WO2013191020A1 - 高圧酸浸出工程におけるオートクレーブ装置 - Google Patents

高圧酸浸出工程におけるオートクレーブ装置 Download PDF

Info

Publication number
WO2013191020A1
WO2013191020A1 PCT/JP2013/065959 JP2013065959W WO2013191020A1 WO 2013191020 A1 WO2013191020 A1 WO 2013191020A1 JP 2013065959 W JP2013065959 W JP 2013065959W WO 2013191020 A1 WO2013191020 A1 WO 2013191020A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
autoclave
slurry transfer
leaching
partition wall
Prior art date
Application number
PCT/JP2013/065959
Other languages
English (en)
French (fr)
Inventor
諭 松原
中井 修
京田 洋治
坂元 隆
治男 石川
孝一郎 槇
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CA2876915A priority Critical patent/CA2876915C/en
Priority to US14/406,492 priority patent/US9732400B2/en
Priority to AU2013278507A priority patent/AU2013278507B2/en
Priority to EP13807230.1A priority patent/EP2862951B1/en
Publication of WO2013191020A1 publication Critical patent/WO2013191020A1/ja
Priority to PH12014502773A priority patent/PH12014502773A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0223Moving bed of solid material
    • B01D11/0234Moving bed of solid material using other slow rotating arms or elements, whereby the general transport direction of the solids is not parallel to the rotation axis, e.g. perpendicular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0253Fluidised bed of solid materials
    • B01D11/0257Fluidised bed of solid materials using mixing mechanisms, e.g. stirrers, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/028Flow sheets
    • B01D11/0284Multistage extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/52Receptacles with two or more compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an autoclave apparatus through which a sulfide material continuously passes in a high-pressure acid leaching process of nickel oxide ore. More specifically, in an autoclave used for high-pressure acid leaching of nickel oxide ore, the inside of the autoclave is divided into a plurality of chambers by partition walls, and when performing an operation in which the charge is leached while being sequentially transferred through each chamber, The present invention relates to a technique capable of maintaining the same leaching rate as before even if the amount of free sulfuric acid, which is the control value of the autoclave final solution, is reduced by defining the position of the liquid passage port provided in the partition wall.
  • This application claims priority in Japan based on Japanese Patent Application No. 2012-137883 filed on June 19, 2012 and Japanese Patent Application No. 2012-260294 filed on November 28, 2012 This application is incorporated herein by reference.
  • HPAL high pressure acid leaching
  • this method does not include dry processes such as reduction and drying processes, and is a consistent wet process. It has the advantage of being advantageous. That is, in the high-pressure acid leaching method, iron as the main impurity is leached in the form of hematite (Fe 2 O 3 ) by controlling the oxidation-reduction potential and temperature of the leaching solution in the pressure leaching reactor in the leaching step. By fixing to the residue, nickel and cobalt can be leached selectively with respect to iron, so that there is a very great merit.
  • a high-pressure acid leaching method using an autoclave is adopted as a wet smelting method of nickel oxide ore.
  • a pretreatment step (1), a high pressure acid leaching step (2), and a solid-liquid separation step (3) The neutralization process (4), the dezincification process (5), the sulfurization process (6), and the detoxification process (7) are included (for example, refer patent document 1).
  • the nickel oxide ore is pulverized and classified using a pulverization facility and a sieving facility to prepare a raw slurry having a predetermined slurry concentration containing ores of 2 mm or less.
  • the raw slurry is supplied to the next high pressure acid leaching step (2).
  • the raw material slurry obtained in the pretreatment step (1) is heated and boosted stepwise by a pre-heater (temperature rising / pressurizing equipment) and then supplied to the autoclave.
  • a pre-heater temperature rising / pressurizing equipment
  • sulfuric acid that has been heated and increased in pressure is added to the raw material slurry, and stirred at 220 to 280 ° C., the valuable metal is leached at high pressure under high pressure.
  • the leaching slurry of the valuable metal obtained in the leaching step (2) is subjected to solid-liquid separation, and the leaching solution (crude nickel sulfate aqueous solution) containing nickel and cobalt as the valuable metals and the leaching residue are obtained. obtain.
  • the leachate obtained in the solid-liquid separation step (3) is neutralized.
  • step (6) hydrogen sulfide gas is added to the final zinc removal solution obtained in the dezincification step (5) to obtain a nickel / cobalt composite sulfide and a nickel poor solution.
  • the leaching residue generated in the solid-liquid separation process (3) and the nickel poor liquid generated in the sulfidation process (6) are detoxified.
  • the heated and pressurized raw slurry and sulfuric acid are supplied to the first compartment in the autoclave divided into a plurality of partitions, and the first compartment is prepared.
  • the leaching proceeds with stirring by the agitator, and the slurry is transferred to the second compartment and beyond by overflow or the like, and the leaching is further advanced in the same manner sequentially.
  • the slurry that overflows and the slurry at the bottom of each chamber usually have a difference in the residence time in the chamber, although it depends on the state of slurry flow in the chamber by stirring. Therefore, by transferring the overflow slurry and the bottom slurry in a balanced manner to the next room, the balance of the residence time is balanced, and the overall residence time is averaged, aiming for efficient operation. Yes.
  • the slurry in each chamber is supplied to the last chamber in order to continue the slurry discharge from the autoclave as much as possible as a role of the liquid inlet when the operation is urgently stopped due to some trouble rather than the steady operation. It is possible to make it possible.
  • the amount of slurry discharged from the autoclave is controlled to be kept at the set liquid level of the autoclave by a valve installed between the autoclave and the flash vessel. If the slurry supply to the autoclave is stopped due to some trouble, it is necessary to close the discharge valve to keep the autoclave liquid level, but once the discharge valve is fully closed, to open the discharge valve again. In order to prevent equipment damage due to rapid evaporation in the discharge pipe and in the flash tank, it is necessary to lower the temperature and pressure in the autoclave much more than the normal operation.
  • the size of the liquid inlet is made as small as possible in order to maintain the overflow state in which the overflow slurry and the bottom slurry are transferred to the next room in a well-balanced manner.
  • This problem has the effect of lowering the overall leaching rate of the autoclave, which is commensurate with the valuable metals contained in the raw slurry in order to maintain a predetermined leaching rate in operation (usually 90 to 95%).
  • Excess sulfuric acid is charged in the autoclave compared to the amount.
  • the amount of free sulfuric acid (unreacted sulfuric acid remaining in the leachate) is controlled, and this value is usually about 50 to 55 g / L.
  • external heating or cooling can be carried out by means such as maintaining a reactive slurry having a volume 50 to 200% larger than the volume of the reactive slurry contained in any of the downstream compartments.
  • a technique for maintaining the optimum temperature condition without performing the process see, for example, Patent Document 3).
  • Patent Document 3 is intended for sulfide raw materials, and the disclosed technique of Patent Document 4 requires a normal pressure leaching process, and thus cannot be applied to the above problems.
  • an opening for a manway that is used when a worker inspects the interior of the autoclave such as a periodic inspection is provided in each partition wall. Is closed by a door.
  • the slurry transfer port is provided with a slurry transfer port door as a set in the manway door member, and the manway door is closed during normal operation. The door for the slurry transfer port is opened and used.
  • the manway is used when workers check the inside of the autoclave during regular inspections, etc.
  • the inside bottom of the autoclave is the least inclined as a foothold in the inside of the autoclave, so the manway door is provided near the center bottom of the bulkhead. ing. Therefore, it is common to provide the door for the slurry transfer port at the center bottom of the partition wall.
  • JP-A-2005-350766 JP 2003-84220 A Japanese Patent Publication No. 07-084623 Special table 2009-515044 gazette
  • An object of the present invention is to provide an autoclave device capable of promoting efficient operation and reducing the control value of free sulfuric acid concentration after discharge in the high-pressure acid leaching process in view of the conventional problems as described above. There is to do.
  • Another object of the present invention is to provide an autoclave apparatus having a slurry transfer port that can function as a manway in a partition wall while ensuring overflow in a high-pressure acid leaching process.
  • the present inventors have found the effective installation position of the slurry transfer port provided in the partition wall of the autoclave by examining the flow rate (stirring pressure) of each indoor slurry by stirring.
  • the autoclave device has been completed, which can promote efficient operation by averaging the residence time and reduce the control value of the free sulfuric acid concentration after discharge.
  • the present invention advances the leaching by agitating the heated and pressurized raw material slurry and sulfuric acid with a stirrer provided in each compartment in the autoclave partitioned into a plurality of partitions, and the upstream partition.
  • a stirrer provided in each compartment in the autoclave partitioned into a plurality of partitions, and the upstream partition.
  • It is an autoclave device in a high-pressure acid leaching process in which slurry is transferred from a chamber to a downstream compartment and the leaching proceeds in sequence, and each partition wall can be opened and closed by a slurry transfer opening door.
  • a fluid passage port is provided, and the slurry transport passage port has a height from the lowest part of the autoclave to the center of gravity of the slurry transport passage door being 0.1 to 0.3 times the autoclave diameter,
  • the distance from the center line of the partition wall to the center of gravity of the fluid transfer door for transferring the slurry is set at a position 0.05 to 0.25 times the diameter of the autoclave and does not reach the end of the partition wall. Characterized in that it.
  • each of the partition walls is provided with the slurry transfer port at the downstream position in the stirring direction of the slurry by the stirrer in the upstream compartment. be able to.
  • the slurry transfer port may be a rectangular opening that does not reach the end of the partition wall.
  • the slurry transfer port may be installed at a door of the manway opening.
  • the slurry transfer port may be a rectangular opening of 30 to 50 cm square.
  • a notch portion that allows an overflow amount to be adjusted by an installation height position of the adjustment plate may be provided at an upper end portion of the partition wall.
  • the downstream partition has a ratio of the amount of liquid passing through the notch portion and the amount of liquid passing through the slurry transfer port, 55:45, and the other partitions are notches.
  • the ratio of the amount of liquid passing through the section and the amount of liquid passing through the slurry transfer port can be 84:16, and can be operated at a flow rate of 500 m 3 / hour.
  • the mixing of the raw slurry and sulfuric acid can be promoted, and the control value of the free sulfuric acid concentration after discharge can be reduced.
  • FIG. 1 is a diagram showing a configuration example of a main part of an autoclave apparatus to which the present invention is applied.
  • FIG. 1A is a cross-sectional plan view schematically showing an internal structure by horizontally cutting the autoclave apparatus.
  • FIG. 3B is a longitudinal side view schematically showing the internal structure of the autoclave apparatus cut vertically along the line BB shown in FIG.
  • FIG. 2 is a longitudinal front view schematically showing the internal structure of the autoclave apparatus cut vertically along the line AA shown in FIG. 1 (A).
  • FIG. 3 is a longitudinal front view schematically showing another installation example of a manway opening and a slurry transfer port.
  • FIG. 4 is a schematic diagram showing a simulation result of indoor convection in the autoclave apparatus.
  • FIG. 1A is a cross-sectional plan view schematically showing an internal structure by horizontally cutting the autoclave apparatus.
  • FIG. 3B is a longitudinal side view schematically showing the internal structure of the autoclave apparatus cut vertically
  • FIG. 5 is a diagram schematically showing the state of slurry transfer in the autoclave apparatus.
  • FIG. 6 is a schematic diagram showing the result of simulating the distribution of the pressure difference between the tanks (first tank-second tank) in the autoclave apparatus.
  • FIG. 7 is a process diagram showing a leaching procedure of nickel and cobalt by high pressure acid leaching of nickel oxide ore.
  • the present invention is implemented by an autoclave apparatus 100 having a structure as shown in FIGS. 1 and 2, for example.
  • FIG. 1 is a diagram showing a configuration example of a main part of an autoclave device 100.
  • FIG. 1A is a cross-sectional plan view schematically showing an internal structure by horizontally cutting the autoclave device 100
  • FIG. FIG. 3 is a longitudinal side view schematically showing the internal structure of the autoclave device 100 cut perpendicularly along the line BB shown in FIG. 2.
  • FIG. 2 is a longitudinal front view schematically showing the internal structure of the autoclave apparatus 100 cut vertically along the line AA shown in FIG. 1 (A).
  • This autoclave apparatus 100 is an autoclave apparatus in a high-pressure acid leaching process in which heated and pressurized raw material slurry and sulfuric acid are stirred to leach valuable metals at high temperature and pressure, and is a horizontally installed cylindrical autoclave body.
  • 110 includes a plurality of compartments 20A, 20B,... 20G that are partitioned by partition walls 10A, 10B,... 10F, and agitators 30A, 30B,. is set up.
  • the raw slurry and sulfuric acid are mixed by the stirrers 30A, 30B,... 30G provided in each of the compartments 20A, 20B,.
  • the leaching is advanced by agitating the slurry, the slurry is transferred from the upstream compartment to the downstream compartment, and the leaching is advanced sequentially.
  • the autoclave main body 110 includes two raw material slurry supply pipes 1A and 1B each having a raw material slurry discharge port around a stirring blade of a stirrer 30A provided in the upstreammost compartment 20A.
  • Two sulfuric acid supply pipes 2A and 2B having outlets are alternately arranged.
  • the raw material slurry outlet and the sulfuric acid outlet are higher than the uppermost part of the stirring blade and lower than the content liquid level L.
  • the partition chamber 20A is provided with a high-pressure steam supply pipe 3 having a high-pressure steam discharge port in the vicinity of the partition wall 10A.
  • a sulfuric acid supply pipe 4 having a sulfuric acid discharge port is provided in the vicinity of a stirring blade of a stirrer 30B provided in the next compartment 20B.
  • a PSV vent pipe 5 having a suction port is provided in the vicinity of the stirring blade of the stirrer 30F provided in the compartment 20F on the downstream end side.
  • a TAIL gas vent pipe 6 having a suction port, a slurry extraction pipe 7 having a slurry extraction port, and a spare pipe 8 are provided around the stirring blades of the stirrer 30G provided in the most downstream compartment 20G. ing.
  • Each pipe is inserted into the autoclave main body 110 from above.
  • stirrers 30A, 30B,... 30G provided in the compartments 20A, 20B,... 20G rotate clockwise, respectively, to form a downward flow of slurry.
  • a manhole 41 closed by an opening / closing lid is provided on the floor wall portion in the vicinity of the partition wall 10A.
  • a manhole 42 closed by an opening / closing lid is provided on the floor wall portion in the vicinity of the partition wall 10F.
  • the most downstream compartment 20G is provided with a manhole 43 that is closed by an open / close lid on the ceiling near the partition wall 10F.
  • the autoclave main body 110 in the autoclave apparatus 100 has a capacity of about 1000 m 3 in a shape in which both ends of a cylindrical body having a diameter D of about 5500 mm and a total length L of about 35000 mm are closed by a hemisphere.
  • the autoclave main body 110 is provided with manway openings 50A, 50B,... 50F, which are used when workers check the inside of the autoclave, such as periodic inspections, in the partition walls 10A, 10B,.
  • the doors 51A, 51B,... 51F for closing the manway openings 50A, 50B,... 50F are provided with the liquid passing ports 52A, 52B,.
  • the above-mentioned slurry transfer ports 52A, 52B,... 52F are opened and closed by opening / closing lids (not shown), and the manway openings 50A, 50B,. It is closed with 51A, 51B ... 51F, and the doors of the fluid passing ports 52A, 52B ... 52F for slurry transfer are opened and used.
  • the manway openings 50A, 50B,... 50F are installed in the center, and only the slurry transfer ports 52A, 52B,. You may set it off from.
  • each of the partition walls 10A, 10B,..., 10F in the autoclave main body 110 can be adjusted in the overflow amount according to the installation height position of the adjustment weir plate 11C as in the partition wall 10C shown in the longitudinal front view of FIG.
  • the notch portion 12C is provided at the upper end portion.
  • FIG. 4 shows the convection simulation result in the autoclave chamber.
  • the convection velocity is fast in the right direction in the figure regardless of the position of the slurry transfer opening.
  • FIG. 4 shows slurry streamlines in the vicinity of the partition walls. This indicates that the red line R has more slurry with a shorter residence time than the blue line B.
  • the slurry transfer liquid inlets 52A, 52B,... 52F are caused to rotate in the respective compartments 20A, 20B,. Since it is provided at a position away from the center line of the autoclave main body 110 by shifting to the downstream side of the flow, the pressure applied to the partition generated by the flow of the slurry is lower than that in the prior art, and the slurry is supplied to the slurry transfer liquid passage 52A. , 52B... 52F is not dominant and can be balanced with the overflow transfer.
  • the predetermined leach rate of 90 to 95% could not be maintained. Even if it is controlled to 45 to 50 g / L, it is possible to maintain a predetermined leaching rate.
  • the transfer amount from the slurry transfer ports 52A, 52B,... 52F is controlled by reducing the opening area without changing the position of the slurry transfer ports 52A, 52B,.
  • the effect is small and the balance cannot be maintained. It is a slurry that becomes a target in the operation of nickel oxide ore, and when stirring necessary for leaching is performed, it is considered that the pressure applied to the center exceeds the range that can be controlled by adjusting the area of the opening.
  • the positions of the slurry transfer ports 52A, 52B,... 52F are moved from the center as in the autoclave apparatus 100, the controllable low pressure is obtained, so the opening area is the slurry to be transferred to the next room. What is necessary is just to adjust suitably according to the ratio of the quantity, ie, the amount of slurry overflow, and the ratio of the slurry quantity which passes the liquid flow port for slurry transfer.
  • the overflow amount can be adjusted by the installation height position of the adjustment weir plate at 12A, 12B... 12F provided at the upper end of each partition wall 10A, 10B.
  • the opening areas of the liquid inlets 52A, 52B,... 52F are constant.
  • the downstream partition 10F has a ratio of the amount of slurry passing through the notch portion 12F and the amount of slurry passing through the slurry transfer port 52F to 55:45.
  • the other partition walls 10A, 10B,... 10E include an overflow amount of the slurry passing through the notches 12A, 12B,... 12E and an amount of slurry passing through the slurry transfer liquid passing ports 52A, 52B,.
  • the slurry transfer liquid passage ports 52A, 52B,... 52F are installed on the side where the discharge port of the steam pipe is located, the temperature becomes higher than the surroundings due to the steam, and the slurry for preventing the temperature drop in each chamber is next. Since it will be transferred to a chamber, it is not preferable.
  • the shape of the slurry transfer liquid passage ports 52A, 52B,... 52F is not particularly limited except that the adjusted area is used, but it is preferable to have a shape that does not reach the end of the partition wall. A reduction in the fixing strength of the partition wall can be prevented when it reaches the end of the partition wall, that is, when the end of the partition wall body is firmly fixed to the autoclave wall surface.
  • FIG. 6 is a schematic diagram showing the result of simulating the distribution of the pressure difference between the tanks (first tank-second tank) by performing a fluid analysis when the port is provided in the partition wall.
  • a region A1 from yellow to red indicates a place where the pressure on the first tank side is high, and tends to easily flow from the first tank to the two tanks.
  • the light blue to brown and blue region A2 has a small pressure difference and is difficult to flow from the first tank to the second tank.
  • the gray to black region indicates that the pressure difference is reversed, and the reddish pink region A3 indicates that the pressure difference is zero, that is, a balanced state.
  • the area around the calculated position of the slurry transfer opening is a distribution area A1 of a yellow color (that is, a pressure difference of about 1400 Pa at the maximum), and is an area that easily flows from the first tank to the second tank. ing.
  • the pressure difference at this location is about 600 Pa at maximum, which is a half of the initial position.
  • the region with a small pressure difference is distributed at a height of 100 ⁇ 20 cm from the bottom and 50 cm away from the center of the partition wall, and it is desirable to install a slurry transfer port at this position.
  • the height from the lowest part of the autoclave to the center of gravity of the slurry transfer passage door is 0.1 to 0.3 times the autoclave diameter D or less.
  • the distance from the center line of the partition wall to the center of gravity of the slurry transfer passage door is 0.05 to 0.25 times the autoclave diameter D, and the shape does not reach the end of the partition wall. It was supposed to have.
  • the direction deviating from the center is the left when facing the partition wall from the downstream compartment if the rotation direction of the stirrer is right rotation. The reverse is true when the stirrer rotates counterclockwise. At this time, the rotation direction of the stirrer in each compartment is the same direction. That is, each partition wall is provided with the above-described slurry transfer port at a downstream position in the agitating direction of the slurry by the agitator in the upstream compartment.
  • the shape of the slurry transfer ports 52A, 52B,... 52F is not particularly limited, but is preferably rectangular because processing is easy.
  • the slurry transfer port is provided in a region having a small pressure difference, thereby ensuring an overflow even when the shape is large, and by forming a rectangular opening of 30 cm square to 50 cm square, It functions as a manway while ensuring overflow.
  • the slope is gentle at the lowest part of the autoclave, it is also a place where the leach residue is most likely to accumulate even if the slurry is discharged because the worker enters the inside, so it is preferable to prepare the above countermeasures, so that a preferable work situation Can be produced.
  • Example 1 The autoclave was operated at a pressure of 4.7 MPaG, a temperature of 250 ° C., an Ni grade in the ore of 1.0 to 1.4% by weight, and an amount of slurry flowing into the autoclave of about 300 to 700 m 3 / hour.
  • HPAL operation was performed using the autoclave apparatus 100 to which the present invention was applied.
  • the leaching rate of nickel was 92.5%.
  • the free sulfuric acid in the leachate could be managed at 45 to 50 g / L.
  • Example 1 The present invention is not applied, and the HPAL operation is performed using the autoclave apparatus having a conventional structure in which the partition walls 10A, 10B,. The same operation as in Example 1 was performed except that the operation was performed.
  • the leaching rate of nickel was 92.0%.
  • the free sulfuric acid in the leachate could not be operated unless it was controlled at 50 to 55 g / L.
  • Example 2 In the autoclave apparatus 100 divided into 7 tanks by a diameter of 6 m, a total length of 40 m, and partition walls 10A, 10B,... 10F, each partition wall 10A, 10B,.
  • the slurry transfer ports 52A, 52B,... 52F were installed at positions 50 cm away on the downstream side of the rotation and operated in an overflow state.
  • the leaching rate of nickel was 92.0%, which was a good result.
  • Example 2 The operation was performed in the same manner as in Example 2 except that a slurry transfer port was provided at a position 50 cm away from the upstream side in the rotation direction of the stirring blade (clockwise as viewed from above).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Accessories For Mixers (AREA)

Abstract

高圧酸浸出工程において、原料スラリーと硫酸の混合を促進し、排出後のフリー硫酸濃度の管理値を低減させる。 加熱、加圧された原料スラリー及び硫酸を、隔壁10A,10B・・・10Fで複数に区画されたオートクレーブ本体110内の各区画室20A,20B・・・20Gに備えられた撹拌機30A,30B・・・30Gによって撹拌することにより浸出を進行させ、上流側の区画室から下流側の区画室にスラリーを移送し、順次、浸出を進行させる高圧酸浸出工程におけるオートクレーブ装置100の各隔壁10A,10B・・・10Fに、それぞれスラリー移送用通液口扉により開閉自在なスラリー移送用通液口52A,52B・・・52Fを設け、上記スラリー移送用通液口52A,52B・・・52Fは、オートクレーブ最低部からスラリー移送用通液口扉の重心までの高さがオートクレーブ直径の0.1倍~0.3倍であって、隔壁の中心線からスラリー移送用通液口扉の重心までの距離がオートクレーブ直径の0.05倍~0.25倍の位置に設置され、隔壁の端部に届かない形状を有するものとする。

Description

高圧酸浸出工程におけるオートクレーブ装置
 本発明は、ニッケル酸化鉱石の高圧酸浸出工程における硫化物材料が連続的に通過するオートクレーブ装置に関する。より詳しくは、ニッケル酸化鉱石の高圧酸浸出に使用されるオートクレーブにおいて、隔壁によってオートクレーブ内を複数の部屋に区分し、装入物が順次各室を移送されながら浸出される操業を行なう際に、隔壁に設けられた通液口の位置を規定することにより、オートクレーブ終液の管理値であるフリー硫酸量を低減しても、従前と同様の浸出率を維持できる技術に関する。本出願は、日本国において2012年6月19日に出願された日本特許出願番号2012-137883及び2012年11月28日に出願された日本特許出願番号2012-260294を基礎として優先権を主張するものであり、この出願は参照することにより、本出願に援用される。
 近年、高温高圧下において有効な耐食性を有する材料が開発されたことにより、ニッケル酸化鉱石の湿式製錬方法として、硫酸を用いた高温加圧酸浸出法(HPAL:High Pressure Acid Leach)が注目されている。この方法は、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬法と異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利であるという利点を有している。すなわち、上記高圧酸浸出法では、浸出工程において、加圧浸出反応器内の浸出液の酸化還元電位及び温度を制御することにより、主要不純物である鉄をヘマタイト(Fe)の形で浸出残渣に固定することにより、鉄に対し選択的にニッケル及びコバルトを浸出することができるので、非常に大きなメリットがある。
例えば、ニッケル酸化鉱石の湿式製錬方法として、オートクレーブを利用した高圧酸浸出法が採用されている。
ニッケル・コバルト混合硫化物を得るための高圧酸浸出法では、例えば、図7に示すように、前処理工程(1)と、高圧酸浸出工程(2)と、固液分離工程(3)と、中和工程(4)と、脱亜鉛工程(5)と、硫化工程(6)と、無害化工程(7)とを含む(例えば、特許文献1を参照)。
前処理工程(1)では、粉砕設備及び篩別設備を用いて、ニッケル酸化鉱石を解砕分級して、2mm以下の鉱石を含む所定のスラリー濃度の原料スラリーが調製される。原料スラリーは、次の高圧酸浸出工程(2)に供給される。
高圧酸浸出工程(2)では、前処理工程(1)で得られた原料スラリーがプレヒーター(昇温昇圧設備)で段階的に昇温及び昇圧された後、オートクレーブに供給され、オートクレーブにおいて、同様に昇温及び昇圧された硫酸を原料スラリーに添加し、220~280℃で撹拌して有価金属を高温加圧酸浸出し、得られる浸出スラリーをフラッシュベッセルで常温常圧まで降温降圧する。
固液分離工程(3)では、浸出工程(2)で得られた有価金属の浸出スラリーを固液分離して、有価金属としてニッケル及びコバルトを含む浸出液(粗硫酸ニッケル水溶液)と浸出残渣とを得る。
中和工程(4)では、固液分離工程(3)で得られた浸出液を中和する。
脱亜鉛工程(5)では、中和工程(4)で中和した浸出液に硫化水素ガスを添加して亜鉛を硫化亜鉛として沈殿除去する。
硫化工程(6)では、脱亜鉛工程(5)で得られた脱亜鉛終液に硫化水素ガスを添加してニッケル・コバルト複合硫化物とニッケル貧液を得る。
 無害化工程(7)では、固液分離工程(3)で発生した浸出残渣と、硫化工程(6)で発生したニッケル貧液とを無害化する。
 ここで、高圧酸浸出工程(2)におけるオートクレーブでは、加熱、加圧された原料スラリー及び硫酸を、隔壁で複数に区画されたオートクレーブ内の第一区画室に供給し、第一区画室に備えられた撹拌機によって撹拌しながら浸出を進行させ、オーバーフローなどにより第二区画室以降にスラリーを移送し、順次、同様の方法でさらに浸出を進行させる。
 ところで、上記オートクレーブ内においてスラリーが次の部屋に移送される場合、隔壁の上部をオーバーフローして移送されるほか、隔壁の下部に設けられた通液口を通して移送される(例えば、特許文献2参照)。
 オーバーフローされるスラリーと各室底部のスラリーは、撹拌による室内でのスラリー流動の状況にもよるが、通常、室内の滞留時間に差がある。このため、オーバーフローのスラリーと底部のスラリーをバランスよく次の部屋に移送することによって、滞留時間の長短のバランスをとり、全体的な滞留時間を平均化することで効率の良い操業を指向している。
 また、定常時の操業ではなく、なんらかのトラブルにより操業が緊急的に停止した時の通液口の役割として、オートクレーブからのスラリー排出をできる限り継続するために各室のスラリーを最後段室に供給可能とすることが挙げられる。
 オートクレーブからの排出スラリー量はオートクレーブとフラッシュベッセル間に設置されたバルブにてオートクレーブの設定液位に保たれるよう制御されている。何らかのトラブルによりオートクレーブへのスラリー供給が停止した場合、オートクレーブの液位を保つためには排出バルブを閉める必要があるが、一旦排出バルブを全閉とすると、再び排出バルブを開とするためには、排出配管内およびフラッシュタンクでの急激な蒸発による設備破損を防止するために、オートクレーブ内温度および圧力を通常操業よりも大きく下げる必要がある。
 この作業を経た場合、通常操業に復帰するためには長時間を要するため、稼働時間の大幅なロスとなる。そのため、緊急的に停止した場合でも、排出バルブは全閉とせず、オートクレーブ内部のスラリーを極僅かな流量で排出し続ける。この際に、通液口を通じて各室のスラリーを最後段室に供給し、出来る限りスラリー排出を維持し続けることが可能となるように通液口が設けられている。
 従って、定常時の操業では、オーバーフローのスラリーと底部のスラリーをバランスよく次の部屋に移送するオーバーフロー状態を維持するという役割のために通液口のサイズはできるだけ小さくし、また、非常停止時のためには、通液口のサイズはできるだけ大きくすることが設計上重要なポイントであり、実操業上の流量やオートクレーブのサイズにより、適宜調整して設定されている。
 ところが、このバランスが崩れ、隔壁の下部に設けられた通液口からのスラリー移送が支配的となり、オーバーフローからのスラリー移送がほとんど無くなる場合があり、スラリーの滞留時間は、底部のものに偏ってしまうため、効率の良い操業が阻害されるという問題点がある。
 この問題点は、オートクレーブの全体的な浸出率が低下するという影響があり、操業上の所定の浸出率(通常90~95%)に維持するために、原料スラリー中に含まれる有価金属に見合う量に比べて過剰な硫酸をオートクレーブ内に装入している。この操業を維持するために、フリー硫酸(前記の浸出液中に残留する未反応の硫酸)の量で管理しており、通常、この値は50~55g/L程度である。
 また、固液分離工程(3)で得られる浸出液は、次の中和工程(4)で中和されるため、フリー硫酸は浸出に寄与することなく中和されてしまうので、勿体ない。また、中和のための中和剤のコストも必要となるため、フリー硫酸量は少しでも減少させたいという問題点があるが、現状は、所定の浸出率を維持するために上記のフリー硫酸量にせざるを得ない状況である。
 例えば、オートクレーブ内で第一区画室において、下流側区画室の何れに入っている反応性スラリーの容量よりも50乃至200%大きい容量の反応性スラリーが維持するなどの工夫で外部加熱または冷却をせずに最適温度条件を維持する技術が提案されている(例えば、特許文献3参照)。
 また、常圧浸出の段階と加圧浸出の段階を含む、連続する2以上の浸出段階の複合的な実施により、硫酸を再生し、添加硫酸量の相当量を削減する技術が提案されている(例えば、特許文献4参照)。
 しかしながら、上記特許文献3の開示技術は硫化物原料を対象としており、また、特許文献4の開示技術は常圧浸出の工程を必要とするため、上記の問題点には適用することができない。
 また、隔壁で複数に区画されたオートクレーブ装置では、定期点検などオートクレーブの内部を作業員が点検する際に使用されるマンウェイ用の開口が各隔壁に設けられており、上記マンウェイ用の開口は扉で閉じられている。
 スラリー移送用の通液口は、隔壁の強度を考慮し、マンウェイの扉部材の中にスラリー移送用の通液口の扉がセットで設けられ、通常の操業ではマンウェイの扉を閉鎖し、スラリー移送用の通液口の扉が開放されて使用されている。
 マンウェイは、定期点検などオートクレーブの内部を作業員が点検する際に使用され、オートクレーブの内部では中央底部が足場として最も傾斜が少ないため、マンウェイの扉は、隔壁の中央底部近傍に設けられている。従って、スラリー移送用の通液口の扉も、隔壁の中央底部に設けられるのが一般的である。
特開2005-350766号公報 特開2003-82420号公報 特公平07-084623号公報 特表2009-515044号公報
 本発明の目的は、上述の如き従来の問題点に鑑み、高圧酸浸出工程において、効率の良い操業を促進し、排出後のフリー硫酸濃度の管理値を低減させることが可能なオートクレーブ装置を提供することにある。
 また、本発明の他の目的は、高圧酸浸出工程におけるオーバーフローを確保しつつ、マンウェイとして機能可能なスラリー移送用の通液口を隔壁に有するオートクレーブ装置を提供することにある。
 本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
 本発明者らは、上記目的を達成するために、撹拌による各室内スラリーの流速(撹拌圧力)を検討することによって、オートクレーブの隔壁に設けるスラリー移送用の通液口の有効な設置位置を見出し、滞留時間を平均化することで効率の良い操業を促進し、排出後のフリー硫酸濃度の管理値を低減させることが可能なオートクレーブ装置を完成した。
 すなわち、本発明は、加熱、加圧された原料スラリー及び硫酸を、隔壁で複数に区画されたオートクレーブ内の各区画室に備えられた撹拌機によって撹拌することにより浸出を進行させ、上流側の区画室から下流側の区画室にスラリーを移送し、順次、浸出を進行させる高圧酸浸出工程におけるオートクレーブ装置であって、各隔壁には、それぞれスラリー移送用通液口扉により開閉自在なスラリー移送用通液口が設けられ、上記スラリー移送用通液口は、オートクレーブ最低部からスラリー移送用通液口扉の重心までの高さがオートクレーブ直径の0.1倍~0.3倍であって、隔壁の中心線からスラリー移送用通液口扉の重心までの距離がオートクレーブ直径の0.05倍~0.25倍の位置に設置され、隔壁の端部に届かない形状を有することを特徴とする。
 本発明に係るオートクレーブ装置において、上記各隔壁には、それぞれ上流側の区画室における撹拌機によるスラリーの撹拌方向の下流側の位置に、上記スラリー移送用通液口が設けられているものとすることができる。
 本発明に係るオートクレーブ装置において、上記スラリー移送用通液口は、隔壁の端部に届かない矩形状の開口であるものとすることができる。
 また、本発明に係るオートクレーブ装置において、上記スラリー移送用通液口は、マンウェイ開口部の扉に設置されるものとすることができる。
 また、本発明に係るオートクレーブ装置において、上記スラリー移送用通液口は、30cm角~50cm角の矩形状の開口であるものとすることができる。
 また、本発明に係るオートクレーブ装置において、上記隔壁の上端部には、調整板の設置高さ位置によりオーバーフロー量を調整自在としたノッチ部が設けられているものとすることができる。
 さらに、本発明に係るオートクレーブ装置において、下流側の隔壁は、ノッチ部を通過する液量とスラリー移送用通液口を通過する液量との比率を55:45とし、他の隔壁は、ノッチ部を通過する液量とスラリー移送用通液口を通過する液量との比率を84:16とし、500m/時の流量にて操業されるものとすることができる。
 本発明によれば、高圧酸浸出工程において、原料スラリーと硫酸の混合を促進し、排出後のフリー硫酸濃度の管理値を低減させることができる。
図1は、本発明を適用したオートクレーブ装置の要部構成例を示す図であり、図1(A)はオートクレーブ装置を水平に切断して内部構造を模式的に示した横断平面図、図1(B)はオートクレーブ装置を図2に示すB-B線にて垂直に切断して内部構造を模式的に示した縦断側面図である。 図2は、オートクレーブ装置を図1(A)に示すA-A線にて垂直に切断して内部構造を模式的に示した縦断正面図である。 図3は、マンウェイ用の開口とスラリー移送用通液口の他の設置例を示す模式的に示した縦断正面図である。 図4は、上記オートクレーブ装置における室内対流のシミュレーション結果を示す模式図である。 図5は、上記オートクレーブ装置におけるスラリーの移送状態を模式的に示す図である。 図6は、上記オートクレーブ装置における槽間の圧力差(第1槽-第2槽)の分布をシミュレーションした結果を示す模式図である。 図7は、ニッケル酸化鉱石の高圧酸浸出法によるニッケル及びコバルトの浸出手順を示す工程図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 本発明は、例えば図1及び図2に示すような構造のオートクレーブ装置100により実施される。
 図1は、オートクレーブ装置100の要部構成例を示す図であり、図1(A)はオートクレーブ装置100を水平に切断して内部構造を模式的に示した横断平面図、図1(B)はオートクレーブ装置100を図2に示すB-B線にて垂直に切断して内部構造を模式的に示した縦断側面図である。また、図2は、オートクレーブ装置100を図1(A)に示すA-A線にて垂直に切断して内部構造を模式的に示した縦断正面図である。
 このオートクレーブ装置100は、加熱、加圧された原料スラリー及び硫酸を撹拌して有価金属を高温加圧酸浸出する高圧酸浸出工程におけるオートクレーブ装置であって、水平に設置された円筒型のオートクレーブ本体110内を隔壁10A,10B・・・10Fにより区画してなる複数の区画室20A,20B・・・20Gを備え、各区画室20A,20B・・・20Gに撹拌機30A,30B・・・30Gが設置されている。そして、このオートクレーブ装置100では、上記隔壁10A,10B・・・10Fで複数に区画された各区画室20A,20B・・・20Gに備えられた撹拌機30A,30B・・・30Gによって原料スラリー及び硫酸を撹拌することにより浸出を進行させ、上流側の区画室から下流側の区画室にスラリーを移送し、順次、浸出を進行させる。
 このオートクレーブ本体110には、最上流端の区画室20Aに備えられた撹拌機30Aの撹拌翼の周囲に、それぞれ原料スラリー吐出口を有する2本の原料スラリー供給管1A,1Bと、それぞれ硫酸吐出口を有する2本の硫酸供給管2A,2Bとが交互に配設されている。上記原料スラリー吐出口及び硫酸吐出口は、上記撹拌翼の最上部より高く、内容物液面Lより低い位置にある。また、この区画室20Aには、隔壁10Aの近傍に高圧蒸気吐出口を有する高圧蒸気供給管3が設けられている。次の区画室20Bに備えられた撹拌機30Bの撹拌翼の近傍に硫酸吐出口を有する硫酸供給管4が設けられている。
 また、下流端側の区画室20Fに備えられた撹拌機30Fの撹拌翼の近傍に吸入口を有するPSVベント用配管5が設けられている。
 さらに、最下流端の区画室20Gに備えられた撹拌機30Gの撹拌翼の周囲に、吸入口を有するTAILガスベント用配管6、スラリー抜き取り口を有するスラリー抜き取り用配管7及び予備配管8が設けられている。
 なお、各配管はオートクレーブ本体110の上方から、内部に挿入されている。
 また、このオートクレーブ装置100において、各区画室20A,20B・・・20Gに備えられた各撹拌機30A,30B・・・30Gは、それぞれ時計回りに回転し、スラリーの下降流を形成する。
 また、このオートクレーブ装置100の最上流端の区画室20Aには、隔壁10Aの近傍の床壁部分に開閉蓋により閉じられたマンホール41が設けられている。また、下流端側の区画室20Fには、隔壁10Fの近傍の床壁部分に開閉蓋により閉じられたマンホール42が設けられている。さらに、最下流端の区画室20Gには、隔壁10Fの近傍の天井部分に開閉蓋により閉じられたマンホール43が設けられている。
 ここで、このオートクレーブ装置100におけるオートクレーブ本体110は、直径Dが約5500mm、全長Lが約35000mmの円筒体の両端部を半球面で閉じた形状で、約1000mの容量を有している。
 そして、このオートクレーブ本体110には、定期点検などオートクレーブ内部を作業員が点検する際に使用されるマンウェイ用の開口50A,50B・・・50Fが各隔壁10A,10B・・・10Fに設けられており、上記マンウェイ用の開口50A,50B・・・50Fを閉じる扉51A,51B・・・51Fにスラリー移送用の通液口52A,52B・・・52Fが設けられている。
 上記スラリー移送用の通液口52A,52B・・・52Fは、それぞれ図示しない開閉蓋により開閉されるようになっており、通常の操業ではマンウェイ用の開口50A,50B・・・50Fを扉51A,51B・・・51Fで閉鎖し、スラリー移送用の通液口52A,52B・・・52Fの扉が開放されて使用されている。
 ここで、このオートクレーブ本体110内の各隔壁10A,10B・・・10Fに設けられたスラリー移送用の通液口52A,52B・・・52Fは、全流量に対し10%~45%程度を流せる大きさで隔壁の端部に届かない形状に形成されている。このオートクレーブ装置100におけるスラリー移送用通液口52A,52B・・・52Fは、各隔壁10A,10B・・・10Fを代表して図2の縦断正面図に隔壁10Cを示すように、オートクレーブ本体110の中心線から間隔C=600mm、底面から間隔H1=785mmの位置を重心位置とする高さ170mm、幅240の長方形となっている。
 また、マンウェイ用の開口50A,50B・・・50Fは、各区画室20A,20B・・・20Gに挿入される配管と干渉しない範囲でできるだけ中央に配置され、オートクレーブ本体110の中心線から間隔C=600mm、底面から間隔H2=890mmの位置を重心位置とする高さH580mm、幅W600mmの長方形となっている。
 なお、図3に示すように、マンウェイ用の開口50A,50B・・・50Fは、中央に設置し、上記スラリー移送用通液口52A,52B・・・52Fのみをオートクレーブ本体110の中心線からずらして設置してもよい。
 さらに、このオートクレーブ本体110内の各隔壁10A,10B・・・10Fには、図2の縦断正面図に示す隔壁10Cのように、調整堰板11Cの設置高さ位置によりオーバーフロー量を調整自在としたノッチ部12Cが上端部に設けられている。
 このオートクレーブ装置100において、各撹拌機30A,30B・・・30Gの時計回りの回転により生じる各区画室20A,20B・・・20Gにおけるスラリーの流れには、オートクレープ室内の対流のシミュレーション結果を図4の模式図に示すように、偏りがあり、スラリー移送用の開口の位置に拘わらず、図の右方向では対流速度が速い。図4は、隔壁近傍のスラリー流線を示したものである。青のラインBよりも赤のラインRの方が滞留時間が短いスラリーの存在が多いことを示している。
 このオートクレーブ装置100では、上記スラリー移送用通液口52A,52B・・・52Fを各撹拌機30A,30B・・・30Gの時計回りの回転により生じる各区画室20A,20B・・・20Gにおけるスラリーの流れの下流側にずらしてオートクレーブ本体110の中心線から離れた位置に設けたので、スラリーの流れによって発生する隔壁への圧力が、従来よりも低い位置となり、スラリーがスラリー移送用通液口52A,52B・・・52Fからの移送が支配的にならず、オーバーフローの移送とのバランスが取れるようになる。
 このため、従来、浸出液のフリー硫酸濃度を50~55g/Lとしなければ、所定の浸出率である90~95%を維持できなかったのに対し、このオートクレーブ装置100では、浸出液のフリー硫酸濃度を45~50g/Lと半分に管理しても、所定の浸出率を維持することができる。
 ここで、スラリー移送用通液口52A,52B・・・52Fの位置は変えずに、開口面積を小さくすることにより、スラリー移送用通液口52A,52B・・・52Fからの移送量を制御することが考えられるが、開口を狭くしても効果が小さく、上記バランスを維持することができなかった。ニッケル酸化鉱の操業で対象となるスラリーであって、浸出に必要な撹拌を行うと、中心部にかかる圧力が開口の面積を調整することでコントロールできる範囲を超えていると考えられる。
 このオートクレーブ装置100のようにスラリー移送用通液口52A,52B・・・52Fの位置を中心から移動させれば、コントロール可能な低い圧力となるので、開口面積は、次の部屋に移送するスラリー量、すなわち、スラリーのオーバーフロー量とスラリー移送用通液口を通過するスラリー量の割合に応じて適宜調整すればよい。
 このオートクレーブ装置100では、各隔壁10A,10B・・・10Fの上端部に設けられている12A,12B・・・12Fにおける調整堰板の設置高さ位置によりオーバーフロー量を調整可能とし、スラリー移送用通液口52A,52B・・・52Fの開口面積は一定にしてある。
 このオートクレーブ装置100において、図5に示すように、下流側の隔壁10Fは、ノッチ部12Fを通過するスラリーのオーバーフロー量とスラリー移送用通液口52Fを通過するスラリー量との比率を55:45とし、他の隔壁10A,10B・・・10Eは、ノッチ部12A,12B・・・12Eを通過するスラリーのオーバーフロー量とスラリー移送用通液口52A,52B・・・52Eを通過するスラリー量との比率を84:16とし、500m/時の流量にて操業したところ、確実にスラリーのオーバーフロー量を維持し、従来よりも、スラリーの滞留時間が20%増加し、必要フリー硫酸濃度を約45g/Lに減少させた状態で管理して操業することができた。
 なお、スラリー移送用通液口52A,52B・・・52Fは、蒸気管の吐出口がある側に設置すると、蒸気によって周囲より温度が高くなり、各室の温度低下を防ぐためのスラリーが次室に移送されてしまうので、好ましくない。
 また、スラリー移送用通液口52A,52B・・・52Fの形状は、前記調整された面積となる以外は特に制限はないが、隔壁端部に届かない形状とすることが好ましい。隔壁端部に届き、すなわち、隔壁本体の端部がオートクレーブ壁面にしっかりと固定された方が、隔壁の固定強度の低下を防ぐことができる。
 ここで、1槽と2槽を直径6mの隔壁を介して繋いだ2槽モデルにおいて、上流側の第1槽における撹拌機によるスラリーの撹拌方向の下流側に位置するようにスラリー移送用通液口を隔壁に設けたときの流体解析を行い、槽間の圧力差(第1槽-第2槽)の分布をシミュレーションした結果を図6の模式図に示す。図6において、黄色から赤色にかけての領域A1は第1槽側の圧力の高い所を示し、第1槽から2槽へ流れやすい傾向を示している。これに対して水色から茶色、青色の領域A2は圧力差が少なく、第1槽から2槽へ流れにくい所である。また、灰色から黒の領域は圧力差が逆転している所、赤み掛かったピンク色の領域A3は圧力差がゼロすなわち均衡している所を示している。この図から、計算した当該スラリー移送用の開口の位置の周囲は、色が黄色(すなわち最大1400Paくらいの圧力差)の分布領域A1であり、第1槽から第2槽に流れやすい領域となっている。
 スラリー移送用通液口を上記位置からスラリーの撹拌方向の上流側へ平行移動すると、この場所の圧力差は、最大600Pa程度であり、初期の位置に比べ半分の値である。速度は圧力差の平方根に比例(P=ρu/2)することから、圧力が1/2になるということは同じ大きさのスラリー移送用通液口をスラリーの撹拌方向の上流側に設置すると流量は(1/2)0.5、すなわち70%に減少し、第2槽に流れ難くなる。
 この結果から、オーバーフローを維持しながら、出来るだけ大きいスラリー移送用通液口を設置するためには、撹拌翼の回転方向の上流側よりも下流側にずらして設置すべきであることが見出された。
 図6から、圧力差の小さい領域は、最下部から100±20cmの高さ、隔壁中央から50cm離れた所に分布しており、この位置にスラリー移送用通液口を設置するのが望ましい。
 そこで、上記スラリー移送用通液口52A,52B・・・52Fは、オートクレーブ最低部からスラリー移送用通液口扉の重心までの高さがオートクレーブ直径Dの0.1倍~0.3倍以下であって、隔壁の中心線からスラリー移送用通液口扉の重心までの距離がオートクレーブ直径Dの0.05倍~0.25倍の位置に設置され、隔壁の端部に届かない形状を有するものとした。このとき、中心からずれる方向は、撹拌機の回転方向が右回転ならば、下流側の隔室から隔壁に正対した場合、左である。撹拌機が左回転の場合はこの逆である。この際、各隔室の撹拌機の回転方向は同一方向とする。すなわち、各隔壁には、それぞれ上流側の区画室における撹拌機によるスラリーの撹拌方向の下流側の位置に、上記スラリー移送用通液口が設けられる。
 また、上記スラリー移送用通液口52A,52B・・・52Fの形状は、特に制限はないが、長方形とすることで、加工が容易であるので好ましい。
 また、上記スラリー移送用通液口は、圧力差の小さい領域に配することにより、大きな形状としても、オーバーフローを確保することができ、30cm角~50cm角の矩形状の開口とすることにより、オーバーフローを確保しつつ、マンウェイとして機能する。
 また、このオートクレーブ装置100では、上記スラリー移送用通液口52A,52B・・・52Fをマンウェイ用の開口50A,50B・・・50Fを閉じる扉51A,51B・・・51Fに設置したので、隔壁全体としては開口部分が1箇所にまとめられ、強度低下を防ぐことができる。この場合、マンウェイ用の開口50A,50B・・・50Fが中心部から両サイド側に移されるため、オートクレーブの傾斜がややきつくなるが、傾斜にあわせた足場、踏み台などを準備する対応策を用意すれば問題なく通過が可能である。また、オートクレーブの最低部では傾斜が緩いものの、作業員が内部に入るためにスラリーを排出しても、浸出残渣がもっとも溜まり易い場所でもあるため、前記対応策を用意することで却って好ましい作業状況を作り出すことが可能である。
 [実施例1]
 オートクレーブ装置内の圧力が4.7MPaG、温度が250℃、鉱石中のNi品位が1.0~1.4重量%、オートクレーブへのスラリー流入量が300~700m3/時間程度の操業を行った。
 この操業においては、本発明を適用したオートクレーブ装置100を用いてHPAL操業を行った。
 その結果、ニッケルの浸出率は92.5%であった。この際、浸出液のフリー硫酸は45~50g/Lで管理して操業することが可能であった。
 [比較例1]
 本発明を適用せず、上記オートクレーブ装置100における各隔壁10A,10B・・・10Fをオートクレーブ本体110の中心線から間隔C=0としたものに置き換えた従来構造のオートクレーブ装置を用いてHPAL操業を行った以外は、実施例1と同様に操業した。
 その結果、ニッケルの浸出率は92.0%であった。この際、浸出液のフリー硫酸は50~55g/Lで管理しなければ、操業不可能であった。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 直径6m、全長40m、隔壁10A,10B・・・10Fにより7槽に分割されたオートクレーブ装置100において、各隔壁10A,10B・・・10Fに最下部から100cmの高さで、隔壁中央から撹拌翼回転の下流側に50cm離れた位置に上記スラリー移送用通液口52A,52B・・・52Fを設置し、オーバーフローの状態で操業した。
 その結果、ニッケルの浸出率は92.0%と良好な結果であった。
 [比較例2]
 撹拌翼の回転方向(上から見て時計回り)の上流側に50cm離れた位置にスラリー移送用通液口を設置した以外は、実施例2と同様に操業した。
 その結果、第1槽から第2槽へ硫酸のショートパスが発生し、スラリー移送用通液口から浸出不足の鉱石が第2槽に多く出てしまい、ニッケルの浸出率が低下した。
 1A,1B 原料スラリー供給管、2A,2B 硫酸供給管、3 高圧蒸気供給管、4 硫酸供給管、5 PSVベント用配管、6 TAILガスベント用配管、7 スラリー抜き取り用配管、8 予備配管、10A,10B・・・10F 隔壁、11C 調整堰板、12A,12B・・・12F ノッチ部、20A,20B・・・20G 区画室、30A,30B・・・30G 撹拌機、41,42,43 マンホール、50A,50B・・・50F マンウェイ用の開口、51A,51B・・・51F 扉、52A,52B・・・52F スラリー移送用の通液口、100 オートクレーブ装置、110 オートクレーブ本体

Claims (5)

  1.  加熱、加圧された原料スラリー及び硫酸を、隔壁で複数に区画されたオートクレーブ内の各区画室に備えられた撹拌機によって撹拌することにより浸出を進行させ、上流側の区画室から下流側の区画室にスラリーを移送し、順次、浸出を進行させる高圧酸浸出工程におけるオートクレーブ装置であって、
     各隔壁には、それぞれスラリー移送用通液口扉により開閉自在なスラリー移送用通液口が設けられ、
     上記スラリー移送用通液口は、オートクレーブ最低部からスラリー移送用通液口扉の重心までの高さがオートクレーブ直径の0.1倍~0.3倍であって、隔壁の中心線からスラリー移送用通液口扉の重心までの距離がオートクレーブ直径の0.05倍~0.25倍の位置に設置され、隔壁の端部に届かない形状を有する
     ことを特徴とするオートクレーブ装置。
  2.  上記各隔壁には、それぞれ上流側の区画室における撹拌機によるスラリーの撹拌方向の下流側の位置に、上記スラリー移送用通液口が設けられていることを特徴とする請求項1に記載のオートクレーブ装置。
  3.  上記スラリー移送用通液口は、隔壁の端部に届かない矩形状の開口であることを特徴とする請求項1又は請求項2に記載のオートクレーブ装置。
  4.  上記スラリー移送用通液口は、マンウェイ開口部の扉に設置されることを特徴とする請求項3に記載のオートクレーブ装置。
  5.  上記スラリー移送用通液口は、30cm角~50cm角の矩形状の開口であることを特徴とする請求項3に記載のオートクレーブ装置。
PCT/JP2013/065959 2012-06-19 2013-06-10 高圧酸浸出工程におけるオートクレーブ装置 WO2013191020A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2876915A CA2876915C (en) 2012-06-19 2013-06-10 Autoclave apparatus used during high-pressure acid leaching process
US14/406,492 US9732400B2 (en) 2012-06-19 2013-06-10 Autoclave apparatus used during high-pressure acid leaching process
AU2013278507A AU2013278507B2 (en) 2012-06-19 2013-06-10 Autoclave apparatus used during high-pressure acid leaching process
EP13807230.1A EP2862951B1 (en) 2012-06-19 2013-06-10 Autoclave apparatus used during high-pressure acid leaching process
PH12014502773A PH12014502773A1 (en) 2012-06-19 2014-12-10 Autoclave apparatus used during high-pressure acid leaching process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-137883 2012-06-19
JP2012137883 2012-06-19
JP2012260294A JP5418660B2 (ja) 2012-06-19 2012-11-28 高圧酸浸出工程におけるオートクレーブ装置
JP2012-260294 2012-11-28

Publications (1)

Publication Number Publication Date
WO2013191020A1 true WO2013191020A1 (ja) 2013-12-27

Family

ID=49768620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065959 WO2013191020A1 (ja) 2012-06-19 2013-06-10 高圧酸浸出工程におけるオートクレーブ装置

Country Status (7)

Country Link
US (1) US9732400B2 (ja)
EP (1) EP2862951B1 (ja)
JP (1) JP5418660B2 (ja)
AU (1) AU2013278507B2 (ja)
CA (1) CA2876915C (ja)
PH (1) PH12014502773A1 (ja)
WO (1) WO2013191020A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066441A (ja) * 2015-09-28 2017-04-06 住友金属鉱山株式会社 ニッケル粉の製造方法、反応設備の運転方法
JP2018179502A (ja) * 2017-04-03 2018-11-15 住友金属鉱山株式会社 ベアリングの交換時期判定方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180086B2 (ja) * 2017-03-22 2022-11-30 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP6905211B2 (ja) * 2017-07-24 2021-07-21 住友金属鉱山株式会社 オートクレーブ
KR101889681B1 (ko) 2018-02-13 2018-08-17 고려아연 주식회사 오토클레이브 및 오토클레이브의 염 제거방법
JP7047502B2 (ja) * 2018-03-15 2022-04-05 住友金属鉱山株式会社 高圧蒸気の供給遮断システム及びこれを備えた高圧酸浸出設備
CN108635904B (zh) * 2018-05-09 2020-05-05 重庆医药高等专科学校 金银花药液的提取机构
JP7187827B2 (ja) * 2018-06-07 2022-12-13 住友金属鉱山株式会社 オートクレーブの冷却方法
CN109182741B (zh) * 2018-09-21 2020-12-29 淄博淦达环保科技有限公司 一种浸取装置
CN109097564B (zh) * 2018-09-21 2020-12-29 淄博淦达环保科技有限公司 一种浸出釜
JP7298126B2 (ja) * 2018-09-26 2023-06-27 住友金属鉱山株式会社 ニッケル酸化鉱石のオートクレーブ装置
JP7285425B2 (ja) * 2019-05-17 2023-06-02 住友金属鉱山株式会社 高圧酸浸出処理を行うオートクレーブ装置
EP4045692A4 (en) * 2019-10-15 2023-06-28 Metso Outotec Finland Oy Autoclave and pressure oxidation method
JP7447471B2 (ja) * 2019-12-19 2024-03-12 住友金属鉱山株式会社 攪拌装置
CN112121462A (zh) * 2020-10-23 2020-12-25 张洪江 一种用于农作物发酵产物的多层往复萃取设备
CN112844280B (zh) * 2020-12-23 2022-11-18 中国纺织科学研究院有限公司 一种卧式反应釜及应用其的功能聚酯生产系统及生产方法
CA3177739A1 (en) * 2022-07-27 2024-01-27 Hatch Ltd. A metal-dissolving apparatus, processes, and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784623B2 (ja) 1984-09-19 1995-09-13 シエリツト・ゴ−ドン・マインズ・リミテツド 非鉄金属含有硫化物材料からの非鉄金属回収方法
JP2003082420A (ja) 2001-09-13 2003-03-19 Dowa Mining Co Ltd 亜鉛精鉱浸出法および浸出装置
JP2005350766A (ja) 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2009515044A (ja) 2005-11-10 2009-04-09 コンパニア バレ ド リオ ドセ 複合浸出プロセス
JP2009530077A (ja) * 2006-03-17 2009-08-27 バリック・ゴールド・コーポレイション 底流仕切部材を備えたオートクレーブ
JP2011241446A (ja) * 2010-05-18 2011-12-01 Sumitomo Metal Mining Co Ltd 硫化反応工程の反応制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121759A (en) * 1960-08-23 1964-02-18 Kellogg M W Co Cascade liquid-vapor reactor
US3961908A (en) * 1974-02-27 1976-06-08 Freeport Minerals Company Autoclave system for leaching sulfide concentrates
US5046856A (en) * 1989-09-12 1991-09-10 Dowell Schlumberger Incorporated Apparatus and method for mixing fluids
JPH0784623A (ja) 1993-09-14 1995-03-31 Zexel Corp Cad/cam結合システム
US6299776B1 (en) * 1997-12-23 2001-10-09 General Signal Corporation Biochemical oxidation system and process
US6835230B2 (en) * 2001-03-28 2004-12-28 Dowa Mining Co., Ltd. Method for leaching zinc concentrate
US7604783B2 (en) * 2004-12-22 2009-10-20 Placer Dome Technical Services Limited Reduction of lime consumption when treating refractor gold ores or concentrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784623B2 (ja) 1984-09-19 1995-09-13 シエリツト・ゴ−ドン・マインズ・リミテツド 非鉄金属含有硫化物材料からの非鉄金属回収方法
JP2003082420A (ja) 2001-09-13 2003-03-19 Dowa Mining Co Ltd 亜鉛精鉱浸出法および浸出装置
JP2005350766A (ja) 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2009515044A (ja) 2005-11-10 2009-04-09 コンパニア バレ ド リオ ドセ 複合浸出プロセス
JP2009530077A (ja) * 2006-03-17 2009-08-27 バリック・ゴールド・コーポレイション 底流仕切部材を備えたオートクレーブ
JP2011241446A (ja) * 2010-05-18 2011-12-01 Sumitomo Metal Mining Co Ltd 硫化反応工程の反応制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2862951A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066441A (ja) * 2015-09-28 2017-04-06 住友金属鉱山株式会社 ニッケル粉の製造方法、反応設備の運転方法
CN108025368A (zh) * 2015-09-28 2018-05-11 住友金属矿山株式会社 镍粉的制造方法、反应设备的运转方法
JP2018179502A (ja) * 2017-04-03 2018-11-15 住友金属鉱山株式会社 ベアリングの交換時期判定方法

Also Published As

Publication number Publication date
PH12014502773B1 (en) 2015-02-02
AU2013278507A1 (en) 2015-01-22
JP5418660B2 (ja) 2014-02-19
EP2862951A4 (en) 2016-03-02
PH12014502773A1 (en) 2015-02-02
EP2862951B1 (en) 2017-03-29
CA2876915A1 (en) 2013-12-27
AU2013278507B2 (en) 2017-01-12
JP2014025143A (ja) 2014-02-06
US20150152521A1 (en) 2015-06-04
EP2862951A1 (en) 2015-04-22
US9732400B2 (en) 2017-08-15
CA2876915C (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP5418660B2 (ja) 高圧酸浸出工程におけるオートクレーブ装置
JP5500304B2 (ja) 高圧酸浸出工程におけるオートクレーブ装置
JP5387755B2 (ja) 高圧酸浸出工程におけるオートクレーブへの原料スラリーと硫酸の添加方法及びオートクレーブ
JP2016011442A (ja) オートクレーブ及びオートクレーブへのガス吹込み方法
JP4888580B2 (ja) 貯液装置及びその圧力制御方法
CN106566926B (zh) 一种除铁装置及低温连续除铁工艺
JP2013166984A (ja) 浸出槽
JP6919408B2 (ja) 反応容器
CN107619029A (zh) 一种盐酸法制取磷酸的多级反应槽装置
JP7298126B2 (ja) ニッケル酸化鉱石のオートクレーブ装置
Marsden et al. Medium-temperature pressure leaching of copper concentrates—Part II: Development of direct electrowinning and an acid-autogenous process
JP5482955B2 (ja) 高圧酸浸出工程におけるオートクレーブへの原料スラリーと硫酸の添加方法及びオートクレーブ
CN207749162U (zh) 一种锌片置换制备海绵镉的装置
CN209923409U (zh) 一种用于氢氧化镍钴盐酸浸出液离子除锌的偏心搅拌离子交换槽
JP6350634B2 (ja) ニッケル酸化鉱石の湿式製錬方法
CN205838644U (zh) 一种处理重金属废水的锥形反应釜
CN101423895B (zh) 溢流式多隔舱加压釜及其工艺
JP7183750B2 (ja) オートクレーブの立ち上げ方法及びこれを用いた硫酸ニッケル水溶液の製造方法
JP7230699B2 (ja) 高温高圧容器の撹拌機の軸封用シール水供給装置
JP7396072B2 (ja) 混合装置及び混合方法
CN104120251B (zh) 提高目标元素转浸率的湿法冶金反应器和湿法冶金方法
CN204865104U (zh) 无排气孔的1,3-环己二酮固液分离的沉淀罐
CN205435747U (zh) 一种化工搅拌反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14406492

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2876915

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013807230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013807230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201500263

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013278507

Country of ref document: AU

Date of ref document: 20130610

Kind code of ref document: A