WO2013179960A1 - 光学的に等方性の液晶媒体及び光素子 - Google Patents
光学的に等方性の液晶媒体及び光素子 Download PDFInfo
- Publication number
- WO2013179960A1 WO2013179960A1 PCT/JP2013/064169 JP2013064169W WO2013179960A1 WO 2013179960 A1 WO2013179960 A1 WO 2013179960A1 JP 2013064169 W JP2013064169 W JP 2013064169W WO 2013179960 A1 WO2013179960 A1 WO 2013179960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- replaced
- alkyl
- carbons
- component
- Prior art date
Links
- 0 CCCC(CC)(*c(c(I)cc(C(CC)(CC)*c(c(I)cc(C1OCC(*)CO1)c1)c1I)c1)c1I)C(CC)(CC)c1cc(*)c(*C(C)(CC)c2cc(I)c(*)c(I)c2)c(*)c1 Chemical compound CCCC(CC)(*c(c(I)cc(C(CC)(CC)*c(c(I)cc(C1OCC(*)CO1)c1)c1I)c1)c1I)C(CC)(CC)c1cc(*)c(*C(C)(CC)c2cc(I)c(*)c(I)c2)c(*)c1 0.000 description 10
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/542—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3402—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3441—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
- C09K19/3444—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing one nitrogen atom, e.g. pyridine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3441—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
- C09K19/345—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
- C09K19/3458—Uncondensed pyrimidines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/58—Dopants or charge transfer agents
- C09K19/586—Optically active dopants; chiral dopants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/58—Dopants or charge transfer agents
- C09K19/586—Optically active dopants; chiral dopants
- C09K19/588—Heterocyclic compounds
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133365—Cells in which the active layer comprises a liquid crystalline polymer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1396—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K2019/0444—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
- C09K2019/0448—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K2019/0444—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
- C09K2019/0466—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3402—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
- C09K2019/3422—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
Definitions
- the present invention relates to a liquid crystal medium useful as a material for an optical element.
- the present invention relates to a liquid crystal medium having a wide liquid crystal phase temperature range, a large dielectric anisotropy, and a refractive index anisotropy.
- the present invention relates to an optical element using the liquid crystal medium. More specifically, the present invention relates to a liquid crystal medium that can be used in a wide temperature range, can be driven at a low voltage, and can obtain a high-speed electro-optical response, and an optical element using the same.
- Liquid crystal display elements using a liquid crystal composition are widely used in displays such as watches, calculators, word processors and the like. These liquid crystal display elements utilize the refractive index anisotropy and dielectric anisotropy of liquid crystal compounds.
- PC phase change
- TN twisted nematic
- STN super twisted nematic
- BTN Battery twisted nematic
- ECB mainly using one or more polarizing plates
- ECB Known are electrically controlled birefringence (OCB), optically compensated bend (OCB), in-plane switching (IPS), and vertical alignment (VA).
- OCB electrically controlled birefringence
- OCB optically compensated bend
- IPS in-plane switching
- VA vertical alignment
- a mode in which an electric field is applied in an optically isotropic liquid crystal phase to develop electric birefringence has been actively studied (Patent Documents 1 to 16, Non-Patent Documents 1 to 3).
- wavelength tunable filters, wavefront control elements, liquid crystal lenses, aberration correction elements, aperture control elements, optical head devices, etc. that utilize electric birefringence in the blue phase, which is one of the optically isotropic liquid crystal phases, have been proposed.
- Patent Documents 10 to 12 The classification based on the element driving method is PM (passive matrix) and AM (active matrix). PM (passive matrix) is classified into static and multiplex, and AM is classified into TFT (thin film transistor) and MIM (metal insulator metal).
- liquid crystal display elements contain a liquid crystal composition having appropriate physical properties.
- the liquid crystal composition preferably has appropriate physical properties.
- General physical properties necessary for the liquid crystal compound which is a component of the liquid crystal composition are as follows. (1) being chemically stable and physically stable; (2) having a high clearing point (liquid crystal phase-isotropic phase transition temperature); (3) The lower limit temperature of the liquid crystal phase (such as an optically isotropic liquid crystal phase such as a nematic phase, a cholesteric phase, a smectic phase, or a blue phase) is low.
- liquid crystal composition containing a chemically and physically stable liquid crystal compound as in (1) When a liquid crystal composition containing a chemically and physically stable liquid crystal compound as in (1) is used for a liquid crystal display element, the voltage holding ratio can be increased.
- the temperature range of a nematic phase or an optically isotropic liquid crystal phase is set. It can be expanded and used as a display element in a wide temperature range.
- the liquid crystal compound is generally used as a liquid crystal composition prepared by mixing with many other liquid crystal compounds in order to develop characteristics that are difficult to be exhibited by a single compound.
- the liquid crystal compound used in the liquid crystal display element preferably has good compatibility with other liquid crystal compounds and the like as in (4).
- the liquid crystal display elements that have particularly higher display performance, such as contrast, display capacity, and response time characteristics.
- a liquid crystal composition having a low driving voltage is required for the liquid crystal material used.
- the first object of the present invention is to provide a liquid crystal medium having stability against heat, light, etc., a wide liquid crystal phase temperature range, extremely large dielectric anisotropy, and having an optically isotropic liquid crystal phase. That is.
- the second object is to provide various optical elements that contain this liquid crystal medium, can be used in a wide temperature range, have a short response time, a large contrast ratio, and a low driving voltage.
- the present invention provides the following liquid crystal medium (liquid crystal composition or polymer / liquid crystal composite), a mixture, an optical element containing the liquid crystal medium, and the like.
- Optically isotropic containing an achiral component T and a chiral agent, and containing at least one compound selected from the group of compounds represented by formula (1) as the first component of the achiral component T Liquid crystal composition that exhibits a liquid crystalline phase.
- R 1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO—, or —OCO—.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 -CH 2 - in the alkyl
- L 1, L 2, L 3, L 4, L 5, L 6, L 7 and L 8 are each independently hydrogen or fluorine;
- Z 1 , Z 2 and Z 3 are each independently a single bond, —COO—, or —CF 2 O—, and at least one is —C
- the first component of the achiral component T is represented by the following formulas (1-1-1), (1-1-2), (1-2-1) to (1-2-5), (1-3- 1) at least one compound selected from the group of compounds represented by (1-3-2), (1-4-1), (1-4-2) and (1-5-1)
- R 1A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
- Z 1 and Z 2 are each independently a single bond, —COO— or —CF 2 O—, but at least one is —COO—;
- X 1A is fluorine, chlorine, —CF 3 or —OCF 3 .
- the first component of the achiral component T contains at least one compound selected from the group of compounds represented by formulas (1-2-2-1) and (1-2-5-1) [ The liquid crystal composition according to 1].
- R 1A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Yes;
- X 1A is fluorine, chlorine, or —CF 3 .
- R 1A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
- X 1A is fluorine, chlorine, —CF 3 or —OCF 3 .
- R 2 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO—, or —OCO—.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 -CH 2 - in the alkyl
- At least one —CH 2 — in the alkylene may be replaced by —O—, —COO— or —CF 2 O—;
- L 21 , L 22 and L 23 are independently , Hydrogen or hydrogen It is a hydrogen;
- X 2 is fluorine, chlorine, -CF 3 or -OCF 3,;
- n21, n22, n23, n24, and n25 are independently 0 or 1, is 2 ⁇ n21 + n22 + n23 + n24 + n25 ⁇ 3 .
- the second component of the achiral component T is represented by the formulas (2-1-1-2), (2-1-2-1), (2-1-3-1), (2-1-3- 2)
- the liquid crystal composition according to [6] which contains at least one compound selected from the group of compounds represented by (2-1-4-2) and (2-1-4-3).
- R 2A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Yes;
- (F) is independently hydrogen or fluorine;
- X 2A is fluorine, chlorine, —CF 3 , or —OCF 3 .
- the second component of the achiral component T contains at least one compound selected from the group of compounds represented by formula (2-1-1-2) according to claim 7 in [7] The liquid crystal composition described.
- the second component of the achiral component T contains at least one compound selected from the group of compounds represented by formula (2-1-4-3) according to claim 7 in [7] The liquid crystal composition described.
- the second component of the achiral component T is at least one compound selected from the group of compounds represented by formula (2-1-1-2) according to [7], and [7] [7]
- R 3 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, or —OCO—. And at least one —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—.
- R 3 is linear, and in Formulas (3-2) and (3-3) according to Claim 13, R 3A is linear. 12] or [13].
- the third component of the achiral component T is at least one compound selected from the group of compounds represented by formulas (3-2A) and (3-2C) [13] or [14] Liquid crystal composition.
- the proportion of the first component of the achiral component T is in the range of 30 wt% to 70 wt%, and the proportion of the second component is in the range of 10 wt% to 50 wt%.
- R 4 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
- Ring B is independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5-difluoro-1 , 4-phenylene, 3,5-dichloro-1,4-phenylene, or pyrimidine-2,5-diyl;
- Z 41 is independently a single bond, ethylene, —COO—, —OCO—, —CF 2 O—, or —OCF 2 —;
- L 48 and L 49 are independently hydrogen or fluorine;
- X 4 is fluorine, chlorine, —CF 3 or —OCF 3 ;
- n41 is 1 2, 3 Or 4, provided that when n41 is 3 or 4, one of Z 41 is -CF 2 O- or -OCF 2 - and is, if n41 is 3, all of the B ring is substituted with fluorine It cannot be 1,4-phenylene.
- R 5 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO—, or —OCO—.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 -CH 2 - in the alkyl
- (F) are each independently hydrogen or fluorine;
- X 5 is hydrogen, halogen, alkyl of -SF 5 or 1 to 10 carbon atoms, In this alkyl, at least one —CH 2 — may be replaced by —O—, —S—, —
- —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C— May be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, and in the alkyl, at least one —CH 2 — in the alkyl is —O—, —S In a group replaced by —, —COO—, or —OCO—, or at least one —CH 2 —CH 2 — in the alkyl is —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ .
- groups replaced by C- At least one hydrogen of may be replaced by fluorine, but in X 5 , —O— and —CH ⁇ CH— and —CO— and —CH ⁇ CH— are not adjacent to each other.
- R 6A and R 6B are independently an alkyl having 1 to 12 carbons, an alkoxy having 1 to 12 carbons, an alkenyl having 2 to 12 carbons, or a carbon number in which at least one hydrogen is replaced by fluorine.
- Ring C and Ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4- Phenylene or 2,5-difluoro-1,4-phenylene;
- Z 61 is independently a single bond, ethylene, —COO—, or —OCO—;
- r is 1, 2, or 3 .
- R 7 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO—, or —OCO—.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, and in the alkyl, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 in the alkyl 2 -
- R 7A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
- L 72 , L 74 , L 75 and L 76 are independently hydrogen or fluorine
- Z 71 and Z 72 are each independently a single bond or —CF 2 O—, but at least one Is —CF 2 O—
- X 7A is fluorine, chlorine, —CF 3 or —OCF 3 .
- the ratio of the first component of the achiral component T to the total weight of the achiral component T is in the range of 5 to 30% by weight, and the ratio of the seventh component of the achiral component T is 30 to 70% by weight.
- MK is an integer of 1 to 4.
- the chiral agent is at least one compound selected from the group of compounds represented by formulas (K4-1) to (K4-6) and (K5-1) to (K5-3). 29].
- R K is independently alkyl having 3 to 10 carbons or alkoxy having 3 to 10 carbons, and at least one —CH 2 — in the alkyl or alkoxy is replaced with —CH ⁇ CH—. Although —O— and —C ⁇ C— are not adjacent.
- the chiral nematic phase is exhibited at any temperature of 70 to ⁇ 20 ° C., and the helical pitch is 700 nm or less in at least a part of this temperature range, according to any one of [1] to [30] Liquid crystal composition.
- liquid crystal composition according to any one of [1] to [31], comprising at least one antioxidant and / or ultraviolet absorber.
- a mixture comprising the liquid crystal composition according to any one of [1] to [32] and a polymerizable monomer.
- An optical element comprising an electrode disposed on one or both surfaces, a liquid crystal medium disposed between the substrates, and an electric field applying means for applying an electric field to the liquid crystal medium via the electrode,
- An optical device comprising the liquid crystal composition according to any one of [1] to [32] or the polymer / liquid crystal composite material according to [34] or [35].
- An electrode is disposed on one or both surfaces, and at least one of the substrates has a pair of transparent substrates, a liquid crystal medium disposed between the substrates, and a polarizing plate disposed on the outside of the substrate.
- An optical element comprising an electric field applying means for applying an electric field to the liquid crystal medium, wherein the liquid crystal medium is the liquid crystal composition according to any one of [1] to [32] or [34] or [35]
- each pixel includes an active element, and the active element is a thin film transistor (TFT).
- TFT thin film transistor
- each pixel includes an active element, and the active element is a thin film transistor (TFT).
- TFT thin film transistor
- the liquid crystal compound represents a compound having a mesogen and is not limited to a compound having a liquid crystal phase.
- the liquid crystal medium is a general term for a liquid crystal composition and a polymer / liquid crystal composite.
- the optical element refers to various elements that perform functions such as light modulation and optical switching by utilizing the electro-optic effect.
- display elements liquid crystal display elements
- optical communication systems optical information processing
- various types a light modulation element used in the sensor system.
- the Kerr effect is known for light modulation using a change in refractive index caused by voltage application to an optically isotropic liquid crystal medium.
- the electric birefringence value is a refractive index anisotropy value induced when an electric field is applied to the isotropic medium.
- a liquid crystal compound is a generic term for a compound having a liquid crystal phase such as a nematic phase or a smectic phase and a compound having no liquid crystal phase but useful as a component of a liquid crystal composition.
- the chiral agent is an optically active compound and is added to give a desired twisted molecular arrangement to the liquid crystal composition.
- a liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module.
- a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element may be abbreviated as a compound, a composition, and an element, respectively.
- the upper limit temperature of the liquid crystal phase is the phase transition temperature of the liquid crystal phase-isotropic phase, and may simply be abbreviated as the clearing point or the upper limit temperature.
- the lower limit temperature of the liquid crystal phase may be simply abbreviated as the lower limit temperature.
- the compound represented by formula (1) may be abbreviated as compound (1). This abbreviation may also apply to compounds represented by formula (2) and the like.
- symbols such as A 1 , B, and C surrounded by hexagons correspond to ring A 1 , ring B, and ring C, respectively.
- the amount of the compound expressed as a percentage is a weight percentage (% by weight) based on the total weight of the composition.
- a plurality of the same symbols such as rings A 1 , Y 1 and B are described in the same formula or different formulas, but these may be the same or different.
- At least one indicates that not only the position but also the number can be freely selected, but does not include the case where the number is zero.
- the expression “at least one A may be replaced by B, C or D” (which may say that “any A may be replaced by B, C or D”) is at least one A is at least one A Includes the case where at least one A is replaced by C and at least one A is replaced by D, as well as the case where a plurality of A are replaced by at least two of BD Means that.
- “at least one —CH 2 — may be replaced by —O—, and at least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—” Includes alkyl, alkenyl, alkoxy, alkoxyalkyl, alkoxyalkenyl, alkenyloxyalkyl and the like. In the present invention, it is not preferable that two consecutive —CH 2 — are replaced with —O— to give —O—O—. Further, it is not preferable that —CH 2 — at the terminal in alkyl is replaced with —O—.
- the present invention is further described below. Preferred examples of the terminal group, ring, bonding group and the like in the compound represented by the formula (1) are also described.
- the liquid crystal composition of the present invention contains a large amount of the compound of formula (1), it exhibits stability to heat, light, etc., a high upper limit temperature of an optically isotropic liquid crystal phase, and a lower lower limit temperature.
- an optical element driven with an isotropic liquid crystal phase has a low driving voltage and a large contrast ratio.
- the polymer / liquid crystal composite material of the present invention having an optically isotropic liquid crystal phase exhibits a high maximum temperature and a low minimum temperature of the optically isotropic liquid crystal phase, and is optically isotropic.
- An optical element driven in the liquid crystal phase has a low driving voltage.
- the optical element driven by the optically isotropic liquid crystal phase of the present invention has a wide usable temperature range, a short response time, a large contrast ratio, and a low driving voltage.
- the comb-shaped electrode substrate used in the Example is shown.
- the optical system used in the Example is shown.
- the liquid crystal composition having an optically isotropic liquid crystal phase of the present invention contains an achiral component T and a chiral agent, and the achiral component T contains the compound represented by the formula (1) as a first component. .
- the first aspect of the liquid crystal composition of the present invention is a composition containing a first component and other components not particularly indicated in the present specification.
- R 1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, or —OCO.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, in the alkyl, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 in the alkyl 2 -
- L 1, L 2, L 3, L 4, L 5, L 6, L 7 and L 8 are each independently hydrogen or fluorine Z 1 Z 2 and Z 3 are each independently a single bond or —COO—, —CF 2 O—, at least one is
- At least one -CH 2 in the - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 -CH 2 - in the alkyl can At least one hydrogen in the group replaced with —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C— may be replaced with fluorine, and in X 1 —O— and —CH ⁇ CH— And —CO— and —CH ⁇ CH— are not adjacent to each other.
- —CH ⁇ CH— in alkenyl depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17, -C 9 H 19 , -C 10 H 21, -C 11 H 23, -C 12 H 25, -C 13 H 27, -C 14 H 29, and -C are 15 H 31.
- alkoxy examples include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 and —OC 7 H 15 , —OC 8 H 17, -OC 9 H 19 , -OC 10 H 21, -OC 11 H 23, -OC 12 H 25, -OC 13 H 27, and an -OC 14 H 29.
- alkoxyalkyl examples include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 —OC 2. H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 , and — (CH 2 ) 5 —OCH 3 .
- alkenyl examples include —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH 2 CH ⁇ CH 2 , —CH ⁇ CHC 2 H 5 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2.
- alkenyloxy are —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H 5 .
- alkynyl examples include —C ⁇ CH, —C ⁇ CCH 3 , —CH 2 C ⁇ CH, —C ⁇ CC 2 H 5 , —CH 2 C ⁇ CCH 3 , — (CH 2 ) 2 —C ⁇ CH, —C ⁇ CC 3 H 7 , —CH 2 C ⁇ CC 2 H 5 , — (CH 2 ) 2 —C ⁇ CCH 3 , and —C ⁇ C (CH 2 ) 5 .
- X 1 is hydrogen, halogen, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —COO—.
- At least one —CH 2 —CH 2 — may be replaced with —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, and in the alkyl, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, at least one -CH 2 -CH in the alkyl
- alkyl in which at least one hydrogen is replaced by fluorine include —CHF 2 , —CF 3 , —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , and —CHFCF 2 CF 3 .
- alkoxy in which at least one hydrogen is replaced by fluorine include —OCHF 2 , —OCF 3 , —OCF 2 CH 2 F, —OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CF 2 ) 3 -F, -OCF 2 CHFCF 3 , and -OCHFCF 2 CF 3 .
- preferred X 1 are fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 . More preferred examples of X 1 are fluorine, chlorine, —CF 3 and —OCF 3 .
- X 1 is chlorine or fluorine, the melting point is low and the compatibility with other liquid crystal compounds is particularly excellent.
- X 1 is —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 , the dielectric constant anisotropy is particularly large.
- R 1A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is fluorine.
- L 2 , L 4 , L 5 , L 6 , L 7 and L 8 are independently hydrogen or fluorine;
- Z 1 , Z 2 and Z 3 Each independently represents a single bond, —COO— or —CF 2 O—, but at least one is —COO—;
- X 1A is fluorine, chlorine, —CF 3 or —OCF 3 .
- R 1A , Z 1 , Z 2 and X 1A are the same as described above. More preferred compounds in the above formula are (1-2-2-1), (1-2-5-1) and (1-2-6-1). Either of these enables the composition of the present application to have a high clearing point, but (1-2-2-1) and (1-2-5-1) have a high effect of lowering the driving voltage. 6-1) has a higher effect of raising the clearing point, while the response time is relatively fast.
- R 1A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Yes; X 1A is fluorine, chlorine, or —CF 3 .
- the compound (1) used in the present invention will be described in more detail.
- the compound (1) is a liquid crystal compound having a dioxane ring and having at least one —COO— linking group.
- This compound is extremely physically and chemically stable under the conditions in which the device is normally used, and has a relatively good compatibility with other liquid crystal compounds despite its high clearing point.
- a composition containing this compound is stable under conditions in which the device is normally used. Therefore, the temperature range of the optically isotropic liquid crystal phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range.
- this compound is useful as a component for lowering the driving voltage of a composition driven in an optically isotropic liquid crystal phase. That is, the compound of the formula (1) has an excellent feature of increasing the clearing point and decreasing the driving voltage. In addition, it exhibits extremely large dielectric anisotropy.
- X 1 When the right terminal group X 1 is fluorine, chlorine, —SF 5 , —CF 3 , —OCF 3 , or —CH ⁇ CH—CF 3 , the dielectric anisotropy is large. When X 1 is fluorine, —CF 3 , or —OCF 3 , it is chemically stable.
- Compound (1) can be synthesized by appropriately combining techniques in organic synthetic chemistry. Methods for introducing the desired end groups, rings and linking groups into the starting materials are as follows: Organic Syntheses (John Wiley & Sons, Inc), Organic Reactions (Organic Reactions, John Wiley & Sons, Inc), Complement. It is described in Shibu Organic Synthesis (Pergamon Press), New Experimental Chemistry Course (Maruzen), etc.
- the content thereof may be 10 to 85% by weight based on the total weight of the component T. It is preferably 30 to 80% by weight, more preferably 40 to 80% by weight. If it is this range, low temperature compatibility will also become favorable.
- the content of the compound in which at least one of Z 1 , Z 2 and Z 3 is —COO— may be 1 to 85% by weight with respect to the total content of the component T, preferably 3 to It is 60% by weight, more preferably 5 to 50% by weight, particularly preferably 5 to 40% by weight.
- the compound (1) used in the present invention may be one type or two or more types.
- a second aspect of the liquid crystal composition of the present invention is a composition containing a second component and a first component of an achiral component T comprising at least one compound selected from the group of compounds represented by formula (2). It is a thing.
- the compound represented by formula (2) will be described.
- R 2 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, or —OCO.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, in the alkyl, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 in the alkyl 2 -
- R 2 is preferably alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
- Ring A 21 , Ring A 22 , Ring A 23 , Ring A 24 , and Ring A 25 are composed of 1,4-phenylene, one or two hydrogen atoms in consideration of the stability of the compound and the dielectric anisotropy. 1,4-phenylene substituted with is preferred.
- Z 21 , Z 22 , Z 23 , Z 24 , Z 25 and Z 26 are each independently a single bond or alkylene having 1 to 4 carbon atoms, and at least one —CH 2 — in the alkylene is —O It may be replaced by —, —COO—, or —CF 2 O—.
- X 2 is fluorine, chlorine, —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 , —OCH 2 F, —OCF 2 CFHCF 3 or —CH ⁇ CHCF 3 . More preferred are fluorine, chlorine, —CF 3 and —OCF 3 .
- R 2A in Formula (2) is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is replaced with fluorine
- Z 21 to Z 26 is the same as in the above formula (2)
- X 2A is fluorine, chlorine, —CF 3 and —OCF 3 , N2-1, n23, n24 and n25 in 2-1) are independently 0 or 1 n22 + n23 + n24 + n25 is an integer of 1 to 2, and (F) independently represents hydrogen or fluorine.
- Preferred in the formula (2-1) are structures represented by the formulas (2-1-1) to (2-1-5).
- the definitions of R 2A , Z 21 to Z 26 , X2A and (F) are the same as described above.
- formulas (2-1-1) to (2-1-5) more preferably, the following formulas (2-1-1-1) to (2-1-1-3), (2-1) -2-1) to (2-1-2-3), (2-1-3-1) to (2-1-3-3), (2-1-4-1) to (2-1) -4-3) and (2-1-5-1) to (2-1-5-3).
- formulas (2-1-1-1), (2-1-1-2), formulas (2-1-2-1), (2-1-2-2), formula (2) -1-3-1), (2-1-3-2), (2-1-4-2), (2-1-4-3) and (2-1-5-3) More preferred is a compound.
- the definitions of R 2A , (F), and X 2A are the same as those in the above formulas (2-1-1) to (2-1-5).
- Compound (2-1) is a liquid crystal compound having a chlorobenzene ring. This compound is extremely physically and chemically stable under the conditions under which the device is normally used, and has good compatibility with other liquid crystal compounds. Furthermore, it is difficult to develop a smectic phase. A composition containing this compound is stable under conditions in which the device is normally used. Accordingly, the temperature range of the cholesteric phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range. Further, since this compound has a large dielectric anisotropy and refractive index anisotropy, it is useful as a component for increasing the reflectance in order to lower the driving voltage of the composition driven in the cholesteric phase.
- a combination of n22 to n25 of the compound (2-1) and the left terminal group R 2A , a group on the rightmost benzene ring and its substitution position ((F) and X 2A ), or a linking group Z 22 to Z 26 It is possible to arbitrarily adjust physical properties such as clearing point, refractive index anisotropy and dielectric anisotropy by appropriately selecting.
- the effect of the combination of n22, n23, n24 and n25, the left terminal group R 2A , the right terminal group X 2A , the linking groups Z 21 to Z 26 and (F) on the physical properties of the compound (2-1) is as follows: Explained.
- R 2A is alkenyl
- the preferred configuration depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- cis configuration in the alkenyl having an even position to the double bond, such as -CH 2 CH CHC 2 H 5
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- the bonding groups Z 21 to Z 26 are a single bond or —CF 2 O—, they are chemically relatively stable and relatively difficult to deteriorate. Further, when the bonding group is a single bond, the viscosity is small. Further, when the bonding group is —CF 2 O—, the dielectric anisotropy is large.
- the right terminal group X 2A is fluorine, chlorine or —OCF 3 , the compatibility with other liquid crystal compounds at low temperatures is excellent, and when it is —CF 3, the driving voltage reduction effect is great.
- a compound having desired physical properties can be obtained by appropriately selecting the kind of ring structure, terminal group, bonding group and the like.
- the content thereof is 0.5% with respect to the total weight of the component T. It may be ⁇ 70% by weight, preferably 5 to 60% by weight, more preferably 10 to 50% by weight.
- the compound (2) used in the present invention may be one type or two or more types.
- a third aspect of the liquid crystal composition of the present invention is a composition containing a third component and a first component of an achiral component T comprising at least one compound selected from the group of compounds represented by formula (3). It is a thing.
- a second component may also be contained.
- R 3 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, or —OCO—. And at least one —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—.
- —CH ⁇ CH— in alkenyl depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17, -C 9 H 19 , -C 10 H 21, -C 11 H 23, -C 12 H 25, -C 13 H 27, -C 14 H 29, and -C are 15 H 31.
- alkoxy examples include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 and —OC 7 H 15 , —OC 8 H 17, -OC 9 H 19 , -OC 10 H 21, -OC 11 H 23, -OC 12 H 25, -OC 13 H 27, and an -OC 14 H 29.
- alkoxyalkyl examples include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 —OC 2. H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 , and — (CH 2 ) 5 —OCH 3 .
- alkenyl examples include —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH 2 CH ⁇ CH 2 , —CH ⁇ CHC 2 H 5 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2.
- alkenyloxy are —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H 5 .
- alkynyl examples include —C ⁇ CH, —C ⁇ CCH 3 , —CH 2 C ⁇ CH, —C ⁇ CC 2 H 5 , —CH 2 C ⁇ CCH 3 , — (CH 2 ) 2 —C ⁇ . CH, —C ⁇ CC 3 H 7 , —CH 2 C ⁇ CC 2 H 5 , — (CH 2 ) 2 —C ⁇ CCH 3 , and —C ⁇ C (CH 2 ) 5 .
- Z 31 , Z 32 and Z 33 are each independently a single bond, —COO— or —CF 2 O—, but at least one is —CF 2 O—,
- Z 31 , Z 32 and Z 33 are a single bond and —CF 2 O—.
- L 31 , L 32 , L 33 , L 34 and L 35 are independently hydrogen or fluorine.
- Z 32 is —COO— or —CF 2 O—
- L 32 , L 34 and L 35 are preferably fluorine
- Z 33 is —COO— or —CF 2 O—
- L 33 , L 34 and L 35 are preferably fluorine.
- X 3 is hydrogen, halogen, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —COO—. Or —OCO—, wherein at least one —CH 2 —CH 2 — in the alkyl is replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—.
- At least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO—, or —OCO—, or at least one in the alkyl
- At least one hydrogen in the group in which —CH 2 —CH 2 — is replaced with —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C— may be replaced with fluorine.
- alkyl in which at least one hydrogen is replaced by halogen include —CH 2 F, —CHF 2 , —CF 3 , — (CH 2 ) 2 —F, —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , —CHFCF 2 CF 3 , — (CH 2 ) 4 -F,-(CF 2 ) 4 -F,-(CH 2 ) 5 -F, and-(CF 2 ) 5 -F.
- alkoxy in which at least one hydrogen is replaced by halogen include —OCH 2 F, —OCHF 2 , —OCF 3 , —O— (CH 2 ) 2 —F, —OCF 2 CH 2 F, — OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CH 2 ) 3 —F, —O— (CF 2 ) 3 —F, —OCF 2 CHFCF 3 , —OCHFCF 2 CF 3 , —O (CH 2 4 ) -F, —O— (CF 2 ) 4 —F, —O— (CH 2 ) 5 —F, and —O— (CF 2 ) 5 —F.
- Preferred examples of X 3 are fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 , and —OCHF 2 .
- the most preferred examples of X 3 are fluorine, chlorine, —CF 3 and —OCF 3 .
- R 3A is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon 2 having at least one hydrogen replaced with fluorine.
- -12 alkenyl, X 3A is fluorine, chlorine, —CF 3 , —OCF 3 , and L 31 to L 35 are independently hydrogen or fluorine.
- Compound (3) used in the present invention is a compound having four benzene rings and having at least one —CF 2 O— linking group.
- This compound is extremely physically and chemically stable under the conditions under which the device is normally used, and has good compatibility with other liquid crystal compounds.
- a composition containing this compound is stable under conditions in which the device is normally used. Accordingly, the temperature range of the cholesteric phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range.
- this compound has large dielectric anisotropy and refractive index anisotropy, it is useful as a component for lowering the driving voltage of a composition driven in the cholesteric phase and for increasing the reflectance.
- the left terminal group R 3 of the compound (3) By appropriately selecting the left terminal group R 3 of the compound (3), the groups on the benzene ring (L 31 to L 35 and X 3 ), or the linking groups Z 31 to Z 33 , the clearing point, the refractive index anisotropic It is possible to arbitrarily adjust physical properties such as property and dielectric anisotropy.
- the effect of the left terminal group R 3 , the group on the benzene ring (L 31 to L 35 and X 3 ), or the type of the linking group Z 31 to Z 33 on the physical properties of the compound (3) will be described below.
- R 3 is alkenyl
- the preferred configuration of —CH ⁇ CH— in alkenyl depends on the position of the double bond.
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- cis configuration in the alkenyl having an even position to the double bond, such as -CH 2 CH CHC 2 H 5
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- the bonding groups Z 31 , Z 32 and Z 33 are a single bond or —CF 2 O—, the viscosity is small.
- the bonding group is Z 31 , Z 32 and Z 33 is —CF 2 O—, the dielectric anisotropy is large.
- Z 31 , Z 32 and Z 33 are a single bond or —CF 2 O—, they are chemically relatively stable and are hardly deteriorated.
- X 3 When the right terminal group X 3 is fluorine, chlorine, —SF 5 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 or —OCH 2 F, the dielectric anisotropy is large. . When X 3 is fluorine, —OCF 3 , or —CF 3 , it is chemically stable.
- a compound having desired physical properties can be obtained by appropriately selecting the type of terminal group, bonding group, and the like.
- Compound (3) Preferred examples of the compound (3) are the formulas (3-1) to (3-3). More preferable examples include formulas (3-2A) to (3-2H) and (3-3A) to (3-3D). Further preferred examples include formulas (3-2A) to (3-2D), (3-3A), and (3-3B). Most preferred examples include the formulas (3-2A), (3-2C), and (3-3A).
- R 3A is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon 2 having at least one hydrogen replaced with fluorine.
- -12 alkenyl, and X 3A is fluorine, chlorine, —CF 3 , —OCF 3 .
- the compound represented by the formula (3) has a relatively high clearing point and has a large dielectric anisotropy and a large refractive index anisotropy, its content is 0 with respect to the total weight of the component T. It may be 5 to 70% by weight, preferably 5 to 60% by weight, more preferably 10 to 50% by weight.
- the compound (3) used in the present invention may be one type or two or more types.
- a fourth aspect of the present invention is selected from the group of the compound represented by the formula (1) and the compound represented by the formula (4) and the component A comprising the compound represented by the formula (2) and (3) as an additional component.
- the composition containing the fourth component of the achiral component T comprising at least one compound prepared.
- the compound represented by formula (4) will be described.
- R 4 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
- Ring B is independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5- Difluoro-1,4-phenylene, 3,5-dichloro-1,4-phenylene, or pyrimidine-2,5-diyl;
- Z 41 is independently a single bond, ethylene, —COO—, —OCO—; , —CF 2 O—, or —OCF 2 —;
- L 23 and L 24 are independently hydrogen or fluorine;
- X 4 is fluorine, chlorine, —CF 3, or —OCF 3 ;
- the fourth component of the achiral component T is suitable for the preparation of a composition having a large dielectric anisotropy or compatibility at low temperatures.
- the preferred content of this fourth component is from about 5% to about 40% by weight, based on the total weight of component T, to increase compatibility at low temperatures.
- a more desirable ratio is in the range of approximately 5% by weight to approximately 30% by weight.
- a particularly desirable ratio is in the range of approximately 5% by weight to approximately 20% by weight.
- the compound (4) used in the present invention may be one type or two or more types.
- R 4 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Desirable R 4 is alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or for the stability to heat. Desirable R 4 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or the stability to heat.
- Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is ethyl, propyl, butyl, pentyl, or heptyl for decreasing the viscosity.
- Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
- Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity.
- the preferred configuration of —CH ⁇ CH— in these alkenyls depends on the position of the double bond.
- trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl.
- Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl.
- linear alkenyl is preferable to branching.
- alkenyl in which at least one hydrogen is replaced by fluorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, and 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl and 4,4-difluoro-3-butenyl for decreasing the viscosity.
- Alkyl does not include cyclic alkyl.
- Alkoxy does not include cyclic alkoxy.
- Alkenyl does not include cyclic alkenyl.
- Alkenyl in which at least one hydrogen is replaced with fluorine does not include cyclic alkenyl in which at least one hydrogen is replaced with fluorine.
- Ring B is independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5-difluoro-1,4. -Phenylene, 3,5-dichloro-1,4-phenylene, or pyrimidine-2,5-diyl, and when n41 is 2 or more, any two of the rings B may be the same or different. May be.
- Preferred ring B is 1,4-phenylene or 3-fluoro-1,4-phenylene for increasing the optical anisotropy, and 1,4-cyclohexylene for decreasing the viscosity.
- Z 41 is independently a single bond, ethylene, —COO—, —OCO—, —CF 2 O— or —OCF 2 —, provided that when n41 is 3 or 4, one Z 12 is —CF 2 O-. When n41 is 2 or more, any two Z 12 of which may be the same or different. Desirable Z 41 is a single bond for decreasing the viscosity. Desirable Z 41 is —CF 2 O— for increasing the dielectric anisotropy and improving the compatibility.
- L 48 and L 49 are independently hydrogen or fluorine. In order to increase the dielectric anisotropy, both L 48 and L 49 are preferably fluorine. In order to increase the clearing point, both L 48 and L 49 are hydrogen. preferable.
- X 4 is fluorine, chlorine, —CF 3 or —OCF 3 . In order to increase the dielectric anisotropy, —CF 3 is preferable, fluorine and —OCF 3 are preferable for improving compatibility, and chlorine is preferable for increasing the refractive index anisotropy.
- formulas (4-1) to (4-9) are preferred.
- R 4A is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one Hydrogen is alkenyl having 2 to 12 carbon atoms replaced by fluorine
- X 4A is fluorine, chlorine, —CF 3 , —OCF 3
- L 40 to L 49 are independently hydrogen or fluorine.
- (4-1) to (4-3) have high clearing points and excellent compatibility as a 5-ring.
- (4-4) to (4-6) have a high clearing point, a large ⁇ n
- (4-7) to (4-9) have excellent compatibility.
- L 40 to L 49 the larger the number of fluorine, the larger the dielectric anisotropy.
- a component A comprising at least one compound selected from the group of compounds represented by the formula (1) and the compounds represented by the formulas (2) and (3) as an additional component, and the formula ( 5) a liquid crystal composition containing a fifth component of the achiral component T comprising at least one compound selected from the group of compounds represented by 5) and a chiral agent.
- a fourth component may be further contained.
- the compound represented by formula (5) will be described.
- —CH ⁇ CH— in alkenyl depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17, -C 9 H 19 , -C 10 H 21, -C 11 H 23, -C 12 H 25, -C 13 H 27, -C 14 H 29, and -C are 15 H 31.
- alkoxy examples include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 and —OC 7 H 15 , —OC 8 H 17, -OC 9 H 19 , -OC 10 H 21, -OC 11 H 23, -OC 12 H 25, -OC 13 H 27, and an -OC 14 H 29.
- alkoxyalkyl examples include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 —OC 2. H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 , and — (CH 2 ) 5 —OCH 3 .
- alkenyl examples include —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH 2 CH ⁇ CH 2 , —CH ⁇ CHC 2 H 5 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2.
- alkenyloxy are —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H 5 .
- alkynyl examples include —C ⁇ CH, —C ⁇ CCH 3 , —CH 2 C ⁇ CH, —C ⁇ CC 2 H 5 , —CH 2 C ⁇ CCH 3 , — (CH 2 ) 2 —C ⁇ . CH, —C ⁇ CC 3 H 7 , —CH 2 C ⁇ CC 2 H 5 , — (CH 2 ) 2 —C ⁇ CCH 3 , and —C ⁇ C (CH 2 ) 5 .
- X 5 is hydrogen, halogen, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —COO—.
- —OCO— and at least one —CH 2 —CH 2 — may be replaced with —CH ⁇ CH—, or —C ⁇ C—, and in this alkyl, in alkyl
- at least one —CH 2 — is replaced by —O—, —S—, —COO—, or —OCO—
- at least one —CH 2 —CH 2 — is —CH ⁇ CH
- At least one hydrogen in the group replaced with —, —CF ⁇ CF— or —C ⁇ C— may be replaced with fluorine or chlorine.
- alkyl in which at least one hydrogen is replaced by fluorine include —CHF 2 , —CF 3 , —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , and —CHFCF 2 CF 3 .
- alkoxy in which at least one hydrogen is replaced by fluorine include —OCHF 2 , —OCF 3 , —OCF 2 CH 2 F, —OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CF 2 ) 3 -F, -OCF 2 CHFCF 3 , and -OCHFCF 2 CF 3 .
- preferable X 5 are fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 . More preferred examples of X 5 are fluorine, chlorine, —CF 3 and —OCF 3 .
- X 5 is chlorine, when a fluorine has a low melting point, compatibility with other liquid crystal compounds are particularly excellent.
- X 5 is —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 , the dielectric constant anisotropy is particularly large.
- formulas (5-1) to (5-4) are preferable.
- R 5A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is fluorine.
- F is independently hydrogen or fluorine;
- X 5A is fluorine, chlorine, —CF 3 or —OCF 3 ;
- R 5A and X 5A are the same as described above.
- the fifth component of the achiral component T is suitable for preparing a composition having a large dielectric anisotropy.
- the preferred content of the fifth component is about 1.0% by weight or more for increasing the clearing point and about 50% by weight or less for decreasing the minimum temperature of the liquid crystal phase, based on the total weight of the achiral component T. It is.
- a more desirable ratio is from about 1 to 25% by weight.
- a particularly preferred ratio is from about 1 to about 15% by weight.
- the compound (5) used in the present invention may be one type or two or more types.
- Compound (5) is a liquid crystal compound having a dioxane ring and three benzene rings. This compound is extremely physically and chemically stable under the conditions in which the device is normally used, and has a relatively good compatibility with other liquid crystal compounds despite its high clearing point. A composition containing this compound is stable under conditions in which the device is normally used. Therefore, the temperature range of the optically isotropic liquid crystal phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range. Furthermore, this compound is useful as a component for lowering the driving voltage of a composition driven in an optically isotropic liquid crystal phase.
- the compound (5) is a compound that easily develops a uniform blue phase.
- X 5 When the right terminal group X 5 is fluorine, chlorine, —SF 5 , —CF 3 , —OCF 3 , or —CH ⁇ CH—CF 3 , the dielectric anisotropy is large. When X 5 is fluorine, —CF 3 , or —OCF 3 , it is chemically stable.
- the fifth component of the achiral component T is easy to develop a blue phase and has the effect of increasing the clearing point.
- a sixth aspect of the liquid crystal composition of the present invention is a composition containing a sixth component and a first component of an achiral component T comprising at least one compound selected from the group of compounds represented by formula (6). It is a thing. In addition to the sixth component and the first component, the second to fifth components may also be contained.
- R 6A and R 6B are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is replaced by fluorine.
- Ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1 , 4-phenylene or 2,5-difluoro-1,4-phenylene;
- Z 61 is independently a single bond, ethylene, —COO—, or —OCO—;
- r is 1, 2, or 3.
- the sixth component of the achiral component T is a compound having a small absolute value of dielectric anisotropy and close to neutrality.
- a compound in which r is 1 in the formula (6) mainly has an effect of adjusting viscosity or refractive index anisotropy, and a compound in which r is 2 or 3 in the formula (6) has a high clearing point. This has the effect of expanding the temperature range of the optically isotropic liquid crystal phase or adjusting the refractive index anisotropy value.
- the content of the sixth component of the achiral component T is 1% to 40% by weight, preferably 1% to 20% by weight, based on the total weight of the achiral component T.
- the compound (6) used in the present invention may be one type or two or more types.
- R 6A and R 6B are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. is there.
- Desirable R 6A and R 6B are alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or the stability to heat. is there.
- Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is ethyl, propyl, butyl, pentyl, or heptyl for decreasing the viscosity.
- Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
- —CH ⁇ CH— in alkenyl depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- alkenyl in which at least one hydrogen is replaced by fluorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, and 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl and 4,4-difluoro-3-butenyl for decreasing the viscosity.
- Ring C and Ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene or 2,5-difluoro- When it is 1,4-phenylene and r is 2 or more, any two of the rings C may be the same or different.
- Preferred ring C and ring D are 1,4-phenylene or 3-fluoro-1,4-phenylene for increasing the optical anisotropy, and 1,4-cyclohexylene for decreasing the viscosity.
- Z 61 is independently a single bond, ethylene, —COO—, or —OCO—, and when r is 2 or more, any two of Z 13 may be the same or different. . Desirable Z 61 is a single bond for decreasing the viscosity.
- formulas (6-1) to (6-13) are preferred.
- R 6A and R 6B are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or C2-C12 alkenyl in which at least one hydrogen is replaced by fluorine.
- (6-1) to (6-3) have a low viscosity
- (6-4) to (6-8) have a high clearing point
- (6-9) to (6-13) have a very high clearing point. .
- a seventh aspect of the liquid crystal composition of the present invention is a composition containing the seventh component and the first component of the achiral component T comprising at least one compound selected from the group of compounds represented by formula (7). It is a thing. In addition to the seventh component and the first component, second to sixth components may also be contained.
- R 7 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, or —OCO.
- At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C—, in the alkyl, at least one -CH 2 in the alkyl - is, -O -, - S -, - COO-, or a replaced group by -OCO-, or at least one -CH 2 in the alkyl 2 -
- L 71, L 72, L 73, L 74, L 75 and L 76 are independently hydrogen or fluorine;
- Z 71 and Z 72 Each independently is a single bond or —CF 2 O—, but at least one is —CF 2
- —CH ⁇ CH— in alkenyl depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
- the trans configuration is preferable.
- -CH 2 CH CHCH 3
- An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
- Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
- alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17, -C 9 H 19 , -C 10 H 21, -C 11 H 23, -C 12 H 25, -C 13 H 27, -C 14 H 29, and -C are 15 H 31.
- alkoxy examples include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 and —OC 7 H 15 , —OC 8 H 17, -OC 9 H 19 , -OC 10 H 21, -OC 11 H 23, -OC 12 H 25, -OC 13 H 27, and an -OC 14 H 29.
- alkoxyalkyl examples include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 —OC 2. H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 , and — (CH 2 ) 5 —OCH 3 .
- alkenyl examples include —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH 2 CH ⁇ CH 2 , —CH ⁇ CHC 2 H 5 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2.
- alkenyloxy are —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H 5 .
- alkynyl examples include —C ⁇ CH, —C ⁇ CCH 3 , —CH 2 C ⁇ CH, —C ⁇ CC 2 H 5 , —CH 2 C ⁇ CCH 3 , — (CH 2 ) 2 —C ⁇ CH, —C ⁇ CC 3 H 7 , —CH 2 C ⁇ CC 2 H 5 , — (CH 2 ) 2 —C ⁇ CCH 3 , and —C ⁇ C (CH 2 ) 5 .
- X 7 is hydrogen, halogen, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —COO—.
- At least one —CH 2 —CH 2 — may be replaced with —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, and
- alkyl in a group in which at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO—, —OCO—, or at least one —CH 2 —CH 2 —
- alkyl in which at least one hydrogen is replaced by fluorine include —CHF 2 , —CF 3 , —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , and —CHFCF 2 CF 3 .
- alkoxy in which at least one hydrogen is replaced by fluorine include —OCHF 2 , —OCF 3 , —OCF 2 CH 2 F, —OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CF 2 ) 3 -F, -OCF 2 CHFCF 3 , and -OCHFCF 2 CF 3 .
- preferable X 7 are fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 . More preferred examples of X 1 are fluorine, chlorine, —CF 3 and —OCF 3 .
- X 7 is chlorine or fluorine, the melting point is low and the compatibility with other liquid crystal compounds is particularly excellent.
- X 7 is —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 , the dielectric constant anisotropy is particularly large.
- formulas (7-1) to (7-3) are preferable.
- R 7A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is fluorine.
- L 72 , L 74 , L 75 and L 76 are independently hydrogen or fluorine;
- Z 71 and Z 72 are each independently a single bond or —CF 2 O—, but at least one is —CF 2 O—;
- X 7A is fluorine, chlorine, —CF 3 or —OCF 3 .
- R 7A , Z 71 , Z 72 and X 7A are the same as described above. More preferred compounds in the above formula are (7-2-2-1) and (7-2-5-1).
- R 7A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Yes ;
- X 7A is fluorine, chlorine, or —CF 3 .
- Compound (7) is a liquid crystal compound having a dioxane ring and three benzene rings, and having at least one —CF 2 O— linking group.
- This compound is extremely physically and chemically stable under the conditions in which the device is normally used, and has a relatively good compatibility with other liquid crystal compounds despite its high clearing point.
- a composition containing this compound is stable under conditions in which the device is normally used. Therefore, the temperature range of the optically isotropic liquid crystal phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range.
- this compound is useful as a component for lowering the driving voltage of a composition driven in an optically isotropic liquid crystal phase.
- a blue phase when expressed in a composition prepared from the compound (7) and a chiral agent, it tends to be a uniform blue phase that does not coexist with the N * phase or the isotropic phase. That is, the compound (7) is a compound that easily develops a uniform blue phase. In addition, it exhibits extremely large dielectric anisotropy.
- X 7 When the right terminal group X 7 is fluorine, chlorine, —SF 5 , —CF 3 , —OCF 3 , or —CH ⁇ CH—CF 3 , the dielectric anisotropy is large. When X 7 is fluorine, —CF 3 , or —OCF 3 , it is chemically stable.
- the seventh component of the achiral component T is suitable for preparing a composition having a large dielectric anisotropy.
- the preferred content of the seventh component is preferably about 5.0 to 80% by weight, more preferably 20 to 75% by weight, in order to reduce the driving voltage, relative to the total weight of the achiral component T.
- a particularly desirable ratio is about 30 to 75% by weight.
- the compound (7) used in the present invention may be one type or two or more types.
- the liquid crystal composition of the present invention is generally prepared by a known method, for example, a method of dissolving necessary components at a high temperature.
- composition having optically isotropic liquid crystal phase 8.1 Composition of composition having optically isotropic liquid crystal phase
- the eighth aspect of the present invention includes an achiral component T and a chiral agent.
- the composition is a liquid crystal composition that can be used for an optical element driven in an optically isotropic liquid crystal phase.
- the achiral component T includes the component A composed of the compound represented by the formula (1) and the compound represented by the formula (2), the formula (3), the formula (5), and the formula (7) as an additional component.
- the achiral component T is a compound selected from the group consisting of the fourth component of the achiral component T represented by the formula (4) and the sixth component represented by the formula (6) in addition to the component A as necessary. Including.
- the liquid crystal composition of the present invention is a composition that exhibits an optically isotropic liquid crystal phase.
- the achiral component T and the chiral agent of the present invention are preferably composed of a compound selected from compounds having no radically polymerizable group.
- the content of the compound represented by the formula (1) may be 3 to 80% by weight with respect to the total weight of the achiral component T, and the content of the compound represented by the formula (2)
- the content of the compound represented by the formula (3) may be 0.5 to 70% by weight with respect to the total weight of the achiral component T
- the content of the fourth component represented by the formula (4) may be 5 to 40% by weight with respect to the total weight of the achiral component T
- the content of the fifth component represented by the formula (5) is: It may be 1 to 50% by weight based on the total weight of the achiral component T, and the preferred content of the sixth component represented by the formula (6) is 0 to 40% by weight based on the total weight of the achiral component T.
- the chiral agent contained in the optically isotropic liquid crystal composition is an optically active compound, and the chiral agent is preferably a compound having a large twisting power.
- a compound having a large torsional force can reduce the amount of addition necessary to obtain a desired pitch, so that an increase in driving voltage can be suppressed and is practically advantageous.
- compounds represented by the following formulas (K1) to (K5) are preferable.
- R K is independently hydrogen, halogen, —C ⁇ N, —N ⁇ C ⁇ O, —N ⁇ C ⁇ S, or alkyl having 1 to 20 carbons; At least one —CH 2 — in the alkyl may be replaced by —O—, —S—, —COO—, or —OCO—, and at least one —CH 2 —CH 2 — in the alkyl may be substituted.
- A is independently aromatic A 6- to 8-membered ring, a non-aromatic 3- to 8-membered ring, or a condensed ring having 9 or more carbon atoms, wherein at least one hydrogen of these rings is halogen, alkyl having 1 to 3 carbon atoms or may be replaced by haloalkyl, -CH 2 - is -O-, S— or —NH— may be substituted, —CH ⁇ may be substituted with —N ⁇ ;
- B is independently hydrogen, halogen, alkyl having 1 to 3 carbons, 1 to 3 carbons A haloalkyl, an aromatic 6 to 8 membered ring, a non-aromatic 3 to 8 membered ring, or a condensed ring having 9 or more carbon atoms, wherein at least one hydrogen of these rings is
- the chiral agent added to the liquid crystal composition includes the formula (K2-1) to the formula (K2-8) included in the formula (K2) and the formula (K4-1) included in the formula (K4). More preferably, Formula (K4-6) and Formula (K5-1) to Formula (K5-3) included in Formula (K5) are more preferable, and Formula (K4-1) to Formula (K4-6) and Formula (K5) are more preferable. -1) to formula (K5-3) are more preferable.
- R K is independently alkyl having 3 to 10 carbons or alkoxy having 3 to 10 carbons, and at least one —CH 2 —CH 2 — in the alkyl or alkoxy is —CH ⁇ May be replaced by CH-).
- the chiral agent contained in the liquid crystal composition may be one type or two or more types.
- the chiral agent is preferably contained in an amount of 1 to 40% by weight, more preferably 3 to 25% by weight, and most preferably 5 to 15% by weight based on the total weight of the liquid crystal composition.
- a liquid crystal composition containing a chiral agent within these ranges is preferable because it easily develops an optically isotropic liquid crystal phase.
- the liquid crystal composition is optically isotropic, although macroscopically, the liquid crystal molecular arrangement is isotropic, so that it is optically isotropic. Microscopically, it means that liquid crystal order exists.
- pitch based on microscopic order of liquid crystal composition (hereinafter, sometimes referred to as pitch)” is preferably 700 nm or less, more preferably 500 nm or less, and 350 nm or less. Is most preferred.
- non-liquid crystal isotropic phase is a generally defined isotropic phase, that is, a disordered phase, and even if a region where the local order parameter is not zero is generated, the cause is due to fluctuations.
- Isotropic phase For example, an isotropic phase appearing on the high temperature side of the nematic phase corresponds to a non-liquid crystal isotropic phase in this specification.
- the same definition shall apply to the chiral liquid crystal in this specification.
- the “optically isotropic liquid crystal phase” refers to a phase that expresses an optically isotropic liquid crystal phase instead of fluctuations, for example, a phase that expresses a platelet structure (in a narrow sense). Blue phase) is an example.
- optically isotropic liquid crystal composition of the present invention although it is an optically isotropic liquid crystal phase, a platelet structure typical of a blue phase may not be observed under a polarizing microscope. Therefore, in this specification, a phase that develops a platelet structure is referred to as a blue phase, and an optically isotropic liquid crystal phase including the blue phase is referred to as an optically isotropic liquid crystal phase. That is, the blue phase is included in the optically isotropic liquid crystal phase.
- the blue phase is classified into three types of blue phase I, blue phase II, and blue phase III, and these three types of blue phases are all optically active and isotropic.
- the blue phase I or blue phase II two or more types of diffracted light caused by Bragg reflection from different lattice planes are observed.
- the blue phase is generally observed between the non-liquid crystal isotropic phase and the chiral nematic phase.
- the state in which the optically isotropic liquid crystal phase does not show diffracted light of two or more colors means that the platelet structure observed in the blue phase I and the blue phase II is not observed and is generally monochromatic. To do. In an optically isotropic liquid crystal phase that does not show diffracted light of two or more colors, it is not necessary until the color brightness is uniform in the plane.
- An optically isotropic liquid crystal phase that does not show diffracted light of two or more colors has an advantage that the reflected light intensity due to Bragg reflection can be suppressed or shifted to the lower wavelength side.
- the liquid crystal material that reflects visible light may have a problem of color when used as a display element.
- the reflection wavelength is shifted by a low wavelength. Therefore, the reflection of visible light can be eliminated at a pitch longer than the narrowly defined blue phase (phase that expresses the platelet structure).
- the optically isotropic liquid crystal composition of the present invention can be obtained by adding a chiral agent to a composition having a nematic phase. At this time, the chiral agent is preferably added at a concentration such that the pitch is 700 nm or less. In addition, the composition which has a nematic phase contains the compound represented by Formula (1) and another component as needed.
- the optically isotropic liquid crystal composition of the present invention can also be obtained by adding a chiral agent to a composition having a chiral nematic phase and not having an optically isotropic liquid crystal phase. .
- the composition which has a chiral nematic phase and does not have an optically isotropic liquid crystal contains the compound represented by Formula (1), an optically active compound, and other components as needed.
- the optically active compound is preferably added at a concentration such that the pitch is 700 nm or more so as not to develop an optically isotropic liquid crystal phase.
- formulas (K1) to (K5) which are compounds having a large twisting force can be used, and more preferably, formulas (K2-1) to (K2-8), Compounds represented by (K4-1) to (K4-6) or formulas (K5-1) to (K5-3) can be used.
- the optically active compound to be added may be a compound that does not have a very large twisting force.
- Examples of such an optically active compound include a compound added to a liquid crystal composition for an element (TN mode, STN mode, etc.) driven in a nematic phase.
- the temperature range of the optically isotropic liquid crystal composition of the present invention is such that a chiral agent is added to a liquid crystal composition having a wide coexistence temperature range of a nematic phase or a chiral nematic phase and an isotropic phase, and the optical It can be widened by developing an isotropic liquid crystal phase.
- a liquid crystal compound having a high clearing point and a liquid crystal compound having a low clearing point are mixed to prepare a liquid crystal composition having a wide coexisting temperature range of a nematic phase and an isotropic phase over a wide temperature range, and a chiral agent is added thereto.
- a composition that exhibits an optically isotropic liquid crystal phase in a wide temperature range can be prepared.
- the difference between the maximum temperature and the minimum temperature at which the chiral nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C.
- a liquid crystal composition is preferable, and a liquid crystal composition having a difference of 5 to 150 ° C. is more preferable.
- a liquid crystal composition in which the difference between the upper limit temperature and the lower limit temperature at which the nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C. is preferable.
- the optically isotropic liquid crystal composition of the present invention may be further added with other compounds such as a polymer substance as long as the properties of the composition are not affected.
- the liquid crystal composition of the present invention may contain, for example, a dichroic dye and a photochromic compound in addition to the polymer substance.
- dichroic dyes include merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine.
- a ninth aspect of the present invention is a composite material of a liquid crystal composition and a polymer containing a compound represented by formula (1) and a chiral agent, and optically Isotropic.
- This is an optically isotropic polymer / liquid crystal composite material that can be used in an optical element driven in an optically isotropic liquid crystal phase.
- Such a polymer / liquid crystal composite material includes, for example, a liquid crystal composition (liquid crystal composition CLC) described in the above items [1] to [32] and a polymer.
- the “polymer / liquid crystal composite material” of the present invention is not particularly limited as long as it is a composite material containing both a liquid crystal material and a polymer compound, but part or all of the polymer is dissolved in the liquid crystal material.
- the polymer may be in a state of being phase-separated from the liquid crystal material.
- a nematic phase means a nematic phase in a narrow sense that does not include a chiral nematic phase.
- the optically isotropic polymer / liquid crystal composite material according to a preferred embodiment of the present invention can exhibit an optically isotropic liquid crystal phase in a wide temperature range. Further, the polymer / liquid crystal composite material according to a preferred embodiment of the present invention has an extremely fast response speed. Moreover, the polymer / liquid crystal composite material according to a preferred embodiment of the present invention can be suitably used for an optical element such as a display element based on these effects.
- the composite material of the present invention can be produced by mixing an optically isotropic liquid crystal composition and a polymer obtained by pre-polymerization, but it is a low-molecular material. It is preferably produced by mixing a monomer having a molecular weight, a macromonomer, an oligomer or the like (hereinafter collectively referred to as “monomer or the like”) and the liquid crystal composition CLC, and then performing a polymerization reaction in the mixture.
- a mixture containing a monomer or the like and a liquid crystal composition is referred to as a “polymerizable monomer / liquid crystal mixture”.
- the “polymerizable monomer / liquid crystal mixture” includes a polymerization initiator, a curing agent, a catalyst, a stabilizer, a dichroic dye, or a photochromic compound, which will be described later, as necessary, as long as the effects of the present invention are not impaired. But you can.
- the polymerizable monomer / liquid crystal mixture of the present invention may contain 0.1 to 20 parts by weight of a polymerization initiator with respect to 100 parts by weight of the polymerizable monomer.
- the “polymerizable monomer / liquid crystal mixture” must be a liquid crystal medium when polymerized in the blue phase, but is not necessarily a liquid crystal medium when polymerized in the isotropic phase.
- the polymerization temperature is preferably a temperature at which the polymer / liquid crystal composite material exhibits high transparency and isotropic properties. More preferably, the polymerization is terminated at a temperature at which the mixture of the monomer and the liquid crystal material develops an isotropic phase or a blue phase, and at the isotropic phase or the optically isotropic liquid crystal phase. That is, after polymerization, the polymer / liquid crystal composite material is preferably set to a temperature that does not substantially scatter light on the longer wavelength side than visible light and develops an optically isotropic state.
- the polymer raw material constituting the composite material of the present invention for example, a low molecular weight monomer, macromonomer, and oligomer can be used.
- the high molecular weight raw material monomer is a low molecular weight monomer, macromonomer. , Used to include oligomers and the like.
- the obtained polymer has a three-dimensional crosslinked structure. Therefore, it is preferable to use a polyfunctional monomer having two or more polymerizable functional groups as a raw material monomer for the polymer.
- the polymerizable functional group is not particularly limited, and an acrylic group, a methacryl group, a glycidyl group, an epoxy group, an oxetanyl group, a vinyl group, and the like can be raised, but an acrylic group and a methacryl group are preferable from the viewpoint of polymerization rate.
- a monomer having two or more polymerizable functional groups in the polymer raw material monomer is contained in an amount of 10% by weight or more, high transparency and isotropy are easily exhibited in the composite material of the present invention. This is preferable.
- the polymer preferably has a mesogen moiety, and a raw material monomer having a mesogen moiety can be used as a part or all of the polymer as a polymer raw material monomer.
- the monofunctional or bifunctional monomer having a mesogen moiety is not particularly limited in terms of structure.
- the following formula (M1) or (M2) The compound represented by these can be mentioned.
- R b is each independently a polymerizable group of formula (M3-1) to formula (M3-7).
- R a is hydrogen, halogen, —C ⁇ N, —CF 3 , —CF 2 H, —CFH 2 , —OCF 3 , —OCF 2 H, alkyl having 1 to 20 carbons, or alkyl having 1 to 19 carbons. Alkoxy, alkenyl having 2 to 21 carbons, and alkynyl having 2 to 21 carbons. Particularly preferred R a is —C ⁇ N, alkyl having 1 to 20 carbons and alkoxy having 1 to 19 carbons.
- each R b is independently a polymerizable group of the formulas (M3-1) to (M3-7).
- R d in formulas (M3-1) to (M3-7) is each independently hydrogen, halogen, or alkyl having 1 to 5 carbon atoms, and in these alkyls, at least one hydrogen is replaced with halogen. May be.
- Preferred R d is hydrogen, halogen and methyl.
- Particularly preferred R d is hydrogen, fluorine and methyl.
- the formula (M3-2), the formula (M3-3), the formula (M3-4), and the formula (M3-7) are preferably polymerized by radical polymerization.
- the formulas (M3-1), (M3-5), and (M3-6) are preferably polymerized by cationic polymerization.
- a polymerization initiator can be used for the purpose of accelerating the generation of active species. For example, light or heat can be used to generate the active species.
- a M is each independently an aromatic or non-aromatic 5-membered ring, 6-membered ring, or condensed ring having 9 or more carbon atoms.
- CH 2 — may be —O—, —S—, —NH—, or —NCH 3 —, and —CH ⁇ in the ring may be replaced by —N ⁇ , the hydrogen atom on the ring is halogen, and carbon number It may be replaced with 1 to 5 alkyls or alkyl halides.
- a M 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4 -Phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2-methyl-1,4-phenylene, 2-trifluoromethyl-1,4-phenylene, 2 , 3-bis (trifluoromethyl) -1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7- Diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl, and pyrimidine-2,5-diyl.
- 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene is structurally identical to 3-fluoro-1,4-phenylene, the latter was not exemplified. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
- each Y is independently a single bond or alkylene having 1 to 20 carbon atoms, and in these alkylenes, at least one —CH 2 — is —O— or —S—. At least one —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—, —C ⁇ C—, —COO—, or —OCO—.
- Preferred Y is a single bond, — (CH 2 ) m2 —, —O (CH 2 ) m2 —, and — (CH 2 ) m2 O— (wherein m2 is an integer of 1 to 20) .
- Y is a single bond, — (CH 2 ) m2 —, —O (CH 2 ) m2 —, and — (CH 2 ) m2 O— (wherein m2 is an integer of 1 to 10). is there.
- —Y—R a and —Y—R b may be —O—O—, —O—S—, —S—O—, or —S—S in their groups. It is preferable not to have-.
- Z M each independently represents a single bond, — (CH 2 ) m3 —, —O (CH 2 ) m3 —, — (CH 2 ) m3 O—, —O ( CH 2 ) m 3 O—, —CH ⁇ CH—, —C ⁇ C—, —COO—, —OCO—, — (CF 2 ) 2 —, — (CH 2 ) 2 —COO—, —OCO— (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, —C ⁇ C—COO—, —OCO—C ⁇ C—, —CH ⁇ CH— (CH 2 ) 2 —, — (CH 2 ) 2 —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—CH ⁇ CH—, —CH ⁇ CH—C ⁇ C—, —OCF 2 — (CH 2 ) 2 —,
- Preferred Z M is a single bond, — (CH 2 ) m3 —, —O (CH 2 ) m3 —, — (CH 2 ) m3 O—, —CH ⁇ CH—, —C ⁇ C—, —COO—, — OCO—, — (CH 2 ) 2 —COO—, —OCO— (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, —OCF 2 —, and —CF 2 O— It is.
- m1 is an integer of 1 to 6.
- Preferred m1 is an integer of 1 to 3.
- m1 is 1, it is a bicyclic compound having two rings such as a 6-membered ring.
- m1 is 2 or 3, they are tricyclic and tetracyclic compounds, respectively.
- two A M may be may be the same or different.
- three A M or two Z M ) may be the same or different.
- m1 is 3-6.
- R a , R b , R d , Z M , A M and Y The same applies.
- the compound (M1) represented by the formula (M1) and the compound (M2) represented by the formula (M2) contain isotopes such as 2 H (deuterium) and 13 C in an amount larger than the natural abundance. However, since it has the same characteristics, it can be preferably used.
- More preferred examples of the compound (M1) and the compound (M2) include compounds (M1-1) to (M1-1) to (M1-41) and (M2-1) to (M2-27) (M1-41) and compounds (M2-1) to (M2-27).
- the definitions of R a , R b , R d , Z M , A M , Y and p are the same as those in formula (M1) and formula (M2) described in the embodiments of the present invention.
- the partial structure (a1) represents 1,4-phenylene in which at least one hydrogen is replaced by fluorine.
- the partial structure (a2) represents 1,4-phenylene in which at least one hydrogen may be replaced by fluorine.
- the partial structure (a3) represents 1,4-phenylene in which at least one hydrogen may be replaced with either fluorine or methyl.
- the partial structure (a4) represents fluorene in which the hydrogen at the 9-position may be replaced with methyl.
- a monomer having no mesogen moiety and a polymerizable compound other than the monomers (M1) and (M2) having a mesogen moiety can be used as necessary.
- a monomer having a mesogenic moiety and having three or more polymerizable functional groups may be used.
- known compounds can be suitably used. Examples thereof include (M4-1) to (M4-3), and more specific examples include: Examples thereof include compounds described in JP 2000-327632 A, JP 2004-182949 A, and JP 2004-59777 A.
- R b , Z M , Y, and (F) are the same as described above.
- monomers having a polymerizable functional group having no mesogen moiety for example, a linear or branched acrylate having 1 to 30 carbon atoms C 1-30 linear or branched diacrylates
- monomers having three or more polymerizable functional groups include glycerol propoxylate (1PO / OH) triacrylate, pentaerythritol propoxylate triacrylate, penta Erythritol triacrylate, trimethylolpropane ethoxylate triacrylate, trimethylolpropane propoxylate triacrylate, trimethylolpropane triacrylate, di (trimethylolpropane) tetraacrylate, pentaerythritol Tetraacrylate, di (pentaerythritol) pentaacrylate, di (pentaerythritol) hexaacrylate, there may be mentioned trimethylolprop
- the polymerization reaction in the production of the polymer constituting the composite material of the present invention is not particularly limited, and for example, photoradical polymerization, thermal radical polymerization, photocationic polymerization, and the like are performed.
- photo radical polymerization initiator examples include DAROCUR 1173 and 4265 (both trade names, BASF Japan Ltd.), Irgacure 184, 369, 500, 651, 784. 819, 907, 1300, 1700, 1800, 1850, and 2959 (all are trade names, BASF Japan Ltd.), and the like.
- thermal radical polymerization examples include benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate , T-butyl peroxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), di-t-butyl peroxide (DTBPO), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbox Nitrile (ACN) and the like.
- MAIB dimethyl 2,2′-azobisisobutyrate
- DTBPO di-t-butyl peroxide
- AIBN azobisisobutyronitrile
- ACN azobiscyclohexanecarbox Nitrile
- photocationic polymerization initiator examples include diaryliodonium salts (hereinafter referred to as “DAS”), triarylsulfonium salts (hereinafter referred to as “TAS”), and the like.
- DAS diaryliodonium salts
- TAS triarylsulfonium salts
- DAS includes diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyliodoniumtetra (pentafluorophenyl) ) Borate, 4-methoxyphenyl phenyl iodonium tetrafluoroborate, 4-methoxyphenyl phenyl iodonium hexafluorophosphonate, 4-methoxyphenyl phenyl iodonium hexafluoroarsenate, 4-methoxyphenyl phenyl iodonium trifluoromethanesulfonate, 4-methoxyphen
- Sensitivity can be increased by adding a photosensitizer such as thioxanthone, phenothiazine, chlorothioxanthone, xanthone, anthracene, diphenylanthracene, rubrene to DAS.
- a photosensitizer such as thioxanthone, phenothiazine, chlorothioxanthone, xanthone, anthracene, diphenylanthracene, rubrene to DAS.
- TAS includes triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, Triphenylsulfonium tetra (pentafluorophenyl) borate, 4-methoxyphenyldiphenylsulfonium tetrafluoroborate, 4-methoxyphenyldiphenylsulfonium hexafluorophosphonate, 4-methoxyphenyldiphenylsulfonium hexafluoroarsenate, 4-methoxyphenyldiphenylsulfonium trifluoromethane Sulfona
- Examples of specific trade names of the photocationic polymerization initiator include Cyracure UVI-6990, Cyracure UVI-6974, Cyracure UVI-6922 (trade names, UCC Co., Ltd.), Adekaoptomer SP-150, SP-152, SP-170, SP-172 (trade name, ADEKA Corporation), Rhodorsil® Photoinitiator 2074 (trade name, Rhodia Japan Co., Ltd.), Irgacure (IRGACURE) 250 (trade name, BASF Japan Co., Ltd.) ), UV-9380C (trade name, GE Toshiba Silicone Co., Ltd.).
- the curing agent a conventionally known latent curing agent that is usually used as a curing agent for epoxy resins can be used.
- the latent epoxy resin curing agent include amine curing agents, novolak resin curing agents, imidazole curing agents, and acid anhydride curing agents.
- amine curing agents include aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, and isophoronediamine.
- 1,3-bisaminomethylcyclohexane bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, alicyclic polyamines such as laromine, fragrances such as diaminodiphenylmethane, diaminodiphenylethane, metaphenylenediamine Group polyamines and the like.
- novolak resin-based curing agents examples include phenol novolac resins and bisphenol novolac resins.
- the imidazole curing agent include 2-methylimidazole, 2-ethylhexylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, and the like.
- acid anhydride curing agents examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride and the like can be mentioned.
- a curing accelerator for accelerating the curing reaction between the polymerizable compound having a glycidyl group, an epoxy group, or an oxetanyl group and the curing agent may be further used.
- the curing accelerator include tertiary amines such as benzyldimethylamine, tris (dimethylaminomethyl) phenol, dimethylcyclohexylamine, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methyl.
- Imidazoles such as imidazole, organophosphorus compounds such as triphenylphosphine, quaternary phosphonium salts such as tetraphenylphosphonium bromide, 1,8-diazabicyclo [5.4.0] undecene-7, and organic acid salts thereof
- examples include diazabicycloalkenes, quaternary ammonium salts such as tetraethylammonium bromide and tetrabutylammonium bromide, and boron compounds such as boron trifluoride and triphenylborate.
- These curing accelerators can be used alone or in admixture of two or more.
- a stabilizer is preferably added in order to prevent undesired polymerization during storage.
- All compounds known to those skilled in the art can be used as stabilizers.
- Representative examples of stabilizers include 4-ethoxyphenol, hydroquinone, butylated hydroxytoluene (BHT) and the like.
- the content of the liquid crystal composition in the polymer / liquid crystal composite material of the present invention is possible as long as the composite material can express an optically isotropic liquid crystal phase. It is preferable that the content is as high as possible. This is because the electric birefringence value of the composite material of the present invention increases as the content of the liquid crystal composition is higher.
- the content of the liquid crystal composition is preferably 60 to 99% by weight, more preferably 60 to 98% by weight, particularly 80 to 97% by weight, based on the composite material.
- the content of the polymer is preferably 1 to 40% by weight, more preferably 2 to 40% by weight, and particularly preferably 3 to 20% by weight based on the composite material.
- the polymer / liquid crystal composite material of the present invention may contain, for example, a dichroic dye and a photochromic compound as long as the effects of the present invention are not impaired.
- EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict
- a tenth aspect of the present invention is a liquid crystal composition or a polymer / liquid crystal composite material (hereinafter, the liquid crystal composition of the present invention and the polymer / liquid crystal composite material may be collectively referred to as a liquid crystal medium).
- the liquid crystal composition of the present invention and the polymer / liquid crystal composite material may be collectively referred to as a liquid crystal medium).
- a liquid crystal medium Including an optically isotropic liquid crystal phase. When no electric field is applied, the liquid crystal medium is optically isotropic, but when an electric field is applied, the liquid crystal medium exhibits optical anisotropy, and light modulation by the electric field becomes possible.
- An eleventh aspect of the present invention comprises an achiral component T containing at least one compound selected from the group of compounds represented by formula (1), a chiral agent, and an optical Use of a liquid crystal composition exhibiting an isotropic liquid crystal phase in an optical element. Since this liquid crystal composition exhibits a low driving voltage and a short response time, it is effective for low-voltage driving and high-speed response of the optical element.
- GC analysis GC-14B gas chromatograph manufactured by Shimadzu Corporation was used as a measuring device.
- a capillary column CBP1-M25-025 (length: 25 m, inner diameter: 0.22 mm, film thickness: 0.25 ⁇ m) manufactured by Shimadzu Corporation; dimethylpolysiloxane; nonpolar) as the stationary liquid phase was used.
- Helium was used as the carrier gas, and the flow rate was adjusted to 1 ml / min.
- the temperature of the sample vaporizing chamber was set to 300 ° C., and the temperature of the detector (FID) portion was set to 300 ° C.
- the sample was dissolved in toluene to prepare a 1% by weight solution, and 1 ⁇ l of the resulting solution was injected into the sample vaporization chamber.
- a recorder a C-R6A type Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof was used.
- the obtained gas chromatogram shows the peak retention time and peak area value corresponding to the component compounds.
- capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by Agilent Technologies Inc.
- HP-1 length 30 m, inner diameter 0
- Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m)
- BP-1 from SGE International Corporation Pty. Ltd (length 30 m, inner diameter) 0.32 mm, film thickness of 0.25 ⁇ m) or the like
- SGE International Corporation Pty. Ltd length 30 m, inner diameter 0.32 mm, film thickness of 0.25 ⁇ m
- the peak area ratio in the gas chromatogram corresponds to the ratio of the component compounds.
- the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample.
- the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds.
- an internal standard method based on the gas chromatogram is used.
- the liquid crystal compound component (test component) weighed in a certain amount accurately and the reference liquid crystal compound (reference material) are simultaneously measured by gas chromatography, and the area ratio between the peak of the obtained test component and the peak of the reference material Is calculated in advance.
- the composition ratio of the liquid crystal compound in the liquid crystal composition can be determined more accurately from gas chromatography analysis.
- Samples for measuring physical property values of liquid crystal compounds etc. There are two types of samples for measuring the physical property values of liquid crystal compounds: when the compound itself is used as a sample, and when the compound is mixed with mother liquid crystals as a sample.
- the measurement is performed by the following method. First, 15% by weight of the obtained liquid crystal compound and 85% by weight of the mother liquid crystal are mixed to prepare a sample. Then, an extrapolated value is calculated from the measured value of the obtained sample according to the extrapolation method based on the following calculation formula. This extrapolated value is taken as the physical property value of this compound.
- ⁇ Extrapolated value> (100 ⁇ ⁇ Measured value of sample> ⁇ ⁇ Weight% of mother liquid crystal> ⁇ ⁇ Measured value of mother liquid crystal>) / ⁇ Weight% of liquid crystal compound>
- the ratio between the liquid crystal compound and the mother liquid crystal is this ratio, when the smectic phase or crystal is precipitated at 25 ° C., the ratio between the liquid crystal compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight. %: 95% by weight, 1% by weight: 99% by weight, and the physical properties of the sample were measured with a composition in which the smectic phase or crystals did not precipitate at 25 ° C., and extrapolated according to the above formula. This is taken as the physical property value of the liquid crystal compound.
- mother liquid crystals A there are various types of mother liquid crystals used for measurement.
- the composition (% by weight) of the mother liquid crystals A is as follows.
- Phase structure and phase transition temperature Measurement was performed by the following methods (1) and (2).
- a compound is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope, and a phase state and its change are observed with a polarizing microscope while heating at a rate of 3 ° C./min. , Identified the type of liquid crystal phase.
- (2) Using a scanning calorimeter DSC-7 system or Diamond DSC system manufactured by PerkinElmer, Inc., the temperature is raised and lowered at a rate of 3 ° C / min, and the start point of the endothermic peak or exothermic peak accompanying the phase change of the sample is excluded.
- the phase transition temperature was determined by onset.
- the crystal is expressed as K, and when the crystal can be distinguished, it is expressed as K 1 or K 2 , respectively.
- the smectic phase is represented as Sm
- the nematic phase is represented as N.
- the chiral nematic phase was represented as N *.
- the liquid (referred to as isotropic or non-liquid crystal isotropic phase) was designated as I.
- BP represents a blue phase or an optically isotropic liquid crystal phase.
- the coexistence state of two phases may be expressed in the form of (N * + I) and (N * + BP).
- (N * + I) represents a phase in which a non-liquid crystal isotropic phase and a chiral nematic phase coexist
- (N * + BP) represents a BP phase or an optically isotropic liquid crystal phase.
- Un represents an unidentified phase that is not optically isotropic.
- K 50.0 N 100.0 I means that the phase transition temperature (KN) from the crystal to the nematic phase is 50.0 ° C., and the phase from the nematic phase to the liquid
- the transition temperature (NI) is 100.0 ° C. The same applies to other notations.
- T NI Maximum temperature of nematic phase
- a sample (mixture of liquid crystal compound and mother liquid crystal) is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope. The polarizing microscope was observed while heating at a rate of ° C / min.
- the temperature at which a part of the sample changed from a nematic phase to an isotropic liquid was defined as the upper limit temperature of the nematic phase.
- the upper limit temperature of the nematic phase may be simply abbreviated as “upper limit temperature”.
- Low temperature compatibility A sample in which a mother liquid crystal and a liquid crystal compound were mixed so that the liquid crystal compound was in an amount of 20% by weight, 15% by weight, 10% by weight, 5% by weight, 3% by weight, and 1% by weight. Make and place sample in glass bottle. The glass bottle was stored in a freezer at ⁇ 10 ° C. or ⁇ 20 ° C. for a certain period, and then it was observed whether crystals or smectic phases were precipitated.
- Viscosity ( ⁇ ; measured at 20 ° C .; mPa ⁇ s): A mixture of a liquid crystal compound and a mother liquid crystal was measured using an E-type viscometer.
- Pitch P; measured at 25 ° C .; nm
- the pitch length was measured using selective reflection (Liquid Crystal Manual 196 pages 2000, Maruzen).
- ⁇ n> represents an average refractive index and is given by the following equation.
- ⁇ n> ⁇ (n ⁇ 2 + n ⁇ 2) / 2 ⁇ 1/2.
- the selective reflection wavelength was measured with a microspectrophotometer (JEOL Ltd., trade name MSV-350). The pitch was obtained by dividing the obtained reflection wavelength by the average refractive index.
- the pitch of cholesteric liquid crystals having a reflection wavelength in the longer wavelength region than visible light is proportional to the reciprocal of the concentration of the optically active compound in the region where the optically active compound concentration is low.
- the length was measured at several points and determined by a linear extrapolation method.
- the “optically active compound” corresponds to the chiral agent in the present invention.
- the characteristic value of the liquid crystal composition can be measured according to the following method. Many of them are the methods described in the Standard of Electronics Industry Association of Japan EIAJ ED-2521A, or a modified method thereof. No TFT was attached to the TN device used for measurement.
- NI Maximum temperature of nematic phase
- a sample was placed on a hot plate of a melting point measuring device equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
- the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
- T C Minimum temperature of nematic phase
- Optically isotropic liquid crystal phase transition temperature Place the sample on the hot plate of a melting point measurement device equipped with a polarizing microscope, and in the crossed Nicols state, the sample was first heated to a temperature at which the sample becomes an isotropic liquid crystal phase Thereafter, the temperature was lowered at a rate of 1 ° C./min, and a completely chiral nematic phase or an optically isotropic liquid crystal phase appeared. The temperature at which the phase transition in the temperature lowering process was measured, then the temperature was increased at a rate of 1 ° C./min, and the temperature at which the phase transition in the temperature rising process was measured.
- the phase transition temperature in the temperature raising process is defined as the phase transition temperature.
- the phase transition temperature In the optically isotropic liquid crystal phase, when it was difficult to determine the phase transition temperature in the dark field under crossed Nicols, the phase transition temperature was measured by shifting the polarizing plate by 1 to 10 ° from the crossed Nicols state.
- Viscosity ( ⁇ ; measured at 20 ° C .; mPa ⁇ s): An E-type viscometer was used for measurement.
- Rotational viscosity ( ⁇ 1; measured at 25 ° C .; mPa ⁇ s): 1) Sample having positive dielectric anisotropy: Measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 ⁇ m. The voltage was applied to the TN device stepwise in the range of 16 to 19.5 volts every 0.5 volts. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
- the peak current and peak time of the transient current generated by this application were measured.
- the value of rotational viscosity was obtained from these measured values and the calculation formula (8) on page 40 of the paper by M. Imai et al.
- the value of dielectric anisotropy necessary for this calculation was obtained by the following dielectric anisotropy measurement method using the element used for the measurement of the rotational viscosity.
- Threshold voltage (Vth; measured at 25 ° C .; V): 1) A composition having a positive dielectric anisotropy: a normally white mode (normally white mode) in which a distance (gap) between two glass substrates is (0.5 / ⁇ n) ⁇ m and a twist angle is 80 degrees. A sample was put in a liquid crystal display element in white mode). ⁇ n is a value of refractive index anisotropy measured by the above method. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was increased and the value of the voltage when the transmittance of light passing through the element reached 90% was measured.
- composition having a negative dielectric anisotropy For a normally black mode liquid crystal display element in which the distance (gap) between two glass substrates is about 9 ⁇ m and processed in homeotropic alignment A sample was placed. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was raised, and the value of the voltage when the transmittance of light passing through the element reached 10% was measured.
- Voltage holding ratio (VHR; measured at 25 ° C .;%):
- the TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 6 ⁇ m. This element was sealed with an adhesive polymerized by ultraviolet rays after putting a sample.
- the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
- the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
- the area B is an area when it is not attenuated.
- the voltage holding ratio is a percentage of the area A with respect to the area B.
- the pitch length was measured using selective reflection (Liquid Crystal Manual 196, 2000, Maruzen).
- ⁇ n> represents an average refractive index and is given by the following equation.
- ⁇ n> ⁇ (n ⁇ 2 + n ⁇ 2 ) / 2 ⁇ 1/2 .
- the selective reflection wavelength was measured with a microspectrophotometer (JEOL Ltd., trade name MSV-350). The pitch was obtained by dividing the obtained reflection wavelength by the average refractive index.
- the pitch of a cholesteric liquid crystal having a reflection wavelength in the longer wavelength region than visible light is proportional to the reciprocal of the concentration of the chiral agent in a region where the chiral agent concentration is low, so the pitch length of a liquid crystal having a selective reflection wavelength in the visible light region is increased.
- the ratio (percentage) of the component or the liquid crystal compound is a weight percentage (% by weight) based on the total weight of the liquid crystal compound.
- the composition is prepared by measuring the weight of components such as a liquid crystal compound and then mixing them. Therefore, it is easy to calculate the weight percentage of the component.
- a liquid crystal composition NLC-A was prepared by mixing the liquid crystal compounds shown in the figure below at the following ratios. The correspondence with the general formula is shown on the right side of the structural formula.
- Liquid crystal composition NLC-A The liquid crystal composition NLC-A had a phase transition temperature (° C.) of N 77.6 I.
- liquid crystal composition CLC-A (94.8% by weight), and chiral agents BN-H4 (2.6% by weight) and BN-H5 (2.6% by weight) represented by the following formula:
- a liquid crystal composition CLC-A was obtained.
- the liquid crystal composition CLC-A had a phase transition temperature (° C.) of N * 69.8 BP 71.6 I.
- the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending in the right direction from the left connection electrode portion and electrodes 2 extending in the left direction from the right connection electrode portion. Accordingly, when there is a potential difference between the electrode 1 and the electrode 2, on the comb-shaped electrode substrate as shown in FIG. 1, when attention is paid to one electrode, the upper direction and the lower direction on the drawing are two directions. A state in which an electric field exists can be provided.
- Comparative Example 3 The cell sandwiched with the polymer / liquid crystal composite material PSBP-A obtained in Comparative Example 2 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
- a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
- the cell was set in the optical system so that the temperature was 0 °.
- the relationship between applied voltage and transmittance at room temperature was examined. When a 65 V rectangular wave was applied, the transmittance was 92%, and the transmitted light intensity was saturated. The contrast was 1070.
- Example 1 A liquid crystal composition NLC-B was prepared by mixing the liquid crystal compounds shown in the following figure at the following ratios. The correspondence with the general formula is shown on the right side of the structural formula. Liquid crystal composition NLC-B The liquid crystal composition NLC-B had a phase transition temperature (° C.) of N 89.9 I.
- liquid crystal composition CLC-B (94.8% by weight), and chiral agents BN-H4 (2.6% by weight) and BN-H5 (2.6% by weight) represented by the following formula:
- a liquid crystal composition CLC-B was obtained.
- the liquid crystal composition CLC-B had a phase transition temperature (° C.) of N * 84.6 BP 86.9 I.
- Example 2 Preparation of Mixture of Monomer and Liquid Crystal Composition
- the liquid crystal composition CLC-B was 88.8% by weight
- n-dodecyl acrylate was 6.0% by weight
- 1,4-di 4.8% by weight of 4- (6- (acryloyloxy) dodecyloxy) benzoyloxy) -2-methylbenzene (LCA-12)
- LCA-12 phase transition temperature
- the liquid crystal composition MLC-B was sandwiched between a comb-shaped electrode substrate not subjected to alignment treatment and a counter glass substrate (non-electrode provided) (cell thickness 9 ⁇ m). The cell was heated to a blue phase of 47.9 ° C. In this state, ultraviolet light (ultraviolet light intensity 23 mWcm ⁇ 2 (365 nm)) was irradiated for 1 minute to carry out a polymerization reaction.
- the polymer / liquid crystal composite material (PSBP-B) thus obtained maintained an optically isotropic liquid crystal phase even when cooled to room temperature.
- the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending in the right direction from the left connection electrode portion and electrodes 2 extending in the left direction from the right connection electrode portion. Accordingly, when there is a potential difference between the electrode 1 and the electrode 2, on the comb-shaped electrode substrate as shown in FIG. 1, when attention is paid to one electrode, the upper direction and the lower direction on the drawing are two directions. A state in which an electric field exists can be provided.
- Example 3 The cell sandwiched with the polymer / liquid crystal composite material PSBP-B obtained in Example 2 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
- a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
- the cell was set in the optical system so that the temperature was 0 °.
- the relationship between applied voltage and transmittance at room temperature was examined. When a 28 V rectangular wave was applied, the transmittance was 80% and the transmitted light intensity was saturated. The contrast was 873.
- PSBP-B containing the compound of formula (1) of the present application is driven at a low voltage.
- Example 4 A liquid crystal composition NLC-C was prepared by mixing the liquid crystal compounds shown in the figure below in the following ratio. The correspondence with the general formula is shown on the right side of the structural formula. Liquid crystal composition NLC-C The liquid crystal composition NLC-C had a phase transition temperature (° C.) of N 91.2 I.
- liquid crystal composition CLC-C (94.8% by weight), and chiral agents BN-H4 (2.6% by weight) and BN-H5 (2.6% by weight) represented by the following formula:
- a liquid crystal composition CLC-C was obtained.
- the liquid crystal composition CLC-C had a phase transition temperature (° C.) of N * 81.0 BP 83.0 BP + I 83.5 I.
- Example 5 Preparation of Mixture of Monomer and Liquid Crystal Composition
- the liquid crystal composition CLC-C was 88.8% by weight
- n-dodecyl acrylate was 6.0% by weight
- 1,4-di 4.8% by weight of 4- (6- (acryloyloxy) dodecyloxy) benzoyloxy) -2-methylbenzene (LCA-12)
- Liquid crystal composition MLC-C was prepared.
- the phase transition temperature (° C.) of this liquid crystal composition MLC-C was N * 44.4 BP 48.4 BP + I 50.6 I, II + BP 48.0 BP 44.4 N *.
- the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending in the right direction from the left connection electrode portion and electrodes 2 extending in the left direction from the right connection electrode portion. Accordingly, when there is a potential difference between the electrode 1 and the electrode 2, on the comb-shaped electrode substrate as shown in FIG. 1, when attention is paid to one electrode, the upper direction and the lower direction on the drawing are two directions. A state in which an electric field exists can be provided.
- Example 6 The cell sandwiched with the polymer / liquid crystal composite material PSBP-C obtained in Example 5 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
- a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
- the cell was set in the optical system so that the temperature was 0 °.
- the relationship between applied voltage and transmittance at room temperature was examined. When a 25 V rectangular wave was applied, the transmittance was 85%, and the transmitted light intensity was saturated. The contrast was 934.
- PSBP-C containing the compound of the formula (1) of the present application is driven at a low voltage.
- Example 7 A liquid crystal composition NLC-D was prepared by mixing the liquid crystal compounds shown in the following figure at the following ratios. The correspondence with the general formula is shown on the right side of the structural formula. Liquid crystal composition NLC-D The liquid crystal composition NLC-D had a phase transition temperature (° C.) of N 87.2 I.
- liquid crystal composition CLC-D (94.8% by weight), and chiral agents BN-H4 (2.6% by weight) and BN-H5 (2.6% by weight) represented by the following formula:
- a liquid crystal composition CLC-D was obtained.
- the liquid crystal composition CLC-D had a phase transition temperature (° C.) of N * 77.4 BP 79.5 I.
- Example 8 Preparation of Mixture of Monomer and Liquid Crystal Composition
- the liquid crystal composition CLC-D was 88.8% by weight
- n-dodecyl acrylate was 6.0% by weight
- 1,4-di 4.8% by weight of 4- (6- (acryloyloxy) dodecyloxy) benzoyloxy) -2-methylbenzene (LCA-12)
- Liquid crystal composition MLC-D was prepared.
- the phase transition temperature (° C.) of this liquid crystal composition MLC-D was N * 44.8 BP 46.7 BP + I 49.1 I, I 48.1 I + BP-BP 42.6 N *.
- the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending in the right direction from the left connection electrode portion and electrodes 2 extending in the left direction from the right connection electrode portion. Accordingly, when there is a potential difference between the electrode 1 and the electrode 2, on the comb-shaped electrode substrate as shown in FIG. 1, when attention is paid to one electrode, the upper direction and the lower direction on the drawing are two directions. A state in which an electric field exists can be provided.
- Example 9 The cell sandwiched with the polymer / liquid crystal composite material PSBP-D obtained in Example 8 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
- a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
- the cell was set in the optical system so that the temperature was 0 °.
- the relationship between applied voltage and transmittance at room temperature was examined. When a 35 V rectangular wave was applied, the transmittance was 85%, and the transmitted light intensity was saturated. The contrast was 884. From Example 7, it was found that CLC-D containing the compound of formula (1) of the present application had a high clearing point, and from Example 9, PSBP-D obtained from this was driven at a low voltage.
- a liquid crystal composition NLC-E was prepared by mixing the liquid crystal compounds shown in the following figure at the following ratios. The correspondence with the general formula is shown on the right side of the structural formula.
- Liquid crystal composition NLC-E The liquid crystal composition NLC-E had a phase transition temperature (° C.) of N 98.3 I.
- liquid crystal composition CLC-E (94.4% by weight), and chiral agents BN-H4 (2.8% by weight) and BN-H5 (2.8% by weight) represented by the following formula:
- a liquid crystal composition CLC-E was obtained.
- the liquid crystal composition CLC-E had a phase transition temperature (° C.) of N * 87.0 BP 89.1 I.
- the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending in the right direction from the left connection electrode portion and electrodes 2 extending in the left direction from the right connection electrode portion. Accordingly, when there is a potential difference between the electrode 1 and the electrode 2, on the comb-shaped electrode substrate as shown in FIG. 1, when attention is paid to one electrode, the upper direction and the lower direction on the drawing are two directions. A state in which an electric field exists can be provided.
- Example 12 The cell sandwiched with the polymer / liquid crystal composite material PSBP-E obtained in Example 11 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
- a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
- the cell was set in the optical system so that the temperature was 0 °.
- the relationship between applied voltage and transmittance at room temperature was examined. When a 37.5 V rectangular wave was applied, the transmittance was 90%, and the transmitted light intensity was saturated. The contrast was 975. From Example 10, it was found that CLC-E containing the compound of formula (1) of the present application has a high clearing point, and from Example 13, PSBP-E obtained from this was driven at a low voltage.
- a liquid crystal composition NLC-F was prepared by mixing the liquid crystal compounds shown in the following figure at the following ratios. The correspondence with the general formula is shown on the right side of the structural formula.
- Liquid crystal composition NLC-F The liquid crystal composition NLC-F had a phase transition temperature (° C.) of N 99.7 I.
- liquid crystal composition NLC-F (94.4% by weight), and chiral agents BN-H4 (2.8% by weight) and BN-H5 (2.8% by weight) represented by the following formula:
- a liquid crystal composition CLC-F was obtained.
- the liquid crystal composition CLC-F had a phase transition temperature (° C.) of N * 88.3 BP 91.9 I.
- the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending in the right direction from the left connection electrode portion and electrodes 2 extending in the left direction from the right connection electrode portion. Accordingly, when there is a potential difference between the electrode 1 and the electrode 2, on the comb-shaped electrode substrate as shown in FIG. 1, when attention is paid to one electrode, the upper direction and the lower direction on the drawing are two directions. A state in which an electric field exists can be provided.
- Example 15 The cell sandwiched with the polymer / liquid crystal composite material PSBP-F obtained in Example 14 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
- a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
- the cell was set in the optical system so that the temperature was 0 °.
- the relationship between applied voltage and transmittance at room temperature was examined. When a 35.2 V rectangular wave was applied, the transmittance was 90%, and the transmitted light intensity was saturated. The contrast was 1147. From Example 13, it was found that CLC-F containing the compound of formula (1) of the present application has a high clearing point, and from Example 15, PSBP-F obtained from this was driven at a low voltage.
- Example 16 Preparation of Nematic Liquid Crystal Composition (NLC) As shown in Table 1, nematic liquid crystal compositions NLC-G, NLC-L, NLC-M, NLC-N, NLC containing the compound of formula (1) -O and NLC-P were prepared (Table 1). In Table 1, each compound showed correspondence with the general formula of this specification. Further, the phase transition points (NI points) of the respective nematic liquid crystal compositions are as shown in Table 2. Table 1 Table 2. Phase transition point (NI point) of nematic liquid crystal composition
- Example 17 Preparation of Chiral Liquid Crystal Composition (CLC)
- each nematic liquid crystal composition (94.70% by weight) shown in Table 1 was converted into a chiral agent BN-H4 (2.65% by weight) shown below.
- Chiral liquid crystal compositions CLC-G, CLC-L, CLC-M, CLC-N, CLC-O and CLC-P were prepared by mixing with BN-H5 (2.65 wt%), respectively.
- the composition of the chiral liquid crystal composition was as follows, and the phase transition point was as shown in Table 3.
- Example 18 Preparation of liquid crystal composition (MLC) as a mixture with a polymerizable monomer
- MLC liquid crystal composition
- Example 17 Each chiral liquid crystal composition (CLC) prepared in Example 17 was heated and mixed in a isotropic phase with a mixture of a polymerizable monomer.
- liquid crystal compositions MLC-G, MLC-L, MLC-M, MLC-N, MLC-O and MLC-P were prepared.
- the composition of these liquid crystal compositions was as follows, and the phase transition points were as shown in Table 4.
- LCA-6, LCA-12 and DMPA described in Table 4 are 1,4-di (4- (6- (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene (LCA-6), 1 , 4-di (4- (6- (acryloyloxy) dodecyloxy) benzoyloxy) -2-methylbenzene (LCA-12), 2,2′-dimethoxyphenylacetophenone, DMPA is a photopolymerization initiator .
- Example 19 Cell in which preparation of polymer / liquid crystal composite material is held An alignment treatment is not applied to a liquid crystal composition (MLC) which is a mixture of a chiral liquid crystal composition (CLC) and a polymerizable monomer. It was sandwiched between a comb-shaped electrode substrate and a counter glass substrate (non-electrode provided) and heated to a blue phase.
- MLC liquid crystal composition
- CLC chiral liquid crystal composition
- the polymer / liquid crystal composite material (PSBP) thus obtained maintained an optically isotropic liquid crystal phase even when cooled to room temperature.
- Example 20 Optical System Using Cell
- the cell in which the polymer / liquid crystal composite material obtained in Example 5 was sandwiched was set in the optical system shown in FIG. Specifically, a white light source of a polarization microscope (Nikon Eclipse LV100POL) is used as a light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is Polarizer and Analyzer polarizer A cell in which the polymer / liquid crystal composite material obtained in Example 19 was held so as to be 45 ° with respect to each other was set (FIG. 2). Using this optical system, the relationship between the applied voltage and the transmittance of the polymer / liquid crystal composite material obtained in Example 5 at room temperature was examined. Table 5 shows physical property values of the polymer / liquid crystal composite material (PSBP) sandwiched between the cells.
- PSBP polymer / liquid crystal composite material
- the optical element of the present invention has a high upper limit temperature of the liquid crystal phase and can be driven at a high voltage with a high contrast, or exhibits a high-speed response even though the upper limit temperature of the liquid crystal phase is high. Superior to the prior art.
- Examples of the utilization method of the present invention include optical elements such as display elements using a polymer / liquid crystal composite.
- Electrode 1 Electrode 1 2 ... Electrode 2 3 ... Light source 4 ... Polarizer (Polarizer) 5 ... Comb electrode cell 6 ... Analyzer (polarizer) (Analyzer) 7 ... Photodetector
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Geometry (AREA)
- Liquid Crystal Substances (AREA)
Abstract
Description
素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PM(passive matrix)はスタティック(static)とマルチプレックス(multiplex)などに分類され、AMはTFT(thin film transistor)、MIM(metal insulator metal)などに分類される。
(1)化学的に安定であること、および物理的に安定であること、
(2)高い透明点(液晶相-等方相の相転移温度)を有すること、
(3)液晶相(ネマチック相、コレステリック相、スメクチック相、ブルー相などの光学的に等方性の液晶相等)の下限温度が低いこと、
(4)他の液晶化合物との相溶性に優れること、
(5)適切な大きさの誘電率異方性を有すること、
(6)適切な大きさの屈折率異方性を有すること、
である。
特に、光学的に等方性の液晶相においては、誘電率異方性と屈折率異方性が共に大きな液晶化合物が駆動電圧低減の観点から好ましい。
また、(2)および(3)のように、高い透明点、あるいは液晶相の低い下限温度を有する液晶化合物を含む液晶組成物ではネマチック相や光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。液晶化合物は、単一の化合物では発揮することが困難な特性を発現させるために、他の多くの液晶化合物と混合して調製した液晶組成物として用いることが一般的である。したがって、液晶表示素子に用いられる液晶化合物は、(4)のように、他の液晶化合物等との相溶性が良好であることが好ましい。近年は特に表示性能、例えばコントラスト、表示容量、応答時間特性等のより高い液晶表示素子が要求されている。さらに使用される液晶材料には駆動電圧の低い液晶組成物が要求されている。また光学的に等方性の液晶相で駆動させる光素子を低電圧で駆動させるためには、誘電率異方性および屈折率異方性が大きい液晶化合物を用いることが好ましい。
ここで、R1は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R1において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;L1、L2、L3、L4、L5、L6、L7およびL8は独立して、水素またはフッ素であり;Z1、Z2およびZ3はそれぞれ独立して、単結合、-COO-、または-CF2O-であり、少なくとも一つは-COO-であり;n1およびn2はそれぞれ独立して0または1であり;X1は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよく、X1において-O-と-CH=CH-、および-CO-と-CH=CH-が隣接することはない。
ここで、R1Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;Z1およびZ2はそれぞれ独立して、単結合、-COO-または-CF2O-であるが、少なくとも一つは-COO-であり;
X1Aは、フッ素、塩素、-CF3または-OCF3である。
ここで、R1Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;X1Aは、フッ素、塩素、または-CF3である。
ここで、R1Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;X1Aは、フッ素、塩素、-CF3または-OCF3である。
ここで、R2は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R2において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;環A21、環A22、環A23、環A24、および環A25は独立して、1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレン、2つの水素がそれぞれフッ素と塩素で置き換えられた1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイルであり;Z21、Z22、Z23、Z24、Z25、およびZ26は独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の少なくとも1つの-CH2-は、-O-、-COO-または-CF2O-で置き換えられてもよく;L21、L22およびL23は独立して、水素またはフッ素であり;X2はフッ素、塩素、-CF3、または-OCF3であり;n21、n22、n23、n24、およびn25は独立して、0または1であり、2≦n21+n22+n23+n24+n25≦3である。
ここで、R2Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;(F)は独立して、水素、またはフッ素であり;X2Aは、フッ素、塩素、-CF3、または-OCF3である。
式(3)において、R3は水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R3において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;Z31、Z32、およびZ33は独立して、単結合、-COO-または-CF2O-であるが、少なくとも1つは-CF2O-であり;L31、L32、L33、L34およびL35は独立して、水素またはフッ素であり;X3は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X3において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。
ここで、R3Aは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり、X3Aはフッ素、塩素、-CF3、または-OCF3であり、L31~L35は独立して水素またはフッ素である。
ここで、R4は、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;環Bは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、3,5-ジフルオロ-1,4-フェニレン、3,5-ジクロロ-1,4-フェニレン、またはピリミジン-2,5-ジイルであり;Z41は独立して、単結合、エチレン、-COO-、-OCO-、-CF2O-、または-OCF2-であり;L48およびL49は独立して、水素またはフッ素であり;X4は、フッ素、塩素、-CF3または-OCF3であり;n41は、1、2、3、または4であり、ただしn41が3または4である場合、一つのZ41は-CF2O-または-OCF2-であり;n41が3の場合は、環Bのすべてがフッ素で置換された1,4-フェニレンであることはない。
ここで、R4Aは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり、X4Aはフッ素、塩素、-CF3、または-OCF3であり、L40~L49は独立して水素またはフッ素である。
ここで、R5は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R5において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;(F)は独立して、水素またはフッ素であり;X5は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X5において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。
ここで、R5Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;(F)は独立して、水素またはフッ素であり;X5Aは、フッ素、塩素、-CF3または-OCF3である。
ここで、R6AおよびR6Bは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;環Cおよび環Dは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレンまたは2,5-ジフルオロ-1,4-フェニレンであり;Z61は独立して、単結合、エチレン、-COO-、または-OCO-であり;rは、1、2、または3である。
ここで、R6AおよびR6Bは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルである。
ここで、R7は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R7において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;L71、L72、L73、L74、L75およびL76は独立して、水素またはフッ素であり;Z71およびZ72はそれぞれ独立して、単結合または-CF2O-であるが、少なくとも一つは-CF2O-であり;
X7は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X7において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。
ここで、R7Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;L72、L74、L75およびL76は独立して、水素またはフッ素であり;Z71およびZ72はそれぞれ独立して、単結合または-CF2O-であるが、少なくとも一つは-CF2O-であり;
X7Aは、フッ素、塩素、-CF3または-OCF3である。
ここで、RKは独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中の少なくとも1つの水素はハロゲンで置き換えられてもよく;Aは独立して、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、環の-CH2-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Bは独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH2-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Zは独立して、単結合、炭素数1~8のアルキレンであり、このアルキレン中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、または-N=CH-で置き換えられてもよく、このアルキレン中の少なくとも1つの-CH2-CH2-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;Xは単結合、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、または-CH2CH2-であり;mKは1~4の整数である。
ここで、RKは独立して、炭素数3~10のアルキルまたは炭素数3~10のアルコキシであり、アルキル中またはアルコキシ中の少なくとも1つの-CH2-は、-CH=CH-で置き換えられてもよいが、-O-と-C=C-は隣接しない。
本発明の光学的に等方性の液晶相で駆動される光素子は、使用できる広い温度範囲、短い応答時間、大きなコントラスト比、および低い駆動電圧を有する。
本発明の光学的に等方性の液晶相を有する液晶組成物は、アキラル成分Tとキラル剤を含有し、アキラル成分Tは第一成分として、前記式(1)で表される化合物を含む。
本発明の液晶組成物の第1の態様は、第一成分と本明細書中で特に成分名を示していないその他の成分を含有する組成物である。まず、式(1)で表される化合物について説明する。
式(1)において、R1は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R1において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;L1、L2、L3、L4、L5、L6、L7およびL8は独立して、水素またはフッ素であり;Z1、Z2およびZ3はそれぞれ独立して、単結合または-COO-、-CF2O-であり、少なくとも一つは-COO-であり;n1およびn2はそれぞれ独立して0または1であり;X1は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよく、X1において-O-と-CH=CH-、および-CO-と-CH=CH-が隣接することはない。
(式(1-1)~(1-8)において、R1Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;L2、L4、L5、L6、L7およびL8は独立して、水素またはフッ素であり;Z1、Z2およびZ3はそれぞれ独立して、単結合、-COO-または-CF2O-であるが、少なくとも一つは-COO-であり;
X1Aは、フッ素、塩素、-CF3または-OCF3である。
ここで、R1A、Z1、Z2およびX1Aの定義は前記と同じである。
上記式においてさらに好ましい化合物は(1-2-2-1)、(1-2-5-1)および(1-2-6-1)である。いずれも本願組成物の高透明点化を可能とするが、(1-2-2-1)、(1-2-5-1)は駆動電圧を低下させる効果が高く、(1-2-6-1)は、透明点を上昇させる効果がさらに高く、一方で、応答時間が比較的高速である。
ここで、R1Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;X1Aは、フッ素、塩素、または-CF3である。
本発明に用いられる化合物(1)をさらに詳細に説明する。化合物(1)はジオキサン環を有し、かつ少なくとも一つの-COO-連結基を有する液晶化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして透明点が高いにも関らず、他の液晶化合物との相溶性が比較的よい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物において光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は光学的に等方性の液晶相で駆動される組成物の駆動電圧を下げるための成分として有用である。すなわち、式(1)の化合物は、透明点を上昇させ、かつ駆動電圧を低下させるという、優れた特長を有する。また、極めて大きな誘電率異方性を発現する。
次に、化合物(1)の合成について説明する。化合物(1)は有機合成化学における手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
本発明の液晶組成物の第2の態様は、式(2)で表される化合物の群から選択された少なくとも1つの化合物からなるアキラル成分Tの第二成分と第一成分とを含有する組成物である。
式(2)で表される化合物について説明する。
式(2)において、R2は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R2において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;環A21、環A22、環A23、環A24、および環A25は独立して、1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレン、2つの水素がそれぞれフッ素と塩素で置き換えられた1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイルであり;Z21、Z22、Z23、Z24、Z25、およびZ26は独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の少なくとも1つの-CH2-は、-O-、-COO-または-CF2O-で置き換えられてもよく;L21、L22およびL23は独立して、水素またはフッ素であり;X2はフッ素、塩素、-CF3、または-OCF3であり;n21、n22、n23、n24、およびn25は独立して、0または1であり、2≦n21+n22+n23+n24+n25≦3である。
式(2-1)において、式(2)のR2Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり、Z21~Z26の定義は前記式(2)と同一であり、およびX2Aはフッ素、塩素、-CF3および-OCF3であり、式(2-1)中のn22、n23、n24およびn25は独立して、0または1であり、n22+n23+n24+n25は1~2の整数であり、(F)は独立して水素またはフッ素を表す。
これらの式において、R2A、(F)、およびX2Aの定義は前述の式(2-1-1)~(2-1-5)と同一である。
本発明に用いられる化合物(2-1)をさらに詳細に説明する。化合物(2-1)はクロロベンゼン環を有する液晶化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして他の液晶化合物との相溶性がよい。さらにスメクチック相を発現しにくい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物においてコレステリック相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は誘電率異方性と屈折率異方性が大きい為、コレステリック相で駆動される組成物の駆動電圧を下げるため、反射率を上げるための成分として有用である。
本発明の液晶組成物の第3の態様は、式(3)で表される化合物の群から選択された少なくとも1つの化合物からなるアキラル成分Tの第三成分と第一成分とを含有する組成物である。第三成分と第一成分に加えて、さらに第二成分も含有してもよい。
式(3)において、R3は水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R3において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;Z31、Z32、およびZ33は独立して、単結合、-COO-または-CF2O-であるが、少なくとも1つは-CF2O-であり;L31、L32、L33、L34およびL35は独立して、水素またはフッ素であり;X3は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X3において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。
これらの式において、R3Aは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり、X3Aはフッ素、塩素、-CF3、-OCF3であり、L31~L35は独立して水素またはフッ素である。
本発明に用いられる化合物(3)をさらに詳細に説明する。化合物(3)は4個のベンゼン環を有し、少なくとも1個の-CF2O-連結基を有する化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして他の液晶化合物との相溶性がよい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物においてコレステリック相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は誘電率異方性と屈折率異方性が大きい為、コレステリック相で駆動される組成物の駆動電圧を下げるため、および反射率を上げるための成分として有用である。
化合物(3)の好ましい例は、式(3-1)~(3-3)である。より好ましい例として、式(3-2A)~(3-2H)、(3-3A)~(3-3D)を挙げることができる。さらに好ましい例として式(3-2A)~(3-2D)、(3-3A)、(3-3B)を挙げることができる。最も好ましい例として、式(3-2A)、(3-2C)、(3-3A)を挙げることができる。
本発明の第4の態様は、前記式(1)および付加成分として前記式(2)および(3)で表される化合物からなる成分Aと式(4)で表される化合物の群から選択された少なくとも一つの化合物からなるアキラル成分Tの第四成分を含有する組成物である。
式(4)で表される化合物について説明する。
式(4)において、R4は、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;環Bは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、3,5-ジフルオロ-1,4-フェニレン、3,5-ジクロロ-1,4-フェニレン、またはピリミジン-2,5-ジイルであり;Z41は独立して、単結合、エチレン、-COO-、-OCO-、-CF2O-、または-OCF2-であり;L23およびL24は独立して、水素またはフッ素であり;X4は、フッ素、塩素、-CF3または-OCF3であり;n41は、1、2、3、または4であり、ただしn41が3または4である場合、一つのZ41は-CF2O-または-OCF2-であるが;n41が3の場合は、環Bのすべてがフッ素で置換された1,4-フェニレンであることはない。
X4は、フッ素、塩素、-CF3または-OCF3である。誘電率異方性を上げるために、-CF3であることが好ましく、相溶性が良好にするためにフッ素、-OCF3が好ましく、屈折率異方性を上げるために塩素が好ましい。
上記式(4-1)~(4-9)において、R4Aは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり、X4Aはフッ素、塩素、-CF3、-OCF3であり、L40~L49は独立して水素またはフッ素である。
(4-1)~(4-3)は透明点が高く、5環としては相溶性に優れる。(4-4)~(4-6)は透明点が高く、Δnが大きく、(4-7)~(4-9)は相溶性に優れる。なお、L40~L49において、フッ素の数が多いほど、誘電率異方性が大きい。
本発明の第5の態様は、前記式(1)および付加成分として前記式(2)および(3)で表される化合物の群から選択された少なくとも1つの化合物からなる成分Aと前記式(5)で表される化合物の群から選択された少なくとも一つの化合物からなるアキラル成分Tの第五成分、およびキラル剤を含有する液晶組成物である。アキラル成分Tとして、さらに第4成分を含有してもよい。式(5)で表される化合物について説明する。
式(5)において、R5は水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R5において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;(F)は独立して、水素またはフッ素であり;X5は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X5において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。
(式(5-1)~(5-4)において、R5Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;(F)は独立して、水素、またはフッ素であり;X5Aは、フッ素、塩素、-CF3または-OCF3である。;
本発明に用いられる化合物(5)をさらに詳細に説明する。化合物(5)はジオキサン環と3個のベンゼン環を有する液晶化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして透明点が高いにも関らず、他の液晶化合物との相溶性が比較的よい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物において光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は光学的に等方性の液晶相で駆動される組成物の駆動電圧を下げるための成分として有用である。また、化合物(5)とキラル剤から調製された組成物でブルー相を発現させると、N*相や等方相との共存がない均一なブルー相となりやすい。すなわち、化合物(5)は均一なブルー相を発現させやすい化合物である。
次に、化合物(5)の合成について説明する。化合物(5)は有機合成化学における手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
本発明の液晶組成物の第6の態様は、式(6)で表される化合物の群から選択された少なくとも1つの化合物からなるアキラル成分Tの第六成分と第一成分とを含有する組成物である。第六成分と第一成分に加えて、さらに第二~五成分も含有してもよい。
式(6)において、R6AおよびR6Bは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;環Cおよび環Dは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレンまたは2,5-ジフルオロ-1,4-フェニレンであり;Z61は独立して、単結合、エチレン、-COO-、または-OCO-であり;rは、1、2、または3である。
請求項29
上記式(6-1)~(6-13)において、R6AおよびR6Bは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルである。
(6-1)~(6-3)は粘度が低く、(6-4)~(6-8)は透明点が高く、(6-9)~(6-13)は透明点が極めて高い。
本発明の液晶組成物の第7の態様は、式(7)で表される化合物の群から選択された少なくとも1つの化合物からなるアキラル成分Tの第七成分と第一成分とを含有する組成物である。第七成分と第一成分に加えて、さらに第二~六成分も含有してもよい。
式(7)において、R7は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R7において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;L71、L72、L73、L74、L75およびL76は独立して、水素またはフッ素であり;Z71およびZ72はそれぞれ独立して、単結合または-CF2O-であるが、少なくとも一つは-CF2O-であり;
X7は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、れた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X7において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。
(式(7-1)~(7-3)において、R7Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;L72、L74、L75およびL76は独立して、水素またはフッ素であり;Z71およびZ72はそれぞれ独立して、単結合または-CF2O-であるが、少なくとも一つは-CF2O-であり;
X7Aは、フッ素、塩素、-CF3または-OCF3である。
ここで、R7A、Z71、Z72およびX7Aの定義は前記と同じである。
上記式においてさらに好ましい化合物は(7-2-2-1)および(7-2-5-1)である。
ここで、R7Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;X7Aは、フッ素、塩素、または-CF3である。
本発明に用いられる化合物(7)をさらに詳細に説明する。化合物(7)はジオキサン環と3個のベンゼン環を有し、かつ少なくとも一つの-CF2O-連結基を有する液晶化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして透明点が高いにも関らず、他の液晶化合物との相溶性が比較的よい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物において光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は光学的に等方性の液晶相で駆動される組成物の駆動電圧を下げるための成分として有用である。また、化合物(7)とキラル剤から調製された組成物でブルー相を発現させると、N*相や等方相との共存がない均一なブルー相となりやすい。すなわち、化合物(7)は均一なブルー相を発現させやすい化合物である。また、極めて大きな誘電率異方性を発現する。
次に、化合物(7)の合成について説明する。化合物(7)は有機合成化学における手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
8.1 光学的に等方性の液晶相を有する組成物の組成
本発明の第8の態様は、アキラル成分Tとキラル剤とを含む組成物であり、光学的に等方性の液晶相で駆動される光素子に用いることのできる液晶組成物である。アキラル成分Tは、式(1)および付加成分として式(2)、式(3)、式(5)、式(7)で表される化合物からなる成分Aを含む。アキラル成分Tは、必要に応じて成分Aに加えて、式(4)で表されるアキラル成分Tの第四成分および式(6)で表される第六成分からなる群から選ばれる化合物を含む。本発明の液晶組成物は、光学的等方性の液晶相を発現する組成物である。本発明のアキラル成分T及びキラル剤は、ラジカル重合性基を有さない化合物から選ばれた化合物からなることが好ましい。
式(1)で表される化合物の含有量は、アキラル成分Tの全重量に対して、3~80重量%でもよく、式(2)で表される化合物の含有量は、アキラル成分Tの全重量に対して、0.5~70重量%でもよく、式(3)で表される化合物の含有量は、アキラル成分Tの全重量に対して、0.5~70重量%でもよく、式(4)で表される第四成分の含有量は、アキラル成分Tの全重量に対して、5~40重量%でもよく、式(5)で表される第五成分の含有量は、アキラル成分Tの全重量に対して、1~50重量%でもよく、および式(6)で表される第六成分の好ましい含有量は、アキラル成分Tの全重量に対して、0~40重量%でもよく、式(7)で表される第五成分の含有量は、アキラル成分Tの全重量に対して、5~80重量%でもよい。
キラル剤の含有量は、液晶組成物の全重量に対して、1~40重量%である。
光学的に等方性の液晶組成物が含有するキラル剤は光学活性化合物であり、キラル剤としては、ねじり力(Helical Twisting Power)が大きい化合物が好ましい。ねじり力が大きい化合物は所望のピッチを得るために必要な添加量が少なくできるので、駆動電圧の上昇を抑えられ、実用上有利である。具体的には、下記式(K1)~(K5)で表される化合物が好ましい。
式(K1)~(K5)中、RKは独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中の少なくとも1つの水素はハロゲンで置き換えられてもよく;Aは独立して、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH2-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Bは独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH2-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Zは独立して、単結合、炭素数1~8のアルキレンであるが、少なくとも1つの-CH2-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、または-N=CH-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;Xは単結合、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、または-CH2CH2-であり;mKは1~4である。
液晶組成物が光学的に等方性を有するとは、巨視的には液晶分子配列は等方的であるため光学的に等方性を示すが、微視的には液晶秩序が存在することをいう。「液晶組成物が微視的に有する液晶秩序に基づくピッチ(以下では、ピッチと呼ぶことがある)」は700nm以下であることが好ましく、500nm以下であることがさらに好ましく、350nm以下であることが最も好ましい。
また、可視光の光を反射する液晶材料では、表示素子として利用する場合に色味が問題となることがあるが、二色以上の回折光を示さない液晶では、反射波長が低波長シフトするため、狭義のブルー相(プレートレット組織を発現する相)より長いピッチで可視光の反射を消失させることができる。
光学的に等方性の液晶相における電気複屈折はピッチが長くなるほど大きくなるので、その他の光学特性(透過率、回折波長など)の要求を満たす限り、キラル剤の種類と含有量を調整して、ピッチを長く設定することにより、電気複屈折を大きくすることができる。
本発明の光学的に等方性の液晶組成物は、その組成物の特性に影響を与えない範囲で、さらに高分子物質等の他の化合物が添加されてもよい。本発明の液晶組成物は、高分子物質の他にも、たとえば二色性色素、フォトクロミック化合物を含有していてもよい。二色性色素の例としては、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系、テトラジン系などが挙げられる。
本発明の第9の態様は、式(1)で表される化合物およびキラル剤を含む液晶組成物と高分子の複合材料であり、光学的に等方性を示すものである。光学的に等方性の液晶相で駆動される光素子に用いることのできる光学的に等方性の高分子/液晶複合材料である。このような高分子/液晶複合材料は例えば、前述の項[1]~[32]に記載の液晶組成物(液晶組成物CLC)と高分子で構成される。
本発明の複合材料は、光学的に等方性の液晶組成物と、予め重合されて得られた高分子とを混合しても製造できるが、高分子の材料となる低分子量のモノマー、マクロモノマー、オリゴマー等(以下、まとめて「モノマー等」という)と液晶組成物CLCとを混合してから、当該混合物において重合反応を行うことによって、製造されることが好ましい。モノマー等と液晶組成物とを含む混合物を本件明細書では、「重合性モノマー/液晶混合物」と呼ぶ。「重合性モノマー/液晶混合物」には必要に応じて、後述する重合開始剤、硬化剤、触媒、安定剤、二色性色素、またはフォトクロミック化合物等を、本発明の効果を損なわない範囲で含んでもよい。たとえば、本件発明の重合性モノマー/液晶混合物には必要に応じて、重合開始剤を重合性モノマー100重量部に対して0.1~20重量部含有してもよい。「重合性モノマー/液晶混合物」は、ブルー相で重合する場合は液晶媒体であることが必須となるが、等方相で重合する場合は、必ずしも液晶媒体である必要はない。
また、好適な複合材料を得るためには、高分子はメソゲン部位を有するものが好ましく、高分子の原料モノマーとしてメソゲン部位を有する原料モノマーをその一部に、あるいは全部に用いることができる。
メソゲン部位を有する単官能性、または二官能性モノマーは構造上特に限定されないが、例えば下記の式(M1)または式(M2)で表される化合物を挙げることができる。
また、式(M3-2)、式(M3-3)、式(M3-4)、式(M3-7)はラジカル重合で重合するのが好適である。式(M3-1)、式(M3-5)、式(M3-6)はカチオン重合で重合するのが好適である。いずれもリビング重合なので、少量のラジカルあるいはカチオン活性種が反応系内に発生すれば重合は開始する。活性種の発生を加速する目的で重合開始剤を使用できる。活性種の発生には例えば光または熱を使用できる。
化合物の安定性を考慮して、酸素と酸素とが隣接した-CH2-O-O-CH2-よりも、酸素と酸素とが隣接しない-CH2-O-CH2-O-の方が好ましい。硫黄においても同様である。
2-フルオロ-1,4-フェニレンは、3-フルオロ-1,4-フェニレンと構造的に同一であるので、後者は例示しなかった。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンの関係などにも適用される。
メソゲン部位を有さない重合性のある官能基を持つモノマーとして、例えば、炭素数1~30の直鎖あるいは分岐アクリレート、炭素数1~30の直鎖あるいは分岐ジアクリレート、三つ以上の重合性官能基を有するモノマーとしては、グリセロール・プロポキシレート(1PO/OH)トリアクリレート、ペンタエリスリトール・プロポキシレート・トリアクリレート、ペンタエリスリトール・トリアクリレート、トリメチロールプロパン・エトキシレート・トリアクリレート、トリメチロールプロパン・プロポキシレート・トリアクリレート、トリメチロールプロパン・トリアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ペンタエリスリトール・テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート、トリメチロールプロパン・トリアクリレートなどを挙げることができるが、これらに限定されるものではない。
本発明の複合材料を構成する高分子の製造における重合反応は特に限定されず、例えば、光ラジカル重合、熱ラジカル重合、光カチオン重合等が行われる。
本発明の複合材料を構成する高分子の製造において、前記モノマー等および重合開始剤の他にさらに1種または2種以上の他の好適な成分、例えば、硬化剤、触媒、安定剤等を加えてもよい。
本発明の高分子/液晶複合材料中における液晶組成物の含有率は、複合材料が光学的に等方性の液晶相を発現できる範囲であれば、可能な限り高含有率であることが好ましい。液晶組成物の含有率が高い方が、本発明の複合材料の電気複屈折値が大きくなるからである。
本発明の高分子/液晶複合材料は、たとえば二色性色素、フォトクロミック化合物を本発明の効果を損なわない範囲で含有していてもよい。
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例によっては制限されない。なお特に断りのない限り、「%」は「重量%」を意味する。
本発明の第10の態様は、液晶組成物または高分子/液晶複合材料(以下では、本発明の液晶組成物および高分子/液晶複合材料を総称して液晶媒体と呼ぶことがある)を含む光学的に等方性の液晶相で駆動される光素子である。
電界無印加時には液晶媒体は光学的に等方性であるが、電場を印加すると、液晶媒体は光学的異方性を生じ、電界による光変調が可能となる。
液晶表示素子の構造例としては、図1に示すように、櫛型電極基板の電極が、左側から伸びる電極1と右側から伸びる電極2が交互に配置された構造を挙げることができる。電極1と電極2との間に電位差がある場合、図1に示すような櫛型電極基板上では、1本の電極に注目すると、図面上の上方向と下方向の2つの方向の電界が存在する状態を提供できる。
本発明の第11の態様は、式(1)で表される化合物の群から選択された少なくとも1つの化合物を含有するアキラル成分Tとキラル剤を含有し、かつ光学的等方性の液晶相を発現する液晶組成物の光素子への使用である。この液晶組成物は、低い駆動電圧と短い応答時間を示すため、光素子の低電圧駆動化、高速応答化に有効である。
記録計としては島津製作所製のC-R6A型Chromatopac、またはその同等品を用いた。得られたガスクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
液晶化合物の物性値を測定する試料としては、化合物そのものを試料とする場合、化合物を母液晶と混合して試料とする場合の2種類がある。
物性値の測定は後述する方法で行った。これら測定方法の多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。また、測定に用いたTN素子には、TFTを取り付けなかった。
(1)偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に化合物を置き、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、液晶相の種類を特定した。
(2)パーキンエルマー社製走査熱量計DSC-7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め(on set)、相転移温度を決定した。
ピッチ長は選択反射を用いて測定した(液晶便覧196頁 2000年発行、丸善)。選択反射波長λには、関係式<n>p/λ=1が成立する。ここで<n>は平均屈折率を表し、次式で与えられる。<n>={(n∥ 2+n⊥ 2)/2}1/2。選択反射波長は顕微分光光度計(日本電子(株)、商品名MSV-350)で測定した。得られた反射波長を平均屈折率で除すことにより、ピッチを求めた。可視光より長波長領域に反射波長を有するコレステリック液晶のピッチは、光学活性化合物濃度が低い領域では光学活性化合物の濃度の逆数に比例することから、可視光領域に選択反射波長を有する液晶のピッチ長を数点測定し、直線外挿法により求めた。「光学活性化合物」は本発明におけるキラル剤に相当する。
1)誘電率異方性が正である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。TN素子に16ボルト~19.5ボルトの範囲で0.5ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文の40頁の計算式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度の測定で使用した素子にて、下記の誘電率異方性の測定方法で求めた。
1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が(0.5/Δn)μmであり、ツイスト角が80度である、ノーマリーホワイトモード(normally white mode)の液晶表示素子に試料を入れた。Δnは上記の方法で測定した屈折率異方性の値である。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率が90%になったときの電圧の値を測定した。
可視光より長波長領域に反射波長を有するコレステリック液晶のピッチは、キラル剤濃度が低い領域ではキラル剤の濃度の逆数に比例することから、可視光領域に選択反射波長を有する液晶のピッチ長を数点測定し、直線外挿法により求めた。
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物NLC-Aを調製した。
構造式の右側に一般式との対応を記した。
液晶組成物NLC-A
この液晶組成物NLC-Aの相転移温度(℃)はN 77.6 Iであった。
この液晶組成物CLC-Aの相転移温度(℃)はN* 69.8 BP 71.6 Iであった。
BN-H4
BN-H5
モノマーと液晶組成物の混合物の調製
液晶組成物と重合性モノマーとの混合物として液晶組成物CLC-Aを88.8重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)を4.8重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを0.4重量%混合した液晶組成物MLC-Aを調製した。この液晶組成物MLC-Aの相転移温度(℃)は
N* 37.5 BP 42.6 I、I 41.6 BP 35.0 N*であった。
LCA-12
液晶組成物MLC-Aを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚8μm)、得られたセルを40.5℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
このようにして得られた高分子/液晶複合材料(PSBP-A)は室温まで冷却しても光学的に等方性の液晶相を維持していた。
比較例2で得られた高分子/液晶複合材料PSBP-Aが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。65Vの矩形波を印加すると、透過率が92%となり、透過光強度は飽和した。コントラストは1070であった。
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物NLC-Bを調製した。
構造式の右側に一般式との対応を記した。
液晶組成物NLC-B
この液晶組成物NLC-Bの相転移温度(℃)はN 89.9 Iであった。
この液晶組成物CLC-Bの相転移温度(℃)はN* 84.6 BP 86.9 Iであった。
モノマーと液晶組成物の混合物の調製
液晶組成物と重合性モノマーとの混合物として液晶組成物CLC-Bを88.8重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)を4.8重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを0.4重量%混合した液晶組成物MLC-Bを調製した。この液晶組成物MLC-Bの相転移温度(℃)は
N* 47.9 BP 50.3 I、I 47.0 BP 45.2 N*であった。
LCA-12
液晶組成物MLC-Bを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚9μm)、得られたセルを47.9℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
このようにして得られた高分子/液晶複合材料(PSBP-B)は室温まで冷却しても光学的に等方性の液晶相を維持していた。
実施例2で得られた高分子/液晶複合材料PSBP-Bが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。28Vの矩形波を印加すると、透過率が80%となり、透過光強度は飽和した。コントラストは873であった。このように、本願の式(1)の化合物を含有するPSBP-Bは低電圧で駆動することがわかった。
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物NLC-Cを調製した。
構造式の右側に一般式との対応を記した。
液晶組成物NLC-C
この液晶組成物NLC-Cの相転移温度(℃)はN 91.2 Iであった。
この液晶組成物CLC-Cの相転移温度(℃)はN* 81.0 BP 83.0 BP+I 83.5 Iであった。
モノマーと液晶組成物の混合物の調製
液晶組成物と重合性モノマーとの混合物として液晶組成物CLC-Cを88.8重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)を4.8重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを0.4重量%混合した液晶組成物MLC-Cを調製した。この液晶組成物MLC-Cの相転移温度(℃)は
N* 44.4 BP 48.4 BP+I 50.6 I、I-I+BP 48.0 BP 44.4 N*であった。
液晶組成物MLC-Cを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚8μm)、得られたセルを46.6℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
このようにして得られた高分子/液晶複合材料(PSBP-C)は室温まで冷却しても光学的に等方性の液晶相を維持していた。
実施例5で得られた高分子/液晶複合材料PSBP-Cが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。25Vの矩形波を印加すると、透過率が85%となり、透過光強度は飽和した。コントラストは934であった。このように、本願の式(1)の化合物を含有するPSBP-Cは低電圧で駆動することがわかった。
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物NLC-Dを調製した。
構造式の右側に一般式との対応を記した。
液晶組成物NLC-D
この液晶組成物NLC-Dの相転移温度(℃)はN 87.2 Iであった。
この液晶組成物CLC-Dの相転移温度(℃)はN* 77.4 BP 79.5 Iであった。
モノマーと液晶組成物の混合物の調製
液晶組成物と重合性モノマーとの混合物として液晶組成物CLC-Dを88.8重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)を4.8重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを0.4重量%混合した液晶組成物MLC-Dを調製した。この液晶組成物MLC-Dの相転移温度(℃)は
N* 44.8 BP 46.7 BP+I 49.1 I、I 48.1 I+BP-BP 42.6 N*であった。
液晶組成物MLC-Dを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚8μm)、得られたセルを45.0℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
このようにして得られた高分子/液晶複合材料(PSBP-D)は室温まで冷却しても光学的に等方性の液晶相を維持していた。
実施例8で得られた高分子/液晶複合材料PSBP-Dが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。35Vの矩形波を印加すると、透過率が85%となり、透過光強度は飽和した。コントラストは884であった。
実施例7より、本願の式(1)の化合物を含有するCLC-Dは透明点が高く、実施例9より、これより得られたPSBP-Dは低電圧で駆動することがわかった。
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物NLC-Eを調製した。
構造式の右側に一般式との対応を記した。
液晶組成物NLC-E
この液晶組成物NLC-Eの相転移温度(℃)はN 98.3 Iであった。
この液晶組成物CLC-Eの相転移温度(℃)はN* 87.0 BP 89.1 Iであった。
モノマーと液晶組成物の混合物の調製
液晶組成物と重合性モノマーとの混合物として液晶組成物CLC-Eを88.8重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)を4.8重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを0.4重量%混合した液晶組成物MLC-Eを調製した。この液晶組成物MLC-Eの相転移温度(℃)は
N* 52.2 BP 57.3 BP+I 58.2 I、I 55.6 I+BP 50.6BP 49.2 N*であった。
液晶組成物MLC-Eを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚8μm)、得られたセルを52.3℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
このようにして得られた高分子/液晶複合材料(PSBP-E)は室温まで冷却しても光学的に等方性の液晶相を維持していた。
実施例11で得られた高分子/液晶複合材料PSBP-Eが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。37.5Vの矩形波を印加すると、透過率が90%となり、透過光強度は飽和した。コントラストは975であった。
実施例10より、本願の式(1)の化合物を含有するCLC-Eは透明点が高く、実施例13より、これより得られたPSBP-Eは低電圧で駆動することがわかった。
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物NLC-Fを調製した。
構造式の右側に一般式との対応を記した。
液晶組成物NLC-F
この液晶組成物NLC-Fの相転移温度(℃)はN 99.7 Iであった。
この液晶組成物CLC-Fの相転移温度(℃)はN* 88.3 BP 91.9 Iであった。
モノマーと液晶組成物の混合物の調製
液晶組成物と重合性モノマーとの混合物として液晶組成物CLC-Fを88.8重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)を4.8重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを0.4重量%混合した液晶組成物MLC-Fを調製した。この液晶組成物MLC-Fの相転移温度(℃)は
N* 53.0 BP 57.0 I、I 56.5 I+BP―BP 50.7 N*であった。
液晶組成物MLC-Fを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚8μm)、得られたセルを53.2℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
このようにして得られた高分子/液晶複合材料(PSBP-F)は室温まで冷却しても光学的に等方性の液晶相を維持していた。
実施例14で得られた高分子/液晶複合材料PSBP-Fが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。35.2Vの矩形波を印加すると、透過率が90%となり、透過光強度は飽和した。コントラストは1147であった。
実施例13より、本願の式(1)の化合物を含有するCLC-Fは透明点が高く、実施例15より、これより得られたPSBP-Fは低電圧で駆動することがわかった。
表1に示すように、式(1)の化合物を含むネマチック液晶組成物NLC-G、NLC-L、NLC-M、NLC-N、NLC-OおよびNLC-Pを調製した(表1)。表1において各化合物が本明細書の一般式との対応を示した。また、各ネマチック液晶組成物の相転移点(N-I点)は表2に示すとおりであった。
表1
表2. ネマチック液晶組成物の相転移点(N-I点)
次に、表1に示す各ネマチック液晶組成物(94.70重量%)を、下記に示すキラル剤BN-H4(2.65重量%)およびBN-H5(2.65重量%)と混合して、それぞれキラル液晶組成物CLC-G、CLC-L、CLC-M、CLC-N、CLC-OおよびCLC-Pを調製した。当該キラル液晶組成物の組成は以下に、相転移点は表3に示すとおりであった。
CLC-G
NLC-G 94.70重量%
BN-H4 2.65重量%
BN-H5 2.65重量%
CLC-L
NLC-L 94.70重量%
BN-H4 2.65重量%
BN-H5 2.65重量%
CLC-M
NLC-M 94.70重量%
BN-H4 2.65重量%
BN-H5 2.65重量%
CLC-N
NLC-N 94.70重量%
BN-H4 2.65重量%
BN-H5 2.65重量%
CLC-O
NLC-O 94.70重量%
BN-H4 2.65重量%
BN-H5 2.65重量%
CLC-P
NLC-P 94.70重量%
BN-H4 2.65重量%
BN-H5 2.65重量%
表3
BN-H4
BN-H5
実施例17で調製された各キラル液晶組成物(CLC)を重合性モノマーとの混合物を等方相で加熱混合することで、液晶組成物MLC-G、MLC-L、MLC-M、MLC-N、MLC-OおよびMLC-Pを調製した。これらの液晶組成物の組成は以下に、相転移点は表4に示すとおりであった。
MLC-G
CLC-G 88.8重量%
n-ヘキサデシルアクリレート 6.0重量%
LCA-12 4.8重量%
DMPAP 0.4重量%
MLC-L
CLC-L 88.8重量%
n-ヘキサデシルアクリレート 6.0重量%
LCA-12 4.8重量%
DMPAP 0.4重量%
MLC-M
CLC-M 88.3重量%
ドデシルアクリレート 5.8重量%
LCA-12 4.7重量%
DMPAP 1.2重量%
MLC-N
CLC-N 88.3重量%
ドデシルアクリレート 5.8重量%
LCA-12 4.7重量%
DMPAP 1.2重量%
MLC-O
CLC-O 88.80重量%
n-ヘキサデシルアクリレート 6.0重量%
LCA-12 4.8重量%
DMPAP 0.4重量%
MLC-P
CLC-P 88.80重量%
n-ヘキサデシルアクリレート 6.0重量%
LCA-12 4.8重量%
DMPAP 0.4重量%
表4
LCA-6
LCA-12
キラル液晶組成物(CLC)と重合性モノマーとの混合物である液晶組成物(MLC)をを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し、ブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行い、高分子/液晶複合材料PSBP-G、PSBP-L、PSBP-M、PSBP-N、PSBP-OおよびPSBP-Pが挟持されたセルを作成した(セル厚は表5中に記載)。重合温度は表5に示すとおりであった。
表5
実施例5で得られた高分子/液晶複合材料が狭持されたセルを、図2に示した光学系にセットした。具体的には、光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように実施例19で得られた高分子/液晶複合材料が狭持されたセルがセットされた(図2)。
当該光学系を用いて、実施例5で得られた高分子/液晶複合材料の室温で印加電圧と透過率との関係を調べた。セルに挟持された高分子/液晶複合材料(PSBP)の物性値は表5に示すとおりであった。
2・・・電極2
3・・・光源
4・・・偏光子(偏光板)(Polarizer)
5・・・櫛型電極セル
6・・・検光子(偏光板)(Analyzer)
7・・・受光器(Photodetector)
Claims (42)
- アキラル成分Tとキラル剤を含有し、アキラル成分Tの第一成分として、式(1)で表される化合物の群から選択された少なくとも1つの化合物を含有する、光学的に等方性の液晶相を発現する液晶組成物。
ここで、R1は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R1において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;L1、L2、L3、L4、L5、L6、L7およびL8は独立して、水素またはフッ素であり;Z1、Z2およびZ3はそれぞれ独立して、単結合、-COO-、または-CF2O-であり、少なくとも一つは-COO-であり;n1およびn2はそれぞれ独立して0または1であり;X1は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよく、X1において-O-と-CH=CH-、および-CO-と-CH=CH-が隣接することはない。 - アキラル成分Tの第一成分が下記式(1-1-1)、(1-1-2)、(1-2-1)~(1-2-5)、(1-3-1)、(1-3-2)、(1-4-1)、(1-4-2)および(1-5-1)で表される化合物の群から選択された少なくとも1つの化合物を含有する請求項1に記載の液晶組成物。
ここで、R1Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;Z1およびZ2はそれぞれ独立して、単結合、-COO-または-CF2O-であるが、少なくとも一つは-COO-であり;
X1Aは、フッ素、塩素、-CF3または-OCF3である。 - アキラル成分Tの全重量に対して、アキラル成分Tの第一成分の割合が3重量%~80重量%の範囲である請求項1~4のいずれか一項に記載の液晶組成物。
- アキラル成分Tの第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項1~5のいずれか一項に記載の液晶組成物。
ここで、R2は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R2において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;環A21、環A22、環A23、環A24、および環A25は独立して、1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレン、2つの水素がそれぞれフッ素と塩素で置き換えられた1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイルであり;Z21、Z22、Z23、Z24、Z25、およびZ26は独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の任意の-CH2-は、-O-、-COO-または-CF2O-で置き換えられてもよく;L21、L22およびL23は独立して、水素またはフッ素であり;X2はフッ素、塩素、-CF3、または-OCF3であり;n21、n22、n23、n24、およびn25は独立して、0または1であり、2≦n21+n22+n23+n24+n25≦3である。 - アキラル成分Tの第二成分が、請求項7に記載の式(2-1-1-2)で表される化合物の群から選択された少なくとも1つの化合物を含有する請求項7に記載の液晶組成物。
- アキラル成分Tの第二成分が、請求項7に記載の式(2-1-4-3)で表される化合物の群から選択された少なくとも1つの化合物を含有する請求項7に記載の液晶組成物。
- アキラル成分Tの第二成分が、請求項7に記載の式(2-1-1-2)で表される化合物の群から選択された少なくとも1つの化合物、および請求項7に記載の式(2-1-4-3)で表される化合物の群から選択された少なくとも1つの化合物の混合物を含有する請求項7に記載の液晶組成物。
- アキラル成分Tの全重量に対して、アキラル成分Tの第二成分の割合が5重量%~70重量%の範囲である請求項6~10のいずれか一項に記載の液晶組成物。
- アキラル成分Tの第三成分として式(3)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項1~11のいずれか一項に記載の液晶組成物。
式(3)において、R3は水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R3において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;Z31、Z32、およびZ33は独立して、単結合、-COO-または-CF2O-であるが、少なくとも1つは-CF2O-であり;L31、L32、L33,L34およびL35は独立して、水素またはフッ素であり;X3は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X3において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。 - 請求項12に記載の式(3)においてR3が直鎖であり、請求項13に記載の式(3-2)および(3-3)においてR3Aが直鎖である、請求項12または13に記載の液晶組成物。
- アキラル成分Tの全重量に対して、アキラル成分Tの第三成分の割合が5重量%~70重量%の範囲である請求項12~16のいずれか一項に記載の液晶組成物。
- アキラル成分Tの全重量に基づいて、アキラル成分Tの第一成分の割合が30重量%~70重量%の範囲であり、第二成分の割合が10重量%~50重量%の範囲であり、第三成分の割合が10重量%~50重量%の範囲である請求項12~17のいずれか一項に記載の液晶組成物。
- アキラル成分Tの第四成分として、式(4)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項1~18のいずれか一項に記載の液晶組成物。
ここで、R4は、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;環Bは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、3,5-ジフルオロ-1,4-フェニレン、3,5-ジクロロ-1,4-フェニレン、またはピリミジン-2,5-ジイルであり;Z41は独立して、単結合、エチレン、-COO-、-OCO-、-CF2O-、または-OCF2-であり;L48およびL49は独立して、水素またはフッ素であり;X4は、フッ素、塩素、-CF3または-OCF3であり;n41は、1、2、3、または4であり、ただしn41が3または4である場合、一つのZ41は-CF2O-または-OCF2-であり;n41が3の場合は、環Bのすべてがフッ素で置換された1,4-フェニレンであることはない。 - アキラル成分Tの第五成分として、式(5)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項1~20のいずれか一項に記載の液晶組成物。
ここで、R5は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R5において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;(F)は独立して、水素またはフッ素であり;X5は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X5において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。 - 液晶組成物の全重量に基づいて、アキラル成分Tの第五成分の割合が1重量%~20重量%の範囲である請求項21または22に記載の液晶組成物。
- アキラル成分Tの第六成分として、式(6)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項1~23のいずれか一項に記載の液晶組成物。
ここで、R6AおよびR6Bは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;環Cおよび環Dは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレンまたは2,5-ジフルオロ-1,4-フェニレンであり;Z61は独立して、単結合、エチレン、-COO-、または-OCO-であり;rは、1、2、または3である。 - アキラル成分Tの第七成分として、式(7)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項1~25のいずれか一項に記載の液晶組成物。
ここで、R7は、水素または炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、このアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく、ただし、R7において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;L71、L72、L73、L74、L75およびL76は独立して、水素またはフッ素であり;Z71およびZ72はそれぞれ独立して、単結合または-CF2O-であるが、少なくとも一つは-CF2O-であり;
X7は水素、ハロゲン、-SF5、または炭素数1~10のアルキルであり、このアルキルにおいて少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、そしてこのアルキル中、アルキル中の少なくとも1つの-CH2-が、-O-、-S-、-COO-、または-OCO-で置き換えられた基中、またはこのアルキル中の少なくとも1つの-CH2-CH2-が、-CH=CH-、-CF=CF-、または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素で置き換えられてもよいが、X7において-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはない。 - アキラル成分Tの全重量に対して、アキラル成分Tの第一成分の割合が5重量%~30重量%の範囲であり、アキラル成分Tの第七成分の割合が30~70重量%である請求項27に記載の液晶組成物。
- キラル剤が、式(K1)~(K5)で表される化合物の群から選択された少なくとも1つの化合物である、請求項1~28のいずれか一項に記載の液晶組成物。
ここで、RKは独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、このアルキル中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH2-CH2-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中の少なくとも1つの水素はハロゲンで置き換えられてもよく;Aは独立して、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、環の-CH2-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Bは独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH2-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Zは独立して、単結合、炭素数1~8のアルキレンであり、このアルキレン中の少なくとも1つの-CH2-は、-O-、-S-、-COO-、-OCO-、-CSO-、または-OCS-で置き換えられてもよく、このアルキレン中の少なくとも1つの-CH2-CH2-は、-N=N-、-CH=N-、または-N=CH-で置き換えられてもよく、このアルキレン中の少なくとも1つの-CH2-CH2-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;Xは単結合、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、または-CH2CH2-であり;mKは1~4の整数である。 - 70~-20℃のいずれかの温度においてキラルネマチック相を示し、この温度範囲の少なくとも一部において螺旋ピッチが700nm以下である、請求項1~30のいずれか一項に記載の液晶組成物。
- 少なくとも1つの酸化防止剤および/または紫外線吸収剤を含む請求項1~31のいずれか一項に記載の液晶組成物。
- 請求項1~32のいずれか一項に記載の液晶組成物と、重合性モノマーとを含む混合物。
- 請求項33に記載の混合物を重合して得られる、光学的に等方性の液晶相で駆動される素子に用いられる高分子/液晶複合材料。
- 請求項33に記載の混合物を非液晶等方相または光学的に等方性の液晶相で重合させて得られる、請求項34に記載の高分子/液晶複合材料。
- 一方または両方の面に電極が配置され、基板間に配置された液晶媒体、および電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、請求項1~32のいずれか一項に記載の液晶組成物または請求項34または35に記載の高分子/液晶複合材料である光素子。
- 一方または両方の面に電極が配置され、少なくとも一方が透明な一組の基板、基板間に配置された液晶媒体、および基板の外側に配置された偏光板を有し、電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、請求項1~32のいずれか1項に記載の液晶組成物または請求項34または35に記載の高分子/液晶複合材料である光素子。
- 一組の基板の少なくとも一方の基板上において、少なくとも2方向に電界を印加できるように電極が構成されている請求項36または37に記載の光素子。
- 互いに平行に配置された一組の基板の一方または両方に、少なくとも2方向に電界を印加できるように電極が構成されている請求項36または37に記載の光素子。
- 電極がマトリックス状に配置されて、画素電極を構成し、各画素がアクティブ素子を備え、このアクティブ素子が薄膜トランジスター(TFT)である請求項36または37に記載の光素子。
- 電極がマトリックス状に配置されて、画素電極を構成し、各画素がアクティブ素子を備え、このアクティブ素子が薄膜トランジスター(TFT)である請求項36または37に記載の光素子。
- 請求項1~32のいずれか一項に記載の液晶組成物の光素子への使用。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014518398A JP6299019B2 (ja) | 2012-05-28 | 2013-05-22 | 光学的に等方性の液晶媒体及び光素子 |
US14/232,907 US9175222B2 (en) | 2012-05-28 | 2013-05-22 | Optically isotropic liquid crystal medium and optical device |
CN201380026809.5A CN104334687B (zh) | 2012-05-28 | 2013-05-22 | 液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012120771 | 2012-05-28 | ||
JP2012-120771 | 2012-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013179960A1 true WO2013179960A1 (ja) | 2013-12-05 |
Family
ID=49673161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064169 WO2013179960A1 (ja) | 2012-05-28 | 2013-05-22 | 光学的に等方性の液晶媒体及び光素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9175222B2 (ja) |
JP (1) | JP6299019B2 (ja) |
CN (1) | CN104334687B (ja) |
TW (1) | TWI589682B (ja) |
WO (1) | WO2013179960A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016174968A1 (ja) * | 2015-04-28 | 2016-11-03 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
US20180022999A1 (en) * | 2015-02-17 | 2018-01-25 | Jnc Corporation | Compound having alkoxy group or alkoxyalkyl group, and saturated six-membered ring, liquid crystal composition and liquid crystal display device |
US20190316036A1 (en) * | 2016-06-27 | 2019-10-17 | Jnc Corporation | Optically isotropic liquid crystal medium and optical device |
CN114815020A (zh) * | 2022-04-21 | 2022-07-29 | 岭南师范学院 | 一种高品质因数折射率传感器的设计方法及折射率传感器 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6394390B2 (ja) * | 2012-06-19 | 2018-09-26 | Jnc株式会社 | 光学的に等方性の液晶組成物及び光素子 |
WO2014097952A1 (ja) * | 2012-12-17 | 2014-06-26 | Jnc株式会社 | オクタヒドロ-ビナフチル系キラル化合物を含有する液晶組成物および光素子 |
WO2014192627A1 (ja) * | 2013-05-27 | 2014-12-04 | Jnc株式会社 | 液晶媒体、光素子および液晶化合物 |
TWI648381B (zh) * | 2014-07-03 | 2019-01-21 | 日商捷恩智股份有限公司 | 液晶組成物、光元件、混合物、化合物、高分子/液晶複合材料以及液晶組成物及高分子/液晶複合材料的用途 |
CN104293358B (zh) * | 2014-09-11 | 2016-07-06 | 北京八亿时空液晶科技股份有限公司 | 一种含1,3-二噁烷化合物的液晶组合物及其应用 |
JP6375219B2 (ja) * | 2014-12-11 | 2018-08-15 | 富士フイルム株式会社 | 光学部材および光学部材を有する画像表示装置 |
CN107418597A (zh) * | 2017-07-21 | 2017-12-01 | 扬州高捷电子科技有限公司 | 低温液晶材料及其应用 |
US11309251B2 (en) * | 2017-07-31 | 2022-04-19 | AdTech Ceramics Company | Selective metallization of integrated circuit packages |
KR20190140401A (ko) * | 2018-06-11 | 2019-12-19 | 제이엔씨 주식회사 | 광학적 등방성 액정 조성물 및 그것을 이용한 광 스위칭 소자 |
CN112322306B (zh) * | 2020-10-28 | 2022-05-24 | 华南理工大学 | 超高极性手性液晶材料、液晶激光器及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5982382A (ja) * | 1982-11-04 | 1984-05-12 | Chisso Corp | 含ハロゲンメタジオキサンエステル |
JPH05247026A (ja) * | 1992-03-04 | 1993-09-24 | Mitsubishi Gas Chem Co Inc | ジオキサン系液晶物質 |
JPH0882778A (ja) * | 1994-09-12 | 1996-03-26 | Showa Shell Sekiyu Kk | 反強誘電性液晶組成物 |
JPH08218069A (ja) * | 1995-02-17 | 1996-08-27 | Mitsubishi Gas Chem Co Inc | 反強誘電性液晶組成物 |
JPH09176650A (ja) * | 1995-12-26 | 1997-07-08 | Nippon Soken Inc | 反強誘電性液晶組成物 |
JPH09235551A (ja) * | 1995-12-29 | 1997-09-09 | Merck Patent Gmbh | 1,3−ジオキサン類及び液晶媒質 |
JPH10139778A (ja) * | 1996-11-07 | 1998-05-26 | Chisso Corp | フルオロアルキル基を有するジオキサン誘導体、液晶組成物および液晶表示素子 |
WO2012043145A1 (ja) * | 2010-09-27 | 2012-04-05 | Jnc株式会社 | 光学的に等方性の液晶媒体及び光素子 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5067298A (en) | 1996-11-28 | 1998-06-22 | Chisso Corporation | Chlorobenzene derivatives, liquid-crystal composition, and liquid-crystal display elements |
JP3779937B2 (ja) | 2002-05-08 | 2006-05-31 | 独立行政法人科学技術振興機構 | 光学変調素子用液晶材料 |
DE10253325A1 (de) | 2002-11-14 | 2004-05-27 | Merck Patent Gmbh | Elektrooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium |
DE10393340D2 (de) | 2002-11-15 | 2005-09-29 | Merck Patent Gmbh | Elektooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium |
JP4075781B2 (ja) | 2003-11-27 | 2008-04-16 | 旭硝子株式会社 | 波長可変フィルタ |
KR20060104994A (ko) | 2003-11-27 | 2006-10-09 | 아사히 가라스 가부시키가이샤 | 광학적 등방성을 갖는 액정을 사용한 광학 소자 |
WO2005080529A1 (ja) | 2004-02-20 | 2005-09-01 | Asahi Glass Company, Limited | 光学素子用液晶材料および光変調素子 |
JP4766694B2 (ja) | 2004-03-19 | 2011-09-07 | 独立行政法人科学技術振興機構 | 液晶表示素子 |
JP5269284B2 (ja) | 2004-04-30 | 2013-08-21 | 独立行政法人科学技術振興機構 | 高分子とキラリティーを有する液晶材料とからなる複合材料、該複合材料の製造方法、および該複合材料を用いる光素子 |
JP4972858B2 (ja) | 2004-09-24 | 2012-07-11 | Jnc株式会社 | 高分子と光学活性な液晶材料からなる複合体 |
JP2006127707A (ja) | 2004-11-01 | 2006-05-18 | Asahi Glass Co Ltd | 開口制御素子および光ヘッド装置 |
WO2006063662A1 (en) | 2004-12-17 | 2006-06-22 | Merck Patent Gmbh | Liquid crystal system and liquid crystal display |
ATE410497T1 (de) | 2005-02-14 | 2008-10-15 | Merck Patent Gmbh | Mesogene verbindungen, flüssigkristallines medium und flüssigkristallanzeigevorrichtung |
EP1690917B1 (en) | 2005-02-14 | 2008-10-08 | MERCK PATENT GmbH | Mesogenic compounds, liquid crystal medium and liquid crystal display |
JP5082202B2 (ja) | 2005-04-20 | 2012-11-28 | Jnc株式会社 | 重合体とキラリティーを有する液晶とからなる複合体 |
US8501285B2 (en) | 2008-11-19 | 2013-08-06 | Jnc Corporation | Optically isotropic liquid crystal medium and optical device |
KR101797991B1 (ko) * | 2010-06-22 | 2017-12-12 | 제이엔씨 주식회사 | 분기 알킬 또는 분기 알케닐을 갖는 화합물, 및 광학적으로 등방성인 액정매체 및 광소자 |
WO2012161178A1 (ja) * | 2011-05-26 | 2012-11-29 | Dic株式会社 | 2-フルオロフェニルオキシメタン構造を持つ化合物 |
JP6306887B2 (ja) * | 2011-11-01 | 2018-04-04 | Jnc株式会社 | 光学的に等方性の液晶媒体及び光素子 |
WO2013080724A1 (ja) * | 2011-11-30 | 2013-06-06 | Jnc株式会社 | 光学的に等方性の液晶媒体及び光素子 |
-
2013
- 2013-05-22 JP JP2014518398A patent/JP6299019B2/ja active Active
- 2013-05-22 CN CN201380026809.5A patent/CN104334687B/zh active Active
- 2013-05-22 WO PCT/JP2013/064169 patent/WO2013179960A1/ja active Application Filing
- 2013-05-22 US US14/232,907 patent/US9175222B2/en not_active Expired - Fee Related
- 2013-05-28 TW TW102118718A patent/TWI589682B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5982382A (ja) * | 1982-11-04 | 1984-05-12 | Chisso Corp | 含ハロゲンメタジオキサンエステル |
JPH05247026A (ja) * | 1992-03-04 | 1993-09-24 | Mitsubishi Gas Chem Co Inc | ジオキサン系液晶物質 |
JPH0882778A (ja) * | 1994-09-12 | 1996-03-26 | Showa Shell Sekiyu Kk | 反強誘電性液晶組成物 |
JPH08218069A (ja) * | 1995-02-17 | 1996-08-27 | Mitsubishi Gas Chem Co Inc | 反強誘電性液晶組成物 |
JPH09176650A (ja) * | 1995-12-26 | 1997-07-08 | Nippon Soken Inc | 反強誘電性液晶組成物 |
JPH09235551A (ja) * | 1995-12-29 | 1997-09-09 | Merck Patent Gmbh | 1,3−ジオキサン類及び液晶媒質 |
JPH10139778A (ja) * | 1996-11-07 | 1998-05-26 | Chisso Corp | フルオロアルキル基を有するジオキサン誘導体、液晶組成物および液晶表示素子 |
WO2012043145A1 (ja) * | 2010-09-27 | 2012-04-05 | Jnc株式会社 | 光学的に等方性の液晶媒体及び光素子 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180022999A1 (en) * | 2015-02-17 | 2018-01-25 | Jnc Corporation | Compound having alkoxy group or alkoxyalkyl group, and saturated six-membered ring, liquid crystal composition and liquid crystal display device |
WO2016174968A1 (ja) * | 2015-04-28 | 2016-11-03 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
JPWO2016174968A1 (ja) * | 2015-04-28 | 2018-02-22 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
US20190316036A1 (en) * | 2016-06-27 | 2019-10-17 | Jnc Corporation | Optically isotropic liquid crystal medium and optical device |
CN114815020A (zh) * | 2022-04-21 | 2022-07-29 | 岭南师范学院 | 一种高品质因数折射率传感器的设计方法及折射率传感器 |
CN114815020B (zh) * | 2022-04-21 | 2023-09-22 | 岭南师范学院 | 一种高品质因数折射率传感器的设计方法及折射率传感器 |
Also Published As
Publication number | Publication date |
---|---|
US9175222B2 (en) | 2015-11-03 |
CN104334687B (zh) | 2016-08-17 |
TWI589682B (zh) | 2017-07-01 |
JPWO2013179960A1 (ja) | 2016-01-18 |
JP6299019B2 (ja) | 2018-03-28 |
US20140132868A1 (en) | 2014-05-15 |
CN104334687A (zh) | 2015-02-04 |
TW201402792A (zh) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6299019B2 (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP5408130B2 (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP5621769B2 (ja) | クロロベンゼン誘導体、光学的に等方性の液晶媒体及び光素子 | |
WO2010058681A1 (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP6115472B2 (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP6306887B2 (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP5799956B2 (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP6327248B2 (ja) | 液晶媒体、光素子および液晶化合物 | |
JP6394390B2 (ja) | 光学的に等方性の液晶組成物及び光素子 | |
JP2016027141A (ja) | 液晶媒体、光素子および液晶化合物 | |
JP2011001342A (ja) | クロロフルオロベンゼン化合物、光学的等方性の液晶媒体および光素子 | |
CN110577836A (zh) | 用于光转换元件的液晶组合物、混合物、高分子/液晶复合材料、元件及激光雷达 | |
JP6432522B2 (ja) | 液晶媒体、光素子および液晶化合物 | |
CN109415631B (zh) | 液晶组合物、混合物、高分子/液晶复合材料、光元件及其用途 | |
JP6299020B2 (ja) | 液晶化合物、液晶媒体および光素子 | |
JP6179373B2 (ja) | 液晶媒体、光素子および液晶化合物 | |
JP6942457B2 (ja) | 液晶媒体、光素子および液晶化合物 | |
JP2016121288A (ja) | 光学的に等方性の液晶媒体及び光素子 | |
JP2019214698A (ja) | 低電圧化された光学的等方性液晶組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14232907 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13797043 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014518398 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13797043 Country of ref document: EP Kind code of ref document: A1 |