WO2013172281A1 - 車両の制御装置及び車両の制御方法 - Google Patents
車両の制御装置及び車両の制御方法 Download PDFInfo
- Publication number
- WO2013172281A1 WO2013172281A1 PCT/JP2013/063240 JP2013063240W WO2013172281A1 WO 2013172281 A1 WO2013172281 A1 WO 2013172281A1 JP 2013063240 W JP2013063240 W JP 2013063240W WO 2013172281 A1 WO2013172281 A1 WO 2013172281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- control
- damping force
- sprung
- state
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 61
- 238000013016 damping Methods 0.000 claims abstract description 251
- 239000006096 absorbing agent Substances 0.000 claims abstract description 18
- 230000035939 shock Effects 0.000 claims abstract description 18
- 230000007423 decrease Effects 0.000 claims description 106
- 238000001514 detection method Methods 0.000 claims description 57
- 230000001133 acceleration Effects 0.000 claims description 53
- 230000007704 transition Effects 0.000 claims description 15
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 230000006866 deterioration Effects 0.000 abstract description 15
- 230000008569 process Effects 0.000 description 53
- 230000033001 locomotion Effects 0.000 description 38
- 238000010586 diagram Methods 0.000 description 35
- 230000001629 suppression Effects 0.000 description 27
- 244000309464 bull Species 0.000 description 18
- 230000008859 change Effects 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 230000006399 behavior Effects 0.000 description 15
- 238000009826 distribution Methods 0.000 description 11
- 230000005484 gravity Effects 0.000 description 11
- 241000282373 Panthera pardus Species 0.000 description 10
- 230000036461 convulsion Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000028838 turning behavior Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003805 vibration mixing Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
- B60G17/0182—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
- B60G17/0185—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method for failure detection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0195—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/06—Characteristics of dampers, e.g. mechanical dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/22—Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/204—Vehicle speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/40—Steering conditions
- B60G2400/41—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/60—Load
- B60G2400/64—Wheel forces, e.g. on hub, spindle or bearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/08—Failure or malfunction detecting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/08—Failure or malfunction detecting means
- B60G2600/084—Supervisory systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/60—Signal noise suppression; Electronic filtering means
- B60G2600/604—Signal noise suppression; Electronic filtering means low pass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/80—Detection or control after a system or component failure
- B60G2800/802—Diagnostics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/91—Suspension Control
- B60G2800/916—Body Vibration Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/20—Reducing vibrations in the driveline
- B60W2030/206—Reducing vibrations in the driveline related or induced by the engine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/14—Yaw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/22—Suspension systems
- B60W2710/223—Stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/22—Suspension systems
- B60W2710/226—Damping
Definitions
- the present invention relates to a control device and a control method for controlling the state of a vehicle.
- Patent Document 1 discloses a technique for estimating the stroke speed from the fluctuation of the wheel speed in a predetermined frequency region and changing the damping force of the damping force variable shock absorber according to the stroke speed to control the sprung behavior. .
- an object of the present invention is to provide a vehicle control device and a control method capable of achieving a stable vehicle body posture even when the estimated accuracy of the sprung state is lowered.
- the vehicle control apparatus estimates the sprung state based on information in a predetermined frequency region of the wheel speed, and attenuates the estimated sprung state to be the target sprung state. Controls the force variable shock absorber. At this time, when a decrease in the estimated accuracy of the sprung state is detected, the damping force of the damping force variable shock absorber is changed to a fixed damping force corresponding to the vehicle state quantity before the estimated accuracy is reduced.
- FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to a first embodiment.
- FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control device according to the first embodiment.
- 1 is a conceptual diagram illustrating a configuration of a wheel speed feedback control system according to a first embodiment.
- FIG. 3 is a control block diagram illustrating a configuration of a traveling state estimation unit according to the first embodiment. It is a control block diagram showing the control content in the stroke speed calculating part of Example 1.
- FIG. 3 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment. It is the schematic showing a vehicle body vibration model. It is a control block diagram showing brake pitch control of Example 1.
- FIG. 3 is a control block diagram illustrating a configuration of roll rate suppression control according to the first embodiment. 3 is a time chart illustrating an envelope waveform forming process of roll rate suppression control according to the first embodiment.
- FIG. 3 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment.
- FIG. 3 is a control block diagram illustrating a control configuration of a damping force control unit according to the first embodiment.
- 6 is a flowchart illustrating attenuation coefficient arbitration processing in a standard mode according to the first embodiment.
- 6 is a flowchart illustrating an attenuation coefficient arbitration process in the sport mode according to the first embodiment.
- 6 is a flowchart illustrating attenuation coefficient arbitration processing in the comfort mode according to the first embodiment.
- 6 is a flowchart illustrating attenuation coefficient arbitration processing in a highway mode according to the first exemplary embodiment.
- FIG. 6 is a flowchart illustrating a mode selection process based on a running state in an attenuation coefficient arbitration unit according to the first embodiment.
- FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control device according to the first embodiment.
- FIG. 3 is a control block diagram illustrating a configuration of a control unit at the time of detection of a decrease in estimated accuracy according to the first embodiment. It is explanatory drawing showing the setting method of the attenuation coefficient at the time of the estimation accuracy fall in the attenuation coefficient setting part of Example 1.
- FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to the first embodiment.
- the vehicle includes an engine 1 that is a power source and a brake 20 that generates braking torque due to friction force on each wheel (hereinafter, when displaying brakes corresponding to individual wheels, right front wheel brake: 20FR, left front wheel brake: 20FL).
- S / A shock absorber 3
- the engine 1 includes an engine controller (hereinafter also referred to as an engine control unit, which corresponds to power source control means) 1a that controls torque output from the engine 1, and the engine controller 1a is configured to By controlling the fuel injection amount, ignition timing, etc., the desired engine operating state (engine speed and engine output torque) is controlled. Further, the brake 20 generates a braking torque based on the hydraulic pressure supplied from the brake control unit 2 that can control the brake hydraulic pressure of each wheel according to the traveling state.
- the brake control unit 2 includes a brake controller (hereinafter also referred to as a brake control unit) 2a for controlling a braking torque generated by the brake 20, and a master cylinder pressure generated by a driver's brake pedal operation or a built-in motor.
- a pump pressure generated by the drive pump is used as a hydraulic pressure source, and a desired hydraulic pressure is generated in the brake 20 of each wheel by opening and closing operations of a plurality of solenoid valves.
- the S / A3 is a damping force generator that attenuates the elastic motion of a coil spring provided between a vehicle unsprung (axle, wheel, etc.) and a sprung (vehicle body, etc.). It is configured to be variable.
- the S / A 3 includes a cylinder in which fluid is sealed, a piston that strokes in the cylinder, and an orifice that controls fluid movement between fluid chambers formed above and below the piston. Furthermore, orifices having a plurality of types of orifice diameters are formed in the piston, and an orifice corresponding to a control command is selected from the plurality of types of orifices when the S / A actuator is operated. Thereby, the damping force according to the orifice diameter can be generated. For example, if the orifice diameter is small, the movement of the piston is easily restricted, so that the damping force is high. If the orifice diameter is large, the movement of the piston is difficult to be restricted, and thus the damping force is small.
- an electromagnetic control valve is arranged on the communication path connecting fluids formed above and below the piston, and the damping force is set by controlling the opening / closing amount of the electromagnetic control valve.
- the S / A 3 has an S / A controller 3a (corresponding to damping force control means) that controls the damping force of the S / A 3, and controls the damping force by operating the orifice diameter by the S / A actuator.
- a wheel speed sensor 5 for detecting the wheel speed of each wheel (hereinafter, when displaying the wheel speed corresponding to each wheel, right front wheel speed: 5FR, left front wheel speed: 5FL, right rear wheel speed: 5RR. , Left rear wheel speed: 5RL)), an integrated sensor 6 for detecting longitudinal acceleration, yaw rate and lateral acceleration acting on the center of gravity of the vehicle, and a steering angle which is a steering operation amount of the driver is detected.
- Steering angle sensor 7 vehicle speed sensor 8 for detecting vehicle speed
- engine torque sensor 9 for detecting engine torque
- engine speed sensor 10 for detecting engine speed
- master pressure sensor 11 for detecting master cylinder pressure.
- a brake switch 12 that outputs an on-state signal when the brake pedal is operated, an accelerator opening sensor 13 that detects an accelerator pedal opening, and an outside air temperature A temperature sensor 14 for detecting a.
- the signals from these various sensors are input to the engine controller 1a, the brake controller 2a, and the S / A controller 3a as necessary.
- the arrangement of the integrated sensor 6 may be at the center of gravity of the vehicle, or may be any place other than that as long as various values at the center of gravity can be estimated. Moreover, it is not necessary to be an integral type, and a configuration in which yaw rate, longitudinal acceleration, and lateral acceleration are individually detected may be employed.
- the control amount by the engine 1 and the brake 20 is limited and output from the control amount that can be actually output, thereby reducing the burden on the S / A 3 and accompanying the control of the engine 1 and the brake 20. Suppresses discomfort that occurs.
- Skyhook control is performed by all actuators. At this time, without using a stroke sensor or a sprung vertical acceleration sensor generally required for skyhook control, the skyhook control can be performed with an inexpensive configuration using wheel speed sensors mounted on all vehicles. Realize.
- scalar control frequency sensitive control
- FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control apparatus according to the first embodiment.
- the controller includes an engine controller 1a, a brake controller 2a, and an S / A controller 3a, and each controller constitutes a wheel speed feedback control system.
- estimation that is the probability of state estimation of each of the traveling state estimation units (first traveling state estimation unit 100, second traveling state estimation unit 200, and third traveling state estimation unit 32) described later.
- An estimated accuracy decrease detection unit 4a that detects a decrease in accuracy
- an estimated accuracy decrease detection time control unit 5a that transitions to an appropriate control state when a decrease in estimated accuracy is detected.
- the configuration including three controllers as the controller is shown, but each controller may be configured from one integrated controller without any particular limitation.
- the configuration including the three controllers in the first embodiment is that the engine controller and the brake controller in the existing vehicle are used as they are to form the engine control unit 1a and the brake control unit 2a, and the S / A controller 3a is separately mounted.
- the vehicle control apparatus of the first embodiment is realized.
- the engine controller 1a mainly uses the wheel speed detected by the wheel speed sensor 5 to determine the stroke speed, bounce rate, roll rate and pitch of each wheel used for the skyhook control of the sprung mass damping control unit 101a described later.
- a first running state estimation unit 100 that estimates the rate, an engine posture control unit 101 that calculates an engine posture control amount that is an engine torque command, and controls the operating state of the engine 1 based on the calculated engine posture control amount.
- An engine control unit 102 The details of the estimation process of the first traveling state estimation unit 100 will be described later.
- the engine attitude control unit 101 includes a sprung mass damping control unit 101a that calculates a sprung control amount that suppresses bounce motion and pitch motion by skyhook control, and ground load variation suppression that suppresses ground load variation of front and rear wheels.
- a ground load control unit 101b that calculates a control amount
- an engine-side driver input control unit 101c that calculates a yaw response control amount corresponding to a vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8 And have.
- the engine attitude control unit 101 calculates an engine attitude control amount that minimizes the control amount calculated by each of these control units by optimal control (LQR), and determines the final engine attitude control amount for the engine control unit 102. Output.
- LQR optimal control
- the S / A 3 can reduce the damping force control amount, and therefore, deterioration of the high frequency vibration can be avoided. Moreover, since S / A3 can concentrate on suppression of roll motion, it can suppress roll motion effectively.
- the brake controller 2a Based on the wheel speed detected by the wheel speed sensor 5, the brake controller 2a estimates the stroke speed and pitch rate of each wheel, and the like based on the estimated stroke speed and pitch rate.
- Skyhook control unit 201 (details will be described later) that calculates a brake attitude control amount based on skyhook control, and brake control unit 202 that controls the braking torque of brake 20 based on the calculated brake attitude control amount And have.
- the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100 and the second traveling state estimation unit 200, but other estimation processes are performed as long as the process is estimated from the wheel speed. It may be used.
- the S / A controller 3a includes a driver input control unit 31 that performs driver input control for achieving a desired vehicle posture based on a driver's operation (steering operation, accelerator operation, brake pedal operation, etc.), and detection values of various sensors.
- a third traveling state estimation unit 32 that estimates the traveling state based on (mainly the wheel speed sensor value of the wheel speed sensor 5), and a sprung mass damping that controls the vibration state on the spring based on the estimated traveling state
- a control unit 33 an unsprung vibration suppression control unit 34 that controls the unsprung vibration state based on the estimated traveling state, a shock absorber attitude control amount output from the driver input control unit 31, and a sprung mass damping
- a damping force to be set in the S / A 3 is determined.
- a damping force control unit 35 for performing the damping force control of the A.
- the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32, but the process is estimated from the wheel speed. If so, other estimation processes may be used and there is no particular limitation.
- FIG. 3 is a conceptual diagram showing the configuration of the wheel speed feedback control system of the first embodiment.
- the engine 1, the brake 20 and the S / A 3 individually constitute an engine feedback control system, a brake feedback control system, and an S / A feedback control system.
- control interference becomes a problem.
- the effects of the control of each actuator appear as wheel speed fluctuations, by configuring the wheel speed feedback control system, the effect of each actuator is monitored as a result, and control interference is avoided. It is. For example, if a certain sprung vibration is suppressed by the engine 1, the wheel speed fluctuation
- the brake 20 and the S / A 3 perform control based on the wheel speed in which the influence is reflected.
- the feedback control system is configured using a common value of wheel speed, even if individual control is performed without controllable mutual monitoring, as a result, control based on mutual monitoring (below)
- This control is described as cooperative control), and the vehicle posture can be converged in the stabilization direction.
- each feedback control system will be described sequentially.
- the 1st, 2nd, 3rd driving state estimation part which is a common structure provided in each feedback control system is demonstrated.
- the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32. Therefore, since the process in each estimation part is common, the estimation process in the 3rd driving state estimation part 32 is demonstrated as a representative.
- Each of the running state estimation units may be provided with a separate estimation model as long as it is a state estimation using the wheel speed, and is not particularly limited.
- FIG. 4 is a control block diagram showing the configuration of the third traveling state estimation unit of the first embodiment.
- the stroke of each wheel used for the skyhook control of the sprung mass damping control unit 33 to be described later is basically based on the wheel speed detected by the wheel speed sensor 5. Calculate speed, bounce rate, roll rate and pitch rate. First, the value of the wheel speed sensor 5 of each wheel is input to the stroke speed calculation unit 321, and the sprung speed is calculated from the stroke speed of each wheel calculated by the stroke speed calculation unit 321.
- FIG. 5 is a control block diagram showing the control contents in the stroke speed calculation unit of the first embodiment.
- the stroke speed calculation unit 321 is individually provided for each wheel, and the control block diagram shown in FIG. 5 is a control block diagram focusing on a certain wheel.
- the value of the wheel speed sensor 5, the front wheel steering angle ⁇ f detected by the steering angle sensor 7, and the rear wheel steering angle ⁇ r (actual rear wheel steering if a rear wheel steering device is provided).
- the reference wheel speed calculation unit 300 that calculates a reference wheel speed based on the vehicle body lateral speed and the actual yaw rate detected by the integrated sensor 6, and the angle may be appropriately set to 0 in other cases.
- a tire rotation vibration frequency calculation unit 321a that calculates the tire rotation vibration frequency based on the calculated reference wheel speed, and a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value.
- a GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b into a suspension stroke amount, a stroke speed calibration unit 321d that calibrates the converted stroke amount to a stroke speed,
- a band elimination filter corresponding to the frequency calculated by the tire rotation vibration frequency calculation unit 321a is applied to the value calibrated by the roke speed calibration unit 321d to remove the tire rotation primary vibration component and calculate the final stroke speed.
- a signal processing unit 321e that calculates the tire rotation vibration frequency based on the calculated reference wheel speed
- a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value.
- a GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b into
- FIG. 6 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment.
- the reference wheel speed refers to a value obtained by removing various disturbances from each wheel speed.
- the difference between the wheel speed sensor value and the reference wheel speed is a value related to a component that fluctuates according to the stroke generated by the bounce behavior, roll behavior, pitch behavior, or unsprung vertical vibration of the vehicle body.
- the stroke speed is estimated based on this difference.
- the plane motion component extraction unit 301 calculates the first wheel speed V0 that is the reference wheel speed of each wheel based on the vehicle body plan view model with the wheel speed sensor value as an input.
- the wheel speed sensor value detected by the wheel speed sensor 5 is ⁇ (rad / s)
- the front wheel actual steering angle detected by the steering angle sensor 7 is ⁇ f (rad)
- the rear wheel actual steering angle is ⁇ r (rad )
- the vehicle body lateral speed is Vx
- the yaw rate detected by the integrated sensor 6 is ⁇ (rad / s)
- the vehicle speed estimated from the calculated reference wheel speed ⁇ 0 is V (m / s)
- the reference to be calculated Wheel speed is VFL, VFR, VRL, VRR
- front wheel tread is Tf
- rear wheel tread is Tr
- distance from vehicle center of gravity to front wheel is Lf
- distance from vehicle center of gravity to rear wheel is Lr.
- VFL (V-Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
- VFR (V + Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
- VRL (V ⁇ Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx ⁇ Lr ⁇ ⁇ ) sin ⁇ r
- VRR (V + Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx-Lr ⁇ ⁇ ) sin ⁇ r
- V is described as V0FL, V0FR, V0RL, V0RR (corresponding to the first wheel speed) as a value corresponding to each wheel.
- V0FL ⁇ VFL-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f + Tf / 2 ⁇ ⁇
- V0FR ⁇ VFR-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f-Tf / 2 ⁇ ⁇
- V0RL ⁇ VRL + Lr ⁇ ⁇ sin ⁇ r ⁇ / cos ⁇ r + Tr / 2 ⁇ ⁇
- V0RR ⁇ VRR + Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ r-Tr / 2 ⁇ ⁇
- the roll disturbance removing unit 302 calculates the second wheel speeds V0F and V0R as the reference wheel speeds for the front and rear wheels based on the vehicle body front view model with the first wheel speed V0 as an input.
- the vehicle body front view model removes the wheel speed difference caused by the roll motion that occurs around the roll rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the front. Is done.
- V0F (V0FL + V0FR) / 2
- V0R (V0RL + V0RR) / 2
- the second wheel speeds V0F and V0R from which disturbance based on the roll is removed are obtained.
- the pitch disturbance removal unit 303 calculates the third wheel speeds VbFL, VbFR, VbRL, and VbRR, which are the reference wheel speeds for all the wheels, based on the vehicle side view model, with the second wheel speeds V0F and V0R as inputs.
- the vehicle body side view model is to remove the wheel speed difference caused by the pitch motion generated around the pitch rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the lateral direction. It is expressed by the following formula.
- the sprung speed calculation unit 322 calculates the bounce rate, roll rate, and pitch rate for skyhook control. Calculated.
- Skyhook control is to achieve a flat running state by setting a damping force based on the relationship between the S / A3 stroke speed and the sprung speed, and controlling the posture on the sprung.
- the value that can be detected from the wheel speed sensor 5 is the stroke speed, and since the vertical acceleration sensor or the like is not provided on the spring, the sprung speed needs to be estimated using an estimation model.
- the problem of the estimation model and the model configuration to be adopted will be described.
- FIG. 7 is a schematic diagram showing a vehicle body vibration model.
- FIG. 7A is a model of a vehicle (hereinafter referred to as a conveyor vehicle) having an S / A with a constant damping force
- FIG. 7B has an S / A having a variable damping force.
- Ms represents the mass on the spring
- Mu represents the mass below the spring
- Ks represents the elastic coefficient of the coil spring
- Cs represents the damping coefficient of S / A
- Ku represents the unsprung (tire).
- Cu represents an unsprung (tire) damping coefficient
- Cv represents a variable damping coefficient
- Z2 represents a position on the spring
- z1 represents a position under the spring
- z0 represents a road surface position.
- Changing the damping force basically means changing the force that limits the piston moving speed of S / A 3 in accordance with the suspension stroke. Since the semi-active S / A3 that cannot positively move the piston in the desired direction is used, when the semi-active skyhook model is employed and the sprung speed is obtained, it is expressed as follows.
- the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
- the sprung speed can be estimated if the stroke speed of each wheel is known.
- the actual vehicle is four wheels instead of one wheel, it is considered to estimate the state of the spring by mode decomposition into roll rate, pitch rate and bounce rate using the stroke speed of each wheel. To do.
- the above three components are calculated from the stroke speed of the four wheels, one corresponding component is insufficient, and the solution becomes indefinite. Therefore, a war plate representing the movement of the diagonal wheels is introduced.
- the stroke amount bounce term is xsB
- the roll term is xsR
- the pitch term is xsP
- the warp term is xsW
- the stroke amount corresponding to Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR is z_sFL, z_sFR, z_sRL, z_sRR, Holds.
- dxsB 1/4 (Vz_sFL + Vz_sFR + Vz_sRL + Vz_sRR)
- dxsR 1/4 (Vz_sFL-Vz_sFR + Vz_sRL-Vz_sRR)
- dxsP 1/4 (-Vz_sFL-Vz_sFR + Vz_sRL + Vz_sRR)
- dxsW 1/4 (-Vz_sFL + Vz_sFR + Vz_sRL-Vz_sRR)
- the vehicle control apparatus includes the engine 1, the brake 20, and the S / A 3 as actuators for achieving sprung posture control.
- the sprung mass damping control unit 101a in the engine controller 1a has two bounce rate and pitch rate as control targets
- the skyhook control unit 201 in the brake controller 2a has pitch rate as control targets.
- the skyhook control unit 33a in the controller 3a three of bounce rate, roll rate, and pitch rate are controlled.
- the bounce direction skyhook control amount FB is calculated as a part of the engine attitude control amount in the sprung mass damping control unit 101a.
- the skyhook control unit 33a calculates as a part of the S / A attitude control amount.
- the skyhook control amount FR in roll direction is calculated as part of the S / A attitude control amount in the sky hook control unit 33a.
- the sky hook control amount FP in the pitch direction is calculated as a part of the engine attitude control amount in the sprung mass damping control unit 101a.
- the skyhook control unit 201 calculates the brake posture control amount.
- the skyhook control unit 33a calculates as a part of the S / A attitude control amount.
- the engine attitude control unit 101 is set with a limit value for limiting the engine torque control amount according to the engine attitude control amount so as not to give the driver a sense of incongruity.
- the engine torque control amount is limited to be within a predetermined longitudinal acceleration range when converted to longitudinal acceleration. Therefore, when the engine attitude control amount (engine torque control amount) is calculated based on FB or FP and a value equal to or greater than the limit value is calculated, bounce rate or pitch rate skyhook control that can be achieved by the limit value
- the engine attitude control amount is output as a quantity.
- the engine control unit 102 calculates an engine torque control amount based on the engine attitude control amount corresponding to the limit value, and outputs the engine torque control amount to the engine 1.
- a limit value for limiting the braking torque control amount is set in order to prevent the driver from feeling uncomfortable as in the case of the engine 1 (details of the limit value will be described later).
- the braking torque control amount is converted into the longitudinal acceleration, the braking torque control amount is limited to be within a predetermined longitudinal acceleration range (a limit value obtained from the occupant's uncomfortable feeling, the life of the actuator, etc.). Therefore, when the brake attitude control amount is calculated based on the FP and a value equal to or greater than the limit value is calculated, a pitch rate suppression amount (hereinafter referred to as a brake attitude control amount) that can be achieved by the limit value.
- a pitch rate suppression amount hereinafter referred to as a brake attitude control amount
- the brake control unit 202 calculates a braking torque control amount (or deceleration) based on the brake attitude control amount corresponding to the limit value, and outputs it to the brake 20.
- FIG. 8 is a control block diagram showing the brake pitch control of the first embodiment.
- the vehicle body mass is m
- the front wheel braking force is BFf
- the rear wheel braking force is BFr
- the height between the vehicle center of gravity and the road surface is Hcg
- the vehicle acceleration is a
- the pitch moment is Mp
- the pitch rate is Vp.
- the brake attitude control amount calculation unit 334 is composed of the following control blocks.
- the dead zone processing code determination unit 3341 determines the sign of the input pitch rate Vp, and when it is positive, it outputs 0 to the deceleration reduction processing unit 3342 because control is unnecessary, and when it is negative, it determines that control is possible.
- the pitch rate signal is output to the deceleration reduction processing unit 3342.
- the deceleration feeling reduction process is a process corresponding to the limit by the limit value performed in the brake attitude control amount calculation unit 334.
- the square processor 3342a squares the pitch rate signal. This inverts the sign and smoothes the rise of the control force.
- the pitch rate square decay moment calculation unit 3342b calculates the pitch moment Mp by multiplying the squared pitch rate by the skyhook gain CskyP of the pitch term considering the square process.
- the target deceleration calculating unit 3342c calculates the target deceleration by dividing the pitch moment Mp by the mass m and the height Hcg between the vehicle center of gravity and the road surface.
- the calculated rate of change of the target deceleration that is, whether the jerk is within a preset range of the deceleration jerk threshold and the extraction jerk threshold, and the target deceleration is the longitudinal acceleration limit value. Judgment is made whether or not it is within the range. If any threshold is exceeded, the target deceleration is corrected to a value within the jerk threshold range, and if the target deceleration exceeds the limit value, the limit is set. Set within the value. Thereby, the deceleration can be generated so as not to give the driver a sense of incongruity.
- the target pitch moment conversion unit 3343 calculates the target pitch moment by multiplying the target deceleration limited by the jerk threshold limiting unit 3342d by the mass m and the height Hcg, and outputs the target pitch moment to the brake control unit 2a.
- the sprung speed is estimated based on the detection value of the wheel speed sensor 5 and the skyhook control is performed based on the estimated sprung speed control.
- a comfortable driving state (a comfortable ride feeling softer than the vehicle body flatness) is guaranteed.
- vector control where the relationship (phase, etc.) of the sign of stroke speed and sprung speed is important, such as skyhook control, may make it difficult to achieve proper control due to a slight phase shift. Therefore, we decided to introduce frequency-sensitive control, which is sprung mass damping control according to the scalar quantity of vibration characteristics.
- FIG. 9 is a diagram in which the wheel speed frequency characteristic detected by the wheel speed sensor and the stroke frequency characteristic of a stroke sensor not mounted in the embodiment are simultaneously written.
- the frequency characteristic is a characteristic in which the vertical axis represents the magnitude of the amplitude with respect to the frequency as a scalar quantity. Comparing the frequency component of the wheel speed sensor 5 with the frequency component of the stroke sensor, it can be understood that substantially the same scalar amount is taken from the sprung resonance frequency component to the unsprung resonance frequency component. Therefore, the damping force is set based on this frequency characteristic among the detection values of the wheel speed sensor 5.
- the area where the sprung resonance frequency component exists is felt as if the occupant was thrown into the air by swinging the entire body of the occupant, in other words, the feeling that the gravitational acceleration acting on the occupant was reduced.
- the frequency region that brings about the waving region (0.5 to 3 Hz), and the region between the sprung resonance frequency component and the unsprung resonance frequency component is not a feeling that gravitational acceleration decreases.
- the feeling that the human body jumps in small increments when performing (trot), in other words, the frequency range that brings up and down movement that the whole body can follow is the leopard region (3 to 6 Hz), and the region where the unsprung resonance frequency component exists Is not a vertical movement until the mass of the human body follows, but a bull region (6 to 6) is used as a frequency region where vibration is transmitted to a part of the body such as the occupant's thigh. 23 Hz).
- FIG. 10 is a control block diagram illustrating frequency sensitive control in the sprung mass damping control of the first embodiment.
- the band elimination filter 350 cuts noise other than the vibration component used for the main control from the wheel speed sensor value.
- the predetermined frequency domain dividing unit 351 divides the frequency band into a wide area, a horizontal area, and a bull area.
- the Hilbert transform processing unit 352 performs Hilbert transform on each divided frequency band, and converts it into a scalar quantity based on the amplitude of the frequency (specifically, an area calculated from the amplitude and the frequency band).
- the vehicle vibration system weight setting unit 353 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are actually propagated to the vehicle.
- the human sense weight setting unit 354 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are propagated to the occupant.
- FIG. 11 is a correlation diagram showing human sensory characteristics with respect to frequency.
- the occupant's sensitivity is relatively low with respect to the frequency, and the sensitivity gradually increases as the frequency shifts to the high frequency region.
- the high frequency region above the bull region becomes difficult to be transmitted to the occupant.
- the human sense weight Wf of the wafe area is set to 0.17
- the human sense weight Wh of the leopard area is set to 0.34 which is larger than Wf
- the human sense weight Wb of the bull area is larger than Wf and Wh. Set to 0.38.
- the weight determining unit 355 calculates the ratio of the weight of each frequency band to the weight of each frequency band. If the weight of the wing area is a, the weight of the leopard area is b, and the weight of the bull area is c, the weight coefficient of the wing area is (a / (a + b + c)), and the weight coefficient of the leap area is (b / (a + b + c). )), And the weighting factor of the bull area is (c / (a + b + c)).
- the scalar amount calculation unit 356 multiplies the scalar amount of each frequency band calculated by the Hilbert transform processing unit 352 by the weight calculated by the weight determination unit 355, and outputs a final scalar amount. The processing so far is performed on the wheel speed sensor value of each wheel.
- the maximum value selection unit 357 selects the maximum value from the final scalar amounts calculated for each of the four wheels. Note that 0.01 in the lower part is set to avoid the denominator becoming 0 because the sum of the maximum values is used as the denominator in the subsequent processing.
- the ratio calculation unit 358 calculates the ratio using the sum of the scalar value maximum values in each frequency band as the denominator and the scalar value maximum value in the frequency band corresponding to the waving region as the numerator. In other words, the mixing ratio (hereinafter simply referred to as the ratio) of the wafer region included in all vibration components is calculated.
- the sprung resonance filter 359 performs filter processing of about 1.2 Hz of the sprung resonance frequency with respect to the calculated ratio, and extracts a sprung resonance frequency band component representing a waft region from the calculated ratio. In other words, since the wing area exists at about 1.2 Hz, the ratio of this area is considered to change at about 1.2 Hz. Then, the finally extracted ratio is output to the damping force control unit 35, and a frequency sensitive damping force control amount corresponding to the ratio is output.
- FIG. 12 is a characteristic diagram showing the relationship between the vibration mixing ratio in the waft region and the damping force by the frequency sensitive control of the first embodiment.
- the vibration level of sprung resonance is reduced by setting the damping force high when the ratio of the wing area is large.
- the damping force is set high, the ratio of the leopard area and the bull area is small, so that high frequency vibration or vibration that moves with the leopard is not transmitted to the occupant.
- the damping force is set low, so that the vibration transmission characteristic more than the sprung resonance is reduced, the high frequency vibration is suppressed, and a smooth riding comfort is obtained.
- FIG. 13 is a diagram showing the wheel speed frequency characteristics detected by the wheel speed sensor 5 under a certain traveling condition. This is a characteristic that appears particularly when traveling on a road surface in which small unevenness such as a stone pavement continues.
- the damping force is determined by the value of the amplitude peak in Skyhook control. There is a problem that a very high damping force is set at an incorrect timing and high-frequency vibration is deteriorated.
- the S / A side driver input control unit 31 calculates a driver input damping force control amount corresponding to a vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8, and a damping force control unit 35. Output for. For example, when the driver is turning, if the nose side of the vehicle is lifted, the driver's field of view easily deviates from the road surface. In this case, the four-wheel damping force is used as a driver input damping force to prevent the nose from rising. Output as a controlled variable. In addition, a driver input damping force control amount that suppresses a roll generated during turning is output.
- FIG. 14 is a control block diagram illustrating the configuration of roll rate suppression control according to the first embodiment.
- the lateral acceleration estimation unit 31b1 the front wheel rudder angle ⁇ f detected by the rudder angle sensor 7 and the rear wheel rudder angle ⁇ r (the actual rear wheel rudder angle if a rear wheel steering device is provided, and 0 in other cases as appropriate)
- the lateral acceleration Yg is estimated based on the vehicle speed VSP detected by the vehicle speed sensor 8. This lateral acceleration Yg is calculated by the following equation using the yaw rate estimated value ⁇ .
- Yg VSP ⁇ ⁇
- the yaw rate estimated value ⁇ is calculated by the following equation.
- the 90 ° phase advance component creation unit 31b2 differentiates the estimated lateral acceleration Yg and outputs a lateral acceleration differential value dYg.
- the 90 ° phase delay component creation unit 31b3 outputs a component F (dYg) obtained by delaying the phase of the lateral acceleration differential value dYg by 90 °.
- the component F (dYg) is obtained by returning the phase of the component from which the low-frequency region has been removed by the 90 ° phase advance component creation unit 31b2 to the phase of the lateral acceleration Yg. It is a transient component of acceleration Yg.
- the 90 ° phase delay component creation unit 31b4 outputs a component F (Yg) obtained by delaying the phase of the estimated lateral acceleration Yg by 90 °.
- the gain multiplication unit 31b5 multiplies the lateral acceleration Yg, the lateral acceleration differential value dYg, the lateral acceleration DC cut component F (dYg), and the 90 ° phase delay component F (Yg) by a gain. Each gain is set based on a roll rate transfer function with respect to the steering angle. Each gain may be adjusted according to four control modes described later.
- the square calculator 31b6 squares and outputs each component multiplied by the gain.
- the combining unit 31b7 adds the values output from the square calculation unit 31b6.
- the gain multiplication unit 31b8 multiplies the square value of each added component by the gain and outputs the result.
- the square root calculation unit 31b9 calculates a driver input attitude control amount for roll rate suppression control by calculating the square root of the value output from the gain multiplication unit 31b7, and outputs the calculated value to the damping force control unit 35.
- 90 ° phase advance component creation unit 31b2, 90 ° phase lag component creation unit 31b3, 90 ° phase lag component creation unit 31b4, gain multiplication unit 31b5, square operation unit 31b6, synthesis unit 31b7, gain multiplication unit 31b8, square root operation unit 31b9 Corresponds to the Hilbert transform unit 31b10 that generates an envelope waveform using the Hilbert transform.
- FIG. 15 is a time chart showing an envelope waveform forming process of the roll rate suppressing control according to the first embodiment.
- the driver starts steering at time t1
- roll rate begins to gradually occur.
- the 90 ° phase advance component dYg is added to form an envelope waveform
- the driver input attitude control amount is calculated based on the scalar amount based on the envelope waveform, thereby suppressing the occurrence of roll rate in the initial stage of steering.
- Can do Furthermore, by adding the lateral acceleration DC cut component F (dYg) to form an envelope waveform, it effectively suppresses the roll rate that occurs in a transitional state when the driver starts or ends steering. Can do.
- phase delay component F (Yg) If the phase delay component F (Yg) is not added, the damping force from the time t2 to the time t3 is set to a small value, which may cause the vehicle behavior to become unstable due to the roll rate resonance component. In order to suppress this roll rate resonance component, a 90 ° phase delay component F (Yg) is added.
- FIG. 16 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment.
- the unsprung resonance component extraction unit 341 extracts a unsprung resonance component by applying a band-pass filter to the wheel speed fluctuation output from the deviation calculation unit 321b in the traveling state estimation unit 32.
- the unsprung resonance component is extracted from the region of approximately 10 to 20 Hz of the wheel speed frequency component.
- the envelope waveform shaping unit 342 the extracted unsprung resonance component is scalarized, and the envelope waveform is shaped using the EnvelopeFilter.
- the gain multiplication unit 343 multiplies the scalarized unsprung resonance component by a gain, calculates an unsprung damping damping force control amount, and outputs the calculated amount to the damping force control unit 35.
- the unsprung resonance component is extracted by applying a bandpass filter to the wheel speed fluctuation output from the deviation calculating section 321b in the running state estimating section 32.
- the unsprung resonance component may be extracted by applying a bandpass filter to the driving force, or the unsprung resonance component may be extracted by the running state estimation unit 32 by estimating and calculating the unsprung speed along with the sprung speed. Good.
- FIG. 17 is a control block diagram illustrating a control configuration of the damping force control unit according to the first embodiment.
- the driver input damping force control amount output from the driver input control unit 31 the S / A attitude control amount output from the skyhook control unit 33a, and the frequency sensitive control unit 33b output
- the frequency sensitive damping force control amount, the unsprung damping damping force control amount output from the unsprung damping control unit 34, and the stroke speed calculated by the running state estimation unit 32 are input, and these values are equivalent. Convert to viscous damping coefficient.
- each damping coefficient is referred to as driver input damping coefficient k1, S / A attitude damping coefficient k2, frequency sensitive damping coefficient k3, unsprung). (Which is described as damping damping coefficient k4)), which arbitration is performed based on which damping coefficient is controlled, and a final damping coefficient is output.
- the control signal converter 35c converts the control signal (command current value) for S / A3 based on the attenuation coefficient and stroke speed adjusted by the attenuation coefficient adjuster 35b, and outputs the control signal to S / A3.
- the vehicle control apparatus has four control modes. First, the standard mode assuming a state where an appropriate turning state can be obtained while driving in a general urban area, and second, a state where a stable turning state can be obtained while actively driving a winding road etc. In sport mode, thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed, and fourthly, highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
- sport mode thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed
- highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
- priority is given to unsprung vibration suppression control by the unsprung vibration suppression control unit 34 while performing skyhook control by the skyhook control unit 33a.
- priority is given to driver input control by the driver input control unit 31, and skyhook control by the skyhook control unit 33a and unsprung vibration suppression control by the unsprung vibration suppression control unit 34 are performed.
- comfort mode the control for giving priority to the unsprung vibration damping control by the unsprung vibration damping control unit 34 is performed while performing the frequency sensitive control by the frequency sensitive control unit 33b.
- priority is given to driver input control by the driver input control unit 31, and control for adding the amount of unsprung vibration suppression control by the unsprung vibration control unit 34 to skyhook control by the skyhook control unit 33a is performed. To do.
- the adjustment of the attenuation coefficient in each mode will be described.
- FIG. 18 is a flowchart illustrating the attenuation coefficient arbitration process in the standard mode according to the first embodiment.
- step S1 it is determined whether or not the S / A attitude damping coefficient k2 is larger than the unsprung damping damping coefficient k4. If larger, the process proceeds to step S4 and k2 is set as the damping coefficient.
- step S2 a scalar amount ratio of the bull region is calculated based on the scalar amounts of the fur region, the leopard region, and the bull region described in the frequency response control unit 33b.
- step S3 it is determined whether or not the ratio of the bull area is equal to or greater than a predetermined value.
- the routine proceeds to step S5 and k4 is set.
- FIG. 19 is a flowchart showing attenuation coefficient arbitration processing in the sport mode of the first embodiment.
- step S11 the four-wheel damping force distribution ratio is calculated based on the four-wheel driver input damping coefficient k1 set by the driver input control.
- the right front wheel driver input damping coefficient is k1fr
- the left front wheel driver input damping coefficient is k1fl
- the right rear wheel driver input damping coefficient is k1rr
- the left rear wheel driver input damping coefficient is k1rl
- xfl k1fl / (k1fr + k1fl + k1rr + k1rl)
- xrr k1rr / (k1fr + k1fl + k1rr + k1rl)
- xrl k1rl / (k1fr + k1fl + k1rr + k1rl)
- xrl k
- step S12 it is determined whether or not the damping force distribution ratio x is within a predetermined range (greater than ⁇ and smaller than ⁇ ). If it is within the predetermined range, it is determined that the distribution to each wheel is substantially equal, and the process proceeds to step S13. If any one is out of the predetermined range, the process proceeds to step S16. In step S13, it is determined whether or not the unsprung damping damping coefficient k4 is larger than the driver input damping coefficient k1. If it is determined that the unsprung damping damping coefficient k4 is larger, the process proceeds to step S15 and k4 is set as the first damping coefficient k. On the other hand, if it is determined that the unsprung damping damping coefficient k4 is equal to or less than the driver input damping coefficient k1, the process proceeds to step S14, and k1 is set as the first damping coefficient k.
- step S16 it is determined whether or not the unsprung damping damping coefficient k4 is the maximum value max that S / A3 can be set. If it is determined that the maximum value is max, the process proceeds to step S17, and otherwise, the process proceeds to step S18. move on.
- step S17 the maximum value of the four-wheel driver input damping coefficient k1 is the unsprung damping damping coefficient k4, and the damping coefficient that satisfies the damping force distribution ratio is calculated as the first damping coefficient k. In other words, a value that maximizes the damping coefficient while satisfying the damping force distribution rate is calculated.
- step S18 a damping coefficient that satisfies the damping force distribution ratio in a range where all the four-wheel driver input damping coefficients k1 are equal to or greater than k4 is calculated as the first damping coefficient k.
- a value that satisfies the damping force distribution ratio set by the driver input control and also satisfies the requirements of the unsprung vibration suppression control side is calculated.
- step S19 it is determined whether or not the first attenuation coefficient k set in each of the above steps is smaller than the S / A attitude attenuation coefficient k2 set by skyhook control. Since the damping coefficient requested on the side is larger, the process proceeds to step S20 and k2 is set. On the other hand, if it is determined that k is equal to or greater than k2, the process proceeds to step S21 and k is set.
- the damping force distribution rate required from the driver input control side is closely related to the vehicle body posture, and particularly because it is closely related to the driver's line-of-sight change due to the roll mode.
- the highest priority is to secure the damping force distribution ratio.
- the sky vehicle body posture can be maintained by selecting Skyhook control with select high.
- FIG. 20 is a flowchart illustrating the attenuation coefficient arbitration process in the comfort mode according to the first embodiment.
- step S30 it is determined whether or not the frequency sensitive damping coefficient k3 is larger than the unsprung damping damping coefficient k4. If it is determined that the frequency sensitive damping coefficient k3 is larger, the process proceeds to step S32 and the frequency sensitive damping coefficient k3 is set. On the other hand, if it is determined that the frequency sensitive damping coefficient k3 is equal to or less than the unsprung damping damping coefficient k4, the process proceeds to step S32 to set the unsprung damping damping coefficient k4.
- the comfort mode priority is given to unsprung resonance control that basically suppresses unsprung resonance.
- frequency sensitive control was performed as sprung mass damping control, and the optimum damping coefficient was set according to the road surface condition, so it was possible to achieve control that ensured riding comfort and lack of grounding feeling due to fluttering under the spring. Can be avoided by unsprung vibration suppression control.
- the attenuation coefficient may be switched according to the bull ratio of the frequency scalar quantity. As a result, the ride comfort can be further ensured in the super comfort mode.
- FIG. 21 is a flowchart illustrating the attenuation coefficient arbitration process in the highway mode according to the first embodiment. Since steps S11 to S18 are the same as the arbitration process in the sport mode, the description thereof is omitted.
- step S40 the S / A attitude attenuation coefficient k2 by the skyhook control is added to the first attenuation coefficient k that has been adjusted up to step S18, and is output.
- FIG. 22 is a time chart showing a change in attenuation coefficient when traveling on a wavy road surface and an uneven road surface.
- the first damping coefficient k is always set as in the highway mode, a certain amount of damping force is always secured, and the vehicle body fluctuates even when the damping coefficient by the skyhook control is small. Such movement can be suppressed. Further, since it is not necessary to increase the skyhook control gain, it is possible to appropriately deal with road surface irregularities by using a normal control gain. In addition, since the skyhook control is performed with the first damping coefficient k set, unlike the damping coefficient limit, the damping coefficient decreasing process can be performed in the semi-active control region, and at the time of high-speed traveling It is possible to ensure a stable vehicle posture.
- FIG. 23 is a flowchart illustrating a mode selection process based on the running state in the attenuation coefficient arbitration unit of the first embodiment.
- step S50 it is determined whether or not the vehicle is in the straight traveling state based on the value of the steering angle sensor 7. If it is determined that the vehicle is traveling straight, the process proceeds to step S51. If it is determined that the vehicle is turning, the process proceeds to step S54. move on.
- step S51 it is determined based on the value of the vehicle speed sensor 8 whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state.
- step S52 If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S52 and the standard mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S53 and the comfort mode is selected. In step S54, based on the value of the vehicle speed sensor 8, it is determined whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S56 to select the sport mode.
- the standard mode when driving at a high vehicle speed in a straight running state, the standard mode is selected to stabilize the vehicle body posture by skyhook control and to suppress the high frequency vibration such as leopard and bull. In addition, unsprung resonance can be suppressed. Further, when traveling at a low vehicle speed, by selecting the comfort mode, it is possible to suppress unsprung resonance while suppressing the input of vibrations such as leopard and bull to the occupant as much as possible.
- the highway mode is selected, so that it is controlled by the value obtained by adding the damping coefficient, so that basically a high damping force can be obtained.
- the sport mode is selected, so that the vehicle posture during turning is positively secured by driver input control, and unsprung resonance is suppressed while skyhook control is performed as appropriate. Can travel in a stable vehicle posture.
- the control example in which the driving state is detected and automatically switched is shown in the first embodiment.
- a changeover switch that can be operated by the driver is provided to select the driving mode. You may control to. As a result, ride comfort and turning performance according to the driving intention of the driver can be obtained.
- the sprung mass damping control units 101a and 33 or the skyhook control unit are used in the traveling state estimation units 100, 200, and 32 based on the wheel speeds detected by the wheel speed sensor 5.
- the stroke speed, bounce rate, roll rate, and pitch rate of each wheel used for the 201 skyhook control are estimated.
- the stroke speed and the sprung state are estimated from the wheel speed, a scene is assumed in which the estimation accuracy decreases due to various factors. For example, when traveling on a low ⁇ road, a slip is likely to occur, and it is difficult to determine whether or not the wheel speed fluctuation accompanying the slip is due to road surface unevenness.
- the wheel speed fluctuation amount due to changes in road surface unevenness and sprung state tends to be small, and it is difficult to distinguish from other noises.
- the fluctuation of the braking / driving torque causes the wheel speed fluctuation, it is difficult to distinguish the fluctuation from the sprung state or the stroke speed.
- the wheel speed fluctuates due to yaw rate or lateral acceleration in the non-linear region like the friction circle limit of the tire, making it difficult to distinguish from other noises.
- the estimation accuracy is lowered, for example, a place to be increased as a damping force may be set low, and it becomes difficult to stabilize the sprung state.
- the decrease in the estimated accuracy is merely a problem of accuracy, and it is not an abnormality such as a sensor failure or an actuator failure. Therefore, it can be said that it is desirable to continue the control within a possible range. Therefore, in the first embodiment, the estimated accuracy decrease detection unit 4a that detects when the estimated accuracy is reduced is provided, and when the estimated accuracy is reduced, at least performance equal to or higher than that of a general vehicle that does not perform vehicle system vibration control is ensured. However, by continuing the control as much as possible, it was decided to stabilize the sprung behavior accompanying the decrease in the estimation accuracy.
- FIG. 24 is a control block diagram illustrating an estimated accuracy decrease detection process according to the first embodiment.
- the estimated accuracy decrease detection unit 4a a plurality of accuracy decrease detection processes are executed based on various signals, and when the signal reception unit 400 detects accuracy decrease in any one of the processes, the accuracy decrease An accuracy decrease signal is output to the hold unit 401.
- the accuracy decrease hold unit 401 continuously turns on the accuracy decrease flag while receiving the accuracy decrease signal and even if the accuracy decrease signal is interrupted for a predetermined time (1 second in the first embodiment). And Thereby, the control state based on the incorrect state estimation value is avoided while suppressing frequent switching of the accuracy decrease flag.
- each accuracy fall detection process is demonstrated in order.
- an anti-skid brake control unit (hereinafter referred to as an ABS control unit) that detects the slip state of each wheel during braking and performs pressure increase / decrease control so that the slip rate is a predetermined value or less. ),
- a vehicle behavior control unit (hereinafter referred to as a VDC control unit) that controls the brake fluid pressure of a predetermined wheel so that the turning state (for example, yaw rate) of the vehicle becomes a target turning state, and when the vehicle starts.
- a traction control unit (hereinafter referred to as a TCS control unit) that performs brake pressure increase control and engine torque down control in order to suppress drive slip.
- the estimation accuracy may be lowered because the wheel speed fluctuation of each wheel is affected. Therefore, when the ABS flag, VDC flag, or TCS flag indicating that these controls are activated is turned on, a flag on signal is output to the brake control flag hold unit 410.
- the brake control flag hold unit 410 outputs an estimated accuracy decrease signal while receiving the flag on signal.
- the accuracy decrease signal is continuously output for a predetermined time (5 seconds in the first embodiment) set in advance from the falling edge of the flag-on signal. Thereby, even when the brake control flag is repeatedly turned on and off, the estimated accuracy lowering signal can be output stably.
- the first to third traveling state estimation units 100, 200, and 32 are used to detect a component that varies with the stroke of S / A3 when estimating the stroke speed from the wheel speed data. Wheel speed is calculated. This is because the difference between the reference wheel speed and the wheel speed sensor value is extracted as a fluctuation component accompanying the stroke.
- This reference wheel speed can ensure the accuracy of stroke speed estimation under the condition that no slip or the like occurs, but when slip occurs, it is possible to determine whether it is a fluctuation due to the stroke or a fluctuation in the wheel speed due to the slip. It becomes difficult.
- a low-pass filter (0.5 Hz in the first embodiment) on the lower frequency side than the vibration frequency generated by the stroke speed, sprung speed, etc. is applied to the reference wheel speed, and the reference wheel speed after this low-pass filter action is the distance between the wheels. In the case where there is variation, the wheel speed is changed due to slip and it is detected that the estimated accuracy is lowered.
- the reference wheel speed estimation unit 420 calculates the first wheel speed V0 that is the reference wheel speed of each wheel based on the vehicle body plan view model, as described in the reference wheel speed calculation unit of FIG.
- the wheel speed sensor value detected by the wheel speed sensor 5 is ⁇ (rad / s)
- the front wheel actual steering angle detected by the steering angle sensor 7 is ⁇ f (rad)
- the rear wheel actual steering angle is ⁇ r (rad )
- the vehicle body lateral speed is Vx
- the yaw rate detected by the integrated sensor 6 is ⁇ (rad / s)
- the vehicle speed estimated from the calculated reference wheel speed ⁇ 0 is V (m / s)
- the reference to be calculated Wheel speed is VFL, VFR, VRL, VRR
- front wheel tread is Tf
- rear wheel tread is Tr
- distance from vehicle center of gravity to front wheel is Lf
- distance from vehicle center of gravity to rear wheel is Lr.
- VFL (V-Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
- VFR (V + Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
- VRL (V ⁇ Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx ⁇ Lr ⁇ ⁇ ) sin ⁇ r
- VRR (V + Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx-Lr ⁇ ⁇ ) sin ⁇ r
- V is described as V0FL, V0FR, V0RL, V0RR (corresponding to the first wheel speed) as a value corresponding to each wheel.
- V0FL ⁇ VFL-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f + Tf / 2 ⁇ ⁇
- V0FR ⁇ VFR-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f-Tf / 2 ⁇ ⁇
- V0RL ⁇ VRL + Lr ⁇ ⁇ sin ⁇ r ⁇ / cos ⁇ r + Tr / 2 ⁇ ⁇
- V0RR ⁇ VRR + Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ r-Tr / 2 ⁇ ⁇
- the difference determination unit 422 calculates the following values, respectively.
- df3 VOFL-VORL
- df4 VOFR ⁇ VORR ⁇ Warp component (diagonal difference)
- the reference wheel speed hold unit 423 continuously outputs the accuracy decrease signal while receiving the estimated accuracy decrease signal and until a predetermined time (2 seconds in the first embodiment) elapses from the end of reception. Thereby, even when the difference determination unit 422 repeatedly turns on and off the estimated accuracy decrease signal, the estimated accuracy decrease signal can be stably output.
- a plan view model is set to estimate the lateral acceleration Yg.
- Yg (VSP 2 / (1 + A ⁇ VSP 2 )) ⁇ ⁇ f
- A is a predetermined value.
- the roll rate is estimated from the lateral acceleration Yg estimated based on this relationship. At this time, in a situation where the estimation accuracy of the stroke speed is lowered due to the occurrence of slip or the like, the estimated value of the lateral acceleration deviates from the actual value.
- a low-pass filter (0.5 Hz in the first embodiment) on the lower frequency side than the vibration frequency generated by the stroke speed, sprung speed, etc. is applied to the estimated lateral acceleration, and the lateral acceleration after this low-pass filter action is the lateral acceleration.
- the estimated estimated lateral acceleration and estimated yaw rate and the sensor value detected by the integrated sensor 6 are converted into a region on the lower frequency side than the frequency region including the stroke speed and the sprung speed. Filter with a 0.5 Hz low-pass filter to extract the stationary component. Then, the difference determination unit 432 calculates the difference between the estimated value and the sensor value.
- the output of the estimated accuracy lowering signal is stopped when the predetermined value dfthi is equal to or less than a value obtained by multiplying 0.8.
- the plan view model hold unit 433 continuously outputs the accuracy decrease signal while receiving the estimated accuracy decrease signal and until a predetermined time (2 seconds in the first embodiment) elapses from the end of reception. Thereby, even when the difference determination unit 432 repeatedly turns on and off the estimated accuracy decrease signal, the estimated accuracy decrease signal can be stably output.
- shift determination unit 440 when the shift signal indicates a reverse range or a parking range, an accuracy decrease signal is continuously output to shift hold unit 441.
- the shift hold unit 441 continuously outputs an accuracy decrease signal until a predetermined time (1 second in the first embodiment) elapses from the end of reception of the estimated accuracy decrease signal from the viewpoint of preventing hunting associated with the shift operation. To do.
- the braking force release determination unit 450 determines whether or not the brake switch has been switched from on to off, and outputs an accuracy decrease signal to the brake switch hold unit 451 when it is determined that the switch has been switched.
- the brake switch hold unit 451 continuously outputs an accuracy decrease signal until a predetermined time (1 second in the first embodiment) elapses from the time when the brake switch is switched off.
- Tw Te ⁇ R TRQCVT ⁇ R AT ⁇ R FINAL ⁇ ⁇ TOTAL
- Tw is the wheel end drive torque
- Te is the engine torque
- R TRQCVT is the torque converter torque ratio
- R AT is the gear ratio of the automatic transmission
- R FINAL is the final gear ratio
- ⁇ TOTAL is the drive system efficiency.
- the wheel end braking torque varies during braking.
- the braking force is proportional to the wheel cylinder pressure (substantially the master cylinder pressure during normal braking when ABS or other control is not performed). The power is estimated.
- the low-pass filter 460 determines the wheel end driving torque in a lower frequency region than the frequency region including the stroke speed and sprung speed. Filter with a certain 0.5Hz low-pass filter to extract the stationary components. Then, the change rate of the wheel end driving torque is calculated by differentiation in the pseudo-differentiating unit 461. Then, the change rate determination unit 462 outputs an estimated accuracy lowering signal to the wheel end drive torque hold unit 463 when the calculated wheel end drive torque change rate is equal to or greater than a predetermined value dfthi set in advance.
- the output of the estimated accuracy lowering signal is stopped when the predetermined value dfthi is equal to or less than a value obtained by multiplying 0.8.
- the wheel end drive torque hold unit 463 continuously outputs the accuracy decrease signal while receiving the estimated accuracy decrease signal and until a predetermined time (1 second in the case of the first embodiment) elapses from the end of reception. .
- the rate-of-change determination unit 462 repeatedly turns on and off the estimated accuracy decrease signal, the estimated accuracy decrease signal can be stably output.
- each detection process is performed, and when any of these detects a decrease in accuracy, the estimated accuracy decrease flag is turned on, and an appropriate control process is executed when the accuracy decreases.
- the control process at the time of estimation accuracy fall is demonstrated.
- the estimated accuracy decrease detection control unit 5a When the estimated accuracy decrease flag is turned on, that is, when the estimated accuracy decrease of the stroke speed is detected, the estimated accuracy decrease detection control unit 5a outputs the engine attitude control amount as zero to the engine control unit 102. . Further, when the estimated accuracy lowering flag is turned on, the estimated accuracy lowering control unit 5a outputs the brake attitude control amount as zero to the brake control unit 202. At this time, the brake control unit 202 gradually decreases the brake posture control amount so that the brake posture control amount smoothly decreases to zero over a certain transition time (for example, 1 second).
- the sprung mass damping control by the engine 1 and the brake 20 is stopped while a decrease in the estimated accuracy of the stroke speed is detected.
- the stroke speed is estimated from the fluctuation in the predetermined frequency region of the wheel speed, and the sprung behavior control using the engine 1 and the brake 20 is performed according to the stroke speed, so the estimated accuracy of the stroke speed is reduced.
- the sprung behavior may be disturbed due to deterioration of controllability. Therefore, in this case, by stopping the sprung mass damping control by the engine 1 and the brake 20, it is possible to suppress the disturbance of the vehicle body posture due to the decrease in the estimated accuracy, and to maintain a stable vehicle body posture.
- FIG. 25 is a control block diagram illustrating the configuration of the estimation accuracy decrease detection control unit 5a according to the first embodiment.
- the estimated accuracy decrease flag, the vehicle speed VSP detected by the vehicle speed sensor 8, and the value of the vehicle speed VSP before one sampling period (one clock) are input.
- the vehicle speed calculation unit 501 outputs the vehicle speed VSP detected by the vehicle speed sensor 8 to the delay element 502 when the estimated accuracy decrease flag is turned off.
- the flag is turned off.
- the vehicle speed immediately before one sampling period that is, the vehicle speed immediately before the decrease in the estimation accuracy of the stroke speed is detected is output to the attenuation coefficient setting unit 503.
- the delay element 502 delays a signal for one clock.
- the attenuation coefficient setting unit 503 inputs the vehicle speed immediately before the decrease in the estimated accuracy of the stroke speed, the outside air temperature detected by the temperature sensor 14, and the current control mode are input, and the attenuation coefficient k5 when the estimated accuracy decreases. Is output. A method for setting the attenuation coefficient k5 will be described later.
- the damping force control amount computing unit 504 computes a control signal for S / A3 based on the damping coefficient k5 and a predetermined virtual stroke speed.
- the virtual stroke speed is a fixed value
- FIG. 26 is an explanatory diagram illustrating a method for setting the attenuation coefficient when the estimated accuracy is reduced in the attenuation coefficient setting unit according to the first embodiment.
- the damping coefficient k5 is basically a value proportional to the vehicle speed (the vehicle speed immediately before the drop in estimated accuracy of the stroke speed is detected), and the damping coefficient of the front wheel side Fr is the same as the damping coefficient of the rear wheel side Rr at the same vehicle speed. The characteristics should be higher.
- the attenuation coefficient k5 is a value corresponding to the control mode. Specifically, the highest value is set in the sport mode and the highway mode, and the lowest value is set in the comfort mode. In the standard mode, an intermediate value between the sports mode (highway mode) and the comfort mode is set.
- the attenuation coefficient k5 in the sport mode and the highway mode is an upper limit attenuation coefficient that does not transmit vibration in the horizontal region (3 to 6 Hz) to the occupant.
- the attenuation coefficient setting unit 504 determines the attenuation coefficient when the outside air temperature is outside the predetermined range (for example, outside air temperature ⁇ 5 ° C. or outside air temperature ⁇ 30 ° C.), and the outside air temperature is within the predetermined range (for example, A value higher than the attenuation coefficient in the case of 5 ° C. ⁇ outside air temperature ⁇ 30 ° C. (the same attenuation coefficient as in the standard mode) is set.
- vehicle speed sensitive control is performed in which the damping force of S / A3 is a fixed damping force according to the control mode.
- the damping force of S / A3 is a fixed damping force according to the control mode.
- the fixed damping force is determined from the vehicle speed immediately before the estimated accuracy drop is detected, and it does not depend on the stroke speed, which is highly likely to be erroneously estimated. Due to the transition to a stable control state, it is possible to suppress the deterioration of the riding comfort performance and the instability of the behavior.
- the damping coefficient k5 is set from the vehicle speed immediately before the estimated accuracy decrease is detected, and the fixed damping force is determined based on the damping coefficient k5 and a predetermined virtual stroke speed (0.1 m / s). At this time, the damping coefficient k5 is set to a higher value as the vehicle speed immediately before the estimated accuracy decrease is detected, so that an optimum damping force that matches the vehicle speed is obtained. That is, it is possible to achieve both of ensuring the riding comfort in the low vehicle speed range and ensuring the steering stability in the high vehicle speed range.
- the damping coefficient k5 is set to a higher value in the order of the sport mode, the highway mode, the standard mode, and the comfort mode, a fixed damping force that matches the control mode can be set.
- the damping force is increased to give priority to steering stability
- in comfort mode the damping force is reduced to give priority to riding comfort
- in standard mode steering stability and riding comfort are set with damping force in the middle.
- the fixed damping force of the front wheels is made larger than the fixed damping force of the rear wheels, so the nose dive can be suppressed and the steer tendency can be changed to an understeer tendency, which improves the stability of turning behavior. It can be secured.
- the outside air temperature is outside the predetermined range (outside air temperature ⁇ 5 ° C. or outside air temperature ⁇ 30 ° C.)
- the outside air The fixed damping force is made larger than when the temperature is outside the predetermined range (outside air temperature ⁇ 5 ° C. or outside air temperature ⁇ 30 ° C.).
- reverse steer means that the steering tendency changes from an understeer tendency to an oversteer tendency during turning. Therefore, in the first embodiment, in the comfort mode, the fixed damping force when traveling on a low ⁇ road is made larger than the fixed damping force when traveling on a high ⁇ road. As a result, it is possible to suppress a reduction in the ground contact load of the rear tire and to suppress the generation of a nose dive. Therefore, it is possible to prevent the steering tendency from becoming an oversteer tendency and to ensure the stability of the turning behavior.
- the fixed damping force when traveling in the low ⁇ state is set to the same value as the fixed damping force when traveling in the high ⁇ state.
- the fixed damping force is the maximum fixed damping force that does not transmit vibrations that move to the occupants, thus improving steering stability while suppressing deterioration in riding comfort. Can do.
- the command current value (command current value at the time of estimation accuracy decrease) is output from the control unit 5a when the estimated accuracy decrease is detected
- the attenuation adjusted by the attenuation coefficient arbitration unit 35b instead of the command current value (normal command current value) based on the coefficient and the stroke speed
- the command current value when the estimated accuracy is reduced is output to S / A3.
- the command current value is gradually changed so that the command current value smoothly transitions from the current command current value over the predetermined transition time to the command current value when the estimated accuracy decreases.
- the transition time is set to a time of at least a period (for example, 0.5 Hz) equal to or less than the sprung resonance (1.2 Hz), for example, 1 second.
- Example 1 has the following effects.
- S / A 3 (actuator) that performs sprung mass damping control, wheel speed sensor 5 (wheel speed detecting means) that detects the wheel speed, and wheel speed detected by the wheel speed sensor 5 in a predetermined frequency region
- Third traveling state estimation unit 32 (sprung state estimating means) that estimates the sprung state based on the information
- S / A3 (actuator) is controlled so that the estimated sprung state becomes the target sprung state.
- An S / A controller 3a actuator attitude control means
- an estimated accuracy decrease detection unit 4a (estimation accuracy decrease detection means) that detects a decrease in the estimation accuracy of the third running state estimation unit 32, and an estimated accuracy decrease detection unit 4a.
- control by the actuator attitude control means limited as compared with a case where the estimated accuracy is not decreased is executed. Therefore, it can be detected that the estimated accuracy of the sprung state has been lowered, and it is possible to avoid continuing control while the estimated accuracy is reduced.
- damping force control that is limited when the estimated accuracy is reduced by the control unit 5a when the estimated accuracy is reduced, erroneous control can be suppressed and stabilization of the vehicle body posture can be achieved. .
- Estimated accuracy lowering detection control unit 5a that causes the damping force of S / A3 to transition to a fixed damping force according to the vehicle speed (vehicle state quantity) before the estimated accuracy detecting unit 4a detects a decrease in the estimated accuracy. (Restriction control means). Therefore, it can be detected that the estimated accuracy of the sprung state has been lowered, and it is possible to avoid continuing control while the estimated accuracy is reduced. Further, when the estimated accuracy decrease detection time control unit 5a transitions to a fixed damping force corresponding to the vehicle speed that is the vehicle state quantity before the estimated accuracy is decreased when the estimated accuracy is decreased, erroneous control can be suppressed. Can be achieved.
- the S / A controller 3a has a highway mode, a sports mode, a standard mode, and a comfort mode (a plurality of control modes) in which different damping force control ranges are set for a certain stroke speed, and detection of a decrease in estimated accuracy.
- the hour control unit 5a transits to a fixed damping force corresponding to the control mode when the estimated accuracy detection unit 4a detects a decrease in the estimated accuracy. For example, when a decrease in estimated accuracy is detected during traveling in the comfort mode, it is assumed that it is difficult to ensure sufficient stability as a vehicle state when the attenuation coefficient is fixed to a low value. Therefore, in this case, stability can be secured by fixing the damping force higher than the damping force set in the comfort mode.
- the vehicle speed sensor 8, the steering angle sensor 7, the integrated sensor 6 for detecting the actual vehicle state that is the actual yaw rate and / or the actual lateral acceleration, the detected vehicle speed and the steering angle are input, and the vehicle plan A vehicle motion state estimation unit 430 (vehicle state estimation unit) that estimates a vehicle state that is yaw rate and / or lateral acceleration based on a view model, and an estimated accuracy decrease detection unit 4a (estimation accuracy decrease detection unit)
- the actual vehicle state detected by the vehicle state estimation unit 430 and the estimated vehicle state estimated by the vehicle state estimation means are compared with information on a lower frequency side than the predetermined frequency region where the sprung behavior appears, and both information
- the first traveling state estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32 detect that the estimation accuracy has decreased.
- the estimated accuracy reduction detection control unit 5a by restricting the function when the estimated accuracy is reduced by the estimated accuracy reduction detection control unit 5a, it is possible to suppress erroneous control and to achieve stabilization of the vehicle body posture.
- the estimated accuracy decrease detection control unit 5a makes a transition to a fixed damping force according to the vehicle speed immediately before the estimated accuracy detection unit 4a detects a decrease in estimated accuracy. Therefore, the fixed damping force can be set based on the vehicle speed actually used in each control mode rather than the vehicle speed when the estimated accuracy is lowered, and the stability of the vehicle can be improved.
- the actuator has an engine 1 (vehicle power source) and a brake 20 (friction brake), and the actuator control means has an engine controller 1a and a brake controller 2a, and an estimated accuracy lowering detection control unit 5a.
- the estimated accuracy detection unit 4a detects a decrease in estimated accuracy, the control by the engine controller 1a and the brake controller 2a is stopped. That is, if the actuator that contributes to the longitudinal acceleration of the vehicle, such as braking / driving torque, performs torque control in the longitudinal direction using incorrect information or information with low accuracy, inadvertent acceleration / deceleration unrelated to the sprung state May occur.
- the possibility of giving the driver a sense of incongruity can be avoided by stopping the control that affects the braking / driving torque in the front-rear direction.
- the vehicle speed sensor 8 (vehicle speed detection means) for detecting the vehicle speed is provided, and the estimated accuracy decrease detection control unit 5a shifts to a higher fixed damping force as the vehicle speed as the vehicle state quantity increases. Therefore, a stable damping force can be secured according to the vehicle speed. Further, since the fixed damping force increases as the vehicle speed increases, the stability of the vehicle can be further ensured.
- the S / A controller 3a (controller) estimates the sprung state based on information in a predetermined frequency region of the wheel speed detected by the wheel speed sensor 5.
- the S / A3 is controlled so that the sprung state becomes the target sprung state, and the estimated accuracy of the sprung state is reduced, the estimated accuracy of the damping force of S / A3 is not reduced.
- the damping force control is limited compared to the case. Therefore, it can be detected that the estimated accuracy of the sprung state has been lowered, and it is possible to avoid continuing control while the estimated accuracy is reduced.
- the damping force control when the estimated accuracy is decreased by the estimated accuracy decrease detection control unit 5a, it is possible to suppress erroneous control and to achieve stabilization of the vehicle body posture.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Vehicle Body Suspensions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
本発明は、上記問題に着目してなされたもので、ばね上状態の推定確度が低下しても安定した車体姿勢を達成可能な車両の制御装置及び制御方法を提供することを目的とする。
1a エンジンコントローラ(エンジン制御部)
2 ブレーキコントロールユニット
2a ブレーキコントローラ(ブレーキ制御部)
3 S/A(減衰力可変ショックアブソーバ)
3a S/Aコントローラ
5 車輪速センサ
6 一体型センサ
7 舵角センサ
8 車速センサ
20 ブレーキ
31 ドライバ入力制御部
32 走行状態推定部
33 ばね上制振制御部
33a スカイフック制御部
33b 周波数感応制御部
34 ばね下制振制御部
35 減衰力制御部
331 第1目標姿勢制御量演算部
332 エンジン姿勢制御量演算部
333 第2目標姿勢制御量演算部
334 ブレーキ姿勢制御量演算部
335 第3目標姿勢制御量演算部
336 ショックアブソーバ姿勢制御量演算部
図1は実施例1の車両の制御装置を表すシステム概略図である。車両には、動力源であるエンジン1と、各輪に摩擦力による制動トルクを発生させるブレーキ20(以下、個別の輪に対応するブレーキを表示するときには右前輪ブレーキ:20FR、左前輪ブレーキ:20FL、右後輪ブレーキ:20RR、左後輪ブレーキ:20RLと記載する。)と、各輪と車体との間に設けられ減衰力を可変に制御可能なショックアブソーバ3(以下、S/Aと記載する。個別の輪に対応するS/Aを表示するときには右前輪S/A:3FR、左前輪S/A:3FL、右後輪S/A:3RR、左後輪S/A:3RLと記載する。)と、を有する。
実施例1の車両の制御装置にあっては、ばね上に生じる振動状態を制御するために、3つのアクチュエータを使用する。このとき、それぞれの制御がばね上状態を制御するため、相互干渉が問題となる。また、エンジン1によって制御可能な要素と、ブレーキ20によって制御可能な要素と、S/A3によって制御可能な要素はそれぞれ異なり、これらをどのように組み合わせて制御するべきかが問題となる。
例えば、ブレーキ20はバウンス運動とピッチ運動の制御が可能であるが、両方を行なうと減速感が強く運転者に違和感を与えやすい。また、S/A3はロール運動とバウンス運動とピッチ運動の全てを制御可能であるが、S/A3によって全ての制御を広い範囲で行う場合、S/A3の製造コストの上昇を招き、また、減衰力が高くなる傾向があることから路面側からの高周波振動が入力されやすく、やはり運転者に違和感を与えやすい。言い換えると、ブレーキ20による制御は高周波振動の悪化を招くことは無いが減速感の増大を招き、S/A3による制御は減速感を招くことは無いが高周波振動の入力を招くというトレードオフが存在する。
(1)エンジン1及びブレーキ20による制御を並行して行うことで、S/A3による制御量を抑制する。
(2)ブレーキ20の制御対象運動をピッチ運動に限定することで、ブレーキ20による制御での減速感を解消する。
(3)エンジン1及びブレーキ20による制御量を実際に出力可能な制御量よりも制限して出力することで、S/A3での負担を低減しつつ、エンジン1やブレーキ20の制御に伴って生じる違和感を抑制する。
(4)全てのアクチュエータによりスカイフック制御を行う。このとき、一般にスカイフック制御に必要とされるストロークセンサやばね上上下加速度センサ等を使用することなく、全ての車両に搭載されている車輪速センサを利用して安価な構成でスカイフック制御を実現する。
(5)S/A3によるばね上制御を行なう際、スカイフック制御のようなベクトル制御では対応が困難な高周波振動の入力に対し、新たにスカラー制御(周波数感応制御)を導入する。
(6)走行状態に応じて、S/A3が実現する制御状態を適宜選択することで、走行状況に応じた適切な制御状態を提供する。
以上が、実施例において構成した全体の制御システムの概要である。以下、これらを実現する個別の内容について、順次説明する。
ここで、実施例1では、コントローラとして、3つのコントローラを備えた構成を示したが、各コントローラを全て一つの統合コントローラから構成してもよく特に限定しない。実施例1において3つのコントローラを備えた構成としたのは、既存の車両におけるエンジンコントローラとブレーキコントローラをそのまま流用してエンジン制御部1a及びブレーキ制御部2aとし、別途S/Aコントローラ3aを搭載することで実施例1の車両の制御装置を実現することを想定したものである。
エンジンコントローラ1aは、主に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部101aのスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを推定する第1走行状態推定部100と、エンジントルク指令であるエンジン姿勢制御量を演算するエンジン姿勢制御部101と、演算されたエンジン姿勢制御量に基づいてエンジン1の運転状態を制御するエンジン制御部102とを有する。尚、第1走行状態推定部100の推定処理内容については後述する。
エンジン姿勢制御部101は、スカイフック制御によりバウンス運動及びピッチ運動を抑制するばね上制御量を演算するばね上制振制御部101aと、前輪と後輪の接地荷重変動を抑制する接地荷重変動抑制制御量を演算する接地荷重制御部101bと、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するヨー応答制御量を演算するエンジン側ドライバ入力制御部101cとを有する。エンジン姿勢制御部101は、これら各制御部により演算された制御量が最小となるエンジン姿勢制御量を最適制御(LQR)により演算し、エンジン制御部102に対して最終的なエンジン姿勢制御量を出力する。このように、エンジン1によってバウンス運動及びピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。
ブレーキコントローラ2aは、車輪速センサ5により検出された車輪速に基づいて、各輪のストローク速度及びピッチレイト等を推定する第2走行状態推定部200と、推定されたストローク速度及びピッチレイトに基づいてスカイフック制御に基づくブレーキ姿勢制御量を演算するスカイフック制御部201(詳細については後述する。)と、演算されたブレーキ姿勢制御量に基づいてブレーキ20の制動トルクを制御するブレーキ制御部202とを有する。尚、実施例1では、第1走行状態推定部100及び第2走行状態推定部200における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよい。このように、ブレーキ20によってピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。
S/Aコントローラ3aは、運転者の操作(ステアリング操作、アクセル操作及びブレーキペダル操作等)に基づいて所望の車両姿勢を達成するドライバ入力制御を行うドライバ入力制御部31と、各種センサの検出値(主に車輪速センサ5の車輪速センサ値)に基づいて走行状態を推定する第3走行状態推定部32と、推定された走行状態に基づいてばね上の振動状態を制御するばね上制振制御部33と、推定された走行状態に基づいてばね下の振動状態を制御するばね下制振制御部34と、ドライバ入力制御部31から出力されたショックアブソーバ姿勢制御量と、ばね上制振制御部33から出力されたばね上制振制御量と、ばね下制振制御部34から出力されたばね下制振制御量とに基づいて、S/A3に設定すべき減衰力を決定し、S/Aの減衰力制御を行う減衰力制御部35とを有する。尚、実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよく特に限定しない。
まず、各フィードバック制御系に設けられた共通する構成である第1,第2,第3走行状態推定部について説明する。実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用している。よって、各推定部内における処理は共通であるため、代表して第3走行状態推定部32における推定処理を説明する。尚、これら各走行状態推定部は、車輪速を用いた状態推定であれば別々の推定モデルを備えていてもよく、特に限定しない。
ここで、基準車輪速演算部300について説明する。図6は実施例1の基準車輪速演算部の構成を表すブロック図である。基準車輪速とは、各車輪速のうち、種々の外乱が除去された値を指すものである。言い換えると、車輪速センサ値と基準車輪速との差分は、車体のバウンス挙動、ロール挙動、ピッチ挙動又はばね下上下振動によって発生したストロークに応じて変動した成分と関連がある値であり、実施例では、この差分に基づいてストローク速度を推定する。
VFL=(V-Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V-Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL-Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR-Lf・γsinδf}/cosδf-Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr-Tr/2・γ
V0F=(V0FL+V0FR)/2
V0R=(V0RL+V0RR)/2
これにより、ロールに基づく外乱を除去した第2車輪速V0F、V0Rが得られる。
(式3)
VbFL=VbFR=VbRL=VbRR={Lr/(Lf+Lr)}V0F+{Lf/(Lf+Lr)}V0R
基準車輪速再配分部304では、(式1)に示す車体プランビューモデルのVにVbFL(=VbFR=VbRL=VbRR)をそれぞれ代入し、最終的な各輪の基準車輪速VFL、VFR、VRL、VRRを算出し、それぞれタイヤ半径r0で除算して基準車輪速ω0を算出する。
スカイフック制御とは、S/A3のストローク速度とばね上速度の関係に基づいて減衰力を設定し、ばね上を姿勢制御することでフラットな走行状態を達成するものである。ここで、スカイフック制御によってばね上の姿勢制御を達成するには、ばね上速度をフィードバックする必要がある。今、車輪速センサ5から検出可能な値はストローク速度であり、ばね上に上下加速度センサ等を備えていないことから、ばね上速度は推定モデルを用いて推定する必要がある。以下、推定モデルの課題及び採用すべきモデル構成について説明する。
(推定式1)
Ms・ddz2=-Ks(z2-z1)-Cs(dz2-dz1)
この関係式をラプラス変換して整理すると下記のように表される。
(推定式2)
dz2=-(1/Ms)・(1/s2)・(Cs・s+Ks)(dz2-dz1)
ここで、dz2-dz1はストローク速度(Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRR)であることから、ばね上速度はストローク速度から算出できる。しかし、スカイフック制御によって減衰力が変更されると、推定精度(推定確度)が著しく低下するため、コンベ車両モデルでは大きな姿勢制御力(減衰力変更)を与えられないという問題が生じる。
(推定式3)
dz2=-(1/Ms)・(1/s2)・{(Cs+Cv)・s+Ks}(dz2-dz1)
ただし、
dz2・(dz2-dz1)≧0のとき Cv=Csky・{dz2/(dz2-dz1)}
dz2・(dz2-dz1)<0のとき Cv=0
すなわち、Cvは不連続な値となる。
dz2=-(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}(dz2-dz1)
この場合、擬似微分項{(Cs/Ms)s+(Ks/Ms)}には不連続性が生じず、{1/(s+Csky/Ms)}の項はローパスフィルタで構成できる。よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。
以上の関係式から、xsB、xsR、xsP、xsWの微分dxsB等は以下の式で表される。
dxsB=1/4(Vz_sFL+Vz_sFR+Vz_sRL+Vz_sRR)
dxsR=1/4(Vz_sFL-Vz_sFR+Vz_sRL-Vz_sRR)
dxsP=1/4(-Vz_sFL-Vz_sFR+Vz_sRL+Vz_sRR)
dxsW=1/4(-Vz_sFL+Vz_sFR+Vz_sRL-Vz_sRR)
dB=GB・dxsB
dR=GR・dxsR
dP=GP・dxsP
以上から、各輪のストローク速度に基づいて、実際の車両におけるばね上の状態推定が達成できる。
次に、ばね上制振制御部101a,スカイフック制御部201及びばね上制振制御部33において実行されるスカイフック制御構成について説明する。スカイフック制御では、上述のように車輪速に基づいて推定されたばね上状態を目標ばね上状態となるように制御する。言い換えると、車輪速変化はばね上状態に対応して変化するものであり、バウンス,ロール,ピッチといったばね上状態を目標ばね上状態に制御する場合、検出された車輪速の変化が目標ばね上状態に対応する車輪速変化となるように制御するものである。
実施例1の車両の制御装置にあっては、ばね上姿勢制御を達成するアクチュエータとして、エンジン1と、ブレーキ20と、S/A3の三つを備えている。このうち、エンジンコントローラ1aにおけるばね上制振制御部101aでは、バウンスレイトとピッチレイトの2つを制御対象とし、ブレーキコントローラ2aにおけるスカイフック制御部201においてはピッチレイトを制御対象とし、S/Aコントローラ3aにおけるスカイフック制御部33aでは、バウンスレイト、ロールレイト、ピッチレイトの3つを制御対象とする。
FB=CskyB・dB
ロール方向のスカイフック制御量は、
FR=CskyR・dR
ピッチ方向のスカイフック制御量は、
FP=CskyP・dP
となる。
(バウンス方向のスカイフック制御量FB)
バウンス方向のスカイフック制御量FBは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ロール方向のスカイフック制御量FR)
ロール方向のスカイフック制御量FRは、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ピッチ方向のスカイフック制御量FP)
ピッチ方向のスカイフック制御量FPは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部201においてブレーキ姿勢制御量として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図8は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。
m・a・Hcg=Mp
Mp=(BFf+BFr)・Hcg
ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
Vp>0(前輪沈み込み)のとき Mp=0
Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。
次に、減速感低減処理について説明する。この処理は、ブレーキ姿勢制御量演算部334内で行なわれる上記制限値による制限に対応する処理である。2乗処理部3342aでは、ピッチレイト信号を2乗処理する。これにより符号を反転させると共に、制御力の立ち上がりを滑らかにする。ピッチレイト2乗減衰モーメント演算部3342bでは、2乗処理されたピッチレイトに2乗処理を考慮したピッチ項のスカイフックゲインCskyPを乗算してピッチモーメントMpを演算する。目標減速度算出部3342cでは、ピッチモーメントMpを質量m及び車両重心点と路面との間の高さHcgにより除算して目標減速度を演算する。
次に、ばね上制振制御部内における周波数感応制御処理について説明する。実施例1では、基本的に車輪速センサ5の検出値に基づいてばね上速度を推定し、それに基づくスカイフック制御を行うことでばね上制振制御を達成する。しかしながら、車輪速センサ5では十分に推定精度が担保出来ないと考えられる場合や、走行状況や運転者の意図によっては積極的に快適な走行状態(車体フラット感よりも柔らかな乗り心地)を担保したい場合もある。このような場合には、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があることから、振動特性のスカラー量に応じたばね上制振制御である周波数感応制御を導入することとした。
車両振動系重み設定部353では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が実際に車両に伝播される重みを設定する。人間感覚重み設定部354では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が乗員に伝播される重みを設定する。
スカラー量演算部356では、ヒルベルト変換処理部352により算出された各周波数帯のスカラー量に重み決定手段355において算出された重みを乗算し、最終的なスカラー量を出力する。ここまでの処理は、各輪の車輪速センサ値に対して行なわれる。
これに対し、周波数感応制御のようにベクトルではなくスカラー量に基づいて制御する場合、図13に示すような路面にあってはフワ領域の比率が小さいことから低い減衰力が設定されることになる。これにより、ブル領域の振動の振幅が大きい場合であっても十分に振動伝達特性が減少するため、高周波振動の悪化を回避することができるものである。以上から、例え高価なセンサ等を備えてスカイフック制御を行ったとしても位相推定精度が悪化することで制御が困難な領域では、スカラー量に基づく周波数感応制御によって高周波振動を抑制できるものである。
次に、S/A側ドライバ入力制御部について説明する。S/A側ドライバ入力制御部31では、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するドライバ入力減衰力制御量を演算し、減衰力制御部35に対して出力する。例えば、運転者が旋回中において、車両のノーズ側が浮き上がると、運転者の視界が路面から外れやすくなることから、この場合にはノーズ浮き上がりを防止するように4輪の減衰力をドライバ入力減衰力制御量として出力する。また、旋回時に発生するロールを抑制するドライバ入力減衰力制御量を出力する。
ここで、S/A側ドライバ入力制御によって行われるロール抑制制御について説明する。図14は実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。横加速度推定部31b1では、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車速センサ8により検出された車速VSPに基づいて横加速度Ygを推定する。この横加速度Ygは、ヨーレイト推定値γを用いて以下の式により算出される。
Yg=VSP・γ
なおヨーレイト推定値γは以下の式により算出される。
ゲイン乗算部31b5では、横加速度Yg、横加速度微分値dYg、横加速度DCカット成分F(dYg)、90°位相遅れ成分F(Yg)にそれぞれゲインを乗算する。各ゲインは、操舵角に対するロールレイト伝達関数に基づいて設定する。また各ゲインは、後述する4つの制御モードに応じて調整しても良い。二乗演算部31b6では、ゲインを乗算した各成分の二乗して出力する。合成部31b7では、二乗演算部31b6が出力した値を足し合わせる。ゲイン乗算部31b8では、足し合わせた各成分の二乗の値にゲインを乗算して出力する。平方根演算部31b9は、ゲイン乗算部31b7が出力した値の平方根を演算することで、ロールレイト抑制制御用のドライバ入力姿勢制御量を演算し、減衰力制御部35に対して出力する。
90°位相進み成分作成部31b2、90°位相遅れ成分作成部31b3、90°位相遅れ成分作成部31b4、ゲイン乗算部31b5、二乗演算部31b6、合成部31b7、ゲイン乗算部31b8、平方根演算部31b9は、ヒルベルト変換を利用した包絡波形を生成するヒルベルト変換部31b10に相当する。
時刻t1において、運転者が操舵を開始すると、ロールレイトが徐々に発生し始める。このとき、90°位相進み成分dYgを加算して包絡波形を形成し、包絡波形に基づくスカラー量に基づいてドライバ入力姿勢制御量を演算することで、操舵初期におけるロールレイトの発生を抑制することができる。さらに、横加速度DCカット成分F(dYg)を加算して包絡波形を形成することで、運転者が操舵を開始もしくは終了する際の過渡的な状態において発生するロールレイトを効率的に抑制することができる。言い換えると、ロールの発生が安定している定常旋回状態では、過度に減衰力を高めることがなく、乗り心地の悪化を回避できる。
次に、時刻t2において、運転者が保舵状態となると、90°位相進み成分dYgおよび横加速度DCカット成分F(dYg)は無くなり、今度は90°位相遅れ成分F(Yg)が加算される。このとき、定常旋回状態でロールレイト自体の変化はさほどない場合であっても、一旦ロールした後に、ロールの揺り返しに相当するロールレイト共振成分が発生する。仮に、位相遅れ成分F(Yg)が加算されていないと、時刻t2から時刻t3における減衰力は小さな値に設定されてしまい、ロールレイト共振成分による車両挙動の不安定化を招くおそれがある。このロールレイト共振成分を抑制するために90°位相遅れ成分F(Yg)を付与するものである。
次に、ばね下制振制御部の構成について説明する。図7(a)のコンベ車両において説明したように、タイヤも弾性係数と減衰係数を有することから共振周波数帯が存在する。ただし、タイヤの質量はばね上の質量に比べて小さく、弾性係数も高いため、ばね上共振よりも高周波数側に存在する。このばね下共振成分により、ばね下においてタイヤがバタバタ動いてしまい、接地性が悪化するおそれがある。また、ばね下でのバタつきは乗員に不快感を与えるおそれもある。そこで、ばね下共振によるバタつきを抑制するために、ばね下共振成分に応じた減衰力を設定するものである。
次に、減衰力制御部35の構成について説明する。図17は実施例1の減衰力制御部の制御構成を表す制御ブロック図である。等価粘性減衰係数変換部35aでは、ドライバ入力制御部31から出力されたドライバ入力減衰力制御量と、スカイフック制御部33aから出力されたS/A姿勢制御量と、周波数感応制御部33bから出力された周波数感応減衰力制御量と、ばね下制振制御部34から出力されたばね下制振減衰力制御量と、走行状態推定部32により演算されたストローク速度が入力され、これらの値を等価粘性減衰係数に変換する。
次に、減衰係数調停部35bの調停内容について説明する。実施例1の車両の制御装置にあっては、4つの制御モードを有する。第1に一般的な市街地などを走行しつつ適度な旋回状態が得られる状態を想定したスタンダードモード、第2にワインディングロードなどを積極的に走行しつつ安定した旋回状態が得られる状態を想定したスポーツモード、第3に低車速発進時など、乗り心地を優先して走行する状態を想定したコンフォートモード、第4に直線状態の多い高速道路等を高車速で走行する状態を想定したハイウェイモードである。
スポーツモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御とばね下制振制御部34によるばね下制振制御とを実施する。
コンフォートモードでは、周波数感応制御部33bによる周波数感応制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
ハイウェイモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御にばね下制振制御部34によるばね下制振制御の制御量を加算する制御を実施する。
以下、これら各モードにおける減衰係数の調停について説明する。
図18は実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。
ステップS1では、S/A姿勢減衰係数k2がばね下制振減衰係数k4より大きいか否かを判断し、大きいときはステップS4に進んで減衰係数としてk2を設定する。
ステップS2では、周波数感応制御部33bにおいて説明したフワ領域、ヒョコ領域及びブル領域のスカラー量に基づいて、ブル領域のスカラー量比率を演算する。
ステップS3では、ブル領域の比率が所定値以上か否かを判断し、所定値以上の場合は高周波振動による乗り心地悪化が懸念されることからステップS4に進み、減衰係数として低い値であるk2を設定する。一方、ブル領域の比率が上記所定値未満の場合は減衰係数を高く設定しても高周波振動による乗り心地悪化の心配が少ないことからステップS5に進んでk4を設定する。
図19は実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。
ステップS11では、ドライバ入力制御により設定された4輪のドライバ入力減衰係数k1に基づいて4輪減衰力配分率を演算する。右前輪のドライバ入力減衰係数をk1fr、左前輪のドライバ入力減衰係数をk1fl、右後輪のドライバ入力減衰係数をk1rr、左後輪のドライバ入力減衰係数をk1rl、各輪の減衰力配分率をxfr、xfl、xrr、xrlとすると、
xfr=k1fr/(k1fr+k1fl+k1rr+k1rl)
xfl=k1fl/(k1fr+k1fl+k1rr+k1rl)
xrr=k1rr/(k1fr+k1fl+k1rr+k1rl)
xrl=k1rl/(k1fr+k1fl+k1rr+k1rl)
により算出される。
ステップS13では、ばね下制振減衰係数k4がドライバ入力減衰係数k1より大きいか否かを判断し、大きいと判断した場合はステップS15に進み、第1減衰係数kとしてk4を設定する。一方、ばね下制振減衰係数k4がドライバ入力減衰係数k1以下であると判断した場合はステップS14に進み、第1減衰係数kとしてk1を設定する。
ステップS17では、4輪のドライバ入力減衰係数k1の最大値がばね下制振減衰係数k4となり、かつ、減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、減衰力配分率を満たしつつ減衰係数が最も高くなる値を演算する。
ステップS18では、4輪のドライバ入力減衰係数k1がいずれもk4以上となる範囲で減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、ドライバ入力制御によって設定される減衰力配分率を満たし、かつ、ばね下制振制御側の要求をも満たす値を演算する。
図20は実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。
ステップS30では、周波数感応減衰係数k3がばね下制振減衰係数k4より大きいか否かを判断し、大きいと判断した場合はステップS32に進んで周波数感応減衰係数k3を設定する。一方、周波数感応減衰係数k3がばね下制振減衰係数k4以下であると判断した場合はステップS32に進んでばね下制振減衰係数k4を設定する。
図21は実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。尚、ステップS11からS18までは、スポーツモードにおける調停処理と同じであるため、説明を省略する。
ステップS40では、ステップS18までで調停された第1減衰係数kにスカイフック制御によるS/A姿勢減衰係数k2を加算して出力する。
次に、上記各走行モードを選択するモード選択処理について説明する。図23は実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。
ステップS50では、舵角センサ7の値に基づいて直進走行状態か否かを判断し、直進走行状態と判断された場合にはステップS51に進み、旋回状態と判断された場合にはステップS54に進む。
ステップS51では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS52に進んでスタンダードモードを選択する。一方、VSP1未満と判断された場合にはステップS53に進んでコンフォートモードを選択する。
ステップS54では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS55に進んでハイウェイモードを選択する。一方、VSP1未満と判断された場合にはステップS56に進んでスポーツモードを選択する。
次に、推定確度の低下について説明する。上述したように、実施例1では、各走行状態推定部100,200,32において、車輪速センサ5により検出された車輪速に基づいて、ばね上制振制御部101a,33もしくはスカイフック制御部201のスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを推定している。しかしながら、車輪速からストローク速度やばね上状態を推定する際、種々の要因によって推定精度が低下する場面が想定される。例えば、低μ路を走行する場合、スリップが発生しやすく、このスリップに伴う車輪速変動が路面凹凸によるものなのか否かを判別しにくい。また、低μ路の場合は路面凹凸やばね上状態の変化による車輪速変動量が小さくなる傾向にあり、他のノイズ等との判別が困難となる。また、制駆動トルクの変動は、車輪速変動をもたらすため、この変動とばね上状態やストローク速度との判別が困難となる。また、タイヤの摩擦円限界のように非線形領域におけるヨーレイトや横加速度によっても車輪速変動が生じ、他のノイズ等との判別が困難となる。推定確度が低下すると、例えば減衰力として高くすべきところを低く設定してしまう場合があり、ばね上状態を安定させることが困難となる。
図24は実施例1の推定確度低下検知処理を表す制御ブロック図である。推定確度低下検知部4a内では、各種信号に基づいて複数の確度低下検知処理を実行し、信号受信部400において、それぞれの処理の何れか一つでも確度低下を検知した場合には、確度低下ホールド部401に確度低下信号を出力する。確度低下ホールド部401では、確度低下信号を受信している間及び確度低下信号が途切れたとしても予め設定された所定時間(実施例1の場合は1秒間)、継続的に確度低下フラグをオンとする。これにより、確度低下フラグの頻繁な切り替わりを抑制しつつ、誤った状態推定値に基づく制御状態を回避している。以下、それぞれの確度低下検知処理を順に説明する。
実施例1の車両にあっては、制動時に各輪のスリップ状態を検出し、スリップ率が所定値以下となるように増減圧制御を行うアンチスキッドブレーキ制御部(以下、ABS制御部と記載する。)と、車両の旋回状態(例えばヨーレイト)が目標旋回状態となるように所定輪のブレーキ液圧を制御する車両挙動制御部(以下、VDC制御部と記載する。)と、車両発進時等の駆動スリップを抑制するためにブレーキの増圧制御やエンジントルクダウン制御を行うトラクション制御部(以下、TCS制御部と記載する。)と、を有する。
これら各制御部が作動した場合、各輪の車輪速変動に影響を与えることから、推定確度が低下するおそれがある。よって、これら制御が作動したことを表すABSフラグ、VDCフラグもしくはTCSフラグがオンとなった場合には、ブレーキ制御フラグホールド部410にフラグオン信号を出力する。ブレーキ制御フラグホールド部410では、フラグオン信号を受信している間、推定確度低下信号を出力する。また、フラグオン信号の立下りから予め設定された所定時間(実施例1の場合は5秒間)、確度低下信号を継続的に出力する。これにより、ブレーキ制御フラグがオン・オフを繰り返したような場合でも、安定して推定確度低下信号を出力できる。
次に、基準車体速に基づく検知について説明する。実施例1では、第1~第3走行状態推定部100,200,32において、車輪速のデータからストローク速度を推定するにあたり、S/A3のストロークに伴って変動する成分を検出するために基準車輪速を算出している。基準車輪速と車輪速センサ値との差分をストロークに伴う変動成分として抽出するためである。この基準車輪速は、スリップ等が発生していない条件下ではストローク速度推定等の精度を確保できるが、スリップが発生すると、ストロークに伴う変動なのか、スリップに伴う車輪速変動なのかの判別が困難となる。尚、ストローク速度成分やばね上速度成分等が含まれる周波数領域では、ノイズ等との区別ができないため、その信号の確度を検証することはできない。そこで、基準車輪速にストローク速度やばね上速度等によって生じる振動周波数よりも低周波数側のローパスフィルタ(実施例1では0.5Hz)を作用させ、このローパスフィルタ作用後の基準車輪速が車輪間においてばらつく場合には、スリップによって車輪速が変動し、推定確度が低下していることを検知することとした。
VFL=(V-Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V-Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL-Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR-Lf・γsinδf}/cosδf-Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr-Tr/2・γ
この関係式に基づいて各輪の基準車輪速を演算する。
・ロール成分(左右差)
df1=VOFL-VOFR
df2=VORL-VORR
・ピッチ成分(前後差)
df3=VOFL-VORL
df4=VOFR-VORR
・ワープ成分(対角差)
df5=VOFL-VORR
df6=VOFR-VORL
次に、プランビューモデルに基づく検知について説明する。図14において説明したように、ドライバ入力制御においてロールレイト抑制制御を行う際、プランビューモデルを設定して横加速度Ygを推定している。
Yg=(VSP2/(1+A・VSP2))・δf
ここで、Aは所定値である。この関係に基づいて推定された横加速度Ygからロールレイトを推定している。このとき、スリップ等の発生によりストローク速度の推定確度が低下する状況では、上記横加速度の推定値も実際の値から乖離する。そこで、推定された横加速度にストローク速度やばね上速度等によって生じる振動周波数よりも低周波数側のローパスフィルタ(実施例1では0.5Hz)を作用させ、このローパスフィルタ作用後の横加速度が横加速度センサにより検出された実横加速度と乖離する場合には、スリップによって車輪速が変動し、推定確度が低下していることを検知することとした。
dfyrss=推定ヨーレイト-実ヨーレイト
dflgss=推定横加速度-実横加速度
次に、シフト位置に基づく検知について説明する。例えば、リバースレンジが選択されている場合、車輪の回転方向は前進時と逆方向であり、車輪速変動に伴う変化も前進時とは異なる。また、パーキングレンジが選択されている場合、車両停止中であることから、ストローク速度を推定する必要が無く、また、推定自体が困難である。よって、シフト判定部440において、シフト信号がリバースレンジやパーキングレンジを示しているときは、確度低下信号を継続的にシフトホールド部441に出力する。シフトホールド部441では、シフト操作に伴うハンチングを防止する観点から推定確度低下信号の受信終了から所定時間(実施例1の場合は1秒間)経過するまでの間、確度低下信号を継続的に出力する。
次に、ブレーキスイッチに基づく検知について説明する。運転者がブレーキペダルを操作して制動力を発生させ、その後、ブレーキペダルの解放動作を行うと、この制動力解放時のトルク変動がインパルス入力となる。このインパルス入力によって前後振動が励起され車輪速が変動するため、ストローク速度やばね上状態の推定確度が低下する。そこで、制動力解放判定部450では、ブレーキスイッチがオンからオフに切り替わったか否かを判断し、切り替わったと判断した時にブレーキスイッチホールド部451に対して確度低下信号を出力する。ブレーキスイッチホールド部451では、ブレーキスイッチがオフに切り替わった時点から所定時間(実施例1の場合は1秒間)経過するまでの間、確度低下信号を継続的に出力する。
次に、ホイル端駆動トルクに基づく検知について説明する。急加速や変速による急激なトルク変動が生じると、駆動輪のトルク変化すなわちホイル端駆動トルク変化が生じ、車輪速を変動させる。よって、ホイル端駆動トルクを推定し、ホイル端駆動トルク変化が所定以上発生した場合には推定確度が低下したと判断することとした。尚、ホイル端駆動トルクの加速時における推定は、エンジン有効トルク、エンジン回転数、タービン回転数、自動変速機出力軸回転数、シフト位置といった情報に基づいて推定することができ、具体的には以下の式により表現できる。
Tw=Te・RTRQCVT・RAT・RFINAL・ηTOTAL
ここで、Twはホイル端駆動トルク、Teはエンジントルク、RTRQCVTはトルクコンバータトルク比、RATは自動変速機のギア比、RFINALはファイナルギヤ比、ηTOTALは駆動系効率である。
また、制動時にも同様にホイル端制動トルクが変動する。この場合は、制動力がホイルシリンダ圧(ABS等の制御が行われていない通常の制動時であれば実質的にマスタシリンダ圧)に比例することからマスタシリンダ圧にゲインを乗じて各輪制動力を推定するものである。
以上、各検知処理を行い、これらのいずれかが確度低下を検知した場合には、推定確度低下フラグがオンとされ、確度低下時に適切な制御処理が実行される。以下、推定確度低下時の制御処理について説明する。
推定確度低下検知時制御部5aは、推定確度低下フラグがオンされた場合、すなわち、ストローク速度の推定確度低下が検知された場合、エンジン制御部102に対し、エンジン姿勢制御量をゼロとして出力する。
また、推定確度低下時制御部5aは、推定確度低下フラグがオンされた場合、ブレーキ制御部202に対し、ブレーキ姿勢制御量をゼロとして出力する。
このとき、ブレーキ制御部202では、一定の遷移時間(例えば、1秒間)掛けてブレーキ姿勢制御量がゼロまで滑らかに低下するように、ブレーキ姿勢制御量を徐々に低下させる。
減衰係数設定部504は、コンフォートモードである場合には、所定範囲外(例えば、外気温度≦5℃又は外気温度≧30℃以上)にある場合の減衰係数を、外気温度が所定範囲(例えば、5℃<外気温度<30℃)にある場合の減衰係数よりも高い値(スタンダードモードと同じ減衰係数)とする。
S/A3の指令電流値を、ストローク速度に基づく通常時指令電流値から、車速に基づく推定確度低下時指令電流値に切り替える際、両指令電流値の差が大きい場合に、S/A3の減衰力が急変して車体姿勢が乱れるおそれがある。上述のように電流指令値を徐々に変化させて減衰力の変動幅を制限することで、推定確度低下時における車体姿勢の乱れを抑制できる。
(1)ばね上制振制御を行うS/A3(アクチュエータ)と、車輪速を検出する車輪速センサ5(車輪速検出手段)と、車輪速センサ5により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定する第3走行状態推定部32(ばね上状態推定手段)と、該推定されたばね上状態が目標ばね上状態となるようにS/A3(アクチュエータ)を制御するS/Aコントローラ3a(アクチュエータ姿勢制御手段)と、第3走行状態推定部32の推定確度の低下を検知する推定確度低下検知部4a(推定確度低下検知手段)と、推定確度低下検知部4aにより推定確度の低下が検知された場合は、推定確度が低下していない場合に比べて制限された前記アクチュエータ姿勢制御手段による制御を実行することとした。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時に推定確度低下前よりも制限された減衰力制御を行うことで、誤った制御を抑制することができ、車体姿勢の安定化を達成できる。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時に推定確度低下前の車両状態量である車速に応じた固定減衰力に遷移することで、誤った制御を抑制することができ、車体姿勢の安定化を達成できる。
例えば、コンフォートモードで走行中に推定確度の低下が検知された場合は、減衰係数が低い値に固定されると車両状態として十分な安定性を確保しにくい場面が想定される。そこで、この場合はコンフォートモードで設定される減衰力よりも高めの減衰力に固定することで、安定性を確保できる。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時に機能を制限することで誤った制御を抑制することができ、車体姿勢の安定化を達成できる。
すなわち、制駆動トルクのように車両の前後加速度に寄与するアクチュエータが、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な加減速が生じるおそれがある。これに対し、前後方向の制駆動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時に減衰力制御を制限することで、誤った制御を抑制することができ、車体姿勢の安定化を達成できる。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時に減衰力制御を制限することで、誤った制御を抑制することができ、車体姿勢の安定化を達成できる。
Claims (11)
- ばね上制振制御を行う減衰力を変更可能な減衰力可変ショックアブソーバと、
車輪速を検出する車輪速検出手段と、
前記車輪速検出手段により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定するばね上状態推定手段と、
該推定されたばね上状態が目標ばね上状態となるように前記減衰力可変ショックアブソーバを制御するアクチュエータ姿勢制御手段と、
前記ばね上状態推定手段の推定確度の低下を検知する推定確度低下検知手段と、
前記推定確度低下検知手段により推定確度の低下が検知された場合は、推定確度が低下していない場合に比べて制限された前記アクチュエータ姿勢制御手段による制御を実行する制限制御手段と、
を備えたことを特徴とする車両の制御装置。 - 請求項1に記載の車両の制御装置において、
前記制限制御手段は、前記減衰力可変ショックアブソーバの減衰力を、前記推定確度検知手段により推定確度の低下が検知される前の車両状態量に応じた固定減衰力に遷移させることを特徴とする車両の制御装置。 - 請求項1または2に記載の車両の制御装置において、
前記アクチュエータ姿勢制御手段は、あるストローク速度に対して異なる減衰力制御範囲が設定された複数の制御モードを有し、
前記制限制御手段は、前記推定確度検知手段により推定確度の低下が検知されたときの制御モードに応じた固定減衰力に遷移させることを特徴とする車両の制御装置。 - 請求項1ないし3いずれか1つに記載の車両の制御装置において、
前記制限制御手段は、前記減衰力可変ショックアブソーバの減衰力を固定減衰力に遷移するときは、ばね上共振周波数以下の周波数となる遷移時間をかけて徐変させることを特徴とする車両の制御装置。 - 請求項1ないし4に記載の車両の制御装置において、
車速を検出する車速検出手段と、
舵角を検出する舵角検出手段と、
車両の実ヨーレイト及び/又は実横加速度である実車両状態を検出する車両状態検出手段と、
前記検出された車速及び舵角を入力し、車両のプランビューモデルに基づいてヨーレイト及び/又は横加速度である車両状態を推定する車両状態推定手段と、
を備え、
前記推定確度低下検知手段は、前記車両状態推定手段により検出された実車両状態と、前記車両状態推定手段により推定された推定車両状態とを、ばね上挙動の現れる前記所定周波数領域よりも低周波数側情報で比較し、両情報の乖離が所定以上の場合、前記ばね上状態推定手段の推定確度が低下していると検知する手段であることを特徴とする車両の制御装置。 - 請求項1ないし5いずれか1つに記載の車両の制御装置において、
前記制限制御手段は、前記推定確度検知手段により推定確度の低下が検知された直前の車速に応じた固定減衰力に遷移させることを特徴とする車両の制御装置。 - 請求項1ないし6いずれか1つに記載の車両の制御装置において、
ばね上制振制御を行う車両の動力源及び摩擦ブレーキと、
前記推定されたばね上状態が目標ばね上状態となるように前記動力源のトルクを制御する動力源姿勢制御手段と、
前記推定されたばね上状態が目標ばね上状態となるように前記摩擦ブレーキのトルクを制御するブレーキ姿勢制御手段と、
を有し、
前記制限制御手段は、前記推定確度検知手段により推定確度の低下が検知された場合は、前記動力源姿勢制御手段及びブレーキ姿勢制御手段による制御を中止することを特徴とする車両の制御装置。 - 請求項1ないし7いずれか1つに記載の車両の制御装置において、
車速を検出する車速検出手段を有し、
前記制限制御手段は、前記車両状態量である車速が高いほど高い固定減衰力に遷移させることを特徴とする車両の制御装置。 - 請求項1ないし8いずれか1つに記載の車両の制御装置において、
車両のヨーレイトを検出するヨーレイト検出手段を有し、
前記制限制御手段は、前記車両状態量であるヨーレイトが大きいほど高い固定減衰力に遷移させることを特徴とする車両の制御装置。 - 車輪速を検出するセンサを有し、
前記センサにより検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定し、このばね上状態が目標ばね上状態となるように減衰力可変ショックアブソーバを制御すると共に、ばね上状態の推定確度が低下した場合は、推定確度が低下していない場合に比べて制限された前記減衰力可変ショックアブソーバの制御を行うコントローラと、
を備える車両の制御装置。 - 車輪速を検出するセンサを有し、
コントローラが、前記センサにより検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定し、このばね上状態が目標ばね上状態となるように減衰力可変ショックアブソーバを制御すると共に、ばね上状態の推定確度が低下した場合は、推定確度が低下していない場合に比べて制限された前記減衰力可変ショックアブソーバの制御を行うことを特徴とする車両の制御方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014515604A JP5751385B2 (ja) | 2012-05-14 | 2013-05-13 | 車両の制御装置及び車両の制御方法 |
CN201380025533.9A CN104302493B (zh) | 2012-05-14 | 2013-05-13 | 车辆的控制装置和车辆的控制方法 |
US14/386,838 US9643599B2 (en) | 2012-05-14 | 2013-05-13 | Vehicle control device, and vehicle control method |
EP13790959.4A EP2851221B1 (en) | 2012-05-14 | 2013-05-13 | Vehicle control device, and vehicle control method |
RU2014150608/11A RU2568163C1 (ru) | 2012-05-14 | 2013-05-13 | Устройство управления транспортного средства и способ управления транспортным средством |
MX2014013768A MX2014013768A (es) | 2012-05-14 | 2013-05-13 | Dispositivo de control de vehiculo y metodo de control de vehiculo. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-110303 | 2012-05-14 | ||
JP2012110304 | 2012-05-14 | ||
JP2012-110304 | 2012-05-14 | ||
JP2012110303 | 2012-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013172281A1 true WO2013172281A1 (ja) | 2013-11-21 |
Family
ID=49583686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063240 WO2013172281A1 (ja) | 2012-05-14 | 2013-05-13 | 車両の制御装置及び車両の制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9643599B2 (ja) |
EP (1) | EP2851221B1 (ja) |
JP (1) | JP5751385B2 (ja) |
CN (1) | CN104302493B (ja) |
MX (1) | MX2014013768A (ja) |
RU (1) | RU2568163C1 (ja) |
WO (1) | WO2013172281A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020100244A (ja) * | 2018-12-21 | 2020-07-02 | マツダ株式会社 | 走行制御装置および該方法 |
CN111775649A (zh) * | 2019-04-04 | 2020-10-16 | 上海汽车集团股份有限公司 | 一种减振器控制方法、装置及系统 |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9415657B2 (en) * | 2012-01-25 | 2016-08-16 | Nissan Motor Co., Ltd. | Vehicle control device and vehicle control method |
US9415659B2 (en) * | 2012-01-25 | 2016-08-16 | Nissan Motor Co., Ltd. | Vehicle control device and vehicle control method |
CN104302492B (zh) * | 2012-05-14 | 2016-08-24 | 日产自动车株式会社 | 车辆的控制装置和车辆的控制方法 |
US9205717B2 (en) | 2012-11-07 | 2015-12-08 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
JP6482789B2 (ja) * | 2014-08-19 | 2019-03-13 | Kyb株式会社 | サスペンション制御装置 |
US10648554B2 (en) | 2014-09-02 | 2020-05-12 | Polaris Industries Inc. | Continuously variable transmission |
CA2965309C (en) | 2014-10-31 | 2024-01-23 | Polaris Industries Inc. | System and method for controlling a vehicle |
US9682602B2 (en) * | 2015-01-26 | 2017-06-20 | Showa Corporation | Control apparatus for damping force varying damper and damping force varying damper system |
JP6518112B2 (ja) * | 2015-03-31 | 2019-05-22 | Kyb株式会社 | サスペンション振動情報推定装置 |
US9963155B2 (en) | 2015-05-29 | 2018-05-08 | Clearpath Robotics, Inc. | Method, system and apparatus for path control in unmanned vehicles |
JP6233608B2 (ja) * | 2015-10-13 | 2017-11-22 | トヨタ自動車株式会社 | 車両の駆動力制御装置 |
JP6689635B2 (ja) * | 2016-03-17 | 2020-04-28 | 株式会社ショーワ | 車高調整装置 |
JP7055105B2 (ja) | 2016-04-22 | 2022-04-15 | クリアモーション,インコーポレイテッド | オンセンターステアリングおよび高速反応車両のための方法および装置 |
CN106672008B (zh) * | 2016-08-30 | 2018-09-25 | 唐智科技湖南发展有限公司 | 一种减少轨道交通车轮踏面故障的阻尼及阻尼器选择方法 |
US11110913B2 (en) * | 2016-11-18 | 2021-09-07 | Polaris Industries Inc. | Vehicle having adjustable suspension |
US10585440B1 (en) | 2017-01-23 | 2020-03-10 | Clearpath Robotics Inc. | Systems and methods for using human-operated material-transport vehicles with fleet-management systems |
US11097736B2 (en) | 2017-02-28 | 2021-08-24 | Clearpath Robotics Inc. | Systems and methods for traction detection and control in a self-driving vehicle |
JP6443829B2 (ja) * | 2017-03-17 | 2018-12-26 | マツダ株式会社 | 車両の制御装置 |
US10406884B2 (en) | 2017-06-09 | 2019-09-10 | Polaris Industries Inc. | Adjustable vehicle suspension system |
JP6294542B1 (ja) * | 2017-06-15 | 2018-03-14 | ヤフー株式会社 | 推定装置、推定方法及び推定プログラム |
JP6627829B2 (ja) * | 2017-07-20 | 2020-01-08 | トヨタ自動車株式会社 | 車両の制振制御装置 |
US11649889B2 (en) | 2018-03-19 | 2023-05-16 | Polaris Industries Inc. | Continuously variable transmission |
PL3791083T3 (pl) * | 2018-05-08 | 2022-06-06 | Gkn Automotive Ltd. | Sposób sterowania siłownikiem urządzenia uruchamiającego w pojeździe silnikowym |
JP6753911B2 (ja) * | 2018-11-06 | 2020-09-09 | 本田技研工業株式会社 | 減衰力可変ダンパの制御装置 |
FR3088281B1 (fr) * | 2018-11-08 | 2020-10-16 | Continental Automotive France | Procede de controle de la chaine de traction d'un vehicule automobile |
US10987987B2 (en) | 2018-11-21 | 2021-04-27 | Polaris Industries Inc. | Vehicle having adjustable compression and rebound damping |
US11390277B2 (en) | 2018-11-30 | 2022-07-19 | Clearpath Robotics Inc. | Systems and methods for self-driving vehicle collision prevention |
WO2020255748A1 (ja) * | 2019-06-21 | 2020-12-24 | 日立オートモティブシステムズ株式会社 | 車両制御装置 |
KR102703285B1 (ko) * | 2019-08-21 | 2024-09-04 | 현대자동차주식회사 | 전동식 파워 스티어링 제어 시스템 및 방법 |
US11649147B2 (en) | 2019-09-20 | 2023-05-16 | Clearpath Robotics Inc. | Autonomous material transport vehicles, and systems and methods of operating thereof |
JP7247948B2 (ja) * | 2020-04-28 | 2023-03-29 | トヨタ自動車株式会社 | 車両の制振制御装置、制振制御方法 |
WO2022016155A1 (en) | 2020-07-17 | 2022-01-20 | Polaris Industries Inc. | Adjustable suspensions and vehicle operation for off-road recreational vehicles |
JP7542362B2 (ja) * | 2020-08-20 | 2024-08-30 | 株式会社Subaru | 制御装置 |
JP7314899B2 (ja) * | 2020-10-14 | 2023-07-26 | トヨタ自動車株式会社 | 制振制御装置 |
JP7328626B2 (ja) * | 2020-10-30 | 2023-08-17 | トヨタ自動車株式会社 | 車両の制振制御システム |
CN117400917B (zh) * | 2023-12-15 | 2024-03-01 | 博世汽车部件(苏州)有限公司 | 车辆控制系统、车辆控制单元和车辆控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09193639A (ja) * | 1996-01-17 | 1997-07-29 | Unisia Jecs Corp | 車両懸架装置 |
JP2009083614A (ja) * | 2007-09-28 | 2009-04-23 | Hitachi Ltd | サスペンション制御装置 |
JP2009241813A (ja) | 2008-03-31 | 2009-10-22 | Hitachi Ltd | 車両の振動状態検出方法並びにこれを用いたサスペンション制御方法及び装置 |
JP2009255777A (ja) * | 2008-04-17 | 2009-11-05 | Yamaha Motor Co Ltd | 懸架装置の制御装置および車両 |
JP2009262926A (ja) * | 2008-03-31 | 2009-11-12 | Hitachi Automotive Systems Ltd | サスペンション制御装置および制御方法 |
JP2011173465A (ja) * | 2010-02-23 | 2011-09-08 | Honda Motor Co Ltd | 減衰力可変ダンパの制御装置 |
JP2012081853A (ja) * | 2010-10-12 | 2012-04-26 | Nissan Motor Co Ltd | 車体制振制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102514462B (zh) * | 2006-10-19 | 2014-04-09 | 丰田自动车株式会社 | 车辆的减振控制装置 |
US8322728B2 (en) * | 2007-09-28 | 2012-12-04 | Hitachi, Ltd. | Suspension control apparatus |
JP5262811B2 (ja) * | 2008-10-31 | 2013-08-14 | トヨタ自動車株式会社 | 車両のバネ上制振制御装置 |
JP4918148B2 (ja) * | 2010-03-05 | 2012-04-18 | 本田技研工業株式会社 | 車両の運動制御装置 |
JP5488203B2 (ja) * | 2010-05-31 | 2014-05-14 | 日産自動車株式会社 | 車両の制振制御装置 |
CN103189729B (zh) * | 2010-08-26 | 2015-09-23 | 日产自动车株式会社 | 车体振动估计装置以及使用它的车体减振控制装置 |
JP6010939B2 (ja) * | 2012-03-15 | 2016-10-19 | 日産自動車株式会社 | 車両の制御装置 |
JP2013193717A (ja) * | 2012-03-23 | 2013-09-30 | Nissan Motor Co Ltd | 車両の制御装置及び車両の制御方法 |
CN104302492B (zh) * | 2012-05-14 | 2016-08-24 | 日产自动车株式会社 | 车辆的控制装置和车辆的控制方法 |
-
2013
- 2013-05-13 RU RU2014150608/11A patent/RU2568163C1/ru active
- 2013-05-13 JP JP2014515604A patent/JP5751385B2/ja active Active
- 2013-05-13 MX MX2014013768A patent/MX2014013768A/es unknown
- 2013-05-13 CN CN201380025533.9A patent/CN104302493B/zh active Active
- 2013-05-13 WO PCT/JP2013/063240 patent/WO2013172281A1/ja active Application Filing
- 2013-05-13 EP EP13790959.4A patent/EP2851221B1/en active Active
- 2013-05-13 US US14/386,838 patent/US9643599B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09193639A (ja) * | 1996-01-17 | 1997-07-29 | Unisia Jecs Corp | 車両懸架装置 |
JP2009083614A (ja) * | 2007-09-28 | 2009-04-23 | Hitachi Ltd | サスペンション制御装置 |
JP2009241813A (ja) | 2008-03-31 | 2009-10-22 | Hitachi Ltd | 車両の振動状態検出方法並びにこれを用いたサスペンション制御方法及び装置 |
JP2009262926A (ja) * | 2008-03-31 | 2009-11-12 | Hitachi Automotive Systems Ltd | サスペンション制御装置および制御方法 |
JP2009255777A (ja) * | 2008-04-17 | 2009-11-05 | Yamaha Motor Co Ltd | 懸架装置の制御装置および車両 |
JP2011173465A (ja) * | 2010-02-23 | 2011-09-08 | Honda Motor Co Ltd | 減衰力可変ダンパの制御装置 |
JP2012081853A (ja) * | 2010-10-12 | 2012-04-26 | Nissan Motor Co Ltd | 車体制振制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2851221A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020100244A (ja) * | 2018-12-21 | 2020-07-02 | マツダ株式会社 | 走行制御装置および該方法 |
JP7103203B2 (ja) | 2018-12-21 | 2022-07-20 | マツダ株式会社 | 走行制御装置および該方法 |
CN111775649A (zh) * | 2019-04-04 | 2020-10-16 | 上海汽车集团股份有限公司 | 一种减振器控制方法、装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104302493B (zh) | 2015-12-09 |
EP2851221A4 (en) | 2015-05-27 |
JP5751385B2 (ja) | 2015-07-22 |
CN104302493A (zh) | 2015-01-21 |
EP2851221B1 (en) | 2016-08-31 |
RU2568163C1 (ru) | 2015-11-10 |
MX2014013768A (es) | 2015-02-12 |
US20150046034A1 (en) | 2015-02-12 |
EP2851221A1 (en) | 2015-03-25 |
JPWO2013172281A1 (ja) | 2016-01-12 |
US9643599B2 (en) | 2017-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5807717B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5751385B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5900613B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5733431B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5741719B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5741718B2 (ja) | 車両の制御装置及び車両の制御方法 | |
WO2013100121A1 (ja) | 車両の制御装置 | |
JP5733430B2 (ja) | 車両の制御装置及び車両の制御方法 | |
WO2013111743A1 (ja) | 車両の制御装置及び車両の制御方法 | |
WO2013133059A1 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5811277B2 (ja) | 車両の制御装置及び車両の制御方法 | |
WO2013183349A1 (ja) | 車両の制御装置及び車両の制御方法 | |
WO2013172123A1 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5737432B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5842935B2 (ja) | 車両の制御装置および車両の制御方法 | |
JP5737433B2 (ja) | 車両の制御装置 | |
JP5970831B2 (ja) | ピッチレイト推定装置 | |
JP5807684B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5862685B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5858054B2 (ja) | 車両の制御装置 | |
JP5929923B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP2013151249A (ja) | ロールレイト推定装置 | |
WO2013161637A1 (ja) | 車両の制御装置及び車両の制御方法 | |
WO2013111733A1 (ja) | 車両の制御装置及び車両の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13790959 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014515604 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14386838 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013790959 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013790959 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/013768 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014150608 Country of ref document: RU Kind code of ref document: A |