WO2013176093A1 - 電極合剤 - Google Patents

電極合剤 Download PDF

Info

Publication number
WO2013176093A1
WO2013176093A1 PCT/JP2013/063980 JP2013063980W WO2013176093A1 WO 2013176093 A1 WO2013176093 A1 WO 2013176093A1 JP 2013063980 W JP2013063980 W JP 2013063980W WO 2013176093 A1 WO2013176093 A1 WO 2013176093A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode mixture
positive electrode
mixture
mol
Prior art date
Application number
PCT/JP2013/063980
Other languages
English (en)
French (fr)
Inventor
俊樹 一坂
貴視 井口
倫行 深谷
一暢 内田
卓司 石川
憲正 上杉
隆宏 北原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US14/402,241 priority Critical patent/US9444103B2/en
Priority to KR1020147035433A priority patent/KR20150022838A/ko
Priority to CN201380025426.6A priority patent/CN104285320A/zh
Priority to JP2014516795A priority patent/JP5949915B2/ja
Publication of WO2013176093A1 publication Critical patent/WO2013176093A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode mixture. More specifically, the present invention relates to an electrode mixture used for a non-aqueous electrolyte secondary battery such as a lithium ion battery.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries
  • Mobile phones, smartphones, tablet PCs, ultrabooks, etc. which are used for small and portable electric / electronic devices, etc. Is being put to practical use as a reliable power source.
  • the electrode manufacturing technique is a major point.
  • a negative electrode when a negative electrode is produced using a carbonaceous material such as coke or carbon as a negative electrode active material, the negative electrode is usually obtained by pulverizing the carbonaceous material and dispersing it in a solvent together with a binder. A mixture is prepared, applied to the negative electrode current collector, dried by removing the solvent, and rolled.
  • a carbonaceous material that merely occludes and releases lithium ions is also referred to as an active material.
  • the positive electrode is usually powdered with, for example, a lithium-containing oxide as a positive electrode active material, dispersed in a solvent together with a conductive agent and a binder to prepare a positive electrode mixture, and applied to the positive electrode current collector. It is produced by removing the solvent by drying and rolling. As described above, the electrode is produced using a slurry-like electrode mixture in which a powder electrode material of a positive electrode active material or a negative electrode active material and a binder are mixed and dispersed in an organic solvent.
  • Patent Document 1 discloses a nonaqueous battery electrode composed of a binder and an electrode active material, the binder being mainly composed of monomer units of vinylidene fluoride (A), hexafluoropropylene (B), and tetrafluoroethylene (C). It is a fluorine-based polymer copolymer constituted, and the molar fractions X A , X B and X C of the monomer units are 0.3 ⁇ X A ⁇ 0.9, 0.03 ⁇ X B ⁇ 0.5, A non-aqueous battery electrode in the range of 0 ⁇ X C ⁇ 0.5 and 0.80 ⁇ X A + X B + X C ⁇ 1 is disclosed.
  • a positive electrode mixture prepared by mixing a lithium-containing oxide such as LiCoO 2 as a positive electrode active material and graphite as a conductive agent with polyvinylidene fluoride is dispersed in N-methylpyrrolidone to form a slurry.
  • a negative electrode mixture prepared by applying an aluminum foil to a positive electrode current collector of aluminum foil and mixing a carbonaceous material as a negative electrode active material and polyvinylidene fluoride in N-methylpyrrolidone to form a slurry.
  • a technique is disclosed in which a negative electrode current collector is coated on a copper foil, dried, and then compression-molded by a roller press to be processed into an electrode sheet.
  • Patent Document 3 discloses a binder for a non-aqueous electrolyte secondary battery comprising a binary copolymer composed of 50 to 80 mol% of vinylidene fluoride and 20 to 50 mol% of tetrafluoroethylene, and a positive electrode active material. And / or a negative electrode in which a negative electrode mixture comprising the binder and the negative electrode active material is held in a negative electrode current collector.
  • a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte is disclosed.
  • Patent Document 4 discloses a binder for a non-aqueous electrolyte secondary battery comprising a copolymer composed of vinylidene fluoride and tetrafluoroethylene and a specific PVdF.
  • a binder for a non-aqueous electrolyte secondary battery comprising a copolymer composed of vinylidene fluoride and tetrafluoroethylene and a specific PVdF.
  • the stability of the electrode mixture and the adhesion of the electrode which are important characteristics as an electrode, are not disclosed.
  • the form of the lithium ion secondary battery is a circular type, a square type, a lami type, etc., and the electrode sheet is wound, pressed and introduced, so the electrode sheet is broken, the powder electrode material is dropped, Since the electrode is easily peeled off from the current collecting base material, flexibility is desired for the electrode. In addition, durability at high voltage is also important.
  • the conventional electrode mixture capable of giving a flexible electrode has a viscosity that decreases after about 24 hours from the preparation, or the electrode density decreases when an electrode is prepared using such an electrode mixture.
  • LiCoO 2 Since the basicity becomes higher than that, there is a problem that the electrode mixture is easily gelled.
  • the present invention provides an electrode that has a small viscosity change, a high electrode density, excellent flexibility, and excellent electrical characteristics even after 24 hours from the preparation of the mixture. It aims at providing the electrode mixture which can manufacture this.
  • the inventors of the present invention can suppress a decrease in viscosity, produce an electrode having high electrode density and excellent flexibility.
  • the present inventors have found that an electrode mixture that can be obtained is obtained, and have completed the present invention.
  • the battery which consists of the obtained electrode is more excellent in the battery characteristic than the battery which consists of the conventional electrode.
  • the present invention is an electrode mixture containing a powder electrode material, a binder, and an organic solvent, wherein the binder is a polymer unit based on vinylidene fluoride (VdF) and tetrafluoroethylene (TFE).
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • a fluorine-containing polymer composed of polymerized units based on the above, and polyvinylidene fluoride.
  • the above-mentioned fluorine-containing polymer comprises 80.0-90.0 mol of polymerized units based on vinylidene fluoride with respect to all polymerized units.
  • the polyvinylidene fluoride is an electrode mixture having a number average molecular weight of 150,000 to 1400000.
  • the polyvinylidene fluoride preferably has a number average molecular weight of 200,000 to 1300000.
  • the fluoropolymer preferably contains 82.0 to 89.0 mol% of polymerized units based on vinylidene fluoride based on the total polymerized units.
  • the fluoropolymer preferably comprises only a polymer unit based on vinylidene fluoride and a polymer unit based on tetrafluoroethylene.
  • the fluorine-containing polymer preferably has a weight average molecular weight of 50,000 to 2,000,000.
  • the mass ratio [(fluorinated polymer) / (polyvinylidene fluoride)] of the fluoropolymer to polyvinylidene fluoride is preferably 90/10 to 10/90.
  • the organic solvent is preferably N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide. The present invention is described in detail below.
  • the present invention is an electrode mixture containing a powder electrode material, a binder, and an organic solvent, wherein the binder is based on a polymerized unit based on vinylidene fluoride (VdF) and tetrafluoroethylene (TFE).
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • a fluorine-containing polymer composed of polymerized units and polyvinylidene fluoride are contained, and the fluorine-containing polymer contains 80.0 to 90.0 mol% of polymerized units based on vinylidene fluoride with respect to the total polymerized units.
  • the polyvinylidene fluoride is an electrode mixture having a number average molecular weight of 150,000 to 1400000.
  • the change in viscosity of the electrode mixture of the present invention is small even after 24 hours have elapsed since the preparation of the mixture.
  • an electrode having a high electrode density and excellent flexibility can be produced.
  • a battery having excellent electrical characteristics can be obtained.
  • the binder contained in the electrode mixture of the present invention contains a fluorinated polymer comprising polymerized units based on VdF and polymerized units based on TFE, and polyvinylidene fluoride.
  • the fluoropolymer contains 80.0 to 90.0 mol% of polymerized units based on VdF (also referred to as “VdF units”) with respect to the total polymerized units.
  • VdF units also referred to as “VdF units”
  • the fluoropolymer preferably contains 80.5 mol% or more, more preferably 82.0 mol% or more, of VdF units with respect to the total polymerization units. When the content is 82.0 mol% or more, the cycle characteristics of the battery using the electrode obtained from the electrode mixture of the present invention tends to be better.
  • the fluoropolymer preferably contains 89.0 mol% or less, more preferably 88.9 mol% or less, and more preferably 88.8 mol% or less of the VdF unit with respect to all the polymerized units. Is particularly preferred.
  • the composition of the fluoropolymer can be measured using an NMR analyzer.
  • the fluoropolymer may contain a polymer unit based on a monomer that can be copolymerized with VdF and TFE, in addition to a polymer unit based on VdF unit and TFE (also referred to as “TFE unit”). .
  • a copolymer of VdF and TFE is sufficient, but a copolymer that can be copolymerized with them to such an extent that the excellent non-aqueous electrolyte swellability of the copolymer is not impaired.
  • the adhesiveness can be further improved by copolymerizing the monomer.
  • the content of polymerized units based on monomers that can be copolymerized with VdF and TFE is preferably less than 3.0 mol% based on the total polymerized units of the fluoropolymer. When it is 3.0 mol% or more, generally the crystallinity of the copolymer of VdF and TFE is remarkably lowered, and as a result, the nonaqueous electrolyte swellability tends to be lowered.
  • Examples of monomers that can be copolymerized with VdF and TFE include unsaturated dibasic acid monoesters, such as maleic acid monomethyl ester, citraconic acid monomethyl ester, and citraconic acid, as described in JP-A-6-172245.
  • Y is —CH 2 OH, —COOH, carboxylate, carboxyl ester group or epoxy group
  • X and X 1 are the same or different, and both are hydrogen atoms or fluorine atoms
  • R f is 1 to 40 carbon atoms.
  • a fluorine-containing ethylenic monomer having at least one functional group Is possible.
  • the fluoropolymer may contain other polymerized units in addition to the VdF unit and the TFE unit, but more preferably comprises only the VdF unit and the TFE unit.
  • the fluoropolymer preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000.
  • the weight average molecular weight is more preferably 80000 or more, still more preferably 100,000 or more, more preferably 1950000 or less, still more preferably 1900000 or less, particularly preferably 1700000 or less, and most preferably 1500,000 or less.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the fluoropolymer preferably has a number average molecular weight (in terms of polystyrene) of 10,000 to 1400000.
  • the number average molecular weight is more preferably 16000 or more, further preferably 20000 or more, more preferably 1300000 or less, and still more preferably 1200000 or less.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • the fluoropolymer preferably has a tensile modulus of 800 MPa or less. If it exceeds 800 MPa, an electrode having excellent flexibility may not be obtained.
  • the tensile elastic modulus is more preferably 700 MPa or less. The tensile elastic modulus can be measured according to the method of ASTM D-638 (1999).
  • Examples of the method for producing the fluoropolymer include suspension polymerization, emulsion polymerization, solution polymerization, and the like by appropriately mixing monomers such as VdF and TFE as polymerization units and additives such as a polymerization initiator.
  • aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment.
  • a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used as said polymerization initiator.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide such as dialkyl peroxydicarbonate, di-n-propylperoxydicarbonate, disec-butylperoxydicarbonate, etc.
  • Peroxycarbonates, peroxyesters such as t-butylperoxyisobutyrate and t-butylperoxypivalate, dialkyl peroxides such as di-t-butylperoxide, and the like are also used as di ( ⁇ -hydro -Dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide, di (Perfluorovaleryl) -Oxide, di (perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) peroxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di ( ⁇ -chloro-hexafluoro) Butyryl
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts , T-butyl permaleate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
  • a known surfactant can be used.
  • a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used.
  • fluorine-containing anionic surfactants are preferable, and may include an ether bond (that is, an oxygen atom may be inserted between carbon atoms), or a linear or branched fluorine-containing group having 4 to 20 carbon atoms.
  • Anionic surfactants are more preferred.
  • the addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
  • Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • the addition amount may vary depending on the size of the chain transfer constant of the compound used, but is usually used in the range of 0.01 to 20% by mass with respect to the polymerization solvent.
  • Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
  • a fluorine-based solvent may be used in addition to water.
  • the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
  • Perfluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , etc. Among them, perfluoroalkanes are preferable.
  • the amount of the fluorine-based solvent used is preferably 10 to 150% by mass with respect to the aqueous medium from the viewpoint of suspendability and economy.
  • the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG.
  • a suspension agent such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, gelatin, It is used by adding in the range of 0.005 to 1.0 mass%, preferably 0.01 to 0.4 mass% with respect to water.
  • polymerization initiators include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (peroxide). Fluoroacyl) peroxide and the like can be used.
  • the amount used is the total amount of monomers (total amount of vinylidene fluoride, the above-mentioned monomer having an amide group, and other monomers copolymerizable with those monomers if necessary).
  • the content is preferably 0.1 to 5% by mass.
  • a chain transfer agent such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate or carbon tetrachloride may be added to adjust the degree of polymerization of the resulting polymer.
  • the amount used is usually from 0.1 to 5% by mass, preferably from 0.5 to 3% by mass, based on the total amount of monomers.
  • the total amount of monomers charged is 1: 1 to 1:10, preferably 1: 2 to 1: 5 in a weight ratio of the total amount of monomer to water, and the polymerization is carried out at a temperature of 10 to 50 ° C. 100 hours.
  • the above fluoropolymer can be easily obtained by the above suspension polymerization.
  • the binder further includes polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • a conventional mixture in which a small amount of a copolymer containing TFE units and VdF units is added to PVdF has a problem that the viscosity decreases after a long time has elapsed since the preparation of the mixture.
  • an electrode having a small viscosity change, high electrode density and excellent flexibility even after 24 hours from the preparation of the mixture is obtained. It has been found to be possible.
  • the PVdF may be a homopolymer consisting only of polymerized units based on VdF, a polymerized unit based on VdF, and a polymerized unit based on a monomer ( ⁇ ) copolymerizable with the polymerized unit based on VdF. It may consist of.
  • Examples of the monomer ( ⁇ ) include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, 2,3,3,3-tetrafluoropropene, and propylene.
  • unsaturated dibasic acid monoesters such as those described in JP-A-6-172452, such as maleic acid monomethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, vinylene carbonate, etc.
  • R 3 R 1, R 2 , R 3 represents an alkyl group
  • the adhesiveness with the collector which consists of metal foils of aluminum and copper can be improved by lowering the crystallinity of PVdF a little and giving flexibility to the material other than the compound including the polar group as described above.
  • fluorinated monomers such as ethylene trifluoride and hexafluoropropylene.
  • Y is —CH 2 OH, —COOH, carboxylate, carboxyl ester group or epoxy group
  • X and X 1 are the same or different, and both are hydrogen atoms or fluorine atoms
  • R f is 1 to 40 carbon atoms.
  • a fluorine-containing ethylenic monomer having at least one functional group Is possible.
  • the polymerization unit based on the monomer ( ⁇ ) is preferably 5 mol% or less, more preferably 4.5 mol% or less of the total polymerization units.
  • the PVdF preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000.
  • the weight average molecular weight is more preferably 80000 or more, still more preferably 100,000 or more, more preferably 1700000 or less, and further preferably 1500,000 or less.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the PVdF has a number average molecular weight (polystyrene conversion) of 150,000 to 1400000. When it is less than 150,000, the adhesion of the obtained electrode is lowered. When it exceeds 1400000, it will become easy to gelatinize when preparing an electrode mixture.
  • the number average molecular weight is preferably 200000 or more, more preferably 250,000 or more, further preferably 300000 or more, more preferably 1300000 or less, still more preferably 1200000 or less, still more preferably 1000000, and particularly preferably 800000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • the PVdF is produced by a conventionally known method such as solution polymerization or suspension polymerization by appropriately mixing, for example, VdF which is a polymerization unit, the monomer ( ⁇ ), and an additive such as a polymerization initiator. can do.
  • the mass ratio of the fluoropolymer to the PVdF (fluoropolymer) / (PVdF) is preferably 90/10 to 10/90, more preferably 80/20 to 15/85, and 75 / More preferably, it is 25 to 15/85. Within the above range, a decrease in the viscosity of the mixture can be suppressed, and an electrode having a high electrode density and excellent flexibility can be produced.
  • the binder may further include other components that can be used for the binder.
  • other components include polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, styrene rubber, and butadiene rubber.
  • the content of the other components is preferably 10 to 900% by mass with respect to the fluoropolymer.
  • the content of the binder is preferably 20% by mass or less in the electrode mixture, and more preferably 10% by mass or less. Moreover, 0.1 mass% or more is preferable and, as for content of the said binder, 0.5 mass% or more is more preferable. If the amount is more than 20% by mass, the electric resistance of the electrode obtained from the mixture becomes high, and good battery characteristics may not be obtained. On the other hand, if the amount is less than 0.1% by mass, the mixture may become unstable, and an electrode such as an electrode obtained from the mixture may not adhere to the current collector.
  • the electrode mixture of the present invention contains an organic solvent.
  • the organic solvent include nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and dimethylformamide; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone; And ester solvents such as butyl acetate; ether solvents such as tetrahydrofuran and dioxane; and low-boiling general-purpose organic solvents such as mixed solvents thereof.
  • the organic solvent is preferably N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide from the viewpoint of excellent stability and coating property of the electrode mixture.
  • the content of the organic solvent can be appropriately determined in consideration of the thickness of the electrode to be obtained.
  • the electrode mixture of the present invention contains a powder electrode material.
  • the powder electrode material include a non-aqueous battery electrode active material, an active material for forming an electric double layer capacitor polarizable electrode, and a mixture of these active materials and a conductive additive.
  • the non-aqueous battery electrode active material include a positive electrode active material and a negative electrode active material.
  • the electrode mixture of the present invention becomes, for example, a positive electrode mixture when it contains a positive electrode active material, and a negative electrode mixture when it contains a negative electrode active material.
  • the positive electrode mixture preferably contains a positive electrode active material and a conductive additive as the powder electrode material.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • a substance containing lithium and at least one transition metal is preferable, and examples thereof include a lithium transition metal composite oxide and a lithium-containing transition metal phosphate compound.
  • the transition metal of the lithium transition metal composite oxide is preferable as the transition metal of the lithium transition metal composite oxide
  • a specific example of the lithium transition metal composite oxide is a lithium-cobalt composite such as LiCoO 2.
  • the substituted ones for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0. 5 O 4 , Li 4 Ti 5 O 12 and the like.
  • the positive electrode active material containing Ni since the capacity of the positive electrode active material increases as the proportion of Ni increases, further improvement in battery capacity can be expected.
  • the basicity of the positive electrode active material is further increased, when only PVdF is used as the binder during preparation of the positive electrode mixture, the PVdF chemically reacts and the positive electrode mixture is easily gelled.
  • the transition metal of the lithium-containing transition metal phosphate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable.
  • the lithium-containing transition metal phosphate compound include LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium-containing transition metal phosphate compounds Examples include those substituted with other metals such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, and Si.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiFePO 4 are preferable.
  • a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.
  • These surface adhering substances are, for example, a method of dissolving or suspending in a solvent and impregnating and drying the positive electrode active material, and a method of dissolving or suspending a surface adhering substance precursor in a solvent and impregnating and adding to the positive electrode active material, followed by heating. It can be made to adhere to the positive electrode active material surface by the method of making it react by the method etc., the method of adding to a positive electrode active material precursor, and baking simultaneously.
  • the amount of the surface adhering substance is by mass with respect to the positive electrode active material, preferably 0.1 ppm as a lower limit, more preferably 1 ppm, still more preferably 10 ppm, and preferably 20% as an upper limit, more preferably 10%, still more preferably. Is used at 5%.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently exhibited. If the amount is too large, the resistance may increase in order to inhibit the entry and exit of lithium ions.
  • the positive electrode active material particles As the shape of the positive electrode active material particles, a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, a column shape, etc., which are conventionally used, are used, and the primary particles are aggregated to form secondary particles. Thus, it is preferable that the secondary particles have a spherical or elliptical shape.
  • an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken.
  • the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration.
  • spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced.
  • the mixing with the conductive assistant is also preferable because it is easy to mix uniformly.
  • the tap density of the positive electrode active material is usually 1.3 g / cm 3 or more, preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, and most preferably 1.7 g / cm 3 or more. . If the tap density of the positive electrode active material is lower than the lower limit, the amount of dispersion medium required during the formation of the positive electrode active material layer increases, and the necessary amount of conductive auxiliary agent and binder increases, and the positive electrode to the positive electrode active material layer The filling rate of the active material is restricted, and the battery capacity may be restricted. By using a metal composite oxide powder having a high tap density, a high-density positive electrode active material layer can be formed.
  • the tap density is preferably as large as possible, but there is no particular upper limit. However, if the tap density is too large, diffusion of lithium ions using the non-aqueous electrolyte solution as a medium in the positive electrode active material layer becomes rate-determining, and load characteristics may be likely to deteriorate. Usually, it is 2.5 g / cm 3 or less, preferably 2.4 g / cm 3 or less.
  • the tap density of the positive electrode active material is measured by passing a sieve having a mesh size of 300 ⁇ m, dropping the sample onto a 20 cm 3 tapping cell to fill the cell volume, and then measuring a powder density measuring device (for example, a tap denser manufactured by Seishin Enterprise Co., Ltd. ), A tapping with a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
  • a powder density measuring device for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.
  • the median diameter d50 (secondary particle diameter when primary particles are aggregated to form secondary particles) of the positive electrode active material particles is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m. Above, most preferably 3 ⁇ m or more, usually 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 16 ⁇ m or less, and most preferably 15 ⁇ m or less. If the lower limit is not reached, a high bulk density product may not be obtained. If the upper limit is exceeded, it takes time to diffuse lithium in the particles. In some cases, a conductive auxiliary agent, a binder, or the like is slurried with a solvent and applied in the form of a thin film, causing problems such as streaking.
  • the median diameter d50 in the present invention is measured by a known laser diffraction / scattering particle size distribution measuring apparatus.
  • LA-920 manufactured by HORIBA is used as a particle size distribution meter
  • a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
  • the average primary particle diameter of the positive electrode active material is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, Most preferably, it is 0.1 ⁇ m or more, usually 3 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and most preferably 0.6 ⁇ m or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there.
  • the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
  • the BET specific surface area of the positive electrode active material is 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, 4.0 m 2 / g or less, preferably 2 .5m 2 / g or less, still more preferably not more than 1.5 m 2 / g. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered, and if the BET specific surface area is larger, the tap density is difficult to increase, and there may be a problem in applicability when forming the positive electrode active material.
  • the BET specific surface area was measured by preliminarily drying the sample at 150 ° C. for 30 minutes under a nitrogen flow using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.), It is defined by a value measured by a nitrogen adsorption BET one-point method using a gas flow method using a nitrogen helium mixed gas that is accurately adjusted so that the relative pressure value is 0.3.
  • a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.
  • a general method is used as a manufacturing method of the inorganic compound.
  • various methods are conceivable for producing a spherical or elliptical spherical active material.
  • transition metal raw materials such as transition metal nitrates and sulfates and, if necessary, raw materials of other elements such as water.
  • Dissolve or pulverize and disperse in a solvent adjust the pH while stirring, create and recover a spherical precursor, and dry it as necessary.
  • LiOH, Li 2 CO 3 , LiNO 3 and other Li A method of obtaining an active material by adding a source and baking at a high temperature, transition metal raw materials such as transition metal nitrates, sulfates, hydroxides and oxides, and if necessary, raw materials of other elements in a solvent such as water Dissolve or pulverize and disperse in the powder and dry mold it with a spray drier to make a spherical or oval spherical precursor.
  • a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 and calcinate at a high temperature.
  • Transition metal source materials such as transition metal nitrates, sulfates, hydroxides and oxides, Li sources such as LiOH, Li 2 CO 3 and LiNO 3 , and source materials of other elements as necessary, such as water
  • Transition metal source materials such as transition metal nitrates, sulfates, hydroxides and oxides, Li sources such as LiOH, Li 2 CO 3 and LiNO 3 , and source materials of other elements as necessary, such as water
  • Examples thereof include a method of dissolving or pulverizing and dispersing in a solvent and drying and molding it with a spray dryer or the like to obtain a spherical or elliptical precursor, which is fired at a high temperature to obtain an active material.
  • a positive electrode active material may be used individually by 1 type, and may use together 2 or more types of a different composition or different powder physical properties by arbitrary combinations and ratios.
  • the negative electrode active material is not particularly limited as long as it is capable of electrochemically occluding and releasing lithium ions.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • carbonaceous material As a carbonaceous material, (1) natural graphite, (2) Artificial carbonaceous material and artificial graphite material; carbonaceous material ⁇ for example, natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or those obtained by oxidizing these pitches, needle coke, pitch Coke and carbon materials partially graphitized, furnace black, acetylene black, pyrolysis products of organic substances such as pitch-based carbon fibers, carbonizable organic substances (for example, coal tar pitch from soft pitch to hard pitch, or dry distillation liquefaction Heavy oil such as coal, heavy oil of normal pressure, direct current heavy oil of reduced pressure residue, crude oil, cracked petroleum heavy oil such as ethylene tar produced during thermal decomposition of naphtha, acenaphthylene, decacyclene, Aromatic hydrocarbons such as anthracene and phenanthrene, N-ring compounds such as phenazine and acridine, thiophene, bi
  • Ring compounds polyphenylenes such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, organic polymers such as nitrogen-containing polyacrylonitrile, polypyrrole, sulfur-containing polythiophene, Organic polymers such as polystyrene, natural polymers such as polysaccharides such as cellulose, lignin, mannan, polygalacturonic acid, chitosan and saccharose, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, furfuryl alcohol resin, phenol -Thermosetting resins such as formaldehyde resin and imide resin) and their carbides or carbonizable organic substances in low molecular organic solvents such as benzene, toluene, xylene, quinoline, n-hexane, and the like Charcoal Carbonaceous material things ⁇ heat treated one or more times in the range
  • powdery carbonaceous material such as graphite, activated carbon, or a phenolic resin or pitch fired carbonized material as a negative electrode active material
  • metal oxide-based GeO, GeO 2 , SnO, SnO 2 , PbO, PbO 2 or the like, or composite metal oxides thereof may be used.
  • Examples of the active material for forming an electric double layer capacitor polarizable electrode include carbonaceous materials such as activated carbon, carbon black, graphite, expanded graphite, porous carbon, carbon nanotube, carbon nanohorn, and ketjen black.
  • Examples of the activated carbon include phenol resin activated carbon, coconut shell activated carbon, and petroleum coke activated carbon.
  • the conductive auxiliary agent is added as necessary for the purpose of improving the conductivity when an electrode material having a low electron conductivity such as LiCoO 2 is used in the battery.
  • an electrode material having a low electron conductivity such as LiCoO 2
  • Carbon black, graphite fine powder or carbon fiber, carbon fiber, carbon nanotube, carbon nanohorn or other carbonaceous material, nickel, aluminum or other metal fine powder, or fiber can be used.
  • the content of the powder electrode material is preferably 40% by mass or more in the electrode mixture in order to increase the capacity of the obtained electrode.
  • Examples of the method for preparing the electrode mixture of the present invention include a method in which a powder electrode material is dispersed and mixed in a solution in which a binder is dissolved in an organic solvent. Moreover, after mixing binder powder and powder electrode material previously, an organic solvent may be added and an electrode mixture may be prepared.
  • the electrode mixture of the present invention contains a specific binder and a specific organic solvent, even if it is left for a long time after preparing the mixture, the viscosity does not decrease, the electrode density is high, and it is flexible. An electrode having excellent properties can be produced.
  • the electrode mixture of the present invention is applied to a current collector, applied, dried, and pressed, whereby a thin electrode is formed on the current collector.
  • a current collector include metal foils such as iron, stainless steel, copper, aluminum, nickel, and titanium, or metal nets.
  • the electrode mixture of the present invention can be applied to a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery includes a positive electrode in which a positive electrode mixture is held on a positive electrode current collector, a negative electrode in which a negative electrode mixture is held on a negative electrode current collector, and a non-aqueous electrolyte. .
  • the positive electrode mixture preferably includes the above-described powder electrode material, a binder, and an organic solvent, and the powder electrode material is preferably the above-described positive electrode active material and conductive aid.
  • the negative electrode mixture includes the above-described powder electrode material, binder and organic solvent, and the powder electrode material is preferably a negative electrode active material.
  • the positive electrode current collector include aluminum foil, and examples of the negative electrode current collector include copper foil.
  • the non-aqueous electrolyte is not particularly limited, but examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyllactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, One or more known solvents such as diethyl carbonate and ethyl methyl carbonate can be used. Any conventionally known electrolyte can be used, and LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, cesium carbonate, and the like can be used.
  • the ratio of the powder electrode material to the binder in the electrode mixture is usually about 80:20 to 99.9: 0.1 in weight ratio, holding the powder component, adhesion to the current collector, It is determined in consideration of the conductivity of the electrode.
  • the binder in the electrode mixture layer formed on the current collector, the binder cannot completely fill the voids between the powder components, but the binder as a solvent.
  • the binder In the electrode mixture layer after drying, the binder is preferably dispersed and formed into a knitted shape and retains the powder component well in the electrode mixture layer after drying.
  • the amount of the organic solvent in the electrode mixture is determined in consideration of the coating property to the current collector, the thin film forming property after drying, and the like.
  • the weight ratio of the binder to the organic solvent is preferably 5:95 to 20:80.
  • the binder be used with a small particle diameter of an average particle diameter of 1000 ⁇ m or less, particularly 50 to 350 ⁇ m, in order to enable rapid dissolution in the organic solvent.
  • the electrode mixture of the present invention is useful not only for a lithium ion secondary battery using the liquid electrolyte described above but also for a polymer electrolyte lithium secondary battery for a non-aqueous electrolyte secondary battery. It is also useful for electric double layer capacitors.
  • the electrode mixture of the present invention has the above-described structure, the viscosity does not change greatly even after 24 hours from the preparation of the mixture, and an electrode having high electrode density and excellent flexibility is manufactured. Can do.
  • the electrode mixture of the present invention can be very suitably used as an electrode mixture for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.
  • VdF / TFE 83.0 / 17.0 (mol%) 5 wt% NMP solution viscosity: 440 mPa ⁇ s (25 ° C.) Number average molecular weight: 270000 Weight average molecular weight: 870000 Tensile modulus: 450 MPa
  • VdF / TFE 80.0 / 20.0 (mol%) 5 wt% NMP solution viscosity: 410 mPa ⁇ s (25 ° C.) Number average molecular weight: 230000 Weight average molecular weight: 820000 Tensile modulus: 420 MPa
  • PVdF polyvinylidene fluoride
  • KF7200 which is PVdF manufactured by Kureha Chemical Industry Co., Ltd. was used.
  • VdF 100 mol% Number average molecular weight: 295,000 Weight average molecular weight: 835,000
  • PVdF (b) HSV900 which is PVdF manufactured by Arkema, was used.
  • VdF 100 mol% Number average molecular weight: 270000 Weight average molecular weight: 780000 Tensile modulus: 1100 MPa
  • PVdF (c) KF9200 which is PVdF made by Kureha Chemical Industry Co., Ltd. was used.
  • VdF / maleic acid monomethyl ester 99.8 / 0.2 mol%
  • PVdF (d) KF1100 which is PVdF manufactured by Kureha Chemical Industry Co., Ltd. was used.
  • VdF 100 mol% Number average molecular weight: 120,000 Weight average molecular weight: 270000
  • VdF 100 mol% Number average molecular weight: 265000 Weight average molecular weight: 747000 Tensile modulus: 1200 MPa
  • VdF 100 mol% Number average molecular weight: 320,000 Weight average molecular weight: 852000 Tensile modulus: 1200 MPa
  • VdF 100 mol% Number average molecular weight: 336000 Weight average molecular weight: 1020000 Tensile modulus: 1200 MPa
  • GPC gel permeation chromatography
  • NMP N-methyl-2-pyrrolidone
  • Examples 1 to 16 and Comparative Examples 1 to 7 (Preparation of positive electrode mixture) LiCoO 2 (manufactured by Nippon Chemical Industry Co., Ltd.): Binder: Acetylene Black (manufactured by Denki Kagaku Kogyo Co., Ltd.) was weighed so as to have a mass ratio of 100: 1: 1. In addition, as a binder, the mixture of the fluoropolymer and PVdF of the mass ratio shown in Table 1 was used. After the binder was dissolved in N-methyl-2-pyrrolidone (NMP) so as to have a concentration of 5% by mass, a predetermined amount of LiCoO 2 and acetylene black were added to the obtained NMP solution.
  • NMP N-methyl-2-pyrrolidone
  • Electrode density The positive electrode was passed through a roll press with a gap of 0 ⁇ m and a pressure of 4 t at room temperature, and the area / film thickness / weight of the positive electrode was measured to calculate the electrode density (g / cm 3 ).
  • Non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3/7 was used.
  • the strip-shaped positive electrode was cut to 40 mm ⁇ 72 mm (with a positive electrode terminal of 10 mm ⁇ 10 mm), the strip-shaped negative electrode was cut to 42 mm ⁇ 74 mm (with a negative electrode terminal of 10 mm ⁇ 10 mm), and a lead body was welded to each terminal. Further, a polypropylene film separator having a thickness of 20 ⁇ m was cut into a size of 78 mm ⁇ 46 mm to form a separator, and a positive electrode and a negative electrode were set so as to sandwich the separator, and these were put in an aluminum laminate packaging material.
  • ⁇ Initial internal resistance> The above-prepared coin-type battery is charged and discharged at a constant current (0.2 C) -constant voltage (4.2 V) in a temperature environment of 25 ° C. and discharged at 0.2 C to a discharge end voltage of 3.0 V. After performing the cycle 3 times, the voltage drop at the time of 0.5C, 1C, 2C, 5C discharge at 100% charge rate (SOC) (voltage drop value 15 seconds after the start of discharge) was measured, and each current value The initial internal resistance ( ⁇ ) was obtained from each voltage drop value.
  • SOC charge rate
  • Cycle maintenance ratio (%) 300 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) ⁇ 100
  • Cycle maintenance ratio (%) 200 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) ⁇ 100
  • Electrode density The positive electrode was passed twice through a roll press with a gap of 75 ⁇ m at 70 ° C., and the gap was changed to 35 ⁇ m twice. Then, the area / film thickness / weight of the positive electrode was measured, and the electrode density (g / cm 3 ) was calculated.
  • the binder is dissolved in N-methyl-2-pyrrolidone (NMP) so as to have a concentration of 5% by mass, and then a predetermined amount of LiNi 1/3 Co 1/3 Mn 1 is added to the obtained NMP solution.
  • NMP N-methyl-2-pyrrolidone
  • / 3 O 2 (NMC) or LiNi 0.80 Co 0.15 Al 0.05 O 2 (NCA) and acetylene black are added, and the mixture is stirred at 100 rpm for 60 minutes with a stirrer (TKIKVIS MIX manufactured by Primics). Stirring was performed, and further, stirring was performed at 100 rpm for 30 minutes while performing vacuum defoaming treatment.
  • the NMP solution after stirring was filtered using Ni mesh (200 mesh), and the particle size of the solid content was made uniform to obtain a positive electrode mixture.
  • the obtained positive electrode mixture was allowed to stand for 24 hours after preparation, and then applied to an Al foil (made by Toyo Aluminum Co., Ltd.) having a thickness of 22 ⁇ m as a current collector with an applicator (the dry mass of the positive electrode coating film was 13 mg / cm 2 ).
  • NMP was completely volatilized while drying at 120 ° C. using an air constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.) to produce a positive electrode.
  • the obtained positive electrode mixture and positive electrode were evaluated as follows, and the results are shown in Table 4.
  • Electrode density The positive electrode was passed through a roll press with a gap of 0 ⁇ m and a pressure of 0.5 t at room temperature, and the area / film thickness / weight of the positive electrode was measured to calculate the electrode density (g / cm 3 ).
  • Non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3/7 was used.
  • ⁇ Initial internal resistance> The above-prepared coin-type battery is charged / discharged at a constant current (0.2 C) ⁇ constant voltage (4.1 V) in a temperature environment of 25 ° C. and discharged at 0.2 C to a final discharge voltage of 3.0 V. After performing the cycle three times, measure the voltage drop at 0.2C, 0.5C, 1C, 5C, 10C discharge at 100% charge rate (SOC) (voltage drop value 15 seconds after the start of discharge) The initial internal resistance ( ⁇ ) was determined from the slope of the plot of each current value and each voltage drop value.
  • a charge / discharge cycle in which the coin-type battery produced above is charged at a constant current (0.2 C) -constant voltage (4.1 V) and discharged at 0.2 C to a discharge end voltage of 3.0 V in a temperature environment of 25 ° C. was performed three times, and the discharge capacities at 0.2 C and 10 C rates in the voltage range of 4.1 V to 3.0 V were measured.
  • the charging conditions after three initial charge / discharge cycles were constant current (0.5 C) -constant voltage (4.1 V) charging at a 0.5 C rate.
  • the discharge capacity value at 10 C rate relative to the discharge capacity value at 0.2 C rate was defined as the characteristic value at 10 C rate.
  • the electrode mixture of the present invention can be very suitably used as an electrode mixture for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、合剤調製後24時間経過しても、粘度変化が小さく、電極密度が高く、柔軟性に優れ、かつ、電気特性に優れた電池とすることができる電極を製造することができる電極合剤を提供することを目的とする。 本発明は、粉末電極材料、結着剤、及び、有機溶剤を含む電極合剤であって、上記結着剤は、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体、並びに、ポリビニリデンフルオライドを含有し、上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~90.0モル%含み、上記ポリビニリデンフルオライドは、数平均分子量が150000~1400000であることを特徴とする電極合剤である。

Description

電極合剤
本発明は、電極合剤に関する。より詳しくは、リチウムイオン電池等の非水系電解液二次電池に用いられる電極合剤に関する。
リチウムイオン二次電池等の非水系電解液二次電池は、高電圧、高エネルギー密度で、自己放電が少ない、メモリー効果が少ない、超軽量化が可能である、等の理由から、ノート型パソコン、携帯電話、スマートフォン、タブレットパソコン、ウルトラブック等小型で携帯に適した電気・電子機器等に用いられるとともに、さらには、自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源として実用化されつつある。
非水系電解液二次電池のエネルギー密度を向上させるうえでは、電極作製技術が大きなポイントとなっている。例えば、リチウムイオン二次電池の電極については、コークスやカーボン等の炭素質材料を負極活物質として負極を作製する場合、通常、炭素質材料を粉末化し、結着剤とともに溶剤に分散させて負極合剤を調製し、負極集電体に塗布後、溶剤を乾燥除去し、圧延することにより作製する。なお、本明細書では、単にリチウムイオンを吸蔵放出するにすぎない炭素質材料も活物質と称することとする。また同様に正極は、通常、例えばリチウム含有酸化物を正極活物質としてこれを粉末化し、導電剤及び結着剤とともに溶剤に分散させて正極合剤を調製し、正極集電体に塗布後、溶剤を乾燥除去し圧延することにより作製するものである。
このように電極は、正極活物質や負極活物質の粉末電極材料と結着剤とを有機溶剤に混合分散した、スラリー状の電極合剤を用いて作製される。
特許文献1には、バインダーと電極活物質からなる非水系電池電極であって、該バインダーが、フッ化ビニリデン(A)、ヘキサフルオロプロピレン(B)、テトラフルオロエチレン(C)のモノマーユニットより主として構成されるフッ素系高分子共重合体であり、モノマーユニットのモル分率X、X、Xが0.3≦X≦0.9、0.03≦X≦0.5、0≦X≦0.5、0.80≦X+X+X≦1の範囲にある、非水系電池用電極が開示されている。
特許文献2には、正極活物質としてLiCoOのようなリチウム含有酸化物と導電剤としてのグラファイトをポリフッ化ビニリデンと混合し作製した正極合剤をN-メチルピロリドンに分散させてスラリー状にしたものをアルミ箔の正極集電体に塗布し、また負極活物質としての炭素質材料とポリフッ化ビニリデンとを混合し作製した負極合剤をN-メチルピロリドンに分散させてスラリー状にしたものを負極集電体である銅箔上に塗布し、それぞれ乾燥後、ローラープレス機により圧縮成形して電極シートに加工する技術が開示されている。
特許文献3には、フッ化ビニリデン50~80モル%とテトラフルオロエチレン20~50モル%から構成される二元共重合体からなる非水電解液二次電池用結着剤と、正極活物質と導電材とよりなる正極合剤が正極集電体に保持されてなる正極、および/または、上記結着剤と負極活物質とよりなる負極合剤が負極集電体に保持されてなる負極、ならびに、非水電解液を具備してなる非水電解液二次電池が開示されている。
特許文献4では、フッ化ビニリデンとテトラフルオロエチレンから構成される共重合体と特定のPVdFからなる非水電解液二次電池用結着剤について開示されている。しかし、電極として重要な特性である電極合剤の安定性や電極の密着性については開示されていない。
特開昭63-121262号公報 特開平4-249859号公報 国際公開第98/27605号パンフレット 国際公開第2010/092977号パンフレット
近年は、電子機器の小型軽量化、薄型軽量化の要望が非常に大きくなり、より電池の高性能化が必要となってきた。電池のエネルギー密度を高めるために、電極の高密度化(高容量化)や高電圧化や電極の活物質量の増大(結着剤等の他の部材の配合量の削減)が検討されている。更に、車載用電池としては、出力を向上させるために、電極の低抵抗化が求められている。
また、リチウムイオン二次電池の形態は円形型、角型、ラミ型等であり、電極シートは捲回、プレスして導入されるので、電極シートが割れたり、粉末電極材料が脱落したり、集電基材と剥離したりしやすいことから、電極には柔軟性も望まれるようになった。また、合わせて高電圧における耐久性も重要である。
しかしながら、柔軟な電極を与えうる従来の電極合剤は、調製してから24時間程経過すると粘度が低下したり、このような電極合剤を用いて電極を作製すると、電極密度が低下するといった問題があった。また、近年、高容量化、高電圧化のため正極活物質がLiCoOからNi等を含む活物質に変更される動きがあるが、正極活物質が含有するNiの割合が多くなると、LiCoOに比べ塩基性が高くなるため、電極合剤がゲル化しやすいという課題もある。
本発明は、上記現状を鑑みて、合剤調製後24時間経過しても、粘度変化が小さく、電極密度が高く、柔軟性に優れ、かつ、電気特性に優れた電池とすることができる電極を製造することができる電極合剤を提供することを目的とするものである。
本発明者らは、特定の含フッ素重合体とポリビニリデンフルオライドとからなる結着剤を含むことにより、粘度の低下が抑制でき、電極密度が高く、柔軟性に優れた電極を製造することができる電極合剤が得られることを見出し、本発明を完成させるに至った。また、得られた電極からなる電池は従来の電極からなる電池よりも電池特性に優れる。
すなわち、本発明は、粉末電極材料、結着剤、及び、有機溶剤を含む電極合剤であって、上記結着剤は、ビニリデンフルオライド(VdF)に基づく重合単位及びテトラフルオロエチレン(TFE)に基づく重合単位からなる含フッ素重合体、並びに、ポリビニリデンフルオライドを含有し、上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~90.0モル%含み、上記ポリビニリデンフルオライドは、数平均分子量が150000~1400000であることを特徴とする電極合剤である。
上記ポリビニリデンフルオライドは、数平均分子量が200000~1300000であることが好ましい。 
上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して82.0~89.0モル%含むことが好ましい。
上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位のみからなることが好ましい。
上記含フッ素重合体は、重量平均分子量が50000~2000000であることが好ましい。
上記含フッ素重合体とポリビニリデンフルオライドとの質量比[(含フッ素重合体)/(ポリビニリデンフルオライド)]が、90/10~10/90であることが好ましい。
上記有機溶剤は、N-メチル-2-ピロリドン、及び/又は、N,N-ジメチルアセトアミドであることが好ましい。
以下に本発明を詳細に説明する。
本発明は、粉末電極材料、結着剤、及び、有機溶剤を含む電極合剤であって、上記結着剤は、ビニリデンフルオライド(VdF)に基づく重合単位及びテトラフルオロエチレン(TFE)に基づく重合単位からなる含フッ素重合体、並びに、ポリビニリデンフルオライドを含有し、上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~90.0モル%含み、上記ポリビニリデンフルオライドは、数平均分子量が150000~1400000であることを特徴とする電極合剤である。
このため、本発明の電極合剤は、合剤調製してから24時間経過しても、粘度変化が小さい。また、電極密度が高く、柔軟性に優れた電極を製造することができる。更に、電気特性に優れた電池を得ることができる。
本発明の電極合剤に含まれる結着剤は、VdFに基づく重合単位及びTFEに基づく重合単位からなる含フッ素重合体、並びに、ポリビニリデンフルオライドを含有する。
上記含フッ素重合体は、VdFに基づく重合単位(「VdF単位」ともいう)を、全重合単位に対して80.0~90.0モル%含む。
VdF単位が80.0モル%未満であると電極合剤の粘度の経時変化が大きくなり、90.0モル%より多いと合剤から得られる電極の柔軟性が劣る傾向がある。
上記含フッ素重合体は、VdF単位を全重合単位に対して80.5モル%以上含むことが好ましく、82.0モル%以上含むことがより好ましい。82.0モル%以上含むと、本発明の電極合剤から得られる電極を用いた電池のサイクル特性がより良好となる傾向がある。
また、上記含フッ素重合体は、VdF単位を全重合単位に対して89.0モル%以下含むことがより好ましく、88.9モル%以下含むことが更に好ましく、88.8モル%以下含むことが特に好ましい。
上記含フッ素重合体の組成は、NMR分析装置を用いて測定することができる。
上記含フッ素重合体は、VdF単位及びTFEに基づく重合単位(「TFE単位」ともいう)の他に、VdF及びTFEと共重合し得る単量体に基づく重合単位を含むものであってもよい。本発明の効果を達成するためには、VdFとTFEとの共重合体で充分であるが、さらに共重合体の優れた非水電解液膨潤性を損なわない程度にそれらと共重合しうる単量体を共重合させて接着性をさらに向上させることができる。
上記VdF及びTFEと共重合し得る単量体に基づく重合単位の含有量は、上記含フッ素重合体の全重合単位に対して3.0モル%未満が好ましい。3.0モル%以上であると、一般的にVdFとTFEの共重合体の結晶性が著しく低下し、その結果非水電解液膨潤性が低下する傾向がある。
上記VdF及びTFEと共重合し得る単量体としては、特開平6-172452号公報に記載されているような不飽和二塩基酸モノエステル、たとえばマレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステルやビニレンカーボネートなど、また特開平7-201316号公報に記載されているような、-SOM、-OSOM、-COOM、-OPOM(Mはアルカリ金属を表わす)やアミン系極性基である-NHR、-NR(R、R、Rはアルキル基を表わす)などの親水性極性基を有する化合物、たとえばCH=CH-CH-Y、CH=C(CH)-CH-Y、CH=CH-CH-O-CO-CH(CHCOOR)-Y、CH=CH-CH-O-CH-CH(OH)-CH-Y、CH=C(CH)-CO-O-CH-CH-CH-Y、CH=CH-CO-O-CH-CH-Y、CH=CHCO-NH-C(CH-CH-Y(Yは親水性極性基、またRはアルキル基を表わす)やその他、マレイン酸や無水マレイン酸などがあげられる。さらに、CH=CH-CH-O-(CH-OH(3≦n≦8)、
Figure JPOXMLDOC01-appb-C000001
CH=CH-CH-O-(CH-CH-O)-H(1≦n≦14)、CH=CH-CH-O-(CH-CH(CH)-O)-H(1≦n≦14)などの水酸化アリルエーテルモノマーや、カルボキシル化および/または-(CF-CF(3≦n≦8)で置換されるアリルエーテルおよびエステルモノマー、たとえばCH=CH-CH-O-CO-C-COOH、CH=CH-CH-O-CO-C10-COOH、CH=CH-CH-O-C-(CFCF、CH=CH-CH-CO-O-C-(CFCF、CH=C(CH)-CO-O-CH-CFなども同様に共重合可能な単量体として使用できる。
ところで、以上のような極性基などを含む化合物以外でもフッ化ビニリデンとテトラフルオロエチレンとの共重合体の結晶性を少し低下させ、材料に柔軟性を与えることによりアルミや銅の金属箔からなる集電体との接着性が向上しうることがこれまでの研究より類推できるようになった。これより、たとえばエチレン、プロピレンなどの不飽和炭化水素系モノマー(CH=CHR、Rは水素原子、アルキル基またはClなどのハロゲン)や、フッ素系モノマーである3フッ化塩化エチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブテン、2,3,3,3-テトラフルオロプロペン、CF=CF-O-C2n+1(nは1以上の整数)、CH=CF-C2n+1(nは1以上の整数)、CH=CF-(CFCFH(nは1以上の整数)、さらにCF=CF-O-(CFCF(CF)O)-C2n+1(m、nは1以上の整数)も使用可能である。
そのほか式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、Yは-CHOH、-COOH、カルボン酸塩、カルボキシエステル基またはエポキシ基、XおよびXは同じかまたは異なりいずれも水素原子またはフッ素原子、Rは炭素数1~40の2価の含フッ素アルキレン基または炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基を表わす)で示される少なくとも1種の官能基を有する含フッ素エチレン性単量体も使用可能である。これらの単量体を1種または2種以上共重合することにより、さらに集電体との接着性が向上し、充放電を繰り返し行なっても集電体より電極活物質が剥がれ落ちることがなく、良好な充放電サイクル特性が得られる。
これら単量体の中でも、柔軟性と耐薬品性の観点から、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペンが特に好ましい。
このように上記含フッ素重合体は、VdF単位及びTFE単位の他に、他の重合単位を含むものであってもよいが、VdF単位及びTFE単位のみからなることがより好ましい。
上記含フッ素重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。上記重量平均分子量は、より好ましくは80000以上、更に好ましくは100000以上であり、より好ましくは1950000以下、更に好ましくは1900000以下であり、特に好ましくは1700000以下であり、最も好ましくは1500000以下である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記含フッ素重合体は、数平均分子量(ポリスチレン換算)が10000~1400000であることが好ましい。上記数平均分子量は、より好ましくは16000以上、更に好ましくは20000以上であり、より好ましくは1300000以下であり、更に好ましくは1200000以下である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記含フッ素重合体は、引張弾性率が800MPa以下であることが好ましい。800MPaを超えると、柔軟性に優れた電極を得られないおそれがある。引張弾性率は、700MPa以下がより好ましい。
上記引張弾性率は、ASTM D-638(1999)の方法に準拠して測定できる。
上記含フッ素重合体を製造する方法としては、例えば、重合単位であるVdFおよびTFEの単量体や、重合開始剤等の添加剤を適宜混合して、懸濁重合、乳化重合、溶液重合等を行う方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましい。
上記重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
上記重合開始剤としては、油溶性ラジカル重合開始剤又は水溶性ラジカル開始剤を使用できる。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえばジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類、ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類などが、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロバレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとして挙げられる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトウム塩、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどがあげられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
上記界面活性剤としては、公知の界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤などが使用できる。なかでも、含フッ素アニオン性界面活性剤が好ましく、エーテル結合を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)、炭素数4~20の直鎖又は分岐した含フッ素アニオン性界面活性剤がより好ましい。添加量(対重合水)は、好ましくは50~5000ppmである。
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチルなどの酢酸エステル類;メタノール、エタノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素などがあげられる。添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.01~20質量%の範囲で使用される。
上記溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。
上記懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられ、なかでも、パーフルオロアルカン類が好ましい。フッ素系溶媒の使用量は、懸濁性及び経済性の面から、水性媒体に対して10~150質量%が好ましい。
重合温度としては特に限定されず、0~100℃であってよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。
フッ素系溶媒を用いないで水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、水に対して0.005~1.0質量%、好ましくは0.01~0.4質量%の範囲で添加して使用する。
この場合の重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等が使用できる。その使用量は、単量体合計量(ビニリデンフルオライド、上記アミド基を有する単量体、及び、必要に応じてそれらの単量体と共重合可能なその他の単量体の合計量)に対して0.1~5質量%であることが好ましい。
また、酢酸エチル、酢酸メチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる重合体の重合度を調節することも可能である。その使用量は、通常は、単量体合計量に対して0.1~5質量%、好ましくは0.5~3質量%である。
単量体の合計仕込量は、単量体合計量:水の重量比で1:1~1:10、好ましくは1:2~1:5であり、重合は温度10~50℃で10~100時間行う。
上記の懸濁重合により、容易に上記含フッ素重合体を得ることができる。
上記結着剤は、更にポリビニリデンフルオライド(PVdF)を含む。
本技術分野においては、電極の機能を変化させるため、合剤に複数の種類の結着剤用ポリマーをブレンドして用いることがしばしば行われる。しかし、例えば、PVdFに、TFE単位とVdF単位とを含む共重合体を少量添加した従来の合剤は、合剤調製から長時間経過すると粘度が低下するといった問題があった。
このように本発明は、結着剤としてPVdFに上記含フッ素重合体を配合した場合、合剤調製から24時間経過しても粘度変化が小さく、電極密度が高く柔軟性に優れた電極が得られることが見出されたものである。
上記PVdFは、VdFに基づく重合単位のみからなるホモポリマーであってもよいし、VdFに基づく重合単位と、上記VdFに基づく重合単位と共重合可能な単量体(α)に基づく重合単位とからなるものであってもよい。
上記単量体(α)としては、例えば、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、プロピレン等が挙げられる。また、特開平6-172452号公報に記載されているような不飽和二塩基酸モノエステル、たとえばマレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステルやビニレンカーボネートなど、また特開平7-201316号公報に記載されているような、-SOM、-OSOM、-COOM、-OPOM(Mはアルカリ金属を表わす)やアミン系極性基である-NHR、-NR(R、R、Rはアルキル基を表わす)などの親水性極性基を有する化合物、たとえばCH=CH-CH-Y、CH=C(CH)-CH-Y、CH=CH-CH-O-CO-CH(CHCOOR)-Y、CH=CH-CH-O-CH-CH(OH)-CH-Y、CH=C(CH)-CO-O-CH-CH-CH-Y、CH=CH-CO-O-CH-CH-Y、CH=CHCO-NH-C(CH-CH-Y(Yは親水性極性基、またRはアルキル基を表わす)やその他、マレイン酸や無水マレイン酸などがあげられる。さらに、CH=CH-CH-O-(CH-OH(3≦n≦8)、
Figure JPOXMLDOC01-appb-C000003
CH=CH-CH-O-(CH-CH-O)-H(1≦n≦14)、CH=CH-CH-O-(CH-CH(CH)-O)-H(1≦n≦14)などの水酸化アリルエーテルモノマーや、カルボキシル化および/または-(CF-CF(3≦n≦8)で置換されるアリルエーテルおよびエステルモノマー、たとえばCH=CH-CH-O-CO-C-COOH、CH=CH-CH-O-CO-C10-COOH、CH=CH-CH-O-C-(CFCF、CH=CH-CH-CO-O-C-(CFCF、CH=C(CH)-CO-O-CH-CFなども同様に共重合可能な単量体として使用できる。ところで、以上のような極性基などを含む化合物以外でもPVdFの結晶性を少し低下させ材料に柔軟性を与えることによりアルミや銅の金属箔からなる集電体との接着性が向上しうることがこれまでの研究より類推できるようになった。これより、たとえばエチレン、プロピレンなどの不飽和炭化水素系モノマー(CH=CHR、Rは水素原子、アルキル基またはClなどのハロゲン)や、フッ素系モノマーである3フッ化塩化エチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブテンやCF=CF-O-C2n+1(nは1以上の整数)、CH=CF-C2n+1(nは1以上の整数)、CH=CF-(CFCFH(nは1以上の整数)、さらにCF=CF-O-(CFCF(CF)O)-C2n+1(m、nは1以上の整数)も使用可能である。
そのほか式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、Yは-CHOH、-COOH、カルボン酸塩、カルボキシエステル基またはエポキシ基、XおよびXは同じかまたは異なりいずれも水素原子またはフッ素原子、Rは炭素数1~40の2価の含フッ素アルキレン基または炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基を表わす)で示される少なくとも1種の官能基を有する含フッ素エチレン性単量体も使用可能である。これらの単量体を1種または2種以上共重合することにより、さらに集電体との接着性が向上し、充放電を繰り返し行なっても集電体より電極活物質が剥がれ落ちることがなく、良好な充放電サイクル特性が得られる。
上記PVdFは、単量体(α)に基づく重合単位が全重合単位の5モル%以下であることが好ましく、4.5モル%以下であることがより好ましい。
上記PVdFは、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。上記重量平均分子量は、より好ましくは80000以上、更に好ましくは100000以上であり、より好ましくは1700000以下、更に好ましくは1500000以下である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、数平均分子量(ポリスチレン換算)が150000~1400000である。
150000未満であると、得られた電極の密着性が低くなる。1400000を超えると、電極合剤を調製する際にゲル化しやすくなる。
上記数平均分子量は、200000以上が好ましく、250000以上がより好ましく、300000以上が更に好ましく、1300000以下が好ましく、1200000以下がより好ましく、1000000が更に好ましく、800000が特に好ましい。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、例えば、重合単位であるVdF及び上記単量体(α)や、重合開始剤等の添加剤を適宜混合して、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。
上記含フッ素重合体と上記PVdFとの質量比(含フッ素重合体)/(PVdF)は、90/10~10/90であることが好ましく、80/20~15/85がより好ましく、75/25~15/85が更に好ましい。
上述の範囲であると、合剤の粘度低下が抑制でき、電極密度が高く柔軟性に優れた電極を製造することができる。
上記結着剤は、上記含フッ素重合体及びPVdFの他に、更に結着剤に使用可能なその他の成分を含んでいてもよい。その他の成分としては、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、スチレンゴム、ブタジエンゴムなどが挙げられる。上記その他の成分の含有量は、含フッ素重合体に対して10~900質量%であることが好ましい。
上記結着剤の含有量は、電極合剤中20質量%以下が好ましく、10質量%以下がより好ましい。また、上記結着剤の含有量は、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。20質量%よりも多いとその合剤から得られる電極の電気抵抗が高くなり良好な電池特性が得られないおそれがある。また、0.1質量%よりも少ないと合剤が不安定になるとともにその合剤から得られた電極が集電体に接着しない等の不具合が生じるおそれがある。
本発明の電極合剤は、有機溶剤を含む。
上記有機溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;更に、それらの混合溶剤等の低沸点の汎用有機溶剤を挙げることができる。
なかでも、上記有機溶剤としては、電極合剤の安定性、塗工性に優れている点から、N-メチル-2-ピロリドン、及び/又は、N,N-ジメチルアセトアミドであることが好ましい。
上記有機溶剤の含有量は、得られる電極の厚み等を考慮して適宜決めることができる。
本発明の電極合剤は、粉末電極材料を含む。
上記粉末電極材料としては、非水系電池電極活物質、電気二重層キャパシタ分極性電極形成用活物質、及び、これらの活物質と導電助剤との混合物が挙げられる。
上記非水系電池電極活物質としては、正極活物質及び負極活物質を挙げることができる。
本発明の電極合剤は、例えば、正極活物質を含む場合は、正極合剤となり、負極活物質を含む場合は、負極合剤となる。
上記正極合剤は、上記粉末電極材料として、正極活物質及び導電助剤を含むことが好ましい。
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.82Co0.15Al0.03、LiNi0.80Co0.15Al0.05、LiNi1/3Co1/3Mn1/3、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiTi12等が挙げられる。Niを含む正極活物質において、Niの割合が多いほど正極活物質の容量が高くなるため、さらなる電池の容量の向上が期待できる。しかしその一方で正極活物質の塩基性がさらに高くなるため、正極合剤の調製の際に結着剤にPVdFのみを用いると、PVdFが化学反応して正極合剤がゲル化しやすくなる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム含有遷移金属リン酸化合物の具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム含有遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
特に、高電圧、高エネルギー密度、あるいは、充放電サイクル特性等の観点から、LiCoO、LiNiO、LiMn、LiNi0.82Co0.15Al0.03、LiNi0.80Co0.15Al0.05、LiNi1/3Co1/3Mn1/3、LiFePOが好ましい。
また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。
表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm、より好ましくは1ppm、更に好ましくは10ppm、上限として好ましくは20%、より好ましくは10%、更に好ましくは5%で用いられる。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電助剤との混合においても、均一に混合されやすいため好ましい。
正極活物質のタップ密度は、通常1.3g/cm以上、好ましくは1.5g/cm以上、更に好ましくは1.6g/cm以上、最も好ましくは1.7g/cm以上である。正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電助剤や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm以下、好ましくは2.4g/cm以下である。
正極活物質のタップ密度は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高嵩密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成すなわち正極活物質と導電助剤や結着剤等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることもできる。
なお、本発明におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、更に好ましくは0.08μm以上、最も好ましくは0.1μm以上で、通常3μm以下、好ましくは2μm以下、更に好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、0.2m/g以上、好ましくは0.3m/g以上、更に好ましくは0.4m/g以上で、4.0m/g以下、好ましくは2.5m/g以下、更に好ましくは1.5m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすい場合がある。
BET比表面積は、表面積計(例えば、(株)大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
なお、正極活物質は1種を単独で用いても良く、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用しても良い。
一方、負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質;炭素質物質{例えば天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(例えば軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、更にアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクニロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物}を400から3200℃の範囲で一回以上熱処理された炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
負極活性物質としてはまた、黒鉛、活性炭、あるいはフェノール樹脂やピッチ等を焼成炭化したもの等の粉末状炭素質材料に加えて、金属酸化物系のGeO、GeO、SnO、SnO、PbO、PbOなど、あるいはこれらの複合金属酸化物(例えば、特開平7-249409号公報に開示されるもの)等を用いても良い。
電気二重層キャパシタ分極性電極形成用活物質としては、活性炭、カーボンブラック、グラファイト、膨張黒鉛、ポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラックなどの炭素質材料などが挙げられる。
また、上記活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などが挙げられる。
導電助剤は、電池においてLiCoO等の電子伝導性の小さい電極材料を使用する場合に、導電性を向上させる目的で必要に応じて添加するものであり、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛微粉末又は炭素繊維、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン等の炭素質物質やニッケル、アルミニウム等の金属微粉末あるいは、繊維が使用できる。
上記粉末電極材料の含有量は、得られる電極の容量を増やすために、電極合剤中40質量%以上が好ましい。
本発明の電極合剤を調製する方法としては、例えば、結着剤を有機溶剤に溶解させた溶液に、粉末電極材料を分散、混合させるといった方法が挙げられる。また、結着剤粉末と粉末電極材料とを先に混合した後、有機溶剤を添加して電極合剤を調製してもよい。
このように本発明の電極合剤は、特定の結着剤と特定の有機溶剤とを含むものであるため、合剤調製後長時間放置しても、粘度が低下せず、電極密度が高く、柔軟性に優れた電極を製造することができる。
本発明の電極合剤を用いて電極を作製する方法としては、例えば、本発明の電極合剤を集電体に塗布して、塗布、乾燥、プレスすることにより、集電体上に薄い電極合剤層を形成し薄膜状電極とする方法が挙げられる。
上記集電体としては、例えば、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等が挙げられる。
本発明の電極合剤は、非水系電解液二次電池に適用できる。
上記非水系電解液二次電池は、正極合剤が正極集電体に保持されてなる正極、負極合剤が負極集電体に保持されてなる負極、及び、非水電解液を備えている。
上記正極合剤は、上述の粉末電極材料、結着剤及び有機溶剤を含み、上記粉末電極材料は、上述の正極活物質及び導電助剤であることが好ましい。
上記負極合剤は、上述の粉末電極材料、結着剤及び有機溶剤を含み、上記粉末電極材料は負極活物質であることが好ましい。
上記正極集電体としては、例えば、アルミ箔等が挙げられ、上記負極集電体としては例えば銅箔等が挙げられる。
非水電解液は特に限定されるものではないが、有機溶媒としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の公知の溶媒の1種もしくは2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。
電極合剤中の粉末電極材料と結着剤の割合は、通常、重量比で80:20~99.9:0.1程度であり、粉体成分の保持、集電体への接着性、電極の導電性を考慮して決められる。
上述のような配合割合では、集電体上に形成される電極合剤層では、上記結着剤は粉体成分間の空隙を完全に充填することは出来ないが、溶媒として上記結着剤を良く溶解する溶剤を用いると、乾燥後の電極合剤層において、上記結着剤が均一に分散、編み目状になり、粉体成分をよく保持するので好ましい。
電極合剤中の有機溶剤の量は、集電体への塗布性、乾燥後の薄膜形成性等を考慮して決定される。通常、上記結着剤と有機溶剤との割合は、重量比で5:95~20:80が好ましい。
また、上記結着剤は、上記有機溶剤に対する速やかな溶解を可能とするために、平均粒径1000μm以下、特に50~350μmの、小粒径で使用に供することが望ましい。
本発明の電極合剤は、非水系電解液二次電池用として、以上に説明した液状電解質を用いたリチウムイオン二次電池だけでなく、ポリマー電解質リチウム二次電池にも有用である。また、電気二重層キャパシタ用としても有用である。
本発明の電極合剤は、上述の構成よりなるものであるので、合剤調製してから24時間経過後も粘度が大きく変化せず、電極密度が高く柔軟性に優れた電極を製造することができる。本発明の電極合剤は、リチウムイオン二次電池等の非水系電解液二次電池の電極合剤として極めて好適に使用できる。
本発明を実施例により更に詳細に説明するが、本発明はこの実施例により限定されるものではない。
調製例1(含フッ素重合体Aの製造)
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8kgを仕込み、系内を37℃、攪拌速度580rpmに保った。
その後、TFE/VdF=5/95モル%の混合ガス260g、酢酸エチル0.6gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を2.8g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=5/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。32時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Aの白色粉末900gを得た。
得られた含フッ素重合体Aは以下の組成及び物性を有していた。
VdF/TFE=83.0/17.0(モル%)
5wt%NMP溶液粘度:440mPa・s(25℃)
数平均分子量 :270000
重量平均分子量:870000
引張弾性率:450MPa
調製例2(含フッ素重合体Bの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=4/96モル%の混合ガス200g、酢酸エチル0.4gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=13/87モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。17時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Bの白色粉末190gを得た。
得られた含フッ素重合体Bは、以下の組成及び物性を有していた。
VdF/TFE=86.6/13.4(モル%)
数平均分子量:274000
重量平均分子量:768000
引張弾性率:500MPa
調製例3(含フッ素重合体Cの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=3/97モル%の混合ガス200g、酢酸エチル0.4gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=11/89モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。20時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Cの白色粉末190gを得た。
得られた含フッ素重合体Cは、以下の組成及び物性を有していた。
VdF/TFE=88.8/11.2(モル%)
数平均分子量:305000
重量平均分子量:854000
引張弾性率:550MPa
調製例4(含フッ素重合体Dの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=6/94モル%の混合ガス200g、酢酸エチル0.4gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=19/81モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。11時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Dの白色粉末130gを得た。
得られた含フッ素重合体Dは以下の組成及び物性を有していた。
VdF/TFE=81.0/19.0(モル%)
数平均分子量:283000
重量平均分子量:795000
引張弾性率:400MPa
調製例5(含フッ素重合体Eの製造)
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8kgを仕込み、系内を37℃、攪拌速度580rpmに保った。
その後、TFE/VdF=6/94モル%の混合ガス260g、酢酸エチル0.6gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を2.8g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=5/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。32時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Eの白色粉末900gを得た。
得られた含フッ素重合体Eは以下の組成及び物性を有していた。
VdF/TFE=80.0/20.0(モル%)
5wt%NMP溶液粘度:410mPa・s(25℃)
数平均分子量 :230000
重量平均分子量:820000
引張弾性率:420MPa
調製例6(含フッ素重合体Fの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=7/93モル%の混合ガス200g、酢酸エチル0.4gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=22/78モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。6時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Fの白色粉末60gを得た。
得られた含フッ素重合体Fは、以下の組成及び物性を有していた。
VdF/TFE=78.0/22.0(モル%)
数平均分子量:265000
重量平均分子量:750000
引張弾性率:400MPa
調製例7(含フッ素重合体Gの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=2/98モル%の混合ガス200g、酢酸エチル1gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=8/92モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。20時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Gの白色粉末130gを得た。
得られた含フッ素重合体Gは、以下の組成及び物性を有していた。
VdF/TFE=91.5/8.5(モル%)
数平均分子量:296000
重量平均分子量:799000
引張弾性率:980MPa
調製例8(含フッ素重合体Hの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン0.88kgを仕込み、系内を37℃、攪拌速度555rpmに保った。その後、TFE/VdF=5/95モル%の混合ガス150gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1.5g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=15/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。44時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Hの白色粉末600gを得た。
得られた含フッ素重合体Hは、以下の組成及び物性を有していた。
VdF/TFE=82.9/17.1(モル%)
数平均分子量:300000
重量平均分子量:1210000
引張弾性率:450MPa
ポリビニリデンフルオライド(PVdF)として以下の(a)~(g)を用意した。
(PVdF(a))
呉羽化学工業社製PVdFであるKF7200を用いた。
VdF=100モル%
数平均分子量:295000
重量平均分子量:835000
引張弾性率:1200MPa
(PVdF(b))
アルケマ社製PVdFであるHSV900を用いた。
VdF=100モル%
数平均分子量:270000
重量平均分子量:780000
引張弾性率:1100MPa
(PVdF(c))
呉羽化学工業社製PVdFであるKF9200を用いた。
VdF/マレイン酸モノメチルエステル=99.8/0.2モル%
数平均分子量:203000
重量平均分子量:650000
引張弾性率:1200MPa
(PVdF(d))
呉羽化学工業社製PVdFであるKF1100を用いた。
VdF=100モル%
数平均分子量:120000
重量平均分子量:270000
引張弾性率:1200MPa
(PVdF(e))
VdF=100モル%
数平均分子量:265000
重量平均分子量:747000
引張弾性率:1200MPa
(PVdF(f))
VdF=100モル%
数平均分子量:320000
重量平均分子量:852000
引張弾性率:1200MPa
(PVdF(g))
VdF=100モル%
数平均分子量:336000
重量平均分子量:1020000
引張弾性率:1200MPa
上記の含フッ素重合体及びPVdFの組成、分子量及び引張弾性率については、以下の方法にて測定した。
<ポリマー組成>
NMR分析装置(アジレント・テクノロジー株式会社製、VNS400MHz)を用いて、19F-NMR測定でポリマーのDMSO溶液状態にて測定した。
19F-NMR測定にて、下記のピークの面積(A、B、C、D)を求め、VdFとTFEの比率を計算した。
A:-86ppm~-98ppmのピークの面積
B:-105ppm~-118ppmのピークの面積
C:-119ppm~-122ppmのピークの面積
D:-122ppm~-126ppmのピークの面積
VdFの割合:(4A+2B)/(4A+3B+2C+2D)×100[mol%]
TFEの割合:(B+2C+2D)/(4A+3B+2C+2D)×100[mol%]
<数平均分子量及び重量平均分子量>
ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー株式会社製のHLC-8320GPC、カラム(SuperAWM-Hを3本直列に接続)を用い、溶媒としてジメチルホルムアミド(DMF)を用いて測定したデータ(リファレンス:ポリスチレン)より算出する。
<引張弾性率>
濃度5質量%の含フッ素重合体のN-メチル-2-ピロリドン(NMP)溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
作製した含フッ素重合体のキャストフィルムをアルミ箔から剥がし、そのフィルムをASTM V型ダンベルに打抜き、テンシロンにて引張弾性率を測定した。測定方法はASTM D-638(1999)に準拠した。
実施例1~16、比較例1~7
(正極合剤の調製)
LiCoO(日本化学工業(株)製):結着剤:アセチレンブラック(電気化学工業(株)製)を、質量比で100:1:1となるように秤量した。
なお、結着剤として、表1に示す質量比の含フッ素重合体とPVdFとの混合物を用いた。
結着剤を、濃度が5質量%になるようにN-メチル-2-ピロリドン(NMP)に溶解させた後、得られたNMP溶液に、所定量のLiCoOとアセチレンブラックを加え、撹拌機(プライミクス社製 T.K.HIVIS MIX)で、100rpmで60分攪拌を行い、更に、真空脱泡処理を施しながら、100rpmで30分攪拌を行った。攪拌後のNMP溶液を、Niメッシュ(200メッシュ)を用いてろ過し、固形分の粒径を均一化して、正極合剤を得た。
得られた正極合剤について、以下の方法にて、粘度を測定し、安定性を評価した。結果を表1に示す。
<安定性(粘度維持率(%))>
得られた正極合剤の粘度を、レオメーター(TA Instrument社製、応力制御型レオメーターDiscovery HR-1)を用いて測定した。
合剤調製時の粘度(η0)、合剤調製から24時間経過後の粘度(ηa)をそれぞれ測定し、粘度維持率(Xa)を下記の式により求めた。ここで合剤粘度とは、ジオメトリーを直径40mmの1°コーンプレートとし、25℃でせん断速度を0.01sec-1から1000sec-1まで掃引していった際の、100sec-1における粘度の値である。
Xa=ηa/η0×100[%]
Figure JPOXMLDOC01-appb-T000005
(正極の作製)
実施例3~16及び比較例3~7で調製した正極合剤を、調製から24時間静置した後に、集電体である厚さ22μmのAl箔上(東洋アルミ社製)にアプリケーターにより塗布(正極塗膜の乾燥質量が16~17mg/cmとなる量)した。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、正極を作製した。
得られた正極について、下記の評価を行った。結果を表2に示す。
<電極密度>
正極をギャップが0μm、圧力が4tのロールプレスに室温下で通し、正極の面積/膜厚/重量を測定して電極密度(g/cm)を算出した。
<柔軟性(正極の折り曲げ試験)>
作製した正極を縦3cm、横6cmに切り取った後、180°折り畳んだ後広げて、正極の割れの有無を目視で確認した。割れが確認されない場合は○、割れが確認された場合は×と評価した。
<電極密着性(電極/集電体界面の90度剥離試験)>
1.2×8.0cmに切った正極の電極側を可動式治具に固定し、集電体側にテープを張り、そのテープ側を100mm/分の速度でテープを90度に引っ張った時の応力(N/mm)をオートグラフにて測定した。オートグラフのロードセルには1Nを用いた。
(負極の作成)
人造黒鉛粉末(日立化成(株)製、商品名MAG-D)に、蒸留水で分散させたスチレン-ブタジエンゴムおよびカルボキシメチルセルロースをそれぞれ固形分で1.2質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥して負極合剤層を形成し、その後ローラープレス機により圧縮成型して、負極を作成した。
(コイン型電池の作成)
リチウム金属と上記で得られた正極を打ち抜き機で直径13mmの円形に打ち抜き、この正極と上記で得られた負極との間に微孔性ポリプロピレンフィルムセパレーターを介在させ、非水電解質を注液してコイン型電池を作成した。非水電解質としては、エチレンカーボネートとエチルメチルカーボネートを体積比3/7で混合した溶媒にLiPFを1モル/Lの濃度で溶解させてなる非水電解液を用いた。
(ラミネート型電池の作成)
帯状の正極を40mm×72mm(10mm×10mmの正極端子付)に切り取り、また帯状の負極を42mm×74mm(10mm×10mmの負極端子付)に切り取り、各端子にリード体を溶接した。また、厚さ20μmのポリプロピレンフィルムセパレーターを78mm×46mmの大きさに切ってセパレーターとし、セパレーターを挟むように正極と負極をセットし、これらをアルミニウムラミネート包装材内に入れた。ついで包装材中に電解液(エチレンカーボネートとエチルメチルカーボネートを体積比3/7で混合した溶媒にLiPFを1モル/リットルの濃度で溶解したもの)を2mlずつ入れて密封して容量72mAhのラミネートセルを作製した。
<正極の初期放電容量>
上記で作製したコイン型電池について、25℃の温度環境下、0.2Cの定電流で電圧4.2Vまで充電した後、0.2Cの定電流で電圧3.0Vまで放電を行い、正極の初期放電容量(mAh/g)を測定した。
<初期内部抵抗>
上記で作製したコイン型電池について、25℃の温度環境下、定電流(0.2C)- 定電圧(4.2V)で充電し、放電終止電圧3.0Vまで0.2Cで放電する充放電サイクルを3回行った後、充電率(SOC)100%での0.5C、1C、2C、5C放電時の電圧低下(放電開始15秒後の電圧低下値)を測定して、各電流値と各電圧低下値から初期内部抵抗(Ω)を求めた。
<サイクル特性>
サイクル特性については、上記で作製したラミネート型電池を用いて、充放電条件(1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、最初のサイクル後の放電容量と300サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値をサイクル維持率の値とする。
サイクル維持率(%)=300サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
<高温サイクル特性>
高温サイクル特性については、上記で作製したラミネート型電池を用いて、充放電条件(55℃の恒温槽中において、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、最初のサイクル後の放電容量と200サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値をサイクル維持率の値とする。
サイクル維持率(%)=200サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
Figure JPOXMLDOC01-appb-T000006
実施例17~18、比較例8~9
(正極合剤の調製)
LiCoO(日本化学工業(株)製):結着剤:アセチレンブラック(電気化学工業(株)製)を、質量比で92:3:5となるように秤量した。
なお、結着剤として、表3に示す質量比の含フッ素重合体とPVdFとの混合物を用いた。
結着剤を、濃度が5質量%になるようにN-メチル-2-ピロリドン(NMP)に溶解させた後、得られたNMP溶液に、所定量のLiCoOとアセチレンブラックを加え、撹拌機(プライミクス社製 T.K.HIVIS MIX)で、100rpmで60分攪拌を行い、更に、真空脱泡処理を施しながら、100rpmで30分攪拌を行った。攪拌後のNMP溶液を、Niメッシュ(200メッシュ)を用いてろ過し、固形分の粒径を均一化して、正極合剤を得た。
(正極の作製)
上記で得られた正極合剤を、調製から24時間静置した後、その合剤を集電体である厚さ22μmのAl箔上(東洋アルミ社製)にアプリケーターにより塗布(正極塗膜の乾燥質量が16~17mg/cmとなる量)した。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、正極を作製した。
得られた正極について、下記の評価を行った。結果を表3に示す。
<電極密度>
正極をギャップが75μmのロールプレスに70℃で2回通し、さらにギャップを35μmに変更して2回通した後、正極の面積/膜厚/重量を測定して電極密度(g/cm)を算出した。
<柔軟性(正極の折り曲げ試験)>
作製した正極を縦3cm、横6cmに切り取った後、180°折り畳んだ後広げて、正極の割れの有無を目視で確認した。割れが確認されない場合は○、割れが確認された場合は×と評価した。
Figure JPOXMLDOC01-appb-T000007
実施例19~24、比較例10~11
(正極合剤の調製)
LiNi1/3Co1/3Mn1/3(日本化学工業(株)製、以下NMCとする)あるいはLi(Ni0.80Co0.15Al0.05)O(戸田工業(株)製、以下NCAとする):結着剤:アセチレンブラック(電気化学工業(株)製)を、質量比で93:3:4となるように秤量した。
なお、結着剤として、表4に示す質量比の含フッ素重合体とPVdFとの混合物を用いた。
結着剤を、濃度が5質量%になるようにN-メチル-2-ピロリドン(NMP)に溶解させた後、得られたNMP溶液に、所定量のLiNi1/3Co1/3Mn1/3(NMC)あるいはLiNi0.80Co0.15Al0.05(NCA)とアセチレンブラックを加え、撹拌機(プライミクス社製 T.K.HIVIS MIX)で、100rpmで60分攪拌を行い、更に、真空脱泡処理を施しながら、100rpmで30分攪拌を行った。攪拌後のNMP溶液を、Niメッシュ(200メッシュ)を用いてろ過し、固形分の粒径を均一化して、正極合剤を得た。
得られた正極合剤を、調製から24時間静置した後に、集電体である厚さ22μmのAl箔上(東洋アルミ社製)にアプリケーターにより塗布(正極塗膜の乾燥質量が13mg/cmとなる量)した。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、正極を作製した。
得られた正極合剤および正極について、下記の評価を行った、結果を表4に示す。
<安定性(粘度維持率(%))>
得られた正極合剤の粘度を、レオメーター(TA Instrument社製、応力制御型レオメーターDiscovery HR-1)を用いて測定した。
合剤調製時の粘度(η0)、合剤調製から24時間経過後の粘度(ηa)をそれぞれ測定し、粘度維持率(Xa)を下記の式により求めた。ここで合剤粘度とは、ジオメトリーを直径40mmの1°コーンプレートとし、25℃でせん断速度を0.01sec-1から1000sec-1まで掃引していった際の、100sec-1における粘度の値である。
Xa=ηa/η0×100[%]
<電極密度>
正極を、ギャップが0μm、圧力が0.5tのロールプレスに室温下で通し、正極の面積/膜厚/重量を測定して電極密度(g/cm)を算出した。
<電極密着性(電極/集電体界面の90度剥離試験)>
1.2×8.0cmに切った正極の電極側を可動式治具に固定し、集電体側にテープを張り、そのテープ側を100mm/分の速度でテープを90度に引っ張った時の応力(N/mm)をオートグラフにて測定した。オートグラフのロードセルには1Nを用いた。
(コイン型電池の作成)
リチウム金属と上記で得られた正極を打ち抜き機で直径13mmの円形に打ち抜き、この正極と、上述で得られた負極との間に微孔性ポリプロピレンフィルムセパレーターを介在させ、非水電解質を注液してコイン型電池を作成した。非水電解質としては、エチレンカーボネートとエチルメチルカーボネートを体積比3/7で混合した溶媒にLiPFを1モル/Lの濃度で溶解させてなる非水電解液を用いた。
<初期内部抵抗>
上記で作製したコイン型電池について、25℃の温度環境下、定電流(0.2C)- 定電圧(4.1V)で充電し、放電終止電圧3.0Vまで0.2Cで放電する充放電サイクルを3回行った後、充電率(SOC)100%での0.2C、0.5C、1C、5C、10C放電時の電圧低下(放電開始15秒後の電圧低下値)を測定して、各電流値と各電圧低下値のプロットの傾きより初期内部抵抗(Ω)を求めた。
<ハイレート特性>
上記で作製したコイン型電池について、25℃の温度環境下、定電流(0.2C)- 定電圧(4.1V)で充電し放電終止電圧3.0Vまで0.2Cで放電する充放電サイクルを3回行った後、電圧範囲4.1V~3.0Vでの0.2Cならびに10Cレートにおける放電容量を測定した。なお初回充放電サイクル3回以後の充電条件は0.5Cレートでの定電流(0.5C)- 定電圧(4.1V)充電とした。0.2Cレートでの放電容量値に対する10Cレートでの放電容量値を、10Cレートでの特性値とした。
Figure JPOXMLDOC01-appb-T000008
本発明の電極合剤は、リチウムイオン二次電池等の非水系電解液二次電池の電極合剤として極めて好適に使用できる。

Claims (7)

  1. 粉末電極材料、結着剤、及び、有機溶剤を含む電極合剤であって、
    前記結着剤は、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体、並びに、ポリビニリデンフルオライドを含有し、
    前記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~90.0モル%含み、
    前記ポリビニリデンフルオライドは、数平均分子量が150000~1400000である
    ことを特徴とする電極合剤。
  2. ポリビニリデンフルオライドは、数平均分子量が200000~1300000である請求項1記載の電極合剤。 
  3. 含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して82.0~89.0モル%含む請求項1又は2記載の電極合剤。
  4. 含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位のみからなる請求項1、2又は3記載の電極合剤。
  5. 含フッ素重合体は、重量平均分子量が50000~2000000である請求項1、2、3又は4記載の電極合剤。
  6. 含フッ素重合体とポリビニリデンフルオライドとの質量比[(含フッ素重合体)/(ポリビニリデンフルオライド)]が、90/10~10/90である請求項1、2、3、4又は5記載の電極合剤。
  7. 有機溶剤は、N-メチル-2-ピロリドン、及び/又は、N,N-ジメチルアセトアミドである請求項1、2、3、4、5又は6記載の電極合剤。
PCT/JP2013/063980 2012-05-21 2013-05-20 電極合剤 WO2013176093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/402,241 US9444103B2 (en) 2012-05-21 2013-05-20 Electrode mixture
KR1020147035433A KR20150022838A (ko) 2012-05-21 2013-05-20 전극 합제
CN201380025426.6A CN104285320A (zh) 2012-05-21 2013-05-20 电极合剂
JP2014516795A JP5949915B2 (ja) 2012-05-21 2013-05-20 電極合剤

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012116019 2012-05-21
JP2012-116019 2012-05-21
JP2012-226438 2012-10-11
JP2012226438 2012-10-11
JP2013008746 2013-01-21
JP2013-008746 2013-01-21

Publications (1)

Publication Number Publication Date
WO2013176093A1 true WO2013176093A1 (ja) 2013-11-28

Family

ID=49623783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063980 WO2013176093A1 (ja) 2012-05-21 2013-05-20 電極合剤

Country Status (5)

Country Link
US (1) US9444103B2 (ja)
JP (1) JP5949915B2 (ja)
KR (1) KR20150022838A (ja)
CN (1) CN104285320A (ja)
WO (1) WO2013176093A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165037A (ja) * 2013-02-26 2014-09-08 Murata Mfg Co Ltd 非水電解質二次電池用電極材料とそれを用いた非水電解質二次電池
KR20150064697A (ko) * 2013-12-03 2015-06-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
JP2017147206A (ja) * 2016-02-19 2017-08-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用正極、非水電解質二次電池用巻回素子、及び非水電解質二次電池
WO2019087652A1 (ja) 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
CN110663123A (zh) * 2017-05-26 2020-01-07 大金工业株式会社 二次电池用隔膜和二次电池
WO2022234809A1 (ja) 2021-05-07 2022-11-10 ダイキン工業株式会社 正極合剤、正極および二次電池
WO2022234810A1 (ja) 2021-05-07 2022-11-10 ダイキン工業株式会社 正極合剤、正極および二次電池
US11978907B2 (en) 2016-02-19 2024-05-07 Samsung Sdi Co., Ltd. Positive electrode for lithium secondary battery, winding element for lithium secondary battery, and lithium secondary battery
JP7568147B1 (ja) 2023-06-23 2024-10-16 artience株式会社 二次電池電極用樹脂組成物、およびその利用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350635A (zh) * 2012-05-21 2015-02-11 大金工业株式会社 电极合剂
WO2017006760A1 (ja) * 2015-07-09 2017-01-12 住友精化株式会社 リチウムイオン二次電池正極用バインダー
US20200407543A1 (en) * 2018-03-02 2020-12-31 Arkema Inc. Fluoropolymer dispersion for separator coating
KR102342989B1 (ko) 2018-10-03 2021-12-24 다이킨 고교 가부시키가이샤 정극 구조체 및 이차 전지
WO2021200822A1 (ja) * 2020-04-02 2021-10-07 ダイキン工業株式会社 電極合剤、電極および二次電池
CN117625088A (zh) * 2022-08-30 2024-03-01 宁德时代新能源科技股份有限公司 粘结剂、制备方法、正极浆料、二次电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274920A (ja) * 1996-04-05 1997-10-21 Sony Corp 非水電解液電池
WO2010092977A1 (ja) * 2009-02-12 2010-08-19 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
WO2011002097A1 (ja) * 2009-07-03 2011-01-06 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084007B2 (ja) * 1986-11-08 1996-01-17 旭化成工業株式会社 非水系電池用電極
JP3019421B2 (ja) 1990-12-28 2000-03-13 ソニー株式会社 非水電解質二次電池
JP3121943B2 (ja) 1992-12-02 2001-01-09 呉羽化学工業株式会社 フッ化ビニリデン系共重合体
KR100454308B1 (ko) 1996-12-16 2004-10-26 다이낑 고오교 가부시키가이샤 비수전해액 2 차 전지용 결착제 및 그것을 사용한 전지전극합제
JP3356021B2 (ja) 1996-12-16 2002-12-09 ダイキン工業株式会社 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JP2002313345A (ja) 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP5494497B2 (ja) 2009-02-12 2014-05-14 ダイキン工業株式会社 リチウム二次電池の正極合剤用スラリー、該スラリーを用いた正極およびリチウム二次電池
JP5879673B2 (ja) * 2009-09-03 2016-03-08 ソニー株式会社 非水電解質二次電池用負極の製造方法
KR101093697B1 (ko) 2009-11-20 2011-12-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR101599658B1 (ko) * 2012-01-24 2016-03-03 다이킨 고교 가부시키가이샤 결착제, 정극합제 및 부극합제
CN104350635A (zh) * 2012-05-21 2015-02-11 大金工业株式会社 电极合剂
KR102283794B1 (ko) * 2014-11-19 2021-07-30 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274920A (ja) * 1996-04-05 1997-10-21 Sony Corp 非水電解液電池
WO2010092977A1 (ja) * 2009-02-12 2010-08-19 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
WO2011002097A1 (ja) * 2009-07-03 2011-01-06 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165037A (ja) * 2013-02-26 2014-09-08 Murata Mfg Co Ltd 非水電解質二次電池用電極材料とそれを用いた非水電解質二次電池
KR102273647B1 (ko) * 2013-12-03 2021-07-06 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR20150064697A (ko) * 2013-12-03 2015-06-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
JP2015109154A (ja) * 2013-12-03 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 二次電池用正極、および二次電池。
JP2017147206A (ja) * 2016-02-19 2017-08-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用正極、非水電解質二次電池用巻回素子、及び非水電解質二次電池
US11978907B2 (en) 2016-02-19 2024-05-07 Samsung Sdi Co., Ltd. Positive electrode for lithium secondary battery, winding element for lithium secondary battery, and lithium secondary battery
CN110663123A (zh) * 2017-05-26 2020-01-07 大金工业株式会社 二次电池用隔膜和二次电池
KR20200079516A (ko) 2017-10-30 2020-07-03 다이킨 고교 가부시키가이샤 이차 전지용 결착제, 이차 전지용 전극 합제, 이차 전지용 전극 및 이차 전지
US11742491B2 (en) 2017-10-30 2023-08-29 Daikin Industries, Ltd. Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
WO2019087652A1 (ja) 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
WO2022234809A1 (ja) 2021-05-07 2022-11-10 ダイキン工業株式会社 正極合剤、正極および二次電池
WO2022234810A1 (ja) 2021-05-07 2022-11-10 ダイキン工業株式会社 正極合剤、正極および二次電池
KR20240001194A (ko) 2021-05-07 2024-01-03 다이킨 고교 가부시키가이샤 정극 합제, 정극 및 이차 전지
KR20240004867A (ko) 2021-05-07 2024-01-11 다이킨 고교 가부시키가이샤 정극 합제, 정극 및 이차 전지
JP7568147B1 (ja) 2023-06-23 2024-10-16 artience株式会社 二次電池電極用樹脂組成物、およびその利用

Also Published As

Publication number Publication date
US9444103B2 (en) 2016-09-13
US20150137028A1 (en) 2015-05-21
KR20150022838A (ko) 2015-03-04
CN104285320A (zh) 2015-01-14
JP5949915B2 (ja) 2016-07-13
JPWO2013176093A1 (ja) 2016-01-14

Similar Documents

Publication Publication Date Title
JP6863470B2 (ja) 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
JP5949915B2 (ja) 電極合剤
JP5949914B2 (ja) 電極合剤
JP6269890B1 (ja) 二次電池用結着剤及び二次電池用電極合剤
JP5573980B2 (ja) 結着剤、正極合剤及び負極合剤
US20230197967A1 (en) Binding agent for battery, electrode mixture, electrode, and secondary battery
JP2024026579A (ja) ポリビニリデンフルオライド、結着剤、電極合剤、電極および二次電池
JP2018063932A (ja) 二次電池用結着剤及び二次電池用電極合剤
JP2018060745A (ja) 二次電池用結着剤及び二次電池用電極合剤
US20240088392A1 (en) Electrode mixture, secondary battery, and composition
JP7420978B2 (ja) 電気化学デバイス用組成物、電極および二次電池
JP7332970B2 (ja) 電気化学デバイス用組成物、電極および二次電池
WO2023223608A1 (ja) 電極および二次電池
WO2023136218A1 (ja) 組成物、電極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516795

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035433

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13793255

Country of ref document: EP

Kind code of ref document: A1