传动轴的转动为不同步时,根据反射光的强度值判断多个被传动轴转动的同步性的步骤包括:根据反射光的强度值搜索与其匹配的预设反射光强度值,并根据搜索到的匹配的预设反射光强度值判断与其对应的被传动轴的转动为不同步。
本发明的有益效果是:区别于现有技术的情况,本发明的玻璃基板传送装置及检测被传动轴转动同步性的方法通过在各被传动轴两侧设置红外线传感单元和发射板,能够及时检测各被传动轴的转动是否同步或者停止,避免玻璃基板产生刮伤或破片。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明实施例的玻璃基板传送装置的结构示意图;
图2是图1中红外线传感单元40的结构示意图;
图3是图1中玻璃基板传送装置的被传动轴10转动同步时的局部放大图;
图4中图3中玻璃基板传送装置的左侧视图;
图5是图1中玻璃基板传送装置的被传动轴10转动不同步时的局部放大图;
图6是图4中玻璃基板传送装置的左侧视图;以及
图7是本发明实施例的玻璃基板传送方法的流程图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
图1是本发明实施例的玻璃基板传送装置的结构示意图。如图1所示,玻璃基板传送装置1包括多个被传动轴10、多个滚轮20、反射板30以及红外线传感单元40。
其中,多个被传动轴10沿第一方向X平行间隔设置并沿第二方向Y延伸,并在第一方向X上设置有贯穿被传动轴10的通孔11,第一方向X与第二方向Y垂直。通孔11用于供红外线穿过,通孔11的尺寸根据被传动轴10的直径和红外线的要求而设置。在安装被传动轴10时,需要将各个被传动轴10上的通孔11对齐,以使各个对齐的通孔11能形成一个供红外线穿过的通道。
多个滚轮20沿第二方向Y间隔固定在被传动轴10上,滚轮20用于承载玻璃基板2,并随被传动轴10的转动而转动以传动玻璃基板2流动。本实施例中,滚轮20由聚甲醛树脂或铁氟龙等低发尘且防静电的材料制成,滚轮20通过滚动摩擦力驱动玻璃往前流动。
反射板30沿第一方向X设置在被传动轴10的一侧,其用于反射红外线。
红外线传感单元40沿第一方向X设置在被传动轴10的另一侧。通孔11及反射板30皆位于红外线传感单元40发出的红外线的传播方向上。红外线传感单元40用于发出红外线,并接收红外线传感单元40所发射出的红外线经障碍物反射回的反射光,并根据反射光的强度值判断多个被传动轴10转动的同步性。
图2是图1中红外线传感单元40的结构示意图。如图2所示,本实施例中的红外线传感单元40包括发射模块41、接收模块42、判断模块43以及告警模块44。
其中,发射模块41用于发射红外线,发射模块41例如为红外发射电路等。接收模块42用于接收发射模块41发射出的红外线经障碍物反射回的反射光,接收模块42例如为红外接收模块等。
图3是图1中玻璃基板传送装置的被传动轴10转动同步时的局部放大图,图4中图3中玻璃基板传送装置的左侧视图。如图3、4所示,当各个被传动轴10转动同步时,各个通孔11对齐并形成一个供红外线通过的通道,红外线传感单元40发射的红外线穿过各个通孔11形成的通道到达反射板30,并经反射板30反射回红外线传感单元40。
图5是图1中玻璃基板传送装置的被传动轴10转动不同步时的局部放大图,图6是图4中玻璃基板传送装置的左侧视图。如图5、6所示,当各个被传动轴10转动不同步或者某一被传动轴10转动停止时,红外线传感单元40发射的红外线只能穿过部分通孔11,并被转动不同步或转动停止的被传动轴10反射回红外线传感单元40。
如图4、6所示,可在滚轮20上进一步设置转动标记21,在安装滚轮20时,将第一方向X上处于同一排的所有滚轮20按照转动标记21对齐,然后将滚轮20固定于被传动轴10上,以便于通过肉眼判断各个滚轮20转动是否同步。
判断模块43与接收模块42连接,判断模块43用于根据反射光的强度值判断多个被传动轴10的转动是否同步。由于接收模块42接收的反射光强随反射物体(即障碍物)的距离变化而变化,反射物体的距离近则反射光强,距离远则反射光弱,判断模块43可根据反射光的强度值判断障碍物的距离,反射光的强度值越大则障碍物的距离越近,因此,据此可以判断前方是否有被传动轴10转动不同步,并可进一步根据反射光的强弱判断转动不同步的被传动轴10的距离,并根据不同的距离判定哪根被传动轴10的转动不同步。
本实施例中,判断模块43存储有多个预设反射光强度值,每一预设反射光强度值分别对应于多个被传动轴10及反射板30反射红外线发射模块40发出的红外光的强度值。
判断模块43判断反射光的强度值与对应于反射板30的预设反射光强度值是否匹配,若匹配,则判断模块43判断该多个被传动轴10的转动为同步,若不匹配,则判断模块43判断该多个被传动轴10的转动为不同步。当判断该多个被传动轴10的转动为不同步时,判断模块43根据反射光的强度值搜索与其匹配的预设反射光强度值,并根据搜索到的匹配的预设反射光强度值判断与其对应的被传动轴10的转动为不同步。
当判断模块43判断该多个被传动轴10的转动为不同步时,告警模块44发出告警以提醒用户检修玻璃基板传送装置1。
请再参考图1,在本实施例中,玻璃基板传送装置1还进一步包括驱动单元50,驱动单元50用于驱动被传动轴10转动。本实施例中,驱动单元50包括主传动轴51、多个主传动轮52以及多个被传动轮53。
其中,主传动轴51的延伸方向垂直于被传动轴10的延伸方向,主传动轴51可转动,多个被传动轴10沿主传动轴51的延伸方向间隔排列设置。多个主传动轮52沿主传动轴51的延伸方向间隔固定在主传动轴51上,并随主传动轴51的转动而转动,且主传动轮52具有磁性。被传动轮53也具有磁性,每一被传动轮53固定在每一被传动轴10的非通孔区域且靠近主传动轴51的一端上,被传动轮53由主传动轮52通过磁耦合作用驱动而转动,并最终带动被传动轴10转动。
图7是本发明实施例的玻璃基板传送方法的流程图。如图7所示,本发明实施例的检测玻璃基板传送装置中被传动轴转动的同步性的方法包括:
步骤S1:在沿第一方向平行间隔设置的多个被传动轴上沿第一方向设置贯穿被传动轴的通孔,多个被传动轴沿第二方向延伸,且第一方向与第二方向垂直;
步骤S2:沿第一方向,在多个被传动轴的两侧分别提供红外线传感单元和发射板,且通孔及反射板位于红外线传感单元发出的红外线的传播方向上;
步骤S3:利用红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光;
步骤S4:根据反射光的强度值判断多个被传动轴转动的同步性。
其中,步骤S4包括:根据反射光的强度值判断障碍物的距离,反射光的强度值越大则障碍物的距离越近。
在本实施例中,步骤S4包括:存储多个预设反射光强度值,每一预设反射光强度值分别对应于多个被传动轴及反射板反射红外线发射模块发出的红外光的强度值;判断反射光的强度值与对应于反射板的预设反射光强度值是否匹配,若匹配,则判断多个被传动轴的转动为同步,若不匹配,则判断多个被传动轴的转动为不同步,当判断多个被传动轴的转动为不同步时,步骤S4还包括:根据反射光的强度值搜索与其匹配的预设反射光强度值,并根据搜索到的匹配的预设反射光强度值判断与其对应的被传动轴的转动为不同步。
通过上述方式,本发明的玻璃基板传送装置及检测被传动轴转动同步性的方法通过在各被传动轴两侧设置红外线传感单元和发射板,能够及时检测各被传动轴的转动是否同步或者停止,避免玻璃基板产生刮伤或破片。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种玻璃基板传送装置,其中,所述玻璃基板传送装置包括:
    多个被传动轴,所述多个被传动轴沿第一方向平行间隔设置并沿第二方向延伸,并在所述第一方向上设置有贯穿所述被传动轴的通孔,所述第一方向与所述第二方向垂直;
    多个滚轮,所述多个滚轮沿所述第二方向间隔固定在所述被传动轴上,所述多个滚轮用于承载玻璃基板,并随所述被传动轴的转动而转动以传动所述玻璃基板流动;
    反射板,沿所述第一方向设置在所述被传动轴的一侧;
    红外线传感单元,沿所述第一方向设置在所述被传动轴的另一侧,且所述通孔及所述反射板位于所述红外线传感单元发出的红外线的传播方向上,所述红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光,并根据所述反射光的强度值判断所述多个被传动轴转动的同步性。
  2. 根据权利要求1所述的玻璃基板传送装置,其中,所述红外线传感单元包括:
    发射模块,用于发射红外线;
    接收模块,用于接收所述发射模块发射出的红外线经障碍物反射回的反射光;
    判断模块,与所述接收模块连接,根据所述反射光的强度值判断所述多个被传动轴的转动是否同步。
  3. 根据权利要求2所述的玻璃基板传送装置,其中,所述判断模块根据所述反射光的强度值判断所述障碍物的距离,所述反射光的强度值越大则所述障碍物的距离越近。
  4. 根据权利要求3所述的玻璃基板传送装置,其中,所述判断模块存储有多个预设反射光强度值,每一所述预设反射光强度值分别对应于所述多个被传动轴及所述反射板反射所述红外线发射模块发出的红外光的强度值,所述判断模块判断所述反射光的强度值与对应于所述反射板的所述预设反射光强度值是否匹配,
    若匹配,则所述判断模块判断所述多个被传动轴的转动为同步;
    若不匹配,则所述判断模块判断所述多个被传动轴的转动为不同步。
  5. 根据权利要求4所述的玻璃基板传送装置,其中,当判断所述多个被传动轴的转动为不同步时,所述判断模块根据所述反射光的强度值搜索与其匹配的所述预设反射光强度值,并根据搜索到的匹配的所述预设反射光强度值判断与其对应的被传动轴的转动为不同步。
  6. 根据权利要求2所述的玻璃基板传送装置,其中,所述红外线传感单元进一步包括告警模块,当所述判断模块判断所述多个被传动轴的转动为不同步时,所述告警模块发出告警。
  7. 根据权利要求1所述的玻璃基板传送装置,其中,所述通孔的尺寸根据所述被传动轴的直径和红外线的要求而设置。
  8. 一种玻璃基板传送装置,其中,所述玻璃基板传送装置包括:
    多个被传动轴,所述多个被传动轴沿第一方向平行间隔设置并沿第二方向延伸,并在所述第一方向上设置有贯穿所述被传动轴的通孔,所述第一方向与所述第二方向垂直;
    多个滚轮,所述多个滚轮沿所述第二方向间隔固定在所述被传动轴上,所述多个滚轮用于承载玻璃基板,并随所述被传动轴的转动而转动以传动所述玻璃基板流动;
    驱动单元,用于驱动所述被传动轴转动;
    反射板,沿所述第一方向设置在所述被传动轴的一侧;
    红外线传感单元,沿所述第一方向设置在所述被传动轴的另一侧,且所述通孔及所述反射板位于所述红外线传感单元发出的红外线的传播方向上,所述红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光,并根据所述反射光的强度值判断所述多个被传动轴转动的同步性。
  9. 根据权利要求8所述的玻璃基板传送装置,其中,所述红外线传感单元包括:
    发射模块,用于发射红外线;
    接收模块,用于接收所述发射模块发射出的红外线经障碍物反射回的反射光;
    判断模块,与所述接收模块连接,根据所述反射光的强度值判断所述多个被传动轴的转动是否同步。
  10. 根据权利要求9所述的玻璃基板传送装置,其中,所述判断模块根据所述反射光的强度值判断所述障碍物的距离,所述反射光的强度值越大则所述障碍物的距离越近。
  11. 根据权利要求10所述的玻璃基板传送装置,其中,所述判断模块存储有多个预设反射光强度值,每一所述预设反射光强度值分别对应于所述多个被传动轴及所述反射板反射所述红外线发射模块发出的红外光的强度值,所述判断模块判断所述反射光的强度值与对应于所述反射板的所述预设反射光强度值是否匹配,
    若匹配,则所述判断模块判断所述多个被传动轴的转动为同步;
    若不匹配,则所述判断模块判断所述多个被传动轴的转动为不同步。
  12. 根据权利要求11所述的玻璃基板传送装置,其中,当判断所述多个被传动轴的转动为不同步时,所述判断模块根据所述反射光的强度值搜索与其匹配的所述预设反射光强度值,并根据搜索到的匹配的所述预设反射光强度值判断与其对应的被传动轴的转动为不同步。
  13. 根据权利要求9所述的玻璃基板传送装置,其中,所述红外线传感单元进一步包括告警模块,当所述判断模块判断所述多个被传动轴的转动为不同步时,所述告警模块发出告警。
  14. 根据权利要求8所述的玻璃基板传送装置,其中,所述驱动单元包括:
    主传动轴,所述主传动轴可转动;
    多个主传动轮,具有磁性,所述多个主传动轮沿所述主传动轴的延伸方向间隔固定在所述主传动轴上,并随所述主传动轴的转动而转动;
    多个被传动轮,具有磁性,每一所述被传动轮固定在每一所述被传动轴的非通孔区域且靠近所述主传动轴的一端上,所述被传动轮由所述主传动轮通过磁耦合作用驱动而转动,并带动所述被传动轴转动。
  15. 根据权利要求14所述的玻璃基板传送装置,其中,所述多个被传动轴沿所述主传动轴的延伸方向间隔排列设置,且所述被传动轴的延伸方向在水平方向上垂直于所述主传动轴的延伸方向。
  16. 一种检测玻璃基板传送装置中被传动轴转动的同步性的方法,其中,所述方法包括:
    在沿第一方向平行间隔设置的多个被传动轴上沿所述第一方向设置贯穿所述被传动轴的通孔,所述多个被传动轴沿第二方向延伸,且所述第一方向与所述第二方向垂直;
    沿所述第一方向,在所述多个被传动轴的两侧分别提供红外线传感单元和发射板,且所述通孔及所述反射板位于所述红外线传感单元发出的红外线的传播方向上;
    利用所述红外线传感单元发出红外线,且接收其所发射出的红外线经障碍物反射回的反射光;
    根据所述反射光的强度值判断所述多个被传动轴转动的同步性。
  17. 根据权利要求16所述的检测玻璃基板传送装置中被传动轴转动的同步性的方法,其中,所述根据反射光的强度值判断多个被传动轴转动的同步性的步骤包括:
    根据所述反射光的强度值判断所述障碍物的距离,所述反射光的强度值越大则所述障碍物的距离越近。
  18. 根据权利要求17所述的检测玻璃基板传送装置中被传动轴转动的同步性的方法,其中,所述根据反射光的强度值判断多个被传动轴转动的同步性的步骤包括:
    存储多个预设反射光强度值,每一所述预设反射光强度值分别对应于所述多个被传动轴及所述反射板反射所述红外线发射模块发出的红外光的强度值;
    判断所述反射光的强度值与对应于所述反射板的所述预设反射光强度值是否匹配,若匹配,则判断所述多个被传动轴的转动为同步,若不匹配,则判断所述多个被传动轴的转动为不同步。
  19. 根据权利要求18所述的检测玻璃基板传送装置中被传动轴转动的同步性的方法,其中,当判断所述多个被传动轴的转动为不同步时,所述根据反射光的强度值判断多个被传动轴转动的同步性的步骤包括:
    根据所述反射光的强度值搜索与其匹配的所述预设反射光强度值,并根据搜索到的匹配的所述预设反射光强度值判断与其对应的被传动轴的转动为不同步。
PCT/CN2012/077728 2012-06-26 2012-06-28 一种玻璃基板传送装置及检测被传动轴转动同步性的方法 WO2014000216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/578,257 US8662289B2 (en) 2012-06-26 2012-06-28 Glass substrate transmission device and method for detecting the rotational synchronization of driven shafts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210213624.2A CN102730382B (zh) 2012-06-26 2012-06-26 一种玻璃基板传送装置及检测被传动轴转动同步性的方法
CN201210213624.2 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014000216A1 true WO2014000216A1 (zh) 2014-01-03

Family

ID=46986820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077728 WO2014000216A1 (zh) 2012-06-26 2012-06-28 一种玻璃基板传送装置及检测被传动轴转动同步性的方法

Country Status (2)

Country Link
CN (1) CN102730382B (zh)
WO (1) WO2014000216A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109573615B (zh) * 2018-12-17 2021-01-08 惠科股份有限公司 一种传送装置及其检测方法和传送系统
CN111620115A (zh) * 2019-10-11 2020-09-04 中建材轻工业自动化研究所有限公司 一种气浮翻转设备
CN113210518B (zh) * 2021-05-25 2023-02-17 珠海格力智能装备有限公司 胀管机
CN114180310B (zh) * 2021-12-14 2024-02-13 上海天昊达化工包装有限公司 一种化工桶装配流水线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159864A (ja) * 1997-08-28 1999-03-02 Toshiba Corp ガラス基板位置決め方法
CN101038858A (zh) * 2006-03-14 2007-09-19 东京毅力科创株式会社 基板缓冲装置及方法和处理装置以及控制程序和存储介质
CN101670942A (zh) * 2009-09-03 2010-03-17 东莞宏威数码机械有限公司 基片运载装置
CN101767079A (zh) * 2009-01-05 2010-07-07 富葵精密组件(深圳)有限公司 放板机、电路板生产系统以及制作基板的方法
CN102491090A (zh) * 2007-09-19 2012-06-13 平田机工株式会社 基板输送系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790319A (fr) * 1971-10-19 1973-04-19 Pilkington Brothers Ltd Perfectionnements au deplacement d'une matiere en
JP2000105202A (ja) * 1998-09-29 2000-04-11 Minolta Co Ltd 筒状容器のピンホール検査装置
JP2004131233A (ja) * 2002-10-09 2004-04-30 Nakamura Tome Precision Ind Co Ltd ローラコンベア
CN201753194U (zh) * 2010-05-10 2011-03-02 亚智科技股份有限公司 检知滚轮及其输送装置
JP2012035943A (ja) * 2010-08-04 2012-02-23 Avanstrate Taiwan Inc ガラス基板搬送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159864A (ja) * 1997-08-28 1999-03-02 Toshiba Corp ガラス基板位置決め方法
CN101038858A (zh) * 2006-03-14 2007-09-19 东京毅力科创株式会社 基板缓冲装置及方法和处理装置以及控制程序和存储介质
CN102491090A (zh) * 2007-09-19 2012-06-13 平田机工株式会社 基板输送系统
CN101767079A (zh) * 2009-01-05 2010-07-07 富葵精密组件(深圳)有限公司 放板机、电路板生产系统以及制作基板的方法
CN101670942A (zh) * 2009-09-03 2010-03-17 东莞宏威数码机械有限公司 基片运载装置

Also Published As

Publication number Publication date
CN102730382B (zh) 2014-10-01
CN102730382A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2014000216A1 (zh) 一种玻璃基板传送装置及检测被传动轴转动同步性的方法
JP2020506367A (ja) 基板の寸法を全自動で検出する装置、基板検出ライン及びその検出方法
CN208043695U (zh) 一种面板的检测设备
WO2015000192A1 (zh) 一种液晶面板的气浮式导向轮传送装置
TW201339072A (zh) 運送裝置及運送方法
CN102270594A (zh) 搬送室、基板处理装置和基板异常的检测方法
CN112080731B (zh) 多室连续光学镀膜机
CN110333246B (zh) 一种超薄玻璃的分离装置及检测系统
CN103884721A (zh) 自动灯检机
CN108426890A (zh) 一种面板的检测设备
CN207044871U (zh) 一种oca光学胶贴附设备
CN106111547B (zh) 一种物品分拣系统及分拣方法
CN209192364U (zh) 烟包翻转跑道
CN205449818U (zh) 一种新型包装盒六面外观检测设备
CN213170107U (zh) 传送及角度调整装置
CN213148772U (zh) 一种液晶玻璃巡边检测机构
US8662289B2 (en) Glass substrate transmission device and method for detecting the rotational synchronization of driven shafts
CN215923731U (zh) 一种无尘室玻璃基板的磁力轮传动装置
WO2023273606A1 (zh) 一种水果分选装置及方法
WO2019015153A1 (zh) 一种导向轮组件以及传送装置
TWM604011U (zh) 檢測裝置
WO2018117688A1 (ko) 부착 장치
CN211179580U (zh) 一种盖板玻璃外观检测装置
WO2010137786A1 (ko) 강판 속도 측정 장치 및 이를 이용한 압연 속도 제어 장치
WO2011115401A2 (ko) 도광판 제조 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13578257

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879845

Country of ref document: EP

Kind code of ref document: A1