CN104334687B - 液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件 - Google Patents

液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件 Download PDF

Info

Publication number
CN104334687B
CN104334687B CN201380026809.5A CN201380026809A CN104334687B CN 104334687 B CN104334687 B CN 104334687B CN 201380026809 A CN201380026809 A CN 201380026809A CN 104334687 B CN104334687 B CN 104334687B
Authority
CN
China
Prior art keywords
alkyl
carbon number
liquid
composition
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380026809.5A
Other languages
English (en)
Other versions
CN104334687A (zh
Inventor
佐郷弘毅
山本真
山本真一
国信隆史
长谷场康宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
JNC Corp
Chisso Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Chisso Petrochemical Corp filed Critical JNC Corp
Publication of CN104334687A publication Critical patent/CN104334687A/zh
Application granted granted Critical
Publication of CN104334687B publication Critical patent/CN104334687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3444Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing one nitrogen atom, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • C09K19/588Heterocyclic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本发明提供一种液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件。本发明提供一种光学等向性的液晶组成物,其显示对于热、光等的稳定性,光学等向性的液晶相的高的上限温度、低的下限温度,且于通过光学等向性的液晶相来驱动的元件中具有低驱动电压、大的对比度。本发明提供一种高分子/液晶复合材料,其显示光学等向性的液晶相的高的上限温度、低的下限温度,且具有低驱动电压、高对比度。本发明提供一种使用上述高分子/液晶复合材料的光元件。一种液晶组成物,其包括非手性成分T及手性剂,并含有选自由式(1)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第一成分,且显现光学等向性的液晶相。

Description

液晶组合物与其用途及混合物、高分子/液晶复合材料及光 元件
技术领域
本发明涉及一种作为光元件用的材料而有用的液晶媒体。详细而言,本发明涉及一种具有宽广的液晶相温度范围,大的介电常数异向性、折射率异向性的液晶媒体。此外,本发明涉及一种使用该液晶媒体的光元件。更详细而言,本发明涉及一种可于宽广的温度范围内使用、可实现低电压驱动、且可获得高速的电光响应的液晶媒体及使用其的光元件。
背景技术
使用液晶组成物的液晶显示元件广泛地用于时钟、计算器、文字处理机等的显示器。该些液晶显示元件是利用液晶化合物的折射率异向性、介电常数异向性等的液晶显示元件。作为液晶显示元件中的运作模式,已知主要有利用1片以上的偏光板来进行显示的相变(Phase Change,PC)模式、扭转向列(Twisted Nematic,TN)模式、超扭转向列(SuperTwisted Nematic,STN)模式、双稳态扭转向列(Bistable Twisted Nematic,BTN)模式、电控双折射(Electrically Controlled Birefringence,ECB)模式、光学补偿弯曲(Optically Compensated Bend,OCB)模式、共面切换(In-Plane Switching,IPS)模式、垂直取向(Vertical Alignment,VA)模式等。进而,近年来,于光学等向性的液晶相中施加电场,而使电双折射显现的模式亦得到广泛研究(专利文献1~专利文献16、非专利文献1~非专利文献3)。
进而,提出有利用作为光学等向性的液晶相之一的蓝相中的电双折射的波长可变滤波器、波面控制元件、液晶透镜、像差修正元件、开口控制元件、光学头(optical head)装置等(专利文献10~专利文献12)。
基于元件的驱动方式的分类为被动矩阵(Passive Matrix,PM)与主动矩阵(Active Matrix,AM)。PM(Passive Matrix)被分类为静态(static)与多工(multiplex)等,AM被分类为薄膜晶体管(Thin Film Transistor,TFT)、金属-绝缘体-金属(MetalInsulator Metal,MIM)等。
该些液晶显示元件含有具有适当的物性的液晶组成物。为了提升液晶显示元件的特性,较佳为该液晶组成物具有适当的物性。作为液晶组成物的成分的液晶化合物所需要的一般物性如下。
(1)化学性质稳定及物理性质稳定、
(2)具有高透明点(液晶相-等向性相的相转变温度)、
(3)液晶相(向列相(nematic phase)、胆固醇相(cholesteric phase)、近晶相(smectic phase)、蓝相(blue phase)等光学等向性的液晶相等)的下限温度低、
(4)与其他液晶化合物的相容性优异、
(5)具有适当的大小的介电常数异向性、
(6)具有适当的大小的折射率异向性。
尤其,于光学等向性的液晶相中,就降低驱动电压的观点而言,较佳为介电常数异向性与折射率异向性均大的液晶化合物。
若将包含如(1)般化学性质、物理性质稳定的液晶化合物的液晶组成物用于液晶显示元件,则可提高电压保持率。
另外,于包含如(2)及(3)般具有高透明点、或低的液晶相下限温度的液晶化合物的液晶组成物中,可扩大向列相或光学等向性的液晶相的温度范围,而可于宽广的温度范围内用作显示元件。液晶化合物若为单一的化合物,则表现出难以发挥作用的特性,因此通常将其与其他多种液晶化合物混合后制备成液晶组成物来使用。因此,液晶显示元件中所使用的液晶化合物较佳为如(4)般与其他液晶化合物等的相容性良好。近年来,尤其要求显示性能,例如对比度(contrast)、显示容量、响应时间特性等更高的液晶显示元件。进而,于所使用的液晶材料中要求驱动电压低的液晶组成物。另外,为了以低电压对通过光学等向性的液晶相来驱动的光元件进行驱动,较佳为使用介电常数异向性及折射率异向性大的液晶化合物。
现有技术文献
专利文献
专利文献1:日本专利特开2003-327966号公报
专利文献2:国际公开2005/90520号手册
专利文献3:日本专利特开2005-336477号公报
专利文献4:日本专利特开2006-89622号公报
专利文献5:日本专利特开2006-299084号公报
专利文献6:日本专利特表2006-506477号公报
专利文献7:日本专利特表2006-506515号公报
专利文献8:国际公开2006/063662号手册
专利文献9:日本专利特开2006-225655号公报
专利文献10:日本专利特开2005-157109号公报
专利文献11:国际公开2005/80529号手册
专利文献12:日本专利特开2006-127707号公报
专利文献13:国际公开1998/023561号手册
专利文献14:国际公开2010/058681号手册
非专利文献
非专利文献1:《自然材料(Nature Materials)》,1,64,(2002)
非专利文献2:《先进材料(Adv.Mater.)》,17,96,(2005)
非专利文献3:《信息显示学会志(Journal ofthe SID)》,14,551,(2006)
发明内容
发明欲解决的问题
本发明的第一目的在于提供一种液晶媒体,其具有对于热、光等的稳定性,宽广的液晶相温度范围,极大的介电常数异向性,且具有光学等向性的液晶相。第二目的在于提供含有该液晶媒体,可于宽广的温度范围内使用,且具有短的响应时间、大的对比度、及低驱动电压的各种光元件。
解决问题采用的手段
本发明提供如下的液晶媒体(液晶组成物或高分子/液晶复合物)、混合物及含有液晶媒体的光元件等。
[1]一种液晶组成物,其包括非手性(achiral)成分T及手性剂(chiral),并含有选自由式(1)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第一成分,且显现光学等向性的液晶相。
其中,R1为氢或碳数为1~20的烷基,上述烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;L1、L2、L3、L4、L5、L6、L7及L8独立为氢或氟;Z1、Z2及Z3分别独立为单键、-COO-、或-CF2O-,且至少一个为-COO-;n1及n2分别独立为0或1;X1为氢、卤素、-SF5、或碳数为1~10的烷基,上述烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,于X1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
[2]如[1]所述的液晶组成物,其中非手性成分T的第一成分含有选自由下述式(1-1-1)、式(1-1-2)、式(1-2-1)~式(1-2-5)、式(1-3-1)、式(1-3-2)、式(1-4-1)、式(1-4-2)及式(1-5-1)所表示的化合物的群组中的至少1种化合物。
其中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;Z1及Z2分别独立为单键、-COO-或-CF2O-,且至少一个为-COO-;
X1A为氟、氯、-CF3或-OCF3
[3]如[1]所述的液晶组成物,其中非手性成分T的第一成分含有选自由式(1-2-2-1)及式(1-2-5-1)所表示的化合物的群组中的至少1种化合物。
其中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;X1A为氟、氯、或-CF3
[4]如[1]所述的液晶组成物,其中非手性成分T的第一成分含有选自由式(1-4-1)、式(1-4-2)及式(1-5-1)所表示的化合物的群组中的至少1种化合物。
其中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;X1A为氟、氯、-CF3或-OCF3
[5]如[1]至[4]中任一项所述的液晶组成物,其中相对于非手性成分T的总重量,非手性成分T的第一成分的比例为3wt%(重量百分比)~80wt%的范围。
[6]如[1]至[5]中任一项所述的液晶组成物,其还包括选自由式(2)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第二成分。
其中,R2为氢或碳数为1~20的烷基,上述烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R2中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;环A21、环A22、环A23、环A24、及环A25独立为1,4-亚环己基、1,3-二恶烷-2,5-二基、1,4-亚苯基、1个氢或2个氢由氟取代的1,4-亚苯基、2个氢分别由氟与氯取代的1,4-亚苯基、吡啶-2,5-二基、嘧啶-2,5-二基;Z21、Z22、Z23、Z24、Z25、及Z26独立为单键或碳数为1~4的亚烷基,上述亚烷基中的至少1个-CH2-可由-O-、-COO-或-CF2O-取代;L21、L22及L23独立为氢或氟;X2为氟、氯、-CF3、或-OCF3;n21、n22、n23、n24、及n25独立为0或1,且2≤n21+n22+n23+n24+n25≤3。
[7]如[6]所述的液晶组成物,其中非手性成分T的第二成分含有选自由式(2-1-1-2)、式(2-1-2-1)、式(2-1-3-1)、式(2-1-3-2)、式(2-1-4-2)及式(2-1-4-3)所表示的化合物的群组中的至少1种化合物。
其中,R2A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;(F)独立为氢、或氟;X2A为氟、氯、-CF3、或-OCF3
[8]如[7]所述的液晶组成物,其中非手性成分T的第二成分含有选自由所述式(2-1-1-2)所表示的化合物的群组中的至少1种化合物。
[9]如[7]所述的液晶组成物,其中非手性成分T的第二成分含有选自由所述式(2-1-4-3)所表示的化合物的群组中的至少1种化合物。
[10]如[7]所述的液晶组成物,其中非手性成分T的第二成分含有选自由所述式(2-1-1-2)所表示的化合物的群组中的至少1种化合物、及选自由所述式(2-1-4-3)所表示的化合物的群组中的至少1种化合物的混合物。
[11]如[6]至[10]中任一项所述的液晶组成物,其中相对于非手性成分T的总重量,非手性成分T的第二成分的比例为5wt%~70wt%的范围。
[12]如[1]至[11]中任一项所述的液晶组成物,其还包括选自由式(3)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第三成分。
式(3)中,R3为氢或碳数为1~20的烷基,上述烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R3中,-O-与-CH=CH-及-CO-与-CH=CH-不邻接;Z31、Z32、及Z33独立为单键、-COO-或-CF2O-,且至少1个为-CF2O-;L31、L32、L33、L34及L35独立为氢或氟;X3为氢、卤素、-SF5、或碳数为1~10的烷基,上述烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
[13]如[12]所述的液晶组成物,其中非手性成分T的第三成分为选自由式(3-2)~式(3-3)所表示的化合物的群组中的至少1种化合物。
其中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、或-OCF3,L31~L35独立为氢或氟。
[14]如[12]或[13]所述的液晶组成物,其中于所述式(3)中,R3为直链,于所述式(3-2)及式(3-3)中,R3A为直链。
[15]如[13]或[14]所述的液晶组成物,其中非手性成分T的第三成分为选自由式(3-2A)及式(3-2C)所表示的化合物的群组中的至少1种化合物。
[16]如[13]或[14]所述的液晶组成物,其中非手性成分T的第三成分为选自由式(3-3A)所表示的化合物的群组中的至少1种化合物。
[17]如[12]至[16]中任一项所述的液晶组成物,其中相对于非手性成分T的总重量,非手性成分T的第三成分的比例为5wt%~70wt%的范围。
[18]如[12]至[17]中任一项所述的液晶组成物,其中基于非手性成分T的总重量,非手性成分T的第一成分的比例为30wt%~70wt%的范围,第二成分的比例为10wt%~50wt%的范围,第三成分的比例为10wt%~50wt%的范围。
[19]如[1]至[18]中任一项所述的液晶组成物,其还包括选自由式(4)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第四成分。
其中,R4为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;环B独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基、3,5-二氟-1,4-亚苯基、3,5-二氯-1,4-亚苯基、或嘧啶-2,5-二基;Z41独立为单键、亚乙基、-COO-、-OCO-、-CF2O-、或-OCF2-;L48及L49独立为氢或氟;X4为氟、氯、-CF3或-OCF3;n41为1、2、3、或4,其中,当n41为3或4时,一个Z41为-CF2O-或-OCF2-;当n41为3时,所有环B均不为由氟取代的1,4-亚苯基。
[20]如[19]所述的液晶组成物,其中非手性成分T的第四成分为选自由式(4-1)~式(4-9)所表示的化合物的群组中的至少1种化合物。
其中,R4A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X4A为氟、氯、-CF3、或-OCF3,L40~L49独立为氢或氟。
[21]如[1]至[20]中任一项所述的液晶组成物,其还包括选自由式(5)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第五成分。
其中,R5为氢或碳数为1~20的烷基,上述烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R5中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;(F)独立为氢或氟;X5为氢、卤素、-SF5、或碳数为1~10的烷基,上述烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X5中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
[22]如[21]所述的液晶组成物,其中非手性成分T的第五成分含有选自由式(5-1)~式(5-3)所表示的化合物的群组中的至少1种化合物。
其中,R5A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;(F)独立为氢或氟;X5A为氟、氯、-CF3或-OCF3
[23]如[21]或[22]所述的液晶组成物,其中基于液晶组成物的总重量,非手性成分T的第五成分的比例为1wt%~20wt%的范围。
[24]如[1]至[23]中任一项所述的液晶组成物,其还包括选自由式(6)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第六成分。
其中,R6A及R6B独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;环C及环D独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基或2,5-二氟-1,4-亚1苯基;Z61独立为单键、亚乙基、-COO-、或-OCO-;r为1、2、或3。
[25]如[24]所述的液晶组成物,其中非手性成分T的第六成分含有选自由式(6-1)~式(6-13)所表示的化合物的群组中的至少1种化合物。
其中,R6A及R6B独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基。
[26]如[1]至[25]中任一项所述的液晶组成物,其还包括选自由式(7)所表示的化合物的群组中的至少1种化合物作为非手性成分T的第七成分。
其中,R7为氢或碳数为1~20的烷基,上述烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;L71、L72、L73、L74、L75及L76独立为氢或氟;Z71及Z72分别独立为单键或-CF2O-,且至少一个为-CF2O-;
X7为氢、卤素、-SF5、或碳数为1~10的烷基,上述烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,上述烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或上述烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
[27]如[26]所述的液晶组成物,其中非手性成分T的第一成分含有选自由式(7-1)~式(7-3)所表示的化合物的群组中的至少1种化合物。
其中,R7A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;L72、L74、L75及L76独立为氢或氟;Z71及Z72分别独立为单键或-CF2O-,且至少一个为-CF2O-;
X7A为氟、氯、-CF3或-OCF3
[28]如[27]所述的液晶组成物,其中相对于非手性成分T的总重量,非手性成分T的第一成分的比例为5wt%~30wt%的范围,非手性成分T的第七成分的比例为30wt%~70wt%。
[29]如[1]至[28]中任一项所述的液晶组成物,其中手性剂为选自由式(K1)~式(K5)所表示的化合物的群组中的至少1种化合物。
其中,RK独立为氢、卤素、-C≡N、-N=C=O、-N=C=S或碳数为1~20的烷基,上述烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,上述烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,上述烷基中的至少1个氢可由卤素取代;A独立为芳香族性的6元环~8元环、非芳香族性的3元环~8元环、或碳数为9以上的缩合环,该些环的至少1个氢可由卤素、碳数为1~3的烷基或卤代烷基取代,环的-CH2-可由-O-、-S-或-NH-取代,-CH=可由-N=取代;B独立为氢、卤素、碳数为1~3的烷基、碳数为1~3的卤代烷基、芳香族性的6元环~8元环、非芳香族性的3元环~8元环、或碳数为9以上的缩合环,该些环的至少1个氢可由卤素、碳数为1~3的烷基或卤代烷基取代,-CH2-可由-O-、-S-或-NH-取代,-CH=可由-N=取代;Z独立为单键、碳数为1~8的亚烷基,上述亚烷基中的至少1个-CH2-可由-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、或-N=CH-取代,上述亚烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,至少1个氢可由卤素取代;X为单键、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、或-CH2CH2-;mK为1~4的整数。
[30]如[29]所述的液晶组成物,其中手性剂为选自由式(K4-1)~式(K4-6)及式(K5-1)~式(K5-3)所表示的化合物的群组中的至少1种化合物。
其中,RK独立为碳数为3~10的烷基或碳数为3~10的烷氧基,烷基中或烷氧基中的至少1个-CH2-可由-CH=CH-取代,但-O-与-C=C-不邻接。
[31]如[1]至[30]中任一项所述的液晶组成物,其于70℃~-20℃的任一温度下显示手性向列相,且于上述温度范围的至少一部分中,螺旋节距(helical pitch)为700nm以下。
[32]如[1]至[31]中任一项所述的液晶组成物,其包括至少1种抗氧化剂及/或紫外线吸收剂。
[33]一种混合物,其包括如[1]至[32]中任一项所述的液晶组成物、及聚合性单体。
[34]一种高分子/液晶复合材料,其是使如[33]所述的混合物进行聚合而获得、且用于通过光学等向性的液晶相来驱动的元件。
[35]如[34]所述的高分子/液晶复合材料,其是使如[33]所述的混合物于非液晶等向性相或光学等向性的液晶相中进行聚合而获得。
[36]一种光元件,其包括:液晶媒体,配置于在一面或两面上配置有电极的基板间;以及电场施加装置,经由电极对液晶媒体施加电场;且液晶媒体为如[1]至[32]中任一项所述的液晶组成物、或者如[34]或[35]所述的高分子/液晶复合材料。
[37]一种光元件,其包括:一组基板,至少一个为透明,并于一面或两面上配置有电极;液晶媒体,配置于基板间;以及电场施加装置,具有配置于基板的外侧的偏光板,并经由电极对液晶媒体施加电场;且液晶媒体为如[1]至[32]中任一项所述的液晶组成物、或者如[34]或[35]所述的高分子/液晶复合材料。
[38]如[36]或[37]所述的光元件,其中于一组基板的至少一个基板上,以至少可朝2个方向施加电场的方式构成电极。
[39]如[36]或[37]所述的光元件,其中于彼此平行地配置的一组基板的一个或两个上,以至少可朝2个方向施加电场的方式构成电极。
[40]如[36]或[37]所述的光元件,其中将电极配置成矩阵状而构成像素电极,各像素具备主动元件,上述主动元件为薄膜晶体管(TFT)。
[41]一种如[1]至[32]中任一项所述的液晶组成物的用途,其用于光元件。
于本发明中,液晶化合物表示具有液晶元(mesogen)的化合物,并不限定于具有液晶相的化合物。液晶媒体是液晶组成物及高分子/液晶复合物的总称。另外,所谓光元件,是指利用电光效应,取得光调变或光切换等功能的各种元件,例如可列举显示元件(液晶显示元件)、光通讯系统、光信息处理或各种传感器系统中所使用的光调变元件。关于利用由对光学等向性的液晶媒体施加电压所引起的折射率的变化的光调变,已知有克尔效应(Kerreffect)。所谓克尔效应,是指电双折射值Δn(E)与电场E的平方成比例的现象,于显示克尔效应的材料中,Δn(E)=KλE2成立(K:克尔系数(克尔常数),λ:波长)。此处,所谓电双折射值,是指对等向性媒体施加了电场时所引起的折射率异向性值。
本说明书中的用语的使用方法如下。液晶化合物是具有向列相、近晶相等液晶相的化合物,以及不具有液晶相但可用作液晶组成物的成分的化合物的总称。手性剂为光学活性化合物,其是为了对液晶组成物赋予所期望的扭转的分子排列而添加。液晶显示元件是液晶显示面板及液晶显示模块的总称。有时分别将液晶化合物、液晶组成物、液晶显示元件简称为化合物、组成物、元件。另外,例如液晶相的上限温度为液晶相-等向性相的相转变温度,而且有时将其简称为透明点或上限温度。有时将液晶相的下限温度简称为下限温度。有时将由式(1)所表示的化合物简称为化合物(1)。该简称方式有时亦适用于由式(2)等所表示的化合物。式(2)~式(5)中,由六边形包围的A1、B、C等的符号分别对应于环A1、环B、环C等。以百分比表示的化合物的量是基于组成物的总重量的重量百分比(wt%)。将环A1、Y1、B等多个相同的符号记载于相同的式或不同的式中,但该些分别可相同、或不同。
“至少1个”表示不仅位置可自由地选择,个数亦可自由地选择,但不包含个数为0的情况。“至少1个A可由B、C或D取代”这一表达方式(有时亦称为“任意的A可由B、C或D取代”)表示除至少1个A由B取代的情况、至少1个A由C取代的情况、及至少1个A由D取代的情况以外,亦包括多个A由B~D中的至少2个取代的情况。例如,“至少1个-CH2-可由-O-取代、该烷基中的至少1个-CH2-CH2-可由-CH=CH-取代的烷基”中,包括烷基、烯基、烷氧基、烷氧基烷基、烷氧基烯基、烯氧基烷基等。再者,于本发明中,连续的2个-CH2-由-O-取代而变成如-O-O-般的情况不佳。而且,烷基的末端的-CH2-由-O-取代的情况亦不佳。以下,进一步说明本发明。关于由式(1)所表示的化合物中的末端基、环及键结基等,亦叙述较佳例。
发明的效果
本发明的液晶组成物通过含有许多式(1)的化合物,而显示对于热、光等的稳定性,光学等向性的液晶相的高的上限温度、低的下限温度,且于通过光学等向性的液晶相来驱动的光元件中具有低驱动电压、大的对比度。于本发明的高分子/液晶复合材料中具有光学等向性的液晶相者,显示光学等向性的液晶相的高的上限温度、低的下限温度,且于通过光学等向性的液晶相来驱动的光元件中具有低驱动电压。
本发明的通过光学等向性的液晶相来驱动的光元件具有宽广的可使用的温度范围、短的响应时间、大的对比度、及低驱动电压。
附图说明
图1表示实施例中所使用的梳型电极基板。
图2表示实施例中所使用的光学系统。
符号说明
1:电极
2:电极
3:光源
4:偏光元件(偏光板)(Polarizer)
5:梳型电极单元
6:检光元件(偏光板)(Analyzer)
7:光接收器(Photodetector)
具体实施方式
1-1化合物(1)
本发明的具有光学等向性的液晶相的液晶组成物包括非手性成分T与手性剂,非手性成分T含有由上述式(1)所表示的化合物作为第一成分。
本发明的液晶组成物的第1形态为含有第一成分与在本说明书中未特别表示成分名的其他成分的组成物。首先,对由式(1)所表示的化合物进行说明。
式(1)中,R1为氢或碳数为1~20的烷基,该烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;L1、L2、L3、L4、L5、L6、L7及L8独立为氢或氟;Z1、Z2及Z3分别独立为单键或-COO-、-CF2O-,且至少一个为-COO-;n1及n2分别独立为0或1;X1为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,于X1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
烯基中的-CH=CH-的较佳的立体构型(configuration)依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于《分子晶体与液晶(Mol.Cryst.Liq.Cryst.)》,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
烷基的具体例为-CH3、-C2H5、-C3H7、-C4H9、-C5H11、-C6H13、-C7H15、-C8H17、-C9H19、-C10H21、-C11H23、-C12H25、-C13H27、-C14H29、及-C15H31
烷氧基的具体例为-OCH3、-OC2H5、-OC3H7、-OC4H9、-OC5H11、-OC6H13及-OC7H15、-OC8H17、-OC9H19、-OC10H21、-OC11H23、-OC12H25、-OC13H27、及-OC14H29
烷氧基烷基的具体例为-CH2OCH3、-CH2OC2H5、-CH2OC3H7、-(CH2)2-OCH3、-(CH2)2-OC2H5、-(CH2)2-OC3H7、-(CH2)3-OCH3、-(CH2)4-OCH3、及-(CH2)5-OCH3
烯基的具体例为-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC2H5、-CH2CH=CHCH3、-(CH2)2-CH=CH2、-CH=CHC3H7、-CH2CH=CHC2H5、-(CH2)2-CH=CHCH3、及-(CH2)3-CH=CH2
烯氧基的具体例为-OCH2CH=CH2、-OCH2CH=CHCH3、及-OCH2CH=CHC2H5
炔基的具体例为-C≡CH、-C≡CCH3、-CH2C≡CH、-C≡CC2H5、-CH2C≡CCH3、-(CH2)2-C≡CH、-C≡CC3H7、-CH2C≡CC2H5、-(CH2)2-C≡CCH3、及-C≡C(CH2)5
式(1)中,X1为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,而且,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中、烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,于X1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
至少1个氢由氟取代的烷基的具体例为-CHF2、-CF3、-CF2CH2F、-CF2CHF2、-CH2CF3、-CF2CF3、-(CH2)3-F、-(CF2)3-F、-CF2CHFCF3、及-CHFCF2CF3
至少1个氢由氟取代的烷氧基的具体例为-OCHF2、-OCF3、-OCF2CH2F、-OCF2CHF2、-OCH2CF3、-O-(CF2)3-F、-OCF2CHFCF3、及-OCHFCF2CF3
至少1个氢由氟取代的烯基的具体例为-CH=CF2、-CF=CHF、-CH=CHCH2F、-CH=CHCF3、-(CH2)2-CH=CF2、-CH2CH=CHCF3、及-CH=CHCF2CF3
较佳的X1的具体例为氟、氯、-CF3、-CHF2、-OCF3及-OCHF2。更佳的X1的例子为氟、氯、-CF3及-OCF3。当X1为氯、氟时,熔点低、且与其他液晶化合物的相容性特别优异。当X1为-CF3、-CHF2、-OCF3及-OCHF2时,显示特别大的介电常数异向性。
式(1)中,较佳为式(1-1)~式(1-8)。
式(1-1)~式(1-8)中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;L2、L4、L5、L6、L7及L8独立为氢或氟;Z1、Z2及Z3分别独立为单键、-COO-或-CF2O-,且至少一个为-COO-;
X1A为氟、氯、-CF3或-OCF3
由式(1-1)~式(1-8)所表示的化合物中,更佳为下述式(1-1-1)、式(1-1-2)、式(1-2-1)~式(1-2-6)、式(1-3-1)、式(1-3-2)、式(1-4-1)、式(1-4-2)、式(1-5-1)及式(1-5-2)。该些之中,进而更佳为式(1-2-1)~式(1-2-6)。
此处,R1A、Z1、Z2及X1A的定义与上述相同。
上述式中,进而更佳的化合物为(1-2-2-1)、(1-2-5-1)及(1-2-6-1)。任一化合物均可实现本申请案组成物的高透明点化,但(1-2-2-1)、(1-2-5-1)使驱动电压下降的效果高,(1-2-6-1)使透明点上升的效果更高,另一方面,响应时间比较快。
此处,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;X1A为氟、氯、或-CF3
1-2化合物(1)的性质
对本发明中所使用的化合物(1)进行更详细的说明。化合物(1)是具有二恶烷环、且具有至少一个-COO-连结基的液晶化合物。该化合物于常规使用元件的条件下,物理性质及化学性质极其稳定,而且,虽然透明点高,但与其他液晶化合物的相容性比较好。含有该化合物的组成物于常规使用元件的条件下稳定。因此,于组成物中可扩大光学等向性的液晶相的温度范围,而可于宽广的温度范围内用作显示元件。进而,该化合物作为用以降低通过光学等向性的液晶相来驱动的组成物的驱动电压的成分而有用。即,式(1)的化合物具有使透明点上升、且使驱动电压下降这一优异的特长。另外,显现极大的介电常数异向性。
当右末端基X1为氟、氯、-SF5、-CF3、-OCF3、或-CH=CH-CF3时,介电常数异向性大。当X1为氟、-CF3、或-OCF3时,化学性质稳定。
1-3化合物(1)的合成
其次,对化合物(1)的合成进行说明。化合物(1)可通过适当地组合有机合成化学中的方法来合成。向起始物质中导入目标末端基、环以及键结基的方法于《有机合成》(Organic Syntheses,约翰·威立父子出版公司(John Wiley&Sons,Inc))、《有机反应》(Organic Reactions,John Wiley&Sons,Inc)、《有机合成大全》(Comprehensive OrganicSynthesis,培格曼出版公司(Pergamon Press))、新实验化学讲座(丸善)等中有记载。
例如,即便应用日本专利2959526号公报的方法,亦可合成本申请案式(1)的化合物。
由式(1)所表示的化合物因具有大的介电常数异向性与大的折射率异向性,故其含量相对于成分T的总重量,可为10wt%~85wt%,较佳为30wt%~80wt%,更佳为40wt%~80wt%。若为该范围,则低温相容性亦变得良好。式(1)中,Z1、Z2及Z3中的至少一个为-COO-的化合物的含量相对于成分T的总含量,可为1wt%~85wt%,较佳为3wt%~60wt%,更佳为5wt%~50wt%,特佳为5wt%~40wt%。
本发明中所使用的化合物(1)可为1种,亦可为2种以上。
2-1化合物(2)
本发明的液晶组成物的第2形态为如下的组成物,其包括:包含选自由式(2)所表示的化合物的群组中的至少1种化合物的非手性成分T的第二成分、及第一成分。
对由式(2)所表示的化合物进行说明。
式(2)中,R2为氢或碳数为1~20的烷基,该烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R2中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;环A21、环A22、环A23、环A24、及环A25独立为1,4-亚环己基、1,3-二恶烷-2,5-二基、1,4-亚苯基、1个氢或2个氢由氟取代的1,4-亚苯基、2个氢分别由氟与氯取代的1,4-亚苯基、吡啶-2,5-二基、嘧啶-2,5-二基;Z21、Z22、Z23、Z24、Z25、及Z26独立为单键或碳数为1~4的亚烷基,该亚烷基中的至少1个-CH2-可由-O-、-COO-或-CF2O-取代;L21、L22及L23独立为氢或氟;X2为氟、氯、-CF3、或-OCF3;n21、n22、n23、n24、及n25独立为0或1,且2≤n21+n22+n23+n24+n25≤3。
R2较佳为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基。
若考虑化合物的稳定性或介电常数异向性,则环A21、环A22、环A23、环A24、及环A25较佳为1,4-亚苯基、1个氢或2个氢由氟取代的1,4-亚苯基。
Z21、Z22、Z23、Z24、Z25及Z26独立为单键或碳数为1~4的亚烷基,该亚烷基中的至少1个-CH2-可由-O-、-COO-或-CF2O-取代。Z21、Z22、Z23、Z24、Z25及Z26较佳为均为单键、或至少一个为-COO-或-CF2O-。当重视与其他液晶化合物的相容性时,较佳为至少一个为-CF2O-。特佳为n24=1且Z25为-CF2O-。
X2为氟、氯、-CF3、-CHF2、-CH2F、-OCF3、-OCHF2、-OCH2F、-OCF2CFHCF3或-CH=CHCF3。更佳为氟、氯、-CF3及-OCF3
式(2)的化合物中,更佳的化合物为式(2-1)的化合物。
式(2-1)中,式(2)的R2A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,Z21~Z26的定义与上述式(2)相同,且X2A为氟、氯、-CF3及-OCF3,式(2-1)中的n22、n23、n24及n25独立为0或1,n22+n23+n24+n25为1~2的整数,(F)独立地表示氢或氟。
Z21、Z22、Z23、Z24、Z25及Z26独立为单键或-CF2O-,当重视与其他液晶化合物的相容性时,Z21、Z22、Z23、Z24、Z25及Z26较佳为至少一个为-CF2O-。特佳为n24=1且Z25为-CF2O-。
式(2-1)中,较佳为由式(2-1-1)~式(2-1-5)所表示的结构。
此处,R2A、Z21~Z26、X2A及(F)的定义与上述相同。
式(2-1-1)~式(2-1-5)的化合物中,更佳为下述式(2-1-1-1)~式(2-1-1-3)、式(2-1-2-1)~式(2-1-2-3)、式(2-1-3-1)~式(2-1-3-3)、式(2-1-4-1)~式(2-1-4-3)、式(2-1-5-1)~式(2-1-5-3)。该些之中,进而更佳为由式(2-1-1-1)、式(2-1-1-2)、式(2-1-2-1)、式(2-1-2-2)、式(2-1-3-1)、式(2-1-3-2)、式(2-1-4-2)、式(2-1-4-3)及式(2-1-5-3)所表示的化合物。
该些式中,R2A、(F)、及X2A的定义与上述式(2-1-1)~式(2-1-5)相同。
2-2化合物(2-1)的性质
对本发明中所使用的化合物(2-1)进行更详细的说明。化合物(2-1)是具有氯苯环的液晶化合物。该化合物于常规使用元件的条件下,物理性质及化学性质极其稳定,而且与其他液晶化合物的相容性良好。进而,不易显现近晶相。含有该化合物的组成物于常规使用元件的条件下稳定。因此,于组成物中可扩大胆固醇相的温度范围,并且可于宽广的温度范围内用作显示元件。进而,该化合物因介电常数异向性与折射率异向性大,故作为用以降低通过胆固醇相来驱动的组成物的驱动电压、用以提升反射率的成分而有用。
通过适当地选择化合物(2-1)的n22~n25的组合,以及左末端基R2A、最右侧的苯环上的基及其取代位置((F)及X2A)、或键结基Z22~键结基Z26,而可任意地调整透明点、折射率异向性、介电常数异向性等物性。以下说明n22、n23、n24、及n25的组合,左末端基R2A、右末端基X2A、键结基Z21~键结基Z26、(F)的种类对化合物(2-1)的物性所带来的效果。
通常,n22+n23+n24+n25=2的化合物为高透明点,n22+n23+n24+n25=1的化合物为低熔点。
当R2A为烯基时,较佳的立体构型依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于Mol.Cryst.Liq.Cryst.,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
由于键结基Z21~键结基Z26为单键、或-CF2O-,因此化学性质比较稳定、比较难以产生劣化。进而,当键结基为单键时,粘度小。另外,当键结基为-CF2O-时,介电常数异向性大。
当右末端基X2A为氟、氯、-OCF3时,低温下的与其他液晶化合物的相容性优异,当右末端基X2A为-CF3时,驱动电压下降效果大。
当(F)为氢时,熔点低,当(F)为氟时,介电常数异向性大。
如上所述,通过适当地选择环结构、末端基、键结基等的种类,而可获得具有目标物性的化合物。
由式(2)所表示的化合物因具有良好的相容性、大的介电常数异向性、及大的折射率异向性,故其含量相对于成分T的总重量,可为0.5wt%~70wt%,较佳为5wt%~60wt%,更佳为10wt%~50wt%。
本发明中所使用的化合物(2)可为1种,亦可为2种以上。
3-1化合物(3)
本发明的液晶组成物的第3形态为如下的组成物,其包括:包含选自由式(3)所表示的化合物的群组中的至少1种化合物的非手性成分T的第三成分、及第一成分。除第三成分与第一成分以外,亦可进而含有第二成分。
对由式(3)所表示的化合物进行说明。
式(3)中,R3为氢或碳数为1~20的烷基,该烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;Z31、Z32、及Z33独立为单键、-COO-或-CF2O-,且至少1个为-CF2O-;L31、L32、L33、L34及L35独立为氢或氟;X3为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
烯基中的-CH=CH-的较佳的立体构型依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于Mol.Cryst.Liq.Cryst.,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
烷基的具体例为-CH3、-C2H5、-C3H7、-C4H9、-C5H11、-C6H13、-C7H15、-C8H17、-C9H19、-C10H21、-C11H23、-C12H25、-C13H27、-C14H29、及-C15H31
烷氧基的具体例为-OCH3、-OC2H5、-OC3H7、-OC4H9、-OC5H11、-OC6H13及-OC7H15、-OC8H17、-OC9H19、-OC10H21、-OC11H23、-OC12H25、-OC13H27、及-OC14H29
烷氧基烷基的具体例为-CH2OCH3、-CH2OC2H5、-CH2OC3H7、-(CH2)2-OCH3、-(CH2)2-OC2H5、-(CH2)2-OC3H7、-(CH2)3-OCH3、-(CH2)4-OCH3、及-(CH2)5-OCH3
烯基的具体例为-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC2H5、-CH2CH=CHCH3、-(CH2)2-CH=CH2、-CH=CHC3H7、-CH2CH=CHC2H5、-(CH2)2-CH=CHCH3、及-(CH2)3-CH=CH2
烯氧基的具体例为-OCH2CH=CH2、-OCH2CH=CHCH3、及-OCH2CH=CHC2H5
炔基的具体例为-C≡CH、-C≡CCH3、-CH2C≡CH、-C≡CC2H5、-CH2C≡CCH3、-(CH2)2-C≡CH、-C≡CC3H7、-CH2C≡CC2H5、-(CH2)2-C≡CCH3、及-C≡C(CH2)5
式(3)中,Z31、Z32、及Z33独立为单键、-COO-或-CF2O-,且至少一个为-CF2O-,
Z31、Z32、及Z33的较佳例为单键与-CF2O-。
式(3)中,L31、L32、L33、L34及L35独立为氢或氟。当Z32为-COO-或-CF2O-时,L32、L34及L35较佳为氟,当Z33为-COO-或-CF2O-时,L33、L34及L35较佳为氟。
式(3)中,X3为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代。
至少1个氢由卤素取代的烷基的具体例为-CH2F、-CHF2、-CF3、-(CH2)2-F、-CF2CH2F、-CF2CHF2、-CH2CF3、-CF2CF3、-(CH2)3-F、-(CF2)3-F、-CF2CHFCF3、-CHFCF2CF3、-(CH2)4-F、-(CF2)4-F、-(CH2)5-F、及-(CF2)5-F。
至少1个氢由卤素取代的烷氧基的具体例为-OCH2F、-OCHF2、-OCF3、-O-(CH2)2-F、-OCF2CH2F、-OCF2CHF2、-OCH2CF3、-O-(CH2)3-F、-O-(CF2)3-F、-OCF2CHFCF3、-OCHFCF2CF3、-O(CH2)4-F、-O-(CF2)4-F、-O-(CH2)5-F、及-O-(CF2)5-F。
至少1个氢由卤素取代的烯基的具体例为-CH=CHF、-CH=CF2、-CF=CHF、-CH=CHCH2F、-CH=CHCF3、-(CH2)2-CH=CF2、-CH2CH=CHCF3、-CH=CHCF3、及-CH=CHCF2CF3
较佳的X3的例子为氟、氯、-CF3、-CHF2、-OCF3、及-OCHF2。最佳的X3的例子为氟、氯、-CF3及-OCF3
式(3)中,较佳为由式(3-1)~式(3-3)所表示的结构。更佳为式(3-2)~式(3-3)。
该些式中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、-OCF3,L31~L35独立为氢或氟。
3-2化合物(3)的性质
对本发明中所使用的化合物(3)进行更详细的说明。化合物(3)是具有4个苯环、且具有至少1个-CF2O-连结基的化合物。该化合物于常规使用元件的条件下,物理性质及化学性质极其稳定,而且与其他液晶化合物的相容性良好。含有该化合物的组成物于常规使用元件的条件下稳定。因此,于组成物中可扩大胆固醇相的温度范围,并且可于宽广的温度范围内用作显示元件。进而,该化合物因介电常数异向性与折射率异向性大,故作为用以降低通过胆固醇相来驱动的组成物的驱动电压、及用以提升反射率的成分而有用。
通过适当地选择化合物(3)的左末端基R3、苯环上的基(L31~L35及X3)、或键结基Z31~键结基Z33,而可任意地调整透明点、折射率异向性、介电常数异向性等物性。以下说明左末端基R3、苯环上的基(L31~L35及X3)、或键结基Z31~键结基Z33的种类对化合物(3)的物性所带来的效果。
当R3为烯基时,烯基中的-CH=CH-的较佳的立体构型依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于Mol.Cryst.Liq.Cryst.,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
当键结基Z31、Z32及Z33为单键、或-CF2O-时,粘度小。当键结基Z31、Z32及Z33为-CF2O-时,介电常数异向性大。当Z31、Z32及Z33为单键、-CF2O-时,化学性质比较稳定,比较难以产生劣化。
当右末端基X3为氟、氯、-SF5、-CF3、-CHF2、-CH2F、-OCF3、-OCHF2或-OCH2F时,介电常数异向性大。当X3为氟、-OCF3、或-CF3时,化学性质稳定。
当L31~L35中的氟的数量多时,介电常数异向性大。当L31为氢时,与其他液晶的相容性优异。当L34及L35均为氟时,介电常数异向性特别大。
如上所述,通过适当地选择末端基、键结基等的种类,而可获得具有目标物性的化合物。
3-3化合物(3)的具体例
化合物(3)的较佳例为式(3-1)~式(3-3)。作为更佳的例子,可列举式(3-2A)~式(3-2H)、式(3-3A)~式(3-3D)。作为进而更佳的例子,可列举式(3-2A)~式(3-2D)、式(3-3A)、式(3-3B)。作为最佳的例子,可列举式(3-2A)、式(3-2C)、式(3-3A)。
该些式中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、-OCF3
由式(3)所表示的化合物因透明点比较高,具有大的介电常数异向性与大的折射率异向性,故其含量相对于成分T的总重量,可为0.5wt%~70wt%,较佳为5wt%~60wt%,更佳为10wt%~50wt%。
本发明中所使用的化合物(3)可为1种,亦可为2种以上。
4化合物(4)
本发明的第4形态是如下的组成物,其包括成分A与非手性成分T的第四成分,上述成分A包含由上述式(1)所表示的化合物、及作为附加成分的由上述式(2)与式(3)所表示的化合物、上述非手性成分T的第四成分包含选自由式(4)所表示的化合物的群组中的至少1种化合物。
对由式(4)所表示的化合物进行说明。
式(4)中,R4为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;环B独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基、3,5-二氟-1,4-亚苯基、3,5-二氯-1,4-亚苯基、或嘧啶-2,5-二基;Z41独立为单键、亚乙基、-COO-、-OCO-、-CF2O-、或-OCF2-;L48及L49独立为氢或氟;X4为氟、氯、-CF3或-OCF3;n41为1、2、3、或4,其中,当n41为3或4时,一个Z41为-CF2O-或-OCF2-;当n41为3时,所有环B均不为由氟取代的1,4-亚苯基。
非手性成分T的第四成分适合于具有大的介电常数异向性或低温下的相容性的组成物的制备。为了提升低温下的相容性,相对于成分T的总重量,该第四成分的较佳的含量为约5wt%~约40wt%。更佳的比例为约5wt%~约30wt%的范围。特佳的比例为约5wt%~约20wt%的范围。
本发明中所使用的化合物(4)可为1种,亦可为2种以上。
R4为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基。为了提升对于紫外线的稳定性、或为了对于热的稳定性,较佳的R4为碳数为1~12的烷基。为了降低粘度,较佳的R4为碳数为2~12的烯基,为了提升对于紫外线的稳定性、或为了提升对于热的稳定性,较佳的R4为碳数为1~12的烷基。
较佳的烷基为甲基、乙基、丙基、丁基、戊基、己基、庚基、或辛基。为了降低粘度,更佳的烷基为乙基、丙基、丁基、戊基、或庚基。
较佳的烷氧基为甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、或庚氧基。为了降低粘度,更佳的烷氧基为甲氧基或乙氧基。
较佳的烯基为乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基、或5-己烯基。为了降低粘度,更佳的烯基为乙烯基、1-丙烯基、3-丁烯基、或3-戊烯基。该些烯基中的-CH=CH-的较佳的立体构型依存于双键的位置。为了降低粘度,于如1-丙烯基、1-丁烯基、1-戊烯基、1-己烯基、3-戊烯基、3-己烯基般的烯基中,较佳为反式。于如2-丁烯基、2-戊烯基、2-己烯基般的烯基中,较佳为顺式。于该些烯基中,直链的烯基优于分支的烯基。
至少1个氢由氟取代的烯基的较佳例为2,2-二氟乙烯基、3,3-二氟-2-丙烯基、4,4-二氟-3-丁烯基、5,5-二氟-4-戊烯基、及6,6-二氟-5-己烯基。为了降低粘度,更佳的例子为2,2-二氟乙烯基、及4,4-二氟-3-丁烯基。
烷基不包含环状烷基。烷氧基不包含环状烷氧基。烯基不包含环状烯基。至少1个氢由氟取代的烯基不包含至少1个氢由氟取代的环状烯基。
环B独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基、3,5-二氟-1,4-亚苯基、3,5-二氯-1,4-亚苯基、或嘧啶-2,5-二基,当n41为2以上时,其中的任意的2个环B可相同,亦可不同。为了提升光学异向性,较佳的环B为1,4-亚苯基或3-氟-1,4-亚苯基;为了降低粘度,较佳的环B为1,4-亚环己基。
Z41独立为单键、亚乙基、-COO-、-OCO-、-CF2O-或-OCF2-,其中,当n41为3或4时,一个Z12为-CF2O-。当n41为2以上时,其中的任意的2个Z12可相同,亦可不同。为了降低粘度,较佳的Z41为单键。为了提升介电常数异向性、及为了使相容性变得良好,较佳的Z41为-CF2O-。
L48及L49独立为氢、或氟,为了提升介电常数异向性,较佳为L48及L49均为氟,为了提升透明点,较佳为L48及L49均为氢。
X4为氟、氯、-CF3或-OCF3。为了提升介电常数异向性,较佳为-CF3;为了使相容性变得良好,较佳为氟、-OCF3;为了提升折射率异向性,较佳为氯。
式(4)的化合物之中,较佳为式(4-1)~式(4-9)。
上述式(4-1)~式(4-9)中,R4A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X4A为氟、氯、-CF3、-OCF3,L40~L49独立为氢或氟。
(4-1)~(4-3)的透明点高,作为5环相容性优异。(4-4)~(4-6)的透明点高、且Δn大,(4-7)~(4-9)的相容性优异。再者,L40~L49中,氟的数量越多,介电常数异向性越大。
5化合物(5)
本发明的第5形态是如下的液晶组成物,其包括成分A、非手性成分T的第五成分、以及手性剂,上述成分A包含选自由上述式(1)所表示的化合物、及作为附加成分的由上述式(2)与式(3)所表示的化合物的群组中的至少一种化合物,上述非手性成分T的第五成分包含选自由上述式(5)所表示的化合物的群组中的至少1种化合物。作为非手性成分T,亦可进而含有第4成分。对由式(5)所表示的化合物进行说明。
式(5)中,R5为氢或碳数为1~20的烷基,该烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中、至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R5中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;(F)独立为氢或氟;X5为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,该烷基中,烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X5中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
烯基中的-CH=CH-的较佳的立体构型依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于Mol.Cryst.Liq.Cryst.,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
烷基的具体例为-CH3、-C2H5、-C3H7、-C4H9、-C5H11、-C6H13、-C7H15、-C8H17、-C9H19、-C10H21、-C11H23、-C12H25、-C13H27、-C14H29、及-C15H31
烷氧基的具体例为-OCH3、-OC2H5、-OC3H7、-OC4H9、-OC5H11、-OC6H13及-OC7H15、-OC8H17、-OC9H19、-OC10H21、-OC11H23、-OC12H25、-OC13H27、及-OC14H29
烷氧基烷基的具体例为-CH2OCH3、-CH2OC2H5、-CH2OC3H7、-(CH2)2-OCH3、-(CH2)2-OC2H5、-(CH2)2-OC3H7、-(CH2)3-OCH3、-(CH2)4-OCH3、及-(CH2)5-OCH3
烯基的具体例为-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC2H5、-CH2CH=CHCH3、-(CH2)2-CH=CH2、-CH=CHC3H7、-CH2CH=CHC2H5、-(CH2)2-CH=CHCH3、及-(CH2)3-CH=CH2
烯氧基的具体例为-OCH2CH=CH2、-OCH2CH=CHCH3、及-OCH2CH=CHC2H5
炔基的具体例为-C≡CH、-C≡CCH3、-CH2C≡CH、-C≡CC2H5、-CH2C≡CCH3、-(CH2)2-C≡CH、-C≡CC3H7、-CH2C≡CC2H5、-(CH2)2-C≡CCH3、及-C≡C(CH2)5
式(5)中,X5为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,至少1个-CH2-CH2-可由-CH=CH-、或-C≡C-取代,而且,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟或氯取代。
至少1个氢由氟取代的烷基的具体例为-CHF2、-CF3、-CF2CH2F、-CF2CHF2、-CH2CF3、-CF2CF3、-(CH2)3-F、-(CF2)3-F、-CF2CHFCF3、及-CHFCF2CF3
至少1个氢由氟取代的烷氧基的具体例为-OCHF2、-OCF3、-OCF2CH2F、-OCF2CHF2、-OCH2CF3、-O-(CF2)3-F、-OCF2CHFCF3、及-OCHFCF2CF3
至少1个氢由氟取代的烯基的具体例为-CH=CF2、-CF=CHF、-CH=CHCH2F、-CH=CHCF3、-(CH2)2-CH=CF2、-CH2CH=CHCF3、及-CH=CHCF2CF3
较佳的X5的具体例为氟、氯、-CF3、-CHF2、-OCF3及-OCHF2。更佳的X5的例子为氟、氯、-CF3及-OCF3。当X5为氯、氟时,熔点低、与其他液晶化合物的相容性特别优异。当X5为-CF3、-CHF2、-OCF3及-OCHF2时,显示特别大的介电常数异向性。
式(5)中,较佳为式(5-1)~式(5-4)。
式(5-1)~式(5-4)中,R5A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;(F)独立为氢,或氟;X5A为氟、氯、-CF3或-OCF3
由式(5-1)~式(5-4)所表示的化合物中,更佳为(5-1)~(5-3),进而更佳为下述式(5-1-1)、式(5-1-2)、式(5-2-1)~式(5-2-4)、式(5-3-1)及式(5-3-2)。该些之中,进而更佳为式(5-2-1)、式(5-2-2)及式(5-3-2)。
此处,R5A及X5A的定义与上述相同。
非手性成分T的第五成分适合于制备具有大的介电常数异向性的组成物。为了提升透明点,相对于非手性成分T的总重量,该第五成分的较佳的含量为约1.0wt%以上,为了降低液晶相的下限温度,该第五成分的较佳的含量为约50wt%以下。更佳的比例为约1wt%~25wt%。特佳的比例为约1wt%~约15wt%。
本发明中所使用的化合物(5)可为1种,亦可为2种以上。
5-1化合物(5)的性质
对本发明中所使用的化合物(5)进行更详细的说明。化合物(5)是具有二恶烷环与3个苯环的液晶化合物。该化合物于常规使用元件的条件下,物理性质及化学性质极其稳定,而且虽然透明点高,但与其他液晶化合物的相容性比较好。含有该化合物的组成物于常规使用元件的条件下稳定。因此,于组成物中可扩大光学等向性的液晶相的温度范围,而可于宽广的温度范围内用作显示元件。进而,该化合物作为用以降低通过光学等向性的液晶相来驱动的组成物的驱动电压的成分而有用。另外,若以自化合物(5)与手性剂所制备的组成物来使蓝相显现,则容易变成不与N*相或等向性相共存的均一的蓝相。即,化合物(5)为容易使均一的蓝相显现的化合物。
当右末端基X5为氟、氯、-SF5、-CF3、-OCF3、或-CH=CH-CF3时,介电常数异向性大。当X5为氟、-CF3、或-OCF3时,化学性质稳定。
5-2化合物(5)的合成
其次,对化合物(5)的合成进行说明。化合物(5)可通过适当地组合有机合成化学中的方法来合成。向起始物质中导入目标末端基、环以及键结基的方法于《有机合成》(Organic Syntheses,John Wiley&Sons,Inc)、《有机反应》(Organic Reactions,JohnWiley & Sons,Inc)、《有机合成大全》(Comprehensive Organic Synthesis,PergamonPress)、新实验化学讲座(丸善)等中有记载。
例如,即便应用日本专利2959526号公报的方法,亦可合成本申请案式(5)的化合物。
非手性成分T的第五成分具有容易显现蓝相、且提高透明点的效果。
6化合物(6)
本发明的液晶组成物的第6形态是如下的组成物,其包括:包含选自由式(6)所表示的化合物的群组中的至少1种化合物的非手性成分T的第六成分、及第一成分。除第六成分与第一成分以外,亦可进而含有第二成分~第五成分。
对由式(6)所表示的化合物进行说明。
式(6)中,R6A及R6B独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;环C及环D独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基或2,5-二氟-1,4-亚苯基;Z61独立为单键、亚乙基、-COO-、或-OCO-;r为1、2、或3。
非手性成分T的第六成分为介电常数异向性值的绝对值小、且接近中性的化合物。式(6)中r为1的化合物主要具有调整粘度或调整折射率异向性值的效果,另外,式(6)中r为2或3的化合物具有提高透明点等扩大光学等向性的液晶相的温度范围的效果、或调整折射率异向性值的效果。
若使由式(6)所表示的化合物的含量增加,则液晶组成物的驱动电压变高、粘度变低,因此就驱动电压的观点而言,只要满足液晶组成物的粘度的要求值,则理想的是由式(6)所表示的化合物的含量少。相对于非手性成分T的总重量,非手性成分T的第六成分的含量为1wt%~40wt%,较佳为1wt%~20wt%。
本发明中所使用的化合物(6)可为1种,亦可为2种以上。
R6A及R6B为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基。为了降低粘度,较佳的R6A及R6B为碳数为2~12的烯基;为了提升对于紫外线的稳定性、或为了提升对于热的稳定性,较佳的R6A及R6B为碳数为1~12的烷基。
较佳的烷基为甲基、乙基、丙基、丁基、戊基、己基、庚基、或辛基。为了降低粘度,更佳的烷基为乙基、丙基、丁基、戊基、或庚基。
较佳的烷氧基为甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、或庚氧基。为了降低粘度,更佳的烷氧基为甲氧基或乙氧基。
烯基中的-CH=CH-的较佳的立体构型依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于Mol.Cryst.Liq.Cryst.,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
至少1个氢由氟取代的烯基的较佳例为2,2-二氟乙烯基、3,3-二氟-2-丙烯基、4,4-二氟-3-丁烯基、5,5-二氟-4-戊烯基、及6,6-二氟-5-己烯基。为了降低粘度,更佳的例子为2,2-二氟乙烯基、及4,4-二氟-3-丁烯基。
环C及环D独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基或2,5-二氟-1,4-亚苯基,当r为2以上时,其中的任意的2个环C可相同,亦可不同。为了提升光学异向性,较佳的环C及环D为1,4-亚苯基或3-氟-1,4-亚苯基;为了降低粘度,较佳的环C及环D为1,4-亚环己基。
Z61独立为单键、亚乙基、-COO-、或-OCO-,当r为2以上时,其中的任意的2个Z61可相同,亦可不同。为了降低粘度,较佳的Z61为单键。
式(6)的化合物之中,较佳为式(6-1)~式(6-13)。
上述式(6-1)~式(6-13)中,R6A及R6B独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基。
(6-1)~(6-3)的黏度低,(6-4)~(6-8)的透明点高,(6-9)~(6-13)的透明点极高。
7化合物(7)
本发明的液晶组成物的第7形态是如下的组成物,其包括:包含选自由式(7)所表示的化合物的群组中的至少1种化合物的非手性成分T的第七成分、及第一成分。除第七成分与第一成分以外,亦可进而含有第二成分~第六成分。
对由式(7)所表示的化合物进行说明。
式(7)中,R7为氢或碳数为1~20的烷基,该烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;L71、L72、L73、L74、L75及L76独立为氢或氟;Z71及Z72分别独立为单键或-CF2O-,且至少一个为-CF2O-。
X7为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或该烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
烯基中的-CH=CH-的较佳的立体构型依存于双键的位置。于如-CH=CHCH3、-CH=CHC2H5、-CH=CHC3H7、-CH=CHC4H9、-C2H4CH=CHCH3、以及-C2H4CH=CHC2H5般的在奇数位上具有双键的烯基中,较佳为反式构型。于如-CH2CH=CHCH3、-CH2CH=CHC2H5、以及-CH2CH=CHC3H7般的在偶数位上具有双键的烯基中,较佳为顺式构型。具有较佳的立体构型的烯基化合物具有高的上限温度或宽广的液晶相的温度范围。于Mol.Cryst.Liq.Cryst.,1985,131,109以及Mol.Cryst.Liq.Cryst.,1985,131,327中有详细说明。
烷基的具体例为-CH3、-C2H5、-C3H7、-C4H9、-C5H11、-C6H13、-C7H15、-C8H17、-C9H19、-C10H21、-C11H23、-C12H25、-C13H27、-C14H29、及-C15H31
烷氧基的具体例为-OCH3、-OC2H5、-OC3H7、-OC4H9、-OC5H11、-OC6H13及-OC7H15、-OC8H17、-OC9H19、-OC10H21、-OC11H23、-OC12H25、-OC13H27、及-OC14H29
烷氧基烷基的具体例为-CH2OCH3、-CH2OC2H5、-CH2OC3H7、-(CH2)2-OCH3、-(CH2)2-OC2H5、-(CH2)2-OC3H7、-(CH2)3-OCH3、-(CH2)4-OCH3、及-(CH2)5-OCH3
烯基的具体例为-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC2H5、-CH2CH=CHCH3、-(CH2)2-CH=CH2、-CH=CHC3H7、-CH2CH=CHC2H5、-(CH2)2-CH=CHCH3、及-(CH2)3-CH=CH2
烯氧基的具体例为-OCH2CH=CH2、-OCH2CH=CHCH3、及-OCH2CH=CHC2H5
炔基的具体例为-C≡CH、-C≡CCH3、-CH2C≡CH、-C≡CC2H5、-CH2C≡CCH3、-(CH2)2-C≡CH、-C≡CC3H7、-CH2C≡CC2H5、-(CH2)2-C≡CCH3、及-C≡C(CH2)5
式(7)中,X7为氢、卤素、-SF5、或碳数为1~10的烷基,该烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,该烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
至少1个氢由氟取代的烷基的具体例为-CHF2、-CF3、-CF2CH2F、-CF2CHF2、-CH2CF3、-CF2CF3、-(CH2)3-F、-(CF2)3-F、-CF2CHFCF3、及-CHFCF2CF3
至少1个氢由氟取代的烷氧基的具体例为-OCHF2、-OCF3、-OCF2CH2F、-OCF2CHF2、-OCH2CF3、-O-(CF2)3-F、-OCF2CHFCF3、及-OCHFCF2CF3
至少1个氢由氟取代的烯基的具体例为-CH=CF2、-CF=CHF、-CH=CHCH2F、-CH=CHCF3、-(CH2)2-CH=CF2、-CH2CH=CHCF3、及-CH=CHCF2CF3
较佳的X7的具体例为氟、氯、-CF3、-CHF2、-OCF3及-OCHF2。更佳的X1的例子为氟、氯、-CF3及-OCF3。当X7为氯、氟时,熔点低、与其他液晶化合物的相容性特别优异。当X7为-CF3、-CHF2、-OCF3及-OCHF2时,显示特别大的介电常数异向性。
式(7)中,较佳为式(7-1)~式(7-3)。
式(7-1)~式(7-3)中,R7A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;L72、L74、L75及L76独立为氢或氟;Z71及Z72分别独立为单键或-CF2O-,且至少一个为-CF2O-;
X7A为氟、氯、-CF3或-OCF3
由式(7-1)~式(7-3)所表示的化合物中,更佳为下述式(7-1-1)、式(7-1-2)、式(7-2-1)~式(7-2-5)、式(7-3-1)及式(7-3-2)。该些之中,进而更佳为式(7-2-1)~式(7-2-5)。
此处,R7A、Z71、Z72及X7A的定义与上述相同。
上述式中,更佳的化合物为(7-2-2-1)及(7-2-5-1)。
此处,R7A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;X7A为氟、氯、或-CF3
7-2化合物(7)的性质
对本发明中所使用的化合物(7)进行更详细的说明。化合物(7)是具有二恶烷环与3个苯环、且具有至少一个-CF2O-连结基的液晶化合物。该化合物于常规使用元件的条件下,物理性质及化学性质极其稳定,而且虽然透明点高,但与其他液晶化合物的相容性比较好。含有该化合物的组成物于常规使用元件的条件下稳定。因此,于组成物中可扩大光学等向性的液晶相的温度范围,而可于宽广的温度范围内用作显示元件。进而,该化合物作为用以降低通过光学等向性的液晶相来驱动的组成物的驱动电压的成分而有用。另外,若以自化合物(7)与手性剂所制备的组成物来使蓝相显现,则容易变成不与N*相或等向性相共存的均一的蓝相。即,化合物(7)为容易使均一的蓝相显现的化合物。另外,显现极大的介电常数异向性。
当右末端基X7为氟、氯、-SF5、-CF3、-OCF3、或-CH=CH-CF3时,介电常数异向性大。当X7为氟、-CF3、或-OCF3时,化学性质稳定。
非手性成分T的第七成分适合于制备具有大的介电常数异向性的组成物。为了降低驱动电压,相对于非手性成分T的总重量,该第七成分的较佳的含量较佳为约5.0wt%~80wt%,更佳为20wt%~75wt%,特佳的比例为约30wt%~75wt%。
本发明中所使用的化合物(7)可为1种,亦可为2种以上。
7-3化合物(7)的合成
其次,对化合物(7)的合成进行说明。化合物(7)可通过适当地组合有机合成化学中的方法来合成。向起始物质中导入目标末端基、环以及键结基的方法于《有机合成》(Organic Syntheses,John Wiley&Sons,Inc)、《有机反应》(Organic Reactions,JohnWiley & Sons,Inc)、《有机合成大全》(Comprehensive Organic Synthesis,PergamonPress)、新实验化学讲座(丸善)等中有记载。
例如,即便应用日本专利2959526号公报的方法,亦可合成本申请案式(7)的化合物。
本发明的液晶组成物的制备通常可通过公知的方法,例如使所需成分于高温度下溶解的方法等来制备。
8具有光学等向性的液晶相的组成物
8.1具有光学等向性的液晶相的组成物的组成
本发明的第8形态是含有非手性成分T与手性剂的组成物,且为可用于通过光学等向性的液晶相来驱动的光元件的液晶组成物。非手性成分T含有成分A,该成分A包含由式(1)所表示的化合物,及作为附加成分的由式(2)、式(3)、式(5)、式(7)所表示的化合物。视需要,非手性成分T除成分A以外,亦含有选自由式(4)所表示的非手性成分T的第四成分、及由式(6)所表示的第六成分所组成的群组中的化合物。本发明的液晶组成物是显现光学等向性的液晶相的组成物。本发明的非手性成分T及手性剂较佳为包含选自不具有自由基聚合性基的化合物中的化合物。
相对于非手性成分T的总重量,由式(1)所表示的化合物的含量可为3wt%~80wt%;相对于非手性成分T的总重量,由式(2)所表示的化合物的含量可为0.5wt%~70wt%;相对于非手性成分T的总重量,由式(3)所表示的化合物的含量可为0.5wt%~70wt%;相对于非手性成分T的总重量,由式(4)所表示的第四成分的含量可为5wt%~40wt%;相对于非手性成分T的总重量,由式(5)所表示的第五成分的含量可为1wt%~50wt%;相对于非手性成分T的总重量,由式(6)所表示的第六成分的较佳的含量可为0wt%~40wt%;相对于非手性成分T的总重量,由式(7)所表示的第七成分的较佳的含量可为5wt%~80wt%。
相对于液晶组成物的总重量,手性剂的含量为1wt%~40wt%。
8.2手性剂
光学等向性的液晶组成物所含有的手性剂为光学活性化合物,作为手性剂,较佳为扭转力(螺旋扭转力(Helical Twisting Power))大的化合物。扭转力大的化合物可减少为了获得所期望的节距而需要的添加量,因此驱动电压的上升得到抑制,于实用上有利。具体而言,较佳为由下述式(K1)~式(K5)所表示的化合物。
式(K1)~式(K5)中,RK独立为氢、卤素、-C≡N、-N=C=O、-N=C=S或碳数为1~20的烷基,该烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,该烷基中的至少1个氢可由卤素取代;A独立为芳香族性的6元环~8元环、非芳香族性的3元环~8元环、或碳数为9以上的缩合环,该些环的至少1个氢可由卤素、碳数为1~3的烷基或卤代烷基取代,-CH2-可由-O-、-S-或-NH-取代,-CH=可由-N=取代;B独立为氢、卤素、碳数为1~3的烷基、碳数为1~3的卤代烷基、芳香族性的6元环~8元环、非芳香族性的3元环~8元环、或碳数为9以上的缩合环,该些环的至少1个氢可由卤素、碳数为1~3的烷基或卤代烷基取代,-CH2-可由-O-、-S-或-NH-取代,-CH=可由-N=取代;Z独立为单键、碳数为1~8的亚烷基,至少1个-CH2-可由-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、或-N=CH-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,至少1个氢可由卤素取代;X为单键、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、或-CH2CH2-;mK为1~4。
该些之中,作为添加至液晶组成物中的手性剂,更佳为式(K2)中所含有的式(K2-1)~式(K2-8)、式(K4)中所含有的式(K4-1)~式(K4-6)、及式(K5)中所含有的式(K5-1)~式(K5-3),进而更佳为式(K4-1)~式(K4-6)及式(K5-1)~式(K5-3)。
(式中,RK独立为碳数为3~10的烷基或碳数为3~10的烷氧基,烷基中或烷氧基中的至少1个-CH2-CH2-可由-CH=CH-取代)。
液晶组成物中所含有的手性剂可为1种,亦可为2种以上。
相对于液晶组成物的总重量,较佳为含有1wt%~40wt%的手性剂,更佳为含有3wt%~25wt%的手性剂,最佳为含有5wt%~15wt%的手性剂。于该些范围内含有手性剂的液晶组成物容易显现光学等向性的液晶相,而较佳。
8.3 光学等向性的液晶相
所谓液晶组成物具有光学等向性,是指于宏观上液晶分子排列为等方性,因此显示光学等向性,但于微观上存在液晶秩序。“基于液晶组成物于微观上所具有的液晶秩序(liquid crystalline order)的节距(以下,有时称为节距)”较佳为700nm以下,更佳为500nm以下,最佳为350nm以下。
此处,所谓“非液晶等向性相”,是指通常所定义的等向性相,即无秩序相,且为即便生成局部的秩序参数不为零的区域,其原因亦在于摇动的等向性相。例如,于向列相的高温侧显现的等向性相在本说明书中相当于非液晶等向性相。本说明书中的手性的液晶亦适用相同的定义。而且,于本说明书中,所谓“光学等向性的液晶相”,是指显现光学等向性的液晶相而非摇动的相,例如显现血小板(platelet)组织的相(狭义的蓝相)为其一例。
于本发明的光学等向性的液晶组成物中,虽然为光学等向性的液晶相,但于偏光显微镜观察下,有时在蓝相中观测不到典型的血小板组织。因此,于本说明书中,将显现血小板组织的相称为蓝相,将包含蓝相的光学等向性的液晶相称为光学等向性的液晶相。即,蓝相包含于光学等向性的液晶相中。
通常,蓝相被分类蓝相I、蓝相II、蓝相III这3种,上述3种蓝相均为光学活性、且为等向性。于蓝相I或蓝相II的蓝相中,观测到由来自不同的晶格面的布拉格反射所引起的2种以上的绕射光。通常于非液晶等向性相与手性向列相之间观测到蓝相。
所谓光学等向性的液晶相不显示二色以上的绕射光的状态,是指观测不到于蓝相I、蓝相II中所观测到的血小板组织,而大体上为一面单色。于不显示二色以上的绕射光的光学等向性的液晶相中,不需要颜色的明暗于面内均一。
不显示二色以上的绕射光的光学等向性的液晶相具有如下的优点:由布拉格反射产生的反射光的强度得到抑制、或朝低波长侧位移。
另外,反射可见光的光的液晶材料于用作显示元件的情况下,有时色调会产生问题,但于不显示二色以上的绕射光的液晶中,因反射波长朝低波长位移,故能够以比狭义的蓝相(显现血小板组织的相)长的节距使可见光的反射消失。
可向具有向列相的组成物中添加手性剂而获得本发明的光学等向性的液晶组成物。此时,手性剂较佳为以如节距变成700nm以下的浓度来添加。再者,具有向列相的组成物含有由式(1)所表示的化合物及视需要的其他成分。另外,亦可向具有手性向列相、不具有光学等向性的液晶相的组成物中添加手性剂而获得本发明的光学等向性的液晶组成物。再者,具有手性向列相、不具有光学等向性的液晶相的组成物含有由式(1)所表示的化合物、光学活性化合物及视需要的其他成分。此时,为了不使光学等向性的液晶相显现,光学活性化合物较佳为以如节距变成700nm以上的浓度来添加。此处,所添加的光学活性化合物可使用上述作为扭转力大的化合物的式(K1)~式(K5),更佳为可使用由式(K2-1)~式(K2-8)、式(K4-1)~式(K4-6)或式(K5-1)~式(K5-3)所表示的化合物。另外,所添加的光学活性化合物亦可为扭转力并不那么大的化合物。作为此种光学活性化合物,可列举添加至通过向列相来驱动的元件(TN方式、STN方式等)用的液晶组成物中的化合物。
作为扭转力并不那么大的光学活性化合物的例子,可列举以下的光学活性化合物(Op-1)~光学活性化合物(Op-13)。
再者,本发明的光学等向性的液晶组成物的温度范围可通过将手性剂添加至向列相或手性向列相与等向性相的共存温度范围广的液晶组成物中,使光学等向性的液晶相显现来扩大。例如,将透明点高的液晶化合物与透明点低的液晶化合物混合,于宽广的温度范围内制备向列相与等向性相的共存温度范围广的液晶组成物,然后向其中添加手性剂,藉此可制备于宽广的温度范围内显现光学等向性的液晶相的组成物。
作为向列相或手性向列相与等向性相的共存温度范围广的液晶组成物,较佳为手性向列相与非液晶等向性相共存的上限温度与下限温度的差为3℃~150℃的液晶组成物,更佳为差为5℃~150℃的液晶组成物。另外,较佳为向列相与非液晶等向性相共存的上限温度与下限温度的差为3℃~150℃的液晶组成物。
于光学等向性的液晶相中,若对本发明的液晶媒体施加电场,则会产生电双折射,但不一定必须为克尔效应。
因节距越长,光学等向性的液晶相中的电双折射越大,故只要满足其他光学特性(透过率、绕射波长等)的要求,则可通过调整手性剂的种类与含量,将节距设定得长来增大电双折射。
8.4 其他成分
本发明的光学等向性的液晶组成物亦可于不对该组成物的特性造成影响的范围内,进而添加高分子物质等其他化合物。本发明的液晶组成物除高分子物质以外,亦可含有例如二色性色素、光致变色化合物。作为二色性色素的例子,可列举:部花青素(merocyanine)系、苯乙烯基系、偶氮系、甲亚胺(azomethine)系、氧偶氮系、喹啉黄系、蒽醌系、四嗪系等。
9.光学等向性的高分子/液晶复合材料
本发明的第9形态是含有由式(1)所表示的化合物及手性剂的液晶组成物与高分子的复合材料,其显示光学等向性。其为可用于通过光学等向性的液晶相来驱动的光元件的光学等向性的高分子/液晶复合材料。此种高分子/液晶复合材料例如包含上述第[1]项~第[32]项中所记载的液晶组成物(液晶组成物CLC)与高分子。
本发明的“高分子/液晶复合材料”只要是含有液晶材料与高分子的化合物两个的复合材料,则并无特别限定,亦可为于高分子的一部分或全部未溶解在液晶材料中的状态下高分子与液晶材料相分离的状态。再者,于本说明书中,只要未特别提及,则向列相是指不包含手性向列相的狭义的向列相。
本发明的较佳的形态的光学等向性的高分子/液晶复合材料可于宽广的温度范围内使光学等向性的液晶相显现。另外,本发明的较佳的形态的高分子/液晶复合材料的响应速度极快。另外,本发明的较佳的形态的高分子/液晶复合材料基于该些效果而可适宜用于显示元件等光元件等。
9.2 高分子
本发明的复合材料亦可将光学等向性的液晶组成物与事先进行聚合而获得的高分子混合来制造,但较佳为通过将成为高分子的材料的低分子量的单体、大分子单体、寡聚物等(以下,总称为“单体等”)与液晶组成物CLC混合后,于该混合物中进行聚合反应来制造。于本说明书中,将含有单体等与液晶组成物的混合物称为“聚合性单体/液晶混合物”。于“聚合性单体/液晶混合物”中,视需要亦可在无损本发明的效果的范围内含有后述的聚合起始剂、硬化剂、触媒、稳定剂、二色性色素、或光致变色化合物等。例如,于本发明的聚合性单体/液晶混合物中,视需要亦可相对于聚合性单体100重量份,含有聚合起始剂0.1重量份~20重量份。“聚合性单体/液晶混合物”于在蓝相中进行聚合的情况下必须为液晶媒体,但于在等向性相中进行聚合的情况下,不一定必须为液晶媒体。
聚合温度较佳为高分子/液晶复合材料显示高透明性与等向性的温度。更佳为单体与液晶材料的混合物显现等向性相或蓝相的温度,且于等向性相或光学等向性的液晶相中结束聚合。即,较佳为设为如下的温度:于聚合后高分子/液晶复合材料实质上不使比可见光线长的波长侧的光散射、且显现光学等向性的状态。
作为构成本发明的复合材料的高分子的原料,例如可使用低分子量的单体、大分子单体、寡聚物,于本说明书中,高分子的原料单体是以包含低分子量的单体、大分子单体、寡聚物等的含义来使用。另外,所获得的高分子较佳为具有三维交联结构的高分子,因此,作为高分子的原料单体,较佳为使用具有2个以上的聚合性官能基的多官能性单体。聚合性的官能基并无特别限定,可列举丙烯酰基、甲基丙烯酰基、缩水甘油基、环氧基、氧杂环丁基、乙烯基等,但就聚合速度的观点而言,较佳为丙烯酰基及甲基丙烯酰基。高分子的原料单体中,若于单体中含有10wt%以上的具备2个以上的具有聚合性的官能基的单体,则于本发明的复合材料中容易显现高度的透明性与等向性,故较佳。
另外,为了获得合适的复合材料,高分子较佳为具有液晶元部位的高分子,可于其一部分、或全部中使用具有液晶元部位的原料单体作为高分子的原料单体。
9.2.1 具有液晶元部位的单官能性·二官能性单体
具有液晶元部位的单官能性单体、或二官能性单体于结构上并无特别限定,例如可列举由下述的式(M1)或式(M2)所表示的化合物。
Ra-Y-(AM-ZM)m1-AM-Y-Rb (M1)
Rb-Y-(AM-ZM)m1-AM-Y-Rb (M2)
式(M1)中,Ra为氢、卤素、-C≡N、-N=C=O、-N=C=S、或碳数为1~20的烷基,该些烷基中,至少1个-CH2-可由-O-、-S-、-CO-、-COO-、或-OCO-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,该些烷基中,至少1个氢可由卤素或-C≡N取代。Rb分别独立为式(M3-1)~式(M3-7)的聚合性基。
较佳的Ra为氢、卤素、-C≡N、-CF3、-CF2H、-CFH2、-OCF3、-OCF2H、碳数为1~20的烷基、碳数为1~19的烷氧基、碳数为2~21的烯基、及碳数为2~21的炔基。特佳的Ra为-C≡N、碳数为1~20的烷基及碳数为1~19的烷氧基。
式(M2)中,Rb分别独立为式(M3-1)~式(M3-7)的聚合性基。
此处,式(M3-1)~式(M3-7)中的Rd分别独立为氢、卤素或碳数为1~5的烷基,该些烷基中,至少1个氢可由卤素取代。较佳的Rd为氢、卤素及甲基。特佳的Rd为氢、氟及甲基。
另外,式(M3-2)、式(M3-3)、式(M3-4)、式(M3-7)适宜通过自由基聚合来进行聚合。式(M3-1)、式(M3-5)、式(M3-6)适宜通过阳离子聚合来进行聚合。由于均为活性聚合,因此只要于反应系统内产生少量的自由基或阳离子活性种,便开始聚合。为了加快活性种的产生而可使用聚合起始剂。于活性种的产生中例如可使用光或热。
式(M1)及式(M2)中,AM分别独立为芳香族性或非芳香族性的5元环、6元环或碳数为9以上的缩合环,环中的-CH2-可由-O-、-S-、-NH-、或-NCH3-取代,环中的-CH=可由-N=取代,环上的氢原子可由卤素、及碳数为1~5的烷基、或卤化烷基取代。较佳的AM的具体例为1,4-亚环己基、1,4-亚环己烯基、1,4-亚苯基、萘-2,6-二基、四氢萘-2,6-二基、茀-2,7-二基、或双环[2.2.2]辛烷-1,4-二基,该些环中,至少1个-CH2-可由-O-取代,至少1个-CH=可由-N=取代,该些环中,至少1个氢可由卤素、碳数为1~5的烷基或碳数为1~5的卤化烷基取代。
考虑到化合物的稳定性,氧与氧不邻接的-CH2-O-CH2-O-优于氧与氧邻接的-CH2-O-O-CH2-。于硫中亦同样如此。
该些之中,特佳的AM为1,4-亚环己基、1,4-亚环己烯基、1,4-亚苯基、2-氟-1,4-亚苯基、2,3-二氟-1,4-亚苯基、2,5-二氟-1,4-亚苯基、2,6-二氟-1,4-亚苯基、2-甲基-1,4-亚苯基、2-三氟甲基-1,4-亚苯基、2,3-双(三氟甲基)-1,4-亚苯基、萘-2,6-二基、四氢萘-2,6-二基、茀-2,7-二基、9-甲基茀-2,7-二基、1,3-二恶烷-2,5-二基、吡啶-2,5-二基、及嘧啶-2,5-二基。再者,上述1,4-亚环己基及1,3-二恶烷-2,5-二基的立体构型是反式优于顺式。
2-氟-1,4-亚苯基在结构上与3-氟-1,4-亚苯基相同,因此未例示后者。该规则亦适用于2,5-二氟-1,4-亚苯基与3,6-二氟-1,4-亚苯基的关系等。
式(M1)及式(M2)中,Y分别独立为单键或碳数为1~20的亚烷基,该些亚烷基中,至少1个-CH2-可由-O-、-S-取代,该烷基中的至少1个-CH2-CH2-可由-CH=CH-、-C≡C-、-COO-、或-OCO-取代。较佳的Y为单键、-(CH2)m2-、-O(CH2)m2-、及-(CH2)m2O-(上述式中,m2为1~20的整数)。特佳的Y为单键、-(CH2)m2-、-O(CH2)m2-、及-(CH2)m2O-(上述式中,m2为1~10的整数)。考虑到化合物的稳定性,-Y-Ra及-Y-Rb较佳为于该些基中不具有-O-O-、-O-S-、-S-O-、或-S-S-。
式(M1)及式(M2)中,ZM分别独立为单键、-(CH2)m3-、-O(CH2)m3-、-(CH2)m3O-、-O(CH2)m3O-、-CH=CH-、-C≡C-、-COO-、-OCO-、-(CF2)2-、-(CH2)2-COO-、-OCO-(CH2)2-、-CH=CH-COO-、-OCO-CH=CH-、-C≡C-COO-、-OCO-C≡C-、-CH=CH-(CH2)2-、-(CH2)2-CH=CH-、-CF=CF-、-C≡C-CH=CH-、-CH=CH-C≡C-、-OCF2-(CH2)2-、-(CH2)2-CF2O-、-OCF2-或-CF2O-(上述式中、m3为1~20的整数)。
较佳的ZM为单键、-(CH2)m3-、-O(CH2)m3-、-(CH2)m3O-、-CH=CH-、-C≡C-、-COO-、-OCO-、-(CH2)2-COO-、-OCO-(CH2)2-、-CH=CH-COO-、-OCO-CH=CH-、-OCF2-、及-CF2O-。
式(M1)及式(M2)中,m1为1~6的整数。较佳的m1为1~3的整数。当m1为1时,其为具有2个6元环等环的二环的化合物。当m1为2与3时,其分别为三环的化合物与四环的化合物。例如当m1为1时,2个AM可相同、或不同。另外,例如当m1为2时,3个AM(或2个ZM)可相同、或不同。m1为3~6时亦同样如此。关于Ra、Rb、Rd、ZM、AM及Y,亦同样如此。
由式(M1)所表示的化合物(M1)及由式(M2)所表示的化合物(M2)即便含有比天然丰度(Natural abundance)的量多的2H(重氢)、13C等同位素,亦具有相同的特性,故可较佳地使用。
化合物(M1)及化合物(M2)的更佳的例子为由式(M1-1)~式(M1-41)、及式(M2-1)~式(M2-27)所表示的化合物(M1-1)~化合物(M1-41)、及化合物(M2-1)~化合物(M2-27)。于该些化合物中,Ra、Rb、Rd、ZM、AM、Y及p的定义与本发明的形态中所记载的式(M1)及式(M2)的Ra、Rb、Rd、ZM、AM、Y及p相同。
对化合物(M1-1)~化合物(M1-41)及化合物(M2-1)~化合物(M2-27)中的下述的部分结构进行说明。部分结构(a1)表示至少1个氢由氟取代的1,4-亚苯基。部分结构(a2)表示至少1个氢可由氟取代的1,4-亚苯基。部分结构(a3)表示至少1个氢可由氟或甲基的任一个取代的1,4-亚苯基。部分结构(a4)表示9位的氢可由甲基取代的茀。
视需要可使用上述不具有液晶元部位的单体、以及具有液晶元部位的单体(M1)及单体(M2)以外的聚合性化合物。
为了使本发明的高分子/液晶复合材料的光学等向性最佳化,亦可使用具有液晶元部位且具有3个以上的聚合性官能基的单体。作为具有液晶元部位且具有3个以上的聚合性官能基的单体,可适宜地使用公知的化合物,例如为(M4-1)~(M4-3),作为更具体的例子,可列举日本专利特开2000-327632号、日本专利特开2004-182949号、日本专利特开2004-59772号中所记载的化合物。其中,于(M4-1)~(M4-3)中,Rb、ZM、Y、及(F)的定义与上述相同。
9.2.2 不具有液晶元部位的含有具有聚合性的官能基的单体
作为不具有液晶元部位的含有具有聚合性的官能基的单体,例如可列举碳数为1~30的直链丙烯酸酯或分支丙烯酸酯,碳数为1~30的直链二丙烯酸酯或分支二丙烯酸酯,作为具有三个以上的聚合性官能基的单体的甘油·丙氧基化物(1PO/OH)三丙烯酸酯、季戊四醇·丙氧基化物·三丙烯酸酯、季戊四醇·三丙烯酸酯、三羟甲基丙烷·乙氧基化物·三丙烯酸酯、三羟甲基丙烷·丙氧基化物·三丙烯酸酯、三羟甲基丙烷·三丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、季戊四醇·四丙烯酸酯、二(季戊四醇)五丙烯酸酯、二(季戊四醇)六丙烯酸酯、三羟甲基丙烷·三丙烯酸酯等,但并不限定于该些单体。
9.2.3 聚合起始剂
构成本发明的复合材料的高分子的制造中的聚合反应并无特别限定,例如可进行光自由基聚合、热自由基聚合、光阳离子聚合等。
可用于光自由基聚合的光自由基聚合起始剂的例子为达罗克1173(DAROCUR1173)及4265(均为商品名,日本巴斯夫(BASF Japan)(股份)),伊嘉克尔184(IRGACURE184)、369、500、651、784、819、907、1300、1700、1800、1850、及2959(均为商品名,日本巴斯夫(股份))等。
可用于热自由基聚合的利用热的自由基聚合的较佳的起始剂的例子为过氧化苯甲酰、过氧化二碳酸二异丙酯、过氧化-2-乙基己酸第三丁酯、过氧化特戊酸第三丁酯、过氧化二异丁酸第三丁酯、过氧化月桂酰、2,2′-偶氮双异丁酸二甲酯(2,2′-Azobis(methylisobutyrate),MAIB)、二第三丁基过氧化物(Di-t-butyl peroxide,DTBPO)、偶氮双异丁腈(Azobisisobutyronitrile,AIBN)、偶氮双环己烷碳腈(Azobiscyclohexanecarbonitrile,ACN)等。
作为可用于光阳离子聚合的光阳离子聚合起始剂,可列举二芳基錪盐(以下,称为“DAS”)、三芳基锍盐(以下,称为“TAS”)等。
作为DAS,可列举:二苯基錪四氟硼酸盐、二苯基錪六氟膦酸盐、二苯基錪六氟砷酸盐、二苯基錪三氟甲磺酸盐、二苯基錪三氟乙酸盐、二苯基錪-对甲苯磺酸盐、二苯基錪四(五氟苯基)硼酸盐、4-甲氧基苯基苯基錪四氟硼酸盐、4-甲氧基苯基苯基錪六氟膦酸盐、4-甲氧基苯基苯基錪六氟砷酸盐、4-甲氧基苯基苯基錪三氟甲磺酸盐、4-甲氧基苯基苯基錪三氟乙酸盐、4-甲氧基苯基苯基錪-对甲苯磺酸盐等。
于DAS中,亦可通过添加硫杂蒽酮、吩噻嗪、氯硫杂蒽酮、氧杂蒽酮、蒽、二苯基蒽、红荧烯(rubrene)等光敏剂来加以高感光度化。
作为TAS,可列举:三苯基锍四氟硼酸盐、三苯基锍六氟膦酸盐、三苯基锍六氟砷酸盐、三苯基锍三氟甲烷磺酸盐、三苯基锍三氟乙酸盐、三苯基锍-对甲苯磺酸盐、三苯基锍四(五氟苯基)硼酸盐、4-甲氧基苯基二苯基锍四氟硼酸盐、4-甲氧基苯基二苯基锍六氟膦酸盐、4-甲氧基苯基二苯基锍六氟砷酸盐、4-甲氧基苯基二苯基锍三氟甲烷磺酸盐、4-甲氧基苯基二苯基锍三氟乙酸盐、4-甲氧基苯基二苯基锍-对甲苯磺酸盐等。
光阳离子聚合起始剂的具体的商品名的例子为希拉克尔UVI-6990(CyracureUVI-6990)、Cyracure UVI-6974、Cyracure UVI-6992(分别为商品名,UCC(股份)),艾迪科奥普托玛(Adeka Optomer)SP-150、SP-152、SP-170、SP-172(分别为商品名,艾迪科(ADEKA)(股份)),罗朵希尔光起始剂2074(Rhodorsil Photoinitiator 2074)(商品名,日本罗地亚(Rhodia Japan)(股份)),IRGACURE 250(商品名,日本巴斯夫(股份)),UV-9380C(商品名,GE东芝硅酮(GE Toshiba Silicone)(股份))等。
9.2.4硬化剂等
于构成本发明的复合材料的高分子的制造中,除上述单体等及聚合起始剂以外,亦可进而添加1种或2种以上的其他合适的成分,例如硬化剂、触媒、稳定剂等。
作为硬化剂,可使用通常用作环氧树脂的硬化剂的先前公知的潜在性硬化剂。潜在性环氧树脂用硬化剂可列举胺系硬化剂、酚醛清漆树脂系硬化剂、咪唑系硬化剂、酸酐系硬化剂等。作为胺系硬化剂的例子,可列举:二乙三胺、三乙四胺、四乙五胺、间二甲苯二胺、三甲基六亚甲基二胺、2-甲基五亚甲基二胺、二乙胺基丙胺等脂肪族聚胺,异佛尔酮二胺、1,3-双胺基甲基环己烷、双(4-胺基环己基)甲烷、降莰烯二胺、1,2-二胺基环己烷、拉罗明(Laromin)等脂环式聚胺,二胺基二苯基甲烷、二胺基二苯基乙烷、间苯二胺等芳香族多胺等。
作为酚醛清漆树脂系硬化剂的例子,可列举:苯酚酚醛清漆树脂、双酚酚醛清漆树脂等。作为咪唑系硬化剂,可列举:2-甲基咪唑、2-乙基己基咪唑、2-苯基咪唑、1-氰基乙基-2-苯基咪唑鎓·偏苯三酸酯等。
作为酸酐系硬化剂的例子,可列举:四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、甲基六氢邻苯二甲酸酐、甲基环己烯四羧酸二酐、邻苯二甲酸酐、偏苯三甲酸酐、均苯四甲酸酐、二苯基酮四羧酸二酐等。
另外,亦可进而使用用以促进具有缩水甘油基、环氧基、氧杂环丁基的聚合性化合物与硬化剂的硬化反应的硬化促进剂。作为硬化促进剂,例如可列举:苄基二甲胺、三(二甲胺基甲基)苯酚、二甲基环己胺等三级胺类,1-氰基乙基-2-乙基-4-甲基咪唑、2-乙基-4-甲基咪唑等咪唑类,三苯基膦等有机磷系化合物,溴化四苯基鏻等四级鏻盐类,1,8-二氮杂双环[5.4.0]十一烯-7等或其有机酸盐等二氮杂双环烯类,溴化四乙基铵、溴化四丁基铵等四级铵盐类,三氟化硼、三苯基硼酸盐等硼化合物等。该些硬化促进剂可单独使用、或将2种以上混合使用。
另外,为了防止例如储存中的不期望的聚合,较佳为添加稳定剂。作为稳定剂,可使用本领域从业人员已知的所有化合物。作为稳定剂的代表例,可列举:4-乙氧基苯酚、对苯二酚、丁基化羟基甲苯(Butylated Hydroxytoluene,BHT)等。
9.3液晶组成物等的含有率
本发明的高分子/液晶复合材料中的液晶组成物的含有率只要是复合材料可显现光学等向性的液晶相的范围,则较佳为尽可能高的含有率。其原因在于:液晶组成物的含有率高会使本发明的复合材料的电双折射值变大。
于本发明的高分子/液晶复合材料中,相对于复合材料,液晶组成物的含有率较佳为60wt%~99wt%,更佳为60wt%~98wt%,特佳为80wt%~97wt%。相对于复合材料,高分子的含有率较佳为1wt%~40wt%,更佳为2wt%~40wt%,特佳为3wt%~20wt%。
9.4其他成分
本发明的高分子/液晶复合材料亦可于无损本发明的效果的范围内含有例如二色性色素、光致变色(photochromic)化合物。
以下,通过实施例来更详细地说明本发明,但本发明不受该些实施例限制。再者,只要事先无特别说明,则“%”是指“wt%”。
10光元件
本发明的第10形态是如下的光元件,其含有液晶组成物或高分子/液晶复合材料(以下,有时将本发明的液晶组成物及高分子/液晶复合材料总称为液晶媒体)、且通过光学等向性的液晶相来驱动。
当未施加电场时,液晶媒体为光学等向性,但若施加电场,则液晶媒体产生光学异向性,可进行利用电场的光调变。
作为液晶显示元件的构造例,如图1所示,可列举梳型电极基板的电极交替地配置有自左侧起延伸的电极1与自右侧起延伸的电极2的构造。当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
11于光元件中的使用
本发明的第11形态是液晶组成物于光元件中的使用,上述液晶组成物包括含有选自由式(1)所表示的化合物的群组中的至少1种化合物的非手性成分T、及手性剂,且显现光学等向性的液晶相。该液晶组成物因显示低驱动电压与短的响应时间,故对于光元件的低电压驱动化、高速响应化有效。
[实施例]
由于所获得的化合物是利用由1H-NMR(nuclear magnetic resonance,核磁共振)分析所获得的核磁共振光谱、由气相色谱法(Gas Chromatogram,GC)分析所获得的气相色谱图等进行鉴定,因此首先对分析方法加以说明。
1H-NMR分析:测定装置是使用DRX-500(布鲁克拜厄斯宾(Bruker BioSpin)(股份)公司制造)。测定是将实施例等中所制造的样品溶解于CDCl3等可溶解样品的氘化溶剂中,并于室温下以500MHz、累计次数为24次的条件来进行。再者,在所获得的核磁共振光谱的说明中,s表示单峰(singlet),d表示双峰(doublet),t表示三重峰(triplet),q表示四重峰(quartet),m表示多重峰(multiplet)。另外,使用四甲基硅烷(Tetramethylsilane,TMS)作为化学位移δ值的零点的基准物质。
GC分析:测定装置是使用岛津制作所制造的GC-14B型气相色谱仪。管柱是使用岛津制作所制造的毛细管柱CBP1-M25-025(长度为25m、内径为0.22mm、膜厚为0.25μm;固定液相为二甲基聚硅氧烷;无极性)。使用氦气作为载气,并将流量调整为1ml/min。将试样气化室的温度设定为300℃,并将检测器(火焰离子化侦检器(Flame Ionization Detector,FID))的温度设定为300℃。
将试样溶解于甲苯中,以成为1wt%的溶液的方式制备,并将所获得的溶液1μl注入至试样气化室内。
使用岛津制作所制造的C-R6A型克罗玛托佩克(Chromatopac)或其同等产品作为记录器。于所获得的气相色谱图中,显示有与成分化合物相对应的峰值的保持时间及峰值的面积值。
再者,作为试样的稀释溶剂,例如可使用氯仿、己烷。另外,作为管柱,亦可使用安捷伦科技股份有限公司(Agilent Technologies Inc.)制造的毛细管柱DB-1(长度为30m、内径为0.32mm、膜厚为0.25μm)、Agilent Technologies Inc.制造的HP-1(长度为30m、内径为0.32mm、膜厚为0.25μm)、瑞斯泰克公司(Restek Corporation)制造的Rtx-1(长度为30m、内径为0.32mm、膜为厚0.25μm)、SGE国际公司(SGE International Pty.Ltd)制造的BP-1(长度为30m、内径为0.32mm、膜厚为0.25μm)等。
气相色谱图中的峰值的面积比相当于成分化合物的比例。通常,分析样品的成分化合物的重量%与分析样品的各峰值的面积%并不完全相同,但于本发明中,当使用上述管柱时,由于实质上校正系数为1,因此分析样品中的成分化合物的重量%与分析样品中的各峰值的面积%大致相对应。其原因在于:成分的液晶化合物的校正系数无大的差异。为了通过气相色谱图来更准确地求出液晶组成物中的液晶化合物的组成比,而采用利用气相色谱图的内部标准法。对准确地秤量有固定量的各液晶化合物成分(被检测成分)与成为基准的液晶化合物(基准物质)同时进行气相色谱测定,而预先算出所获得的被检测成分的峰值与基准物质的峰值的面积比的相对强度。若使用相对于基准物质的各成分的峰值面积的相对强度进行修正,则可根据气相色谱分析而更准确地求出液晶组成物中的液晶化合物的组成比。
液晶化合物等的物性值的测定试样
作为测定液晶化合物的物性值的试样,存在以下两种情况,即将化合物本身作为试样的情况,以及将化合物与母液晶混合来作为试样的情况。
于使用将化合物与母液晶混合而成的试样的后者的情况下,通过以下的方法来进行测定。首先,将所获得的液晶化合物15wt%与母液晶85wt%混合来制作试样。而且,根据基于下述的计算式的外推法,自所获得的试样的测定值计算外推值。将该外推值作为该化合物的物性值。
<外推值>=(100×<试样的测定值>-<母液晶的重量%>×<母液晶的测定值>)/<液晶化合物的重量%>
当即便液晶化合物与母液晶的比例为该比例,近晶相或结晶亦于25℃下析出时,先将液晶化合物与母液晶的比例依序变更为10wt%:90wt%、5wt%:95wt%、1wt%:99wt%,以近晶相或结晶于25℃下不再析出的组成来测定试样的物性值,并根据上述式而求出外推值,将该外推值作为液晶化合物的物性值。
用于测定的母液晶存在各种种类,例如,母液晶A的组成(wt%)如下。
母液晶A:
液晶化合物等的物性值的测定方法
物性值的测定是通过下述方法来进行。该些测定方法多为日本电子机械工业会规格(Standard of Electric Industries Association of Japan)EIAJ·ED-2521A中所记载的方法、或对该些方法加以修改的方法。另外,用于测定的TN元件中未安装TFT。
测定值之中,于将液晶化合物本身作为试样的情况下,将所获得的值记载为实验数据。于将液晶化合物与母液晶的混合物用作试样的情况下,将通过外推法所获得的值记载为实验数据。
相结构及相转变温度(℃):利用以下(1)及(2)的方法进行测定。
(1)将化合物置于具备偏光显微镜的熔点测定装置的加热板(梅特勒(Mettler)公司的FP-52型高温载台)上,一面以3℃/min的速度加热一面利用偏光显微镜观察相状态及其变化,而确定液晶相的种类。
(2)使用珀金埃尔默(PerkinElmer)公司制造的扫描量热仪DSC-7系统或戴雅蒙(Diamond)DSC系统,以3℃/min的速度升降温,并通过外推来求出伴随试样的相变化的吸热峰值或发热峰值的起始点(on set),从而决定相转变温度。
以下,将结晶表示为K,当对结晶进一步加以区别时,分别表示为K1或K2。另外,将近晶相表示为Sm,将向列相表示为N。将手性向列相表示为N*。将液体(称为等向性或非液晶等向性相)表示为I。于近晶相中,当对近晶B相、或近晶A相加以区别时,分别表示为SmB、或SmA。BP表示蓝相或光学等向性的液晶相。2相的共存状态有时以(N*+I)、(N*+BP)这一形式来表达。具体而言,(N*+I)表示非液晶等向性相与手性向列相共存的相,(N*+BP)表示BP相或光学等向性的液晶相与手性向列相共存的相。Un表示并非光学等向性的未确认的相。作为相转变温度的表达方式,例如“K50.0N 100.0I”是指由结晶转变成向列相的相转变温度(KN)为50.0℃,由向列相转变成液体的相转变温度(NI)为100.0℃。其他表达方式亦同样如此。
向列相的上限温度(TNI;℃):将试样(液晶化合物与母液晶的混合物)置于具备偏光显微镜的熔点测定装置的加热板(梅特勒公司的FP-52型高温载台)上,一面以1℃/min的速度加热一面利用偏光显微镜进行观察。将试样的一部分由向列相变成等向性液体时的温度作为向列相的上限温度。以下,有时将向列相的上限温度简称为“上限温度”。
低温相容性:以使液晶化合物的量达到20wt%、15wt%、10wt%、5wt%、3wt%及1wt%的方式混合母液晶与液晶化合物来制备试样,并将试样装入至玻璃瓶中。将该玻璃瓶于-10℃或-20℃的冷冻器中保管固定时间后,观察结晶或近晶相是否析出。
黏度(η;于20℃下测定;mPa·s):使用E型粘度计对液晶化合物与母液晶的混合物进行测定。
折射率异向性(Δn):测定是于25℃的温度下,利用波长为589nm的光,并通过接目镜上安装有偏光板的阿贝折射计来进行。沿一个方向摩擦主棱镜的表面后,将试样(液晶化合物与母液晶的混合物)滴加于主棱镜上。当偏光方向与摩擦方向平行时,测定折射率(n//)。当偏光方向与摩擦方向垂直时,测定折射率(n⊥)。根据式Δn=n//-n⊥计算出折射率异向性(Δn)的值。
介电常数异向性(Δε;于25℃下测定):将试样(液晶化合物与母液晶的混合物)装入至2片玻璃基板的间隔(间隙)约为9μm、扭转角为80度的液晶单元中。对该单元施加20 V的电压,测定液晶分子的长轴方向上的介电常数(ε//)。施加0.5V的电压,测定液晶分子的短轴方向上的介电常数(ε⊥)。根据式Δε=ε//-ε⊥计算出介电常数异向性的值。
节距(P;于25℃下测定;nm)
节距长是利用选择反射来测定(液晶便览第196页2000年发行,丸善)。于选择反射波长λ中,关系式<n>p/λ=1成立。此处,<n>表示平均折射率,由下式来求出。<n>={(n// 2+n 2)/2}1/2。选择反射波长是利用显微分光光度计(日本电子(股份),商品名MSV-350)来测定。通过所获得的反射波长除以平均折射率来求出节距。于光学活性化合物浓度低的区域中,在波长比可见光长的区域中具有反射波长的胆固醇液晶的节距与光学活性化合物的浓度的倒数成比例,因此于多处测定在可见光区域中具有选择反射波长的液晶的节距长,并通过直线外推法来求出节距。“光学活性化合物”相当于本发明中的手性剂。
于本发明中,液晶组成物的特性值的测定可根据下述的方法来进行。该些方法多为日本电子机械工业会规格(Standard of Electric Industries Association ofJapan)EIAJ·ED-2521A中所记载的方法、或对该些方法加以修改的方法。用于测定的TN元件中未安装TFT。
向列相的上限温度(NI;℃):将试样置于具备偏光显微镜的熔点测定装置的加热板上,以1℃/min的速度进行加热。测定试样的一部分由向列相变化为等向性液体时的温度。有时将向列相的上限温度简称为“上限温度”。
向列相的下限温度(TC;℃):将具有向列相的试样于0℃、-10℃、-20℃、-30℃、以及-40℃的冷冻器中保管10日后,观察液晶相。例如,当试样于-20℃下维持向列相的状态、于-30℃下变化为结晶(或近晶相)时,将TC记载为≤-20℃。有时将向列相的下限温度简称为“下限温度”。
光学等向性的液晶相的转变温度:将试样置于具备偏光显微镜的熔点测定装置的加热板上,于正交偏光的状态下,首先升温至试样变成非液晶等向性相的温度为止,然后以1℃/min的速度降温,而使手性向列相或光学等向性的液晶相完全出现。测定其降温过程中的相转变的温度,继而以1℃/min的速度升温,并测定其升温过程中的相转变的温度。于本发明中,只要事先无特别说明,则将升温过程中的相转变的温度设为相转变温度。于光学等向性的液晶相中,当于正交偏光下难以利用暗视场判别相转变温度时,使偏光板自正交偏光的状态偏移1°~10°来测定相转变温度。
黏度(η;于20℃下测定;mPa·s):测定使用E型粘度计。
旋转粘度(γ1;于25℃下测定;mPa·s):
1)介电常数异向性为正的试样:测定是根据M.伊马依(M.Imai)等人.,《分子晶体与液晶(Molecular Crystals and Liquid Crystals)》,Vol.259,37(1995)中所记载的方法。将试样放入至扭转角为0°、且2片玻璃基板的间隔(单元间隙)为5μm的TN元件中。于16V~19.5V的范围内对TN元件阶段性地施加每次为0.5V的电压。于未施加电压0.2秒后,以仅1个矩形波(矩形脉冲;0.2秒)与未施加(2秒)的条件反复施加电压。测定通过该施加所产生的暂态电流(transient current)的峰值电流(peak current)与峰值时司(peak time)。根据该些的测定值与M.Imai等人的论文的第40页的计算式(8)而获得旋转粘度的值。该计算中所需的介电常数异向性的值是利用该旋转粘度的测定中所使用的元件,并通过下述的介电常数异向性的测定方法来求出。
2)介电常数异向性为负的试样:测定是根据M.Imai等人.,Molecular Crystalsand Liquid Crystals,Vol.259,37(1995)中所记载的方法。将试样放入至2片玻璃基板的间隔(单元间隙)为20μm的VA元件中。于30V~50V的范围内对该元件阶段性地施加每次为1V的电压。于未施加电压0.2秒后,以仅1个矩形波(矩形脉冲;0.2秒)与未施加(2秒)的条件反复施加电压。测定通过该施加所产生的暂态电流(transient current)的峰值电流(peakcurrent)与峰值时间(peak time)。根据该些的测定值与M.Imai等人的论文的第40页的计算式(8)而获得旋转粘度的值。该计算中所需的介电常数异向性使用通过下述的介电常数异向性所测定的值。
折射率异向性(Δn;于25℃下测定):测定是利用波长为589nm的光,并通过在接目镜上安装有偏光板的阿贝折射计来进行。朝一个方向摩擦(rubbing)主棱镜的表面后,将试样滴加至主棱镜上。当偏光方向与摩擦方向平行时测定折射率(n//)。当偏光方向与摩擦方向垂直时测定折射率(n⊥)。根据式Δn=n//-n⊥计算出折射率异向性的值。当试样为组成物时,通过该方法来测定折射率异向性。
介电常数异向性(Δε;于25℃下测定):
1)介电常数异向性为正的组成物:将试样装入至2片玻璃基板的间隔(间隙)约为9μm、且扭转角为80度的液晶单元中。对该单元施加20V的电压,测定液晶分子的长轴方向上的介电常数(ε//)。施加0.5V的电压,测定液晶分子的短轴方向上的介电常数(ε⊥)。根据式Δa=ε//-ε⊥计算出介电常数异向性的值。
2)介电常数异向性为负的组成物:将试样装入至处理成垂直取向(homeotropicalignment)的液晶单元中,施加0.5V的电压来测定介电常数(ε//)。将试样装入至处理成水平取向(homogeneous alignment)的液晶单元中,施加0.5V的电压来测定介电常数(ε⊥)。根据式Δε=ε//-ε⊥计算出介电常数异向性的值。
临限电压(threshold voltage)(Vth;于25℃下测定;V):
1)介电常数异向性为正的组成物:将试样装入至2片玻璃基板的间隔(间隙)为(0.5/Δn)μm、扭转角为80度的正常显白模式(normally white mode)的液晶显示元件中。Δn为通过上述方法所测定的折射率异向性的值。对该元件施加频率为32Hz的矩形波。使矩形波的电压上升,测定通过元件的光的透过率达到90%时的电压值。
2)介电常数异向性为负的组成物:将试样装入至2片玻璃基板的间隔(间隙)约为9μm、且处理成垂直取向的正常显黑模式(normally black mode)的液晶显示元件中。对该元件施加频率为32Hz的矩形波。使矩形波的电压上升,测定通过元件的光的透过率达到10%时的电压值。
电压保持率(VHR;于25℃下测定;%):用于测定的TN元件具有聚酰亚胺取向膜,而且2片玻璃基板的间隔(单元间隙)为6μm。该元件于装入试样后通过利用紫外线进行聚合的粘着剂来密闭。对该TN元件施加脉冲电压(5V,60微秒)来进行充电。利用高速电压计于16.7毫秒间测定衰减的电压,并求出单位周期中的电压曲线与横轴之间的面积A。面积B为未衰减时的面积。电压保持率为面积A相对于面积B的百分比。
螺旋节距(于20℃下测定;μm):测定螺旋节距是使用Grandjean-Cano的楔形盒(wedge cell)法。将试样注入至Grandjean-Cano的楔形盒中,测定自楔形盒所观察到的向错线(disclination line)的间隔(a;单位为μm)。根据式P=2·a·tanθ计算出螺旋节距(P)。θ为楔形盒中的2片玻璃板之间的角度。
或者,节距长是利用选择反射来测定(液晶便览第196页2000年发行,丸善)。于选择反射波长λ中,关系式<n>p/λ=1成立。此处,<n>表示平均折射率,由下式来求出。<n>={(n//2+n⊥2)/2}1/2。选择反射波长是利用显微分光光度计(日本电子(股份),商品名MSV-350)来测定。通过所获得的反射波长除以平均折射率来求出节距。
于手性剂浓度低的区域中,在波长比可见光长的区域中具有反射波长的胆固醇液晶的节距与手性剂的浓度的倒数成比例,因此于多处测定在可见光区域中具有选择反射波长的液晶的节距长,并通过直线外推法来求出节距。
成分或液晶化合物的比例(百分比)是基于液晶化合物的总重量的重量百分比(wt%)。组成物是通过于测定液晶化合物等成分的重量后进行混合来制备。因此,容易算出成分的wt%。
(比较例1)
通过以下述的比例混合下图所示的液晶化合物来制备液晶组成物NLC-A。
于结构式的右侧记载有与通式的对应。
液晶组成物NLC-A
该液晶组成物NLC-A的相转变温度(℃)为N 77.6I。
其次,获得包含液晶组成物NLC-A(94.8wt%)、及由下述式所表示的手性剂BN-H4(2.6wt%)与手性剂BN-H5(2.6wt%)的液晶组成物CLC-A。
该液晶组成物CLC-A的相转变温度(℃)为N*69.8BP 71.6I。
BN-H4
(比较例2)
单体与液晶组成物的混合物的制备
制备将液晶组成物CLC-A 88.8wt%、丙烯酸正十二酯6.0wt%、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)4.8wt%、作为光聚合起始剂的2,2′-二甲氧基苯基苯乙酮0.4wt%混合而成的液晶组成物MLC-A,作为液晶组成物与聚合性单体的混合物。该液晶组成物MLC-A的相转变温度(℃)为N*37.5BP 42.6I、I 41.6BP35.0N*。
LCA-12
高分子/液晶复合材料的制备
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持液晶组成物MLC-A(单元厚度为8μm),将所获得的单元加热至40.5℃的蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23m Wcm-2(365nm)),而进行聚合反应。
以上述方式获得的高分子/液晶复合材料(PSBP-A)即便冷却至室温为止,亦维持光学等向性的液晶相。
再者,如图1所示,梳型电极基板的电极交替地配置有自左侧的连接用电极部起朝右方向延伸的电极1、及自右侧的连接用电极部起朝左方向延伸的电极2。因此,当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
(比较例3)
将夹持有比较例2中所获得的高分子/液晶复合材料PSBP-A的单元设置于图2所示的光学系统中,并测定电光特性。使用偏光显微镜(尼康(Nikon)制造的艾克立普斯(ECLIPSE)LV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件(Polarizer)偏光板与检光元件(Analyzer)偏光板分别变成45°的方式将上述单元设置于光学系统中。于室温下调查施加电压与透过率的关系。若施加65V的矩形波,则透过率变成92%,透过光强度饱和。对比度为1070。
(实施例1)
通过以下述的比例混合下图所示的液晶化合物来制备液晶组成物NLC-B。
于结构式的右侧记载有与通式的对应。
液晶组成物NLC-B
该液晶组成物NLC-B的相转变温度(℃)为N 89.9I。
其次,获得包含液晶组成物NLC-A(94.8wt%)、及由下述式所表示的手性剂BN-H4(2.6wt%)与手性剂BN-H5(2.6wt%)的液晶组成物CLC-B。
该液晶组成物CLC-B的相转变温度(℃)为N*84.6BP 86.9I。
(实施例2)
单体与液晶组成物的混合物的制备
制备将液晶组成物CLC-B 88.8wt%、丙烯酸正十二酯6.0wt%、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)4.8wt%、作为光聚合起始剂的2,2′-二甲氧基苯基苯乙酮0.4wt%混合而成的液晶组成物MLC-B,作为液晶组成物与聚合性单体的混合物。该液晶组成物MLC-B的相转变温度(℃)为N*47.9BP 50.3I、I 47.0BP45.2N*。
LCA-12
高分子/液晶复合材料的制备
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持液晶组成物MLC-B(单元厚度为9μm),将所获得的单元加热至47.9℃的蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23m Wcm-2(365nm)),而进行聚合反应。
以上述方式获得的高分子/液晶复合材料(PSBP-B)即便冷却至室温为止,亦维持光学等向性的液晶相。
再者,如图1所示,梳型电极基板的电极交替地配置有自左侧的连接用电极部起朝右方向延伸的电极1、及自右侧的连接用电极部起朝左方向延伸的电极2。因此,当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
(实施例3)
将夹持有实施例2中所获得的高分子/液晶复合材料PSBP-B的单元设置于图2所示的光学系统中,并测定电光特性。使用偏光显微镜(尼康制造的ECLIPSE LV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件偏光板与检光元件偏光板分别变成45°的方式将上述单元设置于光学系统中。于室温下调查施加电压与透过率的关系。若施加28V的矩形波,则透过率变成80%,透过光强度饱和。对比度为873。如此,可知含有本申请案的式(1)的化合物的PSBP-B以低电压来驱动。
(实施例4)
通过以下述的比例混合下图所示的液晶化合物来制备液晶组成物NLC-C。
于结构式的右侧记载有与通式的对应。
液晶组成物NLC-C
该液晶组成物NLC-C的相转变温度(℃)为N 91.2I。
其次,获得包含液晶组成物NLC-C(94.8wt%)、及由下述式所表示的手性剂BN-H4(2.6wt%)与手性剂BN-H5(2.6wt%)的液晶组成物CLC-C。
该液晶组成物CLC-C的相转变温度(℃)为N*81.0BP 83.0BP+I 83.5I。
(实施例5)
单体与液晶组成物的混合物的制备
制备将液晶组成物CLC-C 88.8wt%、丙烯酸正十二酯6.0wt%、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)4.8wt%、作为光聚合起始剂的2,2′-二甲氧基苯基苯乙酮0.4wt%混合而成的液晶组成物MLC-C,作为液晶组成物与聚合性单体的混合物。该液晶组成物MLC-C的相转变温度(℃)为N*44.4BP 48.4BP+I 50.6I、I-I+BP 48.0BP 44.4N*。
高分子/液晶复合材料的制备
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持液晶组成物MLC-C(单元厚度为8μm),将所获得的单元加热至46.6℃的蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23m Wcm-2(365nm)),而进行聚合反应。
以上述方式获得的高分子/液晶复合材料(PSBP-C)即便冷却至室温为止,亦维持光学等向性的液晶相。
再者,如图1所示,梳型电极基板的电极交替地配置有自左侧的连接用电极部起朝右方向延伸的电极1、及自右侧的连接用电极部起朝左方向延伸的电极2。因此,当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
(实施例6)
将夹持有实施例5中所获得的高分子/液晶复合材料PSBP-C的单元设置于图2所示的光学系统中,并测定电光特性。使用偏光显微镜(尼康制造的ECLIPSE LV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件偏光板与检光元件偏光板分别变成45°的方式将上述单元设置于光学系统中。于室温下调查施加电压与透过率的关系。若施加25V的矩形波,则透过率变成85%,透过光强度饱和。对比度为934。如此,可知含有本申请案的式(1)的化合物的PSBP-C以低电压来驱动。
(实施例7)
通过以下述的比例混合下图所示的液晶化合物来制备液晶组成物NLC-D。
于结构式的右侧记载有与通式的对应。
液晶组成物NLC-D
该液晶组成物NLC-D的相转变温度(℃)为N 87.2 I。
其次,获得包含液晶组成物NLC-D(94.8 wt%)、及由下述式所表示的手性剂BN-H4(2.6 wt%)与手性剂BN-H5(2.6 wt%)的液晶组成物CLC-D。
该液晶组成物CLC-D的相转变温度(℃)为N*77.4 BP 79.5 I。
(实施例8)
单体与液晶组成物的混合物的制备
制备将液晶组成物CLC-D 88.8wt%、丙烯酸正十二酯6.0wt%、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)4.8wt%、作为光聚合起始剂的2,2′-二甲氧基苯基苯乙酮0.4wt%混合而成的液晶组成物MLC-D,作为液晶组成物与聚合性单体的混合物。该液晶组成物MLC-D的相转变温度(℃)为N*44.8 BP 46.7 BP+I 49.1I、I48.1 I+BP-BP 42.6 N*。
高分子/液晶复合材料的制备
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持液晶组成物MLC-D(单元厚度为8μm),将所获得的单元加热至45.0℃的蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23mWcm-2(365nm)),而进行聚合反应。
以上述方式获得的高分子/液晶复合材料(PSBP-D)即便冷却至室温为止,亦维持光学等向性的液晶相。
再者,如图1所示,梳型电极基板的电极交替地配置有自左侧的连接用电极部起朝右方向延伸的电极1、及自右侧的连接用电极部起朝左方向延伸的电极2。因此,当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
(实施例9)
将夹持有实施例8中所获得的高分子/液晶复合材料PSBP-D的单元设置于图2所示的光学系统中,并测定电光特性。使用偏光显微镜(尼康制造的ECLIPSE LV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件偏光板与检光元件偏光板分别变成45°的方式将上述单元设置于光学系统中。于室温下调查施加电压与透过率的关系。若施加35 V的矩形波,则透过率变成85%,透过光强度饱和。对比度为884。
根据实施例7可知,含有本申请案的式(1)的化合物的CLC-D的透明点高,根据实施例9可知,通过该实施例所获得的PSBP-D以低电压来驱动。
(实施例10)
通过以下述的比例混合下图所示的液晶化合物来制备液晶组成物NLC-E。
于结构式的右侧记载有与通式的对应。
液晶组成物NLC-E
该液晶组成物NLC-E的相转变温度(℃)为N 98.3 I。
其次,获得包含液晶组成物NLC-E(94.4wt%)、及由下述式所表示的手性剂BN-H4(2.8wt%)与手性剂BN-H5(2.8wt%)的液晶组成物CLC-E。
该液晶组成物CLC-E的相转变温度(℃)为N*87.0 BP 89.1I。
(实施例11)
单体与液晶组成物的混合物的制备
制备将液晶组成物CLC-E 88.8wt%、丙烯酸正十二酯6.0wt%、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)4.8wt%、作为光聚合起始剂的2,2′-二甲氧基苯基苯乙酮0.4wt%混合而成的液晶组成物MLC-E,作为液晶组成物与聚合性单体的混合物。该液晶组成物MLC-E的相转变温度(℃)为N*52.2 BP 57.3 BP+I 58.2 I、I55.6 I+BP 50.6 BP 49.2 N*。
高分子/液晶复合材料的制备
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持液晶组成物MLC-E(单元厚度为8μm),将所获得的单元加热至52.3℃的蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23mWcm-2(365nm)),而进行聚合反应。
以上述方式获得的高分子/液晶复合材料(PSBP-E)即便冷却至室温为止,亦维持光学等向性的液晶相。
再者,如图1所示,梳型电极基板的电极交替地配置有自左侧的连接用电极部起朝右方向延伸的电极1、及自右侧的连接用电极部起朝左方向延伸的电极2。因此,当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
(实施例12)
将夹持有实施例11中所获得的高分子/液晶复合材料PSBP-E的单元设置于图2所示的光学系统中,并测定电光特性。使用偏光显微镜(尼康制造的ECLIPSE LV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件偏光板与检光元件偏光板分别变成45°的方式将上述单元设置于光学系统中。于室温下调查施加电压与透过率的关系。若施加37.5V的矩形波,则透过率变成90%,透过光强度饱和。对比度为975。
根据实施例10可知,含有本申请案的式(1)的化合物的CLC-E的透明点高,根据实施例12可知,通过该实施例所获得的PSBP-E以低电压来驱动。
(实施例13)
通过以下述的比例混合下图所示的液晶化合物来制备液晶组成物NLC-F。
于结构式的右侧记载有与通式的对应。
液晶组成物NLC-F
该液晶组成物NLC-F的相转变温度(℃)为N 99.7 I。
其次,获得包含液晶组成物NLC-F(94.4wt%)、及由下述式所表示的手性剂BN-H4(2.8wt%)与手性剂BN-H5(2.8wt%)的液晶组成物CLC-F。
该液晶组成物CLC-F的相转变温度(℃)为N*88.3 BP 91.9 I。
(实施例14)
单体与液晶组成物的混合物的制备
制备将液晶组成物CLC-F 88.8wt%、丙烯酸正十二酯6.0wt%、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)4.8wt%、作为光聚合起始剂的2,2′-二甲氧基苯基苯乙酮0.4wt%混合而成的液晶组成物MLC-F,作为液晶组成物与聚合性单体的混合物。该液晶组成物MLC-E的相转变温度(℃)为N*53.0 BP 57.0 I、I 56.5 I+BP-BP 50.7 N*。
高分子/液晶复合材料的制备
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持液晶组成物MLC-F(单元厚度为8μm),将所获得的单元加热至53.2℃的蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23 mWcm-2(365nm)),而进行聚合反应。
以上述方式获得的高分子/液晶复合材料(PSBP-F)即便冷却至室温为止,亦维持光学等向性的液晶相。
再者,如图1所示,梳型电极基板的电极交替地配置有自左侧的连接用电极部起朝右方向延伸的电极1、及自右侧的连接用电极部起朝左方向延伸的电极2。因此,当于电极1与电极2之间存在电位差时,于如图1所示的梳型电极基板上,若对1根电极加以注视,则可提供存在图式上的上方向与下方向的2个方向的电场的状态。
(实施例15)
将夹持有实施例14中所获得的高分子/液晶复合材料PSBP-F的单元设置于图2所示的光学系统中,并测定电光特性。使用偏光显微镜(尼康制造的ECLIPSE LV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件偏光板与检光元件偏光板分别变成45°的方式将上述单元设置于光学系统中。于室温下调查施加电压与透过率的关系。若施加35.2V的矩形波,则透过率变成90%,透过光强度饱和。对比度为1147。
根据实施例13可知,含有本申请案的式(1)的化合物的CLC-F的透明点高,根据实施例15可知,通过该实施例所获得的PSBP-F以低电压来驱动。
(实施例16)向列液晶组成物(NLC)的制备
如表1所示,制备含有式(1)的化合物的向列液晶组成物NLC-G、向列液晶组成物NLC-L、向列液晶组成物NLC-M、向列液晶组成物NLC-N、向列液晶组成物NLC-O及向列液晶组成物NLC-P(表1)。表1中,各化合物表示与本说明书的通式的对应。另外,各向列液晶组成物的相变点(N-I点)如表2所示。
表1
表1.向列液晶组成物的组成
表2.向列液晶组成物的相变点(N-I点)
N-I/℃
N L C-G 63.9
N L C-L 100.7
N L C-M 95.7
N L C-N 94.8
N L C-O 71.7-72.1
N L C-P 73.4-74.1
(实施例17)手性液晶组成物(CLC)的制备
其次,将表1所示的各向列液晶组成物(94.70wt%)与下述所示的手性剂BN-H4(2.65wt%)及手性剂BN-H5(2.65wt%)混合,分别制备手性液晶组成物CLC-G、手性液晶组成物CLC-L、手性液晶组成物CLC-M、手性液晶组成物CLC-N、手性液晶组成物CLC-O及手性液晶组成物CLC-P。该手性液晶组成物的组成如下所示,相变点如表3所示。
CLC-G
NLC-G 94.70wt%
BN-H4 2.65wt%
BN-H5 2.65wt%
CLC-L
NLC-L 94.70wt%
BN-H4 2.65wt%
BN-H5 2.65wt%
CLC-M
NLC-M 94.70wt%
BN-H4 2.65wt%
BN-H5 2.65wt%
CLC-N
NLC-N 94.70wt%
BN-H4 2.65wt%
BN-H5 2.65wt%
CLC-O
NLC-O 94.70wt%
BN-H4 2.65wt%
BN-H5 2.65wt%
CLC-P
NLC-P 94.70wt%
BN-H4 2.65wt%
BN-H5 2.65wt%
表3
BN-H4
BN-H5
(实施例18)作为与聚合性单体的混合物的液晶组成物(MLC)的制备
将实施例17中所制备的各手性液晶组成物(CLC)与聚合性单体的混合物在等向性相中加热混合,藉此制备液晶组成物MLC-G、液晶组成物MLC-L、液晶组成物MLC-M、液晶组成物MLC-N、液晶组成物MLC-O及液晶组成物MLC-P。该些液晶组成物的组成如下所示,相变点如表4所示。
MLC-G
MLC-L
MLC-M
MLC-N
MLC-O
MLC-P
表4
表4中所记载的LCA-6、LCA-12、DMPA分别表示1,4-二(4-(6-(丙烯酰氧基)己氧基)苯甲酰氧基)-2-甲基苯(LCA-6)、1,4-二(4-(6-(丙烯酰氧基)十二烷氧基)苯甲酰氧基)-2-甲基苯(LCA-12)、2,2′-二甲氧基苯基苯乙酮,DMPA为光聚合起始剂。
LCA-6
(实施例19)夹持有高分子/液晶复合材料的制备的单元
在未实施取向处理的梳型电极基板与对向玻璃基板(未赋予电极)之间夹持作为手性液晶组成物(CLC)与聚合性单体的混合物的液晶组成物(MLC),并加热至蓝相为止。于该状态下照射1分钟紫外光(紫外光强度为23mWcm-2(365nm)),而进行聚合反应,从而制成夹持有高分子/液晶复合材料PSBP-G、高分子/液晶复合材料PSBP-L、高分子/液晶复合材料PSBP-M、高分子/液晶复合材料PSBP-N、高分子/液晶复合材料PSBP-O及高分子/液晶复合材料PSBP-P的单元(单元厚度记载于表5中)。聚合温度如表5所示。
表5
表5.用于制备高分子/液晶复合材料的聚合温度及所获得的高分子/液晶复合材料的物性值
PSBP-G PSBP-L PSBP-M PSBP-N PSBP-O PSBP-P
使用的MLC的种类 MLC-G MLC-L MLC-M MLC-N MLC-O MLC-P
聚合温度(℃) 27.4 61.5 47.7 44.8 38.3 40.3
Vmax(V) 37.5 40.4 45.2 50.5 47.6 55
对比度 1685 919.3 1068.3 1579.3 1147.9 1276.2
上升(V10-90)(ms) 1.85 2.5 2.15 2.28 1.11 1.06
下降(V90-10)(ms) 1.07 1.3 1.34 1.49 0.78 0.69
单元间隙 6.8 9 7.97 6.2 7.81 7.69
以上述方式获得的高分子/液晶复合材料(PSBP)即便冷却至室温为止,亦均维持光学等向性的液晶相。
(实施例20)使用单元的光学系统
将夹持有实施例5中所获得的高分子/液晶复合材料的单元设置于图2所示的光学系统中。具体而言,使用偏光显微镜(尼康制造的ECLIPSELV100POL)的白色光源作为光源,使朝单元的射入角度相对于单元面变成垂直,以梳型电极的线方向相对于偏光元件偏光板与检光元件偏光板分别变成45°的方式,设置实施例19中所获得的夹持有高分子/液晶复合材料的单元(图2)。
使用该光学系统,于室温下调查实施例5中所获得的高分子/液晶复合材料的施加电压与透过率的关系。单元中所夹持的高分子/液晶复合材料(PSBP)的物性值如表5所示。
如上所述,本发明的光元件的液晶相的上限温度高、对比度高且可实现低电压驱动,或者,虽然液晶相的上限温度高,但仍显示高速响应,因此比现有技术优异。
产业上的可利用性
作为本发明的活用法,例如可列举使用高分子/液晶复合物的显示元件等光元件。

Claims (41)

1.一种液晶组成物,其包括非手性成分T及手性剂,并含有选自由式(1)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第一成分,且显现光学等向性的液晶相:
其中,R1为氢或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;L1、L2、L3、L4、L5、L6、L7及L8独立为氢或氟;Z1、Z2及Z3分别独立为单键、-COO-、或-CF2O-,且至少一个为-COO-;n1及n2分别独立为0或1;X1为氢、卤素、-SF5、或碳数为1~10的烷基,此烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,于X1中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
2.根据权利要求1所述的液晶组成物,其中上述非手性成分T的第一成分含有选自由下述式(1-1-1)、式(1-1-2)、式(1-2-1)~式(1-2-5)、式(1-3-1)、式(1-3-2)、式(1-4-1)、式(1-4-2)及式(1-5-1)所表示的化合物的群组中的至少1种化合物:
其中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;Z1及Z2分别独立为单键、-COO-或-CF2O-,且至少一个为-COO-;
X1A为氟、氯、-CF3或-OCF3
3.根据权利要求1所述的液晶组成物,其中上述非手性成分T的第一成分含有选自由式(1-2-2-1)及式(1-2-5-1)所表示的化合物的群组中的至少1种化合物:
其中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;X1A为氟、氯、或-CF3
4.根据权利要求1所述的液晶组成物,其中上述非手性成分T的第一成分含有选自由式(1-4-1)、式(1-4-2)及式(1-5-1)所表示的化合物的群组中的至少1种化合物:
其中,R1A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;X1A为氟、氯、-CF3或-OCF3
5.根据权利要求1-4中任一项所述的液晶组成物,其中相对于上述非手性成分T的总重量,上述非手性成分T的第一成分的比例为3wt%~80wt%的范围。
6.根据权利要求1所述的液晶组成物,其还包括选自由式(2)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第二成分:
其中,R2为氢或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R2中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;环A21、环A22、环A23、环A24、及环A25独立为1,4-亚环己基、1,3-二恶烷-2,5-二基、1,4-亚苯基、1个氢或2个氢由氟取代的1,4-亚苯基、2个氢分别由氟与氯取代的1,4-亚苯基、吡啶-2,5-二基、嘧啶-2,5-二基;Z21、Z22、Z23、Z24、Z25、及Z26独立为单键或碳数为1~4的亚烷基,此亚烷基中的任意的-CH2-可由-O-、-COO-或-CF2O-取代;L21、L22及L23独立为氢或氟;X2为氟、氯、-CF3、或-OCF3;n21、n22、n23、n24、及n25独立为0或1,且2≦n21+n22+n23+n24+n25≦3。
7.根据权利要求6所述的液晶组成物,其中上述非手性成分T的第二成分含有选自由式(2-1-1-2)、式(2-1-2-1)、式(2-1-3-1)、式(2-1-3-2)、式(2-1-4-2)及式(2-1-4-3)所表示的化合物的群组中的至少1种化合物:
其中,R2A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;(F)独立为氢、或氟;X2A为氟、氯、-CF3、或-OCF3
8.根据权利要求7所述的液晶组成物,其中上述非手性成分T的第二成分含有选自由所述式(2-1-1-2)所表示的化合物的群组中的至少1种化合物。
9.根据权利要求7所述的液晶组成物,其中上述非手性成分T的第二成分含有选自由所述式(2-1-4-3)所表示的化合物的群组中的至少1种化合物。
10.根据权利要求7所述的液晶组成物,其中上述非手性成分T的第二成分含有选自由所述式(2-1-1-2)所表示的化合物的群组中的至少1种化合物、及选自由所述式(2-1-4-3)所表示的化合物的群组中的至少1种化合物的混合物。
11.根据权利要求6所述的液晶组成物,其中相对于上述非手性成分T的总重量,上述非手性成分T的第二成分的比例为5wt%~70wt%的范围。
12.根据权利要求1所述的液晶组成物,其还包括选自由式(3)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第三成分:
式(3)中,R3为氢或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;Z31、Z32、及Z33独立为单键、-COO-或-CF2O-,且至少1个为-CF2O-;L31、L32、L33、L34及L35独立为氢或氟;X3为氢、卤素、-SF5、或碳数为1~10的烷基,此烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
13.根据权利要求12所述的液晶组成物,其中上述非手性成分T的第三成分为选自由式(3-2)~式(3-3)所表示的化合物的群组中的至少1种化合物:
其中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、或-OCF3,L31~L35独立为氢或氟。
14.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(3)中R3为直链、于式(3-2)及式(3-3)中R3A为直链的化合物的群组中的至少1种化合物作为上述非手性成分T的第三成分,
式(3)中,R3为氢或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;Z31、Z32、及Z33独立为单键、-COO-或-CF2O-,且至少1个为-CF2O-;L31、L32、L33、L34及L35独立为氢或氟;X3为氢、卤素、-SF5、或碳数为1~10的烷基,此烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X3中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接,
式(3-2)及式(3-3)中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、或-OCF3,L31~L35独立为氢或氟。
15.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(3-2A)及式(3-2C)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第三成分:
其中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、或-OCF3
16.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(3-3A)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第三成分:
其中,R3A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X3A为氟、氯、-CF3、或-OCF3
17.根据权利要求12所述的液晶组成物,其中相对于上述非手性成分T的总重量,上述非手性成分T的第三成分的比例为5wt%~70wt%的范围。
18.根据权利要求12所述的液晶组成物,其中基于上述非手性成分T的总重量,上述非手性成分T的第一成分的比例为30wt%~70wt%的范围,第三成分的比例为10wt%~50wt%的范围。
19.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(4)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第四成分:
其中,R4为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;环B独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基、3,5-二氟-1,4-亚苯基、3,5-二氯-1,4-亚苯基、或嘧啶-2,5-二基;Z41独立为单键、亚乙基、-COO-、-OCO-、-CF2O-、或-OCF2-;L48及L49独立为氢或氟;X4为氟、氯、-CF3或-OCF3;n41为1、2、3、或4,其中,当n41为3或4时,一个Z41为-CF2O-或-OCF2-;当n41为3时,所有环B均不为由氟取代的1,4-亚苯基。
20.根据权利要求19所述的液晶组成物,其中上述非手性成分T的第四成分为选自由式(4-1)~式(4-9)所表示的化合物的群组中的至少1种化合物:
其中,R4A独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基,X4A为氟、氯、-CF3、或-OCF3,L40~L49独立为氢或氟。
21.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(5)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第五成分:
其中,R5为氢或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R5中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;(F)独立为氢或氟;X5为氢、卤素、-SF5、或碳数为1~10的烷基,此烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X5中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
22.根据权利要求21所述的液晶组成物,其中上述非手性成分T的第五成分含有选自由式(5-1)~式(5-3)所表示的化合物的群组中的至少1种化合物:
其中,R5A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;(F)独立为氢或氟;X5A为氟、氯、-CF3或-OCF3
23.根据权利要求21所述的液晶组成物,其中基于所述液晶组成物的总重量,上述非手性成分T的第五成分的比例为1wt%~20wt%的范围。
24.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(6)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第六成分:
其中,R6A及R6B独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;环C及环D独立为1,4-亚环己基、1,4-亚苯基、2-氟-1,4-亚苯基、3-氟-1,4-亚苯基或2,5-二氟-1,4-亚苯基;Z61独立为单键、亚乙基、-COO-、或-OCO-;r为1、2、或3。
25.根据权利要求24所述的液晶组成物,其中上述非手性成分T的第六成分含有选自由式(6-1)~式(6-13)所表示的化合物的群组中的至少1种化合物:
其中,R6A及R6B独立为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基。
26.根据权利要求1-4中任一项所述的液晶组成物,其还包括选自由式(7)所表示的化合物的群组中的至少1种化合物作为上述非手性成分T的第七成分:
其中,R7为氢或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由卤素取代,但是,于R7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接;L71、L72、L73、L74、L75及L76独立为氢或氟;Z71及Z72分别独立为单键或-CF2O-,且至少一个为-CF2O-;
X7为氢、卤素、-SF5、或碳数为1~10的烷基,此烷基中,至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-、或-C≡C-取代,而且,此烷基中,烷基中的至少1个-CH2-由-O-、-S-、-COO-、或-OCO-取代的基中或此烷基中的至少1个-CH2-CH2-由-CH=CH-、-CF=CF-、或-C≡C-取代的基中的至少1个氢可由氟取代,但于X7中,-O-与-CH=CH-、及-CO-与-CH=CH-不邻接。
27.根据权利要求26所述的液晶组成物,其中上述非手性成分T的第七成分含有选自由式(7-1)~式(7-3)所表示的化合物的群组中的至少1种化合物:
其中,R7A为碳数为1~12的烷基、碳数为1~12的烷氧基、碳数为2~12的烯基、或至少1个氢由氟取代的碳数为2~12的烯基;L72、L74、L75及L76独立为氢或氟;Z71及Z72分别独立为单键或-CF2O-,且至少一个为-CF2O-;
X7A为氟、氯、-CF3或-OCF3
28.根据权利要求27所述的液晶组成物,其中相对于上述非手性成分T的总重量,上述非手性成分T的第一成分的比例为5wt%~30wt%的范围,非手性成分T的第七成分的比例为30wt%~70wt%。
29.根据权利要求1-4中任一项所述的液晶组成物,其中上述手性剂为选自由式(K1)~式(K5)所表示的化合物的群组中的至少1种化合物:
其中,RK独立为氢、卤素、-C≡N、-N=C=O、-N=C=S或碳数为1~20的烷基,此烷基中的至少1个-CH2-可由-O-、-S-、-COO-、或-OCO-取代,此烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,此烷基中的至少1个氢可由卤素取代;A独立为芳香族性的6元环~8元环、非芳香族性的3元环~8元环、或碳数为9以上的缩合环,该些环的至少1个氢可由卤素、碳数为1~3的烷基或卤代烷基取代,环的-CH2-可由-O-、-S-或-NH-取代,-CH=可由-N=取代;B独立为氢、卤素、碳数为1~3的烷基、碳数为1~3的卤代烷基、芳香族性的6元环~8元环、非芳香族性的3元环~8元环、或碳数为9以上的缩合环,该些环的至少1个氢可由卤素、碳数为1~3的烷基或卤代烷基取代,-CH2-可由-O-、-S-或-NH-取代,-CH=可由-N=取代;Z独立为单键、碳数为1~8的亚烷基,此亚烷基中的至少1个-CH2-可由-O-、-S-、-COO-、-OCO-、-CSO-、或-OCS-取代,此亚烷基中的至少1个-CH2-CH2-可由-N=N-、-CH=N-、或-N=CH-取代,此亚烷基中的至少1个-CH2-CH2-可由-CH=CH-、-CF=CF-或-C≡C-取代,至少1个氢可由卤素取代;X为单键、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、或-CH2CH2-;mK为1~4的整数。
30.根据权利要求29所述的液晶组成物,其中上述手性剂为选自由式(K4-1)~式(K4-6)及式(K5-1)~式(K5-3)所表示的化合物的群组中的至少1种化合物:
其中,RK独立为碳数为3~10的烷基或碳数为3~10的烷氧基,烷基中或烷氧基中的至少1个-CH2-可由-CH=CH-取代,但-O-与-C=C-不邻接。
31.根据权利要求1-4中任一项所述的液晶组成物,其于70℃~-20℃的任一温度下显示手性向列相,且于此温度范围的至少一部分中,螺旋节距为700nm以下。
32.根据权利要求1-4中任一项所述的液晶组成物,其包括至少1种抗氧化剂和/或紫外线吸收剂。
33.一种液晶组成物的混合物,其包括如权利要求1-32中任一项所述的液晶组成物、及聚合性单体。
34.一种高分子/液晶复合材料,其是使如权利要求33所述的混合物进行聚合而获得、且用于通过光学等向性的液晶相来驱动的元件。
35.根据权利要求34所述的高分子/液晶复合材料,其是使如权利要求33所述的混合物于非液晶等向性相或光学等向性的液晶相中进行聚合而获得。
36.一种光元件,其包括:液晶媒体,配置于在一面或两面上配置有电极的一组基板间;以及电场施加装置,经由上述电极对上述液晶媒体施加电场,其中上述液晶媒体为如权利要求1-32中任一项所述的液晶组成物、或者如权利要求34或35所述的高分子/液晶复合材料。
37.一种光元件,其包括:一组基板,至少一个为透明,并于一面或两面上配置有电极;液晶媒体,配置于基板间;以及电场施加装置,具有配置于基板的外侧的偏光板,并经由上述电极对上述液晶媒体施加电场,其中上述液晶媒体为如权利要求1-32中任一项所述的液晶组成物、或者如权利要求34或35所述的高分子/液晶复合材料。
38.根据权利要求36或37所述的光元件,其中于上述一组基板的至少一个基板上,以至少可朝2个方向施加电场的方式构成上述电极。
39.根据权利要求36或37所述的光元件,其中于彼此平行地配置的一组基板的一个或两个上,以至少可朝2个方向施加电场的方式构成电极。
40.根据权利要求36或37所述的光元件,其中将电极配置成矩阵状而构成像素电极,各像素具备主动元件,所述主动元件为薄膜晶体管。
41.一种如权利要求1-32中任一项所述的液晶组成物的用途,其用于光元件。
CN201380026809.5A 2012-05-28 2013-05-22 液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件 Active CN104334687B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-120771 2012-05-28
JP2012120771 2012-05-28
PCT/JP2013/064169 WO2013179960A1 (ja) 2012-05-28 2013-05-22 光学的に等方性の液晶媒体及び光素子

Publications (2)

Publication Number Publication Date
CN104334687A CN104334687A (zh) 2015-02-04
CN104334687B true CN104334687B (zh) 2016-08-17

Family

ID=49673161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380026809.5A Active CN104334687B (zh) 2012-05-28 2013-05-22 液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件

Country Status (5)

Country Link
US (1) US9175222B2 (zh)
JP (1) JP6299019B2 (zh)
CN (1) CN104334687B (zh)
TW (1) TWI589682B (zh)
WO (1) WO2013179960A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394390B2 (ja) * 2012-06-19 2018-09-26 Jnc株式会社 光学的に等方性の液晶組成物及び光素子
CN104854217B (zh) * 2012-12-17 2017-06-23 捷恩智株式会社 液晶组合物、混合物、复合材料、液晶元件及手性化合物
WO2014192627A1 (ja) * 2013-05-27 2014-12-04 Jnc株式会社 液晶媒体、光素子および液晶化合物
TWI648381B (zh) * 2014-07-03 2019-01-21 日商捷恩智股份有限公司 液晶組成物、光元件、混合物、化合物、高分子/液晶複合材料以及液晶組成物及高分子/液晶複合材料的用途
CN104293358B (zh) * 2014-09-11 2016-07-06 北京八亿时空液晶科技股份有限公司 一种含1,3-二噁烷化合物的液晶组合物及其应用
JP6375219B2 (ja) * 2014-12-11 2018-08-15 富士フイルム株式会社 光学部材および光学部材を有する画像表示装置
JP6760257B2 (ja) * 2015-02-17 2020-09-23 Jnc株式会社 アルコキシ基又はアルコキシアルキル基、及び飽和6員環を有する化合物、液晶組成物および液晶表示素子
JP6867285B2 (ja) * 2015-04-28 2021-04-28 Jnc株式会社 液晶組成物および液晶表示素子
TWI737728B (zh) * 2016-06-27 2021-09-01 日商捷恩智股份有限公司 液晶組成物、混合物、液晶複合材料、光元件及其用途
CN107418597A (zh) * 2017-07-21 2017-12-01 扬州高捷电子科技有限公司 低温液晶材料及其应用
US11309251B2 (en) * 2017-07-31 2022-04-19 AdTech Ceramics Company Selective metallization of integrated circuit packages
KR20190140401A (ko) * 2018-06-11 2019-12-19 제이엔씨 주식회사 광학적 등방성 액정 조성물 및 그것을 이용한 광 스위칭 소자
CN112322306B (zh) * 2020-10-28 2022-05-24 华南理工大学 超高极性手性液晶材料、液晶激光器及其制备方法
CN114815020B (zh) * 2022-04-21 2023-09-22 岭南师范学院 一种高品质因数折射率传感器的设计方法及折射率传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020006A1 (fr) * 1996-11-07 1998-05-14 Chisso Corporation Derives de dioxane fluoroalkyle, compositions de cristaux liquides et elements d'ecran a cristaux liquides
US5800735A (en) * 1995-12-29 1998-09-01 Merck Patent Gesellschaft Mit Beschrankter Haftung 1, 3-dioxanes, and liquid-crystalline medium
WO2012043145A1 (ja) * 2010-09-27 2012-04-05 Jnc株式会社 光学的に等方性の液晶媒体及び光素子

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982382A (ja) * 1982-11-04 1984-05-12 Chisso Corp 含ハロゲンメタジオキサンエステル
JPH05247026A (ja) * 1992-03-04 1993-09-24 Mitsubishi Gas Chem Co Inc ジオキサン系液晶物質
JPH0882778A (ja) * 1994-09-12 1996-03-26 Showa Shell Sekiyu Kk 反強誘電性液晶組成物
JPH08218069A (ja) * 1995-02-17 1996-08-27 Mitsubishi Gas Chem Co Inc 反強誘電性液晶組成物
JPH09176650A (ja) * 1995-12-26 1997-07-08 Nippon Soken Inc 反強誘電性液晶組成物
EP0959060A1 (en) 1996-11-28 1999-11-24 Chisso Corporation Chlorobenzene derivatives, liquid-crystal composition, and liquid-crystal display elements
JP3779937B2 (ja) 2002-05-08 2006-05-31 独立行政法人科学技術振興機構 光学変調素子用液晶材料
DE10253325A1 (de) 2002-11-14 2004-05-27 Merck Patent Gmbh Elektrooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium
ATE350684T1 (de) 2002-11-15 2007-01-15 Merck Patent Gmbh Elektrooptisches lichtsteuerelement, elektrooptische anzeige und steuermedium
JP4075781B2 (ja) 2003-11-27 2008-04-16 旭硝子株式会社 波長可変フィルタ
EP1688783B1 (en) 2003-11-27 2009-10-14 Asahi Glass Company Ltd. Optical element using liquid crystal having optical isotropy
WO2005080529A1 (ja) 2004-02-20 2005-09-01 Asahi Glass Company, Limited 光学素子用液晶材料および光変調素子
WO2005090520A1 (ja) 2004-03-19 2005-09-29 Japan Science And Technology Agency 液晶表示素子
JP5269284B2 (ja) 2004-04-30 2013-08-21 独立行政法人科学技術振興機構 高分子とキラリティーを有する液晶材料とからなる複合材料、該複合材料の製造方法、および該複合材料を用いる光素子
JP4972858B2 (ja) 2004-09-24 2012-07-11 Jnc株式会社 高分子と光学活性な液晶材料からなる複合体
JP2006127707A (ja) 2004-11-01 2006-05-18 Asahi Glass Co Ltd 開口制御素子および光ヘッド装置
KR101447290B1 (ko) 2004-12-17 2014-10-06 메르크 파텐트 게엠베하 액정 시스템 및 액정 디스플레이
EP1690917B1 (en) 2005-02-14 2008-10-08 MERCK PATENT GmbH Mesogenic compounds, liquid crystal medium and liquid crystal display
ATE410497T1 (de) 2005-02-14 2008-10-15 Merck Patent Gmbh Mesogene verbindungen, flüssigkristallines medium und flüssigkristallanzeigevorrichtung
JP5082202B2 (ja) 2005-04-20 2012-11-28 Jnc株式会社 重合体とキラリティーを有する液晶とからなる複合体
JP5477296B2 (ja) 2008-11-19 2014-04-23 Jnc株式会社 光学的に等方性の液晶媒体及び光素子
WO2011162142A1 (ja) * 2010-06-22 2011-12-29 Jnc株式会社 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子
KR101451205B1 (ko) * 2011-05-26 2014-10-15 디아이씨 가부시끼가이샤 2-플루오로페닐옥시메탄 구조를 갖는 화합물
JP6306887B2 (ja) * 2011-11-01 2018-04-04 Jnc株式会社 光学的に等方性の液晶媒体及び光素子
JP6115472B2 (ja) * 2011-11-30 2017-04-19 Jnc株式会社 光学的に等方性の液晶媒体及び光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800735A (en) * 1995-12-29 1998-09-01 Merck Patent Gesellschaft Mit Beschrankter Haftung 1, 3-dioxanes, and liquid-crystalline medium
WO1998020006A1 (fr) * 1996-11-07 1998-05-14 Chisso Corporation Derives de dioxane fluoroalkyle, compositions de cristaux liquides et elements d'ecran a cristaux liquides
WO2012043145A1 (ja) * 2010-09-27 2012-04-05 Jnc株式会社 光学的に等方性の液晶媒体及び光素子

Also Published As

Publication number Publication date
JPWO2013179960A1 (ja) 2016-01-18
US9175222B2 (en) 2015-11-03
CN104334687A (zh) 2015-02-04
JP6299019B2 (ja) 2018-03-28
TWI589682B (zh) 2017-07-01
US20140132868A1 (en) 2014-05-15
TW201402792A (zh) 2014-01-16
WO2013179960A1 (ja) 2013-12-05

Similar Documents

Publication Publication Date Title
CN104334687B (zh) 液晶组合物与其用途及混合物、高分子/液晶复合材料及光元件
CN102216424B (zh) 光等向性的液晶介质与光元件
CN102007197B (zh) 光学等向性的液晶媒体及光学元件
CN102388013B (zh) 氯苯衍生物、光学等向性液晶媒体及光元件
CN104379700B (zh) 液晶组合物及其用途、光元件、高分子与液晶的复合材料、混合物、及化合物
CN103987809B (zh) 液晶组成物、混合物、高分子/液晶复合材料及光组件
CN103906824B (zh) 液晶组合物、混合物、高分子/液晶复合材料以及光学器件
CN103154197B (zh) 光学等向性液晶媒体以及光学元件
CN110577836A (zh) 用于光转换元件的液晶组合物、混合物、高分子/液晶复合材料、元件及激光雷达
CN105849232B (zh) 液晶组合物及其用途、混合物、复合材料及其用途、光元件及液晶化合物
CN109415631B (zh) 液晶组合物、混合物、高分子/液晶复合材料、光元件及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant