WO2013190698A1 - 排気浄化装置の劣化検出システム - Google Patents

排気浄化装置の劣化検出システム Download PDF

Info

Publication number
WO2013190698A1
WO2013190698A1 PCT/JP2012/066022 JP2012066022W WO2013190698A1 WO 2013190698 A1 WO2013190698 A1 WO 2013190698A1 JP 2012066022 W JP2012066022 W JP 2012066022W WO 2013190698 A1 WO2013190698 A1 WO 2013190698A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction catalyst
catalytic reduction
selective catalytic
reducing agent
selective
Prior art date
Application number
PCT/JP2012/066022
Other languages
English (en)
French (fr)
Inventor
慎也 浅浦
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280074177.5A priority Critical patent/CN104411933B/zh
Priority to PCT/JP2012/066022 priority patent/WO2013190698A1/ja
Priority to JP2014521183A priority patent/JP5880705B2/ja
Priority to US14/409,729 priority patent/US9670812B2/en
Priority to EP12879225.6A priority patent/EP2868883A4/en
Publication of WO2013190698A1 publication Critical patent/WO2013190698A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a technique for detecting deterioration of an exhaust purification device disposed in an exhaust passage of an internal combustion engine.
  • a selective catalytic reduction (SCR) and a reducing agent addition valve for adding a reducing agent (aqueous solution of urea, ammonium carbamate, etc.), which is a precursor of ammonia (NH 3 ), into exhaust gas
  • a reducing agent aqueous solution of urea, ammonium carbamate, etc.
  • NH 3 ammonia
  • the NO x purification rate of the selective reduction catalyst when the operation state of the internal combustion engine is in a steady state and the transient fluctuation of the NO x purification rate in the transient state are stable.
  • a technique for determining the deterioration of the selective catalytic reduction catalyst based on the time required to do so has been proposed (see, for example, Patent Document 1).
  • the amount of NH 3 actually adsorbed on the selective catalytic reduction catalyst is specified in a high temperature range where the NH 3 adsorption capacity of the selective catalytic reduction becomes low, and the specified amount of NH 3 is a threshold value.
  • the following describes a technique for determining that the selective catalytic reduction catalyst has deteriorated.
  • Patent Document 3 describes a technique for keeping the addition amount per predetermined period constant by increasing the addition frequency while shortening the valve opening time of the urea water addition valve once.
  • Patent Document 4 discloses a technique for changing the spray particle size of an aqueous urea solution by increasing the injection pressure of the aqueous urea solution injected from the reducing agent addition valve if the temperature of the selective catalytic reduction catalyst is within a predetermined low temperature range. It is stated.
  • Patent Document 5 describes a technique for atomizing the reducing agent by supplying the reducing agent from the reducing agent addition valve when the peak of the exhaust pressure wave reaches the position of the reducing agent addition valve. ing.
  • the absolute amount of the NO x purification rate when the operating state of the internal combustion engine is in a steady state may change due to a measurement error of the NO x sensor, an addition amount error of the reducing agent addition valve, etc. There is also the possibility of lowering.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a selective reduction catalyst disposed in an exhaust passage of an internal combustion engine and a reduction disposed in an exhaust passage upstream of the selective reduction catalyst. agent and the addition valve, the deterioration detecting system of the exhaust purification apparatus and a NO X sensor arranged downstream of the exhaust passage from the selective reduction catalyst, can be detected early degradation of the selective reduction catalyst At the same time, it provides a technique capable of increasing the detection accuracy.
  • the present invention provides a selective reduction catalyst disposed in an exhaust passage of an internal combustion engine, a reducing agent addition valve disposed in an exhaust passage upstream of the selective reduction catalyst, and the selection
  • a deterioration detection system for an exhaust gas purification apparatus having an NO x sensor disposed in an exhaust passage downstream of a reducing catalyst a predetermined period when the reducing agent addition valve is controlled to add the reducing agent controlling a reducing agent addition valve so as to change the addition interval of the reducing agent while fixing the amount per selection based on the difference of the nO X purification rate when addition interval is not changed when it is changed
  • the deterioration of the reduced catalyst was judged.
  • the abnormality detection system for the exhaust gas purification apparatus of the present invention includes: A selective reduction catalyst disposed in an exhaust passage of the internal combustion engine; A reducing agent addition valve that is disposed in an exhaust passage upstream of the selective catalytic reduction catalyst and adds a reducing agent that is a precursor of ammonia into the exhaust; A NO x sensor disposed in the exhaust passage downstream of the selective catalytic reduction catalyst and measuring the amount of nitrogen oxides contained in the exhaust; Using the measured value of the NO x sensor as a parameter, a NO x purification rate that is a ratio of the amount of nitrogen oxide purified by the selective reduction catalyst to the amount of nitrogen oxide flowing into the selective reduction catalyst is calculated.
  • Changing means for executing a changing process for controlling the reducing agent addition valve to change the addition interval while fixing the addition amount per fixed period during the addition period of the reducing agent by the reducing agent addition valve;
  • a determination process for determining the deterioration of the selective catalytic reduction catalyst based on the difference in the NO x purification rate calculated by the calculation means when the addition interval is changed by the changing means and when the addition interval is not changed is executed. Determination means to perform, I was prepared to.
  • the inventor of the present application if the selective catalytic reduction catalyst has not deteriorated, even if the additive amount of the reducing agent per certain period is the same amount, the selective catalytic reduction type depends on the addition interval. NO X purification rate of the catalyst was obtained a finding that changes. Specifically, the inventor of the present application has found that the NO x purification rate of the selective catalytic reduction catalyst is higher when the addition interval of the reducing agent is short than when it is long. This is because when the addition interval of the reducing agent is short, the addition amount per one time is smaller than when it is long, and the conversion (decomposition reaction) from the reducing agent (ammonia precursor) to NH 3 is promoted. it is conceivable that.
  • the deterioration detection system for the exhaust gas purification apparatus of the present invention it is possible to determine the deterioration of the selective catalytic reduction catalyst without changing the amount of the reducing agent added from the reducing agent addition valve during a certain period. Become. Further, since the change process and the determination process are executed during one addition period, the deterioration determination of the selective catalytic reduction catalyst can be performed in a short time. As a result, it becomes possible to detect deterioration of the selective catalytic reduction catalyst at an early stage.
  • the measured value of the NO X sensor may include an error due to an initial crossing or a change with time.
  • an error may occur between the amount of the reducing agent actually added from the reducing agent addition valve and the target addition amount due to an initial crossing of the reducing agent addition valve or a change with time.
  • the NO x purification rate calculated by the calculation means is a value including the measurement error of the NO x sensor and the error of the addition amount.
  • the two NO x purification rates calculated by the calculation means when the addition interval is changed and when the addition interval is not changed include equivalent errors. Therefore, the change difference is a value obtained by offsetting the measurement error of the NO x sensor and the error of the addition amount. Therefore, even when a measurement error or an addition amount error of the NO x sensor occurs, it is possible to accurately determine the deterioration of the selective reduction catalyst.
  • the determination unit may determine that the selective catalytic reduction catalyst has deteriorated on the condition that the change difference is smaller than a threshold value.
  • the “threshold value” is a value obtained by adding a margin to a change difference when the amount of NO x discharged into the atmosphere is equal to the regulated amount, and is a value obtained in advance by an adaptation process using an experiment or the like. It is.
  • the normal value As comparing the NO X purification rate and the normal value is calculated from the measured value of the NO X sensor (NO X purification rate when the selective reduction catalyst has not deteriorated), deterioration of the selective reduction catalyst
  • the normal value needs to be set as a range including a plurality of values, not a single value.
  • the NO X purification rate calculated based on the measured value of the NO X sensor is normal. May belong to a range of values. Therefore, the method of comparing the NO x purification rate calculated from the measured value of the NO x sensor with the normal value cannot be performed in the operation region where the amount of NO x flowing into the selective catalytic reduction catalyst increases.
  • the threshold value can be set as one value.
  • the threshold value it is possible to determine the deterioration of the selective reduction catalyst even in the operation region where the amount of NO x flowing into the selective reduction catalyst increases. Therefore, according to the deterioration detection system for the exhaust gas purification apparatus of the present invention, it is possible to execute the deterioration determination of the selective catalytic reduction catalyst in a wider operating region.
  • the determination means of the present invention may determine that the degree of deterioration of the selective catalytic reduction catalyst is higher as the change difference becomes smaller than the threshold value. According to such a method, it is possible to determine the degree of deterioration of the selective catalytic reduction catalyst as well as whether or not the selective catalytic reduction catalyst has deteriorated.
  • the selective catalytic reduction catalyst when the selective catalytic reduction catalyst is in a new state (or a state similar to a new state), the oxidation ability tends to increase. Therefore, the selective catalytic reduction catalyst in a new state reduces NO x to nitrogen (N 2 ) and then oxidizes N 2 again to NO x such as NO or NO 2 (hereinafter referred to as “re-oxidation”). There is a possibility to make it. Therefore, when the selective catalytic reduction catalyst is in an undegraded new state, the change difference may be smaller than the threshold value.
  • the threshold may be set to a smaller value when the travel distance of the vehicle is less than a certain distance, compared to when the distance is greater than a certain distance.
  • the “travel distance” is a travel distance from the time when a new selective reduction catalyst is mounted on the vehicle.
  • the “constant distance” is a minimum travel distance in which the amount of NO x produced by reoxidation as described above is sufficiently smaller than the amount of NO x reduced to N 2 or NO 2 , The distance is obtained in advance by an adaptation process using an experiment or the like.
  • the selective reduction catalyst is deteriorated even if the change process and the determination process are executed when the selective reduction catalyst is in a new state or a state similar to a new state. A situation in which an erroneous determination is made can be avoided.
  • the deterioration detection system for the exhaust gas purification apparatus of the present invention may perform the deterioration determination of the selective catalytic reduction catalyst on the condition that the temperature of the selective catalytic reduction catalyst is equal to or higher than a lower limit value.
  • the change unit and the determination unit may execute the change process and the determination process on the condition that the temperature of the selective catalytic reduction catalyst is equal to or higher than a lower limit value.
  • the “lower limit value” here is the temperature at which the amount of NH 3 that can be adsorbed by the selective catalytic reduction catalyst is sufficiently reduced, in other words, the lowest temperature at which the addition interval of the reducing agent is reflected in the NO x purification rate.
  • the lower limit value is preferably set to the lowest temperature at which the selective catalytic reduction catalyst does not adsorb NH 3 .
  • the amount of NH 3 adsorbed in the said selective reduction catalyst (hereinafter, referred to as "adsorbed NH 3 amount”) varies with. For example, when the NH 3 adsorption amount is large, the NO x purification rate is higher than when the NH 3 adsorption amount is small. Therefore, when the amount of NH 3 adsorbed by the selective reduction catalyst is large, the NO x purification rate may increase regardless of the reducing agent addition interval. That is, if the change process is executed when the amount of NH 3 adsorbed on the selective catalytic reduction catalyst is large, the change difference may be reduced even though the selective catalytic reduction catalyst has not deteriorated. As a result, there is a possibility that it is erroneously determined that the selective catalytic reduction catalyst has deteriorated even though the selective catalytic reduction catalyst has not deteriorated.
  • the change process and the determination process are preferably executed when the amount of NH 3 adsorption of the selective catalytic reduction catalyst is small, in other words, when the addition interval of the reducing agent can be reflected in the NO x purification rate. .
  • the selective catalytic reduction catalyst When the particulate filter is disposed upstream from the selective catalytic reduction catalyst, when the particulate filter regeneration process is performed, the selective catalytic reduction catalyst is exposed to a high temperature of about 500 ° C. or more, and ammonia (NH 3 ) is less likely to be adsorbed by the selective catalytic reduction catalyst. Therefore, when the regeneration process of the particulate filter is being performed, or immediately after the regeneration process is finished (when the selective reduction catalyst is at or above the lowest temperature that does not adsorb ammonia (NH 3 )), the change process and the determination are performed. Processing may be performed.
  • the selective catalytic reduction catalyst when the selective catalytic reduction catalyst is not deteriorated, if the temperature of the selective catalytic reduction catalyst becomes excessively high, the NO x purification rate tends to decrease. Therefore, when the temperature of the selective catalytic reduction catalyst is excessively high, the difference between the change difference when the selective catalytic reduction catalyst is not deteriorated and the change difference when the selective catalytic reduction catalyst is deteriorated may be reduced. There is.
  • the change unit and the determination unit may not execute the change process and the determination process when the temperature of the selective catalytic reduction catalyst exceeds an upper limit value. In that case, occurrence of erroneous determination can be suppressed.
  • the “upper limit value” here is the minimum temperature at which the difference between the change difference when the selective catalytic reduction catalyst is not deteriorated and the change difference when the selective reduction catalyst is deteriorated is subtracted from the margin. Temperature.
  • the NO x purification rate of the selective reduction catalyst may change due to a failure of the reducing agent addition valve or a device that supplies the reducing agent to the reducing agent addition valve in addition to the deterioration of the selective reduction catalyst. Therefore, it is desirable that the change process and the determination process are executed when the reducing agent addition valve is not malfunctioning.
  • the exhaust gas purification device deterioration detection system of the present invention may further include a diagnostic means for diagnosing a failure of the reducing agent addition valve.
  • the change unit and the determination unit may perform the change process and the determination process on the condition that the diagnosis unit has diagnosed that the reducing agent addition valve has not failed. As a result, it is possible to more accurately determine the deterioration of the selective catalytic reduction catalyst.
  • the NO x purification rate when the addition interval is short tends to become unstable.
  • the amount of the reducing agent actually added from the reducing agent addition valve is equal to or close to the target addition amount, the NO x purification rate when the addition interval is short is the deterioration state of the selective catalytic reduction catalyst. There is a tendency to be stable regardless.
  • the diagnostic means determines that the reducing agent addition valve has failed on the condition that the amount of change in the NO x purification rate when the addition interval is shortened by the changing means is greater than a reference value. May be. In this case, the failure of the reducing agent addition valve can be diagnosed regardless of the deterioration state of the selective catalytic reduction catalyst.
  • the selective reduction catalyst disposed in the exhaust passage of the internal combustion engine, the reducing agent addition valve disposed in the exhaust passage upstream of the selective reduction catalyst, and the exhaust downstream of the selective reduction catalyst.
  • the exhaust purification device provided with a NO X sensor arranged in the passage, the can it is possible to detect early degradation of the selective reduction catalyst, improve the detection accuracy.
  • FIG. 1 It is a figure which shows schematic structure of the exhaust system of the internal combustion engine to which this invention is applied. Is a diagram showing the relationship between the NO X purification rate Enox of the selective reduction catalyst and adding the frequency of the reducing agent. It is a diagram showing changes with time of the NO X purification rate Enox when adding the frequency is increased when the reducing agent addition valve, or the pump has failed. It is a flowchart which shows the process routine performed by ECU when the deterioration determination process of a selective catalytic reduction catalyst is executed in the first embodiment. Is a graph showing the relationship between the temperature Tcat and the NO X purification rate Enox of the selective catalytic reduction catalyst of the selective reduction catalyst.
  • FIG. 1 is a diagram showing a schematic configuration of an exhaust system of an internal combustion engine to which the present invention is applied.
  • the internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine), but may be a spark ignition type internal combustion engine (gasoline engine) capable of lean combustion operation (lean burn operation).
  • an exhaust passage 2 is connected to the internal combustion engine 1.
  • the exhaust passage 2 is a passage for circulating burned gas (exhaust gas) discharged from the cylinder of the internal combustion engine 1.
  • a first catalyst casing 3 and a second catalyst casing 4 are arranged in series from the upstream side.
  • the first catalyst casing 3 includes an oxidation catalyst and a particulate filter inside a cylindrical casing.
  • the oxidation catalyst may be carried on a catalyst carrier disposed upstream of the particulate filter, or may be carried on the particulate filter.
  • the second catalyst casing 4 contains a catalyst carrier carrying a selective reduction catalyst in a cylindrical casing.
  • the catalyst carrier is, for example, a monolith type base material having a honeycomb-shaped cross section made of cordierite or Fe—Cr—Al heat resistant steel and coated with an active component (support) of alumina or zeolite. is there. Further, a noble metal catalyst (for example, platinum (Pt), palladium (Pd), etc.) having oxidation ability is supported on the catalyst carrier.
  • a catalyst carrier carrying an oxidation catalyst may be arranged downstream of the selective reduction catalyst.
  • the oxidation catalyst in this case is a catalyst for oxidizing the reducing agent that has passed through the selective reduction catalyst among the reducing agents supplied from the reducing agent addition valve 5 described later to the selective reduction catalyst.
  • the exhaust passage 2 between the first catalyst casing 3 and the second catalyst casing 4 is provided with a reducing agent addition valve 5 for adding (injecting) a reducing agent, which is a precursor of ammonia, into the exhaust gas.
  • the reducing agent addition valve 5 is a valve device having an injection hole that is opened and closed by the movement of a needle.
  • the reducing agent addition valve 5 is connected to a reducing agent tank 51 via a pump 50.
  • the pump 50 sucks the reducing agent stored in the reducing agent tank 51 and pumps the sucked reducing agent to the reducing agent addition valve 5.
  • the reducing agent addition valve 5 injects the reducing agent pumped from the pump 50 into the exhaust passage 2.
  • the opening / closing timing of the reducing agent addition valve 5 and the discharge pressure of the pump 50 are electrically controlled by an ECU 9 described later.
  • an aqueous solution such as urea or ammonium carbamate can be used as the reducing agent.
  • an aqueous urea solution is used as the reducing agent.
  • the urea aqueous solution When the urea aqueous solution is injected from the reducing agent addition valve 5, the urea aqueous solution flows into the second catalyst casing 4 together with the exhaust gas. At that time, the urea aqueous solution is thermally decomposed or hydrolyzed by receiving heat from the exhaust gas or the selective catalytic reduction catalyst. When the aqueous urea solution is thermally decomposed or hydrolyzed, NH 3 is generated. The NH 3 produced in this way is adsorbed or occluded by the selective catalytic reduction catalyst. NH 3 adsorbed or occluded by the selective catalytic reduction catalyst reacts with NO x contained in the exhaust gas to generate nitrogen (N 2 ) or water (H 2 O).
  • NH 3 functions as a reducing agent for NO x .
  • the NO x purification rate of the selective catalytic reduction catalyst becomes high.
  • the internal combustion engine 1 configured as described above is provided with an ECU 9.
  • the ECU 9 is an electronic control unit that includes a CPU, a ROM, a RAM, a backup RAM, and the like.
  • the ECU 9, an upstream-side NO X sensor 6, the downstream NO X sensor 7, the exhaust gas temperature sensor 8, a crank position sensor 10, and various sensors such as an accelerator position sensor 11 are electrically connected.
  • the upstream NO X sensor 6 is disposed in the exhaust passage 2 downstream from the first catalyst casing 3 and upstream from the second catalyst casing 4, and the amount of NO X contained in the exhaust gas flowing into the second catalyst casing 4 ( Hereinafter, an electrical signal correlated with “NO X inflow amount”) is output.
  • Downstream NO X sensor 7 is arranged from the second catalyst casing 4 in the exhaust passage 2 downstream, the amount of the NO X flowing out from the second catalyst casing 4 (hereinafter, referred to as "NO X outflow”) correlates with Outputs electrical signals.
  • the exhaust temperature sensor 8 is disposed in the exhaust passage 2 downstream from the second catalyst casing 4 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the second catalyst casing 4.
  • the crank position sensor 10 outputs an electrical signal correlated with the rotational position of the output shaft (crankshaft) of the internal combustion engine 1.
  • the accelerator position sensor 11 outputs an electrical signal that correlates with the operation amount of the accelerator pedal (accelerator opening
  • the ECU 9 is electrically connected to various devices (for example, a fuel injection valve) attached to the internal combustion engine 1, a reducing agent addition valve 5, a pump 50, and the like.
  • the ECU 9 electrically controls various devices of the internal combustion engine 1, the reducing agent addition valve 5, the pump 50, and the like based on the output signals of the various sensors described above.
  • the ECU 9 executes a deterioration determination process for the selective catalytic reduction catalyst in addition to known controls such as fuel injection control for the internal combustion engine 1 and addition control for intermittently injecting the reducing agent from the reducing agent addition valve 5.
  • the deterioration determination process of the selective catalytic reduction catalyst will be described.
  • the ECU 9 changes the addition amount per fixed period when the reducing agent addition valve 5 is controlled to intermittently inject the reducing agent (during the addition period). Instead, the reducing agent addition valve 5 is controlled (change processing) to change the addition frequency.
  • the ECU 9 determines whether or not the selective catalytic reduction catalyst has deteriorated using the difference (change difference) in the NO x purification rate when the addition frequency is changed and when it is not changed as a parameter.
  • the “addition frequency” here corresponds to the reciprocal of the interval (addition interval) at which the reducing agent addition valve 5 injects the reducing agent, and shows a larger value (high frequency) as the addition interval becomes shorter.
  • the “NO X purification rate” is the ratio of the NO X amount purified by the selective reduction catalyst to the NO X amount flowing into the second catalyst casing 4 (NO X inflow amount).
  • the operation conditions (engine speed, accelerator opening, intake air amount, fuel injection amount, etc.) of the internal combustion engine 1 are calculated as parameters. Can do. Incidentally, as shown in FIG. 1, if the upstream-side NO X sensor 6 is attached to the exhaust passage 2 between the first catalyst casing 3 and the second catalyst casing 4, the output signal of the upstream-side NO X sensor 6 Can be used as the NO x inflow.
  • ECU9 calculates the NO X purification rate Enox using the output signal of the upstream-side NO X sensor 6 and (NO X inflow amount) output signal (NO X outflow) of the downstream NO X sensor 7 and the following formula .
  • ANO x in is the NO x inflow amount
  • ANO x out is the NO x outflow amount.
  • the NO x purification rate Enox is calculated when the addition frequency is changed and when it is not changed.
  • the NO X purification rate Enox when adding the frequency has not changed is referred to as a first NO X purification rate Enox1
  • the NO X purification rate Enox when adding frequencies are changed second NO X purification rate Enox2 Called.
  • ECU9 is the absolute value of the first NO X purification rate Enox1 difference of the second NO X purification rate Enox2 (change difference) ⁇ Enox (Enox2-Enox1) calculated, to determine whether its value is less than the threshold value.
  • the ECU 9 determines that the selective catalytic reduction catalyst has deteriorated when the absolute value of the change difference ⁇ Enox is smaller than the threshold value.
  • the addition frequency when the change process is being executed (when the addition frequency is changed) is set lower than the addition frequency when the change process is not being executed (when the addition frequency is not changed). Or may be raised.
  • the NO x purification rate Enox when the selective catalytic reduction catalyst is not deteriorated, the NO x purification rate Enox is larger when the addition frequency is low than when the addition frequency is low. That is, the NO x purification rate Enox increases as the addition frequency increases.
  • the addition frequency when the addition frequency is high, the amount of reducing agent added from the reducing agent addition valve 5 per time is smaller than when the addition frequency is low, so that conversion from urea aqueous solution to NH 3 (hydrolysis and thermal decomposition) ) Will be promoted.
  • the selective catalytic reduction catalyst when the selective catalytic reduction catalyst is deteriorated, the reaction between NH 3 and NO x is less likely to occur, so that the change difference becomes smaller with respect to the difference in addition frequency.
  • the “threshold value” is a value obtained by subtracting a margin from the minimum value that the absolute value of the change difference ⁇ Enox can take when the selective catalytic reduction catalyst is not deteriorated. It is the value calculated
  • the absolute value of the change difference ⁇ Enox tends to decrease as the degree of deterioration of the selective catalytic reduction catalyst increases (as the deterioration of the selective catalytic reduction progresses). Therefore, when the absolute value of the change difference ⁇ Enox is smaller than the threshold value, the ECU 9 may determine that the degree of deterioration of the selective catalytic reduction catalyst increases as the difference between the absolute value and the threshold value increases.
  • the deterioration determination process for the selective catalytic reduction catalyst is executed according to such a method, it is possible to determine the deterioration of the selective catalytic reduction catalyst without changing the addition amount of the reducing agent per certain period. Therefore, the reducing agent supplied to the selective catalytic reduction catalyst does not become excessive or insufficient. As a result, while avoiding a situation in which the amount of NH 3 passing through the selective catalytic reduction catalyst is excessively increased or the amount of NO x purified by the selective catalytic reduction catalyst is excessively reduced, Degradation can be determined. That is, it is possible to suppress an increase in exhaust emission due to the execution of the deterioration determination process. Further, since the deterioration determination process of the present embodiment is performed during the addition period of the reducing agent, it is possible to quickly detect the deterioration of the selective catalytic reduction catalyst.
  • the oxidation catalyst when the oxidation catalyst is arranged in the exhaust passage upstream of the selective catalytic reduction catalyst, the ratio of the amount of nitrogen monoxide (NO) and the amount of nitrogen dioxide (NO 2 ) flowing out from the oxidation catalyst (NO 2 / There is a possibility that the NO x purification rate of the selective catalytic reduction catalyst changes depending on the (NO ratio).
  • the NO 2 / NO ratio changes greatly when the addition frequency is changed and when it is not changed. Less likely. Therefore, it is possible to suppress a decrease in determination accuracy due to the NO 2 / NO ratio.
  • the measurement value of the upstream NO X sensor 6 and the downstream NO X sensor 7 may include the error caused by the initial cross or temporal change of the upstream-side NO X sensor 6 and the downstream NO X sensor 7. Further, the amount of the reducing agent actually added from the reducing agent addition valve 5 (hereinafter referred to as “actual addition amount”) and the target addition amount are caused by the initial crossing of the reducing agent addition valve 5 or a change with time. Errors may occur. In those cases, the NO X purification rate Enox calculated based on the above equation is a value including the measurement error of the upstream NO X sensor 6 and the downstream NO X sensor 7 and the error of the actual addition amount.
  • the first NO x purification rate Enox1 and the second NO x purification rate Enox2 include equivalent errors. Therefore, the change difference ⁇ Enox is a value in which the measurement error and the error of the actual addition amount are offset. Therefore, according to the deterioration determination process of the present embodiment, it is possible to determine the deterioration of the selective catalytic reduction catalyst even when the measurement error or the error of the actual addition amount occurs.
  • the deterioration of the selective reduction catalyst is determined by comparing the NO X purification rate with a normal value (NO X purification rate when the selective reduction catalyst is not deteriorated).
  • the method is known. When such a method is used, it is necessary to determine a normal value in consideration of the measurement error and the error of the actual addition amount. That is, the normal value needs to be set as a range including a plurality of values, not a single value.
  • the conventional deterioration determination method could not be performed in the operating region where the greater the NO X flow rate of the selective reduction catalyst.
  • the deterioration determination process of the present embodiment can detect the deterioration of the selective catalytic reduction catalyst at a time earlier than the conventional deterioration determination method.
  • the NO x purification rate Enox calculated based on the above formula is obtained when the upstream NO x sensor 6 or the downstream NO x sensor 7 is malfunctioning or when the reducing agent addition valve 5 or the pump 50 is malfunctioning. It also changes when you are. Therefore, there is a possibility that the absolute value of the change difference ⁇ Enox is below the threshold value even though the selective catalytic reduction catalyst has not deteriorated. On the other hand, there is a possibility that the absolute value of the change difference ⁇ Enox is equal to or greater than the threshold value even though the selective catalytic reduction catalyst is deteriorated. Therefore, the abnormality detection processing of the reducing agent addition valve 5, it upstream NO X sensor 6 and the downstream NO X sensor 7 is normal, and the reducing agent addition valve 5 and the pump 50 to be normal condition, It is desirable to be implemented.
  • the ECU 9 determines whether or not there is a disconnection by performing an energization check of the upstream NO X sensor 6 and the downstream NO X sensor 7. If disconnection of the upstream NO X sensor 6 and the downstream NO X sensor 7 has not occurred, ECU 9 is the upstream NO X sensor 6 and the downstream side when the reducing agent addition valve 5 is not injected reducing agent based on the difference between the output signal of the NO X sensor 7 determines a reduction in the measurement accuracy of the upstream NO X sensor 6 and the downstream NO X sensor 7.
  • ECU 9 if the difference between the output signal of the upstream-side NO X sensor 6 and the downstream NO X sensor 7 when the reducing agent addition valve 5 is not injected reducing agent is less than a predetermined value, the upstream-side NO X measurement accuracy of the sensor 6 and the downstream NO X sensor 7 is determined to be within the allowable range. Such a determination is desirably performed when the selective catalytic reduction catalyst does not adsorb NH 3 .
  • the ECU 9 determines (diagnose) a failure of the reducing agent addition valve 5 and the pump 50 based on the amount of change in the NO x purification rate when the addition frequency is increased.
  • FIG. 3 shows the NO x purification rate Enox when the amount of the reducing agent actually added from the reducing agent addition valve 5 (hereinafter referred to as “actual addition amount”) deviates from the target addition amount.
  • the solid line in FIG. 3 shows the NO x purification rate Enox when the actual addition amount deviates from the target addition amount, and the one-dot chain line in FIG. 3 shows the NO when the actual addition amount is substantially equal to the target addition amount.
  • X shows the purification rate Enox.
  • the ECU 9 determines that the reducing agent addition valve 5 or the pump 50 has failed on the condition that the amount of change in the NO x purification rate when the addition frequency is increased is larger than the reference value.
  • the “reference value” here is a value obtained by adding a margin to the maximum value that can be taken by the amount of change in the NO x purification rate Enox when the difference between the actual addition amount and the target addition amount is within the allowable range.
  • Upstream NO X sensor 6 and the downstream NO X sensor 7 is determined not to be faulty by the method described above, and when the reducing agent addition valve 5 and the pump 50 is determined not to be faulty, selective reduction When the deterioration determination of the catalyst is performed, failure or the upstream NO X sensor 6 and the downstream NO X sensor 7, is possible to suppress the reduction of resulting from the determination accuracy failure of the reducing agent addition valve 5 and the pump 50 it can.
  • FIG. 4 is a flowchart showing a processing routine executed when the ECU 9 determines the deterioration of the selective catalytic reduction catalyst.
  • This processing routine is stored in advance in the ROM or the like of the ECU 9, and is periodically executed by the ECU 9.
  • ECU 9 first, in S101 the upstream NO X sensor 6 and the downstream NO X sensor 7 it is determined whether or not normal. Specifically, ECU 9 is first carried energization checks the upstream NO X sensor 6 and the downstream NO X sensor 7. If disconnection by energizing check is determined to not occurred, ECU 9, the output signal of the upstream-side NO X sensor 6 and the downstream NO X sensor 7 when the reducing agent addition valve 5 is not injected reducing agent based on the difference, it determines a reduction in the measurement accuracy of the upstream NO X sensor 6 and the downstream NO X sensor 7.
  • ECU 9 When a disconnection in the S101 is determined to have occurred, or if the measurement accuracy of the upstream NO X sensor 6 or the downstream NO X sensor 7 is determined to be decreased, ECU 9, the processing of S111 to proceeds, it is determined that at least one of the upstream-side NO X sensor 6 and the downstream NO X sensor 7 is malfunctioning. Further, disconnection does not occur in the S101, the and if the measurement accuracy of the upstream NO X sensor 6 and the downstream NO X sensor 7 is determined not to be reduced, ECU 9 proceeds to step S102 .
  • the ECU 9 determines whether or not the addition system including the reducing agent addition valve 5 and the pump 50 is normal. Specifically, when the reducing agent is added from the reducing agent addition valve 5, the ECU 9 increases the addition frequency (shortens the addition interval) without changing the addition amount per certain period. When the addition frequency is increased, the ECU 9 calculates the amount of change in the NO x purification rate Enox per unit time based on the measured values of the upstream NO x sensor 6 and the downstream NO x sensor 7 and the above formula. Calculate. Next, the ECU 9 determines whether or not the change amount of the NO x purification rate Enox per unit time is equal to or less than the reference value.
  • the ECU 9 proceeds to S112 and determines that the addition system has failed. On the other hand, when the change amount of the NO X purification rate Enox per unit time in the S102 is equal to or less than the reference value, the process proceeds to S103.
  • the ECU 9 executes the processes of S102 and S112, thereby realizing the diagnostic means according to the present invention.
  • the ECU9 When at least one of the upstream-side NO X sensor 6 and the downstream NO X sensor 7 in the S111 is determined to have failed, or if the addition system in the S112 is determined to be faulty, the ECU9 Then, the execution of this routine is finished without executing the deterioration determination process of the selective catalytic reduction catalyst. As a result, failure or the upstream NO X sensor 6 or the downstream NO X sensor 7, erroneous determination caused by the failure of the reducing agent addition valve 5 or the pump 50 is suppressed.
  • the ECU 9 determines whether or not the reducing agent is being added. If a negative determination is made in S103, the ECU 9 ends the execution of this routine. If a negative determination is made in S103, the ECU 9 may repeatedly execute the process of S103 until the addition of the reducing agent is started. If an affirmative determination is made in S103, the ECU 9 proceeds to S104.
  • ECU 9 reads the upstream NO X output signal (NO X flow rate) of the sensor 6 ANO X in an output signal of the downstream NO X sensor 7 (NO X outflow) ANO X out, first NO X
  • the purification rate Enox1 is calculated. That is, the ECU 9 calculates the NO x purification rate (first NOx purification rate Eno x 1) of the selective catalytic reduction catalyst when the addition frequency is not changed.
  • the ECU 9 controls the reducing agent addition valve 5 to change the addition frequency. Subsequently, in S106, ECU 9 reads the upstream-side NO output signal of the X sensor 6 (NO X flow rate) ANO X in an output signal of the downstream NO X sensor 7 (NO X outflow) ANO X out again, calculating a second NO X purification rate Enox2. That is, the ECU 9 calculates the NO x purification rate (second NO x purification rate Enox2) of the selective catalytic reduction catalyst when the addition frequency is changed.
  • the calculation means according to the present invention is realized when the ECU 9 executes the processes of S104 and S106. Further, the changing means according to the present invention is realized when the ECU 9 executes the process of S105.
  • the ECU 9 determines whether or not the absolute value of the change difference ⁇ Enox calculated in S107 is equal to or greater than a threshold value. If an affirmative determination is made in S108 (
  • the ECU 9 may determine that the degree of deterioration of the selective catalytic reduction catalyst is larger as the difference between
  • the determination means according to the present invention is realized by the ECU 9 executing the processes of S108 to S11.
  • the deterioration determination process of the selective catalytic reduction catalyst it is possible to perform the degradation determination process of the selective catalytic reduction catalyst while suppressing an increase in exhaust emission. Further, since the deterioration determination process of this embodiment is performed during the addition period of the reducing agent, it is possible to detect the deterioration of the selective catalytic reduction catalyst at an early stage. Furthermore, according to the deterioration determination process of this embodiment, even when an error of the measurement error and the actual addition amount of the upstream NO X sensor 6 and the downstream NO X sensor 7 has occurred, the selective reduction catalyst Degradation can be determined.
  • Example 2 a second embodiment of the exhaust gas purification device deterioration detection system according to the present invention will be described with reference to FIGS.
  • a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted.
  • the difference between the first embodiment described above and the present embodiment is that the deterioration determination process is executed when the selective catalytic reduction catalyst is in a predetermined temperature range.
  • Figure 5 is a graph showing the relationship between the temperature Tcat and the NO X purification rate Enox of the selective reduction catalyst.
  • the solid line in FIG. 5 shows the NO x purification rate when the selective catalytic reduction catalyst is not deteriorated
  • the one-dot chain line in FIG. 5 is the NO when the selective catalytic reduction catalyst is deteriorated and the amount of NH 3 adsorption is large.
  • the X purification rate is shown
  • the two-dot chain line in FIG. 5 shows the NO X purification rate when the selective catalytic reduction catalyst is deteriorated and the NH 3 adsorption amount is small.
  • the temperature Tcat of the selective catalytic reduction catalyst is equal to or higher than the predetermined temperature Tcat1
  • the difference between the NO X purification rate when the selective catalytic reduction catalyst is not deteriorated and the NO X purification rate when it is deteriorated. Becomes larger.
  • the temperature Tcat of the selective catalytic reduction catalyst is equal to or higher than the predetermined temperature Tcat1
  • the one-dot chain line and the two-dot chain line in FIG. 5 show substantially the same NO x purification rate.
  • the selective catalytic reduction catalyst On the condition that the temperature of the selective catalytic reduction catalyst is the lowest temperature at which the NH 3 adsorption capacity decreases, preferably the minimum temperature (lower limit value) at which the NH 3 adsorption capacity becomes zero, the selective catalytic reduction catalyst It is desirable to execute the deterioration determination process. In that case, since the said lower limit changes with the materials of the base material of a selective reduction catalyst, a catalyst support
  • the temperature of the selective catalytic reduction catalyst is equal to or higher than the lower limit value, it can be considered that the regeneration process of the particulate filter accommodated in the first catalyst casing 3 is being performed or immediately after the regeneration process is completed. . Therefore, the deterioration determination process for the selective catalytic reduction catalyst may be executed when the regeneration process for the particulate filter is being executed or immediately after the end of the execution.
  • the temperature of the exhaust gas flowing out from the first catalyst casing 3 (the temperature of the exhaust gas flowing into the second catalyst casing 4) is set to the lower limit value or more. It can also be increased. Therefore, the atmospheric temperature in the second catalyst casing 4 may be raised to the lower limit value or more by injecting fuel (post injection or after injection) from the fuel injection valve of the cylinder during the expansion stroke or the exhaust stroke.
  • the NH 3 adsorption capacity of the selective catalytic reduction catalyst tends to decrease as the temperature of the selective catalytic reduction increases.
  • the temperature of the selective catalytic reduction catalyst becomes excessively high, the NO x purification rate of the selective catalytic reduction catalyst tends to be small regardless of the deterioration state of the selective catalytic reduction catalyst and the addition frequency of the reducing agent.
  • Tcat2 when the temperature of the selective reduction catalyst is higher than a predetermined temperature Tcat2, the NO X purification rate when has deteriorated the NO X purification rate when the selective reduction catalyst has not deteriorated The difference becomes smaller.
  • the deterioration determination process is executed when the temperature of the selective catalytic reduction catalyst is excessively high, it is erroneously determined that the selective catalytic reduction catalyst has deteriorated even though the selective catalytic reduction catalyst has not deteriorated. There is a possibility.
  • the degradation determination process for the selective catalytic reduction catalyst is executed when the temperature of the selective catalytic reduction catalyst is in the temperature range not less than the lower limit and not more than the upper limit.
  • the “upper limit value” here corresponds to Tcat2 in FIG. 5 described above, and the difference between the absolute value of the change difference ⁇ Enox when the selective catalytic reduction catalyst is not deteriorated and the threshold value can ensure the determination accuracy. This is the temperature at which the margin is subtracted from the minimum temperature.
  • the “upper limit value” is a significant difference between the absolute value of the change difference ⁇ Enox when the selective catalytic reduction catalyst is not deteriorated and the absolute value of the change difference ⁇ Enox when the selective catalytic reduction catalyst is deteriorated.
  • the said upper limit changes with the base materials of a selective reduction catalyst, a catalyst support
  • the degradation determination process for the selective catalytic reduction catalyst is executed when the temperature Tcat of the selective catalytic reduction catalyst is within a predetermined temperature range, a reduction in determination accuracy due to the NH 3 adsorption amount is suppressed. be able to.
  • the selective reduction catalyst deterioration determination process is executed when the temperature Tcat of the selective reduction catalyst is within a predetermined temperature range, the deterioration determination of the selective reduction catalyst can be performed more accurately. .
  • FIG. 7 is a flowchart showing a processing routine executed when the ECU 9 determines the deterioration of the selective catalytic reduction catalyst.
  • This processing routine is stored in advance in the ROM or the like of the ECU 9, and is periodically executed by the ECU 9.
  • the same reference numerals are given to the processing equivalent to the processing routine of the first embodiment described above (see FIG. 4).
  • the ECU 9 first determines in S201 whether or not the temperature Tcat of the selective catalytic reduction catalyst is lower than the lower limit value Tcat1. At this time, the output signal of the exhaust temperature sensor 8 is used as the temperature Tcat of the selective catalytic reduction catalyst.
  • the ECU 9 executes a temperature raising process. Specifically, the ECU 9 supplies unburned fuel to the oxidation catalyst of the first catalyst casing 3 by injecting fuel (post injection or after injection) from the fuel injection valve of the cylinder during the expansion stroke or the exhaust stroke. . In that case, the unburned fuel is oxidized by the oxidation catalyst. The reaction heat generated when the unburned fuel is oxidized is transmitted to the exhaust gas flowing through the first catalyst casing 3. As a result, the temperature of the exhaust gas flowing out from the first catalyst casing 3, in other words, the temperature of the exhaust gas flowing into the second catalyst casing 4 increases. Therefore, the selective catalytic reduction catalyst is heated by receiving heat from the exhaust.
  • the ECU 9 determines whether or not the temperature Tcat of the selective catalytic reduction catalyst has risen above the lower limit value Tcat1. When a negative determination is made in S203 (Tcat ⁇ Tcat1), the ECU 9 repeatedly executes the process of S203. On the other hand, when an affirmative determination is made in S203 (Tcat ⁇ Tcat1), the ECU 9 proceeds to the process of S204.
  • the ECU 9 determines whether or not the temperature Tcat of the selective catalytic reduction catalyst is equal to or lower than the upper limit value Tcat2. If a negative determination is made in S204 (Tcat> Tcat2), the ECU 9 proceeds to the process of S205 and ends the temperature raising process. Specifically, the ECU 9 stops post injection or after injection by the fuel injection valve. On the other hand, when an affirmative determination is made in S204 (Tcat ⁇ Tcat2), the ECU 9 proceeds to the process of S101.
  • the processing after S101 is the same as the processing routine of the first embodiment described above.
  • the ECU 9 executes the deterioration determination process for the selective catalytic reduction catalyst according to the process routine of FIG. 7, the same effects as those of the first embodiment can be obtained, and the determination accuracy of the deterioration determination process can be improved. It can also be increased.
  • the difference between the first embodiment and the present embodiment is that when the selective catalytic reduction catalyst is in a new state or in a state similar to a new state, the threshold value used for the deterioration determination process is reduced.
  • FIG. 8 is a diagram showing the relationship between the travel distance Rd of the vehicle equipped with the exhaust purification device and the absolute value (
  • the “travel distance” here is an accumulated value of the distance traveled by the vehicle from when the new selective reduction catalyst is mounted on the vehicle.
  • the vehicle travel distance Rd is equal to or greater than the constant distance Rd1.
  • the threshold value is set to a smaller value than when the selective reduction catalyst deterioration determination process is executed.
  • the “constant distance” is a travel distance obtained in advance by an adaptation process using an experiment or the like.
  • the determination accuracy decreases when the selective reduction catalyst deterioration determination process is executed when the selective reduction catalyst is in a new state or in a state similar to a new state, for example, selective reduction It is possible to avoid a situation in which it is erroneously determined that the type catalyst has deteriorated even though the type catalyst has not deteriorated.
  • FIG. 9 is a flowchart showing a processing routine executed when the ECU 9 determines the deterioration of the selective catalytic reduction catalyst.
  • This processing routine is stored in advance in the ROM or the like of the ECU 9, and is periodically executed by the ECU 9.
  • the same reference numerals are assigned to the processing equivalent to the processing routine of the first embodiment described above (see FIG. 4).
  • the ECU 9 executes the processing of S301.
  • S301 the ECU 9 determines whether or not the travel distance Rd of the vehicle is less than a certain distance Rd1. If a negative determination is made in S301 (Rd ⁇ Rd1), the ECU 9 skips the processing of S302 described later and proceeds to the processing of S103. On the other hand, when an affirmative determination is made in S301 (Rd ⁇ Rd1), the ECU 9 proceeds to the process of S302.
  • the ECU 9 changes the threshold value. Specifically, the ECU 9 changes the threshold value to a smaller value than when the travel distance Rd is equal to or greater than the certain distance Rd1.
  • the threshold value is a value smaller than the value that the absolute value of the change difference can take when the selective catalytic reduction catalyst is in an undegraded new state, and is a value determined in advance by an adaptation process using experiments or the like. is there.
  • the ECU 9 proceeds to the process of S103 after executing the process of S302. Note that the processing after S City 03 is the same as the processing routine of the first embodiment described above.
  • the ECU 9 executes the deterioration determination process for the selective catalytic reduction catalyst according to the processing routine of FIG. 9, it is possible to obtain the same effects as those of the first embodiment described above, and the selective catalytic reduction catalyst is in a new state or a new one. It is possible to suppress a decrease in determination accuracy when in the state.
  • the travel distance Rd of the vehicle is used as a parameter for determining the period during which the oxidizing ability of the selective catalytic reduction catalyst is high.
  • a new selective catalytic reduction catalyst is mounted on the vehicle. It may be a cumulative value of the operating time of the internal combustion engine 1 from the point of time, an integrated value of the exhaust temperature, or an integrated value of the fuel injection amount. In short, any parameter may be used as long as it correlates with a decrease in the oxidation ability of the selective catalytic reduction catalyst.
  • this embodiment and the second embodiment described above can be combined. In that case, the determination accuracy of the deterioration determination process can be further increased.
  • the second catalyst casing 4 containing the selective reduction catalyst is arranged downstream of the first catalyst casing 3 containing the oxidation catalyst and the particulate filter.
  • An example of executing the deterioration determination process of the reduction catalyst has been described.
  • the configuration to which the present invention is applied is not limited to the above configuration.
  • a third catalyst casing 30 containing an oxidation catalyst is disposed in the exhaust passage 2 upstream of the second catalyst casing 4 containing a selective catalytic reduction catalyst.
  • a sixth catalyst casing 33 containing a selective reduction catalyst and a particulate filter is arranged downstream of the fifth catalyst casing 32 containing an oxidation catalyst. It can also be executed in a configuration.
  • the selective catalytic reduction catalyst may be supported on a catalyst carrier separate from the particulate filter, or may be supported on the particulate filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 本発明は、内燃機関の排気通路に配置される選択還元型触媒と、該選択還元型触媒より上流の排気通路に配置される還元剤添加弁と、前記選択還元型触媒より下流の排気通路に配置されるNOXセンサと、を備えた排気浄化装置の劣化検出システムにおいて、選択還元型触媒の劣化を早期に検出することができるとともに、検出精度を高めることを課題とする。この課題を解決するために、本発明の排気浄化装置の劣化検出システムは、還元剤添加弁が還元剤を添加するように制御されているときに、一定期間あたりの添加量を固定しつつ還元剤の添加間隔を変更すべく還元剤添加弁を制御し、添加間隔が変更されているときと変更されていないときのNOX浄化率の差に基づいて選択還元型触媒の劣化を判定するようにした。

Description

排気浄化装置の劣化検出システム
 本発明は、内燃機関の排気通路に配置される排気浄化装置の劣化を検出する技術に関する。
 従来、選択還元型触媒(SCR:Selective Catalytic Reduction)と、アンモニア(NH3)の前駆体である還元剤(尿素やカルバミン酸アンモニウム等の水溶液)を排気中に添加するための還元剤添加弁と、を内燃機関の排気通路に配置した排気浄化装置が知られている。
 上記したような排気浄化装置の劣化を検出する技術として、内燃機関の運転状態が定常状態にあるときの選択還元型触媒のNOX浄化率と、過渡状態においてNOX浄化率の過渡変動が安定するのに要する時間と、に基づいて、選択還元型触媒の劣化を判定する技術が提案されている(たとえば、特許文献1を参照)。
 特許文献2には、選択還元型触媒のNH3吸着能力が低くなる高温域において、該選択還元型触媒に実際に吸着されたNH3の量を特定し、特定されたNH3の量が閾値以下のときに選択還元型触媒が劣化していると判定する技術について述べられている。
 特許文献3には、尿素水添加弁の1回当たりの開弁時間を短縮しつつ、添加周波数を増加させることにより、所定期間あたりの添加量を一定に保つ技術について述べられている。
 特許文献4には、選択還元型触媒の温度が所定の低温域にあれば、還元剤添加弁から噴射される尿素水溶液の噴射圧力を高めることにより、尿素水溶液の噴霧粒径を変更する技術について述べられている。
 特許文献5には、排気の圧力波のピークが還元剤添加弁の位置に到達したときに、該還元剤添加弁から還元剤を供給させることにより、還元剤の微粒化を図る技術について述べられている。
特開2011-202639号公報 特開2009-127496号公報 特開2010-071255号公報 特開2009-293513号公報 特開2010-053807号公報
 前記特許文献1に記載された方法により選択還元型触媒の劣化判定が行われる場合は、内燃機関が定常状態で運転されること、内燃機関が過渡状態で運転されること、及びNOX浄化率の過渡変動が安定するまで内燃機関の過渡状態が継続されること等の種々の条件が成立する必要がある。そのため、選択還元型触媒の劣化判定に要する時間が長くなったり、選択還元型触媒の劣化を早期に検出することができなかったりする可能性がある。また、内燃機関の運転状態が定常状態にあるときのNOX浄化率の絶対量は、NOXセンサの測定誤差や還元剤添加弁の添加量誤差等によって変化する場合があるため、検出精度が低くなる可能性もある。
 本発明は、上記した実情に鑑みてなされたものであり、その目的は、内燃機関の排気通路に配置される選択還元型触媒と、該選択還元型触媒より上流の排気通路に配置される還元剤添加弁と、前記選択還元型触媒より下流の排気通路に配置されるNOXセンサと、を備えた排気浄化装置の劣化検出システムにおいて、選択還元型触媒の劣化を早期に検出することができるとともに、検出精度を高めることができる技術の提供にある。
 本発明は、上記した課題を解決するために、内燃機関の排気通路に配置される選択還元型触媒と、前記選択還元型触媒より上流の排気通路に配置される還元剤添加弁と、前記選択還元型触媒より下流の排気通路に配置されるNOXセンサと、を備えた排気浄化装置の劣化検出システムにおいて、還元剤添加弁が還元剤を添加するように制御されているときに、一定期間あたりの添加量を固定しつつ還元剤の添加間隔を変更すべく還元剤添加弁を制御し、添加間隔が変更されているときと変更されていないときのNOX浄化率の差に基づいて選択還元型触媒の劣化を判定するようにした。
 詳細には、本発明の排気浄化装置の異常検出システムは、
 内燃機関の排気通路に配置される選択還元型触媒と、
 前記選択還元型触媒より上流の排気通路に配置され、アンモニアの前駆体である還元剤を排気中に添加する還元剤添加弁と、
 前記選択還元型触媒より下流の排気通路に配置され、排気中に含まれる窒素酸化物の量を測定するNOXセンサと、
 前記NOXセンサの測定値をパラメータとして、前記選択還元型触媒へ流入する窒素酸化物の量に対する前記選択還元型触媒で浄化される窒素酸化物の量の割合であるNOX浄化率を演算する演算手段と、
 前記還元剤添加弁による還元剤の添加期間中に、一定期間あたりの添加量を固定しつつ添加間隔を変更すべく前記還元剤添加弁を制御するための変更処理を実行する変更手段と、
 前記変更手段により添加間隔が変更されているときと変更されていないときに前記演算手段が演算するNOX浄化率の差に基づいて前記選択還元型触媒の劣化を判定するための判定処理を実行する判定手段と、
を備えるようにした。
 本願発明者は、鋭意の実験及び検証を行った結果、選択還元型触媒が劣化していない場合は、一定期間あたりの還元剤の添加量が同量であっても、添加間隔によって選択還元型触媒のNOX浄化率が変化するという知見を得た。具体的には、本願発明者は、還元剤の添加間隔が短い場合は長い場合に比べ、選択還元型触媒のNOX浄化率が高くなるという知見を得た。これは、還元剤の添加間隔が短い場合は長い場合に比べ、一回あたりの添加量が少なくなるめ、還元剤(アンモニアの前駆体)からNH3への転化(分解反応)が促進されると考えられる。このような知見によると、選択還元型触媒が劣化しているときは劣化していないときに比べ、添加間隔が変更されているときと変更されていないときのNOX浄化率の差(以下、「変更差」と称する)が小さくなる。
 したがって、本発明の排気浄化装置の劣化検出システムによれば、一定期間に還元剤添加弁から添加される還元剤の量を変更することなく、選択還元型触媒の劣化を判定することが可能となる。また、前記変更処理及び前記判定処理は一回の添加期間中に実行されるため、選択還元型触媒の劣化判定を短時間に遂行することができる。その結果、選択還元型触媒の劣化を早期に検出することも可能になる。
 ここで、選択還元型触媒より上流の排気通路に酸化能力を有する触媒が配置される場合は、該触媒から流出する一酸化窒素(NO)の量と二酸化窒素(NO2)の量の比率(NO2/NO比率)に応じて選択還元型触媒のNOX浄化率が変化する可能性がある。これに対し、前記変更処理は添加期間中の短い時間に遂行されるため、添加間隔が変更されているときと変更されていないときにおいて前記NO2/NO比率が大幅に変化する可能性が低くなる。よって、前記NO2/NO比率に起因した判定精度の低下も抑制することができる。
 ところで、NOXセンサの測定値には、初期交差や経時変化等による誤差が含まれる場合がある。また、還元剤添加弁の初期交差や経時変化等によって、還元剤添加弁から実際に添加される還元剤の量と目標添加量との間に誤差が生じる場合がある。それらの場合において、演算手段により算出されるNOX浄化率は、NOXセンサの測定誤差や添加量の誤差を含む値となる。
 しかしながら、添加間隔が変更されているときと変更されていないときのそれぞれにおいて演算手段によって算出される二つのNOX浄化率は、同等の誤差を含む。そのため、前記変更差は、NOXセンサの測定誤差や添加量の誤差が相殺された値となる。よって、NOXセンサの測定誤差や添加量の誤差が生じた場合であっても、選択還元型触媒の劣化を正確に判定することができる。
 なお、前述したように、選択還元型触媒が劣化しているときは劣化していないときに比べ、前記変更差が小さくなる。よって、前記判定手段は、前記変更差が閾値より小さいことを条件として、選択還元型触媒が劣化していると判定してもよい。ここでいう「閾値」は、大気中へ排出されるNOXの量が規制量と同等になるときの変更差にマージンを加算した値であり、予め実験等を利用した適合処理によって求められる値である。
 ここで、NOXセンサの測定値から演算されるNOX浄化率と正常値(選択還元型触媒が劣化していないときのNOX浄化率)とを比較することにより、選択還元型触媒の劣化を判定する場合は、NOXセンサの測定誤差や添加量の誤差を考慮して正常値を決定する必要がある。つまり、正常値は、一つの値ではなく、複数の値を含む範囲として設定される必要がある。しかしながら、選択還元型触媒が劣化している場合であっても、該選択還元型触媒へ流入するNOX量が多くなると、NOXセンサの測定値に基づいて算出されるNOX浄化率が正常値の範囲に属する可能性がある。そのため、NOXセンサの測定値から演算されるNOX浄化率と正常値とを比較する方法は、選択還元型触媒へ流入するNOX量が多くなる運転領域では実施することができない。
 これに対し、本発明の排気浄化装置の劣化検出システムによれば、NOXセンサの測定誤差や添加量の誤差を考慮する必要がないため、前記閾値を一つの値として設定することができる。その結果、選択還元型触媒へ流入するNOX量が多くなる運転領域においても、選択還元型触媒の劣化を判定することが可能になる。よって、本発明の排気浄化装置の劣化検出システムによれば、より広い運転領域において選択還元型触媒の劣化判定を実行することが可能になる。
 次に、前記変更差は、選択還元型触媒の劣化が進行するほど(劣化度合いが大きくなるほど)、小さくなる傾向がある。そこで、本発明の判定手段は、前記変更差が閾値に比して小さくなるほど、選択還元型触媒の劣化度合いが高いと判定してもよい。このような方法によれば、選択還元型触媒が劣化しているか否かに加え、選択還元型触媒の劣化度合いも判定することが可能になる。
 ところで、選択還元型触媒が新品状態(又は新品同様の状態)にあるときは、酸化能力が高くなる傾向がある。そのため、新品状態にある選択還元型触媒は、NOXを窒素(N2)に還元させた後、N2をNOやNO2等のNOXに再び酸化(以下、「再酸化」と称する)させる可能性がある。そのため、選択還元型触媒が未劣化の新品状態にあるときは、前記変更差が前記閾値より小さくなる可能性がある。
 そこで、車両の走行距離が一定距離未満であるときは一定距離以上であるときに比べ、前記閾値が小さい値にされてもよい。なお、ここでいう「走行距離」は、新品状態の選択還元型触媒が車両に搭載された時点からの走行距離である。また、「一定距離」は、前記したような再酸化により生成されるNOXの量がN2やNO2に還元されるNOXの量に対して十分に少なくなる最小の走行距離であり、予め実験等を利用した適合処理によって求められる距離である。
 上記した方法により閾値が定められると、選択還元型触媒が新品状態又は新品同様の状態にあるときに前記変更処理及び前記判定処理が実行されても、該選択還元型触媒が劣化していると誤判定される事態を回避することができる。
 次に、本発明の排気浄化装置の劣化検出システムは、選択還元型触媒の温度が下限値以上であることを条件として、選択還元型触媒の劣化判定を行うようにしてもよい。詳細には、前記変更手段及び前記判定手段は、選択還元型触媒の温度が下限値以上であることを条件として、前記変更処理及び前記判定処理を実行してもよい。ここでいう「下限値」は、選択還元型触媒が吸着可能なNH3量が十分に少なくなる温度、言い換えると、還元剤の添加間隔がNOX浄化率に反映される最低の温度である。なお、前記下限値は、選択還元型触媒がNH3を吸着しない最低の温度に設定されることが好ましい。
 選択還元型触媒のNOX浄化率は、該選択還元型触媒に吸着されているNH3の量(以下、「NH3吸着量」と称する)によって変化する。たとえば、NH3吸着量が多いときは少ないときに比べ、NOX浄化率が高くなる。そのため、選択還元型触媒のNH3吸着量が多いときは、還元剤の添加間隔にかかわらず、NOX浄化率が高くなる可能性がある。つまり、選択還元型触媒のNH3吸着量が多いときに前記変更処理が実行されると、選択還元型触媒が劣化していないにもかかわらず、前記変更差が小さくなる可能性がある。その結果、選択還元型触媒が劣化していないにもかかわらず、該選択還元型触媒が劣化していると誤判定される可能性がある。
 したがって、前記変更処理及び前記判定処理は、選択還元型触媒のNH3吸着量が少ないとき、言い換えると、還元剤の添加間隔がNOX浄化率に反映され得るときに、実行されることが好ましい。
 これに対し、選択還元型触媒に吸着されているNH3の大部分がNOXの還元反応に消費されたときに、前記変更処理及び前記判定処理を実行する方法が考えられる。しかしながら、選択還元型触媒のNH3吸着量が多い場合はNH3が消費されるまでに時間がかかるため、選択還元型触媒の劣化を速やかに検出することができない可能性がある。
 一方、選択還元型触媒の温度が前記下限値以上であることを条件として、前記変更処理及び前記判定処理が実行されると、判定精度の低下を抑制することができるとともに、選択還元型触媒の劣化を速やかに検出することができる。
 なお、選択還元型触媒より上流にパティキュレートフィルタが配置される場合は、パティキュレートフィルタの再生処理が実行されたときに、選択還元型触媒が凡そ500℃以上の高温に曝され、アンモニア(NH3)が選択還元型触媒に吸着され難くなる。よって、パティキュレートフィルタの再生処理が実施されているとき、或いは再生処理の終了直後(選択還元型触媒がアンモニア(NH3)を吸着しない最低の温度以上のとき)に、前記変更処理及び前記判定処理が実行されてもよい。
 ところで、選択還元型触媒が劣化していないときに、該選択還元型触媒の温度が過剰に高くなると、NOX浄化率が小さくなる傾向がある。そのため、選択還元型触媒の温度が過剰に高いときは、選択還元型触媒が劣化していないときの変更差と選択還元型触媒が劣化しているときの変更差との差が小さくなる可能性がある。
 そこで、前記変更手段及び前記判定手段は、前記選択還元型触媒の温度が上限値を超えるときは、前記変更処理及び前記判定処理を実行しないようにしてもよい。その場合、誤判定の発生を抑制することができる。ここでいう「上限値」は、選択還元型触媒が劣化していないときの変更差と選択還元型触媒が劣化しているときの変更差との差が顕著となる最低の温度からマージンを差し引いた温度である。
 また、選択還元型触媒のNOX浄化率は、選択還元型触媒の劣化に加え、還元剤添加弁又は該還元剤添加弁へ還元剤を供給する装置の故障等によって変化する場合がある。よって、前記変更処理及び前記判定処理は、前記還元剤添加弁が故障していないときに実行されることが望ましい。
 そこで、本発明の排気浄化装置の劣化検出システムは、前記還元剤添加弁の故障を診断する診断手段をさらに備えるようにしてもよい。その場合、前記変更手段及び前記判定手段は、前記診断手段により前記還元剤添加弁が故障していないと診断されたことを条件として、前記変更処理及び前記判定処理を実行すればよい。その結果、選択還元型触媒の劣化をより正確に判定することができる。
 ここで、還元剤添加弁から実際に添加される還元剤の量が目標添加量から乖離している場合は、添加間隔が短いときのNOX浄化率が不安定になる傾向がある。これに対し、還元剤添加弁から実際に添加される還元剤の量が目標添加量と同等若しくは近似している場合は、添加間隔が短いときのNOX浄化率が選択還元型触媒の劣化状態にかかわらず安定する傾向がある。
 よって、前記診断手段は、前記変更手段により添加間隔が短くされているときのNOX浄化率の変化量が基準値より大きいときことを条件として、前記還元剤添加弁が故障していると判定してもよい。その場合、選択還元型触媒の劣化状態にかかわらず、前記還元剤添加弁の故障を診断することができる。
 本発明によれば、内燃機関の排気通路に配置される選択還元型触媒と、該選択還元型触媒より上流の排気通路に配置される還元剤添加弁と、前記選択還元型触媒より下流の排気通路に配置されるNOXセンサと、を備えた排気浄化装置の劣化検出システムにおいて、選択還元型触媒の劣化を早期に検出することができるとともに、検出精度を高めることができる。
本発明を適用する内燃機関の排気系の概略構成を示す図である。 還元剤の添加周波数と選択還元型触媒のNOX浄化率Enoxとの関係を示す図である。 還元剤添加弁又はポンプが故障している場合において添加周波数が高められたときのNOX浄化率Enoxの経時変化を示す図である。 第1の実施例において選択還元型触媒の劣化判定処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。 選択還元型触媒の温度Tcatと選択還元型触媒のNOX浄化率Enoxとの関係を示す図である。 選択還元型触媒の温度Tcatと選択還元型触媒のNH3吸着量との関係を示す図である。 第2の実施例において選択還元型触媒の劣化判定処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。 車両の走行距離Rdと変更差ΔEnoxの絶対値との関係を示す図である。 第3の実施例において選択還元型触媒の劣化判定処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。 本発明を適用する排気系の他の構成例を示す図である。 本発明を適用する排気系の他の構成例を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 先ず、本発明の第1の実施例について図1乃至図4に基づいて説明する。図1は、本発明を適用する内燃機関の排気系の概略構成を示す図である。図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)であるが、希薄燃焼運転(リーンバーン運転)可能な火花点火式の内燃機関(ガソリンエンジン)であってもよい。
 図1において、内燃機関1には、排気通路2が接続されている。排気通路2は、内燃機関1の気筒内から排出される既燃ガス(排気)を流通させるための通路である。排気通路2の途中には、第一触媒ケーシング3と第二触媒ケーシング4が上流側から直列に配置されている。
 第一触媒ケーシング3は、筒状のケーシング内に酸化触媒とパティキュレートフィルタを内装している。その際、酸化触媒は、パティキュレートフィルタの上流に配置される触媒担体に担持されてもよく、或いはパティキュレートフィルタに担持されてもよい。
 第二触媒ケーシング4は、筒状のケーシング内に、選択還元型触媒が担持された触媒担体を収容したものである。触媒担体は、たとえば、コーディライトやFe-Cr-Al系の耐熱鋼から成るハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。さらに、触媒担体には、酸化能を有する貴金属触媒(たとえば、白金(Pt)やパラジウム(Pd)等)が担持されている。なお、第二触媒ケーシング4の内部において、選択還元型触媒より下流には酸化触媒を担持した触媒担体が配置されるようにしてもよい。その場合の酸化触媒は、後述する還元剤添加弁5から選択還元型触媒へ供給される還元剤のうち、選択還元型触媒をすり抜けた還元剤を酸化するための触媒である。
 第一触媒ケーシング3と第二触媒ケーシング4との間の排気通路2には、アンモニアの前駆体である還元剤を排気中へ添加(噴射)するための還元剤添加弁5が取り付けられている。還元剤添加弁5は、ニードルの移動により開閉される噴孔を有する弁装置である。還元剤添加弁5は、ポンプ50を介して還元剤タンク51に接続されている。ポンプ50は、還元剤タンク51に貯留されている還元剤を吸引するとともに、吸引された還元剤を還元剤添加弁5へ圧送する。還元剤添加弁5は、ポンプ50から圧送されてくる還元剤を排気通路2内へ噴射する。なお、還元剤添加弁5の開閉タイミングやポンプ50の吐出圧力は、後述するECU9によって電気的に制御されるようになっている。
 ここで、還元剤タンク51に貯留される還元剤としては、尿素やカルバミン酸アンモニウムなどの水溶液を用いることができる。本実施例では、前記還元剤として尿素水溶液を用いるものとする。
 還元剤添加弁5から尿素水溶液が噴射されると、該尿素水溶液が排気とともに第二触媒ケーシング4へ流入する。その際、尿素水溶液が排気や選択還元型触媒の熱を受けて熱分解又は加水分解される。尿素水溶液が熱分解又は加水分解されると、NH3が生成される。このようにして生成されたNH3は、選択還元型触媒に吸着又は吸蔵される。選択還元型触媒に吸着又は吸蔵されたNH3は、排気中に含まれるNOXと反応して窒素(N2)や水(H2O)を生成する。つまり、NH3は、NOXの還元剤として機能する。その際、選択還元型触媒の広い範囲にNH3が吸着されていると、選択還元型触媒のNOX浄化率が高くなる。
 このように構成された内燃機関1には、ECU9が併設されている。ECU9は、CPU、ROM、RAM、バックアップRAMなどを備えた電子制御ユニットである。ECU9には、上流側NOXセンサ6、下流側NOXセンサ7、排気温度センサ8、クランクポジションセンサ10、及びアクセルポジションセンサ11などの各種センサが電気的に接続されている。
 上流側NOXセンサ6は、第一触媒ケーシング3より下流、且つ第二触媒ケーシング4より上流の排気通路2に配置され、第二触媒ケーシング4へ流入する排気中に含まれるNOXの量(以下、「NOX流入量」と称する)に相関する電気信号を出力する。下流側NOXセンサ7は、第二触媒ケーシング4より下流の排気通路2に配置され、第二触媒ケーシング4から流出するNOXの量(以下、「NOX流出量」と称する)に相関する電気信号を出力する。排気温度センサ8は、第二触媒ケーシング4より下流の排気通路2に配置され、第二触媒ケーシング4から流出する排気の温度と相関する電気信号を出力する。クランクポジションセンサ10は、内燃機関1の出力軸(クランクシャフト)の回転位置に相関する電気信号を出力する。アクセルポジションセンサ11は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力する。
 ECU9には、内燃機関1に取り付けられた各種機器(たとえば、燃料噴射弁など)、還元剤添加弁5、及びポンプ50などが電気的に接続されている。ECU9は、前記した各種センサの出力信号に基づいて、内燃機関1の各種機器、還元剤添加弁5、及びポンプ50などを電気的に制御する。たとえば、ECU9は、内燃機関1の燃料噴射制御や、還元剤添加弁5から間欠的に還元剤を噴射させる添加制御などの既知の制御に加え、選択還元型触媒の劣化判定処理を実行する。以下、選択還元型触媒の劣化判定処理について説明する。
 選択還元型触媒の劣化判定処理では、ECU9は、還元剤添加弁5が還元剤を間欠的に噴射するように制御されているとき(添加期間中)に、一定期間あたりの添加量を変更せずに添加周波数を変更すべく還元剤添加弁5を制御(変更処理)する。ECU9は、添加周波数が変更されているときと変更されていないときのNOX浄化率の差(変更差)をパラメータとして、選択還元型触媒が劣化しているか否かを判別する。
 ここでいう「添加周波数」は、還元剤添加弁5が還元剤を噴射する間隔(添加間隔)の逆数に相当し、添加間隔が短くなるほど大きい値(高周波)を示す。また、「NOX浄化率」は、第二触媒ケーシング4へ流入するNOX量(NOX流入量)に対し、選択還元型触媒で浄化されるNOX量の割合である。
 NOX流入量は内燃機関1から排出されるNOX量に相当するため、内燃機関1の運転条件(機関回転数、アクセル開度、吸入空気量、燃料噴射量など)をパラメータとして演算することができる。なお、図1に示すように、第一触媒ケーシング3と第二触媒ケーシング4との間の排気通路2に上流側NOXセンサ6が取り付けられる場合は、該上流側NOXセンサ6の出力信号をNOX流入量として用いることができる。
 ECU9は、上流側NOXセンサ6の出力信号(NOX流入量)と下流側NOXセンサ7の出力信号(NOX流出量)と下記の式とを用いてNOX浄化率Enoxを演算する。なお、下記の式におけるANOXinはNOX流入量であり、ANOXoutはNOX流出量である。
 Enox=(ANOXin-ANOXout)/ANOXin
 NOX浄化率Enoxは、添加周波数が変更されているときと変更されていないときのそれぞれにおいて演算される。以下では、添加周波数が変更されていないときのNOX浄化率Enoxを第一NOX浄化率Enox1と称し、添加周波数が変更されているときのNOX浄化率Enoxを第二NOX浄化率Enox2と称する。
 ECU9は、第一NOX浄化率Enox1と第二NOX浄化率Enox2の差(変更差)ΔEnox(Enox2-Enox1)の絶対値を演算し、その値が閾値より小さいか否かを判別する。ECU9は、前記変更差ΔEnoxの絶対値が閾値より小さい場合は、選択還元型触媒が劣化していると判定する。なお、変更処理が実行されているとき(添加周波数が変更されているとき)の添加周波数は、変更処理が実行されていないとき(添加周波数が変更されていないとき)の添加周波数より低くされてもよく、或いは高くされてもよい。
 ここで、選択還元型触媒が劣化していないときの添加周波数とNOX浄化率Enoxとの関係を図2に示す。図2において、選択還元型触媒が劣化していないときNOX浄化率Enoxは、添加周波数が低い場合より高い場合の方が大きくなる。すなわち、NOX浄化率Enoxは、添加周波数が高くなるほど大きくなる。これは、添加周波数が高いときは低いときに比べ、還元剤添加弁5から一回あたりに添加される還元剤の量が少なくなるため、尿素水溶液からNH3への転化(加水分解及び熱分解)が促進されると考えられる。一方、選択還元型触媒が劣化しているときは、NH3とNOXの反応が起こりにくくなるため、添加周波数の差に対して前記変更差が小さくなる。
 したがって、前記変更差ΔEnoxの絶対値が閾値より小さければ、選択還元型触媒が劣化していると判定することができる。なお、ここでいう「閾値」は、選択還元型触媒が劣化していないときに前記変更差ΔEnoxの絶対値が取り得る最小値からマージンを差し引いた値であり、予め実験などを利用した適合処理によって求められた値である。
 また、前記変更差ΔEnoxの絶対値は、選択還元型触媒の劣化度合いが大きくなるほど(選択還元型触媒の劣化が進行するほど)、小さくなる傾向がある。よって、ECU9は、前記変更差ΔEnoxの絶対値が前記閾値より小さい場合は、前記絶対値と前記閾値との差が大きくなるほど選択還元型触媒の劣化度合いが大きいと判定してもよい。
 このような方法に従って選択還元型触媒の劣化判定処理が実行されると、一定期間あたりの還元剤の添加量を変更することなく、選択還元型触媒の劣化を判定することができる。そのため、選択還元型触媒へ供給される還元剤が過多になったり、或いは過少になったりすることもない。その結果、選択還元型触媒をすり抜けるNH3の量が過剰に多くなったり、選択還元型触媒で浄化されるNOXの量が過剰に少なくなったりする事態を回避しつつ、選択還元型触媒の劣化を判定することができる。つまり、劣化判定処理の実施に起因した排気エミッションの増加を少なく抑えることができる。また、本実施例の劣化判定処理は還元剤の添加期間中に遂行されるため、選択還元型触媒の劣化を速やかに検出することも可能となる。
 ところで、選択還元型触媒より上流の排気通路に酸化触媒が配置される場合は、該酸化触媒から流出する一酸化窒素(NO)の量と二酸化窒素(NO2)の量の比率(NO2/NO比率)に応じて選択還元型触媒のNOX浄化率が変化する可能性がある。しかしながら、本実施例の変更処理は一回の添加期間中の短い時間に遂行されるため、添加周波数が変更されているときと変更されていないときにおいて前記NO2/NO比率が大幅に変化する可能性が低くなる。よって、前記NO2/NO比率に起因した判定精度の低下を抑制することができる。
 また、上流側NOXセンサ6及び下流側NOXセンサ7の測定値は、上流側NOXセンサ6及び下流側NOXセンサ7の初期交差や経時変化等に起因した誤差を含む場合がある。また、還元剤添加弁5から実際に添加される還元剤の量(以下、「実添加量」)と目標添加量との間には、還元剤添加弁5の初期交差や経時変化等に起因した誤差が生じる場合がある。それらの場合において、前記式に基づいて算出されるNOX浄化率Enoxは、上流側NOXセンサ6及び下流側NOXセンサ7の測定誤差や実添加量の誤差を含む値となる。
 しかしながら、前記第一NOX浄化率Enox1と前記第二NOX浄化率Enox2は、同等の誤差を含む。そのため、前記変更差ΔEnoxは、前記測定誤差や前記実添加量の誤差が相殺された値となる。よって、本実施例の劣化判定処理によれば、前記測定誤差や前記実添加量の誤差が生じている場合であっても、選択還元型触媒の劣化を判定することができる。
 ここで、従来の劣化判定方法として、NOX浄化率と正常値(選択還元型触媒が劣化していないときのNOX浄化率)とを比較することにより、選択還元型触媒の劣化を判定する方法が知られている。このような方法を用いる場合は、前記測定誤差や前記実添加量の誤差を考慮して正常値を決定する必要がある。つまり、正常値は、一つの値ではなく、複数の値を含む範囲として設定される必要がある。しかしながら、選択還元型触媒が劣化している場合であっても、該選択還元型触媒へ流入するNOX量が多くなると、NOX浄化率が正常値の範囲に属する可能性がある。そのため、前記従来の劣化判定方法は、選択還元型触媒のNOX流入量が多くなる運転領域では実施することができなかった。
 これに対し、本実施例の劣化判定処理には、前記測定誤差や前記実添加量の誤差を考慮する必要がない。その結果、選択還元型触媒のNOX流入量が多くなる運転領域においても、劣化判定処理を行うことが可能になる。すなわち、前記従来の劣化判定方法より広い運転領域において劣化判定処理を実行することができる。よって、本実施例の劣化判定処理は、前記従来の劣化判定方法より早い時期に選択還元型触媒の劣化を検出することも可能になる。
 また、前記式に基づいて算出されるNOX浄化率Enoxは、上流側NOXセンサ6や下流側NOXセンサ7が故障している場合、又は還元剤添加弁5やポンプ50が故障している場合にも変化する。そのため、選択還元型触媒が劣化していないにもかかわらず、前記変更差ΔEnoxの絶対値が前記閾値を下回る可能性がある。一方、選択還元型触媒が劣化しているにもかかわらず、前記変更差ΔEnoxの絶対値が前記閾値以上になる可能性もある。よって、還元剤添加弁5の異常検出処理は、上流側NOXセンサ6及び下流側NOXセンサ7が正常であること、並びに還元剤添加弁5やポンプ50が正常であることを条件として、実施されることが望ましい。
 そこで、ECU9は、選択還元型触媒の劣化判定処理を実行する前に、上流側NOXセンサ6及び下流側NOXセンサ7の故障判定処理、並びに還元剤添加弁5やポンプ50の故障判定処理を実行するようにした。
 たとえば、ECU9は、上流側NOXセンサ6及び下流側NOXセンサ7の通電チェックを実施することにより断線の有無を判定する。上流側NOXセンサ6及び下流側NOXセンサ7の断線が発生していない場合は、ECU9は、還元剤添加弁5が還元剤を噴射していないときの上流側NOXセンサ6及び下流側NOXセンサ7の出力信号の差に基づいて、上流側NOXセンサ6及び下流側NOXセンサ7の測定精度の低下を判定する。すなわち、ECU9は、還元剤添加弁5が還元剤を噴射していないときの上流側NOXセンサ6及び下流側NOXセンサ7の出力信号の差が一定値以下であれば、上流側NOXセンサ6及び下流側NOXセンサ7の測定精度が許容範囲内であると判定する。このような判定は、選択還元型触媒がNH3を吸着していないときに実施されることが望ましい。
 一方、ECU9は、添加周波数を高めたときのNOX浄化率の変化量に基づいて、還元剤添加弁5及びポンプ50の故障を判定(診断)する。ここで、還元剤添加弁5から実際に添加される還元剤の量(以下、「実添加量」と称する)が目標添加量から乖離している場合のNOX浄化率Enoxを図3に示す。図3中の実線は実添加量が目標添加量から乖離しているときのNOX浄化率Enoxを示し、図3中の一点鎖線は実添加量が目標添加量と略同等であるときのNOX浄化率Enoxを示す。
 図3に示すように、実添加量が目標添加量と略同等であるときは、選択還元型触媒のNOX浄化率Enoxが略一定の値を示す。これに対し、実添加量が目標添加量から乖離しているときは、選択還元型触媒のNOX浄化率Enoxが一定値に安定せず、時間の経過とともにランダムな値を示す。
 そこで、ECU9は、添加周波数を高めたときのNOX浄化率の変化量が基準値より大きいことを条件として、還元剤添加弁5又はポンプ50が故障していると判定するようにした。ここでいう「基準値」は、実添加量と目標添加量の差が許容範囲内にあるときに、NOX浄化率Enoxの変化量が取り得る最大値にマージンを加算した値である。
 上記した方法により上流側NOXセンサ6及び下流側NOXセンサ7が故障していないと判定され、且つ還元剤添加弁5及びポンプ50が故障してないと判定されたときに、選択還元型触媒の劣化判定処理が実行されると、上流側NOXセンサ6及び下流側NOXセンサ7の故障や、還元剤添加弁5及びポンプ50の故障に起因した判定精度の低下を抑制することができる。
 以下、本実施例における劣化判定処理の実行手順について図4に沿って説明する。図4は、ECU9が選択還元型触媒の劣化を判定する際に実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU9のROM等に記憶されており、ECU9によって周期的に実行される。
 図4の処理ルーチンでは、ECU9は、先ずS101において上流側NOXセンサ6及び下流側NOXセンサ7が正常であるか否かを判別する。詳細には、ECU9は、先ず上流側NOXセンサ6及び下流側NOXセンサ7の通電チェックを実施する。通電チェックにより断線が発生してないと判定された場合は、ECU9は、還元剤添加弁5が還元剤を噴射していないときの上流側NOXセンサ6及び下流側NOXセンサ7の出力信号の差に基づいて、上流側NOXセンサ6及び下流側NOXセンサ7の測定精度の低下を判定する。
 前記S101において断線が発生していると判定された場合、又は上流側NOXセンサ6又は下流側NOXセンサ7の測定精度が低下していると判定された場合は、ECU9は、S111の処理へ進み、上流側NOXセンサ6と下流側NOXセンサ7の少なくとも一方が故障していると判定する。また、前記S101において断線が発生しておらず、且つ上流側NOXセンサ6及び下流側NOXセンサ7の測定精度が低下していないと判定された場合は、ECU9は、S102の処理へ進む。
 S102では、ECU9は、還元剤添加弁5及びポンプ50を含む添加系が正常であるか否かを判別する。詳細には、ECU9は、還元剤添加弁5から還元剤が添加されているときに、一定期間あたりの添加量を変更せずに添加周波数を高める(添加間隔を短くする)。ECU9は、添加周波数が高められているときに、上流側NOXセンサ6及び下流側NOXセンサ7の測定値と前記式とに基づいて、単位時間あたりのNOX浄化率Enoxの変化量を演算する。次いで、ECU9は、単位時間あたりのNOX浄化率Enoxの変化量が前記基準値以下であるか否かを判別する。
 前記S102において単位時間あたりのNOX浄化率Enoxの変化量が前記基準値より大きいと判定された場合は、ECU9は、S112へ進み、添加系が故障していると判定する。一方、前記S102において単位時間あたりのNOX浄化率Enoxの変化量が前記基準値以下であると判定された場合は、S103へ進む。なお、ECU9がS102及びS112の処理を実行することにより、本発明に係わる診断手段が実現される。
 前記S111において上流側NOXセンサ6と下流側NOXセンサ7の少なくとも一方が故障していると判定された場合、又は前記S112において添加系が故障していると判定された場合は、ECU9は、選択還元型触媒の劣化判定処理を実行せずに本ルーチンの実行を終了する。その結果、上流側NOXセンサ6又は下流側NOXセンサ7の故障や、還元剤添加弁5又はポンプ50の故障等に起因した誤判定が抑制される。
 S103では、ECU9は、還元剤の添加期間中であるか否かを判別する。S103において否定判定された場合は、ECU9は、本ルーチンの実行を終了する。なお、S103において否定判定された場合は、ECU9は、還元剤の添加が開始されるまで該S103の処理を繰り返し実行してもよい。S103において肯定判定された場合は、ECU9は、S104へ進む。
 S104では、ECU9は、上流側NOXセンサ6の出力信号(NOX流入量)ANOXinと下流側NOXセンサ7の出力信号(NOX流出量)ANOXoutを読み込み、第一NOX浄化率Enox1を演算する。すなわち、ECU9は、添加周波数が変更されていないときの選択還元型触媒のNOX浄化率(第一NOX浄化率Enox1)を演算する。
 S105では、ECU9は、添加周波数を変更すべく還元剤添加弁5を制御する。続いて、S106では、ECU9は、上流側NOXセンサ6の出力信号(NOX流入量)ANOXinと下流側NOXセンサ7の出力信号(NOX流出量)ANOXoutを再度読み込み、第二NOX浄化率Enox2を演算する。すなわち、ECU9は、添加周波数が変更されているときの選択還元型触媒のNOX浄化率(第二NOX浄化率Enox2)を演算する。
 ECU9がS104及びS106の処理を実行することにより、本発明に係わる演算手段が実現される。また、ECU9がS105の処理を実行することにより、本発明に係わる変更手段が実現される。
 S107では、ECU9は、前記S104で算出された第一NOX浄化率Enox1と前記S106で算出された第二NOX浄化率Enox2との差(変更差)ΔEnox(=Enox2-Enox1)を演算する。
 S108では、ECU9は、前記S107で算出された変更差ΔEnoxの絶対値が閾値以上であるか否かを判別する。S108において肯定判定された場合(|ΔEnox|≧閾値)は、ECU9は、S109へ進み、選択還元型触媒が正常である(選択還元型触媒が劣化していない)と判定する。一方、S108において否定判定された場合(|ΔEnox|<閾値)は、ECU9は、S110へ進み、選択還元型触媒が劣化していると判定する。その際、ECU9は、|ΔEnox|と閾値との差が大きくなるほど、選択還元型触媒の劣化度合いが大きいと判定してもよい。また、前記S110において選択還元型触媒が劣化していると判定された場合は、ECU9は、選択還元型触媒が劣化している旨を示す情報をバックアップRAM等に記憶させるとともに、運転者に選択還元型触媒の劣化を報知してもよい。
 なお、ECU9が前記S108乃至S11まるの処理を実行することにより、本発明に係わる判定手段が実現される。
 以上述べた実施例によれば、排気エミッションの増加を少なく抑えつつ、選択還元型触媒の劣化判定処理を実施することが可能となる。また、本実施例の劣化判定処理は還元剤の添加期間中に遂行されるため、選択還元型触媒の劣化を早期に検出することができる。さらに、本実施例の劣化判定処理によれば、上流側NOXセンサ6及び下流側NOXセンサ7の測定誤差や実添加量の誤差が生じている場合であっても、選択還元型触媒の劣化を判定することができる。
 <実施例2>
 次に、本発明に係わる排気浄化装置の劣化検出システムの第2の実施例について図5乃至図7に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、選択還元型触媒が所定の温度範囲にあるときに、劣化判定処理を実行する点にある。
 図5は、選択還元型触媒の温度TcatとNOX浄化率Enoxとの関係を示す図である。図5中の実線は選択還元型触媒が劣化していないときのNOX浄化率を示し、図5中の一点鎖線は選択還元型触媒が劣化しており且つNH3吸着量が多いときのNOX浄化率を示し、図5中に二点鎖線は選択還元型触媒が劣化しており且つNH3吸着量が少ないときのNOX浄化率を示す。
 図5において、選択還元型触媒の温度Tcatが所定温度Tcat1より低いときは、選択還元型触媒が劣化していない場合のNOX浄化率と劣化している場合のNOX浄化率との差が小さくなる。この傾向は、選択還元型触媒のNH3吸着量が多くなるほど顕著となる。さらに、選択還元型触媒のNH3吸着量が多い場合は、還元剤の添加周波数や選択還元型触媒の劣化状態にかかわらず、NOX浄化率Enoxが大きくなる可能性もある。よって、選択還元型触媒のNH3吸着量が多いときの前記変更差ΔEnoxの絶対値は、還元剤の添加周波数や選択還元型触媒の劣化状態にかかわらず小さくなる可能性がある。
 これに対し、選択還元型触媒の温度Tcatが所定温度Tcat1以上であるときは、選択還元型触媒が劣化していない場合のNOX浄化率と劣化している場合のNOX浄化率との差が大きくなる。また、選択還元型触媒の温度Tcatが所定温度Tcat1以上であるときは、図5中の一点鎖線と二点鎖線が略同等のNOX浄化率を示す。これは、選択還元型触媒の温度が所定温度Tcat1以上であるときは、該選択還元型触媒が吸着可能なNOXの量(以下、「NH3吸着容量」と称する)が小さくなるため、NH3吸着量がNOX浄化率Enoxに及ぼす影響が小さくなると考えられる。
 したがって、選択還元型触媒の温度がNH3吸着容量の少なくなる最低の温度、好ましくはNH3吸着容量が零となる最低の温度(下限値)以上であることを条件として、選択還元型触媒の劣化判定処理が実行されることが望ましい。その際、前記下限値は、選択還元型触媒の基材、触媒担体、及び触媒の材質によって変化するため、それらの材質に応じて定められることが望ましい。
 前記選択還元型触媒の温度が前記下限値以上となる場合としては、第一触媒ケーシング3に収容されたパティキュレートフィルタの再生処理が実行されているときや再生処理の実行終了直後などが考えられる。よって、選択還元型触媒の劣化判定処理は、パティキュレートフィルタの再生処理が実行されているときや実行終了直後に実行されてもよい。
 また、第一触媒ケーシング3の酸化触媒へ未燃燃料を供給することにより、第一触媒ケーシング3から流出する排気の温度(第二触媒ケーシング4へ流入する排気の温度)を前記下限値以上まで高めることも可能である。よって、膨張行程中又は排気行程中の気筒の燃料噴射弁から燃料を噴射(ポスト噴射又はアフター噴射)させることにより、第二触媒ケーシング4内の雰囲気温度を前記下限値以上に高めてもよい。
 ところで、選択還元型触媒のNH3吸着容量は、図6に示すように、選択還元型触媒の温度が高くなるほど小さくなる傾向がある。しかしながら、選択還元型触媒の温度が過剰に高くなると、選択還元型触媒の劣化状態や還元剤の添加周波数にかかわらず、選択還元型触媒のNOX浄化率が小さくなる傾向がある。たとえば、前述の図5において、選択還元型触媒の温度が所定温度Tcat2より高くなると、選択還元型触媒が劣化していない場合のNOX浄化率と劣化している場合のNOX浄化率との差が小さくなる。そのため、選択還元型触媒の温度が過剰に高いときに劣化判定処理が実行されると、選択還元型触媒が劣化していないにもかかわらず、選択還元型触媒が劣化していると誤判定される可能性がある。
 したがって、選択還元型触媒の劣化判定処理は、選択還元型触媒の温度が前記下限値以上且つ上限値以下の温度範囲にあるときに実行されることが望ましい。ここでいう「上限値」は、前述の図5中のTcat2に相当し、選択還元型触媒が劣化していないときの変更差ΔEnoxの絶対値と前記閾値との差が判定精度を確保し得る最小の大きさになる温度からマージンを差し引いた温度である。言い換えると、「上限値」は、選択還元型触媒が劣化していないときの変更差ΔEnoxの絶対値と選択還元型触媒が劣化しているときの変更差ΔEnoxの絶対値との差が顕著となる最低の温度からマージンを差し引いた温度である。その際、前記上限値は、前記下限値と同様に、選択還元型触媒の基材、触媒担体、及び触媒の材質によって変化する。よって、前記上限値は、選択還元型触媒の基材、触媒担体、及び触媒の材質に応じて定めるものとする。
 以上述べたように、選択還元型触媒の温度Tcatが所定の温度範囲にあるときに選択還元型触媒の劣化判定処理が実行されると、NH3吸着量に起因した判定精度の低下を抑制することができる。言い換えると、選択還元型触媒の温度Tcatが所定の温度範囲にあるときに選択還元型触媒の劣化判定処理が実行されると、選択還元型触媒の劣化判定をより正確に行うことが可能になる。
 以下、本実施例における劣化判定処理の実行手順について図7に沿って説明する。図7は、ECU9が選択還元型触媒の劣化を判定する際に実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU9のROM等に記憶されており、ECU9によって周期的に実行される。なお、図7の処理ルーチンにおいて、前述した第1の実施例の処理ルーチン(図4を参照)と同等の処理には、同一の符号が付されている。
 図7の処理ルーチンでは、ECU9は、先ずS201において、選択還元型触媒の温度Tcatが前記下限値Tcat1より低いか否かを判別する。その際、選択還元型触媒の温度Tcatとしては、排気温度センサ8の出力信号を用いるものとする。
 前記S201において否定判定された場合(Tcat≧Tcat1)は、ECU9は、後述するS202及びS203の処理をスキップしてS204の処理へ進む。一方、前記S201において肯定判定された場合(Tcat<Tcat1)は、ECU9は、S202の処理へ進む。
 S202では、ECU9は、昇温処理を実行する。詳細には、ECU9は、膨脹行程中又は排気行程中の気筒の燃料噴射弁から燃料を噴射(ポスト噴射又はアフター噴射)させることにより、未燃燃料を第一触媒ケーシング3の酸化触媒へ供給する。その場合、未燃燃料が酸化触媒により酸化される。未燃燃料が酸化される際に発生する反応熱は、第一触媒ケーシング3を流通する排気に伝達される。その結果、第一触媒ケーシング3から流出する排気の温度、言い換えれば第二触媒ケーシング4へ流入する排気の温度が上昇する。よって、選択還元型触媒は、排気の熱を受けて昇温することになる。
 S203では、ECU9は、選択還元型触媒の温度Tcatが前記下限値Tcat1以上に上昇したか否かを判別する。S203において否定判定された場合(Tcat<Tcat1)は、ECU9は、該S203の処理を繰り返し実行する。一方、S203において肯定判定された場合(Tcat≧Tcat1)は、ECU9は、S204の処理へ進む。
 S204では、ECU9は、選択還元型触媒の温度Tcatが上限値Tcat2以下であるか否かを判別する。S204において否定判定された場合(Tcat>Tcat2)は、ECU9は、S205の処理へ進み、昇温処理を終了させる。詳細には、ECU9は、燃料噴射弁によるポスト噴射又はアフター噴射を停止させる。一方、S204において肯定判定された場合(Tcat≦Tcat2)は、ECU9は、S101の処理へ進む。なお、S101以降の処理は、前述した第1の実施例の処理ルーチンと同様である。
 このようにECU9が図7の処理ルーチンに従って選択還元型触媒の劣化判定処理を実行した場合は、前述した第1の実施例と同様の効果を得ることができるとともに、劣化判定処理の判定精度を高めることもできる。
 <実施例3>
 次に、本発明に係わる排気浄化装置の劣化検出システムの第3の実施例について図8乃至図9に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、選択還元型触媒が新品状態又は新品同様の状態にあるときは、劣化判定処理に用いられる閾値を小さくする点にある。
 図8は、選択還元型触媒が劣化していない場合において、排気浄化装置が搭載された車両の走行距離Rdと前記変更差ΔEnoxの絶対値(|ΔEnox|)との関係を示す図である。なお、ここでいう「走行距離」は、新品状態の選択還元型触媒が車両に搭載された時点から車両が走行した距離の累積値である。
 図8に示すように、車両の走行距離Rdが一定距離Rd1以上であるときは、前記変更差ΔEnoxの絶対値が閾値より大きくなる。一方、車両の走行距離Rdが前記一定距離Rd1より短いときは、前記変更差ΔEnoxの絶対値が閾値より小さくなる。これは、選択還元型触媒が新品状態(又は新品同様の状態)にあるときは、該選択還元型触媒の酸化能力が高いため、NOXから還元されたN2がNOやNO2等のNOXに再酸化されると考えられる。
 そこで、本実施例では、車両の走行距離Rdが一定距離Rd1未満であるときに選択還元型触媒の劣化判定処理が実行される場合は、車両の走行距離Rdが一定距離Rd1以上であるときに選択還元型触媒の劣化判定処理が実行される場合に比べ、前記閾値が小さい値に設定されるようにした。ここでいう「一定距離」は、予め実験等を利用した適合処理によって求められた走行距離である。
 このような方法により閾値が定められると、選択還元型触媒が新品状態又は新品同様の状態にあるときに選択還元型触媒の劣化判定処理が実行された場合の判定精度の低下、たとえば、選択還元型触媒が劣化していないにもかかわらず劣化していると誤判定される事態を回避することができる。
 以下、本実施例における劣化判定処理の実行手順について図9に沿って説明する。図9は、ECU9が選択還元型触媒の劣化を判定する際に実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU9のROM等に記憶されており、ECU9によって周期的に実行される。なお、図9の処理ルーチンにおいて、前述した第1の実施例の処理ルーチン(図4を参照)と同等の処理には、同一の符号が付されている。
 図9の処理ルーチンでは、ECU9は、S102の処理において肯定判定された場合に、S301の処理を実行する。S301では、ECU9は、車両の走行距離Rdが一定距離Rd1未満であるか否かを判別する。S301において否定判定された場合(Rd≧Rd1)は、ECU9は、後述するS302の処理をスキップしてS103の処理へ進む。一方、S301において肯定判定された場合(Rd<Rd1)は、ECU9は、S302の処理へ進む。
 S302では、ECU9は、閾値の大きさを変更する。詳細には、ECU9は、走行距離Rdが一定距離Rd1以上であるときに比べ、閾値を小さい値に変更する。その際の閾値は、選択還元型触媒が未劣化の新品状態にあるときに前記変更差の絶対値が取り得る値より小さい値であり、予め実験等を利用した適合処理によって定められた値である。
 ECU9は、前記S302の処理を実行した後に、S103の処理へ進む。なお、S市03以降の処理は、前述した第1の実施例の処理ルーチンと同様である。
 ECU9が図9の処理ルーチンに従って選択還元型触媒の劣化判定処理を実行した場合は、前述した第1の実施例と同様の効果を得ることができるとともに、選択還元型触媒が新品状態又は新品同様の状態にあるときの判定精度の低下を抑制することができる。
 なお、本実施例では、選択還元型触媒の酸化能力が高くなる期間を判別するためのパラメータとして、車両の走行距離Rdを用いる例について述べたが、新品状態の選択還元型触媒が車両に搭載された時点からの内燃機関1の運転時間の累積値、排気温度の積算値、或いは燃料噴射量の積算値であってもよい。要するに、選択還元型触媒の酸化能力の低下と相関するパラメータであれば、如何なるパラメータを用いてもよい。
 また、本実施例と前述した第2の実施例は組み合わせることができる。その場合、劣化判定処理の判定精度をより一層高めることができる。
 <他の実施例>
 前述した第1乃至第3の実施例では、酸化触媒及びパティキュレートフィルタを収容した第一触媒ケーシング3の下流に、選択還元型触媒を収容した第二触媒ケーシング4が配置される構成において、選択還元型触媒の劣化判定処理を実行する例について述べた。しかしながら、本発明を適用する構成は、上記の構成に限定されるものではない。たとえば、本発明の劣化判定処理は、図10に示すように、選択還元型触媒が収容された第二触媒ケーシング4より上流の排気通路2に酸化触媒を収容した第三触媒ケーシング30が配置され、第二触媒ケーシング4より下流の排気通路にパティキュレートフィルタを収容した第四触媒ケーシング31が配置された構成においても実行することができる。また、本発明の劣化判定処理は、図11に示すように、酸化触媒を収容した第五触媒ケーシング32の下流に、選択還元型触媒とパティキュレートフィルタを収容した第六触媒ケーシング33が配置される構成においても実行することができる。その際、選択還元型触媒は、パティキュレートフィルタと別体の触媒担体に担持されてもよく、パティキュレートフィルタに担持されてもよい。
1     内燃機関
2     排気通路
3     第一触媒ケーシング
4     第二触媒ケーシング
5     還元剤添加弁
6     上流側NOXセンサ
7     下流側NOXセンサ
8     排気温度センサ
9     ECU
30   第三触媒ケーシング
31   第四触媒ケーシング
32   第五触媒ケーシング
33   第六触媒ケーシング
50   ポンプ
51   還元剤タンク

Claims (8)

  1.  内燃機関の排気通路に配置される選択還元型触媒と、
     前記選択還元型触媒より上流の排気通路に配置され、アンモニアの前駆体である還元剤を排気中に添加する還元剤添加弁と、
     前記選択還元型触媒より下流の排気通路に配置され、排気中に含まれる窒素酸化物の量を測定するNOXセンサと、
     前記NOXセンサの測定値をパラメータとして、前記選択還元型触媒へ流入する窒素酸化物の量に対する前記選択還元型触媒で浄化される窒素酸化物の量の割合であるNOX浄化率を演算する演算手段と、
     前記還元剤添加弁による還元剤の添加期間中に、一定期間あたりの添加量を固定しつつ添加間隔を変更すべく前記還元剤添加弁を制御するための変更処理を実行する変更手段と、
     前記変更手段により添加間隔が変更されているときと変更されていないときに前記演算手段が演算するNOX浄化率の差に基づいて前記選択還元型触媒の劣化を判定するための判定処理を実行する判定手段と、
    を備える排気浄化装置の劣化検出システム。
  2.  請求項1において、前記判定手段は、前記変更手段により添加間隔が変更されているときと変更されていないときに前記演算手段が演算するNOX浄化率の差が閾値より小さいことを条件として、前記選択還元型触媒が劣化していると判定する排気浄化装置の劣化検出システム。
  3.  請求項2において、前記閾値は、車両の走行距離が一定距離未満であるときは一定距離以上であるときに比べ、小さい値にされる排気浄化装置の劣化検出システム。
  4.  請求項2又は3において、前記判定手段は、前記変更手段により添加間隔が変更されているときと変更されていないときに前記演算手段が演算するNOX浄化率の差が閾値に比して小さくなるほど、前記選択還元型触媒の劣化度合いが高いと判定する排気浄化装置の劣化検出システム。
  5.  請求項1乃至4の何れか1項において、前記変更手段及び前記判定手段は、前記選択還元型触媒の温度が下限値以上であることを条件として、前記変更処理及び前記判定処理を実行する排気浄化装置の劣化検出システム。
  6.  請求項5において、前記変更手段及び前記判定手段は、前記選択還元型触媒の温度が上限値を超えるときは、前記変更処理及び前記判定処理を実行しない排気浄化装置の劣化検出システム。
  7.  請求項1乃至6の何れか1項において、前記還元剤添加弁の故障を診断する診断手段をさらに備え、
     前記変更手段及び前記判定手段は、前記診断手段により前記還元剤添加弁が故障していないと診断されたことを条件として、前記変更処理及び前記判定処理を実行する排気浄化装置の劣化検出システム。
  8.  請求項7において、前記診断手段は、前記変更手段により添加間隔が短くされているときのNOX浄化率の変化量が基準値以下であることを条件として、前記還元剤添加弁が故障していないと判定する排気浄化装置の劣化検出システム。
PCT/JP2012/066022 2012-06-22 2012-06-22 排気浄化装置の劣化検出システム WO2013190698A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280074177.5A CN104411933B (zh) 2012-06-22 2012-06-22 排气净化装置的劣化检测系统
PCT/JP2012/066022 WO2013190698A1 (ja) 2012-06-22 2012-06-22 排気浄化装置の劣化検出システム
JP2014521183A JP5880705B2 (ja) 2012-06-22 2012-06-22 排気浄化装置の劣化検出システム
US14/409,729 US9670812B2 (en) 2012-06-22 2012-06-22 Deterioration detection system for exhaust gas purification apparatus
EP12879225.6A EP2868883A4 (en) 2012-06-22 2012-06-22 SYSTEM FOR DETECTING THE DETERIORATION OF AN EXHAUST GAS PURIFICATION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/066022 WO2013190698A1 (ja) 2012-06-22 2012-06-22 排気浄化装置の劣化検出システム

Publications (1)

Publication Number Publication Date
WO2013190698A1 true WO2013190698A1 (ja) 2013-12-27

Family

ID=49768327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066022 WO2013190698A1 (ja) 2012-06-22 2012-06-22 排気浄化装置の劣化検出システム

Country Status (5)

Country Link
US (1) US9670812B2 (ja)
EP (1) EP2868883A4 (ja)
JP (1) JP5880705B2 (ja)
CN (1) CN104411933B (ja)
WO (1) WO2013190698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947289A1 (en) * 2014-05-23 2015-11-25 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus for exhaust gas purification apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830065C1 (de) * 1998-06-30 1999-10-28 Siemens Ag Elektronischer Überstromauslöser und Verfahren zur Auswertung seiner Eingangsgrößen
DE102016208834A1 (de) * 2016-05-23 2017-11-23 Technische Universität Dresden Verfahren zum Betreiben eines in einem Fahrzeug installierten Verbrennungskraftmaschine
JP6435369B2 (ja) 2017-04-26 2018-12-05 株式会社キャタラー 排ガス浄化システム及び自動推進車両
JP6536623B2 (ja) * 2017-05-26 2019-07-03 トヨタ自動車株式会社 NOx吸蔵還元触媒の劣化診断装置
JP6731893B2 (ja) * 2017-07-31 2020-07-29 ヤンマーパワーテクノロジー株式会社 作業車両
DE102017217728B4 (de) * 2017-10-05 2021-10-14 Vitesco Technologies GmbH Verfahren zum Betreiben eines Abgasnachbehandlungssystems eines Dieselmotors und Abgasnachbehandlungssystem
JP2019152137A (ja) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 内燃機関の排気浄化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127496A (ja) 2007-11-21 2009-06-11 Toyota Motor Corp NOx浄化装置における診断方法および診断装置
WO2009150752A1 (ja) * 2008-06-11 2009-12-17 トヨタ自動車株式会社 NOx触媒の異常診断装置及び異常診断方法
JP2009293513A (ja) 2008-06-05 2009-12-17 Nippon Soken Inc 内燃機関の排気浄化装置
JP2010053807A (ja) 2008-08-29 2010-03-11 Bosch Corp 還元剤供給制御装置及び内燃機関の排気浄化装置
JP2010071255A (ja) 2008-09-22 2010-04-02 Nippon Soken Inc 内燃機関の排気浄化制御装置及び排気浄化システム
JP2011202639A (ja) 2010-03-26 2011-10-13 Toyota Motor Corp 内燃機関の排気浄化システムの故障検出装置
JP2011226293A (ja) * 2010-04-15 2011-11-10 Toyota Motor Corp 排気浄化装置の故障検出装置
JP2012031826A (ja) * 2010-08-02 2012-02-16 Toyota Motor Corp 排気浄化装置の異常検出システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418816B2 (en) * 2005-09-01 2008-09-02 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP5146547B2 (ja) * 2009-01-13 2013-02-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR101091627B1 (ko) * 2009-08-31 2011-12-08 기아자동차주식회사 배기 시스템
US8726723B2 (en) * 2010-02-23 2014-05-20 Cummins Emission Solutions Detection of aftertreatment catalyst degradation
CN102782274B (zh) * 2010-03-18 2015-05-13 丰田自动车株式会社 内燃机的排气净化装置
DE102010055642B4 (de) * 2010-11-08 2013-11-21 Volkswagen Ag Verfahren und Steuergerät zur Dosierung eines Reduktionsmittelträgers stromauf eines SCR-Katalysators
JP2013170570A (ja) 2012-02-23 2013-09-02 Toyota Motor Corp 排気浄化装置の異常検出システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127496A (ja) 2007-11-21 2009-06-11 Toyota Motor Corp NOx浄化装置における診断方法および診断装置
JP2009293513A (ja) 2008-06-05 2009-12-17 Nippon Soken Inc 内燃機関の排気浄化装置
WO2009150752A1 (ja) * 2008-06-11 2009-12-17 トヨタ自動車株式会社 NOx触媒の異常診断装置及び異常診断方法
JP2010053807A (ja) 2008-08-29 2010-03-11 Bosch Corp 還元剤供給制御装置及び内燃機関の排気浄化装置
JP2010071255A (ja) 2008-09-22 2010-04-02 Nippon Soken Inc 内燃機関の排気浄化制御装置及び排気浄化システム
JP2011202639A (ja) 2010-03-26 2011-10-13 Toyota Motor Corp 内燃機関の排気浄化システムの故障検出装置
JP2011226293A (ja) * 2010-04-15 2011-11-10 Toyota Motor Corp 排気浄化装置の故障検出装置
JP2012031826A (ja) * 2010-08-02 2012-02-16 Toyota Motor Corp 排気浄化装置の異常検出システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868883A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947289A1 (en) * 2014-05-23 2015-11-25 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus for exhaust gas purification apparatus

Also Published As

Publication number Publication date
JP5880705B2 (ja) 2016-03-09
CN104411933A (zh) 2015-03-11
US9670812B2 (en) 2017-06-06
US20150143801A1 (en) 2015-05-28
EP2868883A4 (en) 2015-07-22
EP2868883A1 (en) 2015-05-06
CN104411933B (zh) 2016-12-28
JPWO2013190698A1 (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5880705B2 (ja) 排気浄化装置の劣化検出システム
JP5907286B2 (ja) 排気浄化装置の故障診断装置
JP4665923B2 (ja) 触媒劣化判定装置
JP4840703B2 (ja) 排気浄化システムの異常診断装置
JP4726926B2 (ja) 内燃機関の排気浄化装置
JP6087866B2 (ja) 排気浄化装置の異常診断装置
WO2010079621A1 (ja) 触媒通過成分判定装置および内燃機関の排気浄化装置
JP2010031731A (ja) 内燃機関の排気浄化装置
JP5850166B2 (ja) 内燃機関の排気浄化システム
JP6149940B2 (ja) 内燃機関の排気浄化装置
JP6020372B2 (ja) 排気浄化装置の異常診断装置
WO2013179393A1 (ja) 内燃機関の排気浄化装置
JP2013170570A (ja) 排気浄化装置の異常検出システム
JP2015197086A (ja) 選択還元型触媒の劣化判定装置
JP5892047B2 (ja) Scrシステムの劣化診断装置
US10519840B2 (en) Abnormality diagnosis system for exhaust gas purification apparatus
JP2015014213A (ja) 選択還元型触媒の劣化検出装置
JP2013253540A (ja) 内燃機関の排気浄化システム
JP2013181465A (ja) 排気浄化装置の異常検出システム
JP2013221487A (ja) 内燃機関の排気浄化システム
JP2018112089A (ja) 還元剤添加弁の異常診断装置
JP2018071490A (ja) 選択還元型触媒の劣化診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012879225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14409729

Country of ref document: US