WO2013100121A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2013100121A1
WO2013100121A1 PCT/JP2012/084051 JP2012084051W WO2013100121A1 WO 2013100121 A1 WO2013100121 A1 WO 2013100121A1 JP 2012084051 W JP2012084051 W JP 2012084051W WO 2013100121 A1 WO2013100121 A1 WO 2013100121A1
Authority
WO
WIPO (PCT)
Prior art keywords
control amount
vehicle
posture
control
posture control
Prior art date
Application number
PCT/JP2012/084051
Other languages
English (en)
French (fr)
Inventor
宏信 菊池
勝彦 平山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201280065672.XA priority Critical patent/CN104024008B/zh
Priority to US14/369,044 priority patent/US9238462B2/en
Priority to EP12861797.4A priority patent/EP2799263B1/en
Priority to JP2013551853A priority patent/JP5668872B2/ja
Publication of WO2013100121A1 publication Critical patent/WO2013100121A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/025Control of vehicle driving stability related to comfort of drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/206Body oscillation speed; Body vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/37Brake pad or disc friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/22Suspension systems
    • B60W2710/226Damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/16Pitch

Definitions

  • the present invention relates to a control device that controls the state of a vehicle.
  • Patent Document 1 A technique described in Patent Document 1 is disclosed as a technique related to a vehicle control device. This publication discloses a technique for controlling the vehicle body posture using a suspension control device capable of changing the damping force.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a vehicle control device capable of controlling the vehicle body posture while reducing the uncomfortable feeling to the passenger.
  • a running state detecting unit that detects the running state of the vehicle
  • a target posture control amount calculating unit that calculates a target posture control amount of the vehicle body based on the running state
  • a posture control amount calculating means for calculating a posture control amount controlled by a posture control actuator other than a shock absorber based on the target posture control amount, and a shock based on the target posture control amount and the posture control amount.
  • Damping force control means for controlling the damping force of the absorber.
  • the control amount of the damping force can be reduced by the attitude control amount that has nothing to do with the deterioration of the high frequency vibration characteristics, and the deterioration of the high frequency vibration characteristics can be suppressed. Further, since the control amount of the damping force of the shock absorber can be reduced by the posture control amount, the controllable area of the shock absorber can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration. .
  • FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to a first embodiment.
  • FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control device according to the first embodiment.
  • FIG. 3 is a control block diagram illustrating a configuration of roll rate suppression control according to the first embodiment. 3 is a time chart illustrating an envelope waveform forming process of roll rate suppression control according to the first embodiment.
  • FIG. 3 is a control block diagram illustrating a configuration of a traveling state estimation unit according to the first embodiment. It is a control block diagram showing the control content in the stroke speed calculating part of Example 1.
  • FIG. 3 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment. It is the schematic showing a vehicle body vibration model.
  • FIG. 6 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to the first embodiment. It is a control block diagram showing brake pitch control of Example 1. It is the figure which expressed simultaneously the wheel speed frequency characteristic detected by the wheel speed sensor, and the stroke frequency characteristic of the stroke sensor which is not mounted in the Example. It is a control block diagram showing the frequency sensitive control in the sprung mass damping control of the first embodiment. It is a correlation diagram showing the human sensory characteristic in each frequency domain. It is a characteristic view showing the relationship between the vibration mixing ratio of the wing area
  • FIG. 3 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment.
  • FIG. 3 is a control block diagram illustrating a control configuration of a damping force control unit according to the first embodiment.
  • 6 is a flowchart illustrating attenuation coefficient arbitration processing in a standard mode according to the first embodiment.
  • 6 is a flowchart illustrating an attenuation coefficient arbitration process in the sport mode according to the first embodiment.
  • 6 is a flowchart illustrating attenuation coefficient arbitration processing in the comfort mode according to the first embodiment.
  • 6 is a flowchart illustrating attenuation coefficient arbitration processing in a highway mode according to the first exemplary embodiment.
  • FIG. 6 is a flowchart illustrating a mode selection process based on a running state in an attenuation coefficient arbitration unit according to the first embodiment.
  • FIG. 12 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to the second embodiment.
  • FIG. 10 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to a third embodiment.
  • FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to the first embodiment.
  • the vehicle includes an engine 1 that is a power source and a brake 20 that generates braking torque due to friction force on each wheel (hereinafter, when displaying brakes corresponding to individual wheels, right front wheel brake: 20FR, left front wheel brake: 20FL).
  • S / A shock absorber 3
  • the engine 1 includes an engine controller (hereinafter also referred to as an engine control unit) 1a that controls torque output from the engine 1, and the engine controller 1a includes a throttle valve opening, a fuel injection amount, and an ignition of the engine 1. By controlling the timing and the like, a desired engine operating state (engine speed and engine output torque) is controlled. Further, the brake 20 generates a braking torque based on the hydraulic pressure supplied from the brake control unit 2 that can control the brake hydraulic pressure of each wheel according to the traveling state.
  • the brake control unit 2 includes a brake controller (hereinafter also referred to as a brake control unit) 2a that controls a braking torque generated by the brake 20, and a master cylinder pressure generated by a driver's brake pedal operation or a built-in brake cylinder.
  • a pump pressure generated by a motor-driven pump is used as a hydraulic pressure source, and a desired hydraulic pressure is generated in each wheel brake 20 by opening and closing operations of a plurality of solenoid valves.
  • the S / A3 is a damping force generator that attenuates the elastic motion of a coil spring provided between a vehicle unsprung (axle, wheel, etc.) and a sprung (vehicle body, etc.). It is configured to be variable.
  • the S / A 3 includes a cylinder in which fluid is sealed, a piston that strokes in the cylinder, and an orifice that controls fluid movement between fluid chambers formed above and below the piston. Furthermore, orifices having a plurality of types of orifice diameters are formed in the piston, and an orifice corresponding to a control command is selected from the plurality of types of orifices when the S / A actuator is operated. Thereby, the damping force according to the orifice diameter can be generated. For example, if the orifice diameter is small, the movement of the piston is easily restricted, so that the damping force is high. If the orifice diameter is large, the movement of the piston is difficult to be restricted, and thus the damping force is small.
  • an electromagnetic control valve is arranged on the communication path connecting fluids formed above and below the piston, and the damping force is set by controlling the opening / closing amount of the electromagnetic control valve.
  • the S / A 3 has an S / A controller 3a (corresponding to damping force control means) that controls the damping force of the S / A 3, and controls the damping force by operating the orifice diameter by the S / A actuator.
  • a wheel speed sensor 5 for detecting the wheel speed of each wheel (hereinafter, when displaying wheel speeds corresponding to individual wheels, right front wheel speed: 5FR, left front wheel speed: 5FL, right rear wheel speed: 5RR). , Left rear wheel speed: 5RL)), an integrated sensor 6 for detecting longitudinal acceleration, yaw rate and lateral acceleration acting on the center of gravity of the vehicle, and a steering angle which is a steering operation amount of the driver is detected.
  • Steering angle sensor 7 vehicle speed sensor 8 for detecting vehicle speed
  • engine torque sensor 9 for detecting engine torque
  • engine speed sensor 10 for detecting engine speed
  • master pressure sensor 11 for detecting master cylinder pressure.
  • a brake switch 12 that outputs an on-state signal when a brake pedal operation is performed
  • an accelerator opening sensor 13 that detects an accelerator pedal opening.
  • the signals of these various sensors are input to the S / A controller 3a.
  • the arrangement of the integrated sensor 6 may be at the center of gravity of the vehicle, or may be any place other than that as long as various values at the center of gravity can be estimated. Moreover, it is not necessary to be an integral type, and a configuration in which yaw rate, longitudinal acceleration, and lateral acceleration are individually detected may be employed.
  • FIG. 2 is a control block diagram showing the control configuration of the vehicle control apparatus according to the first embodiment.
  • the controller is composed of an engine controller 1a, a brake controller 2a, and an S / A controller 3a.
  • a driver input control unit 31 for performing driver input control for achieving a desired vehicle posture based on driver operations (steering operation, accelerator operation, brake pedal operation, etc.), and various sensors.
  • a traveling state estimating unit 32 that estimates the traveling state based on the detected value
  • a sprung mass damping control unit 33 that controls the vibration state on the spring based on the estimated traveling state, and the like.
  • An unsprung vibration suppression control unit 34 that controls the unsprung vibration state, a shock absorber posture control amount output from the driver input control unit 31, and an unsprung vibration suppression control amount output from the sprung vibration suppression control unit 33. Based on the unsprung vibration suppression control amount output from the unsprung vibration suppression control unit 34, a damping force to be set in the S / A 3 is determined, and the damping force control unit 3 that performs the S / A damping force control. With the door.
  • the damping force control unit 35 is excluded from the S / A controller 3a and used as an attitude control controller, and the damping force control unit 35 is configured as an S / A controller.
  • the A controller may be configured to include four controllers, or each controller may be configured from one integrated controller without particular limitation.
  • the engine controller and the brake controller in the existing vehicle are used as they are as the engine control unit 1a and the brake control unit 2a, and the S / A controller 3a is separately installed. It is assumed that the vehicle control apparatus according to the first embodiment is realized.
  • the control amount by the engine 1 and the brake 20 is limited and output from the control amount that can be actually output, thereby reducing the burden on the S / A 3 and accompanying the control of the engine 1 and the brake 20. Suppresses discomfort that occurs.
  • Skyhook control is performed by all actuators. At this time, without using a stroke sensor or a sprung vertical acceleration sensor generally required for skyhook control, the skyhook control can be performed with an inexpensive configuration using wheel speed sensors mounted on all vehicles. Realize.
  • scalar control frequency sensitive control
  • the driver input control unit 31 achieves the vehicle posture required by the driver by the engine side driver input control unit 31a that achieves the vehicle posture required by the driver by torque control of the engine 1 and the damping force control of S / A3. And an S / A side driver input control unit 31b.
  • the vehicle behavior desired to be achieved by the driver is determined based on the ground load variation suppression control amount that suppresses the ground load variation of the front wheels and the rear wheels, and signals from the steering angle sensor 7 and the vehicle speed sensor 8.
  • the corresponding yaw response control amount is calculated and output to the engine control unit 1a.
  • the S / A-side driver input control unit 31b calculates a driver input damping force control amount corresponding to the vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8, and the damping force control unit 35 Output for. For example, when the driver is turning, if the nose side of the vehicle is lifted, the driver's field of view easily deviates from the road surface. In this case, the four-wheel damping force is used as a driver input damping force to prevent the nose from rising. Output as a controlled variable. In addition, a driver input damping force control amount that suppresses a roll generated during turning is output.
  • FIG. 3 is a control block diagram illustrating a configuration of roll rate suppression control according to the first embodiment.
  • the lateral acceleration estimation unit 31b1 the front wheel rudder angle ⁇ f detected by the rudder angle sensor 7 and the rear wheel rudder angle ⁇ r (the actual rear wheel rudder angle if a rear wheel steering device is provided, and 0 in other cases as appropriate)
  • the lateral acceleration Yg is estimated based on the vehicle speed VSP detected by the vehicle speed sensor 8. This lateral acceleration Yg is calculated by the following equation using the yaw rate estimated value ⁇ .
  • Yg VSP ⁇ ⁇
  • the yaw rate estimated value ⁇ is calculated by the following equation.
  • the 90 ° phase advance component creation unit 31b2 differentiates the estimated lateral acceleration Yg and outputs a lateral acceleration differential value dYg.
  • the 90 ° phase delay component creation unit 31b3 outputs a component F (dYg) obtained by delaying the phase of the lateral acceleration differential value dYg by 90 °.
  • the component F (dYg) is obtained by returning the phase of the component from which the low-frequency region has been removed by the 90 ° phase advance component creation unit 31b2 to the phase of the lateral acceleration Yg. It is a transient component of acceleration Yg.
  • the 90 ° phase delay component creation unit 31b4 outputs a component F (Yg) obtained by delaying the phase of the estimated lateral acceleration Yg by 90 °.
  • the gain multiplication unit 31b5 multiplies the lateral acceleration Yg, the lateral acceleration differential value dYg, the lateral acceleration DC cut component F (dYg), and the 90 ° phase delay component F (Yg) by a gain. Each gain is set based on a roll rate transfer function with respect to the steering angle. Each gain may be adjusted according to four control modes described later.
  • the square calculation unit 31b6 squares and outputs each component multiplied by the gain.
  • the combining unit 31b7 adds the values output from the square calculation unit 31b6.
  • the gain multiplication unit 31b8 multiplies the square value of each added component by the gain and outputs the result.
  • the square root calculation unit 31b9 calculates a driver input attitude control amount for roll rate suppression control by calculating the square root of the value output from the gain multiplication unit 31b7, and outputs the calculated value to the damping force control unit 35.
  • 90 ° phase advance component creation unit 31b2, 90 ° phase lag component creation unit 31b3, 90 ° phase lag component creation unit 31b4, gain multiplication unit 31b5, square operation unit 31b6, synthesis unit 31b7, gain multiplication unit 31b8, square root operation unit 31b9 Corresponds to the Hilbert transform unit 31b10 that generates an envelope waveform using the Hilbert transform.
  • FIG. 4 is a time chart showing an envelope waveform forming process of roll rate suppression control according to the first embodiment.
  • the driver starts steering at time t1
  • roll rate begins to gradually occur.
  • the 90 ° phase advance component dYg is added to form an envelope waveform
  • the driver input attitude control amount is calculated based on the scalar amount based on the envelope waveform, thereby suppressing the occurrence of roll rate in the initial stage of steering.
  • Can do Furthermore, by adding the lateral acceleration DC cut component F (dYg) to form an envelope waveform, it effectively suppresses the roll rate that occurs in a transitional state when the driver starts or ends steering. Can do.
  • phase delay component F (Yg) If the phase delay component F (Yg) is not added, the damping force from the time t2 to the time t3 is set to a small value, which may cause the vehicle behavior to become unstable due to the roll rate resonance component. In order to suppress this roll rate resonance component, a 90 ° phase delay component F (Yg) is added.
  • FIG. 5 is a control block diagram illustrating the configuration of the traveling state estimation unit according to the first embodiment.
  • the traveling state estimation unit 32 of the first embodiment basically, based on the wheel speed detected by the wheel speed sensor 5, the stroke speed of each wheel used for the skyhook control of the sprung mass damping control unit 33 described later, Calculate bounce rate, roll rate and pitch rate.
  • the value of the wheel speed sensor 5 of each wheel is input to the stroke speed calculation unit 321, and the sprung speed is calculated from the stroke speed of each wheel calculated by the stroke speed calculation unit 321.
  • FIG. 6 is a control block diagram showing the control contents in the stroke speed calculation unit of the first embodiment.
  • the stroke speed calculation unit 321 is individually provided for each wheel, and the control block diagram shown in FIG. 6 is a control block diagram focusing on a certain wheel.
  • the value of the wheel speed sensor 5, the front wheel steering angle ⁇ f detected by the steering angle sensor 7, and the rear wheel steering angle ⁇ r (actual rear wheel steering if a rear wheel steering device is provided).
  • the reference wheel speed calculation unit 300 that calculates a reference wheel speed based on the vehicle body lateral speed and the actual yaw rate detected by the integrated sensor 6, and the angle may be appropriately set to 0 in other cases.
  • a tire rotation vibration frequency calculation unit 321a that calculates the tire rotation vibration frequency based on the calculated reference wheel speed, and a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value.
  • a GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b into a suspension stroke amount, a stroke speed calibration unit 321d that calibrates the converted stroke amount to a stroke speed,
  • a band elimination filter corresponding to the frequency calculated by the tire rotation vibration frequency calculation unit 321a is applied to the value calibrated by the roke speed calibration unit 321d to remove the tire rotation primary vibration component and calculate the final stroke speed.
  • a signal processing unit 321e that calculates the tire rotation vibration frequency based on the calculated reference wheel speed
  • a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value.
  • a GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b
  • FIG. 7 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment.
  • the reference wheel speed refers to a value obtained by removing various disturbances from each wheel speed.
  • the difference between the wheel speed sensor value and the reference wheel speed is a value related to a component that fluctuates according to the stroke generated by the bounce behavior, roll behavior, pitch behavior, or unsprung vertical vibration of the vehicle body.
  • the stroke speed is estimated based on this difference.
  • the plane motion component extraction unit 301 calculates the first wheel speed V0 that is the reference wheel speed of each wheel based on the vehicle body plan view model with the wheel speed sensor value as an input.
  • the wheel speed sensor value detected by the wheel speed sensor 5 is ⁇ (rad / s)
  • the front wheel actual steering angle detected by the steering angle sensor 7 is ⁇ f (rad)
  • the rear wheel actual steering angle is ⁇ r (rad )
  • the vehicle body lateral speed is Vx
  • the yaw rate detected by the integrated sensor 6 is ⁇ (rad / s)
  • the vehicle speed estimated from the calculated reference wheel speed ⁇ 0 is V (m / s)
  • the reference to be calculated Wheel speed is VFL, VFR, VRL, VRR
  • front wheel tread is Tf
  • rear wheel tread is Tr
  • distance from vehicle center of gravity to front wheel is Lf
  • distance from vehicle center of gravity to rear wheel is Lr.
  • VFL (V-Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
  • VFR (V + Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
  • VRL (V ⁇ Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx ⁇ Lr ⁇ ⁇ ) sin ⁇ r
  • VRR (V + Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx-Lr ⁇ ⁇ ) sin ⁇ r
  • V is described as V0FL, V0FR, V0RL, V0RR (corresponding to the first wheel speed) as a value corresponding to each wheel.
  • V0FL ⁇ VFL-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f + Tf / 2 ⁇ ⁇
  • V0FR ⁇ VFR-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f-Tf / 2 ⁇ ⁇
  • V0RL ⁇ VRL + Lr ⁇ ⁇ sin ⁇ r ⁇ / cos ⁇ r + Tr / 2 ⁇ ⁇
  • V0RR ⁇ VRR + Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ r-Tr / 2 ⁇ ⁇
  • the roll disturbance removing unit 302 calculates the second wheel speeds V0F and V0R as the reference wheel speeds for the front and rear wheels based on the vehicle body front view model with the first wheel speed V0 as an input.
  • the vehicle body front view model removes the wheel speed difference caused by the roll motion that occurs around the roll rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the front. Is done.
  • V0F (V0FL + V0FR) / 2
  • V0R (V0RL + V0RR) / 2
  • the second wheel speeds V0F and V0R from which disturbance based on the roll is removed are obtained.
  • the pitch disturbance removal unit 303 calculates the third wheel speeds VbFL, VbFR, VbRL, and VbRR, which are the reference wheel speeds for all the wheels, based on the vehicle side view model, with the second wheel speeds V0F and V0R as inputs.
  • the vehicle body side view model is to remove the wheel speed difference caused by the pitch motion generated around the pitch rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the lateral direction. It is expressed by the following formula.
  • the sprung speed calculation unit 322 calculates the bounce rate, roll rate, and pitch rate for skyhook control. Calculated.
  • Skyhook control is to achieve a flat running state by setting a damping force based on the relationship between the S / A3 stroke speed and the sprung speed, and controlling the posture on the sprung.
  • the value that can be detected from the wheel speed sensor 5 is the stroke speed, and since the vertical acceleration sensor or the like is not provided on the spring, the sprung speed needs to be estimated using an estimation model.
  • the problem of the estimation model and the model configuration to be adopted will be described.
  • FIG. 8 is a schematic diagram showing a vehicle body vibration model.
  • FIG. 8A is a model of a vehicle (hereinafter referred to as a “convex vehicle”) having an S / A having a constant damping force
  • FIG. 8B has an S / A having a variable damping force.
  • Ms represents the mass above the spring
  • Mu represents the mass below the spring
  • Ks represents the elastic coefficient of the coil spring
  • Cs represents the damping coefficient of S / A
  • Ku represents the unsprung (tire).
  • Cu represents an unsprung (tire) damping coefficient
  • Cv represents a variable damping coefficient
  • Z2 represents a position on the spring
  • z1 represents a position under the spring
  • z0 represents a road surface position.
  • Changing the damping force basically means changing the force that limits the piston moving speed of S / A 3 in accordance with the suspension stroke. Since the semi-active S / A3 that cannot positively move the piston in the desired direction is used, when the semi-active skyhook model is employed and the sprung speed is obtained, it is expressed as follows.
  • the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
  • the sprung speed can be estimated if the stroke speed of each wheel is known.
  • the actual vehicle is four wheels instead of one wheel, it is considered to estimate the state of the spring by mode decomposition into roll rate, pitch rate and bounce rate using the stroke speed of each wheel. To do.
  • the above three components are calculated from the stroke speed of the four wheels, one corresponding component is insufficient, and the solution becomes indefinite. Therefore, a war plate representing the movement of the diagonal wheels is introduced.
  • the stroke amount bounce term is xsB
  • the roll term is xsR
  • the pitch term is xsP
  • the warp term is xsW
  • the stroke amount corresponding to Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR is z_sFL, z_sFR, z_sRL, z_sRR, Holds.
  • Equation 1 the differential dxsB of xsB, xsR, xsP, xsW, etc. is expressed by the following expression.
  • dxsB 1/4 (Vz_sFL + Vz_sFR + Vz_sRL + Vz_sRR)
  • dxsR 1/4 (Vz_sFL-Vz_sFR + Vz_sRL-Vz_sRR)
  • dxsP 1/4 (-Vz_sFL-Vz_sFR + Vz_sRL + Vz_sRR)
  • dxsW 1/4 (-Vz_sFL + Vz_sFR + Vz_sRL-Vz_sRR)
  • the sprung mass damping control unit 33 includes a skyhook control unit 33a that performs posture control based on the above-described sprung speed estimation value, and a frequency response that suppresses sprung vibration based on the road surface input frequency. And a control unit 33b.
  • the vehicle control apparatus includes the engine 1, the brake 20, and the S / A 3 as actuators for achieving sprung posture control.
  • the skyhook control unit 33a controls bounce rate, roll rate, and pitch rate for S / A3, controls bounce rate and pitch rate for engine 1, and controls pitch for brake 20. The rate is controlled.
  • the control amount for each actuator can be determined by using the sprung speed estimated by the traveling state estimation unit 32 described above.
  • FB is transmitted to the engine 1 and S / A 3 as a bounce attitude control amount
  • FR is a control executed only at S / A 3, and thus is transmitted to the damping force control unit 35 as a roll attitude control amount.
  • FIG. 9 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to the first embodiment.
  • the skyhook control unit 33a is achieved by the engine 1 and the first target attitude control amount calculation unit 331 that calculates a target pitch rate that is a first target attitude control amount that is a control amount that can be used in common for all actuators.
  • the first target attitude control amount calculation unit 331 outputs the pitch rate as it is (hereinafter, this pitch rate is referred to as the pitch rate). It is described as a first target attitude control amount.)
  • the engine attitude control amount calculation unit 332 calculates an engine attitude control amount that is a control amount that can be achieved by the engine 1 based on the input first target attitude control amount.
  • a limit value for limiting the engine torque control amount according to the engine attitude control amount is set in order not to give the driver a sense of incongruity.
  • the engine torque control amount is limited to be within a predetermined longitudinal acceleration range when converted to longitudinal acceleration. Therefore, if the engine torque control amount is calculated based on the first target attitude control amount and a value equal to or greater than the limit value is calculated, the pitch rate skyhook control amount that can be achieved by the limit value (suppressed by the engine 1).
  • a value obtained by multiplying the pitch rate by CskyP hereinafter referred to as an engine attitude control amount
  • the value converted into the pitch rate in the conversion unit 332a is output to the second target attitude control amount calculation unit 333 described later. Further, the engine control unit 1 a calculates an engine torque control amount based on the engine attitude control amount corresponding to the limit value, and outputs the engine torque control amount to the engine 1.
  • the second target attitude control amount calculation unit 333 calculates a second target attitude control amount that is a deviation between the first target attitude control amount and the value obtained by converting the engine attitude control amount into the pitch rate in the conversion unit 332a, and the brake attitude. It is output to the control amount calculation unit 334.
  • a limit value for limiting the braking torque control amount is set in order to prevent the driver from feeling uncomfortable as in the case of the engine 1 (details of the limit value will be described later). .
  • the braking torque control amount when converted into the longitudinal acceleration, it is limited to be within a predetermined longitudinal acceleration range (a limit value obtained from the occupant's discomfort, the life of the actuator, etc.). Therefore, when the brake posture control amount is calculated based on the second target posture control amount and a value equal to or greater than the limit value is calculated, a pitch rate suppression amount (hereinafter referred to as a brake posture control amount) that can be achieved by the limit value. Output). At this time, a value converted into a pitch rate by the conversion unit 3344 is output to a third target attitude control amount calculation unit 335 described later. Further, the brake control unit 2 a calculates a braking torque control amount (or deceleration) based on the brake attitude control amount corresponding to the limit value, and outputs it to the brake control unit 2.
  • a braking torque control amount or deceleration
  • a third target attitude control amount that is a deviation between the second target attitude control amount and the brake attitude control amount is calculated and output to the S / A attitude control amount calculation unit 336.
  • the S / A attitude control amount calculation unit 336 outputs a pitch attitude control amount corresponding to the third target attitude control amount.
  • the damping force control unit 35 calculates a damping force control amount based on a bounce posture control amount, a roll posture control amount, and a pitch posture control amount (hereinafter collectively referred to as an S / A posture control amount). , S / A3.
  • FIG. 10 is a control block diagram showing the brake pitch control of the first embodiment.
  • the vehicle body mass is m
  • the front wheel braking force is BFf
  • the rear wheel braking force is BFr
  • the height between the vehicle center of gravity and the road surface is Hcg
  • the vehicle acceleration is a
  • the pitch moment is Mp
  • the pitch rate is Vp.
  • the brake attitude control amount calculation unit 334 is composed of the following control blocks.
  • the dead zone processing code determination unit 3341 determines the sign of the input pitch rate Vp, and when it is positive, it outputs 0 to the deceleration reduction processing unit 3342 because control is unnecessary, and when it is negative, it determines that control is possible.
  • the pitch rate signal is output to the deceleration reduction processing unit 3342.
  • the deceleration feeling reduction process is a process corresponding to the limit by the limit value performed in the brake attitude control amount calculation unit 334.
  • the square processor 3342a squares the pitch rate signal. This inverts the sign and smoothes the rise of the control force.
  • the pitch rate square decay moment calculation unit 3342b calculates the pitch moment Mp by multiplying the squared pitch rate by the skyhook gain CskyP of the pitch term considering the square process.
  • the target deceleration calculating unit 3342c calculates the target deceleration by dividing the pitch moment Mp by the mass m and the height Hcg between the vehicle center of gravity and the road surface.
  • the calculated rate of change of the target deceleration that is, whether the jerk is within a preset range of the deceleration jerk threshold and the extraction jerk threshold, and the target deceleration is the longitudinal acceleration limit value. Judgment is made whether or not it is within the range. If any threshold is exceeded, the target deceleration is corrected to a value within the jerk threshold range, and if the target deceleration exceeds the limit value, the limit is set. Set within the value. Thereby, the deceleration can be generated so as not to give the driver a sense of incongruity.
  • the target pitch moment converting unit 3343 calculates the target pitch moment by multiplying the target deceleration limited by the jerk threshold limiting unit 3342d by the mass m and the height Hcg, and the brake control unit 2a and the target pitch rate converting unit 3344. Output for.
  • the target pitch rate conversion unit 3344 divides the target pitch moment by the skyhook gain CskyP of the pitch term to convert it into a target pitch rate (corresponding to the braking force posture control amount), and the third target posture control amount calculation unit 335 Output.
  • the first target attitude control amount is calculated, then the engine attitude control amount is calculated, and the second target that is the deviation between the first target attitude control amount and the engine attitude control amount is calculated.
  • a brake posture control amount is calculated from the posture control amount, and an S / A posture control amount is calculated from a third target posture control amount that is a deviation between the second posture control amount and the brake posture control amount.
  • the damping force basically increases.
  • An increase in damping force means a hard suspension characteristic, so when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.)
  • high-frequency vibration characteristics when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.)
  • the above effects can be obtained by determining the control amount of the engine 1 prior to S / A3 and determining the control amount of the brake 2 prior to S / A3. Therefore, for example, the above-described effects can be obtained by combining the brake posture control amount and the S / A posture control amount calculated from the third target posture control amount without calculating the engine posture control amount.
  • the sprung speed is estimated based on the detection value of the wheel speed sensor 5 and the skyhook control is performed based on the estimated sprung speed control.
  • a comfortable driving state (a comfortable ride feeling softer than the vehicle body flatness) is guaranteed.
  • vector control where the relationship (phase, etc.) of the sign of stroke speed and sprung speed is important, such as skyhook control, may make it difficult to achieve proper control due to a slight phase shift. Therefore, we decided to introduce frequency-sensitive control, which is sprung mass damping control according to the scalar quantity of vibration characteristics.
  • FIG. 11 is a diagram in which the wheel speed frequency characteristic detected by the wheel speed sensor and the stroke frequency characteristic of a stroke sensor not mounted in the embodiment are simultaneously written.
  • the frequency characteristic is a characteristic in which the vertical axis represents the magnitude of the amplitude with respect to the frequency as a scalar quantity. Comparing the frequency component of the wheel speed sensor 5 with the frequency component of the stroke sensor, it can be understood that substantially the same scalar amount is taken from the sprung resonance frequency component to the unsprung resonance frequency component. Therefore, the damping force is set based on this frequency characteristic among the detection values of the wheel speed sensor 5.
  • the area where the sprung resonance frequency component exists is felt as if the occupant was thrown into the air by swinging the entire body of the occupant, in other words, the feeling that the gravitational acceleration acting on the occupant was reduced.
  • the frequency region that brings about the waving region (0.5 to 3 Hz), and the region between the sprung resonance frequency component and the unsprung resonance frequency component is not a feeling that gravitational acceleration decreases.
  • the feeling that the human body jumps in small increments when performing (trot), in other words, the frequency range that brings up and down movement that the whole body can follow is the leopard region (3 to 6 Hz), and the region where the unsprung resonance frequency component exists Is not a vertical movement until the mass of the human body follows, but a bull region (6 to 6) is used as a frequency region where vibration is transmitted to a part of the body such as the occupant's thigh. 23 Hz).
  • FIG. 12 is a control block diagram illustrating frequency sensitive control in the sprung mass damping control according to the first embodiment.
  • the band elimination filter 350 cuts noise other than the vibration component used for the main control from the wheel speed sensor value.
  • the predetermined frequency domain dividing unit 351 divides the frequency band into a wide area, a horizontal area, and a bull area.
  • the Hilbert transform processing unit 352 performs Hilbert transform on each divided frequency band, and converts it into a scalar quantity based on the amplitude of the frequency (specifically, an area calculated from the amplitude and the frequency band).
  • the vehicle vibration system weight setting unit 353 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are actually propagated to the vehicle.
  • the human sense weight setting unit 354 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are propagated to the occupant.
  • FIG. 13 is a correlation diagram showing human sensory characteristics with respect to frequency.
  • the occupant's sensitivity is relatively low with respect to the frequency, and the sensitivity gradually increases as the region moves to the high frequency region.
  • the high frequency region above the bull region becomes difficult to be transmitted to the occupant.
  • the human sense weight Wf of the wafe area is set to 0.17
  • the human sense weight Wh of the leopard area is set to 0.34 which is larger than Wf
  • the human sense weight Wb of the bull area is larger than Wf and Wh. Set to 0.38.
  • the weight determining unit 355 calculates the ratio of the weight of each frequency band to the weight of each frequency band. If the weight of the wing area is a, the weight of the leopard area is b, and the weight of the bull area is c, the weight coefficient of the wing area is (a / (a + b + c)), and the weight coefficient of the leap area is (b / (a + b + c). )), And the weighting factor of the bull area is (c / (a + b + c)).
  • the scalar amount calculation unit 356 multiplies the scalar amount of each frequency band calculated by the Hilbert transform processing unit 352 by the weight calculated by the weight determination unit 355, and outputs a final scalar amount. The processing so far is performed on the wheel speed sensor value of each wheel.
  • the maximum value selection unit 357 selects the maximum value from the final scalar amounts calculated for each of the four wheels. Note that 0.01 in the lower part is set to avoid the denominator becoming 0 because the sum of the maximum values is used as the denominator in the subsequent processing.
  • the ratio calculation unit 358 calculates the ratio using the sum of the scalar value maximum values in each frequency band as the denominator and the scalar value maximum value in the frequency band corresponding to the waving region as the numerator. In other words, the mixing ratio (hereinafter simply referred to as the ratio) of the wafer region included in all vibration components is calculated.
  • the sprung resonance filter 359 performs filter processing of about 1.2 Hz of the sprung resonance frequency with respect to the calculated ratio, and extracts a sprung resonance frequency band component representing a waft region from the calculated ratio. In other words, since the wing area exists at about 1.2 Hz, the ratio of this area is considered to change at about 1.2 Hz. Then, the finally extracted ratio is output to the damping force control unit 35, and a frequency sensitive damping force control amount corresponding to the ratio is output.
  • FIG. 14 is a characteristic diagram showing the relationship between the vibration mixing ratio of the waft region and the damping force by the frequency sensitive control of the first embodiment.
  • the vibration level of sprung resonance is reduced by setting the damping force high when the ratio of the wing area is large.
  • the damping force is set high, the ratio of the leopard area and the bull area is small, so that high frequency vibration or vibration that moves with the leopard is not transmitted to the occupant.
  • the damping force is set low, so that the vibration transmission characteristic more than the sprung resonance is reduced, the high frequency vibration is suppressed, and a smooth riding comfort is obtained.
  • FIG. 15 is a diagram showing the wheel speed frequency characteristics detected by the wheel speed sensor 5 under a certain traveling condition. This is a characteristic that appears particularly when traveling on a road surface in which small unevenness such as a stone pavement continues.
  • the damping force is determined by the value of the amplitude peak in Skyhook control. There is a problem that a very high damping force is set at an incorrect timing and high-frequency vibration is deteriorated.
  • FIG. 16 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment.
  • the unsprung resonance component extraction unit 341 extracts a unsprung resonance component by applying a band-pass filter to the wheel speed fluctuation output from the deviation calculation unit 321b in the traveling state estimation unit 32.
  • the unsprung resonance component is extracted from the region of approximately 10 to 20 Hz of the wheel speed frequency component.
  • the envelope waveform shaping unit 342 the extracted unsprung resonance component is scalarized, and the envelope waveform is shaped using the EnvelopeFilter.
  • the gain multiplication unit 343 multiplies the scalarized unsprung resonance component by a gain, calculates an unsprung damping damping force control amount, and outputs the calculated amount to the damping force control unit 35.
  • the unsprung resonance component is extracted by applying a bandpass filter to the wheel speed fluctuation output from the deviation calculating section 321b in the running state estimating section 32.
  • the unsprung resonance component may be extracted by applying a bandpass filter to the driving force, or the unsprung resonance component may be extracted by the running state estimation unit 32 by estimating and calculating the unsprung speed along with the sprung speed. Good.
  • FIG. 17 is a control block diagram illustrating a control configuration of the damping force control unit according to the first embodiment.
  • the driver input damping force control amount output from the driver input control unit 31 the S / A attitude control amount output from the skyhook control unit 33a, and the frequency sensitive control unit 33b output
  • the frequency sensitive damping force control amount, the unsprung damping damping force control amount output from the unsprung damping control unit 34, and the stroke speed calculated by the running state estimation unit 32 are input, and these values are equivalent. Convert to viscous damping coefficient.
  • each damping coefficient is referred to as driver input damping coefficient k1, S / A attitude damping coefficient k2, frequency sensitive damping coefficient k3, unsprung). (Which is described as damping damping coefficient k4)), which arbitration is performed based on which damping coefficient is controlled, and a final damping coefficient is output.
  • the control signal converter 35c converts the control signal (command current value) for S / A3 based on the attenuation coefficient and stroke speed adjusted by the attenuation coefficient adjuster 35b, and outputs the control signal to S / A3.
  • the vehicle control apparatus has four control modes. First, the standard mode assuming a state where an appropriate turning state can be obtained while driving in a general urban area, and second, a state where a stable turning state can be obtained while actively driving a winding road etc. In sport mode, thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed, and fourthly, highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
  • sport mode thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed
  • highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
  • priority is given to unsprung vibration suppression control by the unsprung vibration suppression control unit 34 while performing skyhook control by the skyhook control unit 33a.
  • priority is given to driver input control by the driver input control unit 31, and skyhook control by the skyhook control unit 33a and unsprung vibration suppression control by the unsprung vibration suppression control unit 34 are performed.
  • comfort mode the control for giving priority to the unsprung vibration damping control by the unsprung vibration damping control unit 34 is performed while performing the frequency sensitive control by the frequency sensitive control unit 33b.
  • priority is given to driver input control by the driver input control unit 31, and control for adding the amount of unsprung vibration suppression control by the unsprung vibration control unit 34 to skyhook control by the skyhook control unit 33a is performed. To do.
  • the adjustment of the attenuation coefficient in each mode will be described.
  • FIG. 18 is a flowchart illustrating the attenuation coefficient arbitration process in the standard mode according to the first embodiment.
  • step S1 it is determined whether or not the S / A attitude damping coefficient k2 is larger than the unsprung damping damping coefficient k4. If larger, the process proceeds to step S4 and k2 is set as the damping coefficient.
  • step S2 a scalar amount ratio of the bull region is calculated based on the scalar amounts of the fur region, the leopard region, and the bull region described in the frequency response control unit 33b.
  • step S3 it is determined whether or not the ratio of the bull area is equal to or greater than a predetermined value.
  • the routine proceeds to step S5 and k4 is set.
  • FIG. 19 is a flowchart showing attenuation coefficient arbitration processing in the sport mode of the first embodiment.
  • step S11 the four-wheel damping force distribution ratio is calculated based on the four-wheel driver input damping coefficient k1 set by the driver input control.
  • the right front wheel driver input damping coefficient is k1fr
  • the left front wheel driver input damping coefficient is k1fl
  • the right rear wheel driver input damping coefficient is k1rr
  • the left rear wheel driver input damping coefficient is k1rl
  • xfl k1fl / (k1fr + k1fl + k1rr + k1rl)
  • xrr k1rr / (k1fr + k1fl + k1rr + k1rl)
  • xrl k1rl / (k1fr + k1fl + k1rr + k1rl)
  • xrl k
  • step S12 it is determined whether or not the damping force distribution ratio x is within a predetermined range (greater than ⁇ and smaller than ⁇ ). If it is within the predetermined range, it is determined that the distribution to each wheel is substantially equal, and the process proceeds to step S13. If any one is out of the predetermined range, the process proceeds to step S16. In step S13, it is determined whether or not the unsprung damping damping coefficient k4 is larger than the driver input damping coefficient k1. If it is determined that the unsprung damping damping coefficient k4 is larger, the process proceeds to step S15 and k4 is set as the first damping coefficient k. On the other hand, if it is determined that the unsprung damping damping coefficient k4 is equal to or less than the driver input damping coefficient k1, the process proceeds to step S14, and k1 is set as the first damping coefficient k.
  • step S16 it is determined whether or not the unsprung damping damping coefficient k4 is the maximum value max that S / A3 can be set. If it is determined that the maximum value is max, the process proceeds to step S17, and otherwise, the process proceeds to step S18. move on.
  • step S17 the maximum value of the four-wheel driver input damping coefficient k1 is the unsprung damping damping coefficient k4, and the damping coefficient that satisfies the damping force distribution ratio is calculated as the first damping coefficient k. In other words, a value that maximizes the damping coefficient while satisfying the damping force distribution rate is calculated.
  • step S18 a damping coefficient that satisfies the damping force distribution ratio in a range where all the four-wheel driver input damping coefficients k1 are equal to or greater than k4 is calculated as the first damping coefficient k.
  • a value that satisfies the damping force distribution ratio set by the driver input control and also satisfies the requirements of the unsprung vibration suppression control side is calculated.
  • step S19 it is determined whether or not the first attenuation coefficient k set in each of the above steps is smaller than the S / A attitude attenuation coefficient k2 set by skyhook control. Since the damping coefficient requested on the side is larger, the process proceeds to step S20 and k2 is set. On the other hand, if it is determined that k is equal to or greater than k2, the process proceeds to step S21 and k is set.
  • the damping force distribution rate required from the driver input control side is closely related to the vehicle body posture, and particularly because it is closely related to the driver's line-of-sight change due to the roll mode.
  • the highest priority is to secure the damping force distribution ratio.
  • the sky vehicle body posture can be maintained by selecting Skyhook control with select high.
  • FIG. 20 is a flowchart illustrating the attenuation coefficient arbitration process in the comfort mode according to the first embodiment.
  • step S30 it is determined whether or not the frequency sensitive damping coefficient k3 is larger than the unsprung damping damping coefficient k4. If it is determined that the frequency sensitive damping coefficient k3 is larger, the process proceeds to step S32 and the frequency sensitive damping coefficient k3 is set. On the other hand, if it is determined that the frequency sensitive damping coefficient k3 is equal to or less than the unsprung damping damping coefficient k4, the process proceeds to step S32 to set the unsprung damping damping coefficient k4.
  • the comfort mode priority is given to unsprung resonance control that basically suppresses unsprung resonance.
  • frequency sensitive control was performed as sprung mass damping control, and the optimum damping coefficient was set according to the road surface condition, so it was possible to achieve control that ensured riding comfort and lack of grounding feeling due to fluttering under the spring. Can be avoided by unsprung vibration suppression control.
  • the attenuation coefficient may be switched according to the bull ratio of the frequency scalar quantity. As a result, the ride comfort can be further ensured in the super comfort mode.
  • FIG. 21 is a flowchart illustrating the attenuation coefficient arbitration process in the highway mode according to the first embodiment. Since steps S11 to S18 are the same as the arbitration process in the sport mode, the description thereof is omitted.
  • step S40 the S / A attitude attenuation coefficient k2 by the skyhook control is added to the first attenuation coefficient k that has been adjusted up to step S18, and is output.
  • FIG. 22 is a time chart showing a change in attenuation coefficient when traveling on a wavy road surface and an uneven road surface.
  • the first damping coefficient k is always set as in the highway mode, a certain amount of damping force is always secured, and the vehicle body fluctuates even when the damping coefficient by the skyhook control is small. Such movement can be suppressed. Further, since it is not necessary to increase the skyhook control gain, it is possible to appropriately deal with road surface irregularities by using a normal control gain. In addition, since the skyhook control is performed with the first damping coefficient k set, unlike the damping coefficient limit, the damping coefficient decreasing process can be performed in the semi-active control region, and at the time of high-speed traveling It is possible to ensure a stable vehicle posture.
  • FIG. 23 is a flowchart illustrating a mode selection process based on the running state in the attenuation coefficient arbitration unit of the first embodiment.
  • step S50 it is determined whether or not the vehicle is in the straight traveling state based on the value of the steering angle sensor 7. If it is determined that the vehicle is traveling straight, the process proceeds to step S51. If it is determined that the vehicle is turning, the process proceeds to step S54. move on.
  • step S51 it is determined based on the value of the vehicle speed sensor 8 whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state.
  • step S52 If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S52 and the standard mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S53 and the comfort mode is selected. In step S54, based on the value of the vehicle speed sensor 8, it is determined whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S55 and the highway mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S56 to select the sport mode.
  • the standard mode when driving at a high vehicle speed in a straight running state, the standard mode is selected to stabilize the vehicle body posture by skyhook control and to suppress the high frequency vibration such as leopard and bull. In addition, unsprung resonance can be suppressed. Further, when traveling at a low vehicle speed, by selecting the comfort mode, it is possible to suppress unsprung resonance while suppressing the input of vibrations such as leopard and bull to the occupant as much as possible.
  • the highway mode is selected, so that it is controlled by the value obtained by adding the damping coefficient, so that basically a high damping force can be obtained.
  • the sport mode is selected, so that the vehicle posture during turning is positively secured by driver input control, and unsprung resonance is suppressed while skyhook control is performed as appropriate. Can travel in a stable vehicle posture.
  • the control example in which the driving state is detected and automatically switched is shown in the first embodiment.
  • a changeover switch that can be operated by the driver is provided to select the driving mode. You may control to. As a result, ride comfort and turning performance according to the driving intention of the driver can be obtained.
  • Example 1 has the following effects.
  • a wheel speed sensor 5 (traveling state detecting means) that detects a wheel speed (traveling state of the vehicle) and a vehicle body posture that controls the vehicle body posture so that the pitch rate detected by the wheel speed sensor 5 becomes a flat posture.
  • a first target attitude control amount calculation unit 331 (a target attitude control amount calculation means for calculating a target attitude control amount of the vehicle body based on the running state) and a first target attitude control amount
  • An engine attitude control amount calculation unit 332 or a brake attitude control amount calculation unit 334 (attitude control amount calculation means) that calculates an attitude control amount controlled by the engine 1 or the friction brake, which is an attitude control actuator other than the shock absorber S / A3;
  • the shock absorber attitude control that controls the damping force of the S / A3 (shock absorber) based on the first target attitude control amount and the attitude control amount
  • the amount calculating unit 336 (the damping force control unit), with a.
  • the shock absorber posture control amount can be reduced by the posture control amount that has nothing to do with the deterioration of the high frequency vibration characteristic, and the deterioration of the high frequency vibration characteristic can be avoided. Further, since the shock absorber posture control amount can be reduced by the posture control amount, the controllable area of S / A 3 can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration.
  • the wheel speed sensor 5 is used as the traveling state detection means. However, the traveling state may be detected by employing a stroke sensor, a sprung vertical acceleration sensor, or the like.
  • the vehicle body attitude control is performed by the skyhook control. However, the vehicle body attitude control may be achieved by another vehicle body attitude control.
  • the pitch rate is controlled, but bounce rate or the like may be controlled.
  • the target posture is a flat posture, but for example, a nose dive-like vehicle body posture may be set as the target posture from the viewpoint of securing the driver's view during turning.
  • the shock absorber posture control amount is calculated based on the value obtained by subtracting the posture control amount from the first target posture control amount.
  • the present invention is not limited to this.
  • the first target posture control amount and the posture control amount are calculated.
  • the shock absorber attitude control amount may be calculated on the basis of the ratio of the above, or the shock absorber attitude control amount may be calculated from a map or the like using the two control amounts as parameters in addition to the ratio.
  • the shock absorber posture control amount calculation unit 336 calculates a shock absorber posture control amount obtained by subtracting the posture control amount from the first target posture control amount, and controls the damping force based on the shock absorber posture control amount. Therefore, since the shock absorber posture control amount can be reduced by the posture control amount, the controllable region of S / A 3 can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration.
  • the engine attitude control amount calculation unit 332 or the brake attitude control amount calculation unit 334 has a limit value that limits the attitude control amount to a predetermined value. Thereby, the longitudinal acceleration can be generated so as not to give the driver a sense of incongruity.
  • Wheel speed sensor 5 (running state detecting means) for detecting wheel speed (vehicle running state) and the vehicle body posture are controlled so that the pitch rate detected by the wheel speed sensor 5 is flat.
  • a first target attitude control amount calculation unit 331 (a target attitude control amount calculation means for calculating a target attitude control amount of the vehicle body based on the running state) that calculates a first target attitude control amount, and a first target attitude control amount Based on the brake attitude control amount calculation unit 334 (braking force attitude control amount calculation means) that calculates the brake attitude control amount controlled by the driving force based on the first target attitude control amount and the brake attitude control amount.
  • a shock absorber attitude control amount calculation unit 336 (damping force control means) for controlling the damping force of A3 (shock absorber).
  • the shock absorber posture control amount can be reduced by the brake posture control amount that has nothing to do with the deterioration of the high frequency vibration characteristics, and the deterioration of the high frequency vibration characteristics can be avoided. Further, since the shock absorber posture control amount can be reduced by the brake posture control amount, the controllable area of S / A 3 can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration.
  • the wheel speed sensor 5 is used as the traveling state detection means. However, the traveling state may be detected by employing a stroke sensor, a sprung vertical acceleration sensor, or the like.
  • the vehicle body attitude control is performed by the skyhook control. However, the vehicle body attitude control may be achieved by another vehicle body attitude control.
  • the pitch rate is controlled, but bounce rate or the like may be controlled.
  • the target posture is a flat posture, but for example, a nose dive-like vehicle body posture may be set as the target posture from the viewpoint of securing the driver's view during turning.
  • the shock absorber posture control amount is calculated based on the value obtained by subtracting the brake posture control amount from the first target posture control amount.
  • the present invention is not limited to this.
  • the first target posture control amount and the brake posture are calculated.
  • the shock absorber posture control amount may be calculated based on the ratio to the control amount, or the shock absorber posture control amount may be calculated from a map or the like using the two control amounts as parameters in addition to the ratio.
  • the example which used the friction brake was shown in Example 1 as a braking force, you may use the engine braking force by the shift of a transmission, etc. as a braking force.
  • the shock absorber posture control amount calculation unit 336 calculates a shock absorber posture control amount obtained by subtracting the brake posture control amount from the first target posture control amount, and generates a damping force based on the shock absorber posture control amount. Control. Therefore, since the shock absorber posture control amount can be reduced by the brake posture control amount, the controllable area of the S / A 3 can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration.
  • the brake attitude control amount calculation unit 332 (brake attitude control amount calculation means) has a limit value that limits the brake attitude control amount to a predetermined value. Specifically, in the jerk threshold limiting unit 3342d, the calculated rate of change of the target deceleration, that is, whether the jerk is within a preset range of the deceleration jerk threshold and the extraction jerk threshold, and the target deceleration is Judgment is made as to whether the value is within the range of the longitudinal acceleration limit value. If any threshold is exceeded, the target deceleration is corrected to a value within the jerk threshold range, and the target deceleration is set to the limit value. If it exceeds, set it within the limit value. Thereby, the deceleration can be generated so as not to give the driver a sense of incongruity.
  • a first target attitude control amount calculation unit 331 (a target attitude control amount calculation means for calculating a target attitude control amount of the vehicle body based on the running state) that calculates a first target attitude control amount, and a first target attitude control amount
  • An engine attitude control amount calculation unit 332 (vehicle body attitude control amount calculation means) that calculates an engine attitude control amount (vehicle attitude control amount) controlled by the driving force, a first target attitude control amount, and an engine attitude control amount
  • a shock absorber attitude control amount calculation unit 336 (damping force control means) for controlling the damping force of S / A3 (shock absorber) based on the above.
  • the shock absorber attitude control amount can be reduced using a driving force that has nothing to do with the deterioration of the high-frequency vibration characteristics, and the deterioration of the high-frequency vibration characteristics can be suppressed. Further, since the shock absorber posture control amount can be reduced by the engine posture control amount, the controllable region of the damping force variable shock absorber can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration. it can.
  • the wheel speed sensor 5 is used as the traveling state detection means. However, the traveling state may be detected by employing a stroke sensor, a sprung vertical acceleration sensor, or the like. In the first embodiment, the vehicle body attitude control is performed by the skyhook control.
  • the vehicle body attitude control may be achieved by another vehicle body attitude control.
  • the pitch rate is controlled, but bounce rate or the like may be controlled.
  • the target posture is a flat posture, but for example, a nose dive-like vehicle body posture may be set as the target posture from the viewpoint of securing the driver's view during turning.
  • the shock absorber posture control amount is calculated based on a value obtained by subtracting the engine posture control amount from the first target posture control amount.
  • the present invention is not limited to this.
  • the first target posture control amount and the engine posture are calculated.
  • the shock absorber posture control amount may be calculated based on the ratio to the control amount, or the shock absorber posture control amount may be calculated from a map or the like using the two control amounts as parameters in addition to the ratio.
  • an engine is used as a power source.
  • a driving motor is used for an electric vehicle, an engine and a motor generator are used for a hybrid vehicle, and driving force is controlled. From this point of view, the driving force control may be performed using a transmission or the like interposed between the power source and the driving wheels.
  • the shock absorber attitude control amount calculation unit 336 calculates a shock absorber attitude control amount obtained by subtracting the engine attitude control amount from the first target attitude control amount, and generates a damping force based on the shock absorber attitude control amount. Control. Therefore, since the shock absorber attitude control amount can be reduced by the engine attitude control amount, the controllable area of S / A 3 can be made relatively narrow, and the vehicle body attitude control can be achieved with an inexpensive configuration.
  • the engine attitude control amount calculation unit 332 (vehicle attitude control amount calculation means) has a limit value that limits the engine attitude control amount to a predetermined value. Specifically, the engine torque control amount is limited to a value that falls within a predetermined longitudinal acceleration range when converted to longitudinal acceleration. Therefore, the vehicle body posture control can be achieved without giving the driver a sense of incongruity.
  • a wheel speed sensor 5 (traveling state detecting means) that detects the wheel speed (the traveling state of the vehicle), and a vehicle body posture that controls the vehicle body posture so that the pitch rate detected by the wheel speed sensor 5 becomes a flat posture.
  • a first target attitude control amount calculation unit 331 (a target attitude control amount calculation means for calculating a target attitude control amount of the vehicle body based on the running state) and a first target attitude control amount
  • An engine attitude control amount calculation unit 332 (driving force attitude control amount calculation means) that calculates an engine attitude control amount (driving force attitude control amount) controlled by the driving force, a first target attitude control amount, and an engine attitude control amount
  • the brake attitude control amount calculating unit 334 (braking force attitude control amount calculating means) for calculating a brake attitude control amount (braking force attitude control amount) controlled by the braking force, and an engine attitude control.
  • An engine control unit 1a driving force control means for controlling the driving force of the vehicle based on the amount
  • a brake control unit 2a braking force control means for controlling the braking force of the friction brake based on the brake attitude control amount
  • a shock absorber attitude control amount calculator 336 damping force control means for controlling the damping force of the S / A 3 (shock absorber) based on the first target attitude control amount, the engine attitude control amount, and the brake attitude control amount; Equipped with.
  • the shock absorber attitude control amount can be reduced by the engine attitude control amount and the brake attitude control amount that have nothing to do with the deterioration of the high frequency vibration characteristics, and the deterioration of the high frequency vibration characteristics can be suppressed.
  • the shock absorber attitude control amount can be reduced by the engine attitude control amount and the brake attitude control amount, the controllable area of S / A3 can be made relatively narrow, and the vehicle body attitude control can be achieved with an inexpensive configuration. can do.
  • the wheel speed sensor 5 is used as the traveling state detection means. However, the traveling state may be detected by employing a stroke sensor, a sprung vertical acceleration sensor, or the like.
  • the vehicle body attitude control is performed by the skyhook control.
  • the vehicle body attitude control may be achieved by another vehicle body attitude control.
  • the pitch rate is controlled, but bounce rate or the like may be controlled.
  • the target posture is a flat posture, but for example, a nose dive-like vehicle body posture may be set as the target posture from the viewpoint of securing the driver's view during turning.
  • the shock absorber attitude control amount is calculated based on a value obtained by removing the engine attitude control amount and the brake attitude control amount from the first target attitude control amount.
  • the shock absorber posture control amount may be calculated based on the ratio of the control amount, the engine posture control amount, and the brake posture control amount. In addition to the ratio, the shock absorber posture may be calculated from a map using the above three control amounts as parameters.
  • the control amount may be calculated.
  • an engine is used as a power source.
  • a driving motor is used for an electric vehicle, an engine and a motor generator are used for a hybrid vehicle, and driving force is controlled.
  • the driving force control may be performed using a transmission or the like interposed between the power source and the driving wheels.
  • the braking force is not limited to the friction brake, and the braking force may be generated by downshifting an engine brake or a transmission.
  • the brake posture control amount calculation unit 334 calculates a brake posture control amount based on a value obtained by subtracting the engine posture control amount from the first target posture control amount. Therefore, since the brake posture control amount can be reduced by the engine posture control amount, the feeling of deceleration can be reduced.
  • the shock absorber attitude control amount calculation unit 336 calculates a shock absorber attitude control amount obtained by subtracting the brake attitude control amount and the engine attitude control amount from the first target attitude control amount, and based on the shock absorber attitude control amount To control the damping force. Therefore, since the shock absorber attitude control amount can be reduced by the brake attitude control amount and the engine attitude control amount, the S / A3 controllable region can be made relatively narrow while suppressing the deterioration of the high-frequency vibration characteristics.
  • the vehicle attitude control can be achieved with an inexpensive configuration.
  • the brake posture control amount calculation unit 332 (brake posture control amount calculation means) has a limit value that limits the brake posture control amount to a predetermined value. Specifically, in the jerk threshold limiting unit 3342d, the calculated rate of change of the target deceleration, that is, whether the jerk is within a preset range of the deceleration jerk threshold and the extraction jerk threshold, and the target deceleration is Judgment is made as to whether the value is within the range of the longitudinal acceleration limit value. If any threshold is exceeded, the target deceleration is corrected to a value within the jerk threshold range, and the target deceleration is set to the limit value. If it exceeds, set it within the limit value. Thereby, the deceleration can be generated so as not to give the passenger an uncomfortable feeling.
  • the engine attitude control amount calculation unit 332 (driving force attitude control amount calculation means) has a limit value that limits the engine attitude control amount to a predetermined value. Specifically, the engine torque control amount is limited to a value that falls within a predetermined longitudinal acceleration range when converted to longitudinal acceleration. Therefore, the vehicle body posture control can be achieved without giving the driver a sense of incongruity.
  • the wheel speed sensor 5 (running state detection means) detects the pitch rate (movement on the spring). Therefore, stable posture control can be achieved according to the motion state on the spring.
  • the first target posture control amount calculation unit 331 calculates a control amount that suppresses the pitch rate (spring motion) as a first target posture control amount (target posture control amount). To do. Therefore, a flat running state can be achieved by suppressing the movement on the spring.
  • the first target attitude control amount calculation unit 331 calculates a first target attitude control amount based on the detected pitch rate.
  • the brakes 20 In general, it can be said that it is preferable to perform both of the brakes 20 because both bounce and pitch can be controlled.
  • the bounce control by the brake 20 generates braking force at the same time for the four wheels. Therefore, despite the low control priority, the deceleration effect is strong for the difficulty of obtaining the control effect, and the driver tends to feel uncomfortable. there were. Therefore, the brake 20 has a configuration specialized for pitch control.
  • the pitch rate Vp is positive, that is, when the braking force is applied when the front wheel side is depressed, the front wheel side is further depressed and the pitch motion is promoted. In this case, the braking force is not applied.
  • the braking pitch moment gives a braking force to suppress the front wheel side lift. This contributes to improving the sense of security and flatness by ensuring the driver's field of view and making it easier to see the front. Further, since the braking torque is generated only when the vehicle body is lifted on the front side, the generated deceleration can be reduced as compared with the case where the braking torque is generated for both lifting and sinking. Moreover, since the actuator operation frequency is only half, a low-cost actuator can be employed.
  • the running state estimation unit 32 estimates the running state based on the change in wheel speed. Thereby, it is not necessary to provide an expensive sensor such as a sprung vertical acceleration sensor or a stroke sensor. Generally, by estimating all the states from the wheel speed sensor 5 mounted on any vehicle, the number of parts can be reduced. Reduction and cost reduction can be achieved, and vehicle mountability can be improved.
  • the brake attitude control amount calculation unit 332 calculates the brake attitude control amount based on the skyhook control law. Therefore, a flat running state can be achieved by controlling the posture of the sprung.
  • the shock absorber attitude control amount calculation unit 336 controls the damping force based on the skyhook control law. Therefore, a flat running state can be achieved by controlling the posture of the sprung.
  • the running state estimation unit 32 estimates the running state based on an active skyhook model that can be estimated regardless of the sign of the sprung speed and the stroke speed. Therefore, the filter response is stable and appropriate estimation accuracy can be obtained.
  • the active sky hook model is adopted, only semi-active control is actually possible, so the controllable area is halved. Therefore, the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
  • the running state estimation unit 32 (running state detection means) includes a bounce term representing the vertical motion of the four wheels, a pitch term representing the vertical motion of the front and rear wheels, and a roll term representing the vertical motion of the left and right wheels. And a warp term representing the vertical movement of the diagonal wheel, and a four-wheel model is developed to estimate the running state. That is, when the mode decomposition is performed from the sprung speed of the four wheels into the roll term, the pitch term, and the bounce term, the corresponding component is insufficient and the solution becomes indefinite. Therefore, the above terms can be estimated by introducing a warp term representing the motion of the diagonal wheel.
  • the controller calculates the shock absorber attitude control amount (damping force control amount) according to the control amount that cannot be achieved with the first target attitude control amount, and generates the driving force according to the attitude control amount.
  • an S / A3 shock absorber
  • an S / A3 shock absorber
  • the vehicle body posture can be controlled while suppressing the deterioration of the high-frequency vibration characteristics.
  • the shock absorber posture control amount can be reduced by the posture control amount, the controllable region of the damping force variable shock absorber can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration. .
  • the engine controller 1a, the brake controller 2a, and the S / A controller 3a calculate a first target posture control amount (target posture control amount) based on the traveling state of the vehicle, and the first target posture control.
  • a posture control amount controlled by an actuator other than S / A3 is calculated based on the amount, and a control amount that cannot be achieved by the first target posture control amount is controlled by the damping force of S / A3. Therefore, the vehicle body posture can be controlled while suppressing the deterioration of the high-frequency vibration. Further, since the shock absorber posture control amount can be reduced by the posture control amount, the controllable region of the damping force variable shock absorber can be made relatively narrow, and the vehicle body posture control can be achieved with an inexpensive configuration. .
  • Example 2 Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. In Example 1, after calculating the engine attitude control amount, the brake attitude control amount was calculated. On the other hand, the second embodiment is different in that the brake posture control amount is calculated and then the engine posture control amount is calculated.
  • FIG. 24 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to the first embodiment.
  • the skyhook control unit 33a calculates a target pitch rate that is a first target posture control amount (target posture control amount) that is a control amount that can be used in common for all actuators.
  • (Target posture control amount calculation means) an engine posture control amount calculation unit 332 for calculating an engine posture control amount achieved by the engine 1, and a brake posture control amount calculation unit 334 for calculating a brake posture control amount achieved by the brake 20.
  • an S / A attitude control amount calculation unit 336 that calculates an S / A attitude control amount achieved by S / A3.
  • the first priority is to operate so as to suppress the pitch rate. Therefore, the first target attitude control amount calculation unit 331 outputs the pitch rate as it is (hereinafter, this is referred to as “this”). The pitch rate is described as a first target attitude control amount.)
  • the brake posture control amount calculation unit 334 calculates a brake posture control amount that is a control amount that can be achieved by the brake 20 based on the input first target posture control amount.
  • a limit value for limiting the brake posture control amount is set so as not to give the driver a sense of incongruity.
  • the brake attitude control amount is limited to be within a predetermined longitudinal acceleration range when converted into the longitudinal acceleration. Therefore, the brake posture control amount is calculated based on the first target posture control amount, and when a value equal to or greater than the limit value is calculated, the brake posture control amount that can be achieved by the limit value is output.
  • the brake attitude control amount output from the brake attitude control amount calculation unit 334 is output as a value obtained by multiplying the pitch rate suppressed by the brake 20 by CskyP.
  • a value obtained by converting a brake attitude control amount into a pitch rate is output by a conversion unit 3344 to a second target attitude control amount calculation unit 333 described later. Further, the brake control unit 2 a calculates a braking torque control amount based on the brake attitude control amount corresponding to the limit value, and outputs it to the brake control unit 2.
  • the second target attitude control amount calculation unit 333 a value obtained by converting the brake attitude control amount into a pitch rate in the first target attitude control amount and the conversion unit 3344 (hereinafter, this value is also simply referred to as a brake attitude control amount).
  • a second target attitude control amount that is a deviation is calculated and output to the engine attitude control amount calculation unit 332.
  • a limit value for limiting the engine attitude control amount is set in order to prevent the driver from feeling uncomfortable like the brake 20. As a result, the engine attitude control amount is limited to be within a predetermined longitudinal acceleration range when converted to longitudinal acceleration.
  • the engine attitude control amount is calculated based on the second target attitude control amount, and when a value equal to or greater than the limit value is calculated, the engine attitude control amount that can be achieved by the limit value is output.
  • the engine attitude control amount output from the engine attitude control amount calculation unit 332 is output as a value obtained by multiplying the pitch rate suppressed by the engine 1 by CskyP. It should be noted that a value obtained by converting the engine attitude control amount into a pitch rate in the conversion unit 332a is output to a third target attitude control amount calculation unit 335 described later. Further, the engine control unit 1 a calculates an engine torque control amount based on the engine attitude control amount corresponding to the limit value, and outputs the engine torque control amount to the engine 1.
  • the second target attitude control amount and a value obtained by converting the engine attitude control amount into a pitch rate in the conversion unit 332a (hereinafter, this value is also simply referred to as an engine attitude control amount).
  • a third target attitude control amount that is a deviation is calculated and output to the S / A attitude control amount calculation unit 336.
  • the S / A attitude control amount calculation unit 336 outputs a pitch attitude control amount corresponding to the third target attitude control amount.
  • the damping force control unit 35 determines the damping force control amount based on the bounce posture control amount, the roll posture control amount, and the pitch posture control amount (hereinafter collectively referred to as the S / A posture control amount). Calculated and output to S / A3.
  • the first target attitude control amount is calculated, then the brake attitude control amount is calculated, and the second target that is the deviation between the first target attitude control amount and the brake attitude control amount is calculated.
  • An engine attitude control amount is calculated from the attitude control amount, and an S / A attitude control amount is calculated from a third target attitude control amount that is a deviation between the second attitude control amount and the engine attitude control amount.
  • the damping force basically increases.
  • An increase in damping force means a hard suspension characteristic, so when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.)
  • high-frequency vibration characteristics when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.)
  • the above effects are obtained by determining the control amount of the brake 20 prior to S / A3 and determining the control amount of the engine 1 prior to S / A3.
  • FIG. 10 is a control block diagram showing the brake pitch control of the first embodiment.
  • the vehicle body mass is m
  • the front wheel braking force is BFf
  • the rear wheel braking force is BFr
  • the height between the vehicle center of gravity and the road surface is Hcg
  • the vehicle acceleration is a
  • the pitch moment is Mp
  • the pitch rate is Vp.
  • the braking torque is generated only when the vehicle body is lifted up on the front side, the generated deceleration can be reduced as compared with the case where the braking torque is generated in both the lifting and sinking.
  • the actuator operation frequency is only half, a low-cost actuator can be employed.
  • the brake attitude control amount calculation unit 334 is composed of the following control blocks.
  • the dead zone processing code determination unit 3341 determines the sign of the input pitch rate Vp, and when it is positive, it outputs 0 to the deceleration reduction processing unit 3342 because control is unnecessary, and when it is negative, it determines that control is possible.
  • the pitch rate signal is output to the deceleration reduction processing unit 3342.
  • a wheel speed sensor 5 (traveling state detecting means) that detects a wheel speed (traveling state of the vehicle) and a vehicle body posture that controls the vehicle body posture so that the pitch rate detected by the wheel speed sensor 5 becomes a flat posture.
  • a first target attitude control amount calculation unit 331 (a target attitude control amount calculation means for calculating a target attitude control amount of the vehicle body based on the running state) and a first target attitude control amount
  • a brake posture control amount calculation unit 334 (braking force posture control amount calculation means) for calculating a brake posture control amount controlled by the braking force of the brake 20 (braking force of the vehicle), a first target posture control amount, and a brake posture
  • an engine posture control amount calculation unit 332 driving force posture control amount calculation means that calculates an engine posture control amount controlled by the driving force of the engine 1 (vehicle driving force).
  • a brake control unit 2a (braking force control means) for controlling the braking force of the friction brake based on the brake attitude control amount
  • an engine control unit 1a driving force control
  • Means an S / A attitude control amount calculation unit 336 that controls the damping force of S / A3 (shock absorber) based on the first target attitude control amount, the brake attitude control amount, and the engine attitude control amount, a damping force And a control unit 35 (damping force control means).
  • the shock absorber posture control amount can be reduced by the brake posture control amount and the engine posture control amount, which are the control amounts of the actuator that have nothing to do with the deterioration of the high frequency vibration characteristics, and the deterioration of the high frequency vibration characteristics can be avoided. it can.
  • the shock absorber attitude control amount can be reduced by the brake attitude control amount and the engine attitude control amount, the controllable area of S / A3 can be made relatively narrow, and the vehicle body attitude control can be achieved with an inexpensive configuration. can do.
  • the brake posture control amount is determined before the engine posture control amount, the posture control by the engine 1 can be suppressed, and the fuel consumption can be improved.
  • the wheel speed sensor 5 is used as the traveling state detection means.
  • the traveling state may be detected using a stroke sensor, a sprung vertical acceleration sensor, or the like.
  • the example in which the vehicle body posture control is performed by the skyhook control is shown, but it may be achieved by other vehicle body posture control.
  • the pitch rate is a control target, but a bounce rate or the like may be a control target.
  • the target posture is a flat posture.
  • a nose dive-like vehicle body posture may be used as the target posture from the viewpoint of securing the driver's field of view during turning.
  • the shock absorber attitude control amount is calculated based on the value obtained by subtracting the brake attitude control amount and the engine attitude control amount from the first target attitude control amount.
  • the shock absorber posture control amount may be calculated based on the ratio of the control amount, the brake posture control amount, and the engine posture control amount. In addition to the ratio, the shock absorber posture may be calculated from a map using the above three control amounts as parameters.
  • the control amount may be calculated.
  • an engine is used as a power source.
  • a driving motor is used in the case of an electric vehicle.
  • an engine and a motor generator are used, and the driving force is controlled. From this point of view, the driving force control may be performed using a transmission or the like interposed between the power source and the driving wheels.
  • the engine attitude control amount calculator 332 calculates the engine attitude control amount based on a value obtained by subtracting the brake attitude control amount from the first target attitude control amount. Therefore, since the engine attitude control amount can be reduced by the brake attitude control amount, the feeling of acceleration can be reduced.
  • a first target posture control amount calculation unit 331 target posture control amount calculation means that calculates a first target posture control amount (target posture control amount) that becomes a posture, and the brake 20 based on the first target posture control amount.
  • a brake posture control amount calculation unit 334 braking force posture control amount calculation means for calculating a brake posture control amount (braking force posture control amount) controlled by the braking force, a first target posture control amount and a brake posture control amount.
  • an engine control unit 1a for controlling the driving force of the engine 1 and an engine attitude control amount calculating unit 332 driving force control means. That is, posture control can be performed by the engine 1 and the brake 20 which are actuators that have nothing to do with the deterioration of the high-frequency vibration characteristics, and the deterioration of the high-frequency vibration characteristics can be avoided. Further, since priority is given to the posture control by the brake 20 having a large control amount, the control amount of the brake 20 is determined before the engine 1, so the frequency of the posture control by the engine 1 can be suppressed and the fuel consumption can be improved. Can do.
  • the control amount of the brake 20 is determined prior to the engine 1, and the posture control by the brake 20 is preferentially performed. The responsiveness of attitude control can be accelerated.
  • the engine posture control amount calculation unit 332 calculates an engine posture control amount (driving force posture control amount) obtained by subtracting the brake posture control amount from the first target posture control amount, and based on this engine posture control amount To control the driving force. Therefore, the suppression of the vehicle body posture control that cannot be achieved by the brake 20 can be effectively suppressed by the engine 1.
  • Example 3 Next, Example 3 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described.
  • an engine 1 that is an internal combustion engine is used as a power source.
  • Example 3 is different in that a motor is used.
  • FIG. 25 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to the third embodiment.
  • the skyhook control unit 33a is achieved by the motor 1 and the first target attitude control amount calculation unit 331 that calculates a target pitch rate that is a first target attitude control amount that is a control amount that can be used in common for all actuators.
  • the first target attitude control amount calculation unit 331 outputs the pitch rate as it is (hereinafter, this pitch rate is referred to as the pitch rate). It is described as a first target attitude control amount.)
  • the motor attitude control amount calculation unit 332 calculates a motor attitude control amount that is a control amount that can be achieved by the motor 1 based on the input first target attitude control amount.
  • a limit value for limiting the motor attitude control amount is set in order not to give the driver a sense of incongruity. Thereby, when the motor attitude control amount is converted into the longitudinal acceleration, it is limited to be within a predetermined longitudinal acceleration range. Therefore, the motor attitude control amount is calculated based on the first target attitude control amount, and when a value equal to or greater than the limit value is calculated, the motor attitude control amount achievable by the limit value is output.
  • the motor attitude control amount output from the motor attitude control amount calculation unit 332 is output as a value obtained by multiplying the pitch rate suppressed by the motor 1 by CskyP.
  • a value obtained by converting the motor attitude control amount into a pitch rate in the conversion unit 332a is output to a second target attitude control amount calculation unit 333 described later. Further, the motor control unit 1 a calculates a motor torque control amount based on the motor attitude control amount corresponding to the limit value, and outputs it to the motor 1.
  • the second target attitude control amount calculation unit 333 a deviation between the first target attitude control amount and a value obtained by converting the motor attitude control amount into a pitch rate in the conversion unit 332a (hereinafter, this value is also simply referred to as a motor attitude control amount).
  • the second target attitude control amount is calculated and output to the brake attitude control amount calculation unit 334.
  • a limit value for limiting the brake attitude control amount is set in order to prevent the driver from feeling uncomfortable like the motor 1. As a result, the brake attitude control amount is limited to be within a predetermined longitudinal acceleration range when converted into the longitudinal acceleration.
  • the brake posture control amount is calculated based on the second target posture control amount, and when a value equal to or greater than the limit value is calculated, the brake posture control amount that can be achieved by the limit value is output.
  • the brake attitude control amount output from the brake attitude control amount calculation unit 334 is output as a value obtained by multiplying the pitch rate suppressed by the brake 20 by CskyP. Note that a value obtained by converting the brake attitude control amount into a pitch rate in the conversion unit 334a is output to a third target attitude control amount calculation unit 335 described later. Further, the brake control unit 2 a calculates a braking torque control amount based on the brake attitude control amount corresponding to the limit value, and outputs it to the brake control unit 2.
  • the third target attitude control amount calculation unit 335 a value obtained by converting the brake attitude control amount into a pitch rate in the second target attitude control amount and the conversion unit 334a (hereinafter, this value is also simply referred to as a brake attitude control amount).
  • a third target attitude control amount that is a deviation is calculated and output to the S / A attitude control amount calculation unit 336.
  • the S / A attitude control amount calculation unit 336 outputs a pitch attitude control amount corresponding to the third target attitude control amount.
  • the damping force control unit 35 determines the damping force control amount based on the bounce posture control amount, the roll posture control amount, and the pitch posture control amount (hereinafter collectively referred to as the S / A posture control amount). Calculated and output to S / A3.
  • the first target attitude control amount is calculated, then the motor attitude control amount is calculated, and the second target that is the deviation between the first target attitude control amount and the motor attitude control amount is calculated.
  • a brake posture control amount is calculated from the posture control amount, and an S / A posture control amount is calculated from a third target posture control amount that is a deviation between the second posture control amount and the brake posture control amount.
  • the damping force basically increases.
  • An increase in damping force means a hard suspension characteristic, so when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.)
  • high-frequency vibration characteristics when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.)
  • the above effects can be obtained by determining the control amount of the motor 1 prior to S / A3 and determining the control amount of the brake 20 prior to S / A3.
  • control amount of the motor 1 is determined prior to the brake 20.
  • the control by the brake 20 can only control in the deceleration direction, the control by the motor 1 can perform control in both the acceleration direction and the deceleration direction. Therefore, the degree of freedom of control is high and it is difficult to give a feeling of deceleration during the control. Therefore, in order to give priority to the attitude control by the motor 1 having a high degree of freedom of control, the control amount of the motor 1 is determined before the brake 20. Thereby, the frequency of the attitude
  • the control amount of the motor 1 is determined prior to the brake 20, and the attitude control by the motor 1 is preferentially performed. The responsiveness of attitude control can be accelerated.
  • Motor posture control amount calculation unit 332 (driving force posture control amount calculation means) for calculating a motor posture control amount (driving force posture control amount) controlled by the driving force, a first target posture control amount and a motor posture control amount And a brake control unit 2a for controlling the braking force of the brake 20 and a brake attitude control amount calculation unit 334 (braking force control means).
  • posture control can be performed by the motor 1 and the brake 20 which are actuators that have nothing to do with the deterioration of the high-frequency vibration characteristics, and the deterioration of the high-frequency vibration characteristics can be avoided.
  • the motor 1 and the brake 20 which are actuators that have nothing to do with the deterioration of the high-frequency vibration characteristics, and the deterioration of the high-frequency vibration characteristics can be avoided.
  • the frequency of the attitude control by the brake 20 can be suppressed, and the feeling of deceleration can be suppressed.
  • the control amount of the motor 1 is determined prior to the brake 20, and the attitude control by the motor 1 is preferentially performed. The responsiveness of attitude control can be accelerated.
  • the brake posture control amount calculation unit 334 calculates a brake posture control amount (braking force posture control amount) obtained by subtracting the motor posture control amount from the first target posture control amount, and based on this brake posture control amount To control the braking force. Therefore, the suppression of the vehicle body posture control that cannot be achieved by the motor 1 can be effectively suppressed by the brake 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

 車両の走行状態を検出する走行状態検出手段と、走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段と、前記目標姿勢制御量に基づいて、ショックアブソーバ以外のアクチュエータによって制御される姿勢制御量を演算する姿勢制御量演算手段と、前記目標姿勢制御量と前記姿勢制御量とに基づいて、ショックアブソーバの減衰力を制御する減衰力制御手段と、を備えた。

Description

車両の制御装置
 本発明は、車両の状態を制御する制御装置に関する。
 車両の制御装置に関する技術として、特許文献1に記載の技術が開示されている。この公報には、減衰力を変更可能なサスペンション制御装置を用いて車体姿勢を制御する技術が開示されている。
特開平7-117435号公報
 しかしながら、ショックアブソーバの減衰力のみで車体姿勢を制御すると、減衰力が高くなりやすく、路面側から高周波振動が入力された場合に、乗員に違和感を与えるおそれがあった。
 本発明は、上記問題に着目してなされたもので、乗員への違和感を低減しつつ、車体姿勢を制御可能な車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の車両の制御装置では、車両の走行状態を検出する走行状態検出手段と、走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段と、前記目標姿勢制御量に基づいて、ショックアブソーバ以外の姿勢制御アクチュエータによって制御される姿勢制御量を演算する姿勢制御量演算手段と、前記目標姿勢制御量と前記姿勢制御量とに基づいて、ショックアブソーバの減衰力を制御する減衰力制御手段と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無い姿勢制御量によって減衰力の制御量を低下させることができ、高周波振動特性の悪化を抑制することができる。
 また、姿勢制御量によってショックアブソーバの減衰力の制御量を減少させることができるため、ショックアブソーバの制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
実施例1の車両の制御装置を表すシステム概略図である。 実施例1の車両の制御装置の制御構成を表す制御ブロック図である。 実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。 実施例1のロールレイト抑制制御の包絡波形形成処理を表すタイムチャートである。 実施例1の走行状態推定部の構成を表す制御ブロック図である。 実施例1のストローク速度演算部における制御内容を表す制御ブロック図である。 実施例1の基準車輪速演算部の構成を表すブロック図である。 車体振動モデルを表す概略図である。 実施例1のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。 実施例1のブレーキピッチ制御を表す制御ブロック図である。 車輪速センサにより検出された車輪速周波数特性と、実施例では搭載していないストロークセンサのストローク周波数特性とを同時に書き表した図である。 実施例1のばね上制振制御における周波数感応制御を表す制御ブロック図である。 各周波数領域における人間感覚特性を表す相関図である。 実施例1の周波数感応制御によるフワ領域の振動混入比率と減衰力との関係を表す特性図である。 ある走行条件において車輪速センサにより検出された車輪速周波数特性を表した図である。 実施例1のばね下制振制御の制御構成を表すブロック図である。 実施例1の減衰力制御部の制御構成を表す制御ブロック図である。 実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。 実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。 実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。 実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。 うねり路面及び凹凸路面を走行する際の減衰係数変化を表すタイムチャートである。 実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。 実施例2のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。 実施例3のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。
1  エンジン
1a  エンジンコントローラ(エンジン制御部)
2  ブレーキコントロールユニット
2a  ブレーキコントローラ(ブレーキ制御部)
3  S/A(減衰力可変ショックアブソーバ)
3a  S/Aコントローラ
5  車輪速センサ
6  一体型センサ
7  舵角センサ
8  車速センサ
20  ブレーキ
31  ドライバ入力制御部
32  走行状態推定部
33  ばね上制振制御部
33a  スカイフック制御部
33b  周波数感応制御部
34  ばね下制振制御部
35  減衰力制御部
331  第1目標姿勢制御量演算部
332  エンジン姿勢制御量演算部
333  第2目標姿勢制御量演算部
334  ブレーキ姿勢制御量演算部
335  第3目標姿勢制御量演算部
336  ショックアブソーバ姿勢制御量演算部
 

 〔実施例1〕
 図1は実施例1の車両の制御装置を表すシステム概略図である。車両には、動力源であるエンジン1と、各輪に摩擦力による制動トルクを発生させるブレーキ20(以下、個別の輪に対応するブレーキを表示するときには右前輪ブレーキ:20FR、左前輪ブレーキ:20FL、右後輪ブレーキ:20RR、左後輪ブレーキ:20RLと記載する。)と、各輪と車体との間に設けられ減衰力を可変に制御可能なショックアブソーバ3(以下、S/Aと記載する。個別の輪に対応するS/Aを表示するときには右前輪S/A:3FR、左前輪S/A:3FL、右後輪S/A:3RR、左後輪S/A:3RLと記載する。)と、を有する。
 エンジン1は、エンジン1から出力されるトルクを制御するエンジンコントローラ(以下、エンジン制御部とも言う。)1aを有し、エンジンコントローラ1aは、エンジン1のスロットルバルブ開度や、燃料噴射量、点火タイミング等を制御することで、所望のエンジン運転状態(エンジン回転数やエンジン出力トルク)を制御する。また、ブレーキ20は、各輪のブレーキ液圧を走行状態に応じて制御可能なブレーキコントロールユニット2から供給される液圧に基づいて制動トルクを発生する。ブレーキコントロールユニット2は、ブレーキ20の発生する制動トルクを制御するブレーキコントローラ(以下、ブレーキ制御部とも言う。)2aを有し、運転者のブレーキペダル操作によって発生するマスタシリンダ圧、もしくは内蔵されたモータ駆動ポンプにより発生するポンプ圧を液圧源とし、複数の電磁弁の開閉動作によって各輪のブレーキ20に所望の液圧を発生させる。
 S/A3は、車両のばね下(アクスルや車輪等)とばね上(車体等)との間に設けられたコイルスプリングの弾性運動を減衰する減衰力発生装置であり、アクチュエータの作動により減衰力を可変に構成されている。S/A3は、流体が封入されたシリンダと、このシリンダ内をストロークするピストンと、このピストンの上下に形成された流体室の間の流体移動を制御するオリフィスとを有する。更に、このピストンには複数種のオリフィス径を有するオリフィスが形成され、S/Aアクチュエータの作動時には、複数種のオリフィスから制御指令に応じたオリフィスが選択される。これにより、オリフィス径に応じた減衰力を発生することができる。例えば、オリフィス径が小さければピストンの移動は制限されやすいため、減衰力が高くなり、オリフィス径が大きければピストンの移動は制限されにくいため、減衰力は小さくなる。
 尚、オリフィス径の選択以外にも、例えばピストンの上下に形成された流体を接続する連通路上に電磁制御弁を配置し、この電磁制御弁の開閉量を制御することで減衰力を設定してもよく、特に限定しない。S/A3は、S/A3の減衰力を制御するS/Aコントローラ3a(減衰力制御手段に相当)を有し、S/Aアクチュエータによりオリフィス径を動作させて減衰力を制御する。
 また、各輪の車輪速を検出する車輪速センサ5(以下、個別の輪に対応する車輪速を表示するときには右前輪車輪速:5FR、左前輪車輪速:5FL、右後輪車輪速:5RR、左後輪車輪速:5RLと記載する。)と、車両の重心点に作用する前後加速度、ヨーレイト及び横加速度を検出する一体型センサ6と、運転者のステアリング操作量である操舵角を検出する舵角センサ7と、車速を検出する車速センサ8と、エンジントルクを検出するエンジントルクセンサ9と、エンジン回転数を検出するエンジン回転数センサ10と、マスタシリンダ圧を検出するマスタ圧センサ11と、ブレーキペダル操作が行なわれるとオン状態信号を出力するブレーキスイッチ12と、アクセルペダル開度を検出するアクセル開度センサ13と、を有する。これら各種センサの信号は、S/Aコントローラ3aに入力される。尚、一体型センサ6の配置は車両の重心位置でもよいし、それ以外の場所であっても、重心位置における各種値が推定可能な構成であればよく、特に限定しない。また、一体型である必要は無く、個別にヨーレイト、前後加速度及び横加速度を検出する構成としてもよい。
 図2は実施例1の車両の制御装置の制御構成を表す制御ブロック図である。実施例1では、コントローラとして、エンジンコントローラ1aと、ブレーキコントローラ2aと、S/Aコントローラ3aとの3つで構成されている。S/Aコントローラ3a内には、運転者の操作(ステアリング操作、アクセル操作及びブレーキペダル操作等)に基づいて所望の車両姿勢を達成するドライバ入力制御を行うドライバ入力制御部31と、各種センサの検出値に基づいて走行状態を推定する走行状態推定部32と、推定された走行状態に基づいてばね上の振動状態を制御するばね上制振制御部33と、推定された走行状態に基づいてばね下の振動状態を制御するばね下制振制御部34と、ドライバ入力制御部31から出力されたショックアブソーバ姿勢制御量と、ばね上制振制御部33から出力されたばね上制振制御量と、ばね下制振制御部34から出力されたばね下制振制御量とに基づいて、S/A3に設定すべき減衰力を決定し、S/Aの減衰力制御を行う減衰力制御部35とを有する。
 実施例1では、コントローラとして、3つのコントローラを備えた構成を示したが、例えば、減衰力制御部35をS/Aコントローラ3aから除外して姿勢制御コントローラとし、減衰力制御部35をS/Aコントローラとして4つのコントローラを備えた構成としてもよいし、各コントローラを全て一つの統合コントローラから構成してもよく特に限定しない。尚、実施例1においてこのように構成したのは、既存の車両におけるエンジンコントローラとブレーキコントローラをそのまま流用してエンジン制御部1a及びブレーキ制御部2aとし、別途S/Aコントローラ3aを搭載することで実施例1の車両の制御装置を実現することを想定したものである。
 (車両の制御装置の全体構成)
 実施例1の車両の制御装置にあっては、ばね上に生じる振動状態を制御するために、3つのアクチュエータを使用する。このとき、それぞれの制御がばね上状態を制御するため、相互干渉が問題となる。また、エンジン1によって制御可能な要素と、ブレーキ20によって制御可能な要素と、S/A3によって制御可能な要素はそれぞれ異なり、これらをどのように組み合わせて制御するべきかが問題となる。
 例えば、ブレーキ20はバウンス運動とピッチ運動の制御が可能であるが、両方を行なうと減速感が強く運転者に違和感を与えやすい。また、S/A3はロール運動とバウンス運動とピッチ運動の全てを制御可能であるが、S/A3によって全ての制御を行う場合、S/A3の製造コストの上昇を招き、また、減衰力が高くなる傾向があることから路面側からの高周波振動が入力されやすく、やはり運転者に違和感を与えやすい。言い換えると、ブレーキ20による制御は高周波振動の悪化を招くことは無いが減速感の増大を招き、S/A3による制御は減速感を招くことは無いが高周波振動の入力を招くというトレードオフが存在する。
  そこで、実施例1の車両の制御装置にあっては、これらの課題を総合的に判断し、それぞれの制御特性として有利な点を活かしつつ、相互の弱点を補完しあう制御構成を実現することで、安価でありながらも制振能力に優れた車両の制御装置を実現するために、主に、以下に列挙する点を考慮して全体の制御システムを構築した。
(1)エンジン1及びブレーキ20による制御を優先的に行うことで、S/A3による制御量を抑制する。
(2)ブレーキ20の制御対象運動をピッチ運動に限定することで、ブレーキ20による制御での減速感を解消する。
(3)エンジン1及びブレーキ20による制御量を実際に出力可能な制御量よりも制限して出力することで、S/A3での負担を低減しつつ、エンジン1やブレーキ20の制御に伴って生じる違和感を抑制する。
(4)全てのアクチュエータによりスカイフック制御を行う。このとき、一般にスカイフック制御に必要とされるストロークセンサやばね上上下加速度センサ等を使用することなく、全ての車両に搭載されている車輪速センサを利用して安価な構成でスカイフック制御を実現する。
(5)S/A3によるばね上制御を行なう際、スカイフック制御のようなベクトル制御では対応が困難な高周波振動の入力に対し、新たにスカラー制御(周波数感応制御)を導入する。
(6)走行状態に応じて、S/A3が実現する制御状態を適宜選択することで、走行状況に応じた適切な制御状態を提供する。
 以上が、実施例において構成した全体の制御システムの概要である。以下、これらを実現する個別の内容について、順次説明する。
 (ドライバ入力制御部について)
 まず、ドライバ入力制御部について説明する。ドライバ入力制御部31は、エンジン1のトルク制御によって運転者の要求する車両姿勢を達成するエンジン側ドライバ入力制御部31aと、S/A3の減衰力制御によって運転者の要求する車両姿勢を達成するS/A側ドライバ入力制御部31bと、を有する。エンジン側ドライバ入力制御部31a内では、前輪と後輪の接地荷重変動を抑制する接地荷重変動抑制制御量、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するヨー応答制御量を演算し、エンジン制御部1aに対して出力する。
 S/A側ドライバ入力制御部31bでは、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するドライバ入力減衰力制御量を演算し、減衰力制御部35に対して出力する。例えば、運転者が旋回中において、車両のノーズ側が浮き上がると、運転者の視界が路面から外れやすくなることから、この場合にはノーズ浮き上がりを防止するように4輪の減衰力をドライバ入力減衰力制御量として出力する。また、旋回時に発生するロールを抑制するドライバ入力減衰力制御量を出力する。
 〔S/A側ドライバ入力制御によるロール制御について〕
  ここで、S/A側ドライバ入力制御によって行われるロール抑制制御について説明する。図3は実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。横加速度推定部31b1では、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車速センサ8により検出された車速VSPに基づいて横加速度Ygを推定する。この横加速度Ygは、ヨーレイト推定値γを用いて以下の式により算出される。
  Yg=VSP・γ
なおヨーレイト推定値γは以下の式により算出される。
Figure JPOXMLDOC01-appb-I000001
 90°位相進み成分作成部31b2では、推定された横加速度Ygを微分して横加速度微分値dYgを出力する。90°位相遅れ成分作成部31b3では、横加速度微分値dYgの位相を90°遅らせた成分F(dYg)を出力する。成分F(dYg)は、90°位相進み成分作成部31b2において低周波領域が除去された成分の位相を横加速度Ygの位相に戻したものであって、横加速度YgのDCカット成分、つまり横加速度Ygの過渡成分である。90°位相遅れ成分作成部31b4では、推定された横加速度Ygの位相を90°遅らせた成分F(Yg)を出力する。
  ゲイン乗算部31b5では、横加速度Yg、横加速度微分値dYg、横加速度DCカット成分F(dYg)、90°位相遅れ成分F(Yg)にそれぞれゲインを乗算する。各ゲインは、操舵角に対するロールレイト伝達関数に基づいて設定する。また各ゲインは、後述する4つの制御モードに応じて調整しても良い。二乗演算部31b6では、ゲインを乗算した各成分を二乗して出力する。合成部31b7では、二乗演算部31b6が出力した値を足し合わせる。ゲイン乗算部31b8では、足し合わせた各成分の二乗の値にゲインを乗算して出力する。平方根演算部31b9は、ゲイン乗算部31b7が出力した値の平方根を演算することで、ロールレイト抑制制御用のドライバ入力姿勢制御量を演算し、減衰力制御部35に対して出力する。
  90°位相進み成分作成部31b2、90°位相遅れ成分作成部31b3、90°位相遅れ成分作成部31b4、ゲイン乗算部31b5、二乗演算部31b6、合成部31b7、ゲイン乗算部31b8、平方根演算部31b9は、ヒルベルト変換を利用した包絡波形を生成するヒルベルト変換部31b10に相当する。
 図4は実施例1のロールレイト抑制制御の包絡波形形成処理を表すタイムチャートである。
  時刻t1において、運転者が操舵を開始すると、ロールレイトが徐々に発生し始める。このとき、90°位相進み成分dYgを加算して包絡波形を形成し、包絡波形に基づくスカラー量に基づいてドライバ入力姿勢制御量を演算することで、操舵初期におけるロールレイトの発生を抑制することができる。さらに、横加速度DCカット成分F(dYg)を加算して包絡波形を形成することで、運転者が操舵を開始もしくは終了する際の過渡的な状態において発生するロールレイトを効率的に抑制することができる。言い換えると、ロールの発生が安定している定常旋回状態では、過度に減衰力を高めることがなく、乗り心地の悪化を回避できる。
  次に、時刻t2において、運転者が保舵状態となると、90°位相進み成分dYgおよび横加速度DCカット成分F(dYg)は無くなり、今度は90°位相遅れ成分F(Yg)が加算される。このとき、定常旋回状態でロールレイト自体の変化はさほどない場合であっても、一旦ロールした後に、ロールの揺り返しに相当するロールレイト共振成分が発生する。仮に、位相遅れ成分F(Yg)が加算されていないと、時刻t2から時刻t3における減衰力は小さな値に設定されてしまい、ロールレイト共振成分による車両挙動の不安定化を招くおそれがある。このロールレイト共振成分を抑制するために90°位相遅れ成分F(Yg)を付与するものである。
 時刻t3において、運転者が保舵状態から直進走行状態に移行すると、横加速度Ygは小さくなり、ロールレイトも小さな値に収束する。ここでも90°位相遅れ成分F(Yg)の作用によってしっかりと減衰力を確保しているため、ロールレイト共振成分による不安定化を回避することができる。
 (走行状態推定部について)
 次に、走行状態推定部について説明する。図5は実施例1の走行状態推定部の構成を表す制御ブロック図である。実施例1の走行状態推定部32では、基本的に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部33のスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを算出する。まず、各輪の車輪速センサ5の値がストローク速度演算部321に入力され、ストローク速度演算部321において演算された各輪のストローク速度からばね上速度を演算する。
 図6は実施例1のストローク速度演算部における制御内容を表す制御ブロック図である。ストローク速度演算部321は、輪ごとに個別に設けられており、図6に示す制御ブロック図は、ある輪に着目した制御ブロック図である。ストローク速度演算部321内には、車輪速センサ5の値と、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車体横速度と、一体型センサ6により検出された実ヨーレイトとに基づいて基準となる車輪速を演算する基準車輪速演算部300と、演算された基準車輪速に基づいてタイヤ回転振動周波数を演算するタイヤ回転振動周波数演算部321aと、基準車輪速と車輪速センサ値との偏差(車輪速変動)を演算する偏差演算部321bと、偏差演算部321bにより演算された偏差をサスペンションストローク量に変換するGEO変換部321cと、変換されたストローク量をストローク速度に校正するストローク速度校正部321dと、ストローク速度校正部321dにより校正された値にタイヤ回転振動周波数演算部321aにより演算された周波数に応じたバンドエリミネーションフィルタを作用させてタイヤ回転一次振動成分を除去し、最終的なストローク速度を算出する信号処理部321eとを有する。
 〔基準車輪速演算部について〕
 ここで、基準車輪速演算部300について説明する。図7は実施例1の基準車輪速演算部の構成を表すブロック図である。基準車輪速とは、各車輪速のうち、種々の外乱が除去された値を指すものである。言い換えると、車輪速センサ値と基準車輪速との差分は、車体のバウンス挙動、ロール挙動、ピッチ挙動又はばね下上下振動によって発生したストロークに応じて変動した成分と関連がある値であり、実施例では、この差分に基づいてストローク速度を推定する。
 平面運動成分抽出部301では、車輪速センサ値を入力として車体プランビューモデルに基づいて各輪の基準車輪速となる第1車輪速V0を演算する。ここで、車輪速センサ5により検出された車輪速センサ値をω(rad/s)、舵角センサ7により検出された前輪実舵角をδf(rad)、後輪実舵角をδr(rad)、車体横速度をVx、一体型センサ6により検出されたヨーレイトをγ(rad/s)、算出される基準車輪速ω0から推定される車体速をV(m/s)、算出すべき基準車輪速をVFL、VFR、VRL、VRR、前輪のトレッドをTf、後輪のトレッドをTr、車両重心位置から前輪までの距離をLf、車両重心位置から後輪までの距離をLrとする。以上を用いて、車体プランビューモデルは以下のように表される。
 (式1)
VFL=(V-Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V-Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
 尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL-Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR-Lf・γsinδf}/cosδf-Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr-Tr/2・γ
 ロール外乱除去部302では、第1車輪速V0を入力として車体フロントビューモデルに基づいて前後輪の基準車輪速となる第2車輪速V0F、V0Rを演算する。車体フロントビューモデルとは、車両を前方から見たときに、車両重心点を通る鉛直線上のロール回転中心周りに発生するロール運動によって生じる車輪速差を除去するものであり、以下の式で表される。
V0F=(V0FL+V0FR)/2
V0R=(V0RL+V0RR)/2
これにより、ロールに基づく外乱を除去した第2車輪速V0F、V0Rが得られる。
 ピッチ外乱除去部303では、第2車輪速V0F、V0Rを入力として車体サイドビューモデルに基づいて全輪の基準車輪速となる第三車輪速VbFL、VbFR、VbRL、VbRRを演算する。ここで、車体サイドビューモデルとは、車両を横方向から見たときに、車両重心点を通る鉛直線上のピッチ回転中心周りに発生するピッチ運動によって生じる車輪速差を除去するものであり、以下の式で表される。
(式3)
VbFL=VbFR=VbRL=VbRR={Lr/(Lf+Lr)}V0F+{Lf/(Lf+Lr)}V0R
 基準車輪速再配分部304では、(式1)に示す車体プランビューモデルのVにVbFL(=VbFR=VbRL=VbRR)をそれぞれ代入し、最終的な各輪の基準車輪速VFL、VFR、VRL、VRRを算出し、それぞれタイヤ半径r0で除算して基準車輪速ω0を算出する。
 上述の処理により、各輪における基準車輪速ω0が算出されると、この基準車輪速ω0と車輪速センサ値との偏差が演算され、この偏差がサスペンションストロークに伴う車輪速変動であることから、ストローク速度Vz_sに変換される。基本的に、サスペンションは、各輪を保持する際、上下方向にのみストロークするのではなく、ストロークに伴って車輪回転中心が前後に移動すると共に、車輪速センサ5を搭載したアクスル自身も傾きを持ち、車輪との回転角差を生じる。この前後移動に伴って車輪速が変化するため、基準車輪速と車輪速センサ値との偏差がこのストロークに伴う変動として抽出できるのである。尚、どの程度の変動が生じるかはサスペンションジオメトリに応じて適宜設定すればよい。
 ストローク速度演算部321において、上述の処理により各輪におけるストローク速度Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRが算出されると、ばね上速度演算部322においてスカイフック制御用のバウンスレイト、ロールレイト及びピッチレイトが演算される。
  (推定モデルについて)
 スカイフック制御とは、S/A3のストローク速度とばね上速度の関係に基づいて減衰力を設定し、ばね上を姿勢制御することでフラットな走行状態を達成するものである。ここで、スカイフック制御によってばね上の姿勢制御を達成するには、ばね上速度をフィードバックする必要がある。今、車輪速センサ5から検出可能な値はストローク速度であり、ばね上に上下加速度センサ等を備えていないことから、ばね上速度は推定モデルを用いて推定する必要がある。以下、推定モデルの課題及び採用すべきモデル構成について説明する。
 図8は車体振動モデルを表す概略図である。図8(a)は、減衰力が一定のS/Aを備えた車両(以下、コンベ車両と記載する。)のモデルであり、図8(b)は、減衰力可変のS/Aを備え、スカイフック制御を行う場合のモデルである。図8中、Msはばね上の質量を表し、Muはばね下の質量を表し、Ksはコイルスプリングの弾性係数を表し、CsはS/Aの減衰係数を表し、Kuはばね下(タイヤ)の弾性係数を表し、Cuはばね下(タイヤ)の減衰係数を表し、Cvは可変とされた減衰係数を表す。また、z2はばね上の位置を表し、z1はばね下の位置を表し、z0は路面位置を表す。
 図8(a)に示すコンベ車両モデルを用いた場合、ばね上に対する運動方程式は以下のように表される。なお、z1の1回微分(即ち速度)をdz1で、2回微分(即ち加速度)をddz1で表す。
(推定式1)
Ms・ddz2=-Ks(z2-z1)-Cs(dz2-dz1)
この関係式をラプラス変換して整理すると下記のように表される。
(推定式2)
dz2=-(1/Ms)・(1/s2)・(Cs・s+Ks)(dz2-dz1)
 ここで、dz2-dz1はストローク速度(Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRR)であることから、ばね上速度はストローク速度から算出できる。しかし、スカイフック制御によって減衰力が変更されると、推定精度が著しく低下するため、コンベ車両モデルでは大きな姿勢制御力(減衰力変更)を与えられないという問題が生じる。
 そこで、図8(b)に示すようなスカイフック制御による車両モデルを用いることが考えられる。減衰力を変更するとは、基本的にサスペンションストロークに伴ってS/A3のピストン移動速度を制限する力を変更することである。ピストンを積極的に望ましい方向に移動することはできないセミアクティブなS/A3を用いるため、セミアクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
(推定式3)
dz2=-(1/Ms)・(1/s2)・{(Cs+Cv)・s+Ks}(dz2-dz1)
ただし、
dz2・(dz2-dz1)≧0のとき Cv=Csky・{dz2/(dz2-dz1)}
dz2・(dz2-dz1)<0のとき Cv=0
すなわち、Cvは不連続な値となる。
 今、簡単なフィルタを用いてばね上速度の推定を行いたいと考えた場合、セミアクティブスカイフックモデルでは、本モデルをフィルタとして見た場合、各変数はフィルタ係数に相当し、擬似微分項{(Cs+Cv)・s+Ks}に不連続な可変減衰係数Cvが含まれるため、フィルタ応答が不安定となり、適切な推定精度が得られない。特に、フィルタ応答が不安定となると、位相がずれてしまう。ばね上速度の位相と符号との対応関係が崩れると、スカイフック制御を達成することはできない。そこで、セミアクティブなS/A3を用いる場合であっても、ばね上速度とストローク速度の符号関係に依存せず、安定的なCskyを直接用いることが可能なアクティブスカイフックモデルを用いてばね上速度を推定することとした。アクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
 (推定式4)
dz2=-(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}(dz2-dz1)
この場合、擬似微分項{(Cs/Ms)s+(Ks/Ms)}には不連続性が生じず、{1/(s+Csky/Ms)}の項はローパスフィルタで構成できる。よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。
 以上の関係によって、各輪のストローク速度が分かれば、ばね上速度を推定できることが理解できる。次に、実際の車両は1輪ではなく4輪であるため、これら各輪のストローク速度を用いてばね上の状態を、ロールレイト、ピッチレイト及びバウンスレイトにモード分解して推定することを検討する。今、4輪のストローク速度から上記3つの成分を算出する場合、対応する成分が一つ足りず、解が不定となるため、対角輪の動きを表すワープレイトを導入することとした。ストローク量のバウンス項をxsB、ロール項をxsR、ピッチ項をxsP、ワープ項をxsWとし、Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRに対応するストローク量をz_sFL、z_sFR、z_sRL、z_sRRとすると、以下の式が成り立つ。
 (数1)
Figure JPOXMLDOC01-appb-I000002
以上の関係式から、xsB、xsR、xsP、xsWの微分dxsB等は以下の式で表される。
dxsB=1/4(Vz_sFL+Vz_sFR+Vz_sRL+Vz_sRR)
dxsR=1/4(Vz_sFL-Vz_sFR+Vz_sRL-Vz_sRR)
dxsP=1/4(-Vz_sFL-Vz_sFR+Vz_sRL+Vz_sRR)
dxsW=1/4(-Vz_sFL+Vz_sFR+Vz_sRL-Vz_sRR)
 ここで、ばね上速度とストローク速度との関係は上記推定式4より得られているため、推定式4のうち、-(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}部分をGと記載し、それぞれCsky,Cs及びKsのバウンス項、ロール項、ピッチ項に応じたモーダルパラメータ(CskyB,CskyR,CskyP,CsB,CsR,CsP,KsB,KsR,KsP)を考慮した値をGB,GR,GPとし、各バウンスレイトをdB、ロールレイトをdR、ピッチレイトをdPとすると、dB、dR、dPは以下の値として算出できる。
dB=GB・dxsB
dR=GR・dxsR
dP=GP・dxsP
以上から、各輪のストローク速度に基づいて、実際の車両におけるばね上の状態推定が達成できる。
 (ばね上制振制御部)
 次に、ばね上制振制御部33の構成について説明する。図2に示すように、ばね上制振制御部33は、上述のばね上速度推定値に基づいて姿勢制御を行うスカイフック制御部33aと、路面入力周波数に基づきばね上振動を抑制する周波数感応制御部33bとを有する。
  〔スカイフック制御部の構成〕
 実施例1の車両の制御装置にあっては、ばね上姿勢制御を達成するアクチュエータとして、エンジン1と、ブレーキ20と、S/A3の三つを備えている。このうち、スカイフック制御部33aでは、S/A3についてはバウンスレイト、ロールレイト、ピッチレイトの3つを制御対象とし、エンジン1についてはバウンスレイト及びピッチレイトを制御対象とし、ブレーキ20についてはピッチレイトを制御対象とする。ここで、作用の異なる複数のアクチュエータに対して制御量を割り付けてばね上状態を制御するには、それぞれに共通の制御量を用いる必要がある。実施例1では、上述の走行状態推定部32により推定されたばね上速度を用いることで、各アクチュエータに対する制御量を決定することができる。
 バウンス方向のスカイフック制御量は、
 FB=CskyB・dB
 ロール方向のスカイフック制御量は、
 FR=CskyR・dR
 ピッチ方向のスカイフック制御量は、
 FP=CskyP・dP
となる。FBはエンジン1及びS/A3にバウンス姿勢制御量として送信され、FRはS/A3においてのみ実施される制御であることから、ロール姿勢制御量として減衰力制御部35に送信される。
 次に、ピッチ方向のスカイフック制御量FPについて説明する。ピッチ制御は、エンジン1,ブレーキ20及びS/A3により行なわれる。
 図9は実施例1のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。スカイフック制御部33aは、全てのアクチュエータに共通して使用可能な制御量である第1目標姿勢制御量である目標ピッチレイトを演算する第1目標姿勢制御量演算部331と、エンジン1によって達成するエンジン姿勢制御量を演算するエンジン姿勢制御量演算部332と、ブレーキ20によって達成するブレーキ姿勢制御量を演算するブレーキ姿勢制御量演算部334と、S/A3によって達成するS/A姿勢制御量を演算するS/A姿勢制御量演算部336とを有する。
 本システムのスカイフック制御では、ピッチレイトを抑制するように作動することを第1優先としていることから、第1目標姿勢制御量演算部331ではピッチレイトをそのまま出力する(以下、このピッチレイトを第1目標姿勢制御量と記載する。)。エンジン姿勢制御量演算部332では、入力された第1目標姿勢制御量に基づいてエンジン1が達成可能な制御量であるエンジン姿勢制御量を演算する。
 エンジン姿勢制御量演算部332内には、運転者に違和感を与えないためにエンジン姿勢制御量に応じたエンジントルク制御量を制限する制限値が設定されている。これにより、エンジントルク制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第1目標姿勢制御量に基づいてエンジントルク制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なピッチレイトのスカイフック制御量(エンジン1によって抑制されるピッチレイトにCskyPを乗算した値:以下、エンジン姿勢制御量と記載する。)を出力する。このとき、後述する第2目標姿勢制御量演算部333に対しては換算部332aにおいてピッチレイトに換算した値が出力される。また、エンジン制御部1aでは、制限値に対応するエンジン姿勢制御量に基づいてエンジントルク制御量が演算され、エンジン1に対して出力される。
 第2目標姿勢制御量演算部333では、第1目標姿勢制御量と換算部332aにおいてエンジン姿勢制御量をピッチレイトに換算した値との偏差である第2目標姿勢制御量が演算され、ブレーキ姿勢制御量演算部334に出力される。ブレーキ姿勢制御量演算部334内には、エンジン1と同様に運転者に違和感を与えないために制動トルク制御量を制限する制限値が設定されている(尚、制限値の詳細については後述する。)。
 これにより、制動トルク制御量を前後加速度に換算したときに所定前後加速度範囲内(乗員の違和感、アクチュエータの寿命等から求まる制限値)となるように制限している。よって、第2目標姿勢制御量に基づいてブレーキ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なピッチレイト抑制量(以下、ブレーキ姿勢制御量と記載する。)を出力する。このとき、後述する第3目標姿勢制御量演算部335に対しては換算部3344においてピッチレイトに換算した値が出力される。また、ブレーキ制御部2aでは、制限値に対応するブレーキ姿勢制御量に基づいて制動トルク制御量(もしくは減速度)が演算され、ブレーキコントロールユニット2に対して出力される。
 第3目標姿勢制御量演算部335では、第2目標姿勢制御量とブレーキ姿勢制御量との偏差である第3目標姿勢制御量が演算され、S/A姿勢制御量演算部336に出力される。S/A姿勢制御量演算部336では、第3目標姿勢制御量に応じたピッチ姿勢制御量を出力する。
 減衰力制御部35では、バウンス姿勢制御量,ロール姿勢制御量及びピッチ姿勢制御量(以下、これらを総称してS/A姿勢制御量と記載する。)に基づいて減衰力制御量が演算され、S/A3に対して出力される。
   〔ブレーキピッチ制御〕
 ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図10は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。
 BFf+BFr=m・a
 m・a・Hcg=Mp
 Mp=(BFf+BFr)・Hcg
 ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
 Vp>0(前輪沈み込み)のとき  Mp=0
 Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
 の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。
 以上の関係に基づいて、ブレーキ姿勢制御量演算部334内は、以下の制御ブロックから構成される。不感帯処理符号判定部3341では、入力されたピッチレイトVpの符号を判定し、正のときは制御不要であるため減速感低減処理部3342に0を出力し、負のときは制御可能と判断して減速感低減処理部3342にピッチレイト信号を出力する。
   〔減速感低減処理〕
 次に、減速感低減処理について説明する。この処理は、ブレーキ姿勢制御量演算部334内で行なわれる上記制限値による制限に対応する処理である。2乗処理部3342aでは、ピッチレイト信号を2乗処理する。これにより符号を反転させると共に、制御力の立ち上がりを滑らかにする。ピッチレイト2乗減衰モーメント演算部3342bでは、2乗処理されたピッチレイトに2乗処理を考慮したピッチ項のスカイフックゲインCskyPを乗算してピッチモーメントMpを演算する。目標減速度算出部3342cでは、ピッチモーメントMpを質量m及び車両重心点と路面との間の高さHcgにより除算して目標減速度を演算する。
 ジャーク閾値制限部3342dでは、算出された目標減速度の変化率、すなわちジャークが予め設定された減速ジャーク閾値と抜きジャーク閾値の範囲内であるか否か、及び目標減速度が前後加速度制限値の範囲内であるか否かを判断し、いずれかの閾値を越える場合は、目標減速度をジャーク閾値の範囲内となる値に補正し、また、目標減速度が制限値を超える場合は、制限値内に設定する。これにより、運転者に違和感を与えないように減速度を発生させることができる。
 目標ピッチモーメント変換部3343では、ジャーク閾値制限部3342dにおいて制限された目標減速度に質量mと高さHcgとを乗算して目標ピッチモーメントを算出し、ブレーキ制御部2a及び目標ピッチレイト変換部3344に対して出力する。目標ピッチレイト変換部3344では、目標ピッチモーメントをピッチ項のスカイフックゲインCskyPで除算して目標ピッチレイト(制動力姿勢制御量に相当)に変換し、第3目標姿勢制御量演算部335に対して出力する。
 以上のように、ピッチレイトについては、第1目標姿勢制御量を演算し、次に、エンジン姿勢制御量を演算し、第1目標姿勢制御量とエンジン姿勢制御量との偏差である第2目標姿勢制御量からブレーキ姿勢制御量を演算し、第2姿勢制御量とブレーキ姿勢制御量との偏差である第3目標姿勢制御量からS/A姿勢制御量を演算する。これにより、S/A3が行なうピッチレイト制御量を、エンジン1及びブレーキ20の制御によって減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価なS/A3によりばね上姿勢制御を達成することができる。
 また、S/A3による制御量を増大させると、基本的に減衰力が増大する。減衰力の増大とは、硬いサスペンション特性となることを意味するため、路面側から高周波振動が入力された場合、高周波入力を伝達しやすくなり、乗員の快適性を損なう(以下、高周波振動特性の悪化と記載する。)。これに対し、エンジン1及びブレーキ20といった路面入力による振動伝達特性に影響を及ぼさないアクチュエータによってピッチレイトを抑制し、S/A3の制御量を低下させることで高周波振動特性の悪化を回避することができる。以上の効果は、S/A3より先にエンジン1の制御量を決めること、S/A3より先にブレーキ2の制御量を決めることによって得られる。よって、例えばエンジン姿勢制御量を演算せず、ブレーキ姿勢制御量と、第3目標姿勢制御量から演算されるS/A姿勢制御量との組み合わせによっても、上記作用効果が得られる。
  〔周波数感応制御部〕
 次に、ばね上制振制御部内における周波数感応制御処理について説明する。実施例1では、基本的に車輪速センサ5の検出値に基づいてばね上速度を推定し、それに基づくスカイフック制御を行うことでばね上制振制御を達成する。しかしながら、車輪速センサ5では十分に推定精度が担保出来ないと考えられる場合や、走行状況や運転者の意図によっては積極的に快適な走行状態(車体フラット感よりも柔らかな乗り心地)を担保したい場合もある。このような場合には、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があることから、振動特性のスカラー量に応じたばね上制振制御である周波数感応制御を導入することとした。
 図11は車輪速センサにより検出された車輪速周波数特性と、実施例では搭載していないストロークセンサのストローク周波数特性とを同時に書き表した図である。ここで、周波数特性とは、周波数に対する振幅の大きさをスカラー量として縦軸に取った特性である。車輪速センサ5の周波数成分とストロークセンサの周波数成分とを見比べると、ばね上共振周波数成分からばね下共振周波数成分にかけて概ね同じようなスカラー量を取ることが理解できる。そこで、車輪速センサ5の検出値のうち、この周波数特性に基づいて減衰力を設定することとした。ここで、ばね上共振周波数成分が存在する領域を、乗員の体全体が振れることで乗員が空中に放り投げらたような感覚、更に言い換えると、乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域としてフワ領域(0.5~3Hz)とし、ばね上共振周波数成分とばね下共振周波数成分との間の領域を、重力加速度が減少するような感覚ではないが、乗馬で速足(trot)を行う際に人体が小刻みに跳ね上がるような感覚、更に言い換えると、体全体が追従可能な上下動をもたらす周波数領域としてヒョコ領域(3~6Hz)とし、ばね下共振周波数成分が存在する領域を、人体の質量が追従するまでの上下動ではないが、乗員の太ももといった体の一部に対して小刻みな振動が伝達されるような周波数領域としてブル領域(6~23Hz)と定義する。
 図12は実施例1のばね上制振制御における周波数感応制御を表す制御ブロック図である。バンドエリミネーションフィルタ350では、車輪速センサ値のうち、本制御に使用する振動成分以外のノイズをカットする。所定周波数領域分割部351では、フワ領域、ヒョコ領域及びブル領域のそれぞれの周波数帯に分割する。ヒルベルト変換処理部352では、分割された各周波数帯をヒルベルト変換し、周波数の振幅に基づくスカラー量(具体的には、振幅と周波数帯により算出される面積)に変換する。
 車両振動系重み設定部353では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が実際に車両に伝播される重みを設定する。人間感覚重み設定部354では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が乗員に伝播される重みを設定する。
 ここで、人間感覚重みの設定について説明する。図13は周波数に対する人間感覚特性を表す相関図である。図13に示すように、低周波数領域であるフワ領域にあっては、比較的周波数に対して乗員の感度が低く、高周波数領域に移行するに従って徐々に感度が増大していく。尚、ブル領域以上の高周波領域は乗員に伝達されにくくなっていく。以上から、フワ領域の人間感覚重みWfを0.17に設定し、ヒョコ領域の人間感覚重みWhをWfより大きな0.34に設定し、ブル領域の人間感覚重みWbをWf及びWhより更に大きな0.38に設定する。これにより、各周波数帯のスカラー量と実際に乗員に伝播される振動との相関をより高めることができる。尚、これら二つの重み係数は、車両コンセプトや、乗員の好みにより適宜変更してもよい。
 重み決定手段355では、各周波数帯の重みのうち、それぞれの周波数帯の重みが占める割合を算出する。フワ領域の重みをa、ヒョコ領域の重みをb、ブル領域の重みをcとすると、フワ領域の重み係数は(a/(a+b+c))であり、ヒョコ領域の重み係数は(b/(a+b+c))であり、ブル領域の重み係数は(c/(a+b+c))である。
 スカラー量演算部356では、ヒルベルト変換処理部352により算出された各周波数帯のスカラー量に重み決定手段355において算出された重みを乗算し、最終的なスカラー量を出力する。ここまでの処理は、各輪の車輪速センサ値に対して行なわれる。
 最大値選択部357では、4輪においてそれぞれ演算された最終的なスカラー量のうち最大値を選択する。尚、下部における0.01は、後の処理において最大値の合計を分母とすることから、分母が0になることを回避するために設定したものである。比率演算部358では、各周波数帯のスカラー量最大値の合計を分母とし、フワ領域に相当する周波数帯のスカラー量最大値を分子として比率を演算する。言い換えると、全振動成分に含まれるフワ領域の混入比率(以下、単に比率と記載する。)を演算するものである。ばね上共振フィルタ359では、算出された比率に対してばね上共振周波数の1.2Hz程度のフィルタ処理を行い、算出された比率からフワ領域を表すばね上共振周波数帯の成分を抽出する。言い換えると、フワ領域は1.2Hz程度に存在することから、この領域の比率も1.2Hz程度で変化すると考えられるからである。そして、最終的に抽出された比率を減衰力制御部35に対して出力し、比率に応じた周波数感応減衰力制御量を出力する。
 図14は実施例1の周波数感応制御によるフワ領域の振動混入比率と減衰力との関係を表す特性図である。図14に示すように、フワ領域の比率が大きいときには減衰力を高く設定することで、ばね上共振の振動レベルを低減する。このとき、減衰力を高く設定しても、ヒョコ領域やブル領域の比率は小さいため、乗員に高周波振動やヒョコヒョコと動くような振動を伝達することはない。一方、フワ領域の比率が小さいときには減衰力を低く設定することで、ばね上共振以上の振動伝達特性が減少し、高周波振動が抑制され、滑らかな乗り心地が得られる。
 ここで、周波数感応制御とスカイフック制御とを対比した場合における周波数感応制御の利点について説明する。図15はある走行条件において車輪速センサ5により検出された車輪速周波数特性を表した図である。これは、特に石畳のような小さな凹凸が連続するような路面を走行した場合に表れる特性である。このような特性を示す路面を走行中にスカイフック制御を行うと、スカイフック制御では振幅のピークの値で減衰力を決定するため、仮に高周波振動の入力に対して位相の推定が悪化すると、誤ったタイミングで非常に高い減衰力を設定してしまい、高周波振動が悪化するという問題がある。
 これに対し、周波数感応制御のようにベクトルではなくスカラー量に基づいて制御する場合、図15に示すような路面にあってはフワ領域の比率が小さいことから低い減衰力が設定されることになる。これにより、ブル領域の振動の振幅が大きい場合であっても十分に振動伝達特性が減少するため、高周波振動の悪化を回避することができるものである。以上から、例え高価なセンサ等を備えてスカイフック制御を行ったとしても位相推定精度が悪化することで制御が困難な領域では、スカラー量に基づく周波数感応制御によって高周波振動を抑制できるものである。
 (ばね下制振制御部)
 次に、ばね下制振制御部の構成について説明する。図8(a)のコンベ車両において説明したように、タイヤも弾性係数と減衰係数を有することから共振周波数帯が存在する。ただし、タイヤの質量はばね上の質量に比べて小さく、弾性係数も高いため、ばね上共振よりも高周波数側に存在する。このばね下共振成分により、ばね下においてタイヤがバタバタ動いてしまい、接地性が悪化するおそれがある。また、ばね下でのバタつきは乗員に不快感を与えるおそれもある。そこで、ばね下共振によるバタつきを抑制するために、ばね下共振成分に応じた減衰力を設定するものである。
 図16は実施例1のばね下制振制御の制御構成を表すブロック図である。ばね下共振成分抽出部341では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出する。ばね下共振成分は車輪速周波数成分のうち概ね10~20Hzの領域から抽出される。包絡波形成形部342では、抽出されたばね下共振成分をスカラー化し、EnvelopeFilterを用いて包絡波形を成形する。ゲイン乗算部343では、スカラー化されたばね下共振成分にゲインを乗算し、ばね下制振減衰力制御量を算出し、減衰力制御部35に対して出力する。尚、実施例1では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出することとしたが、車輪速センサ検出値にバンドパスフィルタを作用させてばね下共振成分を抽出する、もしくは、走行状態推定部32において、ばね上速度に併せてばね下速度を推定演算し、ばね下共振成分を抽出するようにしてもよい。
 (減衰力制御部の構成について)
 次に、減衰力制御部35の構成について説明する。図17は実施例1の減衰力制御部の制御構成を表す制御ブロック図である。等価粘性減衰係数変換部35aでは、ドライバ入力制御部31から出力されたドライバ入力減衰力制御量と、スカイフック制御部33aから出力されたS/A姿勢制御量と、周波数感応制御部33bから出力された周波数感応減衰力制御量と、ばね下制振制御部34から出力されたばね下制振減衰力制御量と、走行状態推定部32により演算されたストローク速度が入力され、これらの値を等価粘性減衰係数に変換する。
 減衰係数調停部35bでは、等価粘性減衰係数変換部35aにおいて変換された減衰係数(以下、それぞれの減衰係数をドライバ入力減衰係数k1、S/A姿勢減衰係数k2、周波数感応減衰係数k3、ばね下制振減衰係数k4と記載する。)のうち、どの減衰係数に基づいて制御するのかを調停し、最終的な減衰係数を出力する。制御信号変換部35cでは、減衰係数調停部35bで調停された減衰係数とストローク速度に基づいてS/A3に対する制御信号(指令電流値)に変換し、S/A3に対して出力する。
  〔減衰係数調停部〕
 次に、減衰係数調停部35bの調停内容について説明する。実施例1の車両の制御装置にあっては、4つの制御モードを有する。第1に一般的な市街地などを走行しつつ適度な旋回状態が得られる状態を想定したスタンダードモード、第2にワインディングロードなどを積極的に走行しつつ安定した旋回状態が得られる状態を想定したスポーツモード、第3に低車速発進時など、乗り心地を優先して走行する状態を想定したコンフォートモード、第4に直線状態の多い高速道路等を高車速で走行する状態を想定したハイウェイモードである。
 スタンダードモードでは、スカイフック制御部33aによるスカイフック制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
 スポーツモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御とばね下制振制御部34によるばね下制振制御とを実施する。
 コンフォートモードでは、周波数感応制御部33bによる周波数感応制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
 ハイウェイモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御にばね下制振制御部34によるばね下制振制御の制御量を加算する制御を実施する。
 以下、これら各モードにおける減衰係数の調停について説明する。
   (スタンダードモードにおける調停)
 図18は実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。
 ステップS1では、S/A姿勢減衰係数k2がばね下制振減衰係数k4より大きいか否かを判断し、大きいときはステップS4に進んで減衰係数としてk2を設定する。
 ステップS2では、周波数感応制御部33bにおいて説明したフワ領域、ヒョコ領域及びブル領域のスカラー量に基づいて、ブル領域のスカラー量比率を演算する。
 ステップS3では、ブル領域の比率が所定値以上か否かを判断し、所定値以上の場合は高周波振動による乗り心地悪化が懸念されることからステップS4に進み、減衰係数として低い値であるk2を設定する。一方、ブル領域の比率が上記所定値未満の場合は減衰係数を高く設定しても高周波振動による乗り心地悪化の心配が少ないことからステップS5に進んでk4を設定する。
 上述のように、スタンダードモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ばね下制振制御が要求する減衰力よりスカイフック制御が要求する減衰力が低く、かつ、ブル領域の比率が大きいときには、スカイフック制御の減衰力を設定し、ばね下制振制御の要求を満たすことに伴う高周波振動特性の悪化を回避する。これにより、走行状態に応じて最適な減衰特性を得ることができ、車体のフラット感を達成しつつ、高周波振動に対する乗り心地悪化を同時に回避できる。
   (スポーツモードにおける調停)
 図19は実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。
 ステップS11では、ドライバ入力制御により設定された4輪のドライバ入力減衰係数k1に基づいて4輪減衰力配分率を演算する。右前輪のドライバ入力減衰係数をk1fr、左前輪のドライバ入力減衰係数をk1fl、右後輪のドライバ入力減衰係数をk1rr、左後輪のドライバ入力減衰係数をk1rl、各輪の減衰力配分率をxfr、xfl、xrr、xrlとすると、
 xfr=k1fr/(k1fr+k1fl+k1rr+k1rl)
 xfl=k1fl/(k1fr+k1fl+k1rr+k1rl)
 xrr=k1rr/(k1fr+k1fl+k1rr+k1rl)
 xrl=k1rl/(k1fr+k1fl+k1rr+k1rl)
 により算出される。
 ステップS12では、減衰力配分率xが所定範囲内(αより大きくβより小さい)か否かを判断し、所定範囲内の場合は各輪に対する配分はほぼ均等であると判断してステップS13に進み、いずれか1つでも所定範囲外の場合はステップS16に進む。
 ステップS13では、ばね下制振減衰係数k4がドライバ入力減衰係数k1より大きいか否かを判断し、大きいと判断した場合はステップS15に進み、第1減衰係数kとしてk4を設定する。一方、ばね下制振減衰係数k4がドライバ入力減衰係数k1以下であると判断した場合はステップS14に進み、第1減衰係数kとしてk1を設定する。
 ステップS16では、ばね下制振減衰係数k4がS/A3の設定可能な最大値maxか否かを判断し、最大値maxと判断した場合はステップS17に進み、それ以外の場合はステップS18に進む。
 ステップS17では、4輪のドライバ入力減衰係数k1の最大値がばね下制振減衰係数k4となり、かつ、減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、減衰力配分率を満たしつつ減衰係数が最も高くなる値を演算する。
 ステップS18では、4輪のドライバ入力減衰係数k1がいずれもk4以上となる範囲で減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、ドライバ入力制御によって設定される減衰力配分率を満たし、かつ、ばね下制振制御側の要求をも満たす値を演算する。
 ステップS19では、上記各ステップにより設定された第1減衰係数kがスカイフック制御により設定されるS/A姿勢減衰係数k2より小さいか否かを判断し、小さいと判断された場合はスカイフック制御側の要求する減衰係数のほうが大きいためステップS20に進んでk2を設定する。一方、kがk2以上であると判断された場合はステップS21に進んでkを設定する。
 上述のように、スポーツモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ドライバ入力制御側から要求される減衰力配分率は、車体姿勢と密接に関連し、特にロールモードによるドライバの視線変化との関連も深いことから、ドライバ入力制御側から要求された減衰係数そのものではなく、減衰力配分率の確保を最優先事項とする。また、減衰力配分率が保たれた状態で車体姿勢に姿勢変化をもたらす動きについてはスカイフック制御をセレクトハイで選択することで、安定した車体姿勢を維持することができる。
   (コンフォードモードにおける調停)
 図20は実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。
 ステップS30では、周波数感応減衰係数k3がばね下制振減衰係数k4より大きいか否かを判断し、大きいと判断した場合はステップS32に進んで周波数感応減衰係数k3を設定する。一方、周波数感応減衰係数k3がばね下制振減衰係数k4以下であると判断した場合はステップS32に進んでばね下制振減衰係数k4を設定する。
 上述のように、コンフォートモードでは、基本的にばね下の共振を抑制するばね下共振制御を優先する。もともとばね上制振制御として周波数感応制御を行い、これにより路面状況に応じた最適な減衰係数を設定しているため、乗り心地を確保した制御を達成でき、ばね下がばたつくことによる接地感不足をばね下制振制御で回避することができる。尚、コンフォートモードにおいても、スタンダードモードと同様に、周波数スカラー量のブル比率に応じて減衰係数を切り替えるように構成してもよい。これにより、スーパーコンフォートモードとして更に乗り心地を確保することができる。
   (ハイウェイモードにおける調停)
 図21は実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。尚、ステップS11からS18までは、スポーツモードにおける調停処理と同じであるため、説明を省略する。
 ステップS40では、ステップS18までで調停された第1減衰係数kにスカイフック制御によるS/A姿勢減衰係数k2を加算して出力する。
 上述のように、ハイウェイモードでは、調停された第1減衰係数kにS/A姿勢減衰係数k2を加算した値を用いて減衰係数を調停する。ここで、図を用いて作用を説明する。図22はうねり路面及び凹凸路面を走行する際の減衰係数変化を表すタイムチャートである。例えば高車速走行時にわずかな路面のうねり等の影響で車体がゆらゆらと動くような動きを抑制しようとした場合、スカイフック制御のみで達成しようとすると、僅かな車輪速変動を検知する必要があることから、スカイフック制御ゲインをかなり高く設定する必要がある。この場合、ゆらゆらと動くような動きを抑制することはできるが、路面の凹凸などが発生した場合、制御ゲインが大き過ぎて過剰な減衰力制御を行うおそれがある。これにより、乗り心地の悪化や車体姿勢の悪化が懸念される。
 これに対し、ハイウェイモードのように第1減衰係数kを常時設定しているため、ある程度の減衰力は常時確保されることになり、スカイフック制御による減衰係数が小さくても車体がゆらゆらと動くような動きを抑制できる。また、スカイフック制御ゲインを上昇させる必要がないため、路面凹凸に対しても通常の制御ゲインにより適切に対処できる。加えて、第1減衰係数kが設定された状態でスカイフック制御が行われるため、セミアクティブ制御領域内において、減衰係数制限とは異なり、減衰係数の減少工程の動作が可能となり、高速走行時において安定した車両姿勢を確保することができる。
   (モード選択処理)
 次に、上記各走行モードを選択するモード選択処理について説明する。図23は実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。
 ステップS50では、舵角センサ7の値に基づいて直進走行状態か否かを判断し、直進走行状態と判断された場合にはステップS51に進み、旋回状態と判断された場合にはステップS54に進む。
 ステップS51では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS52に進んでスタンダードモードを選択する。一方、VSP1未満と判断された場合にはステップS53に進んでコンフォートモードを選択する。
 ステップS54では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS55に進んでハイウェイモードを選択する。一方、VSP1未満と判断された場合にはステップS56に進んでスポーツモードを選択する。
 すなわち、直進走行状態において、高車速走行する場合にはスタンダードモードを選択することで、スカイフック制御による車体姿勢の安定化を図り、かつ、ヒョコやブルといった高周波振動を抑制することで乗り心地を確保し、更に、ばね下の共振を抑制することができる。また、低車速走行する場合にはコンフォートモードを選択することで、ヒョコやブルといった振動の乗員への入力を極力抑えながら、ばね下の共振を抑制することができる。
 一方、旋回走行状態において、高車速走行する場合にはハイウェイモードを選択することで、減衰係数を加算した値によって制御されるため、基本的に高い減衰力が得られる。これにより、高車速であってもドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、ばね下共振を抑制することができる。また、低車速走行する場合にはスポーツモードを選択することで、ドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、スカイフック制御が適宜行われながら、ばね下共振を抑制することができ、安定した車両姿勢で走行できる。
 尚、モード選択処理については、実施例1では走行状態を検知して自動的に切り替える制御例を示したが、例えば運転者が操作可能な切換スイッチ等を設け、これにより走行モードを選択するように制御してもよい。これにより、運転者の走行意図に応じた乗り心地や旋回性能が得られる。
 以上説明したように、実施例1にあっては下記に列挙する作用効果を奏する。
 (1)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイトがフラットな姿勢となるように車体姿勢を制御する第1目標姿勢制御量を演算する第1目標姿勢制御量演算部331(走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいてショックアブソーバS/A3以外の姿勢制御アクチュエータであるエンジン1もしくは摩擦ブレーキによって制御される姿勢制御量を演算するエンジン姿勢制御量演算部332もしくはブレーキ姿勢制御量演算部334(姿勢制御量演算手段)と、第1目標姿勢制御量と姿勢制御量とに基づいてS/A3(ショックアブソーバ)の減衰力を制御するショックアブソーバ姿勢制御量演算部336(減衰力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無い姿勢制御量によってショックアブソーバ姿勢制御量を低下させることができ、高周波振動特性の悪化を回避することができる。また、姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 尚、実施例1では、走行状態検出手段として車輪速センサ5を用いたが、ストロークセンサやばね上上下加速度センサ等を採用して走行状態を検出してもよい。また、実施例1ではスカイフック制御により車体姿勢制御を行なう例を示したが、他の車体姿勢制御によって達成してもよい。また、実施例1ではピッチレイトを制御対象としたが、バウンスレイト等を制御対象としてもよい。また、実施例1では目標姿勢としてフラットな姿勢としたが、例えば旋回中に運転者の視界を確保する観点からノーズダイブ気味の車体姿勢を目標姿勢としてもよい。また、実施例1では、第1目標姿勢制御量から姿勢制御量を除いた値に基づいてショックアブソーバ姿勢制御量を演算したが、これに限らず、例えば第1目標姿勢制御量と姿勢制御量との比率に基づいてショックアブソーバ姿勢制御量を算出してもよいし、比率以外にも上記二つの制御量をパラメータとするマップ等からショックアブソーバ姿勢制御量を算出してもよい。
 (2)ショックアブソーバ姿勢制御量演算部336は、第1目標姿勢制御量から姿勢制御量を除いたショックアブソーバ姿勢制御量を演算し、このショックアブソーバ姿勢制御量に基づいて減衰力を制御する。
 よって、姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 (3)エンジン姿勢制御量演算部332もしくはブレーキ姿勢制御量演算部334(姿勢制御量演算手段)は、姿勢制御量を所定値に制限する制限値を有する。
 これにより、運転者に違和感を与えないように前後加速度を発生させることができる。
 (4-1)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイトがフラットな姿勢となるように車体姿勢を制御する第1目標姿勢制御量を演算する第1目標姿勢制御量演算部331(走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいて駆動力によって制御されるブレーキ姿勢制御量を演算するブレーキ姿勢制御量演算部334(制動力姿勢制御量演算手段)と、第1目標姿勢制御量とブレーキ姿勢制御量とに基づいてS/A3(ショックアブソーバ)の減衰力を制御するショックアブソーバ姿勢制御量演算部336(減衰力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無いブレーキ姿勢制御量によってショックアブソーバ姿勢制御量を低下させることができ、高周波振動特性の悪化を回避することができる。また、ブレーキ姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 尚、実施例1では、走行状態検出手段として車輪速センサ5を用いたが、ストロークセンサやばね上上下加速度センサ等を採用して走行状態を検出してもよい。また、実施例1ではスカイフック制御により車体姿勢制御を行なう例を示したが、他の車体姿勢制御によって達成してもよい。また、実施例1ではピッチレイトを制御対象としたが、バウンスレイト等を制御対象としてもよい。また、実施例1では目標姿勢としてフラットな姿勢としたが、例えば旋回中に運転者の視界を確保する観点からノーズダイブ気味の車体姿勢を目標姿勢としてもよい。また、実施例1では、第1目標姿勢制御量からブレーキ姿勢制御量を除いた値に基づいてショックアブソーバ姿勢制御量を演算したが、これに限らず、例えば第1目標姿勢制御量とブレーキ姿勢制御量との比率に基づいてショックアブソーバ姿勢制御量を算出してもよいし、比率以外にも上記二つの制御量をパラメータとするマップ等からショックアブソーバ姿勢制御量を算出してもよい。また、制動力として、実施例1では摩擦ブレーキを用いた例を示したが、変速機の変速等によるエンジンブレーキ力を制動力として使用してもよい。
 (4-2)ショックアブソーバ姿勢制御量演算部336は、第1目標姿勢制御量からブレーキ姿勢制御量を除いたショックアブソーバ姿勢制御量を演算し、このショックアブソーバ姿勢制御量に基づいて減衰力を制御する。
 よって、ブレーキ姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 (4-3)ブレーキ姿勢制御量演算部332(ブレーキ姿勢制御量演算手段)は、ブレーキ姿勢制御量を所定値に制限する制限値を有する。
 具体的には、ジャーク閾値制限部3342dにおいて、算出された目標減速度の変化率、すなわちジャークが予め設定された減速ジャーク閾値と抜きジャーク閾値の範囲内であるか否か、及び目標減速度が前後加速度制限値の範囲内であるか否かを判断し、いずれかの閾値を越える場合は、目標減速度をジャーク閾値の範囲内となる値に補正し、また、目標減速度が制限値を超える場合は、制限値内に設定する。これにより、運転者に違和感を与えないように減速度を発生させることができる。
 (5-1)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイトがフラットな姿勢となるように車体姿勢を制御する第1目標姿勢制御量を演算する第1目標姿勢制御量演算部331(走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいて駆動力によって制御されるエンジン姿勢制御量(車体姿勢制御量)を演算するエンジン姿勢制御量演算部332(車体姿勢制御量演算手段)と、第1目標姿勢制御量とエンジン姿勢制御量とに基づいてS/A3(ショックアブソーバ)の減衰力を制御するショックアブソーバ姿勢制御量演算部336(減衰力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無い駆動力を用いてショックアブソーバ姿勢制御量を低下させることができ、高周波振動特性の悪化を抑制することができる。また、エンジン姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、減衰力可変ショックアブソーバの制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 尚、実施例1では、走行状態検出手段として車輪速センサ5を用いたが、ストロークセンサやばね上上下加速度センサ等を採用して走行状態を検出してもよい。また、実施例1ではスカイフック制御により車体姿勢制御を行なう例を示したが、他の車体姿勢制御によって達成してもよい。また、実施例1ではピッチレイトを制御対象としたが、バウンスレイト等を制御対象としてもよい。また、実施例1では目標姿勢としてフラットな姿勢としたが、例えば旋回中に運転者の視界を確保する観点からノーズダイブ気味の車体姿勢を目標姿勢としてもよい。また、実施例1では、第1目標姿勢制御量からエンジン姿勢制御量を除いた値に基づいてショックアブソーバ姿勢制御量を演算したが、これに限らず、例えば第1目標姿勢制御量とエンジン姿勢制御量との比率に基づいてショックアブソーバ姿勢制御量を算出してもよいし、比率以外にも上記二つの制御量をパラメータとするマップ等からショックアブソーバ姿勢制御量を算出してもよい。また、実施例1では、動力源としてエンジンを用いた例を示したが、電気自動車であれば走行用モータであり、ハイブリッド車両であればエンジン及びモータジェネレータであり、また、駆動力を制御するという観点から動力源と駆動輪との間に介在された変速機等を用いて駆動力制御を行ってもよい。
 (5-2)ショックアブソーバ姿勢制御量演算部336は、第1目標姿勢制御量からエンジン姿勢制御量を除いたショックアブソーバ姿勢制御量を演算し、このショックアブソーバ姿勢制御量に基づいて減衰力を制御する。
 よって、エンジン姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 (5-3)エンジン姿勢制御量演算部332(車体姿勢制御量演算手段)は、エンジン姿勢制御量を所定値に制限する制限値を有する。
 具体的には、エンジントルク制御量を前後加速度に換算したときに所定前後加速度範囲内となる値となるように制限している。よって、運転者に違和感を与えることなく車体姿勢制御を達成することができる。
 (9)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイトがフラットな姿勢となるように車体姿勢を制御する第1目標姿勢制御量を演算する第1目標姿勢制御量演算部331(走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいて駆動力によって制御されるエンジン姿勢制御量(駆動力姿勢制御量)を演算するエンジン姿勢制御量演算部332(駆動力姿勢制御量演算手段)と、第1目標姿勢制御量とエンジン姿勢制御量とに基づいて、制動力によって制御されるブレーキ姿勢制御量(制動力姿勢制御量)を演算するブレーキ姿勢制御量演算部334(制動力姿勢制御量演算手段)と、エンジン姿勢制御量に基づいて車両の駆動力を制御するエンジン制御部1a(駆動力制御手段)と、ブレーキ姿勢制御量に基づいて摩擦ブレーキの制動力を制御するブレーキ制御部2a(制動力制御手段)と、第1目標姿勢制御量とエンジン姿勢制御量とブレーキ姿勢制御量とに基づいて、S/A3(ショックアブソーバ)の減衰力を制御するショックアブソーバ姿勢制御量演算部336(減衰力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無いエンジン姿勢制御量及びブレーキ姿勢制御量によってショックアブソーバ姿勢制御量を低下させることができ、高周波振動特性の悪化を抑制することができる。また、エンジン姿勢制御量及びブレーキ姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 尚、実施例1では、走行状態検出手段として車輪速センサ5を用いたが、ストロークセンサやばね上上下加速度センサ等を採用して走行状態を検出してもよい。また、実施例1ではスカイフック制御により車体姿勢制御を行なう例を示したが、他の車体姿勢制御によって達成してもよい。また、実施例1ではピッチレイトを制御対象としたが、バウンスレイト等を制御対象としてもよい。また、実施例1では目標姿勢としてフラットな姿勢としたが、例えば旋回中に運転者の視界を確保する観点からノーズダイブ気味の車体姿勢を目標姿勢としてもよい。また、実施例1では、第1目標姿勢制御量からエンジン姿勢制御量及びブレーキ姿勢制御量を除いた値に基づいてショックアブソーバ姿勢制御量を演算したが、これに限らず、例えば第1目標姿勢制御量とエンジン姿勢制御量とブレーキ姿勢制御量との比率に基づいてショックアブソーバ姿勢制御量を算出してもよいし、比率以外にも上記三つの制御量をパラメータとするマップ等からショックアブソーバ姿勢制御量を算出してもよい。また、実施例1では、動力源としてエンジンを用いた例を示したが、電気自動車であれば走行用モータであり、ハイブリッド車両であればエンジン及びモータジェネレータであり、また、駆動力を制御するという観点から動力源と駆動輪との間に介在された変速機等を用いて駆動力制御を行ってもよい。同様に、制動力として摩擦ブレーキに限らず、エンジンブレーキや変速機等のダウンシフトによって制動力を発生させてもよい。
 (10)ブレーキ姿勢制御量演算部334は、第1目標姿勢制御量からエンジン姿勢制御量を除いた値に基づいてブレーキ姿勢制御量を演算する。よって、エンジン姿勢制御量によってブレーキ姿勢制御量を減少させることができるため、減速感を低減できる。
 (12)ショックアブソーバ姿勢制御量演算部336は、第1目標姿勢制御量からブレーキ姿勢制御量とエンジン姿勢制御量とを除いたショックアブソーバ姿勢制御量を演算し、このショックアブソーバ姿勢制御量に基づいて減衰力を制御する。
  よって、ブレーキ姿勢制御量及びエンジン姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、高周波振動特性の悪化を抑制しつつ、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 (13)ブレーキ姿勢制御量演算部332(ブレーキ姿勢制御量演算手段)は、ブレーキ姿勢制御量を所定値に制限する制限値を有する。
  具体的には、ジャーク閾値制限部3342dにおいて、算出された目標減速度の変化率、すなわちジャークが予め設定された減速ジャーク閾値と抜きジャーク閾値の範囲内であるか否か、及び目標減速度が前後加速度制限値の範囲内であるか否かを判断し、いずれかの閾値を越える場合は、目標減速度をジャーク閾値の範囲内となる値に補正し、また、目標減速度が制限値を超える場合は、制限値内に設定する。これにより、乗員に違和感を与えないように減速度を発生させることができる。
 (14)エンジン姿勢制御量演算部332(駆動力姿勢制御量演算手段)は、エンジン姿勢制御量を所定値に制限する制限値を有する。
  具体的には、エンジントルク制御量を前後加速度に換算したときに所定前後加速度範囲内となる値となるように制限している。よって、運転者に違和感を与えることなく車体姿勢制御を達成することができる。
 (15)車輪速センサ5(走行状態検出手段)は、ピッチレイト(ばね上の運動)を検出する。よって、ばね上の運動状態に応じて安定した姿勢制御を達成できる。
 (16)第1目標姿勢制御量演算部331(目標姿勢制御量演算部)は、ピッチレイト(ばね上の運動)を抑制する制御量を第1目標姿勢制御量(目標姿勢制御量)として演算する。よって、ばね上の運動を抑制することでフラットな走行状態を達成できる。
 (17)第1目標姿勢制御量演算部331は、検出されたピッチレイトに基づいて第1目標姿勢制御量を演算する。
 一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。
 ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。また、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。
 (18)走行状態推定部32(走行状態検出手段)は、車輪速の変化に基づいて走行状態を推定する。
 これにより、ばね上上下加速度センサや、ストロークセンサといった高価なセンサを備える必要がなく、一般的にどの車両にも搭載されている車輪速センサ5から全ての状態を推定することで、部品点数の削減及びコストの削減を図ることができ、車両搭載性を向上できる。
 (19)ブレーキ姿勢制御量演算部332は、スカイフック制御則に基づいてブレーキ姿勢制御量を演算する。よって、ばね上を姿勢制御することでフラットな走行状態を達成できる。
 (20)ショックアブソーバ姿勢制御量演算部336は、スカイフック制御則に基づいて減衰力を制御する。よって、ばね上を姿勢制御することでフラットな走行状態を達成できる。
 (21)走行状態推定部32(走行状態検出手段)は、ばね上速度とストローク速度の符号によらず推定可能なアクティブスカイフックモデルに基づいて走行状態を推定する。
 よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。
 (22)走行状態推定部32(走行状態検出手段)は、4輪の上下方向運動を表すバウンス項と、前後輪の上下方向運動を表すピッチ項と、左右輪の上下方向運動を表すロール項と、対角輪の上下方向運動を表すワープ項と、に基づいて4輪モデルに展開することで、走行状態を推定する。
 すなわち、4輪のばね上速度からロール項、ピッチ項及びバウンス項にモード分解する際、対応する成分が一つ足りず、解が不定となる。そこで、対角輪の動きを表すワープ項を導入することで、上記各項を推定することができる。
 (23)車輪速センサ5(車両の走行状態を検出するセンサ)と、走行状態より演算した第1目標姿勢制御量(車体の目標姿勢制御量)に基づいてS/A3以外のアクチュエータによって制御される姿勢制御量を演算すると共に、第1目標姿勢制御量では達成されない制御量に応じたショックアブソーバ姿勢制御量(減衰力制御量)を演算するコントローラと、姿勢制御量に応じた駆動力を発生する姿勢制御アクチュエータ(エンジン1もしくはブレーキ20)と、ショックアブソーバ姿勢制御量に応じた減衰力を発生するS/A3(ショックアブソーバ)と、を備える。
 よって、高周波振動特性の悪化を抑制しつつ車体姿勢を制御できる。また、姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、減衰力可変ショックアブソーバの制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 (24)エンジンコントローラ1a,ブレーキコントローラ2a及びS/Aコントローラ3a(コントローラ)が、車両の走行状態に基づいて第1目標姿勢制御量(目標姿勢制御量)を演算し、該第1目標姿勢制御量に基づいてS/A3以外のアクチュエータによって制御される姿勢制御量を演算し、第1目標姿勢制御量では達成されない制御量をS/A3の減衰力で制御する。
 よって、高周波振動の悪化を抑制しつつ車体姿勢を制御できる。また、姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、減衰力可変ショックアブソーバの制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
 〔実施例2〕
 次に実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。実施例1ではエンジン姿勢制御量を演算後、ブレーキ姿勢制御量を演算した。これに対し、実施例2ではブレーキ姿勢制御量を演算し、その後、エンジン姿勢制御量を演算する点が異なる。
  図24は実施例1のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。スカイフック制御部33aは、全てのアクチュエータに共通して使用可能な制御量である第1目標姿勢制御量(目標姿勢制御量)である目標ピッチレイトを演算する第1目標姿勢制御量演算部331(目標姿勢制御量演算手段)と、エンジン1によって達成するエンジン姿勢制御量を演算するエンジン姿勢制御量演算部332と、ブレーキ20によって達成するブレーキ姿勢制御量を演算するブレーキ姿勢制御量演算部334と、S/A3によって達成するS/A姿勢制御量を演算するS/A姿勢制御量演算部336とを有する。
 実施例2におけるシステムのスカイフック制御では、ピッチレイトを抑制するように作動することを第一優先としていることから、第1目標姿勢制御量演算部331ではピッチレイトをそのまま出力する(以下、このピッチレイトを第1目標姿勢制御量と記載する。)。ブレーキ姿勢制御量演算部334では、入力された第1目標姿勢制御量に基づいてブレーキ20が達成可能な制御量であるブレーキ姿勢制御量を演算する。
 ブレーキ姿勢制御量演算部334内には、運転者に違和感を与えないためにブレーキ姿勢制御量を制限する制限値が設定されている。これにより、ブレーキ姿勢制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第1目標姿勢制御量に基づいてブレーキ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なブレーキ姿勢制御量を出力する。ブレーキ姿勢制御量演算部334から出力されるブレーキ姿勢制御量は、ブレーキ20によって抑制されるピッチレイトにCskyPを乗算した値として出力される。なお、後述する第2目標姿勢制御量演算部333に対しては換算部3344においてブレーキ姿勢制御量をピッチレイトに換算した値が出力される。また、ブレーキ制御部2aでは、制限値に対応するブレーキ姿勢制御量に基づいて制動トルク制御量が演算され、ブレーキコントロールユニット2に対して出力される。
 第2目標姿勢制御量演算部333では、第1目標姿勢制御量と換算部3344においてブレーキ姿勢制御量をピッチレイトに換算した値(以下、この値も単にブレーキ姿勢制御量と呼ぶ。)との偏差である第2目標姿勢制御量が演算され、エンジン姿勢制御量演算部332に出力される。
  エンジン姿勢制御量演算部332内には、ブレーキ20と同様に運転者に違和感を与えないためにエンジン姿勢制御量を制限する制限値が設定されている。これにより、エンジン姿勢制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第2目標姿勢制御量に基づいてエンジン姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なエンジン姿勢制御量を出力する。エンジン姿勢制御量演算部332から出力されるエンジン姿勢制御量は、エンジン1によって抑制されるピッチレイトにCskyPを乗算した値として出力される。なお、後述する第3目標姿勢制御量演算部335に対しては換算部332aにおいてエンジン姿勢制御量をピッチレイトに換算した値が出力される。また、エンジン制御部1aでは、制限値に対応するエンジン姿勢制御量に基づいてエンジントルク制御量が演算され、エンジン1に対して出力される。
 第3目標姿勢制御量演算部335では、第2目標姿勢制御量と換算部332aにおいてエンジン姿勢制御量をピッチレイトに換算した値(以下、この値も単にエンジン姿勢制御量と呼ぶ。)との偏差である第3目標姿勢制御量が演算され、S/A姿勢制御量演算部336に出力される。S/A姿勢制御量演算部336では、第3目標姿勢制御量に応じたピッチ姿勢制御量を出力する。また、減衰力制御部35では、バウンス姿勢制御量,ロール姿勢制御量及びピッチ姿勢制御量(以下、これらを総称してS/A姿勢制御量と記載する。)に基づいて減衰力制御量が演算され、S/A3に対して出力される。
 以上のように、ピッチレイトについては、第1目標姿勢制御量を演算し、次に、ブレーキ姿勢制御量を演算し、第1目標姿勢制御量とブレーキ姿勢制御量との偏差である第2目標姿勢制御量からエンジン姿勢制御量を演算し、第2姿勢制御量とエンジン姿勢制御量との偏差である第3目標姿勢制御量からS/A姿勢制御量を演算する。これにより、S/A3が行なうピッチレイト制御量を、エンジン1及びブレーキ20の制御によって減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価なS/A3によりばね上姿勢制御を達成することができる。
 また、S/A3による制御量を増大させると、基本的に減衰力が増大する。減衰力の増大とは、硬いサスペンション特性となることを意味するため、路面側から高周波振動が入力された場合、高周波入力を伝達しやすくなり、乗員の快適性を損なう(以下、高周波振動特性の悪化と記載する。)。これに対し、エンジン1及びブレーキ20といった路面入力による振動伝達特性に影響を及ぼさないアクチュエータによってピッチレイトを抑制し、S/A3の制御量を低下させることで高周波振動特性の悪化を回避することができる。以上の効果は、S/A3より先にブレーキ20の制御量を決めること、S/A3より先にエンジン1の制御量を決めることによって得られる。
 〔ブレーキピッチ制御〕
 ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低いにも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図10は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。
 BFf+BFr=m・a
 m・a・Hcg=Mp
 Mp=(BFf+BFr)・Hcg
 ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
   Vp>0(前輪沈み込み)のとき  Mp=0
   Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
 の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。
 以上の関係に基づいて、ブレーキ姿勢制御量演算部334内は、以下の制御ブロックから構成される。不感帯処理符号判定部3341では、入力されたピッチレイトVpの符号を判定し、正のときは制御不要であるため減速感低減処理部3342に0を出力し、負のときは制御可能と判断して減速感低減処理部3342にピッチレイト信号を出力する。
 以上説明したように、実施例2にあっては下記に列挙する作用効果が得られる。
 (6)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイトがフラットな姿勢となるように車体姿勢を制御する第1目標姿勢制御量を演算する第1目標姿勢制御量演算部331(走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいて、ブレーキ20の制動力(車両の制動力)によって制御されるブレーキ姿勢制御量を演算するブレーキ姿勢制御量演算部334(制動力姿勢制御量演算手段)と、第1目標姿勢制御量とブレーキ姿勢制御量とに基づいて、エンジン1の駆動力(車両の駆動力)によって制御されるエンジン姿勢制御量を演算するエンジン姿勢制御量演算部332(駆動力姿勢制御量演算手段)と、ブレーキ姿勢制御量に基づいて摩擦ブレーキの制動力を制御するブレーキ制御部2a(制動力制御手段)と、エンジン姿勢制御量に基づいて車両の駆動力を制御するエンジン制御部1a(駆動力制御手段)と、第1目標姿勢制御量とブレーキ姿勢制御量とエンジン姿勢制御量とに基づいて、S/A3(ショックアブソーバ)の減衰力を制御するS/A姿勢制御量演算部336、減衰力制御部35(減衰力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無いアクチュエータの制御量であるブレーキ姿勢制御量及びエンジン姿勢制御量によってショックアブソーバ姿勢制御量を低下させることができ、高周波振動特性の悪化を回避することができる。また、ブレーキ姿勢制御量及びエンジン姿勢制御量によってショックアブソーバ姿勢制御量を減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価な構成により車体姿勢制御を達成することができる。
  またエンジン姿勢制御量よりも先にブレーキ姿勢制御量を決定するため、エンジン1による姿勢制御を抑制することができ、燃費を向上させることができる。
  尚、実施例2では、走行状態検出手段として車輪速センサ5を用いたが、ストロークセンサやばね上上下加速度センサ等を採用して走行状態を検出してもよい。また、実施例2ではスカイフック制御により車体姿勢制御を行なう例を示したが、他の車体姿勢制御によって達成してもよい。また、実施例2ではピッチレイトを制御対象としたが、バウンスレイト等を制御対象としてもよい。また、実施例2では目標姿勢としてフラットな姿勢としたが、例えば旋回中に運転者の視界を確保する観点からノーズダイブ気味の車体姿勢を目標姿勢としてもよい。
 また、実施例2では、第1目標姿勢制御量からブレーキ姿勢制御量及びエンジン姿勢制御量を除いた値に基づいてショックアブソーバ姿勢制御量を演算したが、これに限らず、例えば第1目標姿勢制御量とブレーキ姿勢制御量とエンジン姿勢制御量との比率に基づいてショックアブソーバ姿勢制御量を算出してもよいし、比率以外にも上記三つの制御量をパラメータとするマップ等からショックアブソーバ姿勢制御量を算出してもよい。
  また、実施例2では、動力源としてエンジンを用いた例を示したが、電気自動車であれば走行用モータであり、ハイブリッド車両であればエンジン及びモータジェネレータであり、また、駆動力を制御するという観点から動力源と駆動輪との間に介在された変速機等を用いて駆動力制御を行ってもよい。
 (7)エンジン姿勢制御量演算部332は、第1目標姿勢制御量からブレーキ姿勢制御量を除いた値に基づいてエンジン姿勢制御量を演算する。
  よって、ブレーキ姿勢制御量によってエンジン姿勢制御量を減少させることができるため、加速感を低減できる。
 (8-1)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイト(走行状態)に基づき、フラットな姿勢(目標姿勢)となる第1目標姿勢制御量(目標姿勢制御量)を演算する第1目標姿勢制御量演算部331(目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいて、ブレーキ20の制動力によって制御されるブレーキ姿勢制御量(制動力姿勢制御量)を演算するブレーキ姿勢制御量演算部334(制動力姿勢制御量演算手段)と、第1目標姿勢制御量とブレーキ姿勢制御量とに基づいて、エンジン1の駆動力を制御するエンジン制御部1a、エンジン姿勢制御量演算部332(駆動力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無いアクチュエータであるエンジン1及びブレーキ20によって姿勢制御をすることができ、高周波振動特性の悪化を回避することができる。
  また制御量が大きいブレーキ20による姿勢制御を優先することより、エンジン1よりも先にブレーキ20の制御量を決めるため、エンジン1による姿勢制御の頻度を抑制することができ、燃費を向上させることができる。
  更に、ブレーキ20による姿勢制御の応答は、エンジン1による姿勢制御の応答に比べて早いため、エンジン1よりも先にブレーキ20の制御量を決めて、ブレーキ20による姿勢制御を優先的に行うため、姿勢制御の応答性を早くすることができる。
 (8-2)エンジン姿勢制御量演算部332は、第1目標姿勢制御量からブレーキ姿勢制御量を除いたエンジン姿勢制御量(駆動力姿勢制御量)を演算し、このエンジン姿勢制御量に基づいて駆動力を制御する。
 よって、ブレーキ20により達成できない車体姿勢制御の抑制分をエンジン1により効果的に抑制できる。
 〔実施例3〕
 次に、実施例3について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。実施例1では動力源として内燃機関であるエンジン1を用いた。これに対し、実施例3では、モータを用いた点が異なる。
   図25は実施例3のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。スカイフック制御部33aは、全てのアクチュエータに共通して使用可能な制御量である第1目標姿勢制御量である目標ピッチレイトを演算する第1目標姿勢制御量演算部331と、モータ1によって達成するモータ姿勢制御量を演算するモータ姿勢制御量演算部332と、ブレーキ20によって達成するブレーキ姿勢制御量を演算するブレーキ姿勢制御量演算部334と、S/A3によって達成するS/A姿勢制御量を演算するS/A姿勢制御量演算部336とを有する。
 本システムのスカイフック制御では、ピッチレイトを抑制するように作動することを第一優先としていることから、第1目標姿勢制御量演算部331ではピッチレイトをそのまま出力する(以下、このピッチレイトを第1目標姿勢制御量と記載する。)。モータ姿勢制御量演算部332では、入力された第1目標姿勢制御量に基づいてモータ1が達成可能な制御量であるモータ姿勢制御量を演算する。
 モータ姿勢制御量演算部332内には、運転者に違和感を与えないためにモータ姿勢制御量を制限する制限値が設定されている。これにより、モータ姿勢制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第1目標姿勢制御量に基づいてモータ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なモータ姿勢制御量を出力する。モータ姿勢制御量演算部332から出力されるモータ姿勢制御量は、モータ1によって抑制されるピッチレイトにCskyPを乗算した値として出力される。なお、後述する第2目標姿勢制御量演算部333に対しては換算部332aにおいてモータ姿勢制御量をピッチレイトに換算した値が出力される。また、モータ制御部1aでは、制限値に対応するモータ姿勢制御量に基づいてモータトルク制御量が演算され、モータ1に対して出力される。
 第2目標姿勢制御量演算部333では、第1目標姿勢制御量と換算部332aにおいてモータ姿勢制御量をピッチレイトに換算した値(以下、この値も単にモータ姿勢制御量と呼ぶ)との偏差である第2目標姿勢制御量が演算され、ブレーキ姿勢制御量演算部334に出力される。
  ブレーキ姿勢制御量演算部334内には、モータ1と同様に運転者に違和感を与えないためにブレーキ姿勢制御量を制限する制限値が設定されている。これにより、ブレーキ姿勢制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第2目標姿勢制御量に基づいてブレーキ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なブレーキ姿勢制御量を出力する。ブレーキ姿勢制御量演算部334から出力されるブレーキ姿勢制御量は、ブレーキ20によって抑制されるピッチレイトにCskyPを乗算した値として出力される。なお、後述する第3目標姿勢制御量演算部335に対しては換算部334aにおいてブレーキ姿勢制御量をピッチレイトに換算した値が出力される。また、ブレーキ制御部2aでは、制限値に対応するブレーキ姿勢制御量に基づいて制動トルク制御量が演算され、ブレーキコントロールユニット2に対して出力される。
 第3目標姿勢制御量演算部335では、第2目標姿勢制御量と換算部334aにおいてブレーキ姿勢制御量をピッチレイトに換算した値(以下、この値も単にブレーキ姿勢制御量と呼ぶ。)との偏差である第3目標姿勢制御量が演算され、S/A姿勢制御量演算部336に出力される。S/A姿勢制御量演算部336では、第3目標姿勢制御量に応じたピッチ姿勢制御量を出力する。また、減衰力制御部35では、バウンス姿勢制御量,ロール姿勢制御量及びピッチ姿勢制御量(以下、これらを総称してS/A姿勢制御量と記載する。)に基づいて減衰力制御量が演算され、S/A3に対して出力される。
 以上のように、ピッチレイトについては、第1目標姿勢制御量を演算し、次に、モータ姿勢制御量を演算し、第1目標姿勢制御量とモータ姿勢制御量との偏差である第2目標姿勢制御量からブレーキ姿勢制御量を演算し、第2姿勢制御量とブレーキ姿勢制御量との偏差である第3目標姿勢制御量からS/A姿勢制御量を演算する。これにより、S/A3が行なうピッチレイト制御量を、モータ1及びブレーキ20の制御によって減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価なS/A3によりばね上姿勢制御を達成することができる。
 また、S/A3による制御量を増大させると、基本的に減衰力が増大する。減衰力の増大とは、硬いサスペンション特性となることを意味するため、路面側から高周波振動が入力された場合、高周波入力を伝達しやすくなり、乗員の快適性を損なう(以下、高周波振動特性の悪化と記載する。)。これに対し、モータ1及びブレーキ20といった路面入力による振動伝達特性に影響を及ぼさないアクチュエータによってピッチレイトを抑制し、S/A3の制御量を低下させることで高周波振動特性の悪化を回避することができる。以上の効果は、S/A3より先にモータ1の制御量を決めること、S/A3より先にブレーキ20の制御量を決めることによって得られる。
 また、ブレーキ20よりも先にモータ1の制御量を決めるようにしている。ブレーキ20による制御は減速方向の制御しかできないが、モータ1による制御では加速方向と減速方向の両方向の制御を行うことができるため、制御自由度が高く、また制御時に減速感を与えにくい。そこで、制御自由度の高いモータ1による姿勢制御を優先するために、ブレーキ20よりも先にモータ1の制御量を決めている。これにより、ブレーキ20による姿勢制御の頻度を抑制することができ、減速感を抑制することができる。
  更に、モータ1による姿勢制御の応答は、ブレーキ20による姿勢制御の応答に比べて早いため、ブレーキ20よりも先にモータ1の制御量を決めて、モータ1による姿勢制御を優先的に行うため、姿勢制御の応答性を早くすることができる。
 以上説明したように、実施例3にあっては下記の作用効果が得られる。
 (11-1)車輪速(車両の走行状態)を検出する車輪速センサ5(走行状態検出手段)と、車輪速センサ5により検出されたピッチレイト(走行状態)に基づき、フラットな姿勢(目標姿勢)となる第1目標姿勢制御量(目標姿勢制御量)を演算する第1目標姿勢制御量演算部331(目標姿勢制御量演算手段)と、第1目標姿勢制御量に基づいて、モータ1の駆動力によって制御されるモータ姿勢制御量(駆動力姿勢制御量)を演算するモータ姿勢制御量演算部332(駆動力姿勢制御量演算手段)と、第1目標姿勢制御量とモータ姿勢制御量とに基づいて、ブレーキ20の制動力を制御するブレーキ制御部2a、ブレーキ姿勢制御量演算部334(制動力制御手段)と、を備えた。
 すなわち、高周波振動特性の悪化と何ら関係の無いアクチュエータであるモータ1及びブレーキ20によって姿勢制御をすることができ、高周波振動特性の悪化を回避することができる。
  また、制御自由度が高いモータ1による姿勢制御を優先することにより、ブレーキ20による姿勢制御の頻度を抑制することができ、減速感を抑制することができる。
  更に、モータ1による姿勢制御の応答は、ブレーキ20による姿勢制御の応答に比べて早いため、ブレーキ20よりも先にモータ1の制御量を決めて、モータ1による姿勢制御を優先的に行うため、姿勢制御の応答性を早くすることができる。
 (11-2)ブレーキ姿勢制御量演算部334は、第1目標姿勢制御量からモータ姿勢制御量を除いたブレーキ姿勢制御量(制動力姿勢制御量)を演算し、このブレーキ姿勢制御量に基づいて制動力を制御する。
 よって、モータ1により達成できない車体姿勢制御の抑制分をブレーキ20により効果的に抑制できる。

Claims (24)

  1.  車両の走行状態を検出する走行状態検出手段と、
     走行状態に基づき、車体の目標姿勢制御量を演算する目標姿勢制御量演算手段と、
     前記目標姿勢制御量に基づいて、ショックアブソーバ以外の姿勢制御アクチュエータによって制御される姿勢制御量を演算する姿勢制御量演算手段と、
     前記目標姿勢制御量と前記姿勢制御量とに基づいて、ショックアブソーバの減衰力を制御する減衰力制御手段と、
     を備えたことを特徴とする車両の制御装置。
  2.  請求項1に記載の車両の制御装置において、
     前記減衰力制御手段は、前記目標姿勢制御量から前記姿勢制御量を除いた減衰力姿勢制御量を演算し、この減衰力姿勢制御量に基づいて前記減衰力を制御することを特徴とする車両の制御装置。
  3.  請求項1または2に記載の車両の制御装置において、
     前記姿勢制御量演算手段は、前記姿勢制御量を所定値に制限する制限値を有することを特徴とする車両の制御装置。
  4.  請求項1ないし3いずれか1つに記載の車両の制御装置において、
     前記姿勢制御量は、制動力によって制御される制動力姿勢制御量であることを特徴とする車両の制御装置。
  5.  請求項1ないし3いずれか1つに記載の車両の制御装置において、
     前記姿勢制御量は、車両の駆動力によって制御される駆動力姿勢制御量であることを特徴とする車両の制御装置。
  6.  請求項1に記載の車両の制御装置において、
     前記姿勢制御量は、車両の制動力によって制御される制動力姿勢制御量と、車両の駆動力によって制御される駆動力姿勢制御量であり、
     前記姿勢制御量演算手段は、前記目標姿勢制御量と前記制動力姿勢制御量とに基づいて前記駆動力姿勢制御量を演算し、
     前記減衰力制御手段は、前記目標姿勢制御量と前記駆動力姿勢制御量と前記制動力姿勢制御量とに基づいて、ショックアブソーバの減衰力を制御することを特徴とする車両の制御装置。
  7.  請求項6に記載の車両の制御装置において、
     前記姿勢制御量演算手段は、前記目標姿勢制御量から前記制動力姿勢制御量を除いた値に基づいて前記駆動力姿勢制御量を演算することを特徴とする車両の制御装置。
  8.  請求項6または7に記載の車両の制御装置において、
     前記車両の駆動力は、エンジンの駆動力であることを特徴とする車両の制御装置。
  9.  請求項1に記載の車両の制御装置において、
     前記姿勢制御量は、車両の制動力によって制御される制動力姿勢制御量と、車両の駆動力によって制御される駆動力姿勢制御量であり、
     前記姿勢制御量演算手段は、前記目標姿勢制御量と前記駆動力姿勢制御量とに基づいて前記制動力姿勢制御量を演算し、
     前記減衰力制御手段は、前記目標姿勢制御量と前記駆動力姿勢制御量と前記制動力姿勢制御量とに基づいて、ショックアブソーバの減衰力を制御することを特徴とする車両の制御装置。
  10.  請求項9に記載の車両の制御装置において、
     前記姿勢制御量演算手段は、前記目標姿勢制御量から前記駆動力姿勢制御量を除いた値に基づいて前記制動力姿勢制御量を演算することを特徴とする車両の制御装置。
  11.  請求項9または10に記載の車両の制御装置において、
     前記車両の駆動力は、モータであることを特徴とする車両の制御装置。
  12.  請求項6ないし11いずれか1つに記載の車両の制御装置において、
     前記減衰力制御手段は、前記目標姿勢制御量から前記駆動力姿勢制御量と前記制動力姿勢制御量とを除いた減衰力姿勢制御量を演算し、この減衰力姿勢制御量に基づいて前記減衰力を制御することを特徴とする車両の制御装置。
  13.  請求項6ないし12いずれか1つに記載の車両の制御装置において、
     前記姿勢制御量演算手段は、前記制動力姿勢制御量を所定値に制限する制限値を有することを特徴とする車両の制御装置。
  14.  請求項6ないし13いずれか1つに記載の車両の制御装置において、
     前記姿勢制御量演算手段は、前記駆動力姿勢制御量を所定値に制限する制限値を有することを特徴とする車両の制御装置。
  15.  請求項1ないし14いずれか1つに記載の車両の制御装置において、
     前記走行状態検出手段は、ばね上の運動を検出する手段であることを特徴とする車両の制御装置。
  16.  請求項15に記載の車両の制御装置において、
     前記目標姿勢制御量演算手段は、前記ばね上の運動を抑制する制御量を目標姿勢制御量として演算することを特徴とする車両の制御装置。
  17.  請求項16に記載の車両の制御装置において、
     前記走行状態検出手段は、車両のピッチレイトを検出する手段であり、
     前記目標姿勢制御量演算手段は、前記検出されたピッチレイトに基づいて前記目標姿勢制御量を演算することを特徴とする車両の制御装置。
  18.  請求項1ないし17いずれか1つに記載の車両の制御装置において、
     前記走行状態検出手段は、車輪速の変化に基づいて走行状態を推定することを特徴とする車両の制御装置。
  19.  請求項1ないし18いずれか1つに記載の車両の制御装置において、
     前記姿勢制御量演算手段は、スカイフック制御則に基づいて車体姿勢制御量を演算することを特徴とする車両の制御装置。
  20.  請求項1ないし19いずれか1つに記載の車両の制御装置において、
     前記減衰力制御手段は、スカイフック制御則に基づいて減衰力を制御することを特徴とする車両の制御装置。
  21.  請求項1ないし20いずれか1つに記載の車両の制御装置において、
     前記走行状態検出手段は、ばね上速度とストローク速度の符号によらず推定可能なアクティブスカイフックモデルに基づいて走行状態を推定することを特徴とする車両の制御装置。
  22.  請求項1ないし21いずれか1つに記載の車両の制御装置において、
     前記走行状態検出手段は、4輪の上下方向運動を表すバウンス項と、前後輪の上下方向運動を表すピッチ項と、左右輪の上下方向運動を表すロール項と、対角輪の上下方向運動を表すワープ項と、に基づいて4輪モデルに展開することで、走行状態を推定することを特徴とする車両の制御装置。
  23.  車両の走行状態を検出するセンサと、
     前記走行状態より演算した車体の目標姿勢制御量に基づいて、ショックアブソーバ以外のアクチュエータによって制御される姿勢制御量を演算すると共に、前記目標姿勢制御量では達成されない制御量に応じたショックアブソーバの減衰力制御量を演算するコントローラと、
     前記姿勢制御量に応じて作動する姿勢制御アクチュエータと、
     前記減衰力制御量に応じた減衰力を発生するショックアブソーバと、
     を備える車両の制御装置。
  24.  コントローラが、車両の走行状態に基づいて目標姿勢制御量を演算し、該目標姿勢制御量に基づいて、ショックアブソーバ以外のアクチュエータによって制御される姿勢制御量を演算すると共に、前記目標姿勢制御量に対して前記姿勢制御量では達成されない制御量をショックアブソーバの減衰力で制御することを特徴とする車両の制御方法。
PCT/JP2012/084051 2011-12-28 2012-12-28 車両の制御装置 WO2013100121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280065672.XA CN104024008B (zh) 2011-12-28 2012-12-28 车辆的控制装置
US14/369,044 US9238462B2 (en) 2011-12-28 2012-12-28 Control apparatus for vehicle
EP12861797.4A EP2799263B1 (en) 2011-12-28 2012-12-28 Vehicle control device
JP2013551853A JP5668872B2 (ja) 2011-12-28 2012-12-28 車両の制御装置

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011289535 2011-12-28
JP2011-289536 2011-12-28
JP2011-290153 2011-12-28
JP2011290151 2011-12-28
JP2011-290156 2011-12-28
JP2011289534 2011-12-28
JP2011290156 2011-12-28
JP2011290153 2011-12-28
JP2011-289534 2011-12-28
JP2011-289535 2011-12-28
JP2011-290151 2011-12-28
JP2011289536 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013100121A1 true WO2013100121A1 (ja) 2013-07-04

Family

ID=48697598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084051 WO2013100121A1 (ja) 2011-12-28 2012-12-28 車両の制御装置

Country Status (5)

Country Link
US (1) US9238462B2 (ja)
EP (1) EP2799263B1 (ja)
JP (1) JP5668872B2 (ja)
CN (1) CN104024008B (ja)
WO (1) WO2013100121A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123895A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 車両状態推定装置、車両状態推定方法および車両制御装置
CN108454630A (zh) * 2017-02-21 2018-08-28 大众汽车有限公司 用于减弱机动车传动系振动的控制系统、机动车和相关方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510796B2 (ja) * 2014-11-07 2019-05-08 Kyb株式会社 サスペンション装置およびサスペンション制御装置
US9573591B2 (en) * 2015-03-18 2017-02-21 Continental Automotive Systems, Inc. System and method utilizing detected load for vehicle handling
JP6292161B2 (ja) * 2015-04-20 2018-03-14 トヨタ自動車株式会社 制動力制御装置
JP6233608B2 (ja) * 2015-10-13 2017-11-22 トヨタ自動車株式会社 車両の駆動力制御装置
JP6233609B2 (ja) 2015-10-27 2017-11-22 トヨタ自動車株式会社 車両の駆動力制御装置
JP6233477B1 (ja) * 2016-09-09 2017-11-22 マツダ株式会社 車両の制御装置
US10040446B2 (en) * 2016-10-24 2018-08-07 International Business Machines Corporation Reducing noise generated by a motorized device
CN107599778B (zh) * 2017-07-31 2020-09-25 江苏大学 一种电磁混合悬架的控制方法
US10414393B2 (en) * 2017-09-08 2019-09-17 Robert Bosch Gmbh Systems and methods for stabilizing a vehicle
JP6989445B2 (ja) * 2018-06-01 2022-01-05 本田技研工業株式会社 電磁サスペンション装置
US20210354523A1 (en) * 2018-10-12 2021-11-18 Hitachi Astemo, Ltd. Suspension control device
KR102599931B1 (ko) * 2018-12-07 2023-11-09 현대자동차주식회사 자동차용 인렛액추에이터
JP6734912B2 (ja) * 2018-12-24 2020-08-05 本田技研工業株式会社 車両のサスペンション制御装置
JP6992777B2 (ja) 2019-02-28 2022-01-13 株式会社デンソー 冷凍サイクル装置、蒸発圧力調整弁
KR20200127408A (ko) * 2019-05-02 2020-11-11 현대자동차주식회사 강풍 주행 상황을 고려한 차고 제어 장치 및 그 방법
KR20220026380A (ko) * 2020-08-25 2022-03-04 현대모비스 주식회사 듀얼모터가 장착된 차량의 구동력 제어 장치 및 그 제어방법
JP7150001B2 (ja) * 2020-12-28 2022-10-07 本田技研工業株式会社 車両制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117435A (ja) 1993-10-29 1995-05-09 Nissan Motor Co Ltd サスペンション制御装置
JP2003011635A (ja) * 2001-04-27 2003-01-15 Tokico Ltd 車両統合制御装置
JP2009061855A (ja) * 2007-09-05 2009-03-26 Toyota Motor Corp 車両の制駆動力制御装置
JP2010083329A (ja) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd サスペンション制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071059B2 (ja) * 1993-02-15 2000-07-31 三菱電機株式会社 車両用追従走行制御装置
JP3167835B2 (ja) * 1993-07-16 2001-05-21 マツダ株式会社 車両用サスペンション装置
JP3110219B2 (ja) * 1993-09-13 2000-11-20 株式会社ユニシアジェックス 車両懸架装置
JP3673847B2 (ja) * 1993-12-28 2005-07-20 株式会社日立製作所 サスペンション制御装置
JPH10100634A (ja) * 1996-08-08 1998-04-21 Kayaba Ind Co Ltd 車両スタビリティ制御装置
JP3826758B2 (ja) 2001-10-05 2006-09-27 日産自動車株式会社 車線逸脱防止装置
US6953108B2 (en) * 2003-04-04 2005-10-11 Millenworks Magnetorheological damper system
JP2005125986A (ja) * 2003-10-27 2005-05-19 Fuji Heavy Ind Ltd 車両制御装置および車両制御方法
BRPI0513156B1 (pt) * 2004-08-06 2017-12-26 Honda Motor Co., Ltd. Control device for a vehicle equipped with a variable output device manipulated to drive ??
US20060178799A1 (en) * 2005-02-10 2006-08-10 Hoying John F Enhanced roll control system
JP2007112207A (ja) 2005-10-18 2007-05-10 Toyota Motor Corp 車両の制駆動力制御装置
JP4519113B2 (ja) * 2006-09-12 2010-08-04 トヨタ自動車株式会社 車両用サスペンションシステム
JP4600381B2 (ja) * 2006-10-19 2010-12-15 トヨタ自動車株式会社 車両の車輪トルク推定装置及び制振制御装置
US8322728B2 (en) * 2007-09-28 2012-12-04 Hitachi, Ltd. Suspension control apparatus
JP5158333B2 (ja) * 2007-09-28 2013-03-06 日立オートモティブシステムズ株式会社 サスペンション制御装置
JP5056367B2 (ja) * 2007-11-20 2012-10-24 トヨタ自動車株式会社 車両の制振制御装置
JP4977152B2 (ja) * 2009-02-10 2012-07-18 本田技研工業株式会社 後輪操舵制御装置
US8798869B2 (en) * 2009-10-30 2014-08-05 Toyota Jidosha Kabushiki Kaisha Vehicle motion control system
WO2011142039A1 (ja) * 2010-05-11 2011-11-17 トヨタ自動車株式会社 サスペンション装置
US8838336B2 (en) * 2010-07-29 2014-09-16 Hitachi Automotive Systems, Ltd. Vehicle body attitude control apparatus
JP5572485B2 (ja) * 2010-08-31 2014-08-13 日立オートモティブシステムズ株式会社 サスペンション制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117435A (ja) 1993-10-29 1995-05-09 Nissan Motor Co Ltd サスペンション制御装置
JP2003011635A (ja) * 2001-04-27 2003-01-15 Tokico Ltd 車両統合制御装置
JP2009061855A (ja) * 2007-09-05 2009-03-26 Toyota Motor Corp 車両の制駆動力制御装置
JP2010083329A (ja) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd サスペンション制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123895A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 車両状態推定装置、車両状態推定方法および車両制御装置
CN108454630A (zh) * 2017-02-21 2018-08-28 大众汽车有限公司 用于减弱机动车传动系振动的控制系统、机动车和相关方法

Also Published As

Publication number Publication date
CN104024008A (zh) 2014-09-03
EP2799263B1 (en) 2018-05-30
JPWO2013100121A1 (ja) 2015-05-11
US9238462B2 (en) 2016-01-19
EP2799263A4 (en) 2017-04-19
EP2799263A1 (en) 2014-11-05
US20150032332A1 (en) 2015-01-29
CN104024008B (zh) 2016-06-15
JP5668872B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5733431B2 (ja) 車両の制御装置及び車両の制御方法
JP5668872B2 (ja) 車両の制御装置
JP5668873B2 (ja) 車両の制御装置
JP5741719B2 (ja) 車両の制御装置及び車両の制御方法
JP5783270B2 (ja) 車両の制御装置及び車両の制御方法
JP5733430B2 (ja) 車両の制御装置及び車両の制御方法
JP5804088B2 (ja) 車両の制御装置及び車両の制御方法
WO2013111505A1 (ja) 車両の制御装置及び車両の制御方法
JP2013154801A (ja) 車両の制御装置
JP5737432B2 (ja) 車両の制御装置及び車両の制御方法
JP5817849B2 (ja) 車両の制御装置及び車両の制御方法
WO2013161537A1 (ja) 車両の制御装置及び車両の制御方法
JP5737433B2 (ja) 車両の制御装置
JP5842935B2 (ja) 車両の制御装置および車両の制御方法
JP5928484B2 (ja) 車両の制御装置
JP5862685B2 (ja) 車両の制御装置及び車両の制御方法
JP5804091B2 (ja) 車両の制御装置
JP5858054B2 (ja) 車両の制御装置
JP5929923B2 (ja) 車両の制御装置及び車両の制御方法
JP5858053B2 (ja) 車両の制御装置及び車両の制御方法
WO2013161637A1 (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551853

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14369044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012861797

Country of ref document: EP