JP5811277B2 - 車両の制御装置及び車両の制御方法 - Google Patents

車両の制御装置及び車両の制御方法 Download PDF

Info

Publication number
JP5811277B2
JP5811277B2 JP2014515606A JP2014515606A JP5811277B2 JP 5811277 B2 JP5811277 B2 JP 5811277B2 JP 2014515606 A JP2014515606 A JP 2014515606A JP 2014515606 A JP2014515606 A JP 2014515606A JP 5811277 B2 JP5811277 B2 JP 5811277B2
Authority
JP
Japan
Prior art keywords
control
vehicle
wheel
speed
sprung
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014515606A
Other languages
English (en)
Other versions
JPWO2013172283A1 (ja
Inventor
宏信 菊池
宏信 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014515606A priority Critical patent/JP5811277B2/ja
Application granted granted Critical
Publication of JP5811277B2 publication Critical patent/JP5811277B2/ja
Publication of JPWO2013172283A1 publication Critical patent/JPWO2013172283A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、車両の状態を制御する制御装置及び制御方法に関する。
特許文献1には、車輪速の所定周波数領域における変動からストローク速度を推定し、ストローク速度に応じて減衰力可変ショックアブソーバの減衰力を変更してばね上挙動を制御する技術が開示されている。
特開2009−241813号公報
しかしながら、上記従来技術にあっては、車輪速の所定周波数領域内に外乱が生じると、ストローク速度の推定確度が低下するという問題があった。
本発明は、上記問題に着目してなされたもので、ばね上状態の推定確度の低下を検知可能な車両の制御装置及び制御方法を提供することを目的とする。
上記目的を達成するため、本発明の車両の制御装置では、車輪速検出手段により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定し、このばね上状態が目標ばね上状態となるように減衰力可変ショックアブソーバを含む複数のアクチュエータを制御すると共に、ばね上状態の推定確度低下を検知した場合には、減衰力可変ショックアブソーバによるばね上制振制御を継続しつつ他のアクチュエータによるばね上制振制御を禁止することとした。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下時に減衰力可変ショックアブソーバ以外のアクチュエータによる制御を禁止することで誤った制御に伴うトルク変動を抑制することができ、減衰力可変ショックアブソーバによる制御を継続することで車体姿勢の安定化を達成できる。
すなわち、他のアクチュエータが制駆動トルクのように車両の前後加速度に寄与する場合、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な加減速が生じるおそれがある。これに対し、前後方向の制駆動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。
実施例1の車両の制御装置を表すシステム概略図である。 実施例1の車両の制御装置の制御構成を表す制御ブロック図である。 実施例1の車輪速フィードバック制御系の構成を表す概念図である。 実施例1の走行状態推定部の構成を表す制御ブロック図である。 実施例1のストローク速度演算部における制御内容を表す制御ブロック図である。 実施例1の基準車輪速演算部の構成を表すブロック図である。 車体振動モデルを表す概略図である。 実施例1のブレーキピッチ制御を表す制御ブロック図である。 車輪速センサにより検出された車輪速周波数特性と、実施例では搭載していないストロークセンサのストローク周波数特性とを同時に書き表した図である。 実施例1のばね上制振制御における周波数感応制御を表す制御ブロック図である。 各周波数領域における人間感覚特性を表す相関図である。 実施例1の周波数感応制御によるフワ領域の振動混入比率と減衰力との関係を表す特性図である。 ある走行条件において車輪速センサにより検出された車輪速周波数特性を表した図である。 実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。 実施例1のロールレイト抑制制御の包絡波形形成処理を表すタイムチャートである。 実施例1のばね下制振制御の制御構成を表すブロック図である。 実施例1の減衰力制御部の制御構成を表す制御ブロック図である。 実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。 実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。 実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。 実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。 うねり路面及び凹凸路面を走行する際の減衰係数変化を表すタイムチャートである。 実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。 実施例1の車両の制御装置の制御構成を表す制御ブロック図である。 実施例1の推定確度低下検知時制御部の構成を表す制御ブロック図である。 実施例1の減衰係数設定部における推定確度低下時減衰係数の設定方法を表す説明図である。
1 エンジン
1a エンジンコントローラ(エンジン制御部)
2 ブレーキコントロールユニット
2a ブレーキコントローラ(ブレーキ制御部)
3 S/A(減衰力可変ショックアブソーバ)
3a S/Aコントローラ
5 車輪速センサ
6 一体型センサ
7 舵角センサ
8 車速センサ
20 ブレーキ
31 ドライバ入力制御部
32 走行状態推定部
33 ばね上制振制御部
33a スカイフック制御部
33b 周波数感応制御部
34 ばね下制振制御部
35 減衰力制御部
331 第1目標姿勢制御量演算部
332 エンジン姿勢制御量演算部
333 第2目標姿勢制御量演算部
334 ブレーキ姿勢制御量演算部
335 第3目標姿勢制御量演算部
336 ショックアブソーバ姿勢制御量演算部
〔実施例1〕
図1は実施例1の車両の制御装置を表すシステム概略図である。車両には、動力源であるエンジン1と、各輪に摩擦力による制動トルクを発生させるブレーキ20(以下、個別の輪に対応するブレーキを表示するときには右前輪ブレーキ:20FR、左前輪ブレーキ:20FL、右後輪ブレーキ:20RR、左後輪ブレーキ:20RLと記載する。)と、各輪と車体との間に設けられ減衰力を可変に制御可能なショックアブソーバ3(以下、S/Aと記載する。個別の輪に対応するS/Aを表示するときには右前輪S/A:3FR、左前輪S/A:3FL、右後輪S/A:3RR、左後輪S/A:3RLと記載する。)と、を有する。
エンジン1は、エンジン1から出力されるトルクを制御するエンジンコントローラ(以下、エンジン制御部とも言う。動力源制御手段に相当)1aを有し、エンジンコントローラ1aは、エンジン1のスロットルバルブ開度や、燃料噴射量、点火タイミング等を制御することで、所望のエンジン運転状態(エンジン回転数やエンジン出力トルク)を制御する。また、ブレーキ20は、各輪のブレーキ液圧を走行状態に応じて制御可能なブレーキコントロールユニット2から供給される液圧に基づいて制動トルクを発生する。ブレーキコントロールユニット2は、ブレーキ20の発生する制動トルクを制御するブレーキコントローラ(以下、ブレーキ制御部とも言う)2aを有し、運転者のブレーキペダル操作によって発生するマスタシリンダ圧、もしくは内蔵されたモータ駆動ポンプにより発生するポンプ圧を液圧源とし、複数の電磁弁の開閉動作によって各輪のブレーキ20に所望の液圧を発生させる。
S/A3は、車両のばね下(アクスルや車輪等)とばね上(車体等)との間に設けられたコイルスプリングの弾性運動を減衰する減衰力発生装置であり、アクチュエータの作動により減衰力を可変に構成されている。S/A3は、流体が封入されたシリンダと、このシリンダ内をストロークするピストンと、このピストンの上下に形成された流体室の間の流体移動を制御するオリフィスとを有する。更に、このピストンには複数種のオリフィス径を有するオリフィスが形成され、S/Aアクチュエータの作動時には、複数種のオリフィスから制御指令に応じたオリフィスが選択される。これにより、オリフィス径に応じた減衰力を発生することができる。例えば、オリフィス径が小さければピストンの移動は制限されやすいため、減衰力が高くなり、オリフィス径が大きければピストンの移動は制限されにくいため、減衰力は小さくなる。
尚、オリフィス径の選択以外にも、例えばピストンの上下に形成された流体を接続する連通路上に電磁制御弁を配置し、この電磁制御弁の開閉量を制御することで減衰力を設定してもよく、特に限定しない。S/A3は、S/A3の減衰力を制御するS/Aコントローラ3a(減衰力制御手段に相当)を有し、S/Aアクチュエータによりオリフィス径を動作させて減衰力を制御する。
また、各輪の車輪速を検出する車輪速センサ5(以下、個別の輪に対応する車輪速を表示するときには右前輪車輪速:5FR、左前輪車輪速:5FL、右後輪車輪速:5RR、左後輪車輪速:5RLと記載する。)と、車両の重心点に作用する前後加速度、ヨーレイト及び横加速度を検出する一体型センサ6と、運転者のステアリング操作量である操舵角を検出する舵角センサ7と、車速を検出する車速センサ8と、エンジントルクを検出するエンジントルクセンサ9と、エンジン回転数を検出するエンジン回転数センサ10と、マスタシリンダ圧を検出するマスタ圧センサ11と、ブレーキペダル操作が行なわれるとオン状態信号を出力するブレーキスイッチ12と、アクセルペダル開度を検出するアクセル開度センサ13と、外気温度を検出する温度センサ14と、を有する。これら各種センサの信号は、必要に応じてエンジンコントローラ1a,ブレーキコントローラ2a及びS/Aコントローラ3aに入力される。尚、一体型センサ6の配置は車両の重心位置でもよいし、それ以外の場所であっても、重心位置における各種値が推定可能な構成であればよく、特に限定しない。また、一体型である必要は無く、個別にヨーレイト、前後加速度及び横加速度を検出する構成としてもよい。
(車両の制御装置の全体構成)
実施例1の車両の制御装置にあっては、ばね上に生じる振動状態を制御するために、3つのアクチュエータを使用する。このとき、それぞれの制御がばね上状態を制御するため、相互干渉が問題となる。また、エンジン1によって制御可能な要素と、ブレーキ20によって制御可能な要素と、S/A3によって制御可能な要素はそれぞれ異なり、これらをどのように組み合わせて制御するべきかが問題となる。
例えば、ブレーキ20はバウンス運動とピッチ運動の制御が可能であるが、両方を行なうと減速感が強く運転者に違和感を与えやすい。また、S/A3はロール運動とバウンス運動とピッチ運動の全てを制御可能であるが、S/A3によって全ての制御を広い範囲で行う場合、S/A3の製造コストの上昇を招き、また、減衰力が高くなる傾向があることから路面側からの高周波振動が入力されやすく、やはり運転者に違和感を与えやすい。言い換えると、ブレーキ20による制御は高周波振動の悪化を招くことは無いが減速感の増大を招き、S/A3による制御は減速感を招くことは無いが高周波振動の入力を招くというトレードオフが存在する。
そこで、実施例1の車両の制御装置にあっては、これらの課題を総合的に判断し、それぞれの制御特性として有利な点を活かしつつ、相互の弱点を補完しあう制御構成を実現することで、安価でありながらも制振能力に優れた車両の制御装置を実現するために、主に、以下に列挙する点を考慮して全体の制御システムを構築した。
(1)エンジン1及びブレーキ20による制御を並行して行うことで、S/A3による制御量を抑制する。
(2)ブレーキ20の制御対象運動をピッチ運動に限定することで、ブレーキ20による制御での減速感を解消する。
(3)エンジン1及びブレーキ20による制御量を実際に出力可能な制御量よりも制限して出力することで、S/A3での負担を低減しつつ、エンジン1やブレーキ20の制御に伴って生じる違和感を抑制する。
(4)全てのアクチュエータによりスカイフック制御を行う。このとき、一般にスカイフック制御に必要とされるストロークセンサやばね上上下加速度センサ等を使用することなく、全ての車両に搭載されている車輪速センサを利用して安価な構成でスカイフック制御を実現する。
(5)S/A3によるばね上制御を行なう際、スカイフック制御のようなベクトル制御では対応が困難な高周波振動の入力に対し、新たにスカラー制御(周波数感応制御)を導入する。
(6)走行状態に応じて、S/A3が実現する制御状態を適宜選択することで、走行状況に応じた適切な制御状態を提供する。
以上が、実施例において構成した全体の制御システムの概要である。以下、これらを実現する個別の内容について、順次説明する。
図2は実施例1の車両の制御装置の制御構成を表す制御ブロック図である。実施例1では、コントローラとして、エンジンコントローラ1aと、ブレーキコントローラ2aと、S/Aコントローラ3aとの3つで構成され、それぞれのコントローラにおいて、車輪速フィードバック制御系を構成している。尚、それぞれのコントローラとは別に、後述する各走行状態推定部(第1走行状態推定部100,第2走行状態推定部200,第3走行状態推定部32)の状態推定の確からしさである推定確度の低下を検知する推定確度低下検知部4aと、推定確度の低下を検知したときに適切な制御状態に遷移させる推定確度低下検知時制御部5aと、を有する。これら推定確度低下検知部4a及び推定確度低下検知時制御部5aの詳細については後述する。
ここで、実施例1では、コントローラとして、3つのコントローラを備えた構成を示したが、各コントローラを全て一つの統合コントローラから構成してもよく特に限定しない。実施例1において3つのコントローラを備えた構成としたのは、既存の車両におけるエンジンコントローラとブレーキコントローラをそのまま流用してエンジン制御部1a及びブレーキ制御部2aとし、別途S/Aコントローラ3aを搭載することで実施例1の車両の制御装置を実現することを想定したものである。
(エンジンコントローラの構成)
エンジンコントローラ1aは、主に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部101aのスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを推定する第1走行状態推定部100と、エンジントルク指令であるエンジン姿勢制御量を演算するエンジン姿勢制御部101と、演算されたエンジン姿勢制御量に基づいてエンジン1の運転状態を制御するエンジン制御部102とを有する。尚、第1走行状態推定部100の推定処理内容については後述する。
エンジン姿勢制御部101は、スカイフック制御によりバウンス運動及びピッチ運動を抑制するばね上制御量を演算するばね上制振制御部101aと、前輪と後輪の接地荷重変動を抑制する接地荷重変動抑制制御量を演算する接地荷重制御部101bと、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するヨー応答制御量を演算するエンジン側ドライバ入力制御部101cとを有する。エンジン姿勢制御部101は、これら各制御部により演算された制御量が最小となるエンジン姿勢制御量を最適制御(LQR)により演算し、エンジン制御部102に対して最終的なエンジン姿勢制御量を出力する。このように、エンジン1によってバウンス運動及びピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。
(ブレーキコントローラの構成)
ブレーキコントローラ2aは、車輪速センサ5により検出された車輪速に基づいて、各輪のストローク速度及びピッチレイト等を推定する第2走行状態推定部200と、推定されたストローク速度及びピッチレイトに基づいてスカイフック制御に基づくブレーキ姿勢制御量を演算するスカイフック制御部201(詳細については後述する。)と、演算されたブレーキ姿勢制御量に基づいてブレーキ20の制動トルクを制御するブレーキ制御部202とを有する。尚、実施例1では、第1走行状態推定部100及び第2走行状態推定部200における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよい。このように、ブレーキ20によってピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。
(S/Aコントローラの構成)
S/Aコントローラ3aは、運転者の操作(ステアリング操作、アクセル操作及びブレーキペダル操作等)に基づいて所望の車両姿勢を達成するドライバ入力制御を行うドライバ入力制御部31と、各種センサの検出値(主に車輪速センサ5の車輪速センサ値)に基づいて走行状態を推定する第3走行状態推定部32と、推定された走行状態に基づいてばね上の振動状態を制御するばね上制振制御部33と、推定された走行状態に基づいてばね下の振動状態を制御するばね下制振制御部34と、ドライバ入力制御部31から出力されたショックアブソーバ姿勢制御量と、ばね上制振制御部33から出力されたばね上制振制御量と、ばね下制振制御部34から出力されたばね下制振制御量とに基づいて、S/A3に設定すべき減衰力を決定し、S/Aの減衰力制御を行う減衰力制御部35とを有する。尚、実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよく特に限定しない。
ここで、実施例1では、全てのアクチュエータにおいて車輪速センサ5を用いたフィードバック制御系を構成することとした。図3は実施例1の車輪速フィードバック制御系の構成を表す概念図である。エンジン1、ブレーキ20及びS/A3は、それぞれ個別にエンジンフィードバック制御系、ブレーキフィードバック制御系、S/Aフィードバック制御系を構成している。このとき、それぞれのアクチュエータが相互に作動状態を監視することなく個別に作動した場合、制御干渉が問題となる。しかし、各アクチュエータの制御による影響は、それぞれ車輪速変動として出現するため、車輪速フィードバック制御系を構成することで、結果として各アクチュエータの影響を相互に監視することとなり、制御干渉を回避するものである。例えば、エンジン1によってあるばね上振動が抑制されると、それに伴う車輪速変動が生じる。他のアクチュエータは、エンジン1において行われた制御内容について感知していなくても、その影響が反映された車輪速に基づいてブレーキ20やS/A3が制御を行うことになる。すなわち、車輪速という共通の値を用いてフィードバック制御系を構成しているため、制御的に相互監視を働かせることなく個別に制御したとしても、結果的に相互に監視した上での制御(以下、この制御を協調制御と記載する。)が行われ、車両姿勢を安定化方向に収束できるのである。以下、各フィードバック制御系について順次説明する。
(走行状態推定部について)
まず、各フィードバック制御系に設けられた共通する構成である第1,第2,第3走行状態推定部について説明する。実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用している。よって、各推定部内における処理は共通であるため、代表して第3走行状態推定部32における推定処理を説明する。尚、これら各走行状態推定部は、車輪速を用いた状態推定であれば別々の推定モデルを備えていてもよく、特に限定しない。
図4は実施例1の第3走行状態推定部の構成を表す制御ブロック図である。実施例1の第3走行状態推定部32では、基本的に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部33のスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを算出する。まず、各輪の車輪速センサ5の値がストローク速度演算部321に入力され、ストローク速度演算部321において演算された各輪のストローク速度からばね上速度を演算する。
図5は実施例1のストローク速度演算部における制御内容を表す制御ブロック図である。ストローク速度演算部321は、輪ごとに個別に設けられており、図5に示す制御ブロック図は、ある輪に着目した制御ブロック図である。ストローク速度演算部321内には、車輪速センサ5の値と、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車体横速度と、一体型センサ6により検出された実ヨーレイトとに基づいて基準となる車輪速を演算する基準車輪速演算部300と、演算された基準車輪速に基づいてタイヤ回転振動周波数を演算するタイヤ回転振動周波数演算部321aと、基準車輪速と車輪速センサ値との偏差(車輪速変動)を演算する偏差演算部321bと、偏差演算部321bにより演算された偏差をサスペンションストローク量に変換するGEO変換部321cと、変換されたストローク量をストローク速度に校正するストローク速度校正部321dと、ストローク速度校正部321dにより校正された値にタイヤ回転振動周波数演算部321aにより演算された周波数に応じたバンドエリミネーションフィルタを作用させてタイヤ回転一次振動成分を除去し、最終的なストローク速度を算出する信号処理部321eと、を有する。
〔基準車輪速演算部について〕
ここで、基準車輪速演算部300について説明する。図6は実施例1の基準車輪速演算部の構成を表すブロック図である。基準車輪速とは、各車輪速のうち、種々の外乱が除去された値を指すものである。言い換えると、車輪速センサ値と基準車輪速との差分は、車体のバウンス挙動、ロール挙動、ピッチ挙動又はばね下上下振動によって発生したストロークに応じて変動した成分と関連がある値であり、実施例では、この差分に基づいてストローク速度を推定する。
平面運動成分抽出部301では、車輪速センサ値を入力として車体プランビューモデルに基づいて各輪の基準車輪速となる第1車輪速V0を演算する。ここで、車輪速センサ5により検出された車輪速センサ値をω(rad/s)、舵角センサ7により検出された前輪実舵角をδf(rad)、後輪実舵角をδr(rad)、車体横速度をVx、一体型センサ6により検出されたヨーレイトをγ(rad/s)、算出される基準車輪速ω0から推定される車体速をV(m/s)、算出すべき基準車輪速をVFL、VFR、VRL、VRR、前輪のトレッドをTf、後輪のトレッドをTr、車両重心位置から前輪までの距離をLf、車両重心位置から後輪までの距離をLrとする。以上を用いて、車体プランビューモデルは以下のように表される。
(式1)
VFL=(V−Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V−Tr/2・γ)cosδr+(Vx−Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx−Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL−Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR−Lf・γsinδf}/cosδf−Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr−Tr/2・γ
ロール外乱除去部302では、第1車輪速V0を入力として車体フロントビューモデルに基づいて前後輪の基準車輪速となる第2車輪速V0F、V0Rを演算する。車体フロントビューモデルとは、車両を前方から見たときに、車両重心点を通る鉛直線上のロール回転中心周りに発生するロール運動によって生じる車輪速差を除去するものであり、以下の式で表される。
V0F=(V0FL+V0FR)/2
V0R=(V0RL+V0RR)/2
これにより、ロールに基づく外乱を除去した第2車輪速V0F、V0Rが得られる。
ピッチ外乱除去部303では、第2車輪速V0F、V0Rを入力として車体サイドビューモデルに基づいて全輪の基準車輪速となる第三車輪速VbFL、VbFR、VbRL、VbRRを演算する。ここで、車体サイドビューモデルとは、車両を横方向から見たときに、車両重心点を通る鉛直線上のピッチ回転中心周りに発生するピッチ運動によって生じる車輪速差を除去するものであり、以下の式で表される。
(式3)
VbFL=VbFR=VbRL=VbRR={Lr/(Lf+Lr)}V0F+{Lf/(Lf+Lr)}V0R
基準車輪速再配分部304では、(式1)に示す車体プランビューモデルのVにVbFL(=VbFR=VbRL=VbRR)をそれぞれ代入し、最終的な各輪の基準車輪速VFL、VFR、VRL、VRRを算出し、それぞれタイヤ半径r0で除算して基準車輪速ω0を算出する。
上述の処理により、各輪における基準車輪速ω0が算出されると、この基準車輪速ω0と車輪速センサ値との偏差が演算され、この偏差がサスペンションストロークに伴う車輪速変動であることから、ストローク速度Vz_sに変換される。基本的に、サスペンションは、各輪を保持する際、上下方向にのみストロークするのではなく、ストロークに伴って車輪回転中心が前後に移動すると共に、車輪速センサ5を搭載したアクスル自身も傾きを持ち、車輪との回転角差を生じる。この前後移動に伴って車輪速が変化するため、基準車輪速と車輪速センサ値との偏差がこのストロークに伴う変動として抽出できるのである。尚、どの程度の変動が生じるかはサスペンションジオメトリに応じて適宜設定すればよい。
ストローク速度演算部321において、上述の処理により各輪におけるストローク速度Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRが算出されると、ばね上速度演算部322においてスカイフック制御用のバウンスレイト、ロールレイト及びピッチレイトが演算される。
(推定モデルについて)
スカイフック制御とは、S/A3のストローク速度とばね上速度の関係に基づいて減衰力を設定し、ばね上を姿勢制御することでフラットな走行状態を達成するものである。ここで、スカイフック制御によってばね上の姿勢制御を達成するには、ばね上速度をフィードバックする必要がある。今、車輪速センサ5から検出可能な値はストローク速度であり、ばね上に上下加速度センサ等を備えていないことから、ばね上速度は推定モデルを用いて推定する必要がある。以下、推定モデルの課題及び採用すべきモデル構成について説明する。
図7は車体振動モデルを表す概略図である。図7(a)は、減衰力が一定のS/Aを備えた車両(以下、コンベ車両と記載する。)のモデルであり、図7(b)は、減衰力可変のS/Aを備え、スカイフック制御を行う場合のモデルである。図7中、Msはばね上の質量を表し、Muはばね下の質量を表し、Ksはコイルスプリングの弾性係数を表し、CsはS/Aの減衰係数を表し、Kuはばね下(タイヤ)の弾性係数を表し、Cuはばね下(タイヤ)の減衰係数を表し、Cvは可変とされた減衰係数を表す。また、z2はばね上の位置を表し、z1はばね下の位置を表し、z0は路面位置を表す。
図7(a)に示すコンベ車両モデルを用いた場合、ばね上に対する運動方程式は以下のように表される。尚、z1の1回微分(即ち速度)をdz1で、2回微分(即ち加速度)をddz1で表す。
(推定式1)
Ms・ddz2=−Ks(z2−z1)−Cs(dz2−dz1)
この関係式をラプラス変換して整理すると下記のように表される。
(推定式2)
dz2=−(1/Ms)・(1/s2)・(Cs・s+Ks)(dz2−dz1)
ここで、dz2−dz1はストローク速度(Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRR)であることから、ばね上速度はストローク速度から算出できる。しかし、スカイフック制御によって減衰力が変更されると、推定精度(推定確度)が著しく低下するため、コンベ車両モデルでは大きな姿勢制御力(減衰力変更)を与えられないという問題が生じる。
そこで、図7(b)に示すようなスカイフック制御による車両モデルを用いることが考えられる。減衰力を変更するとは、基本的にサスペンションストロークに伴ってS/A3のピストン移動速度を制限する力を変更することである。ピストンを積極的に望ましい方向に移動することはできないセミアクティブなS/A3を用いるため、セミアクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
(推定式3)
dz2=−(1/Ms)・(1/s2)・{(Cs+Cv)・s+Ks}(dz2−dz1)
ただし、
dz2・(dz2−dz1)≧0のとき Cv=Csky・{dz2/(dz2−dz1)}
dz2・(dz2−dz1)<0のとき Cv=0
すなわち、Cvは不連続な値となる。
今、簡単なフィルタを用いてばね上速度の推定を行いたいと考えた場合、セミアクティブスカイフックモデルでは、本モデルをフィルタとして見た場合、各変数はフィルタ係数に相当し、擬似微分項{(Cs+Cv)・s+Ks}に不連続な可変減衰係数Cvが含まれるため、フィルタ応答が不安定となり、適切な推定精度が得られない。特に、フィルタ応答が不安定となると、位相がずれてしまう。ばね上速度の位相と符号との対応関係が崩れると、スカイフック制御を達成することはできない。そこで、セミアクティブなS/A3を用いる場合であっても、ばね上速度とストローク速度の符号関係に依存せず、安定的なCskyを直接用いることが可能なアクティブスカイフックモデルを用いてばね上速度を推定することとした。アクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
(推定式4)
dz2=−(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}(dz2−dz1)
この場合、擬似微分項{(Cs/Ms)s+(Ks/Ms)}には不連続性が生じず、{1/(s+Csky/Ms)}の項はローパスフィルタで構成できる。よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。
以上の関係によって、各輪のストローク速度が分かれば、ばね上速度を推定できることが理解できる。次に、実際の車両は1輪ではなく4輪であるため、これら各輪のストローク速度を用いてばね上の状態を、ロールレイト、ピッチレイト及びバウンスレイトにモード分解して推定することを検討する。今、4輪のストローク速度から上記3つの成分を算出する場合、対応する成分が一つ足りず、解が不定となるため、対角輪の動きを表すワープレイトを導入することとした。ストローク量のバウンス項をxsB、ロール項をxsR、ピッチ項をxsP、ワープ項をxsWとし、Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRに対応するストローク量をz_sFL、z_sFR、z_sRL、z_sRRとすると、以下の式が成り立つ。
(式1)
Figure 0005811277
以上の関係式から、xsB、xsR、xsP、xsWの微分dxsB等は以下の式で表される。
dxsB=1/4(Vz_sFL+Vz_sFR+Vz_sRL+Vz_sRR)
dxsR=1/4(Vz_sFL−Vz_sFR+Vz_sRL−Vz_sRR)
dxsP=1/4(−Vz_sFL−Vz_sFR+Vz_sRL+Vz_sRR)
dxsW=1/4(−Vz_sFL+Vz_sFR+Vz_sRL−Vz_sRR)
ここで、ばね上速度とストローク速度との関係は上記推定式4より得られているため、推定式4のうち、−(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}部分をGと記載し、それぞれCsky,Cs及びKsのバウンス項、ロール項、ピッチ項に応じたモーダルパラメータ(CskyB,CskyR,CskyP,CsB,CsR,CsP,KsB,KsR,KsP)を考慮した値をGB,GR,GPとし、各バウンスレイトをdB、ロールレイトをdR、ピッチレイトをdPとすると、dB、dR、dPは以下の値として算出できる。
dB=GB・dxsB
dR=GR・dxsR
dP=GP・dxsP
以上から、各輪のストローク速度に基づいて、実際の車両におけるばね上の状態推定が達成できる。
(ばね上制振制御部)
次に、ばね上制振制御部101a,スカイフック制御部201及びばね上制振制御部33において実行されるスカイフック制御構成について説明する。スカイフック制御では、上述のように車輪速に基づいて推定されたばね上状態を目標ばね上状態となるように制御する。言い換えると、車輪速変化はばね上状態に対応して変化するものであり、バウンス,ロール,ピッチといったばね上状態を目標ばね上状態に制御する場合、検出された車輪速の変化が目標ばね上状態に対応する車輪速変化となるように制御するものである。
〔スカイフック制御部の構成〕
実施例1の車両の制御装置にあっては、ばね上姿勢制御を達成するアクチュエータとして、エンジン1と、ブレーキ20と、S/A3の三つを備えている。このうち、エンジンコントローラ1aにおけるばね上制振制御部101aでは、バウンスレイトとピッチレイトの2つを制御対象とし、ブレーキコントローラ2aにおけるスカイフック制御部201においてはピッチレイトを制御対象とし、S/Aコントローラ3aにおけるスカイフック制御部33aでは、バウンスレイト、ロールレイト、ピッチレイトの3つを制御対象とする。
バウンス方向のスカイフック制御量は、
FB=CskyB・dB
ロール方向のスカイフック制御量は、
FR=CskyR・dR
ピッチ方向のスカイフック制御量は、
FP=CskyP・dP
となる。
(バウンス方向のスカイフック制御量FB)
バウンス方向のスカイフック制御量FBは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ロール方向のスカイフック制御量FR)
ロール方向のスカイフック制御量FRは、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ピッチ方向のスカイフック制御量FP)
ピッチ方向のスカイフック制御量FPは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部201においてブレーキ姿勢制御量として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
エンジン姿勢制御部101は、運転者に違和感を与えないためにエンジン姿勢制御量に応じたエンジントルク制御量を制限する制限値が設定されている。これにより、エンジントルク制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、FBやFPに基づいてエンジン姿勢制御量(エンジントルク制御量)を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なバウンスレイトやピッチレイトのスカイフック制御量としてエンジン姿勢制御量を出力する。エンジン制御部102では、制限値に対応するエンジン姿勢制御量に基づいてエンジントルク制御量が演算され、エンジン1に対して出力する。
スカイフック制御部201には、エンジン1と同様に運転者に違和感を与えないために制動トルク制御量を制限する制限値が設定されている(尚、制限値の詳細については後述する。)。これにより、制動トルク制御量を前後加速度に換算したときに所定前後加速度範囲内(乗員の違和感、アクチュエータの寿命等から求まる制限値)となるように制限している。よって、FPに基づいてブレーキ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なピッチレイト抑制量(以下、ブレーキ姿勢制御量と記載する。)をブレーキ制御部202に出力する。ブレーキ制御部202では、制限値に対応するブレーキ姿勢制御量に基づいて制動トルク制御量(もしくは減速度)が演算され、ブレーキ20に対して出力される。
〔ブレーキピッチ制御〕
ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図8は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。
BFf+BFr=m・a
m・a・Hcg=Mp
Mp=(BFf+BFr)・Hcg
ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
Vp>0(前輪沈み込み)のとき Mp=0
Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。
以上の関係に基づいて、ブレーキ姿勢制御量演算部334内は、以下の制御ブロックから構成される。不感帯処理符号判定部3341では、入力されたピッチレイトVpの符号を判定し、正のときは制御不要であるため減速感低減処理部3342に0を出力し、負のときは制御可能と判断して減速感低減処理部3342にピッチレイト信号を出力する。
〔減速感低減処理〕
次に、減速感低減処理について説明する。この処理は、ブレーキ姿勢制御量演算部334内で行なわれる上記制限値による制限に対応する処理である。2乗処理部3342aでは、ピッチレイト信号を2乗処理する。これにより符号を反転させると共に、制御力の立ち上がりを滑らかにする。ピッチレイト2乗減衰モーメント演算部3342bでは、2乗処理されたピッチレイトに2乗処理を考慮したピッチ項のスカイフックゲインCskyPを乗算してピッチモーメントMpを演算する。目標減速度算出部3342cでは、ピッチモーメントMpを質量m及び車両重心点と路面との間の高さHcgにより除算して目標減速度を演算する。
ジャーク閾値制限部3342dでは、算出された目標減速度の変化率、すなわちジャークが予め設定された減速ジャーク閾値と抜きジャーク閾値の範囲内であるか否か、及び目標減速度が前後加速度制限値の範囲内であるか否かを判断し、いずれかの閾値を越える場合は、目標減速度をジャーク閾値の範囲内となる値に補正し、また、目標減速度が制限値を超える場合は、制限値内に設定する。これにより、運転者に違和感を与えないように減速度を発生させることができる。
目標ピッチモーメント変換部3343では、ジャーク閾値制限部3342dにおいて制限された目標減速度に質量mと高さHcgとを乗算して目標ピッチモーメントを算出し、ブレーキ制御部2aに対して出力する。
〔周波数感応制御部〕
次に、ばね上制振制御部内における周波数感応制御処理について説明する。実施例1では、基本的に車輪速センサ5の検出値に基づいてばね上速度を推定し、それに基づくスカイフック制御を行うことでばね上制振制御を達成する。しかしながら、車輪速センサ5では十分に推定精度が担保出来ないと考えられる場合や、走行状況や運転者の意図によっては積極的に快適な走行状態(車体フラット感よりも柔らかな乗り心地)を担保したい場合もある。このような場合には、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があることから、振動特性のスカラー量に応じたばね上制振制御である周波数感応制御を導入することとした。
図9は車輪速センサにより検出された車輪速周波数特性と、実施例では搭載していないストロークセンサのストローク周波数特性とを同時に書き表した図である。ここで、周波数特性とは、周波数に対する振幅の大きさをスカラー量として縦軸に取った特性である。車輪速センサ5の周波数成分とストロークセンサの周波数成分とを見比べると、ばね上共振周波数成分からばね下共振周波数成分にかけて概ね同じようなスカラー量を取ることが理解できる。そこで、車輪速センサ5の検出値のうち、この周波数特性に基づいて減衰力を設定することとした。ここで、ばね上共振周波数成分が存在する領域を、乗員の体全体が振れることで乗員が空中に放り投げらたような感覚、更に言い換えると、乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域としてフワ領域(0.5〜3Hz)とし、ばね上共振周波数成分とばね下共振周波数成分との間の領域を、重力加速度が減少するような感覚ではないが、乗馬で速足(trot)を行う際に人体が小刻みに跳ね上がるような感覚、更に言い換えると、体全体が追従可能な上下動をもたらす周波数領域としてヒョコ領域(3〜6Hz)とし、ばね下共振周波数成分が存在する領域を、人体の質量が追従するまでの上下動ではないが、乗員の太ももといった体の一部に対して小刻みな振動が伝達されるような周波数領域としてブル領域(6〜23Hz)と定義する。
図10は実施例1のばね上制振制御における周波数感応制御を表す制御ブロック図である。バンドエリミネーションフィルタ350では、車輪速センサ値のうち、本制御に使用する振動成分以外のノイズをカットする。所定周波数領域分割部351では、フワ領域、ヒョコ領域及びブル領域のそれぞれの周波数帯に分割する。ヒルベルト変換処理部352では、分割された各周波数帯をヒルベルト変換し、周波数の振幅に基づくスカラー量(具体的には、振幅と周波数帯により算出される面積)に変換する。
車両振動系重み設定部353では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が実際に車両に伝播される重みを設定する。人間感覚重み設定部354では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が乗員に伝播される重みを設定する。
ここで、人間感覚重みの設定について説明する。図11は周波数に対する人間感覚特性を表す相関図である。図11に示すように、低周波数領域であるフワ領域にあっては、比較的周波数に対して乗員の感度が低く、高周波数領域に移行するに従って徐々に感度が増大していく。尚、ブル領域以上の高周波領域は乗員に伝達されにくくなっていく。以上から、フワ領域の人間感覚重みWfを0.17に設定し、ヒョコ領域の人間感覚重みWhをWfより大きな0.34に設定し、ブル領域の人間感覚重みWbをWf及びWhより更に大きな0.38に設定する。これにより、各周波数帯のスカラー量と実際に乗員に伝播される振動との相関をより高めることができる。尚、これら二つの重み係数は、車両コンセプトや、乗員の好みにより適宜変更してもよい。
重み決定手段355では、各周波数帯の重みのうち、それぞれの周波数帯の重みが占める割合を算出する。フワ領域の重みをa、ヒョコ領域の重みをb、ブル領域の重みをcとすると、フワ領域の重み係数は(a/(a+b+c))であり、ヒョコ領域の重み係数は(b/(a+b+c))であり、ブル領域の重み係数は(c/(a+b+c))である。
スカラー量演算部356では、ヒルベルト変換処理部352により算出された各周波数帯のスカラー量に重み決定手段355において算出された重みを乗算し、最終的なスカラー量を出力する。ここまでの処理は、各輪の車輪速センサ値に対して行なわれる。
最大値選択部357では、4輪においてそれぞれ演算された最終的なスカラー量のうち最大値を選択する。尚、下部における0.01は、後の処理において最大値の合計を分母とすることから、分母が0になることを回避するために設定したものである。比率演算部358では、各周波数帯のスカラー量最大値の合計を分母とし、フワ領域に相当する周波数帯のスカラー量最大値を分子として比率を演算する。言い換えると、全振動成分に含まれるフワ領域の混入比率(以下、単に比率と記載する。)を演算するものである。ばね上共振フィルタ359では、算出された比率に対してばね上共振周波数の1.2Hz程度のフィルタ処理を行い、算出された比率からフワ領域を表すばね上共振周波数帯の成分を抽出する。言い換えると、フワ領域は1.2Hz程度に存在することから、この領域の比率も1.2Hz程度で変化すると考えられるからである。そして、最終的に抽出された比率を減衰力制御部35に対して出力し、比率に応じた周波数感応減衰力制御量を出力する。
図12は実施例1の周波数感応制御によるフワ領域の振動混入比率と減衰力との関係を表す特性図である。図12に示すように、フワ領域の比率が大きいときには減衰力を高く設定することで、ばね上共振の振動レベルを低減する。このとき、減衰力を高く設定しても、ヒョコ領域やブル領域の比率は小さいため、乗員に高周波振動やヒョコヒョコと動くような振動を伝達することはない。一方、フワ領域の比率が小さいときには減衰力を低く設定することで、ばね上共振以上の振動伝達特性が減少し、高周波振動が抑制され、滑らかな乗り心地が得られる。
ここで、周波数感応制御とスカイフック制御とを対比した場合における周波数感応制御の利点について説明する。図13はある走行条件において車輪速センサ5により検出された車輪速周波数特性を表した図である。これは、特に石畳のような小さな凹凸が連続するような路面を走行した場合に表れる特性である。このような特性を示す路面を走行中にスカイフック制御を行うと、スカイフック制御では振幅のピークの値で減衰力を決定するため、仮に高周波振動の入力に対して位相の推定が悪化すると、誤ったタイミングで非常に高い減衰力を設定してしまい、高周波振動が悪化するという問題がある。
これに対し、周波数感応制御のようにベクトルではなくスカラー量に基づいて制御する場合、図13に示すような路面にあってはフワ領域の比率が小さいことから低い減衰力が設定されることになる。これにより、ブル領域の振動の振幅が大きい場合であっても十分に振動伝達特性が減少するため、高周波振動の悪化を回避することができるものである。以上から、例え高価なセンサ等を備えてスカイフック制御を行ったとしても位相推定精度が悪化することで制御が困難な領域では、スカラー量に基づく周波数感応制御によって高周波振動を抑制できるものである。
(S/A側ドライバ入力制御部について)
ここで、S/A側ドライバ入力制御によって行われるロール抑制制御について説明する。図14は実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。横加速度推定部31b1では、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車速センサ8により検出された車速VSPに基づいて横加速度Ygを推定する。この横加速度Ygは、ヨーレイト推定値γを用いて以下の式により算出される。
Yg=VSP・γ
なおヨーレイト推定値γは以下の式により算出される。
Figure 0005811277
90°位相進み成分作成部31b2では、推定された横加速度Ygを微分して横加速度微分値dYgを出力する。90°位相遅れ成分作成部31b3では、横加速度微分値dYgの位相を90°遅らせた成分F(dYg)を出力する。成分F(dYg)は、90°位相進み成分作成部31b2において低周波領域が除去された成分の位相を横加速度Ygの位相に戻したものであって、横加速度YgのDCカット成分、つまり横加速度Ygの過渡成分である。90°位相遅れ成分作成部31b4では、推定された横加速度Ygの位相を90°遅らせた成分F(Yg)を出力する。
ゲイン乗算部31b5では、横加速度Yg、横加速度微分値dYg、横加速度DCカット成分F(dYg)、90°位相遅れ成分F(Yg)にそれぞれゲインを乗算する。各ゲインは、操舵角に対するロールレイト伝達関数に基づいて設定する。また各ゲインは、後述する4つの制御モードに応じて調整しても良い。二乗演算部31b6では、ゲインを乗算した各成分の二乗して出力する。合成部31b7では、二乗演算部31b6が出力した値を足し合わせる。ゲイン乗算部31b8では、足し合わせた各成分の二乗の値にゲインを乗算して出力する。平方根演算部31b9は、ゲイン乗算部31b7が出力した値の平方根を演算することで、ロールレイト抑制制御用のドライバ入力姿勢制御量を演算し、減衰力制御部35に対して出力する。
90°位相進み成分作成部31b2、90°位相遅れ成分作成部31b3、90°位相遅れ成分作成部31b4、ゲイン乗算部31b5、二乗演算部31b6、合成部31b7、ゲイン乗算部31b8、平方根演算部31b9は、ヒルベルト変換を利用した包絡波形を生成するヒルベルト変換部31b10に相当する。
図15は実施例1のロールレイト抑制制御の包絡波形形成処理を表すタイムチャートである。
時刻t1において、運転者が操舵を開始すると、ロールレイトが徐々に発生し始める。このとき、90°位相進み成分dYgを加算して包絡波形を形成し、包絡波形に基づくスカラー量に基づいてドライバ入力姿勢制御量を演算することで、操舵初期におけるロールレイトの発生を抑制することができる。さらに、横加速度DCカット成分F(dYg)を加算して包絡波形を形成することで、運転者が操舵を開始もしくは終了する際の過渡的な状態において発生するロールレイトを効率的に抑制することができる。言い換えると、ロールの発生が安定している定常旋回状態では、過度に減衰力を高めることがなく、乗り心地の悪化を回避できる。
次に、時刻t2において、運転者が保舵状態となると、90°位相進み成分dYgおよび横加速度DCカット成分F(dYg)は無くなり、今度は90°位相遅れ成分F(Yg)が加算される。このとき、定常旋回状態でロールレイト自体の変化はさほどない場合であっても、一旦ロールした後に、ロールの揺り返しに相当するロールレイト共振成分が発生する。仮に、位相遅れ成分F(Yg)が加算されていないと、時刻t2から時刻t3における減衰力は小さな値に設定されてしまい、ロールレイト共振成分による車両挙動の不安定化を招くおそれがある。このロールレイト共振成分を抑制するために90°位相遅れ成分F(Yg)を付与するものである。
時刻t3において、運転者が保舵状態から直進走行状態に移行すると、横加速度Ygは小さくなり、ロールレイトも小さな値に収束する。ここでも90°位相遅れ成分F(Yg)の作用によってしっかりと減衰力を確保しているため、ロールレイト共振成分による不安定化を回避することができる。
(ばね下制振制御部)
次に、ばね下制振制御部の構成について説明する。図7(a)のコンベ車両において説明したように、タイヤも弾性係数と減衰係数を有することから共振周波数帯が存在する。ただし、タイヤの質量はばね上の質量に比べて小さく、弾性係数も高いため、ばね上共振よりも高周波数側に存在する。このばね下共振成分により、ばね下においてタイヤがバタバタ動いてしまい、接地性が悪化するおそれがある。また、ばね下でのバタつきは乗員に不快感を与えるおそれもある。そこで、ばね下共振によるバタつきを抑制するために、ばね下共振成分に応じた減衰力を設定するものである。
図16は実施例1のばね下制振制御の制御構成を表すブロック図である。ばね下共振成分抽出部341では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出する。ばね下共振成分は車輪速周波数成分のうち概ね10〜20Hzの領域から抽出される。包絡波形成形部342では、抽出されたばね下共振成分をスカラー化し、EnvelopeFilterを用いて包絡波形を成形する。ゲイン乗算部343では、スカラー化されたばね下共振成分にゲインを乗算し、ばね下制振減衰力制御量を算出し、減衰力制御部35に対して出力する。尚、実施例1では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出することとしたが、車輪速センサ検出値にバンドパスフィルタを作用させてばね下共振成分を抽出する、もしくは、走行状態推定部32において、ばね上速度に併せてばね下速度を推定演算し、ばね下共振成分を抽出するようにしてもよい。
(減衰力制御部の構成について)
次に、減衰力制御部35の構成について説明する。図17は実施例1の減衰力制御部の制御構成を表す制御ブロック図である。等価粘性減衰係数変換部35aでは、ドライバ入力制御部31から出力されたドライバ入力減衰力制御量と、スカイフック制御部33aから出力されたS/A姿勢制御量と、周波数感応制御部33bから出力された周波数感応減衰力制御量と、ばね下制振制御部34から出力されたばね下制振減衰力制御量と、走行状態推定部32により演算されたストローク速度が入力され、これらの値を等価粘性減衰係数に変換する。
減衰係数調停部35bでは、等価粘性減衰係数変換部35aにおいて変換された減衰係数(以下、それぞれの減衰係数をドライバ入力減衰係数k1、S/A姿勢減衰係数k2、周波数感応減衰係数k3、ばね下制振減衰係数k4と記載する。)のうち、どの減衰係数に基づいて制御するのかを調停し、最終的な減衰係数を出力する。制御信号変換部35cでは、減衰係数調停部35bで調停された減衰係数とストローク速度に基づいてS/A3に対する制御信号(指令電流値)に変換し、S/A3に対して出力する。
〔減衰係数調停部〕
次に、減衰係数調停部35bの調停内容について説明する。実施例1の車両の制御装置にあっては、4つの制御モードを有する。第1に一般的な市街地などを走行しつつ適度な旋回状態が得られる状態を想定したスタンダードモード、第2にワインディングロードなどを積極的に走行しつつ安定した旋回状態が得られる状態を想定したスポーツモード、第3に低車速発進時など、乗り心地を優先して走行する状態を想定したコンフォートモード、第4に直線状態の多い高速道路等を高車速で走行する状態を想定したハイウェイモードである。
スタンダードモードでは、スカイフック制御部33aによるスカイフック制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
スポーツモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御とばね下制振制御部34によるばね下制振制御とを実施する。
コンフォートモードでは、周波数感応制御部33bによる周波数感応制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
ハイウェイモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御にばね下制振制御部34によるばね下制振制御の制御量を加算する制御を実施する。
以下、これら各モードにおける減衰係数の調停について説明する。
(スタンダードモードにおける調停)
図18は実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。
ステップS1では、S/A姿勢減衰係数k2がばね下制振減衰係数k4より大きいか否かを判断し、大きいときはステップS4に進んで減衰係数としてk2を設定する。
ステップS2では、周波数感応制御部33bにおいて説明したフワ領域、ヒョコ領域及びブル領域のスカラー量に基づいて、ブル領域のスカラー量比率を演算する。
ステップS3では、ブル領域の比率が所定値以上か否かを判断し、所定値以上の場合は高周波振動による乗り心地悪化が懸念されることからステップS4に進み、減衰係数として低い値であるk2を設定する。一方、ブル領域の比率が上記所定値未満の場合は減衰係数を高く設定しても高周波振動による乗り心地悪化の心配が少ないことからステップS5に進んでk4を設定する。
上述のように、スタンダードモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ばね下制振制御が要求する減衰力よりスカイフック制御が要求する減衰力が低く、かつ、ブル領域の比率が大きいときには、スカイフック制御の減衰力を設定し、ばね下制振制御の要求を満たすことに伴う高周波振動特性の悪化を回避する。これにより、走行状態に応じて最適な減衰特性を得ることができ、車体のフラット感を達成しつつ、高周波振動に対する乗り心地悪化を同時に回避できる。
(スポーツモードにおける調停)
図19は実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。
ステップS11では、ドライバ入力制御により設定された4輪のドライバ入力減衰係数k1に基づいて4輪減衰力配分率を演算する。右前輪のドライバ入力減衰係数をk1fr、左前輪のドライバ入力減衰係数をk1fl、右後輪のドライバ入力減衰係数をk1rr、左後輪のドライバ入力減衰係数をk1rl、各輪の減衰力配分率をxfr、xfl、xrr、xrlとすると、
xfr=k1fr/(k1fr+k1fl+k1rr+k1rl)
xfl=k1fl/(k1fr+k1fl+k1rr+k1rl)
xrr=k1rr/(k1fr+k1fl+k1rr+k1rl)
xrl=k1rl/(k1fr+k1fl+k1rr+k1rl)
により算出される。
ステップS12では、減衰力配分率xが所定範囲内(αより大きくβより小さい)か否かを判断し、所定範囲内の場合は各輪に対する配分はほぼ均等であると判断してステップS13に進み、いずれか1つでも所定範囲外の場合はステップS16に進む。
ステップS13では、ばね下制振減衰係数k4がドライバ入力減衰係数k1より大きいか否かを判断し、大きいと判断した場合はステップS15に進み、第1減衰係数kとしてk4を設定する。一方、ばね下制振減衰係数k4がドライバ入力減衰係数k1以下であると判断した場合はステップS14に進み、第1減衰係数kとしてk1を設定する。
ステップS16では、ばね下制振減衰係数k4がS/A3の設定可能な最大値maxか否かを判断し、最大値maxと判断した場合はステップS17に進み、それ以外の場合はステップS18に進む。
ステップS17では、4輪のドライバ入力減衰係数k1の最大値がばね下制振減衰係数k4となり、かつ、減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、減衰力配分率を満たしつつ減衰係数が最も高くなる値を演算する。
ステップS18では、4輪のドライバ入力減衰係数k1がいずれもk4以上となる範囲で減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、ドライバ入力制御によって設定される減衰力配分率を満たし、かつ、ばね下制振制御側の要求をも満たす値を演算する。
ステップS19では、上記各ステップにより設定された第1減衰係数kがスカイフック制御により設定されるS/A姿勢減衰係数k2より小さいか否かを判断し、小さいと判断された場合はスカイフック制御側の要求する減衰係数のほうが大きいためステップS20に進んでk2を設定する。一方、kがk2以上であると判断された場合はステップS21に進んでkを設定する。
上述のように、スポーツモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ドライバ入力制御側から要求される減衰力配分率は、車体姿勢と密接に関連し、特にロールモードによるドライバの視線変化との関連も深いことから、ドライバ入力制御側から要求された減衰係数そのものではなく、減衰力配分率の確保を最優先事項とする。また、減衰力配分率が保たれた状態で車体姿勢に姿勢変化をもたらす動きについてはスカイフック制御をセレクトハイで選択することで、安定した車体姿勢を維持することができる。
(コンフォードモードにおける調停)
図20は実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。
ステップS30では、周波数感応減衰係数k3がばね下制振減衰係数k4より大きいか否かを判断し、大きいと判断した場合はステップS32に進んで周波数感応減衰係数k3を設定する。一方、周波数感応減衰係数k3がばね下制振減衰係数k4以下であると判断した場合はステップS32に進んでばね下制振減衰係数k4を設定する。
上述のように、コンフォートモードでは、基本的にばね下の共振を抑制するばね下共振制御を優先する。もともとばね上制振制御として周波数感応制御を行い、これにより路面状況に応じた最適な減衰係数を設定しているため、乗り心地を確保した制御を達成でき、ばね下がばたつくことによる接地感不足をばね下制振制御で回避することができる。尚、コンフォートモードにおいても、スタンダードモードと同様に、周波数スカラー量のブル比率に応じて減衰係数を切り替えるように構成してもよい。これにより、スーパーコンフォートモードとして更に乗り心地を確保することができる。
(ハイウェイモードにおける調停)
図21は実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。尚、ステップS11からS18までは、スポーツモードにおける調停処理と同じであるため、説明を省略する。
ステップS40では、ステップS18までで調停された第1減衰係数kにスカイフック制御によるS/A姿勢減衰係数k2を加算して出力する。
上述のように、ハイウェイモードでは、調停された第1減衰係数kにS/A姿勢減衰係数k2を加算した値を用いて減衰係数を調停する。ここで、図を用いて作用を説明する。図22はうねり路面及び凹凸路面を走行する際の減衰係数変化を表すタイムチャートである。例えば高車速走行時にわずかな路面のうねり等の影響で車体がゆらゆらと動くような動きを抑制しようとした場合、スカイフック制御のみで達成しようとすると、僅かな車輪速変動を検知する必要があることから、スカイフック制御ゲインをかなり高く設定する必要がある。この場合、ゆらゆらと動くような動きを抑制することはできるが、路面の凹凸などが発生した場合、制御ゲインが大き過ぎて過剰な減衰力制御を行うおそれがある。これにより、乗り心地の悪化や車体姿勢の悪化が懸念される。
これに対し、ハイウェイモードのように第1減衰係数kを常時設定しているため、ある程度の減衰力は常時確保されることになり、スカイフック制御による減衰係数が小さくても車体がゆらゆらと動くような動きを抑制できる。また、スカイフック制御ゲインを上昇させる必要がないため、路面凹凸に対しても通常の制御ゲインにより適切に対処できる。加えて、第1減衰係数kが設定された状態でスカイフック制御が行われるため、セミアクティブ制御領域内において、減衰係数制限とは異なり、減衰係数の減少工程の動作が可能となり、高速走行時において安定した車両姿勢を確保することができる。
(モード選択処理)
次に、上記各走行モードを選択するモード選択処理について説明する。図23は実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。
ステップS50では、舵角センサ7の値に基づいて直進走行状態か否かを判断し、直進走行状態と判断された場合にはステップS51に進み、旋回状態と判断された場合にはステップS54に進む。
ステップS51では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS52に進んでスタンダードモードを選択する。一方、VSP1未満と判断された場合にはステップS53に進んでコンフォートモードを選択する。
ステップS54では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS55に進んでハイウェイモードを選択する。一方、VSP1未満と判断された場合にはステップS56に進んでスポーツモードを選択する。
すなわち、直進走行状態において、高車速走行する場合にはスタンダードモードを選択することで、スカイフック制御による車体姿勢の安定化を図り、かつ、ヒョコやブルといった高周波振動を抑制することで乗り心地を確保し、更に、ばね下の共振を抑制することができる。また、低車速走行する場合にはコンフォートモードを選択することで、ヒョコやブルといった振動の乗員への入力を極力抑えながら、ばね下の共振を抑制することができる。
一方、旋回走行状態において、高車速走行する場合にはハイウェイモードを選択することで、減衰係数を加算した値によって制御されるため、基本的に高い減衰力が得られる。これにより、高車速であってもドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、ばね下共振を抑制することができる。また、低車速走行する場合にはスポーツモードを選択することで、ドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、スカイフック制御が適宜行われながら、ばね下共振を抑制することができ、安定した車両姿勢で走行できる。
尚、モード選択処理については、実施例1では走行状態を検知して自動的に切り替える制御例を示したが、例えば運転者が操作可能な切換スイッチ等を設け、これにより走行モードを選択するように制御してもよい。これにより、運転者の走行意図に応じた乗り心地や旋回性能が得られる。
〔推定確度低下について〕
次に、推定確度の低下について説明する。上述したように、実施例1では、各走行状態推定部100,200,32において、車輪速センサ5により検出された車輪速に基づいて、ばね上制振制御部101a,33もしくはスカイフック制御部201のスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを推定している。しかしながら、車輪速からストローク速度やばね上状態を推定する際、種々の要因によって推定精度が低下する場面が想定される。例えば、低μ路を走行する場合、スリップが発生しやすく、このスリップに伴う車輪速変動が路面凹凸によるものなのか否かを判別しにくい。また、低μ路の場合は路面凹凸やばね上状態の変化による車輪速変動量が小さくなる傾向にあり、他のノイズ等との判別が困難となる。また、制駆動トルクの変動は、車輪速変動をもたらすため、この変動とばね上状態やストローク速度との判別が困難となる。また、タイヤの摩擦円限界のように非線形領域におけるヨーレイトや横加速度によっても車輪速変動が生じ、他のノイズ等との判別が困難となる。推定確度が低下すると、例えば減衰力として高くすべきところを低く設定してしまう場合があり、ばね上状態を安定させることが困難となる。
一方、これら推定確度の低下は、単に精度が問題になるだけであり、センサの故障やアクチュエータの故障といった異常ではないため、可能な範囲で制御を継続することが望ましいとも言える。そこで、実施例1では、推定確度が低下する場合を検知する推定確度低下検知部4aを設け、推定確度が低下した場合に、少なくとも車体制振制御を行わない一般車両と同等以上の性能を確保しつつ、可能な限り制御を継続することで推定確度の低下に伴うばね上挙動の安定化を図ることとした。
(推定確度低下検知処理)
図24は実施例1の推定確度低下検知処理を表す制御ブロック図である。推定確度低下検知部4a内では、各種信号に基づいて複数の確度低下検知処理を実行し、信号受信部400において、それぞれの処理の何れか一つでも確度低下を検知した場合には、確度低下ホールド部401に確度低下信号を出力する。確度低下ホールド部401では、確度低下信号を受信している間及び確度低下信号が途切れたとしても予め設定された所定時間(実施例1の場合は1秒間)、継続的に確度低下フラグをオンとする。これにより、確度低下フラグの頻繁な切り替わりを抑制しつつ、誤った状態推定値に基づく制御状態を回避している。以下、それぞれの確度低下検知処理を順に説明する。
(ABS,VDC,TCSフラグによる検知)
実施例1の車両にあっては、制動時に各輪のスリップ状態を検出し、スリップ率が所定値以下となるように増減圧制御を行うアンチスキッドブレーキ制御部(以下、ABS制御部と記載する。)と、車両の旋回状態(例えばヨーレイト)が目標旋回状態となるように所定輪のブレーキ液圧を制御する車両挙動制御部(以下、VDC制御部と記載する。)と、車両発進時等の駆動スリップを抑制するためにブレーキの増圧制御やエンジントルクダウン制御を行うトラクション制御部(以下、TCS制御部と記載する。)と、を有する。
これら各制御部が作動した場合、各輪の車輪速変動に影響を与えることから、推定確度が低下するおそれがある。よって、これら制御が作動したことを表すABSフラグ、VDCフラグもしくはTCSフラグがオンとなった場合には、ブレーキ制御フラグホールド部410にフラグオン信号を出力する。ブレーキ制御フラグホールド部410では、フラグオン信号を受信している間、推定確度低下信号を出力する。また、フラグオン信号の立下りから予め設定された所定時間(実施例1の場合は5秒間)、確度低下信号を継続的に出力する。これにより、ブレーキ制御フラグがオン・オフを繰り返したような場合でも、安定して推定確度低下信号を出力できる。
(基準車体速に基づく検知)
次に、基準車体速に基づく検知について説明する。実施例1では、第1〜第3走行状態推定部100,200,32において、車輪速のデータからストローク速度を推定するにあたり、S/A3のストロークに伴って変動する成分を検出するために基準車輪速を算出している。基準車輪速と車輪速センサ値との差分をストロークに伴う変動成分として抽出するためである。この基準車輪速は、スリップ等が発生していない条件下ではストローク速度推定等の精度を確保できるが、スリップが発生すると、ストロークに伴う変動なのか、スリップに伴う車輪速変動なのかの判別が困難となる。尚、ストローク速度成分やばね上速度成分等が含まれる周波数領域では、ノイズ等との区別ができないため、その信号の確度を検証することはできない。そこで、基準車輪速にストローク速度やばね上速度等によって生じる振動周波数よりも低周波数側のローパスフィルタ(実施例1では0.5Hz)を作用させ、このローパスフィルタ作用後の基準車輪速が車輪間においてばらつく場合には、スリップによって車輪速が変動し、推定確度が低下していることを検知することとした。
基準車輪速推定部420では、図6の基準車輪速演算部において説明したように、車体プランビューモデルに基づいて各輪の基準車輪速となる第1車輪速V0を演算する。ここで、車輪速センサ5により検出された車輪速センサ値をω(rad/s)、舵角センサ7により検出された前輪実舵角をδf(rad)、後輪実舵角をδr(rad)、車体横速度をVx、一体型センサ6により検出されたヨーレイトをγ(rad/s)、算出される基準車輪速ω0から推定される車体速をV(m/s)、算出すべき基準車輪速をVFL、VFR、VRL、VRR、前輪のトレッドをTf、後輪のトレッドをTr、車両重心位置から前輪までの距離をLf、車両重心位置から後輪までの距離をLrとする。以上を用いて、車体プランビューモデルは以下のように表される。
(式1)
VFL=(V−Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V−Tr/2・γ)cosδr+(Vx−Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx−Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL−Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR−Lf・γsinδf}/cosδf−Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr−Tr/2・γ
この関係式に基づいて各輪の基準車輪速を演算する。
次に、ローパスフィルタ421では、演算された各輪の基準車輪速V0FL,FR.RL,RRにストローク速度やばね上速度の含まれる周波数領域よりも低周波数側の領域である0.5Hzのフィルタリングを行い、定常成分を抽出する。そして、差分判定部422では、それぞれ以下の値を算出する。
・ロール成分(左右差)
df1=VOFL−VOFR
df2=VORL−VORR
・ピッチ成分(前後差)
df3=VOFL−VORL
df4=VOFR−VORR
・ワープ成分(対角差)
df5=VOFL−VORR
df6=VOFR−VORL
基本的に、ローパスフィルタ421通過後の値を用いてこれら差分を算出した場合、スリップ等が生じていなければ、各輪の基準車輪速は全て等しいため差分も0もしくは極めて小さい値となる。しかしながら、スリップが生じると、定常成分に変化が生じるため、これらローパスフィルタ421通過後の値の差分df1〜df5のいずれかが、予め設定された所定値dfthi以上の場合には、基準車輪速ホールド部423に対して推定確度低下信号を出力する。また、この判断のハンチングを防止するため、所定値dfthiに0.8を掛けた値以下となった場合に推定確度低下信号の出力を停止する。基準車輪速ホールド部423では、推定確度低下信号を受信している間及び受信終了から所定時間(実施例1の場合は2秒間)経過するまでの間、確度低下信号を継続的に出力する。これにより、差分判定部422が推定確度低下信号のオン・オフを繰り返したような場合でも、安定して推定確度低下信号を出力できる。
(プランビューモデルに基づく検知)
次に、プランビューモデルに基づく検知について説明する。図14において説明したように、ドライバ入力制御においてロールレイト抑制制御を行う際、プランビューモデルを設定して横加速度Ygを推定している。
Yg=(VSP2/(1+A・VSP2))・δf
ここで、Aは所定値である。この関係に基づいて推定された横加速度Ygからロールレイトを推定している。このとき、スリップ等の発生によりストローク速度の推定確度が低下する状況では、上記横加速度の推定値も実際の値から乖離する。そこで、推定された横加速度にストローク速度やばね上速度等によって生じる振動周波数よりも低周波数側のローパスフィルタ(実施例1では0.5Hz)を作用させ、このローパスフィルタ作用後の横加速度が横加速度センサにより検出された実横加速度と乖離する場合には、スリップによって車輪速が変動し、推定確度が低下していることを検知することとした。
車両運動状態推定部430では、車速センサ8により検出された車速VSP及び舵角センサ7により検出された操舵角が読み込まれ、プランビューモデルに基づいて横加速度を推定する。同様に、プランビューモデルに基づいてヨーレイトを推定する。ヨーレイトの推定については、例えばヨーレイトをγとすると、Yg=VSP・γの関係があることから算出してもよいし、(式1),(式2)の関係に基づいて推定してもよい。
次に、ローパスフィルタ431では、推定された推定横加速度及び推定ヨーレイトと、一体型センサ6により検出されたセンサ値とを、ストローク速度やばね上速度の含まれる周波数領域よりも低周波数側の領域である0.5Hzのローパスフィルタでフィルタリングし、定常成分を抽出する。そして、差分判定部432では、それぞれ推定値とセンサ値との差分を算出する。
dfyrss=推定ヨーレイト−実ヨーレイト
dflgss=推定横加速度−実横加速度
基本的に、ローパスフィルタ431通過後の値を用いてこれら差分dfyrss,dflgssを算出した場合、スリップ等が生じていなければ、推定値とセンサ値とは概ね等しいため差分も0もしくは極めて小さい値となる。しかしながら、スリップが生じると、定常成分に変化が生じるため、これらローパスフィルタ431通過後の値の差分dfyrss,dflgssのいずれかが、予め設定された所定値dfthi以上の場合には、プランビューモデルホールド部433に対して推定確度低下信号を出力する。また、この判断のハンチングを防止するため、所定値dfthiに0.8を掛けた値以下となった場合に推定確度低下信号の出力を停止する。プランビューモデルホールド部433では、推定確度低下信号を受信している間及び受信終了から所定時間(実施例1の場合は2秒間)経過するまでの間、確度低下信号を継続的に出力する。これにより、差分判定部432が推定確度低下信号のオン・オフを繰り返したような場合でも、安定して推定確度低下信号を出力できる。
(シフト位置に基づく検知)
次に、シフト位置に基づく検知について説明する。例えば、リバースレンジが選択されている場合、車輪の回転方向は前進時と逆方向であり、車輪速変動に伴う変化も前進時とは異なる。また、パーキングレンジが選択されている場合、車両停止中であることから、ストローク速度を推定する必要が無く、また、推定自体が困難である。よって、シフト判定部440において、シフト信号がリバースレンジやパーキングレンジを示しているときは、確度低下信号を継続的にシフトホールド部441に出力する。シフトホールド部441では、シフト操作に伴うハンチングを防止する観点から推定確度低下信号の受信終了から所定時間(実施例1の場合は1秒間)経過するまでの間、確度低下信号を継続的に出力する。
(ブレーキスイッチに基づく検知)
次に、ブレーキスイッチに基づく検知について説明する。運転者がブレーキペダルを操作して制動力を発生させ、その後、ブレーキペダルの解放動作を行うと、この制動力解放時のトルク変動がインパルス入力となる。このインパルス入力によって前後振動が励起され車輪速が変動するため、ストローク速度やばね上状態の推定確度が低下する。そこで、制動力解放判定部450では、ブレーキスイッチがオンからオフに切り替わったか否かを判断し、切り替わったと判断した時にブレーキスイッチホールド部451に対して確度低下信号を出力する。ブレーキスイッチホールド部451では、ブレーキスイッチがオフに切り替わった時点から所定時間(実施例1の場合は1秒間)経過するまでの間、確度低下信号を継続的に出力する。
(ホイル端駆動トルクに基づく検知)
次に、ホイル端駆動トルクに基づく検知について説明する。急加速や変速による急激なトルク変動が生じると、駆動輪のトルク変化すなわちホイル端駆動トルク変化が生じ、車輪速を変動させる。よって、ホイル端駆動トルクを推定し、ホイル端駆動トルク変化が所定以上発生した場合には推定確度が低下したと判断することとした。尚、ホイル端駆動トルクの加速時における推定は、エンジン有効トルク、エンジン回転数、タービン回転数、自動変速機出力軸回転数、シフト位置といった情報に基づいて推定することができ、具体的には以下の式により表現できる。
Tw=Te・RTRQCVT・RAT・RFINAL・ηTOTAL
ここで、Twはホイル端駆動トルク、Teはエンジントルク、RTRQCVTはトルクコンバータトルク比、RATは自動変速機のギア比、RFINALはファイナルギヤ比、ηTOTALは駆動系効率である。
また、制動時にも同様にホイル端制動トルクが変動する。この場合は、制動力がホイルシリンダ圧(ABS等の制御が行われていない通常の制動時であれば実質的にマスタシリンダ圧)に比例することからマスタシリンダ圧にゲインを乗じて各輪制動力を推定するものである。
上述のようにホイル端駆動トルク(もしくはホイル端制動トルク)が推定されると、ローパスフィルタ460では、ホイル端駆動トルクをストローク速度やばね上速度の含まれる周波数領域よりも低周波数側の領域である0.5Hzのローパスフィルタでフィルタリングし、定常成分を抽出する。そして、擬似微分部461で微分によりホイル端駆動トルクの変化率が算出される。そして、変化率判定部462では、演算されたホイル端駆動トルク変化率が予め設定された所定値dfthi以上の場合には、ホイル端駆動トルクホールド部463に対して推定確度低下信号を出力する。また、この判断のハンチングを防止するため、所定値dfthiに0.8を掛けた値以下となった場合に推定確度低下信号の出力を停止する。ホイル端駆動トルクホールド部463では、推定確度低下信号を受信している間及び受信終了から所定時間(実施例1の場合は1秒間)経過するまでの間、確度低下信号を継続的に出力する。これにより、変化率判定部462が推定確度低下信号のオン・オフを繰り返したような場合でも、安定して推定確度低下信号を出力できる。
以上、各検知処理を行い、これらのいずれかが確度低下を検知した場合には、推定確度低下フラグがオンとされ、確度低下時に適切な制御処理が実行される。以下、推定確度低下時の制御処理について説明する。
〔推定確度低下時の制御について〕
推定確度低下検知時制御部5aは、推定確度低下フラグがオンされた場合、すなわち、ストローク速度の推定確度低下が検知された場合、エンジン制御部102に対し、エンジン姿勢制御量をゼロとして出力する。
また、推定確度低下時制御部5aは、推定確度低下フラグがオンされた場合、ブレーキ制御部202に対し、ブレーキ姿勢制御量をゼロとして出力する。
このとき、ブレーキ制御部202では、一定の遷移時間(例えば、1秒間)掛けてブレーキ姿勢制御量がゼロまで滑らかに低下するように、ブレーキ姿勢制御量を徐々に低下させる。
ばね上のピッチ速度を小さく抑えることを目的としたブレーキピッチ制御を急に停止すると、今まで小さく抑えられていたピッチ速度が突然大きくなり、ドライバに違和感を与えると共に、ピッチ挙動の増大及びタイヤの接地荷重抜けが発生して車両挙動が乱れるおそれがある。上述のように制動トルク制御量を徐々に低下させることで、ピッチ速度が突然大きくなるのを抑制できるため、ドライバに与える違和感を軽減できると共に、車両挙動の乱れを抑制できる。
上述のように、ストローク速度の推定確度低下が検知されている間は、エンジン1及びブレーキ20によるばね上制振制御を中止する。実施例1では、車輪速の所定周波数領域における変動からストローク速度を推定し、ストローク速度に応じてエンジン1及びブレーキ20を用いたばね上挙動制御を実施しているため、ストローク速度の推定確度が低下する状況下では、状態推定が困難となり、制御性の悪化によるばね上挙動の乱れが懸念される。特に、制駆動トルクを発生させる制御の場合、誤った制御によって運転者に違和感を与えやすい。よって、この場合はエンジン1及びブレーキ20によるばね上制振制御を中止することで、推定確度低下に伴う車体姿勢の乱れを抑制でき、安定した車体姿勢を維持できる。
推定確度低下検知時制御部5aは、推定確度低下フラグがオンされた場合、減衰力制御部35に対し、推定確度低下時の制御信号(指令電流値)を出力する。図25は、実施例1の推定確度低下検知時制御部5aの構成を表す制御ブロック図である。車速演算部501では、推定確度低下フラグと車速センサ8により検出された車速VSPと車速VSPの1サンプリング周期(1クロック)前の値とを入力する。車速演算部501は、推定確度低下フラグがオフされている場合、遅延素子502に対し、車速センサ8により検出された車速VSPを出力し、推定確度低下フラグがオンされた場合、当該フラグがオフされるまでの間、減衰係数設定部503に対し、1サンプリング周期前の車速、すなわち、ストローク速度の推定確度の低下が検知される直前の車速を出力する。遅延素子502は、1クロック分の信号を遅延させる。減衰係数設定部503は、ストローク速度の推定確度の低下が検知される直前の車速と、温度センサ14により検出された外気温度と、現在の制御モードとを入力し、推定確度低下時減衰係数k5を出力する。減衰係数k5の設定方法については後述する。減衰力制御量演算部504は、減衰係数k5と予め定められた仮想ストローク速度とに基づき、S/A3に対する制御信号を演算する。ここで、仮想ストローク速度は固定値であって、S/A3の減衰力がコンベンショナルなショックアブソーバの減衰力と同等になるようなストローク速度、例えば、0.1m/sとする。
図26は、実施例1の減衰係数設定部における推定確度低下時減衰係数の設定方法を表す説明図である。減衰係数k5は、基本的に、車速(ストローク速度の推定確度の低下が検知される直前の車速)に比例した値とし、同じ車速で前輪側Frの減衰係数が後輪側Rrの減衰係数よりも高くなるような特性とする。また、減衰係数k5は制御モードに応じた値とする。具体的には、スポーツモード及びハイウェイモードで最も高い値とし、コンフォートモードでは最も低い値とする。スタンダードモードでは、スポーツモード(ハイウェイモード)とコンフォートモードの中間値とする。尚、スポーツモード及びハイウェイモードの減衰係数k5は、乗員にヒョコ領域(3〜6Hz)の振動が伝達されない上限の減衰係数とする。
減衰係数設定部504は、コンフォートモードである場合には、所定範囲外(例えば、外気温度≦5℃又は外気温度≧30℃以上)にある場合の減衰係数を、外気温度が所定範囲(例えば、5℃<外気温度<30℃)にある場合の減衰係数よりも高い値(スタンダードモードと同じ減衰係数)とする。
上述のように、ストローク速度の推定確度低下が検知されている間は、制御モードに応じてS/A3の減衰力を固定減衰力とする車速感応制御とする。推定確度低下時は、センサ信号やアクチュエータ駆動に失陥は生じていないものの、状態推定が困難となるため、推定確度が低下していない通常時に対してより安定性を重視した制御が必要となるからである。車速感応制御では、推定確度低下が検知される直前の車速から固定減衰力を決めており、誤推定の可能性が高いストローク速度に依存しないため、ストローク速度に依存した不安定な制御状態からより安定的な制御状態への遷移により、操安乗り心地性能の低下及び挙動の不安定化を抑制できる。
車速感応制御では、推定確度低下が検出される直前の車速から減衰係数k5を設定し、減衰係数k5と所定の仮想ストローク速度(0.1m/s)とに基づいて固定減衰力を決めている。このとき、減衰係数k5は、推定確度低下が検出された直前の車速が高いほど高い値に設定するため、車速に合致した最適な減衰力が得られる。つまり、低車速域における乗り心地の確保と高車速域における操縦安定性の確保との両立を図ることができる。
また、減衰係数k5は、スポーツモード及びハイウェイモード、スタンダードモード、コンフォートモードの順に高い値としているため、制御モードに合致した固定減衰力を設定できる。つまり、スポーツモード及びハイウェイモードでは減衰力を大きくして操縦安定性を優先し、コンフォートモードでは減衰力を小さくして乗り心地を優先し、スタンダードモードでは減衰力を中間として操縦安定性と乗り心地との両立を図ることができる。また、いずれの制御モードにおいても、前輪の固定減衰力を後輪の固定減衰力よりも大きくするため、ノーズダイブを抑制してステア傾向をアンダーステア傾向にすることができ、旋回挙動の安定性を確保できる。
上述のように、コンフォートモードで走行中、ストローク速度の推定確度低下が検知され、かつ、外気温度が所定範囲外(外気温度≦5℃又は外気温度≧30℃以上)にある場合には、外気温度が所定範囲外(外気温度≦5℃又は外気温度≧30℃以上)にある場合よりも固定減衰力を大きくする。言い換えると、コンフォートモードでタイヤと路面との間の摩擦係数が低い状態での走行中に推定精度低下が検知された場合には、タイヤと路面との間の摩擦係数が高い状態での走行中よりも固定減衰力を大きくする。外気温度が所定範囲にある場合は路面μが高く、所定範囲外にある場合はタイヤのグリップ力が低下することでタイヤと路面との間の摩擦係数が低いと判定できるからである。
推定確度の低下によってノーズダイブが発生し、後輪のタイヤの接地荷重が減少する方向に変化した場合、タイヤのグリップ力の限界値が大きな(摩擦円が大きな)高μ路走行時は、旋回時にタイヤのグリップ力が限界値を超える可能性は低いが、タイヤのグリップ力の限界値が小さな(摩擦円が小さな)低μ路走行時は、旋回時にタイヤのグリップ力が限界値を超える可能性が高い。特に乗り心地を優先したコンフォートモードでは、他の3つの制御モードと比較して固定減衰力を最も低い値とするため、上記課題が顕著に表れる。よって、コンフォートモードで低μ路走行中にストローク速度の推定確度が低下した場合、リバースステアの誘発等、旋回挙動の安定性が低下するおそれがある。ここで、リバースステアとは、旋回中にステア傾向がアンダーステア傾向からオーバーステア傾向に変化することをいう。そこで、実施例1では、コンフォートモードでは、低μ路走行時の固定減衰力を高μ路走行時の固定減衰力よりも大きくする。これにより、後輪のタイヤの接地荷重が減少するのを抑制でき、ノーズダイブの発生が抑えられるため、ステア傾向がオーバーステア傾向となるのを抑制でき、旋回挙動の安定性を確保できる。
一方、スポーツモード、ハイウェイモード及びスタンダードモードでは、低μ状態での走行時の固定減衰力を高μ状態での走行時の固定減衰力と同じ値とする。上記3つの制御モードは、コンフォートモードよりも固定減衰力が大きいため、低μ路走行時であっても旋回時にタイヤのグリップ力が限界値を超える可能性が低いからである。また、スポーツモード及びハイウェイモードでは、固定減衰力を乗員にヒョコヒョコと動くような振動が伝達されない最大の固定減衰力としているため、乗り心地の悪化を抑制しつつ、操縦安定性の向上を図ることができる。
減衰力制御部35の制御信号変換部35cでは、推定確度低下検知時制御部5aから指令電流値(推定確度低下時指令電流値)が出力された場合、減衰係数調停部35bで調停された減衰係数とストローク速度に基づく指令電流値(通常時指令電流値)に代えて、推定確度低下時指令電流値をS/A3に対して出力する。このとき、所定の遷移時間掛けて現在の指令電流値から推定確度低下時指令電流値へと指令電流値が滑らかに遷移するように、指令電流値を徐々に変化させる。ここで、遷移時間は、少なくともばね上共振(1.2Hz)以下の周期(例えば0.5Hz)となる時間、例えば、1秒間とする。
S/A3の指令電流値を、ストローク速度に基づく通常時指令電流値から、車速に基づく推定確度低下時指令電流値に切り替える際、両指令電流値の差が大きい場合に、S/A3の減衰力が急変して車体姿勢が乱れるおそれがある。上述のように電流指令値を徐々に変化させて減衰力の変動幅を制限することで、推定確度低下時における車体姿勢の乱れを抑制できる。
以上説明したように、実施例1にあっては下記に列挙する作用効果を奏する。
(1)ばね上制振制御を行うアクチュエータであるエンジン1(車両の動力源)及びS/A3(減衰力可変ショックアブソーバ)と、車輪速を検出する車輪速センサ5(車輪速検出手段)と、車輪速センサ5により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定する第1走行状態推定部100、第3走行状態推定部32(ばね上状態推定手段)と、該推定されたばね上状態が目標ばね上状態となるように前記アクチュエータを制御するエンジンコントローラ1a及びS/Aコントローラ3a(アクチュエータ姿勢制御手段)と、第1走行状態推定部100、第3走行状態推定部32の推定確度の低下を検知する推定確度低下検知部4a(推定確度低下検知手段)と、推定確度低下検知部4aにより推定確度の低下が検知された場合は、エンジン1によるばね上制振制御を禁止しつつ、S/A3によるばね上制振制御を継続する推定確度低下検知時制御部5a(制限制御手段)と、を備えた。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時にエンジン1による制御を禁止することで誤った制御に伴うトルク変動を抑制することができ、S/A3による制御を継続することで車体姿勢の安定化を達成できる。すなわち、制駆動トルクのように車両の前後加速度に寄与するアクチュエータが、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な加減速が生じるおそれがある。これに対し、前後方向の制駆動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。
(2)ばね上制振制御を行うアクチュエータであるブレーキ20(摩擦ブレーキ)及びS/A3(減衰力可変ショックアブソーバ)と、車輪速を検出する車輪速センサ5(車輪速検出手段)と、車輪速センサ5により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定する第2走行状態推定部200、第3走行状態推定部32(ばね上状態推定手段)と、該推定されたばね上状態が目標ばね上状態となるように前記アクチュエータを制御するブレーキコントローラ2a及びS/Aコントローラ3a(アクチュエータ姿勢制御手段)と、第2走行状態推定部200、第3走行状態推定部32の推定確度の低下を検知する推定確度低下検知部4a(推定確度低下検知手段)と、推定確度低下検知部4aにより推定確度の低下が検知された場合は、ブレーキ20によるばね上制振制御を禁止しつつ、S/A3によるばね上制振制御を継続する推定確度低下検知時制御部5a(制限制御手段)と、を備えた。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時にブレーキ20による制御を禁止することで誤った制御に伴うトルク変動を抑制することができ、S/A3による制御を継続することで車体姿勢の安定化を達成できる。すなわち、制動トルクのように車両の前後加速度に寄与するアクチュエータが、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な減速が生じるおそれがある。これに対し、前後方向の制動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。
(3)ばね上制振制御を行うアクチュエータであるエンジン1、ブレーキ20及びS/A3と、車輪速を検出する車輪速センサ5と、車輪速センサ5により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定する第2走行状態推定部200、第3走行状態推定部32(ばね上状態推定手段)と、該推定されたばね上状態が目標ばね上状態となるように前記アクチュエータを制御するエンジンコントローラ1a,ブレーキコントローラ2a及びS/Aコントローラ3a(アクチュエータ姿勢制御手段)と、第1走行状態推定部100、第2走行状態推定部200、第3走行状態推定部32の推定確度の低下を検知する推定確度低下検知部4a(推定確度低下検知手段)と、推定確度低下検知部4aにより推定確度の低下が検知された場合は、エンジン1及びブレーキ20によるばね上制振制御を禁止しつつ、S/A3によるばね上制振制御を継続する推定確度低下検知時制御部5a(制限制御手段)と、を備えた。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時にエンジン1及びブレーキ20による制御を禁止することで誤った制御に伴うトルク変動を抑制することができ、S/A3による制御を継続することで車体姿勢の安定化を達成できる。すなわち、制駆動トルクのように車両の前後加速度に寄与するアクチュエータが、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な加減速が生じるおそれがある。これに対し、前後方向の制駆動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。
(4)S/Aコントローラ3aは、あるストローク速度に対して異なる減衰力制御範囲が設定されたハイウェイモード,スポーツモード,スタンダードモード及びコンフォートモード(複数の制御モード)を有し、推定確度低下検知時制御部5aは、推定確度検知部4aにより推定確度の低下が検知されたときの制御モードに応じた固定減衰力に遷移させることとした。
例えば、コンフォートモードで走行中に推定確度の低下が検知された場合は、減衰係数が低い値に固定されると車両状態として十分な安定性を確保しにくい場面が想定される。そこで、この場合はコンフォートモードで設定される減衰力よりも高めの減衰力に固定することで、安定性を確保できる。
(5)推定確度低下検知時制御部5aは、推定確度検知部4aにより推定確度の低下が検知された直前の車速に応じた固定減衰力に遷移させる。よって、推定確度が低下したときの車速よりも実際に各制御モードにおいて使用している車速に基づいて固定減衰力を設定することができ、車両の安定性を向上できる。
(6)推定確度低下検知時制御部5aは、S/A3の減衰力を固定減衰力に遷移するときは、ばね上共振周波数以下の周波数となる遷移時間(実施例1では1秒)をかけて徐変させる。よって、固定減衰力に遷移する際の変動に伴う車両の不安定化を回避することができ、車両の安定性を確保できる。
(7)車輪速を検出する車輪速センサ5を有し、車輪速センサ5により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定し、このばね上状態が目標ばね上状態となるようにS/A3を含む複数のアクチュエータであるエンジン1やブレーキ20を制御すると共に、ばね上状態の推定確度低下を検知した場合には、S/A3によるばね上制振制御を継続しつつ他のアクチュエータであるエンジン1やブレーキ20によるばね上制振制御を禁止するエンジンコントローラ1a,ブレーキコントローラ2a及びS/Aコントローラ3aと、を備える。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時にエンジン1やブレーキ20による制御を禁止することで誤った制御に伴うトルク変動を抑制することができ、S/A3による制御を継続することで車体姿勢の安定化を達成できる。すなわち、制駆動トルクのように車両の前後加速度に寄与するアクチュエータが、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な加減速が生じるおそれがある。これに対し、前後方向の制駆動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。
(8)車輪速を検出する車輪速センサ5を有し、エンジンコントローラ1a,ブレーキコントローラ2a及びS/Aコントローラ3aが、車輪速センサ5により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定し、このばね上状態が目標ばね上状態となるようにS/A3を含む複数のアクチュエータであるエンジン1やブレーキ20を制御すると共に、ばね上状態の推定確度低下を検知した場合には、S/A3によるばね上制振制御を継続しつつ他のアクチュエータであるエンジン1やブレーキ20によるばね上制振制御を禁止することとした。
よって、ばね上状態の推定確度が低下したことを検知することができ、推定確度が低下したままで制御を継続することを回避できる。また、推定確度低下検知時制御部5aにより推定確度低下時にエンジン1やブレーキ20による制御を禁止することで誤った制御に伴うトルク変動を抑制することができ、S/A3による制御を継続することで車体姿勢の安定化を達成できる。すなわち、制駆動トルクのように車両の前後加速度に寄与するアクチュエータが、誤った情報もしくは確度の低い情報を用いて前後方向にトルク制御を行うと、ばね上状態と関係の無い不用意な加減速が生じるおそれがある。これに対し、前後方向の制駆動トルクに影響を与える制御を中止することで、運転者に違和感を与えるおそれを回避できる。

Claims (6)

  1. ばね上制振制御を行うアクチュエータである車両の動力源,摩擦ブレーキ及び減衰力可変ショックアブソーバと、
    車輪速を検出する車輪速検出手段と、
    前記車輪速検出手段により検出された車輪速の所定周波数領域における情報に基づいてばね上状態を推定するばね上状態推定手段と、
    該推定されたばね上状態が目標ばね上状態となるように前記アクチュエータを制御するアクチュエータ姿勢制御手段と、
    車輪に作用するホイル端制動トルク及びホイル端駆動トルクを推定し、該ホイル端制動トルク及びホイル端駆動トルクの成分うち、ストローク速度やばね上速度の含まれる周波数領域よりも低周波数側の定常成分の変化率が所定値以上の場合、前記ばね上状態推定手段の推定確度が低下していると検知する推定確度低下検知手段と、
    前記推定確度低下検知手段により推定確度の低下が検知された場合は、前記動力源及び前記摩擦ブレーキによるばね上制振制御を禁止しつつ、前輪側の減衰係数が後輪側の減衰係数よりも高くなるように前記減衰力可変ショックアブソーバによるばね上制振制御を継続する制限制御手段と、
    を備えたことを特徴とする車両の制御装置。
  2. 請求項1に記載の車両の制御装置において、
    前記アクチュエータ姿勢制御手段は、前記ばね上状態推定手段により推定されたピッチ
    運動を前記動力源により抑制することを特徴とする車両の制御装置。
  3. 請求項1または2に記載の車両の制御装置において、
    前記アクチュエータ姿勢制御手段は、前記ばね上状態推定手段により推定されたピッチ
    運動を前記摩擦ブレーキにより抑制することを特徴とする車両の制御装置。
  4. 請求項1ないし3いずれか1つに記載の車両の制御装置において、
    前記アクチュエータ姿勢制御手段は、あるストローク速度に対して異なる減衰力制御範
    囲が設定された複数の制御モードを有し、
    前記制限制御手段は、前記推定確度検知手段により推定確度の低下が検知されたときの
    制御モードに応じた固定減衰力に遷移させることを特徴とする車両の制御装置。
  5. 請求項4に記載の車両の制御装置において、
    前記制限制御手段は、前記推定確度検知手段により推定確度の低下が検知された直前の
    車速に応じた固定減衰力に遷移させることを特徴とする車両の制御装置。
  6. 請求項4に記載の車両の制御装置において、
    前記制限制御手段は、前記推定確度検知手段により推定確度の低下が検知された直前の
    車速に応じた固定減衰力に遷移させることを特徴とする車両の制御装置。
JP2014515606A 2012-05-14 2013-05-13 車両の制御装置及び車両の制御方法 Active JP5811277B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515606A JP5811277B2 (ja) 2012-05-14 2013-05-13 車両の制御装置及び車両の制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012110306 2012-05-14
JP2012110306 2012-05-14
JP2014515606A JP5811277B2 (ja) 2012-05-14 2013-05-13 車両の制御装置及び車両の制御方法
PCT/JP2013/063242 WO2013172283A1 (ja) 2012-05-14 2013-05-13 車両の制御装置及び車両の制御方法

Publications (2)

Publication Number Publication Date
JP5811277B2 true JP5811277B2 (ja) 2015-11-11
JPWO2013172283A1 JPWO2013172283A1 (ja) 2016-01-12

Family

ID=49583688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515606A Active JP5811277B2 (ja) 2012-05-14 2013-05-13 車両の制御装置及び車両の制御方法

Country Status (2)

Country Link
JP (1) JP5811277B2 (ja)
WO (1) WO2013172283A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6481329B2 (ja) * 2014-10-28 2019-03-13 トヨタ自動車株式会社 車両のばね上振動抑制装置
JP7322751B2 (ja) * 2020-02-28 2023-08-08 いすゞ自動車株式会社 運転支援装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632604U (ja) * 1986-06-24 1988-01-09
JP5158333B2 (ja) * 2007-09-28 2013-03-06 日立オートモティブシステムズ株式会社 サスペンション制御装置
JP5226368B2 (ja) * 2008-04-17 2013-07-03 ヤマハ発動機株式会社 懸架装置の制御装置および車両
JP5320813B2 (ja) * 2008-05-16 2013-10-23 トヨタ自動車株式会社 車両用サスペンションシステム
JP5503328B2 (ja) * 2010-02-23 2014-05-28 本田技研工業株式会社 減衰力可変ダンパの制御装置
JP5319587B2 (ja) * 2010-03-25 2013-10-16 ニチユ三菱フォークリフト株式会社 産業車両
JP5488203B2 (ja) * 2010-05-31 2014-05-14 日産自動車株式会社 車両の制振制御装置
JP5724282B2 (ja) * 2010-10-12 2015-05-27 日産自動車株式会社 車体制振制御装置

Also Published As

Publication number Publication date
WO2013172283A1 (ja) 2013-11-21
JPWO2013172283A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5807717B2 (ja) 車両の制御装置及び車両の制御方法
JP5751385B2 (ja) 車両の制御装置及び車両の制御方法
JP5900613B2 (ja) 車両の制御装置及び車両の制御方法
JP5733431B2 (ja) 車両の制御装置及び車両の制御方法
JP5741719B2 (ja) 車両の制御装置及び車両の制御方法
JP5668872B2 (ja) 車両の制御装置
JP5741718B2 (ja) 車両の制御装置及び車両の制御方法
JP5733430B2 (ja) 車両の制御装置及び車両の制御方法
JP5804088B2 (ja) 車両の制御装置及び車両の制御方法
JP5979221B2 (ja) 車両の制御装置及び車両の制御方法
JP5998492B2 (ja) 車両の制御装置
WO2013183349A1 (ja) 車両の制御装置及び車両の制御方法
JP5811277B2 (ja) 車両の制御装置及び車両の制御方法
JP5737432B2 (ja) 車両の制御装置及び車両の制御方法
WO2013172123A1 (ja) 車両の制御装置及び車両の制御方法
JP5737433B2 (ja) 車両の制御装置
JP5928484B2 (ja) 車両の制御装置
JP5970831B2 (ja) ピッチレイト推定装置
JP5970832B2 (ja) ロールレイト推定装置
JP5807684B2 (ja) 車両の制御装置及び車両の制御方法
JP5862685B2 (ja) 車両の制御装置及び車両の制御方法
JP5929923B2 (ja) 車両の制御装置及び車両の制御方法
JP5858054B2 (ja) 車両の制御装置
JP5737431B2 (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5811277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151