WO2023223608A1 - 電極および二次電池 - Google Patents

電極および二次電池 Download PDF

Info

Publication number
WO2023223608A1
WO2023223608A1 PCT/JP2023/002883 JP2023002883W WO2023223608A1 WO 2023223608 A1 WO2023223608 A1 WO 2023223608A1 JP 2023002883 W JP2023002883 W JP 2023002883W WO 2023223608 A1 WO2023223608 A1 WO 2023223608A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
mass
copolymer
material layer
Prior art date
Application number
PCT/JP2023/002883
Other languages
English (en)
French (fr)
Inventor
寛太 福島
裕貴 上田
穣輝 山崎
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023223608A1 publication Critical patent/WO2023223608A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to electrodes and secondary batteries.
  • Patent Document 1 includes a positive electrode, a negative electrode, a polymer layer, and a lithium ion permeable insulating layer
  • the positive electrode includes a positive electrode active material layer containing a positive electrode active material capable of intercalating and deintercalating lithium, and a positive electrode current collector.
  • the negative electrode includes a negative electrode active material layer formed by a vapor phase method and containing an alloy negative electrode active material and a negative electrode current collector
  • the polymer layer is formed on the surface of the negative electrode active material layer
  • the polymer layer is formed on the surface of the negative electrode active material layer
  • the lithium ion permeable insulating layer is disposed so as to be interposed between the positive electrode and the negative electrode.
  • Patent Document 2 describes a composition characterized by containing an inorganic filler, a copolymer of a fluoromonomer and a polymerizable vinyl compound having an amide bond, and a solvent.
  • the present disclosure aims to provide an electrode that can provide a secondary battery whose storage capacity is less likely to decrease even after storage at high temperatures and whose resistance is less likely to increase even after repeated charging and discharging.
  • an electrode comprising an electrode active material layer and a polymer layer formed on the electrode active material layer, the polymer layer comprising a fluoromonomer unit and an amide bond-containing monomer unit.
  • An electrode containing a copolymer containing and an inorganic particle is provided.
  • an electrode that can provide a secondary battery whose storage capacity is less likely to decrease even after storage at high temperatures and whose resistance is less likely to increase even after repeated charging and discharging.
  • the electrode of the present disclosure includes an electrode active material layer and a polymer layer formed on the electrode active material layer.
  • Patent Document 1 discloses that in a lithium ion secondary battery using an alloy-based negative electrode active material, charging is achieved by forming a polymer layer containing a first polymer and first inorganic oxide particles on the surface of the negative electrode active material layer.
  • Lithium ion batteries have excellent battery performance such as discharge cycle characteristics and output characteristics, have a long service life, and exhibit very little deterioration in the battery characteristics even when the number of charging and discharging increases, and are highly safe against internal short circuits. It is stated that a secondary battery can be obtained.
  • the electrode of the present disclosure is an electrode comprising an electrode active material layer and a polymer layer formed on the electrode active material layer, where the polymer layer contains a fluoromonomer unit and an amide bond-containing monomer unit. Since it contains a copolymer and inorganic particles, by using the electrode of the present disclosure as an electrode for a secondary battery, the storage capacity is less likely to decrease even after storage at high temperatures, and the resistance increases even after repeated charging and discharging. It is possible to obtain a secondary battery that is difficult to use.
  • the electrode of the present disclosure includes an electrode active material layer and a polymer layer formed on the electrode active material layer.
  • the polymer layer included in the electrode of the present disclosure contains a copolymer and inorganic particles, and is formed on the electrode active material layer. As long as the polymer layer is formed on the electrode active material layer, it may be formed directly on the electrode active material layer without using any other layer, or it may be formed on the electrode active material layer through another layer. However, it is preferable to form the polymer layer directly on the electrode active material layer without intervening another layer, since the effects of forming the polymer layer can be sufficiently obtained.
  • copolymer contains a fluoromonomer unit and an amide bond-containing monomer unit.
  • alkyl group examples include alkyl groups having 1 to 3 carbon atoms, with a methyl group being preferred.
  • the fluoroalkyl group is preferably a linear or branched fluoroalkyl group having 1 to 12 carbon atoms.
  • (1) is preferred because it can introduce fluorine atoms bonded to carbon atoms constituting the polymer main chain into the copolymer, thereby further improving the performance of the secondary battery.
  • CX 2 CXRf 1 (wherein, X is independently H or F It is more preferable that at least one of .
  • the fluoromonomer is selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and 2,3,3,3-tetrafluoropropene because it can further improve the performance of the secondary battery. It is more preferable that at least one of the above is used, and tetrafluoroethylene is particularly preferable.
  • the amide bond-containing monomer forming the amide bond-containing monomer unit contains an amide bond and a polymerizable vinyl group.
  • the above-mentioned amide bond refers to a bond between a carbonyl group and a nitrogen atom.
  • the polymerizable vinyl group include a vinyl group, an allyl group, a vinyl ether group, a vinyl ester group, and an acrylic group.
  • amide bond-containing monomers examples include N-vinyllactam compounds such as N-vinyl- ⁇ -propiolactam, N-vinyl-2-pyrrolidone, N-vinyl-2-piperidone, and N-vinyl-heptolactam, and N-vinylformamide.
  • acyclic N-vinylamide compounds such as N-methyl-N-vinylacetamide, N-allyl-N-methylformamide, acyclic N-allylamide compounds such as allyl urea, 1-(2-propenyl)-2-
  • N-allyl lactam compounds such as pyrrolidone
  • acrylamide compounds such as (meth)acrylamide, N,N-dimethylacrylamide, and N-isopropylacrylamide.
  • a monomer having a lactam ring is preferred.
  • the lactam ring is not particularly limited as long as it is a ring formed by an amide bond and a carbon atom, and may be monocyclic or polycyclic, but monocyclic is preferable. Furthermore, the lactam ring may have any substituent. Examples of the lactam ring include ⁇ -lactam ring, ⁇ -lactam ring, ⁇ -lactam ring, ⁇ -lactam ring, ⁇ -caprolactam ring, and ⁇ -heptalactam ring.
  • An amide bond-containing monomer has a structure in which one or more hydrogen atoms bonded to a carbon atom or nitrogen atom forming a lactam ring is removed, and the remaining atomic group is bonded directly or indirectly to a polymerizable vinyl group. Can be done.
  • the amide bond-containing monomer can have a structure in which one hydrogen atom bonded to a carbon atom or nitrogen atom forming a lactam ring is removed, and the remaining atomic group is bonded to a vinyl group or an allyl group.
  • the copolymer may contain other monomer units.
  • Other monomers are not particularly limited as long as they are copolymerizable with the fluoromonomer and the amide bond-containing monomer.
  • Other monomer units include vinyl ester monomer units, vinyl ether monomer units, (meth)acrylic monomer units having polyethylene glycol in their side chains, vinyl monomer units having polyethylene glycol in their side chains, and long-chain hydrocarbon groups (meth) ) Acrylic monomer units, vinyl monomer units having a long-chain hydrocarbon group, and the like.
  • the content of fluoromonomer units in the copolymer is 75 to 7 mol% based on the total monomer units, since this can further improve the performance of the secondary battery, and the content of fluoromonomer units in the copolymer is 75 to 7 mol%, based on the amide bond content of the copolymer.
  • the content of monomer units is preferably 25 to 93 mol% based on the total monomer units.
  • the content of fluoromonomer units in the copolymer is more preferably 60 mol% or less, further preferably 55 mol% or less, particularly preferably 50 mol% or less, and most preferably 45 mol% or less.
  • the content is preferably 15 mol% or more, further preferably 20 mol% or more, particularly preferably 35 mol% or more, and most preferably 40 mol% or more.
  • the content of amide bond-containing monomer units in the copolymer is more preferably 40 mol% or more, still more preferably 45 mol% or more, particularly preferably 50 mol% or more, and most preferably 55 mol%. or more, more preferably 85 mol% or less, further preferably 80 mol% or less, particularly preferably 65 mol% or less, and most preferably 60 mol% or less.
  • the content of other monomer units in the copolymer is preferably 50 mol% or less, more preferably 35 mol% or less, even more preferably 25 mol% or less, even more preferably 15 mol% or less.
  • the content is particularly preferably 5 mol% or less, and preferably 0 mol% or more.
  • the copolymer may be a copolymer containing substantially only fluoromonomer units and amide bond-containing monomer units.
  • composition of the copolymer can be measured, for example, by 1 H-NMR and 19 F-NMR.
  • the weight average molecular weight (in terms of polystyrene) of the copolymer is preferably 10,000 to 500,000, more preferably 15,000 or more, and even more preferably 20,000 or more, since it can further improve the performance of the secondary battery. , particularly preferably 30,000 or more, and more preferably 400,000 or less.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
  • the copolymer can be suitably produced by a production method in which a fluoromonomer, an amide bond-containing monomer, and, if necessary, other monomers are polymerized in a reactor.
  • polymerization method methods such as suspension polymerization, emulsion polymerization, and solution polymerization can be adopted.
  • a polymerization method using a fluorine-containing solvent is preferable because a copolymer having a high molecular weight can be produced.
  • the copolymer can be suitably produced, for example, by a production method in which at least a fluoromonomer and an amide bond-containing monomer are polymerized in a fluorine-containing solvent to obtain a copolymer.
  • fluorine-containing solvents examples include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
  • Perfluoroalkanes such as perfluorocyclobutane , CF3CF2CF2CF3 , CF3CF2CF2CF3 , CF3CF2CF2CF2CF3 ; CF _ _ _ 2 HCF2CF2CF2H , CF3CFHCF2CF2CF3 , CF3CF2CF2CF2H , CF3CF2CFHCF2CF3 , CF3CFHCF2CF3 , CF2 HCF2 _ _ _ _ _ _ _ _ _ _ _ _ _ CF2CF2H , CF2HCFHCF2CF2CF3 , CF3CF2CF2CF2CF2CF2H , CF3CH ( CF3 ) CF3CF2CF3 , CF3CF ( CF _ _ _ _ 3 ) CFHCF 2 CF 3 , CF 3 CF (CF 3 ) CFHC
  • fluorine-containing solvent at least one selected from the group consisting of hydrofluorocarbons, (perfluoroalkyl)alkyl ethers, and hydrofluoroalkyl ethers is preferable, since a copolymer having a higher molecular weight can be produced. Hydrofluoroalkyl ethers are more preferred.
  • fluorine-containing solvent examples include CF 3 CH 2 CF 2 CH 3 , CF 3 CH 2 OCF 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 and CF 3 CF 2 CH 2 OCF 2 CHF 2 At least one selected from the group is preferred, and CF 3 CH 2 OCF 2 CHF 2 is more preferred.
  • a polymerization initiator a surfactant, and a chain transfer agent can be used, and conventionally known ones can be used for each.
  • a radical polymerization initiator can be used as the polymerization initiator.
  • polymerization initiators include: Dialkyl peroxycarbonates such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, disec-butyl peroxydicarbonate; t-Butylperoxyisobutyrate, t-butylperoxypivalate, t-hexylperoxy 2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, 1,1,3,3- Peroxy esters such as tetramethylbutylperoxy-2-ethylhexanoate and t-amylperoxypivalate; Dialkyl peroxides such as di-t-butyl peroxide; Di[fluoro(or fluorochloro)acyl]peroxides; etc. are listed as representative examples.
  • di[fluoro(or fluorochloro)acyl]peroxides include diacyl represented by [(RfCOO)-] 2 (Rf is a perfluoroalkyl group, an ⁇ -hydroperfluoroalkyl group, or a fluorochloroalkyl group); Examples include peroxide.
  • di[fluoro(or fluorochloro)acyl]peroxides include di( ⁇ -hydro-dodecafluoroheptanoyl) peroxide, di( ⁇ -hydro-tetradecafluorooctanoyl) peroxide, di( ⁇ - - Hydro-hexadecafluorononanoyl) peroxide, di(perfluorobutyryl) peroxide, di(perfluoroparelyl) peroxide, di(perfluorohexanoyl) peroxide, di(perfluoroheptanoyl) peroxide oxide, di(perfluorooctanoyl) peroxide, di(perfluorononanoyl) peroxide, di( ⁇ -chloro-hexafluorobutyryl) peroxide, di( ⁇ -chloro-decafluorohexanoyl) peroxide, Di( ⁇ -chloro-tetradeca
  • chain transfer agents include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetic acid esters such as ethyl acetate and butyl acetate; methanol , alcohols such as ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane
  • aromatics such as toluene and xylene
  • ketones such as acetone
  • acetic acid esters such as ethyl acetate and butyl acetate
  • methanol alcohols such as ethanol
  • mercaptans such as methyl mercap
  • the polymerization temperature is not particularly limited, but from the viewpoint of polymerization rate and cost required for temperature control, it is preferably 0 to 95°C, more preferably 15 to 95°C.
  • the polymerization pressure is not particularly limited, but from the viewpoint of polymerization rate and pressure resistance of the reactor, it is preferably 0.3 to 1.5 MPaG, more preferably 0.4 MPaG or more, and more preferably 1.0 MPaG or less. be.
  • the copolymer is obtained as a slurry after the polymerization is completed, the polymer can be recovered by taking out the slurry from the reactor, washing it, and drying it.
  • the inorganic particles contained in the polymer layer are preferably inorganic particles containing at least one element selected from the group consisting of Mg, Al, Si, Ti, Zr, and Ba.
  • the inorganic particles are preferably inorganic particles (excluding electrode active materials).
  • the inorganic particles are preferably at least one selected from the group consisting of metal oxide particles and metal hydroxide particles. Further, as the inorganic particles, metal oxide particles containing at least one element selected from the group consisting of Mg, Al, Si, Ti, Zr, and Ba are more preferable.
  • the metal oxide particles are preferably at least one type of particles selected from the group consisting of MgO, Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 and BaO.
  • the metal hydroxide particles are preferably at least one type of particles selected from the group consisting of Mg(OH) 2 , Al(OH) 3 and Zr(OH) 4 .
  • the inorganic particles at least one particle selected from the group consisting of MgO, Al 2 O 3 , SiO 2 and ZrO 2 is preferable, and particles of Al 2 O 3 are more preferable.
  • the average particle diameter of the inorganic particles is preferably 25 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 5 ⁇ m or less, particularly preferably 1 ⁇ m or less, and preferably 0.02 ⁇ m or more.
  • the average particle diameter of the inorganic particles is a value obtained by measurement using a transmission electron microscope, a laser particle size distribution analyzer, or the like.
  • the content ratio of the copolymer and the inorganic particles [(copolymer)/(inorganic particles)] is preferably 0.1/99.9 to 49.9/50.1 in terms of mass ratio. , more preferably 1/99 or more, further preferably 5/95 or more, particularly preferably 10/90 or more, more preferably 45/55 or less, even more preferably 40/60 or less. be.
  • the polymer layer can be formed, for example, by preparing a composition containing a copolymer and inorganic particles and coating the composition on the electrode active material layer.
  • the coating method is not particularly limited as long as the surface of the electrode active material layer can be covered with a polymer layer formed from the composition, but for example, the above composition may be coated on the electrode active material layer. , a method of drying a coated film. More specifically, the coating method includes a method of roll coating the above composition on the electrode active material layer, a method of dipping the electrode active material layer in the above composition, a method of applying the above composition to the electrode active material layer. An example of this method is to apply the coating to a liquid and then immerse it in an appropriate coagulating solution. Alternatively, a film may be produced using the above composition, and the obtained film and an electrode active material layer may be laminated by a method such as lamination. An example of a method for producing a film using the above composition is a method in which the above composition is cast onto a film having a smooth surface such as a polyester film or an aluminum film, and then peeled off.
  • composition containing the copolymer and the inorganic particles further contains a solvent.
  • solvents examples include water; nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and dimethylformamide; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone; ethyl acetate.
  • nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and dimethylformamide
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone
  • ethyl acetate examples include water; nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and dimethylformamide; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and
  • ester solvents such as butyl acetate; ether solvents such as tetrahydrofuran, dioxane, ethyl cellosolve, methyl cellosolve, diglyme, triglyme; aromatic hydrocarbon solvents such as xylene, toluene, solvent naphtha; n-pentane, n-hexane , n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane, mineral spirit, and other aliphatic hydrocarbon solvents; CF 3 CH 2 CF 2 CH 3 , CF 3 CH 2 OCF Examples include fluorine-containing solvents such as 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , CF 3 CF 2 CH 2 OCF 2 CHF 2 ; mixed solvents thereof, and the like.
  • the electrode active material layer can contain an electrode active material and a binder.
  • the electrode of the present disclosure can be used as a positive electrode or as a negative electrode. Therefore, the electrode active material may be a positive electrode active material or a negative electrode active material.
  • the positive electrode can include a positive electrode active material layer containing a positive electrode active material and a binder, and a polymer layer formed on the positive electrode active material layer.
  • the negative electrode can include a negative electrode active material layer containing a negative electrode active material and a binder, and a polymer layer formed on the negative electrode active material layer.
  • the electrode usually includes a current collector, and the electrode active material layer is formed on the current collector.
  • the electrode active material layer may be formed on one side or both sides of the current collector.
  • the polymer layer may be formed only on the electrode active material layer on one side, or the polymer layer may be formed on the electrode active material layer on both sides. It's okay.
  • the positive electrode includes a positive electrode active material layer containing a positive electrode active material and a binder, and a polymer layer formed on the positive electrode active material layer.
  • a polymer layer containing inorganic particles and a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit By forming a polymer layer containing inorganic particles and a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit on the positive electrode active material layer, the storage capacity is unlikely to decrease even after storage at high temperatures. A secondary battery whose resistance does not easily increase even after repeated charging and discharging can be obtained.
  • Cathode active material There are no particular limitations on the positive electrode active material as long as it is capable of electrochemically intercalating and deintercalating lithium ions.
  • the positive electrode active material is preferably a positive electrode active material containing at least one alkali metal selected from the group consisting of Li, Na, and K; metal, and at least one metal selected from the group consisting of Fe, Ni, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge.
  • a positive electrode active material containing the following is more preferable.
  • the positive electrode active material is preferably a substance containing lithium and at least one transition metal, such as a lithium transition metal composite oxide or a lithium-containing transition metal phosphate compound.
  • the transition metal of the lithium transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu, etc.
  • specific examples of the lithium transition metal composite oxide include lithium cobalt such as LiCoO2.
  • the above substituted materials include lithium-nickel-manganese composite oxide, lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-cobalt-manganese composite oxide, lithium-manganese-aluminum composite oxide, and lithium-titanium composite oxide.
  • Examples include composite oxides, more specifically, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0 .33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , Examples include LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 , Li 4 Ti 5 O 12 , LiNi 0.82 Co 0.15 Al 0.03 O 2 and the like.
  • the transition metal of the lithium-containing transition metal phosphate compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu, etc.
  • specific examples of the lithium-containing transition metal phosphate compound include, for example, LiFePO 4 , Iron phosphates such as Li 3 Fe 2 (PO 4 ) 3 and LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are replaced with Al. , Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si, and other metals substituted.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiFePO 4 are preferred.
  • binder As the binder, a polymer (excluding a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit) can be used.
  • any material can be used as long as it is safe for the solvent and electrolyte used in electrode manufacturing.
  • any material can be used as long as it is safe for the solvent and electrolyte used in electrode manufacturing.
  • polyvinylidene fluoride polytetrafluoroethylene
  • vinylidene fluoride-tetrafluoroethylene etc.
  • Ethylene copolymer vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid Examples include copolymers, ethylene-methacrylic acid copolymers, and the like.
  • the positive electrode active material layer can further contain a conductive material.
  • a conductive material include carbon materials such as graphite, carbon black, carbon nanotubes, carbon fiber, and acetylene black.
  • the content of each component in the positive electrode active material layer when the mass of the electrode active material layer is 100% by mass, the content of the positive electrode active material is 80.0 to 99.8% by mass, and the content of the positive electrode active material is 80.0 to 99.8% by mass.
  • the content of the material is preferably 0.1 to 10.0% by mass, and the content of the binder is preferably 0.1 to 10.0% by mass.
  • the positive electrode usually further includes a positive electrode current collector, and a positive electrode active material layer is formed on the positive electrode current collector.
  • the positive electrode active material layer may be formed on one side or both sides of the positive electrode current collector.
  • a polymer layer may be formed only on the cathode active material layer on one side, or a polymer layer may be formed on the cathode active material layers on both sides. You may.
  • Examples of the material of the positive electrode current collector include metals such as aluminum, titanium, and tantalum, or alloys thereof. Among these, aluminum or its alloy is preferred.
  • the positive electrode active material layer may be formed by a conventional method. For example, there is a method in which a binder, thickener, conductive material, solvent, etc. are added to the positive electrode active material to form a positive electrode mixture in the form of a slurry, which is applied to a current collector, dried, and then pressed to increase the density. Can be mentioned.
  • thickeners examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the solvent for the positive electrode mixture include the same solvents that may be contained in the composition for forming the polymer layer.
  • the negative electrode includes a negative electrode active material layer containing a negative electrode active material and a binder, and a polymer layer formed on the negative electrode active material layer.
  • a polymer layer containing inorganic particles and a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit By forming a polymer layer containing inorganic particles and a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit on the negative electrode active material layer, the storage capacity is less likely to decrease even after storage at high temperatures. A secondary battery whose resistance does not easily increase even after repeated charging and discharging can be obtained.
  • negative electrode active material carbonaceous materials that can occlude and release lithium ions, such as thermal decomposition products of organic substances under various thermal decomposition conditions, artificial graphite, and natural graphite; carbonaceous materials that can occlude and release lithium ions, such as tin oxide and silicon oxide; Mention may be made of releasable metal oxide materials; lithium metal; various lithium alloys, and the like. Two or more of these negative electrode active materials may be used in combination.
  • a negative electrode active material containing a carbonaceous material or a negative electrode active material containing a compound containing at least one element selected from the group consisting of Si, Sn, V, Nb and Ti is used. preferable.
  • the compound containing at least one element selected from the group consisting of Si, Sn, V, Nb and Ti may include at least one element selected from the group consisting of Si, Sn, V, Nb and Ti and Examples include lithium alloys containing lithium, metal oxides containing at least one element selected from the group consisting of Si, Sn, V, Nb, and Ti.
  • Natural graphite (2) Artificial carbonaceous substances and artificial graphite substances; carbonaceous substances ⁇ for example, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or oxidized pitches of these pitches, needle coke, pitch coke, and Thermal decomposition products of organic materials such as partially graphitized carbon materials, furnace black, acetylene black, and pitch-based carbon fibers, carbonizable organic materials (for example, coal tar pitch from soft pitch to hard pitch, or carbonized liquefied oil) Coal-based heavy oil such as normal pressure residual oil, straight-run heavy oil such as vacuum residual oil, crude oil, cracked petroleum heavy oil such as ethylene tar produced as a by-product during thermal decomposition of naphtha, etc., as well as acenaphthylene, decacyclene, Aromatic hydrocarbons such as anthracene and phenanthrene, N-ring compounds such as phenazine and acridine, S-
  • organic polymers such as nitrogen-containing polyacrylonitrile and polypyrrole, organic polymers such as sulfur-containing polythiophene and polystyrene, polysaccharides such as cellulose, lignin, mannan, polygalacturonic acid, chitosan, and saccharose.
  • Natural polymers such as polyphenylene sulfide, thermoplastic resins such as polyphenylene oxide, thermosetting resins such as furfuryl alcohol resin, phenol-formaldehyde resin, imide resin, etc.) and their carbonized products or carbonizable organic materials are mixed with benzene, toluene, etc.
  • a material selected from the following is preferable because it has a good balance of initial irreversible capacity and high current density charge/discharge characteristics.
  • binder As the binder, a polymer (excluding a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit) can be used. Examples of the binder include binders similar to those that can be contained in the positive electrode active material layer.
  • the content of each component in the negative electrode active material layer when the mass of the negative electrode active material layer is 100% by mass, the content of the negative electrode active material is 99.9 to 80.0% by mass, and the content of the negative electrode active material is 99.9 to 80.0% by mass.
  • the content of is preferably 0.1 to 20.0% by mass.
  • the negative electrode usually further includes a negative electrode current collector, and a negative electrode active material layer is formed on the negative electrode current collector.
  • the negative electrode active material layer may be formed on one side or both sides of the negative electrode current collector.
  • a polymer layer may be formed only on the negative electrode active material layer on one side, or a polymer layer may be formed on the negative electrode active material layers on both sides. You may.
  • Examples of the material of the negative electrode current collector include copper, nickel, and stainless steel. Among these, copper is preferred because it is easy to process into a thin film and from the cost standpoint.
  • the negative electrode active material layer may be formed by a conventional method. For example, a method is to add a binder, thickener, conductive material, solvent, etc. to the negative electrode active material to form a slurry negative electrode mixture, apply this to a current collector, dry it, and then press it to make it denser. Can be mentioned.
  • Examples of the thickener include those similar to those that can be used to form the positive electrode active material layer.
  • Examples of the conductive material for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • Examples of the solvent for the negative electrode mixture include the same solvents that may be contained in the composition for forming the polymer layer.
  • Electrodes of the present disclosure can be used in electrochemical devices.
  • electrochemical devices include batteries such as secondary batteries and capacitors.
  • the battery may be a primary battery, a storage battery (secondary battery), or a power storage element.
  • the battery may be a non-aqueous electrolyte battery.
  • Nonaqueous electrolyte batteries include all batteries that include an electrolyte and a power generation element. Examples of non-aqueous electrolyte batteries include lithium ion primary batteries, lithium ion secondary batteries, nickel hydride batteries, lithium ion capacitors, and electric double layer capacitors.
  • the electrode of the present disclosure can be particularly suitably used as an electrode of a secondary battery.
  • the secondary batteries lithium ion secondary batteries are particularly preferred.
  • the secondary battery is A secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, and comprising the electrode of the present disclosure as a positive electrode, A secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, and comprising the electrode of the present disclosure as the negative electrode, A secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, comprising the electrode of the present disclosure as a positive electrode, and comprising the electrode of the present disclosure as a negative electrode; It may take any form.
  • non-aqueous electrolyte a solution obtained by dissolving a known electrolyte salt in a known organic solvent for dissolving the electrolyte salt may be used.
  • Organic solvents for dissolving electrolyte salts include, but are not limited to, propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, and diethyl.
  • hydrocarbon solvents such as carbonate, ethyl methyl carbonate, and vinylene carbonate
  • fluorine solvents such as fluoroethylene carbonate, fluoroether, and fluorinated carbonate can be used.
  • Any conventionally known electrolytes can be used, such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, cesium carbonate, and the like.
  • the shape of the secondary battery is arbitrary, and includes, for example, a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size. Note that the shapes and configurations of the positive electrode, negative electrode, and separator can be changed depending on the shape of each battery.
  • An electrode comprising an electrode active material layer and a polymer layer formed on the electrode active material layer, the polymer layer containing a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit and inorganic particles.
  • An electrode is provided.
  • the fluoromonomer is at least one selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and 2,3,3,3-tetrafluoropropene. be done.
  • an electrode according to the first or second aspect is provided in which the amide bond-containing monomer has a lactam ring.
  • the amide bond-containing monomer is N-vinyl-2-pyrrolidone.
  • the content of fluoromonomer units in the copolymer is 75 to 7 mol% based on the total monomer units, and the content of amide bond-containing monomer units in the copolymer is 75 to 7 mol% based on the total monomer units.
  • an electrode according to any one of the first to fourth aspects is provided in which the content is 25 to 93 mol%.
  • the inorganic particles contain at least one element selected from the group consisting of Mg, Al, Si, Ti, Zr, and Ba.
  • the seventh aspect of the present disclosure 1st to 6th in which the content ratio of copolymer and inorganic particles [(copolymer)/(inorganic particles)] is 0.1/99.9 to 49.9/50.1 in mass ratio
  • the electrode active material layer contains an electrode active material and a binder, and the binder contains a polymer (excluding a copolymer containing a fluoromonomer unit and an amide bond-containing monomer unit). Electrodes according to either aspect are provided. ⁇ 9> According to the ninth aspect of the present disclosure, An electrode according to an eighth aspect is provided, wherein the electrode active material is a positive electrode active material. ⁇ 10> According to the tenth aspect of the present disclosure, An electrode according to a ninth aspect is provided, wherein the positive electrode active material is a positive electrode active material containing at least one kind of alkali metal selected from the group consisting of Li, Na, and K.
  • the positive electrode active material contains at least one alkali metal selected from the group consisting of Li, Na, and K, and Fe, Ni, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, and Sr. , B, Ga, In, Si, and Ge.
  • the electrode active material layer further contains a conductive material.
  • the mass of the electrode active material layer is 100% by mass
  • the content of the positive electrode active material is 80.0 to 99.8% by mass
  • the content of the conductive material is 0.1 to 10.0% by mass
  • An electrode according to a twelfth aspect is provided, wherein the content of the binder is 0.1 to 10.0% by mass.
  • An electrode according to an eighth aspect is provided, wherein the electrode active material is a negative electrode active material.
  • the negative electrode active material is a negative electrode active material containing a carbonaceous material, or a negative electrode active material containing a compound containing at least one element selected from the group consisting of Si, Sn, V, Nb, and Ti.
  • An electrode according to a fourteenth aspect is provided.
  • ⁇ 16> According to the sixteenth aspect of the present disclosure, When the mass of the electrode active material layer is 100% by mass, The content of the negative electrode active material is 99.9 to 80.0% by mass, An electrode according to a fourteenth or fifteenth aspect is provided, wherein the content of the binder is 0.1 to 20.0% by mass.
  • An electrode according to any one of the first to sixteenth aspects for use in an electrochemical device is provided.
  • a secondary battery including an electrode according to any one of the first to seventeenth aspects is provided.
  • Inorganic particles ⁇ Inorganic particles X: aluminum oxide (particle size: 0.7 ⁇ m) ⁇ Inorganic particle Y: silicon dioxide (particle size: 0.6 ⁇ m) ⁇ Inorganic particles Z: Zirconium dioxide (particle size: 0.4 ⁇ m) ⁇ Inorganic particles W: Magnesium oxide (particle size: 0.6 ⁇ m)
  • the obtained slurry was coated on one side of a 10 ⁇ m thick copper foil, dried, and rolled using a press.
  • the active material layer size was 52 mm in width and 32 mm in length, and 5 mm in width and 9 mm in length.
  • a negative electrode was cut out into a shape having an uncoated part.
  • the positive electrode obtained above was treated with a composition containing a copolymer and inorganic particles as follows. However, in Comparative Example 2, the positive electrode obtained above was used as it was without performing the following treatment.
  • a positive electrode with a polymer layer (a positive electrode without a polymer layer in Comparative Example 2) and a negative electrode were placed facing each other via a 20 ⁇ m thick microporous polyethylene film (separator), and the non-aqueous electrolyte obtained above was injected. After the non-aqueous electrolyte sufficiently penetrated into the separator etc., the battery was sealed, pre-charged and aged to produce a lithium ion secondary battery (aluminum laminate cell).
  • the charged secondary battery was stored at high temperature at 60° C. for 672 hours. After cooling the battery sufficiently, discharge it to 3V at 0.5C at 25°C, then charge it to 4.35V at a constant current of 0.2C, and then the current value reaches 0.05C at a constant voltage of 4.35V. The battery was charged to 3.0V at a constant current of 0.2C, and the storage capacity was determined.
  • Capacity retention rate (%) (storage capacity) / (initial discharge capacity) x 100
  • Resistance increase rate (%) Resistance after 200 cycles ( ⁇ ) / Resistance after initial discharge capacity calculation ( ⁇ ) x 100
  • Examples 8 to 14 Comparative Examples 3 to 4 ⁇ Preparation of electrolyte> Ethylene carbonate, monofluoroethylene carbonate, which are high dielectric constant solvents, and ethyl methyl carbonate, which is a low viscosity solvent, are mixed at a volume ratio of 30:5:65, and LiPF 6 is added to this at a concentration of 1.0 mol/liter. A non-aqueous electrolyte solution was obtained by adding the solution in such a manner as to achieve the desired concentration.
  • ⁇ Preparation of negative electrode> 98 parts by mass of artificial graphite, 1 part by mass of an aqueous dispersion of sodium carboxymethylcellulose (concentration of sodium carboxymethylcellulose 1% by mass) as a thickener and binder, and an aqueous dispersion of styrene-butadiene rubber (concentration of sodium carboxymethylcellulose 1% by mass). 1 part by mass (concentration 50% by mass) was added and mixed with a disperser to form a slurry. The obtained slurry was applied to one side of a 10 ⁇ m thick copper foil, dried, and rolled in a press to form active material layers of 52 mm in width and 32 mm in length, and 5 mm in width and 9 mm in length. A negative electrode was cut out into a shape having an uncoated part.
  • the negative electrode obtained above was treated with a composition containing a copolymer and inorganic particles as follows. However, in Comparative Example 4, the negative electrode obtained above was used as it was without performing the following treatment.
  • the charged secondary battery was stored at high temperature at 75° C. for 528 hours. After cooling the battery sufficiently, discharge it to 3V at 0.5C at 25°C, then charge it to 4.35V at a constant current of 0.2C, and then the current value reaches 0.05C at a constant voltage of 4.35V. The battery was charged to 3.0V at a constant current of 0.2C, and the storage capacity was determined.
  • Capacity retention rate (%) (storage capacity) / (initial discharge capacity) x 100
  • Resistance increase rate (%) Resistance after 200 cycles ( ⁇ ) / Resistance after initial discharge capacity calculation ( ⁇ ) x 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極活物質層と、電極活物質層上に形成されたポリマー層とを備える電極であって、ポリマー層が、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有する電極を提供する。

Description

電極および二次電池
 本開示は、電極および二次電池に関する。
 特許文献1には、正極、負極、ポリマー層およびリチウムイオン透過性絶縁層を含み、前記正極は、リチウムを吸蔵および放出可能な正極活物質を含有する正極活物質層および正極集電体を含み、前記負極は、気相法により形成されかつ合金系負極活物質を含有する負極活物質層および負極集電体を含み、前記ポリマー層は前記負極活物質層の表面に形成され、第1ポリマーと第1無機酸化物粒子とを含有し、ならびに前記リチウムイオン透過性絶縁層は、前記正極と前記負極との間に介在するように配置されるリチウムイオン二次電池が記載されている。
 特許文献2には、無機フィラー、フルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体、及び、溶媒を含むことを特徴とする組成物が記載されている。
特開2010-250968号公報 国際公開第2020/054210号
 本開示では、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得ることができる電極を提供することを目的とする。
 本開示の第1の観点によれば、電極活物質層と、電極活物質層上に形成されたポリマー層とを備える電極であって、ポリマー層が、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有する電極が提供される。
 本開示によれば、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得ることができる電極を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示の電極は、電極活物質層と、電極活物質層上に形成されたポリマー層とを備えている。
 特許文献1には、合金系負極活物質を用いるリチウムイオン二次電池において、第1ポリマーと第1無機酸化物粒子とを含有するポリマー層を負極活物質層の表面に形成することにより、充放電サイクル特性、出力特性などの電池性能に優れ、耐用寿命が長く、かつ充放電回数が増加しても、前記電池特性の低下が非常に少なく、さらに内部短絡などに対する安全性の高いリチウムイオン二次電池が得られることが記載されている。
 しかしながら、特許文献1で提案されるような、負極活物質層の表面に第1ポリマーと第1無機酸化物粒子とを含有するポリマー層を形成する方法では、高温で保存すると保存容量が低下しやすく、さらには、二次電池の充放電を繰り返した後の抵抗の増加を十分に抑制できないことが判明した。
 そこで、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得る手段を鋭意検討したところ、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有するポリマー層を、電極活物質層上に形成することによって、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得ることができる電極を得ることができることが見いだされた。
 すなわち、本開示の電極は、電極活物質層と、電極活物質層上に形成されたポリマー層とを備える電極であって、ポリマー層が、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有することから、本開示の電極を二次電池の電極として用いることによって、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得ることができる。
 以下、本開示の電極の実施形態について、より詳細に説明する。
 本開示の電極は、電極活物質層と、電極活物質層上に形成されたポリマー層とを備えている。
(ポリマー層)
 本開示の電極が備えるポリマー層は、共重合体および無機粒子を含有しており、電極活物質層上に形成されている。ポリマー層は、電極活物質層上に形成されていれば、他の層を介することなく電極活物質層上に直接形成されていてもよいし、他の層を介して電極活物質層上に形成されていてもよいが、ポリマー層を形成することによる効果を十分に得ることができることから、他の層を介することなく電極活物質層上に直接形成されていることが好ましい。
(共重合体)
 ポリマー層に含まれる共重合体は、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する。
 フルオロモノマー単位を形成するフルオロモノマーとしては、(1)sp混成炭素原子に結合したフッ素原子を有するオレフィン、(2)一般式:CH=CX-COORf(式中、XはCl、H又はアルキル基、Rfはフルオロアルキル基)で表されるモノマー、(3)一般式:CH=CH-Rf(式中、Rfはフルオロアルキル基)で表されるモノマー、(4)一般式:CH=CH-ORf(式中、Rfはフルオロアルキル基)で表されるモノマー等が挙げられる。
 アルキル基としては、炭素数1~3のアルキル基が挙げられ、メチル基が好ましい。
 フルオロアルキル基としては、炭素数1~12の直鎖又は分岐したフルオロアルキル基が好ましい。
 フルオロモノマーとしては、ポリマー主鎖を構成する炭素原子に結合したフッ素原子を上記共重合体に導入でき、それによって、二次電池の性能を一層向上させることができることから、(1)が好ましく、フッ化ビニリデン、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、モノフルオロエチレン、トリフルオロスチレン、および、一般式:CX=CXRf(式中、Xは独立にHまたはF、Xのうち少なくとも1つはF、Rfは炭素数1~12の直鎖または分岐したフルオロアルキル基)で表されるフルオロモノマーからなる群より選択される少なくとも1種であることがより好ましい。
 フルオロモノマーとしては、二次電池の性能を一層向上させることができることから、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、および、2,3,3,3-テトラフルオロプロペンからなる群より選択される少なくとも1種であることがさらに好ましく、テトラフルオロエチレンが特に好ましい。
 アミド結合含有モノマー単位を形成するアミド結合含有モノマーは、アミド結合および重合性ビニル基を含有している。上記アミド結合とは、カルボニル基と窒素原子の間の結合をいう。上記重合性ビニル基としては、ビニル基、アリル基、ビニルエーテル基、ビニルエステル基、アクリル基等が挙げられる。
 アミド結合含有モノマーとしては、N-ビニル-β-プロピオラクタム、N-ビニル-2-ピロリドン、N-ビニル-2-ピペリドン、N-ビニル-ヘプトラクタム等のN-ビニルラクタム化合物、N-ビニルホルムアミド、N-メチル-N-ビニルアセトアミド等の非環状のN-ビニルアミド化合物、N-アリル-N-メチルホルムアミド、アリル尿素等の非環状のN-アリルアミド化合物、1-(2-プロペニル)-2-ピロリドン等のN-アリルラクタム化合物、(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド等のアクリルアミド化合物が挙げられる。
 アミド結合含有モノマーとしては、また、
Figure JPOXMLDOC01-appb-C000001
(式中、R11およびR12は、独立に、Hまたは炭素数1~10のアルキル基)で示される化合物、
Figure JPOXMLDOC01-appb-C000002
(式中、R11およびR12は、独立に、Hまたは炭素数1~10のアルキル基)で示される化合物等も挙げられる。
 アミド結合含有モノマーとしては、ラクタム環を有するモノマーが好ましい。ラクタム環としては、アミド結合および炭素原子により形成された環であれば特に限定されず、単環であっても多環であってもよいが、単環であることが好ましい。また、ラクタム環は、任意の置換基を有するものであってもよい。ラクタム環としては、たとえば、α-ラクタム環、β-ラクタム環、γ-ラクタム環、δ-ラクタム環、ε-カプロラクタム環、ω-ヘプタラクタムなどが挙げられる。
 アミド結合含有モノマーは、ラクタム環を形成する炭素原子または窒素原子に結合した水素原子を1個以上取り除いた残りの原子団が、重合性ビニル基に直接的または間接的に結合した構造を有することができる。たとえば、アミド結合含有モノマーは、ラクタム環を形成する炭素原子または窒素原子に結合した水素原子を1個取り除いた残りの原子団が、ビニル基またはアリル基に結合した構造を有することができる。
 アミド結合含有モノマーとしては、二次電池の性能を一層向上させることができることから、なかでも、N-ビニル-β-プロピオラクタム、N-ビニル-2-ピロリドン、N-ビニル-2-ピペリドン、N-ビニル-ε-カプロラクタムおよびN-ビニル-ヘプトラクタムからなる群より選択される少なくとも1種が好ましく、N-ビニル-2-ピロリドン、N-ビニル-2-ピペリドンおよびN-ビニル-ε-カプロラクタムからなる群より選択される少なくとも1種がより好ましく、N-ビニル-2-ピロリドンがさらに好ましい。
 共重合体は、フルオロモノマー単位およびアミド結合含有モノマー単位に加えて、他のモノマー単位を含有してもよい。他のモノマーとしては、フルオロモノマーおよびアミド結合含有モノマーと共重合可能なモノマーであれば特に限定されない。他のモノマー単位としては、ビニルエステルモノマー単位、ビニルエーテルモノマー単位、ポリエチレングリコールを側鎖に有する(メタ)アクリルモノマー単位、ポリエチレングリコールを側鎖に有するビニルモノマー単位、長鎖炭化水素基を有する(メタ)アクリルモノマー単位、長鎖炭化水素基を有するビニルモノマー単位等が挙げられる。
 共重合体のフルオロモノマー単位の含有量は、二次電池の性能を一層向上させることができることから、全単量体単位に対して、75~7モル%であり、共重合体のアミド結合含有モノマーの単位の含有量は、全単量体単位に対して、25~93モル%であることが好ましい。
 共重合体のフルオロモノマー単位の含有量は、より好ましくは60モル%以下であり、さらに好ましくは55モル%以下であり、特に好ましくは50モル%以下であり、最も好ましくは45モル%以下であり、より好ましくは15モル%以上であり、さらに好ましくは20モル%以上であり、特に好ましくは35モル%以上であり、最も好ましくは40モル%以上である。
 共重合体のアミド結合含有モノマー単位の含有量は、より好ましくは40モル%以上であり、さらに好ましくは45モル%以上であり、特に好ましくは50モル%以上であり、最も好ましくは55モル%以上であり、より好ましくは85モル%以下であり、さらに好ましくは80モル%以下であり、特に好ましくは65モル%以下であり、最も好ましくは60モル%以下である。
 共重合体の他のモノマー単位の含有量は、好ましくは50モル%以下であり、より好ましくは35モル%以下であり、さらに好ましく25モル%以下であり、尚さらに好ましくは15モル%以下であり、特に好ましくは5モル%以下であり、好ましくは0モル%以上である。
 また、共重合体は、実質的にフルオロモノマー単位とアミド結合含有モノマー単位とのみを含有する共重合体であってもよい。
 共重合体の組成は、たとえば、H-NMRおよび19F-NMRにより測定できる。
 共重合体の重量平均分子量(ポリスチレン換算)は、二次電池の性能を一層向上させることができることから、好ましくは10000~500000であり、より好ましくは15000以上であり、さらに好ましくは20000以上であり、特に好ましくは30000以上であり、より好ましくは400000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。
(共重合体の製造方法)
 共重合体は、フルオロモノマー、アミド結合含有モノマー、および、要すれば他のモノマーを反応器中で重合する製造方法により、好適に製造することができる。
 重合方法としては、懸濁重合、乳化重合、溶液重合などの方法が採用できる。
 また、高い分子量を有する共重合体を製造できることから、各種の重合方法のなかでも、含フッ素溶媒を用いた重合方法が好ましい。共重合体は、たとえば、含フッ素溶媒中で、少なくともフルオロモノマーおよびアミド結合含有モノマーを重合して共重合体を得る製造方法により、好適に製造することができる。
 含フッ素溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類;CFHCFCFCFH、CFCFHCFCFCF、CFCFCFCFCFH、CFCFCFHCFCF、CFCFHCFHCFCF、CFHCFCFCFCFH、CFHCFHCFCFCF、CFCFCFCFCFCFH、CFCH(CF)CFCFCF、CFCF(CF)CFHCFCF、CFCF(CF)CFHCFHCF、CFCH(CF)CFHCFCF、CFHCFCFCFCFCFH、CFCFCFCFCHCH、CFCHCFCH等のハイドロフルオロカーボン類;F(CFOCH、F(CFOC、(CFCFOCH、F(CFOCH等の(ペルフルオロアルキル)アルキルエーテル類;CFCHOCFCHF、CHFCFCHOCFCHF、CFCFCHOCFCHF等のヒドロフルオロアルキルエーテル類等が挙げられる。
 含フッ素溶媒としては、より一層高い分子量を有する共重合体を製造できることから、ハイドロフルオロカーボン類、(ペルフルオロアルキル)アルキルエーテル類およびヒドロフルオロアルキルエーテル類からなる群より選択される少なくとも1種が好ましく、ヒドロフルオロアルキルエーテル類がより好ましい。
 含フッ素溶媒としては、なかでも、CFCHCFCH、CFCHOCFCHF、CHFCFCHOCFCHFおよびCFCFCHOCFCHFからなる群より選択される少なくとも1種が好ましく、CFCHOCFCHFがより好ましい。
 上記の重合においては、重合開始剤、界面活性剤および連鎖移動剤を使用することができ、それぞれ従来公知のものを使用することができる。
 重合開始剤としては、ラジカル重合開始剤を用いることができる。重合開始剤としては、たとえば、
 ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類;
 t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシピバレートなどのパーオキシエステル類;
 ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類;
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類;
などが代表的なものとしてあげられる。
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、[(RfCOO)-](Rfは、パーフルオロアルキル基、ω-ハイドロパーフルオロアルキル基またはフルオロクロロアルキル基)で表されるジアシルパーオキサイドが挙げられる。
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、たとえば、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロオクタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロトリアコンタフルオロドコサノイル)パーオキサイドなどが挙げられる。
 連鎖移動剤の存在下に重合することにより、得られる共重合体の溶液粘度、重量平均分子量などを適切に調整することができる。連鎖移動剤としては、たとえば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等が挙げられる。
 重合温度は、特に限定されないが、重合速度および調温に要するコストの観点から、好ましくは0~95℃であり、より好ましくは15~95℃である。
 重合圧力は、特に限定されないが、重合速度および反応器の耐圧の観点から、好ましくは0.3~1.5MPaGであり、より好ましくは0.4MPaG以上であり、より好ましくは1.0MPaG以下である。
 重合終了後、共重合体がスラリーとして得られる場合は、反応器からスラリーを取り出し、洗浄し、乾燥することにより、ポリマーを回収できる。
(無機粒子)
 ポリマー層に含まれる無機粒子としては、Mg、Al、Si、Ti、ZrおよびBaからなる群から選択される少なくとも1種の元素を含有する無機粒子が好ましい。無機粒子は、好適には無機粒子(ただし、電極活物質を除く)である。
 無機粒子としては、金属酸化物粒子および金属水酸化物粒子からなる群より選択される少なくとも1種が好ましい。また、無機粒子としては、Mg、Al、Si、Ti、ZrおよびBaからなる群から選択される少なくとも1種の元素を含有する金属酸化物粒子がより好ましい。
 金属酸化物粒子としては、MgO、Al、SiO、TiO、ZrOおよびBaOからなる群より選択される少なくとも1種の粒子が好ましい。
 金属水酸化物粒子としては、Mg(OH)、Al(OH)およびZr(OH)からなる群より選択される少なくとも1種の粒子が好ましい。
 無機粒子としては、なかでも、MgO、Al、SiOおよびZrOからなる群より選択される少なくとも1種の粒子が好ましく、Alの粒子がより好ましい。
 無機粒子の平均粒子径は、好ましくは25μm以下であり、より好ましくは10μm以下であり、さらに好ましくは5μm以下であり、特に好ましくは1μm以下であり、好ましくは0.02μm以上である。無機粒子の平均粒子径は、透過型電子顕微鏡、レーザー式粒度分布測定装置等により測定して得られる値である。
 ポリマー層において、共重合体と無機粒子との含有割合[(共重合体)/(無機粒子)]は、質量比で、好ましくは0.1/99.9~49.9/50.1であり、より好ましくは1/99以上であり、さらに好ましくは5/95以上であり、特に好ましくは10/90以上であり、より好ましくは45/55以下であり、さらに好ましくは40/60以下である。
(ポリマー層の形成方法)
 ポリマー層は、たとえば、共重合体および無機粒子を含有する組成物を調製し、組成物を電極活物質層上にコーティングする方法により形成することができる。
 コーティングの方法は、電極活物質層の表面を、組成物から形成されるポリマー層で覆うことができる方法であれば特に限定されないが、たとえば、上記の組成物を電極活物質層上に塗布し、塗布膜を乾燥する方法が挙げられる。コーティングの方法として、より具体的には、上記の組成物を、電極活物質層にロールコーティングする方法、上記の組成物に電極活物質層をディッピングする方法、上記の組成物を電極活物質層に塗工し更に適切な凝固液に浸漬し作製する方法が挙げられる。また、上記の組成物を用いてフィルムを作製し、得られたフィルムと電極活物質層とをラミネートなどの方法により積層してもよい。上記の組成物を用いてフィルムを作製する方法としては、上記の組成物を、ポリエステルフィルム、アルミフィルムなどの平滑な表面を有するフィルム上にキャストした後、剥離するという手法が例示できる。
 共重合体および無機粒子を含有する組成物は、さらに、溶媒を含有することが好ましい。
 溶媒としては、たとえば、水;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、エチルセロソルブ、メチルセロソルブ、ジグライム、トリグライム等のエーテル系溶媒;キシレン、トルエン、ソルベントナフサ等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、ミネラルスピリット等の脂肪族炭化水素系溶媒;CFCHCFCH、CFCHOCFCHF、CHFCFCHOCFCHF、CFCFCHOCFCHF等の含フッ素溶媒;それらの混合溶剤等が挙げられる。
(電極活物質層)
 電極活物質層は、電極活物質およびバインダーを含有することができる。本開示の電極は、正極として用いることができるし、負極として用いることもできる。したがって、電極活物質は、正極活物質であってもよいし、負極活物質であってもよい。また、正極は、正極活物質およびバインダーを含有する正極活物質層と、正極活物質層上に形成されたポリマー層とを備えることができる。負極は、負極活物質およびバインダーを含有する負極活物質層と、負極活物質層上に形成されたポリマー層とを備えることができる。
 電極は、通常、集電体を備えており、電極活物質層は集電体上に形成される。電極活物質層は、集電体の片面に形成されていてもよいし、両面に形成されていてもよい。集電体の両面に電極活物質層が形成されている場合は、片面の電極活物質層上のみにポリマー層を形成してもよいし、両面の電極活物質層上にポリマー層を形成してもよい。
 以下、正極および負極の実施形態について、より詳細に説明する。
(正極)
 正極は、正極活物質およびバインダーを含有する正極活物質層と、正極活物質層上に形成されたポリマー層とを備える。フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有するポリマー層を、正極活物質層上に形成することによって、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得ることができる。
(正極活物質)
 正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。
 正極活物質としては、Li、NaおよびKからなる群より選択される少なくとも1種のアルカリ金属を含有する正極活物質が好ましく、Li、NaおよびKからなる群より選択される少なくとも1種のアルカリ金属と、Fe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeからなる群より選択される少なくとも1種の金属とを含有する正極活物質がより好ましい。
 正極活物質としては、なかでも、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物等の、リチウムと少なくとも1種の遷移金属を含有する物質であることが好ましい。
 リチウム遷移金属複合酸化物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。上記置換したものとしては、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物、リチウム・マンガン・アルミニウム複合酸化物、リチウム・チタン複合酸化物等が挙げられ、より具体的には、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiTi12、LiNi0.82Co0.15Al0.03等が挙げられる。
 リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム含有遷移金属リン酸化合物の具体例としては、たとえば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
 特に、高電圧、高エネルギー密度、あるいは、充放電サイクル特性等の観点から、LiCoO、LiNiO、LiMn、LiNi0.82Co0.15Al0.03、LiNi0.33Mn0.33Co0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiFePOが好ましい。
(バインダー)
 バインダーとして、ポリマー(ただし、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体を除く)を用いることができる。
 バインダーとしては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体などが挙げられる。
(導電材)
 正極活物質層は、さらに、導電材を含有することができる。導電材としては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンファイバー、アセチレンブラックなどの炭素材料などが挙げられる。
 正極活物質層中の各成分の含有量としては、電極活物質層の質量を100質量%とした場合に、正極活物質の含有量が、80.0~99.8質量%であり、導電材の含有量が、0.1~10.0質量%であり、バインダーの含有量が、0.1~10.0質量%であることが好ましい。
 正極は、通常、正極集電体をさらに備えており、正極集電体上に正極活物質層が形成される。正極活物質層は、正極集電体の片面に形成されていてもよいし、両面に形成されていてもよい。正極集電体の両面に正極活物質層が形成されている場合は、片面の正極活物質層上のみにポリマー層を形成してもよいし、両面の正極活物質層上にポリマー層を形成してもよい。
 正極集電体の材質としては、アルミニウム、チタン若しくはタンタルなどの金属、又は、その合金が挙げられる。なかでも、アルミニウム又はその合金が好ましい。
 正極活物質層の形成方法は、常法によればよい。たとえば、正極活物質に、バインダー、増粘剤、導電材、溶媒などを加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼインなどが挙げられる。
 正極合剤の溶媒としては、ポリマー層を形成するための組成物が含有し得る溶媒と同様のものが挙げられる。
(負極)
 負極は、負極活物質およびバインダーを含有する負極活物質層と、負極活物質層上に形成されたポリマー層とを備える。フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有するポリマー層を、負極活物質層上に形成することによって、高温で保存した後でも保存容量が低下しにくく、充放電を繰り返した後でも抵抗が増加しにくい二次電池を得ることができる。
(負極活物質)
 負極活物質としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛などのリチウムイオンを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素などのリチウムイオンを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金などを挙げることができる。これらの負極活物質は、2種以上を混合して用いてもよい。
 負極活物質としては、炭素質材料を含有する負極活物質、または、Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素を含有する化合物を含有する負極活物質が好ましい。
 Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素を含有する化合物としては、Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素およびリチウムを含有するリチウム合金、Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素を含有する金属酸化物などが挙げられる。
 炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質;炭素質物質{たとえば、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークスおよびこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(たとえば、軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直留系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、さらにアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクリロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)およびこれらの炭化物、または炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶媒に溶解させた溶液およびこれらの炭化物}を400から3200℃の範囲で一回以上熱処理された炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
(バインダー)
 バインダーとして、ポリマー(ただし、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体を除く)を用いることができる。バインダーとしては、正極活物質層が含有し得るバインダーと同様のものが挙げられる。
 負極活物質層中の各成分の含有量としては、負極活物質層の質量を100質量%とした場合に、負極活物質の含有量が、99.9~80.0質量%であり、バインダーの含有量が、0.1~20.0質量%であることが好ましい。
 負極は、通常、負極集電体をさらに備えており、負極集電体上に負極活物質層が形成される。負極活物質層は、負極集電体の片面に形成されていてもよいし、両面に形成されていてもよい。負極集電体の両面に負極活物質層が形成されている場合は、片面の負極活物質層上のみにポリマー層を形成してもよいし、両面の負極活物質層上にポリマー層を形成してもよい。
 負極集電体の材質としては、銅、ニッケル又はステンレスなどが挙げられる。なかでも、薄膜に加工しやすいという点、および、コストの点から銅が好ましい。
 負極活物質層の形成方法は、常法によればよい。たとえば、負極活物質に、バインダー、増粘剤、導電材、溶媒などを加えてスラリー状の負極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
 増粘剤としては、正極活物質層の形成に用い得る増粘剤と同様のものが挙げられる。
 負極の導電材としては、銅やニッケルなどの金属材料;グラファイト、カーボンブラックなどの炭素材料などが挙げられる。
 負極合剤の溶媒としては、ポリマー層を形成するための組成物が含有し得る溶媒と同様のものが挙げられる。
(電極の用途)
 本開示の電極は、電気化学デバイスに用いることができる。電気化学デバイスとしては、二次電池、キャパシタなどの電池が挙げられる。電池は、一次電池であってもよく、蓄電池(二次電池)または蓄電素子であってもよい。電池は非水電解液電池であってもよい。非水電解液電池には、電解液および発電素子を備える電池が全て含まれる。非水電解液電池としては、たとえば、リチウムイオン一次電池、リチウムイオン二次電池、ニッケル水素電池、リチウムイオンキャパシタ、電気二重層キャパシタなどが挙げられる。
(二次電池)
 本開示の電極は、二次電池の電極として特に好適に利用することができる。二次電池としては、なかでもリチウムイオン二次電池が特に好ましい。
 二次電池は、
正極、負極および非水電解液を備え、本開示の電極を正極として備える二次電池、
正極、負極および非水電解液を備え、本開示の電極を負極として備える二次電池、
正極、負極および非水電解液を備え、本開示の電極を正極として備えており、本開示の電極を負極として備える二次電池、
のいすれの形態であってもよい。
 非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものを使用してよい。
 電解質塩溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニレンカーボネートなどの炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種又は2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。
 二次電池の形状は任意であり、たとえば、円筒型、角型、ラミネート型、コイン型、大型などの形状が挙げられる。なお、正極、負極、セパレータの形状および構成は、それぞれの電池の形状に応じて変更して使用することができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<1> 本開示の第1の観点によれば、
 電極活物質層と、電極活物質層上に形成されたポリマー層とを備える電極であって、ポリマー層が、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有する電極が提供される。
<2> 本開示の第2の観点によれば、
 フルオロモノマーが、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、および、2,3,3,3-テトラフルオロプロペンからなる群から選択される少なくとも1種である第1の観点による電極が提供される。
<3> 本開示の第3の観点によれば、
 アミド結合含有モノマーが、ラクタム環を有する第1または第2の観点による電極が提供される。
<4> 本開示の第4の観点によれば、
 アミド結合含有モノマーが、N-ビニル-2-ピロリドンである第1~第3のいずれかの観点による電極が提供される。
<5> 本開示の第5の観点によれば、
 共重合体のフルオロモノマー単位の含有量が、全単量体単位に対して、75~7モル%であり、共重合体のアミド結合含有モノマーの単位の含有量が、全単量体単位に対して、25~93モル%である第1~第4のいずれかの観点による電極が提供される。
<6> 本開示の第6の観点によれば、
 無機粒子が、Mg、Al、Si、Ti、ZrおよびBaからなる群から選択される少なくとも1種の元素を含有する第1~第5のいずれかの観点による電極が提供される。
<7> 本開示の第7の観点によれば、
 共重合体と無機粒子との含有割合[(共重合体)/(無機粒子)]が、質量比で、0.1/99.9~49.9/50.1である第1~第6のいずれかの観点による電極が提供される。
<8> 本開示の第8の観点によれば、
 電極活物質層が、電極活物質およびバインダーを含有し、バインダーとして、ポリマー(ただし、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体を除く)を含有する第1~第7のいずれかの観点による電極が提供される。
<9> 本開示の第9の観点によれば、
 電極活物質が、正極活物質である第8の観点による電極が提供される。
<10> 本開示の第10の観点によれば、
 正極活物質が、Li、NaおよびKからなる群より選択される少なくとも1種のアルカリ金属を含有する正極活物質である第9の観点による電極が提供される。
<11> 本開示の第11の観点によれば、
 正極活物質が、Li、NaおよびKからなる群より選択される少なくとも1種のアルカリ金属と、Fe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeからなる群より選択される少なくとも1種の金属とを含有する正極活物質である第9または第10の観点による電極が提供される。
<12> 本開示の第12の観点によれば、
 電極活物質層が、さらに、導電材を含有する第9~第11のいずれかの観点による電極が提供される。
<13> 本開示の第13の観点によれば、
 電極活物質層の質量を100質量%とした場合に、
 正極活物質の含有量が、80.0~99.8質量%であり、
 導電材の含有量が、0.1~10.0質量%であり、
 バインダーの含有量が、0.1~10.0質量%である
第12の観点による電極が提供される。
<14> 本開示の第14の観点によれば、
 電極活物質が、負極活物質である第8の観点による電極が提供される。
<15> 本開示の第15の観点によれば、
 負極活物質が、炭素質材料を含有する負極活物質、または、Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素を含有する化合物を含有する負極活物質である第14の観点による電極が提供される。
<16> 本開示の第16の観点によれば、
 電極活物質層の質量を100質量%とした場合に、
 負極活物質の含有量が、99.9~80.0質量%であり、
 バインダーの含有量が、0.1~20.0質量%である
第14または第15の観点による電極が提供される。
<17> 本開示の第17の観点によれば、
 電気化学デバイスに用いる第1~第16のいずれかの観点による電極が提供される。
<18> 本開示の第18の観点によれば、
 第1~第17のいずれかの観点による電極を備える二次電池が提供される。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
<ポリマーの単量体組成>
 NMR分析装置(アジレント・テクノロジー社製、VNS400MHz)を用いて、H-NMRおよび19F-NMR測定でポリマーの重クロロホルム溶液状態にて、ポリマーの単量体組成を測定した。
<重量平均分子量>
 ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー社製のAS-8010、CO-8020、カラム(GMHHR-Hを3本直列に接続)、および、島津製作所社製RID-10Aを用い、溶媒としてジメチルホルムアミド(DMF)を流速1.0ml/分で流して測定したデータ(リファレンス:ポリスチレン)より算出した。
 実施例および比較例では、以下の共重合体および無機粒子を用いた。
(共重合体)
 ・共重合体a(組成比:テトラフルオロエチレン(TFE)/N-ビニル-2-ピロリドン(VP)=41/59、重量平均分子量:32万)
 ・共重合体b(組成比:TFE/VP=38/62、重量平均分子量:24万)
 ・共重合体c(組成比:TFE/VP=33/67、重量平均分子量:9.7万)
 ・共重合体d(組成比:フッ化ビニリデン(VdF)/ヘキサフルオロプロピレン(HFP)=93/7、重量平均分子量:32万)
(無機粒子)
 ・無機粒子X:酸化アルミニウム(粒子径:0.7μm)
 ・無機粒子Y:二酸化ケイ素(粒子径:0.6μm)
 ・無機粒子Z:二酸化ジルコニウム(粒子径:0.4μm)
 ・無機粒子W:酸化マグネシウム(粒子径:0.6μm)
実施例1~7、比較例1~2
<電解液の調製>
 高誘電率溶媒であるエチレンカーボネートおよび低粘度溶媒であるエチルメチルカーボネート、ジメチルカーボネートを、体積比30対30対40になるように混合し、これにLiPFを1.1モル/リットルの濃度となるように添加して、非水電解液を得た。
<正極の作製>
 正極活物質としてのLi(Ni1/3Mn1/3Co1/3)O 90質量部と、導電材としてのアセチレンブラック5質量部と、バインダーとしてのポリフッ化ビニリデン(PVdF)5質量部を、N-メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔の片面に塗布して、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅50mm、長さ30mm、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して正極とした。
<負極の作製>
 炭素質材料(グラファイト)98質量部に、増粘剤およびバインダーとして、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部と、スチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅52mm、長さ32mm、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して負極とした。
 上記で得られた正極を、共重合体および無機粒子を含有する組成物により、下記のように処理した。ただし、比較例2では、下記の処理をせずに、上記で得られた正極をそのまま用いた。
<コーティング処理(浸漬(Dip)法)>
 共重合体および無機粒子を表1に示す成分比で混合した後、得られた混合物とHFE-347pc-f(CFCHOCFCHF)とを混合することにより、固形分濃度が10質量%である組成物を調製した。組成物に、上記で得られた正極を1分間浸漬させた後、浸漬物を組成物から回収した。得られた浸漬物をHFE-347pc-fにより洗浄することにより、浸漬物表面に付着した付着物を洗い流した後、洗浄した浸漬物を乾燥させ、正極活物質層上に形成されたポリマー層を備える正極を得た。走査型電子顕微鏡(SEM)または厚みや重量を測定することで、活物質層上にポリマー層が形成されていることを確認した。
<アルミラミネートセルの作製>
 ポリマー層を備える正極(比較例2ではポリマー層を備えていない正極)および負極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して対向させ、上記で得られた非水電解液を注入し、上記非水電解液がセパレータ等に充分に浸透した後、封止し予備充電、エージングを行い、リチウムイオン二次電池(アルミラミネートセル)を作製した。
<電池特性の測定>
 得られたアルミラミネートセルについて、下記のように高温保存試験および低温サイクル試験後の抵抗増加率の測定を行った。
<高温保存試験>
 25℃において、0.2Cに相当する定電流で4.35Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.35Vまで充電後、4.35Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電し、初期放電容量を求めた。その後、0.2Cの定電流で4.35Vまで充電後、4.35Vの定電圧で電流値が0.05Cになるまで充電を実施し保存試験を行った。
 ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、5Cとはその5倍の電流値を、0.1Cとはその1/10の電流値を、また0.2Cとはその1/5の電流値を表す。
 初期特性評価が終了後の充電状態の二次電池を、60℃、672時間の条件で高温保存した。電池を十分に冷却させた後、25℃において0.5Cで3Vまで放電し、その後、0.2Cの定電流で4.35Vまで充電後、4.35Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電し、保存容量を求めた。
 下記式に基づき容量保持率(%)を求めた。
容量保持率(%)=(保存容量)/(初期放電容量)×100
<低温サイクル試験後の抵抗増加率の測定>
 25℃において、0.2Cに相当する定電流で4.2Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させた。上記で製造した二次電池をその後、-5℃の環境下、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電し、初期放電容量を求めた。同様の方法で充放電を行い、200サイクル試験を行った。
 上記のように安定化させた初期放電容量算出時の電池の抵抗とサイクル試験後の抵抗とを測定した。測定温度は-10℃とした。下記式に基づき、低温サイクル試験後抵抗増加率を求めた。
抵抗増加率(%)=200サイクル後の抵抗(Ω)/初期放電容量算出後の抵抗(Ω)×100
結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
実施例8~14、比較例3~4
<電解液の調製>
 高誘電率溶媒であるエチレンカーボネート、モノフルオロエチレンカーボネートおよび低粘度溶媒であるエチルメチルカーボネートを、体積比30対5対65になるように混合し、これにLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。
<正極の作製>
 正極活物質としてのLiMn90質量%と、導電材としてのアセチレンブラック5質量%と、バインダーとしてのポリフッ化ビニリデン(PVdF)5質量%とを、N-メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔の片面に塗布して、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅50mm、長さ30mm、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して正極とした。
<負極の作製>
 人造黒鉛98質量部に、増粘剤およびバインダーとして、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部と、スチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅52mm、長さ32mm、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して負極とした。
 上記で得られた負極を、共重合体および無機粒子を含有する組成物により、下記のように処理した。ただし、比較例4では、下記の処理をせずに、上記で得られた負極をそのまま用いた。
<コーティング処理(浸漬(Dip)法)>
 共重合体および無機粒子を表2に示す成分比で混合した後、得られた混合物とHFE-347pc-f(CFCHOCFCHF)とを混合することにより、固形分濃度が10質量%である組成物を調製した。組成物に、上記で得られた負極を1分間浸漬させた後、浸漬物を組成物から回収した。得られた浸漬物をHFE-347pc-fにより洗浄することにより、浸漬物表面に付着した付着物を洗い流した後、洗浄した浸漬物を乾燥させ、負極活物質層上に形成されたポリマー層を備える負極を得た。走査型電子顕微鏡(SEM)または厚みや重量を測定することで、活物質層上にポリマー層が形成されていることを確認した。
<アルミラミネートセルの作製>
 上記の正極およびポリマー層を備える負極(比較例4ではポリマー層を備えていない負極)を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して対向させ、上記で得られた非水電解液を注入し、上記非水電解液がセパレータ等に充分に浸透した後、封止し予備充電、エージングを行い、リチウムイオン二次電池(アルミラミネートセル)を作製した。
<電池特性の測定>
 得られたアルミラミネートセルについて、下記のように高温保存試験および低温サイクル試験後の抵抗増加率の測定を行った。
<高温保存試験>
 25℃において、0.2Cに相当する定電流で4.35Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.35Vまで充電後、4.35Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電し、初期放電容量を求めた。その後、0.2Cの定電流で4.35Vまで充電後、4.35Vの定電圧で電流値が0.05Cになるまで充電を実施し保存試験を行った。
 ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、5Cとはその5倍の電流値を、0.1Cとはその1/10の電流値を、また0.2Cとはその1/5の電流値を表す。
 初期特性評価が終了後の充電状態の二次電池を、75℃、528時間の条件で高温保存した。電池を十分に冷却させた後、25℃において0.5Cで3Vまで放電し、その後、0.2Cの定電流で4.35Vまで充電後、4.35Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電し、保存容量を求めた。
 下記式に基づき容量保持率(%)を求めた。
容量保持率(%)=(保存容量)/(初期放電容量)×100
<低温サイクル試験後の抵抗増加率の測定>
 25℃において、0.2Cに相当する定電流で4.2Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させた。上記で製造した二次電池をその後、-10℃の環境下、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電し、初期放電容量を求めた。同様の方法で充放電を行い、200サイクル試験を行った。
 上記のように安定化させた初期放電容量算出時の電池の抵抗とサイクル試験後の抵抗とを測定した。測定温度は-20℃とした。下記式に基づき、低温サイクル試験後抵抗増加率を求めた。
抵抗増加率(%)=200サイクル後の抵抗(Ω)/初期放電容量算出後の抵抗(Ω)×100
結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004

Claims (18)

  1.  電極活物質層と、電極活物質層上に形成されたポリマー層とを備える電極であって、ポリマー層が、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体および無機粒子を含有する電極。
  2.  フルオロモノマーが、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、および、2,3,3,3-テトラフルオロプロペンからなる群から選択される少なくとも1種である請求項1に記載の電極。
  3.  アミド結合含有モノマーが、ラクタム環を有する請求項1または2に記載の電極。
  4.  アミド結合含有モノマーが、N-ビニル-2-ピロリドンである請求項1~3のいずれかに記載の電極。
  5.  共重合体のフルオロモノマー単位の含有量が、全単量体単位に対して、75~7モル%であり、共重合体のアミド結合含有モノマーの単位の含有量が、全単量体単位に対して、25~93モル%である請求項1~4のいずれかに記載の電極。
  6.  無機粒子が、Mg、Al、Si、Ti、ZrおよびBaからなる群から選択される少なくとも1種の元素を含有する請求項1~5のいずれかに記載の電極。
  7.  共重合体と無機粒子との含有割合[(共重合体)/(無機粒子)]が、質量比で、0.1/99.9~49.9/50.1である請求項1~6のいずれかに記載の電極。
  8.  電極活物質層が、電極活物質およびバインダーを含有し、バインダーとして、ポリマー(ただし、フルオロモノマー単位とアミド結合含有モノマー単位とを含有する共重合体を除く)を含有する請求項1~7のいずれかに記載の電極。
  9.  電極活物質が、正極活物質である請求項8に記載の電極。
  10.  正極活物質が、Li、NaおよびKからなる群より選択される少なくとも1種のアルカリ金属を含有する正極活物質である請求項9に記載の電極。
  11.  正極活物質が、Li、NaおよびKからなる群より選択される少なくとも1種のアルカリ金属と、Fe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeからなる群より選択される少なくとも1種の金属とを含有する正極活物質である請求項9または10に記載の電極。
  12.  電極活物質層が、さらに、導電材を含有する請求項9~11のいずれかに記載の電極。
  13.  電極活物質層の質量を100質量%とした場合に、
     正極活物質の含有量が、80.0~99.8質量%であり、
     導電材の含有量が、0.1~10.0質量%であり、
     バインダーの含有量が、0.1~10.0質量%である
    請求項12に記載の電極。
  14.  電極活物質が、負極活物質である請求項8に記載の電極。
  15.  負極活物質が、炭素質材料を含有する負極活物質、または、Si、Sn、V、NbおよびTiからなる群より選択される少なくとも1種の元素を含有する化合物を含有する負極活物質である請求項14に記載の電極。
  16.  電極活物質層の質量を100質量%とした場合に、
     負極活物質の含有量が、99.9~80.0質量%であり、
     バインダーの含有量が、0.1~20.0質量%である
    請求項14または15に記載の電極。
  17.  電気化学デバイスに用いる請求項1~16のいずれかに記載の電極。
  18.  請求項1~17のいずれかに記載の電極を備える二次電池。
PCT/JP2023/002883 2022-05-19 2023-01-30 電極および二次電池 WO2023223608A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022082446 2022-05-19
JP2022-082446 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023223608A1 true WO2023223608A1 (ja) 2023-11-23

Family

ID=88835282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002883 WO2023223608A1 (ja) 2022-05-19 2023-01-30 電極および二次電池

Country Status (2)

Country Link
TW (1) TW202408055A (ja)
WO (1) WO2023223608A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144737A (ja) * 1997-11-04 1999-05-28 Tdk Corp 集電体及びこれを用いたシート状電極構造
JP2001202950A (ja) * 2000-01-20 2001-07-27 Hitachi Maxell Ltd 水素吸蔵合金電極およびニッケル水素蓄電池
JP2011129463A (ja) * 2009-12-21 2011-06-30 Sanyo Electric Co Ltd アルカリ二次電池用カドミウム負極
JP2022078959A (ja) * 2020-11-13 2022-05-25 リキャップ テクノロジーズ、インコーポレイテッド 複合バインダを用いた乾式電極の製造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144737A (ja) * 1997-11-04 1999-05-28 Tdk Corp 集電体及びこれを用いたシート状電極構造
JP2001202950A (ja) * 2000-01-20 2001-07-27 Hitachi Maxell Ltd 水素吸蔵合金電極およびニッケル水素蓄電池
JP2011129463A (ja) * 2009-12-21 2011-06-30 Sanyo Electric Co Ltd アルカリ二次電池用カドミウム負極
JP2022078959A (ja) * 2020-11-13 2022-05-25 リキャップ テクノロジーズ、インコーポレイテッド 複合バインダを用いた乾式電極の製造

Also Published As

Publication number Publication date
TW202408055A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US11742491B2 (en) Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
EP3447831B1 (en) Binder for secondary batteries and electrode mixture for secondary batteries
KR101599658B1 (ko) 결착제, 정극합제 및 부극합제
JP5949915B2 (ja) 電極合剤
JP5949914B2 (ja) 電極合剤
JP7212291B2 (ja) 電池用結着剤、電極合剤、電極および二次電池
JP2024026579A (ja) ポリビニリデンフルオライド、結着剤、電極合剤、電極および二次電池
US20240088392A1 (en) Electrode mixture, secondary battery, and composition
WO2022124254A1 (ja) 組成物、結着剤、接着剤および積層体
WO2023223608A1 (ja) 電極および二次電池
JP7420978B2 (ja) 電気化学デバイス用組成物、電極および二次電池
JP7332970B2 (ja) 電気化学デバイス用組成物、電極および二次電池
TW202338864A (zh) 組成物、電極及二次電池
TW202343859A (zh) 負極合劑、負極及二次電池
KR20240013794A (ko) 전극 형성용 조성물, 전극 및 이차 전지
CN115087704A (zh) 组合物、粘结剂、电极合剂、电极和二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807226

Country of ref document: EP

Kind code of ref document: A1