WO2013162002A1 - ポリエステル樹脂組成物およびその成形体 - Google Patents

ポリエステル樹脂組成物およびその成形体 Download PDF

Info

Publication number
WO2013162002A1
WO2013162002A1 PCT/JP2013/062400 JP2013062400W WO2013162002A1 WO 2013162002 A1 WO2013162002 A1 WO 2013162002A1 JP 2013062400 W JP2013062400 W JP 2013062400W WO 2013162002 A1 WO2013162002 A1 WO 2013162002A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin composition
acid
mass
glycolic acid
Prior art date
Application number
PCT/JP2013/062400
Other languages
English (en)
French (fr)
Inventor
崇士 正木
昌博 山▲崎▼
卓磨 小林
浩幸 佐藤
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to PL13780586T priority Critical patent/PL2848651T3/pl
Priority to CA2867111A priority patent/CA2867111C/en
Priority to CN201380008679.2A priority patent/CN104105758B/zh
Priority to US14/386,595 priority patent/US9637672B2/en
Priority to EP13780586.7A priority patent/EP2848651B1/en
Priority to JP2014512713A priority patent/JP6133847B2/ja
Publication of WO2013162002A1 publication Critical patent/WO2013162002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/22Synthetic organic compounds
    • C09K8/24Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/44Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing organic binders only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5086Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds

Definitions

  • the present invention relates to a polyester resin composition and a molded body thereof, and more particularly to a polyester resin composition containing a glycolic acid resin and a molded body thereof.
  • aliphatic polyesters such as polyglycolic acid and polylactic acid are decomposed by microorganisms or enzymes existing in nature such as soil and sea, they are attracting attention as biodegradable polymer materials with a low environmental impact.
  • these aliphatic polyesters are not only biodegradable but also hydrolyzable, and have recently been actively studied for use in various fields.
  • polyglycolic acid (hereinafter also referred to as “PGA”) is excellent in gas barrier properties, heat resistance and mechanical strength. It is expected as a packaging material that is easy to compost and has a low environmental impact. Furthermore, since PGA has biodegradability and bioabsorbability, it is also used as a fiber in fields such as medicine.
  • Patent Document 1 discloses polyesters such as polylactic acid and polyglycolic acid as degradable materials constituting the fracturing fluid.
  • glycolic acid resins exhibit good decomposability at high temperatures (eg, 60 ° C. or higher), but the decomposition rate at relatively low temperatures (eg, less than 60 ° C., preferably 50 ° C. or lower) is not always sufficient. It was not something.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and the time required for decomposition is short even under low temperature conditions (for example, less than 60 ° C., preferably 50 ° C. or less), that is, excellent degradability. It aims at providing the polyester resin composition which has, and the molded object which consists of this resin composition.
  • the present inventors have added a specific decomposition accelerator to a polyester resin containing 50% by mass or more of a glycolic acid resin, thereby reducing the temperature (for example, less than 60 ° C.). And preferably 50 ° C. or less), a polyester resin composition having excellent decomposability and excellent storage properties can be obtained, and the present invention has been completed.
  • the polyester resin composition of the present invention contains 100 parts by mass of a polyester resin containing 50% by mass or more of a glycolic acid resin and 0.5 to 50 parts by mass of a carboxylic acid anhydride.
  • the carboxylic acid anhydride includes an aliphatic monocarboxylic acid anhydride, an aromatic monocarboxylic acid anhydride, an aliphatic dicarboxylic acid anhydride, an aromatic dicarboxylic acid anhydride, an aromatic tricarboxylic acid. It is preferably at least one selected from the group consisting of acid anhydrides, alicyclic dicarboxylic acid anhydrides, aliphatic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides.
  • the polyester resin composition of the present invention preferably further contains 0.01 to 10 parts by mass of a phosphorus compound with respect to 100 parts by mass of the polyester resin.
  • a phosphorus compound include phosphate esters and phosphorous acid.
  • At least one organic phosphorus compound selected from the group consisting of esters is preferred, and the organic phosphorus compound is at least selected from the group consisting of long-chain alkyl groups having 8 to 24 carbon atoms, aromatic rings and a pentaerythritol skeleton. Those having one type of structure are preferred.
  • the molded article of the present invention is made of such a polyester resin composition of the present invention, and preferably has any shape of powder, pellets, films and fibers. Furthermore, the well treatment fluid of the present invention contains such a molded body of the present invention.
  • the polyester resin composition having a short decomposition time even under low temperature conditions for example, less than 60 ° C., preferably 50 ° C. or less
  • a polyester resin composition having excellent decomposability and a molding comprising this resin composition
  • the body can be obtained.
  • the polyester resin composition of the present invention contains 100 parts by mass of a polyester resin containing 50% by mass or more of a glycolic acid resin and 0.5 to 50 parts by mass of a carboxylic acid anhydride as a decomposition accelerator.
  • Such a polyester resin composition of the present invention has excellent decomposability even at a low temperature (for example, less than 60 ° C., preferably 50 ° C. or less). Specifically, when 1 g of this resin composition is immersed in 50 ml of ion exchange water and held at 40 ° C. for 2 weeks (more preferably 1 week), the mass reduction rate after holding is 10% or more (more preferably). Is preferably 15% or more, more preferably 20% or more.
  • the polyester resin used in the present invention contains 50% by mass or more of glycolic acid resin.
  • the content of the glycolic acid resin is preferably 55% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass from the viewpoint that the degradability of the polyester resin composition is improved.
  • the above is particularly preferable.
  • glycolic acid resin used in the present invention is a polymer having glycolic acid units (—OCH 2 —CO—).
  • a glycolic acid-based resin a polyglycolic acid consisting only of the glycolic acid unit, that is, a structural unit derived from a glycolic acid homopolymer, a glycolic acid unit and another monomer (hereinafter referred to as “comonomer”).
  • a glycolic acid copolymer having As the glycolic acid copolymer those in which the glycolic acid unit is contained in an amount of 50 mol% or more in 100 mol% of all the structural units constituting the copolymer are preferable.
  • the glycolic acid unit is derived from a monomer that gives a —OCH 2 —CO— structure in the polymer by polymerization, and is not necessarily derived from glycolic acid.
  • a polymer derived from glycolide which is a bimolecular cyclic ester of glycolic acid is also included in the glycolic acid resin.
  • Examples of the comonomer include ethylene oxalate (that is, 1,4-dioxane-2,3-dione), lactides, and lactones (for example, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -pivalolactone, ⁇ - Butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone, etc.), carbonates (eg, trimethylene carbonate, etc.), ethers (eg, 1,3-dioxane, etc.), ether esters ( For example, cyclic monomers such as dioxanone) and amides (such as ⁇ -caprolactam); other than glycolic acid such as lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, and 6-hydroxycaproic acid Hydroxycarboxylic acids or alkyl esters thereof; Ji glycol, an aliphatic
  • the glycolic acid unit contains 50 mol% or more of the glycolic acid unit in 100 mol% of all the structural units constituting the copolymer. Is more preferable, 55 mol% or more is more preferable, 80 mol% or more is more preferable, and 90 mol% or more is particularly preferable.
  • the glycolic acid resin is preferably a glycolic acid homopolymer consisting only of the glycolic acid unit.
  • the weight average molecular weight (Mw) of the glycolic acid resin is preferably 10,000 to 800,000, more preferably 20,000 to 600,000, still more preferably 30,000 to 400,000, and 50,000 to 300,000 is particularly preferred.
  • Mw of the glycolic acid resin is less than the lower limit, the strength of the molded product obtained from the polyester resin composition may be insufficient.
  • the upper limit is exceeded, molding of the polyester resin composition is caused by an increase in melt viscosity. May be inferior.
  • glycolic acid resin is not particularly limited, and can be produced by a conventionally known method.
  • a commercially available glycolic acid resin may be used.
  • the following method can be illustrated as a manufacturing method of glycolic acid resin.
  • a method of obtaining a glycolic acid resin by ring-opening polymerization using glycolide and, if necessary, a comonomer (hereinafter, also referred to as “Glycolic acid resin production method 1”).
  • a prepolymer is produced by polycondensation involving dehydration or dealcoholization using glycolic acid or an alkyl ester of glycolic acid and, if necessary, a comonomer, and the resulting prepolymer has a glass transition temperature higher than that of the prepolymer.
  • a method of solid-phase polymerization by heating to a temperature lower than the melting point (hereinafter also referred to as “glycolic acid resin production method 2”).
  • glycolic acid resin production method 1 In glycolic acid-based resin production method 1, glycolic acid-based resin is obtained by ring-opening polymerization using glycolide and, if necessary, comonomer.
  • Glycolide is a bimolecular cyclic ester of glycolic acid, which is a kind of hydroxycarboxylic acid. Even when a glycolic acid-based resin is produced by ring-opening polymerization of glycolide, glycolic acid may be used as part of the monomer up to 20% by mass of the glycolide amount as desired. Moreover, you may use a comonomer as a part of monomer. When using a comonomer, it is preferable to determine the usage-amount of a comonomer so that the glycolic acid copolymer obtained may have a glycolic acid unit in the above-mentioned range.
  • Cyclic monomers include bimolecular cyclic esters of other hydroxycarboxylic acids such as lactide, as well as lactones (for example, ⁇ -propiolactone, ⁇ -butyrolactone, pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl) - ⁇ -valerolactone, ⁇ -caprolactone, etc.), trimethylene carbonate, 1,3-dioxane, and other cyclic monomers can be used.
  • a preferred cyclic monomer is a bimolecular cyclic ester of a hydroxycarboxylic acid other than glycolic acid.
  • hydroxycarboxylic acid examples include L-lactic acid, D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ - Hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid, ⁇ -hydroxyheptanoic acid, ⁇ -hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristic acid, ⁇ -hydroxystearic acid, and these Examples include alkyl-substituted products.
  • a particularly preferable cyclic monomer is lactide which is a bimolecular cyclic ester of lactic acid (which may be any of L-form, D-form, racemate, and a mixture thereof).
  • ring-opening polymerization of glycolide is performed.
  • This ring-opening polymerization may be homopolymerization of glycolide or copolymerization of glycolide and a comonomer.
  • Such ring-opening polymerization is preferably carried out in the presence of a small amount of catalyst.
  • the catalyst is not particularly limited.
  • tin-based compounds such as tin halides (for example, tin dichloride and tin tetrachloride) and organic carboxylate tin (for example, tin octoate such as tin 2-ethylhexanoate).
  • titanium compounds such as alkoxy titanates; aluminum compounds such as alkoxyaluminum; zirconium compounds such as zirconium acetylacetone; antimony compounds such as antimony halide and antimony oxide;
  • the amount of the catalyst used is preferably 1 to 1,000 ppm, more preferably 3 to 300 ppm in terms of mass ratio with respect to the cyclic ester.
  • the ring-opening polymerization of glycolide may be bulk polymerization or solution polymerization, but bulk polymerization is preferred.
  • a higher alcohol such as lauryl alcohol, water or the like may be used as the molecular weight regulator.
  • polyhydric alcohols such as glycerol
  • the device can be selected as appropriate.
  • various reaction tanks can be used for solution polymerization.
  • the polymerization temperature can be appropriately set within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature.
  • the polymerization temperature is preferably 130 to 270 ° C., more preferably 140 to 260 ° C., and particularly preferably 150 to 250 ° C. If the polymerization temperature is too low, the molecular weight distribution of the generated glycolic acid resin tends to be wide. When the polymerization temperature is too high, the generated glycolic acid resin is likely to undergo thermal decomposition.
  • the polymerization time is in the range of 3 minutes to 20 hours, preferably 5 minutes to 18 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently and a predetermined weight average molecular weight cannot be realized. If the polymerization time is too long, the produced glycolic acid resin tends to be colored.
  • solid phase polymerization After making the produced glycolic acid resin into a solid state, solid phase polymerization may be further carried out if desired.
  • the solid phase polymerization means an operation of performing a heat treatment while maintaining a solid state by heating at a temperature lower than the melting point of the glycolic acid resin.
  • low molecular weight components such as unreacted monomers and oligomers react. Some of them may be volatilized and removed.
  • Solid-phase polymerization is usually performed by heating to a predetermined temperature under an inert gas atmosphere such as nitrogen or argon, (2) under reduced pressure, or (3) under an inert solvent such as liquid paraffin. Done.
  • the solid phase polymerization is preferably performed for 1 to 100 hours, more preferably 2 to 50 hours, particularly preferably 3 to 30 hours.
  • glycolic acid-based resin production method 2 a prepolymer is produced by polycondensation involving dehydration or dealcoholization using glycolic acid or an alkyl ester of glycolic acid and, if necessary, a comonomer, and the obtained prepolymer is treated with this prepolymer.
  • a glycolic acid-based resin is obtained by heating to a temperature higher than the glass transition temperature of the polymer and lower than the melting point for solid phase polymerization.
  • the glycolic acid alkyl ester is not particularly limited, those having 1 to 4 carbon atoms in the alkyl group are preferable. Specific examples thereof include methyl glycolate, ethyl glycolate, n-propyl glycolate, isopropyl glycolate, Examples thereof include n-butyl glycolate, isobutyl glycolate, and t-butyl glycolate. As the alkyl glycolate, these can be used alone or in combination of two or more. Among these, methyl glycolate and ethyl glycolate are particularly preferable because of easy alcohol removal. Moreover, the above-mentioned thing can be used as a comonomer.
  • the weight average molecular weight of the prepolymer is usually 5,000 or more and less than 150,000, preferably in the range of 8,000 to 100,000. If the weight average molecular weight of the prepolymer is too low, it takes a long time to obtain a high molecular weight glycolic acid resin by solid phase polymerization, which is not economical. On the other hand, it is difficult to obtain a glycolic acid resin having a weight average molecular weight of 150,000 or more by polycondensation of glycolic acid or glycolic acid alkyl ester.
  • a catalyst When performing the polycondensation, the use of a catalyst is not essential, but a catalyst can be added for the purpose of increasing the reaction rate.
  • the catalyst include stannous chloride, stannic chloride, stannous sulfate, stannous oxide, stannic oxide, tetraphenyltin, stannous octoate, stannous acetate, and stannic acetate.
  • Tin catalysts such as titanium tetrachloride, isopropionate titanate, butyl titanate; germanium catalysts such as metal germanium, germanium tetrachloride, germanium oxide; zinc oxide, antimony trioxide, lead oxide, Metal oxide catalysts such as aluminum oxide and iron oxide; and the like. These catalysts can be used alone or in combination of two or more.
  • the catalyst is preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 2 equivalent, more preferably 3 ⁇ 10 2 with respect to 1 mol of the monomer, based on the metal atom. Add -5 to 5 ⁇ 10 -3 equivalents. If the amount of the catalyst added is too small, the effect of shortening the polymerization time is reduced, which is not economical from an industrial viewpoint. If the amount of the catalyst added is too large, the product polymer tends to be colored, which may impair the commercial value.
  • the catalyst is added to the reaction system as it is or dissolved or dispersed in an appropriate liquid. The catalyst may be added in a batch or divided. The catalyst may be added to the reaction system at any time as long as the polycondensation reaction is substantially completed.
  • a phosphorus compound can be added as a coloring inhibitor.
  • phosphorus compounds include phosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, polyphosphoric monoethyl ester, polyphosphoric acid diethyl ester, pyrophosphoric acid, triethyl pyrophosphate, pyromethyl hexamethylamide, phosphorous acid , Triethyl phosphite, triphenyl phosphite and the like. These phosphorus compounds can be used alone or in combination of two or more.
  • the phosphorus compound is preferably added at a ratio of 0.1 to 10 equivalents, more preferably 0.3 to 3 equivalents, based on phosphorus atoms, with respect to 1 equivalent of metal atoms of the catalyst. If the amount of the phosphorus compound added is too small, the effect of preventing coloration is small, and if it is too large, the polycondensation reaction may be delayed.
  • the phosphorus compound is added to the reaction system as it is or dissolved or dispersed in an appropriate liquid. The addition of the phosphorus compound may be performed at once or divided. The phosphorus compound may be added to the reaction system at any time as long as the polycondensation reaction is substantially completed.
  • the end point of the reaction is when the prepolymer reaches a predetermined molecular weight.
  • the prepolymer has a relatively low molecular weight, it is liquid at the end of the polycondensation reaction and solidifies by cooling.
  • the prepolymer has a relatively high molecular weight, the reaction is terminated at the stage of solidification. After the end of the reaction, solid phase polymerization may be carried out as it is. However, in order to increase the total surface area, it is more effective to perform solid phase polymerization after granulating by a treatment such as pulverization.
  • the prepolymer obtained as described above is heated to a temperature higher than the glass transition temperature of the prepolymer and lower than the melting point, and is subjected to solid phase polymerization, thereby obtaining a high molecular weight.
  • a glycolic acid-based resin is produced.
  • the solid phase polymerization is usually performed in an inert gas atmosphere or under reduced pressure or in an inert solvent.
  • the shape of the prepolymer may be any of agglomerates, pellets, granules, powders, and the like, and is not particularly limited. It is preferable to make the prepolymer fine particles by pulverization or the like because the surface area increases and the reaction can be promoted.
  • Solid phase polymerization literally performs the polymerization reaction while maintaining the prepolymer in a solid state. Therefore, the upper limit of the reaction temperature in the solid phase polymerization is determined by the melting point of the prepolymer.
  • the reaction temperature of the solid phase polymerization is usually a temperature that is 5 ° C. or more lower than the melting point of the prepolymer, and preferably 10 ° C. or more lower than the melting point of the prepolymer.
  • reaction temperature of the solid phase polymerization is preferably 100 to 230 ° C., more preferably 150 to 220 ° C.
  • the solid phase polymerization reaction temperature can be raised stepwise.
  • the reaction temperature is lower than the melting point of the prepolymer at that time, preferably more than 5 ° C. lower than the melting point of the prepolymer at that time, more preferably higher than the melting point of the prepolymer at that time.
  • the temperature is controlled to 10 ° C. or lower.
  • Solid-phase polymerization usually involves heating the prepolymer to a predetermined temperature under (1) an inert gas atmosphere such as nitrogen or argon, (2) under reduced pressure, or (3) an inert solvent such as liquid paraffin. Is done. This facilitates high molecular weight avoiding undesirable side reactions.
  • an inert gas atmosphere such as nitrogen or argon
  • an inert solvent such as liquid paraffin
  • Solid phase polymerization can be carried out without a catalyst, but a catalyst can be added if necessary.
  • the catalyst include stannous chloride, stannic chloride, stannous sulfate, stannous oxide, stannic oxide, tetraphenyltin, stannous octoate, stannous acetate, and stannic acetate.
  • Tin catalysts such as titanium tetrachloride, isopropionate titanate, butyl titanate; germanium catalysts such as metal germanium, germanium tetrachloride, germanium oxide; zinc oxide, antimony trioxide, lead oxide, Metal oxide catalysts such as aluminum oxide and iron oxide; and the like.
  • the catalyst is preferably added in an amount of 0.001 to 2 parts by weight, more preferably 0.005 to 0.5 parts by weight, based on 100 parts by weight of the prepolymer. If the addition amount of the catalyst is too small, the addition effect is small, and it is difficult to sufficiently shorten the polymerization time. When there is too much addition amount of a catalyst, coloring of a production
  • the catalyst is added to the reaction system as it is or dissolved or mixed in an appropriate liquid. The catalyst may be added in a batch or divided. The catalyst may be added to the reaction system at any time as long as the solid phase polymerization reaction is substantially completed.
  • a phosphorus compound can be used as a coloring inhibitor.
  • Phosphorus compounds include phosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, polyphosphoric monoethyl ester, polyphosphoric acid diethyl ester, pyrophosphoric acid, triethyl pyrophosphate, hexamethylamide pyrophosphate, phosphorous acid, Examples thereof include triethyl phosphate and triphenyl phosphite. These phosphorus compounds can be used alone or in combination of two or more.
  • the phosphorus compound is preferably added at a ratio of 0.1 to 10 equivalents, more preferably 0.3 to 3 equivalents, based on phosphorus atoms, with respect to 1 equivalent of metal atoms of the catalyst. If the amount added is too small, the effect of preventing coloration is small, and if it is too large, the reaction becomes slow.
  • the phosphorus compound can be added to the reaction system as it is, or dissolved or dispersed in an appropriate liquid. The addition of the phosphorus compound may be performed at once or divided. The phosphorus compound may be added to the reaction system at any time as long as the solid phase polymerization reaction is substantially completed.
  • Such a glycolic acid-based resin production method 2 can be carried out by the polyglycolic acid production method disclosed in JP-A-11-116666.
  • polyester resins In the polyester resin composition of the present invention, a polyester resin other than the glycolic acid resin (hereinafter referred to as “other polyester resin”) can be used in combination.
  • the content of such other polyester resins is less than 50% by mass, and is preferably 45% by mass or less, and preferably 30% by mass or less from the viewpoint of improving the degradability of the polyester resin composition. More preferably, it is more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the other polyester resin is not particularly limited, and examples thereof include degradable polyester resins such as lactic acid resin, polyethylene terephthalate copolymer, polybutylene succinate, polycaprolactone, and polyhydroxyalkanoate. These degradable polyester resins may be used alone or in combination of two or more. Among such degradable polyester resins, a lactic acid resin is preferable from the viewpoint of improving the decomposability of the polyester resin composition.
  • the lactic acid-based resin is a polymer having a lactic acid unit (—OCH (CH 3 ) —CO—).
  • polylactic acid composed of only the lactic acid unit, a lactic acid unit and other monomers (hereinafter referred to as “comonomer”).
  • Polylactic acid includes poly-D-lactic acid (D-lactic acid homopolymer) consisting only of D-lactic acid units, poly-L-lactic acid (L-lactic acid homopolymer) consisting only of L-lactic acid units, D -Poly-DL-lactic acid (copolymer of D-lactic acid and L-lactic acid) composed of lactic acid units and L-lactic acid units.
  • the lactic acid unit is a mixture of a D-lactic acid unit and an L-lactic acid unit, whether it is only a D-lactic acid unit or only an L-lactic acid unit. May be.
  • the lactic acid unit is derived from a monomer that gives a —OCH (CH 3 ) —CO— structure in the polymer by polymerization, and is not necessarily derived from lactic acid.
  • a polymer derived from lactide which is a bimolecular cyclic ester of lactic acid is also included in the lactic acid resin.
  • the comonomer examples include those exemplified as the comonomer in the glycolic acid copolymer (excluding lactic acid and lactide), glycolic acid and glycolide.
  • the lactic acid copolymer from the viewpoint that the decomposability of the polyester resin composition is improved, the lactic acid unit preferably contains 50 mol% or more of the lactic acid unit in 100 mol% of all the structural units constituting the copolymer. 55 mol% or more is more preferable, 80 mol% or more is more preferable, and 90 mol% or more is particularly preferable.
  • the lactic acid homopolymer which consists only of the said lactic acid unit is preferable.
  • the weight average molecular weight (Mw) of the lactic acid resin is preferably 10,000 to 800,000, more preferably 20,000 to 600,000, still more preferably 30,000 to 400,000, and 50,000 to 300. Is particularly preferred. If the Mw of the lactic acid resin is less than the lower limit, the strength of the molded body made of the polyester resin composition may be insufficient. On the other hand, if the upper limit is exceeded, the moldability of the polyester resin composition is increased due to an increase in melt viscosity. May be inferior.
  • the method for producing such a lactic acid resin is not particularly limited, and can be produced by a conventionally known method.
  • a commercially available lactic acid resin may be used.
  • the decomposition accelerator used in the present invention is a carboxylic acid anhydride, and a phosphorus compound can be used in combination as necessary.
  • a carboxylic acid anhydride as a decomposition accelerator, a polyester resin composition excellent in decomposability can be obtained even at a low temperature (for example, less than 60 ° C., preferably 50 ° C. or less). Goods are also excellent in storage. Moreover, it exists in the tendency which decomposability improves further by using a phosphorus compound together.
  • Carboxylic anhydride Although there is no restriction
  • carboxylic acid anhydrides it is preferable to use a carboxylic acid anhydride capable of raising the glass transition temperature (Tg) of the polyester resin composition above the Tg of the glycolic acid resin.
  • carboxylic acid anhydrides include 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride.
  • the Tg of the glycolic acid resin itself is usually ⁇ 40 to 45 ° C.
  • the Tg is usually 35 to 45 ° C.
  • 3,3′4,4′-benzophenonetetracarboxylic dianhydride is used as the agent, a polyester resin composition having a Tg of 45 to 55 ° C. can be obtained.
  • the phosphorus compound used in the present invention is not particularly limited, but organic phosphorus compounds such as phosphate esters and phosphite esters are preferred, among which long chain alkyl groups having 8 to 24 carbon atoms, aromatic rings and pentaerythritol.
  • An organophosphorus compound having at least one structure selected from the group consisting of skeletons is more preferable. These phosphorus compounds may be used alone or in combination of two or more.
  • Examples of the phosphate ester having a long-chain alkyl group having 8 to 24 carbon atoms include mono- or di-stearyl acid phosphate or a mixture thereof, di-2-ethylhexyl acid phosphate, and the like.
  • Examples of the phosphite having an aromatic ring include tris (nonylphenyl) phosphite.
  • Examples of the phosphite having a pentaerythritol skeleton structure include cyclic neopentanetetrayl bis (2,6-di-tert-butyl-4-methylphenyl) phosphite, cyclic neopentanetetrayl bis (2,4 -Di-tert-butylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite and the like.
  • the polyester resin composition of the present invention contains 0.5 to 50 parts by mass of a carboxylic acid anhydride as a decomposition accelerator with respect to 100 parts by mass of the polyester resin, and further contains a phosphorus compound as necessary.
  • the content is 0.01 to 10 parts by mass.
  • the content of the carboxylic acid anhydride is less than the lower limit, the decomposability at a low temperature (for example, less than 60 ° C., preferably 50 ° C. or less) is not sufficiently exhibited.
  • the said upper limit is exceeded, the moldability of a polyester resin composition will fall.
  • the content of the carboxylic acid anhydride is preferably 1 to 50 parts by mass, more preferably 3 to 50 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the decomposition property at a low temperature of the polyester resin composition tends to be further improved, but if the content of the phosphorus compound exceeds the upper limit, molding is performed. It tends to impair the surface quality due to molecular weight reduction during processing and bleed out. On the other hand, when the amount is less than the lower limit, the effect of adding the phosphorus compound tends to be insufficient.
  • the content of the phosphorus compound is more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyester resin. More preferably, it is 5 to 10 parts by mass.
  • the glycolic acid resin when the glycolic acid resin is decomposed, the amount of carboxyl groups present in the system increases, and the pH of the system decreases.
  • an acid for example, carboxylic acid
  • an inorganic substance for example, an inorganic substance, or the like.
  • carboxylic acid anhydride since the carboxylic acid anhydride is used as a decomposition accelerator, the initial pH of the system can be made higher than when an acid is used, for example.
  • carboxylic acid anhydrides decompose the resin by reaction and water absorption in an environment where the amount of water is small compared to conventional decomposition accelerators (that is, decomposition accelerators other than carboxylic acid anhydrides and phosphorus compounds).
  • decomposition accelerators that is, decomposition accelerators other than carboxylic acid anhydrides and phosphorus compounds.
  • the polyester resin composition of the present invention has an excellent decomposability in an environment where there is a large amount of water.
  • the decomposition of the glycolic acid resin can be suppressed in an environment where the amount of water present when the molded body is stored is small.
  • a conventionally known heat stabilizer may be blended in order to suppress thermal degradation when the polyester resin composition is molded.
  • heat stabilizers include metal carbonates such as calcium carbonate and strontium carbonate; bis [2- (2-hydroxybenzoyl) hydrazine] dodecanoic acid, N, N′—, which is generally known as a polymerization catalyst deactivator.
  • Hydrazine-based compounds having a —CONHNH—CO— unit such as bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine; 3- (N-salicyloyl) amino-1,2, And triazole compounds such as 4-triazole; triazine compounds; and the like.
  • the blending amount of the heat stabilizer is usually 3 parts by mass or less, preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, especially 100 parts by mass of the polyester resin. The amount is preferably 0.01 to 0.1 parts by mass (100 to 1,000 ppm).
  • a conventionally known carboxyl group end-capping agent or hydroxyl group end-capping agent may be blended in order to improve storage stability.
  • Such end capping agent is not particularly limited as long as it is a compound having a carboxyl group end capping action and a hydroxyl end capping action.
  • carboxyl group end capping agent examples include N, N-2, Carbodiimide compounds such as 6-diisopropylphenylcarbodiimide; 2,2′-m-phenylenebis (2-oxazoline), 2,2′-p-phenylenebis (2-oxazoline), 2-phenyl-2-oxazoline, styrene Oxazoline compounds such as isopropenyl-2-oxazoline; Oxazine compounds such as 2-methoxy-5,6-dihydro-4H-1,3-oxazine; N-glycidylphthalimide, cyclohexene oxide, tris (2,3-epoxy Epoxy compounds such as propyl) isocyanurate; and the like.
  • Carbodiimide compounds such as 6-diisopropylphenylcarbodiimide
  • 2,2′-p-phenylenebis (2-oxazoline) 2-phen
  • carbodiimide compounds are preferable, and any of aromatic, alicyclic, and aliphatic carbodiimide compounds can be used. Higher ones are superior in improving the storage stability.
  • examples of the hydroxyl end-capping agent include diketene compounds and isocyanates.
  • the blending amount of such a terminal blocking agent is usually 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyester resin. 1 part by mass.
  • a resin other than the polyester resin a light stabilizer, an inorganic filler, an organic filler, a plasticizer, a crystal nucleating agent, a moistureproof agent, a waterproofing agent, a water repellent, You may further mix
  • the polyester resin composition includes: As optional components, resins other than polyester resins, heat stabilizers, light stabilizers, inorganic fillers, organic fillers, plasticizers, crystal nucleating agents, moisture proofing agents, waterproofing agents, water repellents, and lubricants are preferably blended. .
  • polyester resin examples include polyethylene, polypropylene, polyvinyl alcohol, polyamide, polyester amide, acrylic resin, styrene copolymer, polyphenylene sulfide resin, polyether ether ketone resin, polycarbonate, polyacetal, polysulfone, polyphenylene ether, polyimide.
  • Polyetherimide polysaccharide, cellulose ester resin and other thermoplastic resins; phenolic resin, melamine resin, silicone resin, epoxy resin and other thermosetting resins; ethylene / glycidyl methacrylate copolymer, ethylene / propylene copolymer, ethylene / Soft heat transfer of soft polyolefin polymers such as butene-1 copolymer, various core-shell type elastomers, polyamide elastomers, etc. Sex resins. These resins may be used alone or in combination of two or more.
  • polyester resin composition of the present invention is usually used in fields where degradability is required. For this reason, it is preferable that resins other than the polyester resin also have degradability.
  • resins other than the polyester resin also have degradability.
  • polyamide, polyesteramide, polyether, polysaccharide, and polyvinyl alcohol are preferable.
  • the resin other than the polyester resin is 99 to 50 parts by mass of glycolic acid resin contained in the polyester resin and 1 resin other than the polyester resin with respect to 100 parts by mass in total of the resin and the polyester resin. It is preferable to blend so as to be ⁇ 50 parts by mass.
  • the carboxylic acid anhydride which is a decomposition accelerator and the polyester resin containing a glycolic acid type resin and the said other polyester resin as needed, and A method of performing melt kneading at a temperature equal to or higher than the melting point of the glycolic acid resin after mixing a phosphorus compound with a heat stabilizer, a terminal blocking agent, and other optional components as necessary.
  • the polyester resin composition of the present invention contains a carboxylic acid anhydride as a decomposition accelerator, a conventional decomposition accelerator such as a normal carboxylic acid (that is, other than the carboxylic acid anhydride and the phosphorus compound).
  • a decomposition accelerator Compared to the case where a decomposition accelerator) is contained, there is an advantage that the molecular weight of the glycolic acid resin is less reduced by melt kneading.
  • the molded product of the present invention is composed of the polyester resin composition of the present invention.
  • the polyester resin composition of the present invention has excellent decomposability and is excellent in gas barrier properties, heat resistance, and mechanical strength of glycolic acid resins, such as packaging materials, industrial materials, medical fibers, etc. It can be used for various purposes.
  • the polyester resin composition of the present invention is excellent in degradability not only at high temperatures (for example, 60 ° C. or more) but also at low temperatures (for example, less than 60 ° C., preferably 50 ° C. or less). It can also be used as a component of various liquid fluids used, that is, well treatment fluids such as crushing fluids.
  • the shape of the molded body of the present invention varies depending on the use for which the molded body is used, and examples thereof include powder, pellets, films, and fibers.
  • the method for obtaining the molded product of the present invention is not particularly limited.For example, a method for directly molding the molten polyester resin composition of the present invention into a desired shape to obtain the molded product of the present invention, Examples include a method in which pellets are molded from the molten polyester resin composition of the present invention, and the pellets are secondarily molded into a desired shape to obtain the molded product of the present invention.
  • Such a molded body of the present invention can be used for various liquid fluids used in oil or natural gas well drilling, that is, well treatment fluid such as crushing fluid.
  • well treatment fluid such as crushing fluid.
  • it can be used for at least one well treatment fluid selected from the group consisting of drilling fluid, fracturing fluid, cementing fluid, temporary plug fluid and finishing fluid.
  • the well treatment fluid of the present invention contains the molded body of the present invention.
  • a well treatment fluid can be used as at least one well treatment fluid selected from the group consisting of a drilling fluid, a fracturing fluid, a cementing fluid, a temporary plug fluid, and a finishing fluid.
  • a powder, a pellet, a film, and a fiber are mentioned.
  • the powder include powder having a major axis / minor axis of 1.9 or less and a cumulative 50% by weight average diameter of 1 to 1000 ⁇ m.
  • the pellet include pellets having a length in the longitudinal direction of 1 to 10 mm and an aspect ratio of 1 or more and less than 5.
  • the film include a film piece having an area of 0.01 to 10 cm 2 and a thickness of 1 to 1000 ⁇ m.
  • the fibers include short fibers having a length / cross-sectional diameter (aspect ratio) of 10 to 2000 and a short diameter of 5 to 95 ⁇ m.
  • the fibers are contained in the fracturing fluid at a concentration of 0.05 to 100 g / L, preferably 0.1 to 50 g / L. By this, it becomes possible to improve the dispersibility of proppant.
  • the fiber blended in the fracturing fluid may become unnecessary functionally during and / or after the production of the well.
  • the fiber made of the polyester resin composition of the present invention when used.
  • the normally required recovery or disposal process is unnecessary or easy. That is, since the fiber is excellent in biodegradability and hydrolyzability, for example, even if left in a fracture formed in the ground, it is biodegraded by microorganisms present in the soil, Or since it hydrolyzes with the water
  • the polyester resin composition of the present invention exhibits excellent degradability not only at high temperatures (eg, 60 ° C.
  • the fibers disappear in a short time not only in the middle but also in a relatively low temperature soil environment. Moreover, depending on conditions, it can also be made to hydrolyze in a shorter time by inject
  • the molded article of the present invention has excellent hydrolyzability not only at a high temperature (eg, 60 ° C. or more) but also at a low temperature (eg, less than 60 ° C., preferably 50 ° C. or less). If it is recovered on the ground, it can be recovered at a relatively low temperature and can be hydrolyzed and lost in a short period of time not only in a high temperature and high pressure soil environment but also in a relatively low temperature soil environment. it can.
  • a high temperature eg, 60 ° C. or more
  • a low temperature eg, less than 60 ° C., preferably 50 ° C. or less
  • the molded body has acid-releasing properties, acid treatment that may be adopted during the production of the well, that is, by performing the treatment of contacting the acid with an oil layer or the like, to facilitate the crushing of the rock, It is also possible to have an effect that works effectively for well stimulation, in which rocks are dissolved to increase the permeability of the oil layer.
  • the well treatment fluid of the present invention can contain various components and additives usually contained in the well treatment fluid in addition to the molded body of the present invention.
  • the fracturing fluid used in hydraulic fracturing (fracturing) contains the molded article of the present invention (for example, a concentration of 0.05 to 100 g / L), and in addition, as a solvent or dispersion medium, And an organic solvent as a main component (about 90 to 95% by mass), and as a support (proppant), sand, glass beads, ceramic particles, resin-coated sand and the like are contained (about 9 to 5% by mass),
  • various additives such as gelling agents, scale inhibitors, acids for dissolving rocks, friction reducing agents and the like can be contained (about 0.5 to 1% by mass).
  • a well treatment fluid containing the shaped body for example, a well treatment fluid containing the fibers at a concentration of 0.05 to 100 g / L is a drilling fluid, a fracturing fluid, a cementing fluid, a temporary plug fluid or a finish
  • well treatment fluids such as fluids, it has excellent characteristics and has the effect of being extremely easy to collect and discard after use.
  • the molecular weight of the resin was determined by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • Equipment “Shodex-104” manufactured by Showa Denko KK
  • Column Two HFIP-606Ms connected in series with one HFIP-G as a precolumn Column temperature: 40 ° C.
  • ⁇ Degradability test (measurement of mass reduction rate)> 1 g of a sample (polyester resin composition (including fibers), polyglycolic acid, or polylactic acid) was immersed in 50 ml of ion-exchanged water in a glass container and held in a constant temperature bath at 40 ° C. for 1 week or 2 weeks. Thereafter, filtration was performed by its own weight, and the solid component remaining on the filter paper was allowed to stand at room temperature for 1 day, and further dried under a nitrogen atmosphere at 80 ° C. The mass of the solid component after drying was measured, and the ratio (mass reduction rate after holding at 40 ° C. for 1 week and 2 weeks) with respect to the mass (1 g) of the sample before holding at 40 ° C. was determined.
  • Tg glass transition temperature
  • the fiber was manufactured with the following method.
  • ⁇ Manufacture of fiber> A sample (polyester resin composition, polyglycolic acid, or polylactic acid) was put into a single screw extruder having a cylinder diameter of 20 mm ⁇ and melted at 215 to 250 ° C. The cylinder temperature of the extruder was 215 to 250 ° C., and the head temperature, gear pump temperature, and spin pack temperature were all set to 250 ° C.
  • the melted sample was discharged from a 24-hole nozzle (hole diameter 0.20 mm) using a gear pump, air-cooled (about 5 ° C.) in a cooling tower, and solidified into a filament shape to obtain an undrawn yarn. Thereafter, the undrawn yarn was drawn 3 times at a drawing temperature of 65 ° C. to obtain a drawn yarn.
  • Example 1 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) 1 in 100 parts by mass of polyglycolic acid (PGA, “Kuredux” manufactured by Kureha Co., Ltd., weight average molecular weight (Mw): 176,000) It is fed to the feed part of a twin screw extruder kneader (“2D25S” manufactured by Toyo Seiki Co., Ltd.) with a mass part blended and a screw part temperature set at 200 to 240 ° C. A resin composition was obtained. About this polyglycolic acid resin composition, the decomposability
  • Example 2 A pellet-shaped polyglycolic acid resin composition was prepared in the same manner as in Example 1 except that the blending amount of BTDA was changed to the amount shown in Table 1.
  • the obtained polyglycolic acid resin composition was subjected to a degradability test according to the above-mentioned method, and a mass reduction rate after being held at 40 ° C. for 1 week (Examples 3 to 5) and 2 weeks (Examples 2 to 6) was obtained. It was.
  • the results are shown in Table 1. Further, when the glass transition temperatures of the polyglycolic acid resin compositions obtained in Examples 3 to 5 were measured according to the above method, they were 52 ° C. (Example 3), 52 ° C.
  • Example 4 Example 4
  • Example 5 Example 5
  • the drawn yarn produced using the polyglycolic acid resin composition obtained in Example 3 was subjected to a degradability test according to the above-mentioned method, and the mass reduction rate after being held at 40 ° C. for 1 week was determined to be 15 %Met.
  • Example 7 A pellet-shaped polyglycolic acid resin composition was prepared in the same manner as in Example 1 except that 5 parts by mass or 30 parts by mass of phthalic anhydride was blended in place of BTDA. About the obtained polyglycolic acid resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 9 A pellet-like polyglycolic acid resin composition was prepared in the same manner as in Example 1 except that 5 parts by mass or 30 parts by mass of trimellitic anhydride was added in place of BTDA. About the obtained polyglycolic acid resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 11 instead of BTDA, benzoic anhydride (Example 11), ethylene glycol bisanhydro trimellitate (TMEG) (Example 12), butanetetracarboxylic dianhydride (BT) (Example 13) or diphenylsulfone tetra
  • TMEG ethylene glycol bisanhydro trimellitate
  • BT butanetetracarboxylic dianhydride
  • diphenylsulfone tetra A pellet-like polyglycolic acid resin composition was prepared in the same manner as in Example 1 except that 10 parts by mass of carboxylic dianhydride (DSDA) (Example 14) was blended.
  • the resulting polyglycolic acid resin composition was subjected to a degradability test according to the above-described method, and the mass reduction rate after being held at 40 ° C. for 1 week (Example 11) and 2 weeks (Examples 11 to 14) was determined. The results are shown in Table 1.
  • Example 15 Instead of 100 parts by mass of PGA, 90 parts by mass of PGA and 10 parts by mass of polylactic acid (PLA, “PLA polymer 4032D” manufactured by Nature Works, weight average molecular weight (Mw): 256,000) were blended in the same manner as in Example 4. Thus, a pellet-shaped polyglycolic acid resin composition was prepared. About the obtained polyglycolic acid-type resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 16 to 17 A pellet-shaped polyglycolic acid resin composition was prepared in the same manner as in Example 15 except that the blending amounts of PGA and PLA were changed to the amounts shown in Table 1. About the obtained polyglycolic acid-type resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 18 A pelleted polyglycol in the same manner as in Examples 1 to 5, except that 0.05 parts by mass of a mixture of distearyl acid phosphate and monostearyl acid phosphate (“ADEKA STAB AX-71” manufactured by ADEKA Corporation) was further added. An acid resin composition was prepared. About the obtained polyglycolic acid resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 23 to 25 A pellet-like polyglycolic acid resin composition was prepared in the same manner as in Examples 18 to 20 except that the blending amount of ADK STAB AX-71 was changed to 0.5 parts by mass. About the obtained polyglycolic acid resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 1 Pellet polyglycolic acid was prepared in the same manner as in Example 1 except that BTDA was not blended. About the obtained polyglycolic acid, the degradability test was done according to the said method, and the mass reduction
  • a fiber made of polyglycolic acid was produced according to the above method, and the obtained drawn yarn was subjected to a degradability test according to the above method, and the mass after holding at 40 ° C. for 1 week. When the reduction rate was determined, it was less than 5%.
  • Comparative Example 2 A pellet-shaped polylactic acid was prepared in the same manner as in Comparative Example 1 except that PLA was used instead of PGA. About the obtained polylactic acid, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • a fiber made of polylactic acid was produced according to the above-described method, and the obtained drawn yarn was subjected to a degradability test according to the above-described method, and the mass reduction rate after being held at 40 ° C. for 1 week. Was less than 5%.
  • Example 3 A pellet-shaped polyglycolic acid resin composition was prepared in the same manner as in Example 1 except that 10 parts by mass of adipic acid was added instead of BTDA. About the obtained polyglycolic acid resin composition, the degradability test was done according to the said method, and the mass decreasing rate after hold
  • Example 26 A pellet-like polyglycolic acid resin composition was prepared in the same manner as in Example 9 except that the blending amount of trimellitic anhydride was changed to 10 parts by mass. Using this polyglycolic acid resin composition, fibers comprising the polyglycolic acid resin composition were produced according to the above-described method. After adjusting the moisture content of the drawn yarn to 0.2-0.3%, 0.5g of drawn yarn is sealed in an aluminum pack and stored in a thermostat at 80 ° C for 7 days for accelerated storage test. Was done.
  • the drawn yarn after completion of the test was dissolved in the HFIP solution, and the weight average molecular weight (Mw) was measured according to the above method, and this was used as the weight average molecular weight (Mw) of the drawn yarn after the storage test.
  • Mw weight average molecular weight
  • Example 27 A pellet-like polyglycolic acid resin composition was prepared in the same manner as in Example 18 except that the blending amount of BTDA was changed to 3 parts by mass and the blending amount of Adeka Stab AX-71 was changed to 0.1 parts by mass.
  • a fiber was produced in the same manner as in Example 26 except that this polyglycolic acid resin composition was used, and the weight average molecular weight (Mw) of the drawn yarn after the storage test was determined. The results are shown in Table 2.
  • Example 28 A fiber was produced in the same manner as in Example 26 except that the polyglycolic acid resin composition prepared in Example 4 was used, and the weight average molecular weight (Mw) of the drawn yarn after the storage test was determined. The results are shown in Table 2.
  • Comparative Example 4 A fiber was produced in the same manner as in Example 26 except that the polyglycolic acid prepared in Comparative Example 1 was used, and the weight average molecular weight (Mw) of the drawn yarn after the storage test was determined. The results are shown in Table 2.
  • Example 5 A fiber was produced in the same manner as in Example 26 except that the polyglycolic acid resin composition prepared in Comparative Example 3 was used, and the weight average molecular weight (Mw) of the drawn yarn after the storage test was determined. The results are shown in Table 2.
  • the polyester resin containing 50% by mass or more of glycolic acid resin can be decomposed even at a relatively low temperature (for example, less than 60 ° C., preferably 50 ° C. or less). Furthermore, it is possible to suppress decomposition during storage.
  • the polyester resin composition of the present invention is excellent in decomposability at a relatively low temperature, a molded body such as a short fiber made of such a polyester resin composition is only at a high temperature (for example, 60 ° C. or more).
  • a well treatment fluid material for example, a clogging fluid filler
  • suitable for drilling oil and natural gas at a low temperature (for example, less than 60 ° C., preferably 50 ° C. or less).
  • the polyester resin composition of the present invention is hardly decomposed and deteriorated during storage, it is useful as a raw material suitable for mass production of various molded articles such as short fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 グリコール酸系樹脂を50質量%以上含むポリエステル樹脂100質量部と、カルボン酸無水物0.5~50質量部を含有するポリエステル樹脂組成物。

Description

ポリエステル樹脂組成物およびその成形体
 本発明は、ポリエステル樹脂組成物およびその成形体に関し、より詳しくは、グリコール酸系樹脂を含有するポリエステル樹脂組成物およびその成形体に関する。
 ポリグリコール酸やポリ乳酸などの脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。また、これらの脂肪族ポリエステルは、生分解性だけではなく、加水分解性を有しており、様々な分野に使用することが近年積極的に研究されている。
 脂肪族ポリエステルの中でも、ポリグリコール酸(以下、「PGA」とも記す)は、ガスバリア性に優れ、耐熱性や機械的強度にも優れているので、酸化劣化しやすい食品などの包装材料として、また、コンポスト化しやすく環境負荷が小さい包装材料として期待されている。さらに、PGAは、生分解性、生体吸収性を有するため、繊維として医療などの分野でも利用されている。
 ところで、石油、天然ガスを得るために、油井、採ガス井が掘削される。このような掘削は、泥水を還流しながらドリルにより掘削して竪穴を形成し、その後にフラクチャリング流体(破砕流体)を地層中に注入して亀裂を生じさせることにより、石油や天然ガスの生産量を拡大する作業(フラクチャリング)が行われる。また、掘削された油井、採ガス井を、分解性物質を含有するスラリーを用いて後処理することも提案されている(例えば、米国特許第7,775,278号明細書(特許文献1)参照)。さらに、国際公開第2007/066254号(特許文献2)には、前記フラクチャリング流体を構成する分解性材料としてポリ乳酸やポリグリコール酸などのポリエステルが開示されている。
 なお、本出願人は、特定の微細固体状のポリグリコール酸樹脂を水性媒体中に分散させた分散液が、石油や天然ガスの掘削に適していることを見出し、すでにPCT出願(PCT/JP2011/73646)を行っている。
米国特許第7,775,278号明細書 国際公開第2007/066254号
 しかしながら、グリコール酸系樹脂は高温(例えば、60℃以上)において良好な分解性を示すものであるが、比較的低温(例えば、60℃未満、好ましくは50℃以下)での分解速度が必ずしも十分なものではなかった。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、低温条件下(例えば、60℃未満、好ましくは50℃以下)でも分解に要する時間が短い、すなわち、優れた分解性を有するポリエステル樹脂組成物およびこの樹脂組成物からなる成形体を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、グリコール酸系樹脂を50質量%以上含むポリエステル樹脂に特定の分解促進剤を添加することによって、低温(例えば、60℃未満、好ましくは50℃以下)でも分解性に優れ、さらに保管性にも優れたポリエステル樹脂組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明のポリエステル樹脂組成物は、グリコール酸系樹脂を50質量%以上含むポリエステル樹脂100質量部と、カルボン酸無水物0.5~50質量部を含有するものである。
 このようなポリエステル樹脂組成物において、前記カルボン酸無水物としては、脂肪族モノカルボン酸無水物、芳香族モノカルボン酸無水物、脂肪族ジカルボン酸無水物、芳香族ジカルボン酸無水物、芳香族トリカルボン酸無水物、脂環式ジカルボン酸無水物、脂肪族テトラカルボン酸二無水物および芳香族テトラカルボン酸二無水物からなる群から選択される少なくとも1種であることが好ましい。
 また、本発明のポリエステル樹脂組成物は、前記ポリエステル樹脂100質量部に対して0.01~10質量部のリン化合物をさらに含有することが好ましく、リン化合物としては、リン酸エステルおよび亜リン酸エステルからなる群から選択される少なくとも1種の有機リン化合物が好ましく、有機リン化合物としては、炭素数8~24の長鎖アルキル基、芳香族環およびペンタエリスリトール骨格からなる群から選択される少なくとも1種の構造を有するものが好ましい。
 また、本発明の成形体は、このような本発明のポリエステル樹脂組成物からなるものであり、パウダー、ペレット、フィルムおよび繊維のうちのいずれかの形状を有することが好ましい。さらに、本発明の坑井処理流体は、このような本発明の成形体を含有するものである。
 本発明によれば、低温条件下(例えば、60℃未満、好ましくは50℃以下)でも分解に要する時間が短い、すなわち、優れた分解性を有するポリエステル樹脂組成物およびこの樹脂組成物からなる成形体を得ることが可能となる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明のポリエステル樹脂組成物について説明する。本発明のポリエステル樹脂組成物は、グリコール酸系樹脂を50質量%以上含むポリエステル樹脂100質量部と、分解促進剤としてカルボン酸無水物0.5~50質量部とを含有するものである。
 このような本発明のポリエステル樹脂組成物は、低温(例えば、60℃未満、好ましくは50℃以下)でも優れた分解性を有するものである。具体的には、この樹脂組成物1gを50mlのイオン交換水に浸漬し、40℃で2週間(より好ましくは1週間)保持した場合に、保持後の質量減少率が10%以上(より好ましくは15%以上、さらに好ましくは20%以上)であることが好ましい。
 以下、本発明にかかる各成分について説明する。
 〔ポリエステル樹脂〕
 本発明に用いられるポリエステル樹脂は、グリコール酸系樹脂を50質量%以上含むものである。グリコール酸系樹脂の含有量としては、ポリエステル樹脂組成物の分解性が向上するという観点から、55質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。
 (グリコール酸系樹脂)
 本発明に用いられるグリコール酸系樹脂は、グリコール酸単位(-OCH-CO-)を有する重合体である。このようなグリコール酸系樹脂としては、前記グリコール酸単位のみからなるポリグリコール酸、すなわち、グリコール酸単独重合体、グリコール酸単位および他のモノマー(以下、「コモノマー」という。)に由来する構成単位を有するグリコール酸共重合体が挙げられる。グリコール酸共重合体としては、共重合体を構成する全構成単位100モル%中に前記グリコール酸単位が50モル%以上含まれているものが好ましい。
 なお、前記グリコール酸単位は、重合により-OCH-CO-構造を重合体中に与えるモノマーに由来するものであり、必ずしもグリコール酸に由来するものである必要はなく、本発明においては、例えば、グリコール酸の2分子環状エステルであるグリコリドに由来する重合体も前記グリコール酸系樹脂に含まれる。
 前記コモノマーとしては、例えば、シュウ酸エチレン(すなわち、1,4-ジオキサン-2,3-ジオン)、ラクチド類、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、β-ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなど)、カーボネート類(例えば、トリメチレンカーボネートなど)、エーテル類(例えば、1,3-ジオキサンなど)、エーテルエステル類(例えば、ジオキサノンなど)、アミド類(ε-カプロラクタムなど)などの環状モノマー;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのグリコール酸以外のヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオールなどの脂肪族ジオール類と、こはく酸、アジピン酸などの脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物を挙げることができる。これらのコモノマーは1種を単独で使用しても2種以上を併用してもよい。
 グリコール酸共重合体としては、ポリエステル樹脂組成物の分解性が向上するという観点から、共重合体を構成する全構成単位100モル%中に前記グリコール酸単位が50モル%以上含まれているものが好ましく、55モル%以上がより好ましく、80モル%以上含まれているものがさらに好ましく、90モル%以上含まれているものが特に好ましい。また、グリコール酸系樹脂としては、前記グリコール酸単位のみからなるグリコール酸単独重合体が好ましい。
 グリコール酸系樹脂の重量平均分子量(Mw)としては、10,000~800,000が好ましく、20,000~600,000がより好ましく、30,000~400,000がさらに好ましく、50,000~300,000が特に好ましい。グリコール酸系樹脂のMwが前記下限未満になると、ポリエステル樹脂組成物から得られる成形体の強度が不足する場合があり、他方、前記上限を超えると、溶融粘度の増加によりポリエステル樹脂組成物の成形性が劣る場合がある。
 このようなグリコール酸系樹脂の製造方法としては特に限定はなく、従来公知の方法により製造することができる。また、本発明においては、市販のグリコール酸系樹脂を用いてもよい。
 グリコール酸系樹脂の製造方法としては、以下の方法を例示することができる。
(1)グリコリドおよび必要に応じてコモノマーを用い、開環重合によりグリコール酸系樹脂を得る方法(以下、「グリコール酸系樹脂の製造方法1」とも記す)。
(2)グリコール酸またはグリコール酸アルキルエステルおよび必要に応じてコモノマーを用い、脱水または脱アルコールを伴う重縮合によりプレポリマーを製造し、得られたプレポリマーを、このプレポリマーのガラス転移温度より高くかつ融点より低い温度に加熱して、固相重合させる方法(以下、「グリコール酸系樹脂の製造方法2」とも記す。)。
 (グリコール酸系樹脂の製造方法1)
 グリコール酸系樹脂の製造方法1では、グリコリドおよび必要に応じてコモノマーを用い、開環重合によりグリコール酸系樹脂を得る。グリコリドは、ヒドロキシカルボン酸の1種であるグリコール酸の2分子間環状エステルである。なお、グリコリドの開環重合により、グリコール酸系樹脂を製造する場合であっても、所望により、グリコリド量の20質量%を限度として、グリコール酸をモノマーの一部として用いてもよい。また、モノマーの一部としてコモノマーを用いてもよい。コモノマーを用いる場合には、得られるグリコール酸共重合体が、前述の範囲でグリコール酸単位を有するように、コモノマーの使用量を決定することが好ましい。
 コモノマーとしては、環状モノマーを用いることが好ましい。環状モノマーとしては、ラクチドなど他のヒドロキシカルボン酸の2分子間環状エステルのほか、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、トリメチレンカーボネート、1,3-ジオキサンなどの環状モノマーを使用することができる。好ましい環状モノマーは、グリコール酸以外のヒドロキシカルボン酸の2分子間環状エステルであり、ヒドロキシカルボン酸としては、例えば、L-乳酸、D-乳酸、α-ヒドロキシ酪酸、α-ヒドロキシイソ酪酸、α-ヒドロキシ吉草酸、α-ヒドロキシカプロン酸、α-ヒドロキシイソカプロン酸、α-ヒドロキシヘプタン酸、α-ヒドロキシオクタン酸、α-ヒドロキシデカン酸、α-ヒドロキシミリスチン酸、α-ヒドロキシステアリン酸、およびこれらのアルキル置換体などを挙げることができる。特に好ましい環状モノマーは、乳酸(L体、D体、ラセミ体、これらの混合物のいずれであってもよい)の2分子間環状エステルであるラクチドである。
 グリコール酸系樹脂の製造方法1では、グリコリドの開環重合が行われるが、この開環重合は、グリコリドの単独重合でも、グリコリドとコモノマーとの共重合でもよい。このような開環重合は好ましくは、少量の触媒の存在下に行われる。触媒としては、特に限定されないが、例えば、ハロゲン化錫(例えば、二塩化錫、四塩化錫など)や有機カルボン酸錫(例えば、2-エチルヘキサン酸錫などのオクタン酸錫)などの錫系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物;などを用いることができる。触媒の使用量は、環状エステルに対して、質量比で、好ましくは1~1,000ppm、より好ましくは3~300ppmである。
 グリコリドの開環重合は、塊状重合でも、溶液重合でもよいが、塊状重合が好ましい。分子量調節のために、ラウリルアルコールなどの高級アルコールや水などを分子量調節剤として使用してもよい。また、物性改良のために、グリセリンなどの多価アルコールを添加してもよい。塊状重合の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、板状型、管状型など様々な装置の中から、適宜選択することができる。また、溶液重合には、各種反応槽を用いることができる。
 重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で適宜設定することができる。重合温度は、好ましくは130~270℃、より好ましくは140~260℃、特に好ましくは150~250℃である。重合温度が低すぎると、生成したグリコール酸系樹脂の分子量分布が広くなりやすい。重合温度が高すぎると、生成したグリコール酸系樹脂が熱分解を受けやすくなる。重合時間は、3分間~20時間、好ましくは5分間~18時間の範囲内である。重合時間が短すぎると重合が充分に進行し難く、所定の重量平均分子量を実現することができない。重合時間が長すぎると生成したグリコール酸系樹脂が着色しやすくなる。
 生成したグリコール酸系樹脂を固体状態とした後、所望により、更に固相重合を行ってもよい。固相重合とは、グリコール酸系樹脂の融点未満の温度で加熱することにより、固体状態を維持したままで熱処理する操作を意味する。この固相重合により、未反応モノマー、オリゴマーなどの低分子量成分が反応する。また、それらの一部が揮発・除去されることもある。固相重合は、通常、(1)窒素やアルゴン等の不活性ガス雰囲気下、(2)減圧下、または(3)流動パラフィンのような不活性溶媒下で、所定の温度に加熱することにより行われる。固相重合は、好ましくは1~100時間、より好ましくは2~50時間、特に好ましくは3~30時間で行われる。
 (グリコール酸系樹脂の製造方法2)
 グリコール酸系樹脂の製造方法2では、グリコール酸またはグリコール酸アルキルエステルおよび必要に応じてコモノマーを用い、脱水または脱アルコールを伴う重縮合によりプレポリマーを製造し、得られたプレポリマーを、このプレポリマーのガラス転移温度より高くかつ融点より低い温度に加熱して、固相重合させることによりグリコール酸系樹脂を得る。
 前記グリコール酸アルキルエステルとしては、特に限定されないが、アルキル基の炭素数が1~4のものが好ましく、その具体例として、グリコール酸メチル、グリコール酸エチル、グリコール酸n-プロピル、グリコール酸イソプロピル、グリコール酸n-ブチル、グリコール酸イソブチル、グリコール酸t-ブチルなどを挙げることができる。グリコール酸アルキルエステルとしては、これらを単独で、あるいは2種以上を組み合せて使用することができる。これらの中でも、グリコール酸メチルやグリコール酸エチルが、脱アルコール性が容易であるため、特に好ましい。また、コモノマーとしては前述のものを用いることができる。
 前記プレポリマーの重量平均分子量は、通常、5,000以上、150,000未満であり、好ましくは8,000~100,000の範囲内である。プレポリマーの重量平均分子量が低すぎると、固相重合によって高分子量のグリコール酸系樹脂を得るのに長時間を要し、経済的ではない。一方、グリコール酸またはグリコール酸アルキルエステルの重縮合によって、重量平均分子量が150,000以上のグリコール酸系樹脂を得ることは困難である。
 前記重縮合を行う際には、触媒の使用は必須ではないが、反応速度を速める目的で触媒を添加することができる。触媒としては、例えば、塩化第一錫、塩化第二錫、硫酸第一錫、酸化第一錫、酸化第二錫、テトラフェニル錫、オクタン酸第一錫、酢酸第一錫、酢酸第二錫などの錫系触媒;四塩化チタン、チタン酸イソプロピオネート、チタン酸ブチルなどのチタン系触媒;金属ゲルマニウム、四塩化ゲルマニウム、酸化ゲルマニウムなどのゲルマニウム系触媒;酸化亜鉛、三酸化アンチモン、酸化鉛、酸化アルミニウム、酸化鉄などの金属酸化物系触媒;等が挙げられる。これらの触媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 重縮合の際に触媒を用いる場合は、触媒を、その金属原子を基準として、単量体1モルに対し、好ましくは1×10-5~1×10-2当量、より好ましくは3×10-5~5×10-3当量の割合で添加する。触媒の添加量が少なすぎると、重合時間の短縮効果が小さくなり、工業的にみて経済的でない。触媒の添加量が多すぎると、生成ポリマーが着色する傾向があるため、商品価値を損なうおそれがある。触媒は、そのままで、あるいは適当な液体に溶解ないしは分散して、反応系に添加する。触媒の添加は、一括でも分割でもよい。触媒は、実質的に重縮合反応が完結するまでの間であれば、いずれの時期に反応系に添加してもよい。
 これらの触媒を使用する場合は、着色防止剤としてリン化合物を添加することができる。リン化合物としては、例えば、リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、ポリリン酸モノエチルエステル、ポリリン酸ジエチルエステル、ピロリン酸、ピロリン酸トリエチル、ピロリン酸ヘキサメチルアミド、亜リン酸、亜リン酸トリエチル、亜リン酸トリフェニル等を挙げることができる。これらのリン化合物は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。リン化合物は、リン原子を基準として、触媒の金属原子1当量に対し、好ましくは0.1~10当量、より好ましくは0.3~3当量の割合で添加する。リン化合物の添加量が少なすぎると、着色防止効果が小さく、多すぎると、重縮合反応が遅くなることがある。リン化合物は、そのままで、あるいは適当な液体に溶解ないしは分散して反応系に添加する。リン化合物の添加は、一括でも分割でもよい。リン化合物は、実質的に重縮合反応が完結するまでの間であれば、いずれの時期に反応系に添加してもよい。
 グリコール酸またはグリコール酸アルキルエステルの脱水または脱アルコール重縮合反応は、プレポリマーが所定の分子量に達したときを反応の終点とする。プレポリマーが比較的低分子量の場合は、重縮合反応終了時には液状であり、冷却により結晶固化する。プレポリマーが比較的高分子量の場合は、固化した段階で反応の終点とする。反応の終点後、そのまま固相重合を行っても構わないが、総表面積を拡大させるため、粉砕等の処置により、粒状化させたのち固相重合を行った方が効果的である。
 グリコール酸系樹脂の製造方法2では、上記のようにして得られたプレポリマーを、このプレポリマーのガラス転移温度より高くかつ融点より低い温度に加熱して、固相重合させることにより、高分子量のグリコール酸系樹脂を製造する。固相重合は、通常、不活性ガス雰囲気下または減圧下または不活性溶媒下に行う。固相重合を行うに当り、プレポリマーの形状は、塊状、ペレット、粒状、粉末等のいずれでもよく、特に限定されない。プレポリマーを、粉砕等により細粒にしておくと、表面積が増え、反応を促進することができるので、好ましい。
 固相重合は、文字どおりプレポリマーを固体状態に保持して重合反応を行う。したがって、プレポリマーの融点によって、固相重合における反応温度の上限値が決定される。固相重合の反応温度は、通常、プレポリマーの融点よりも5℃以上低い温度、好ましくはプレポリマーの融点よりも10℃以上低い温度である。プレポリマーの融点近くで固相重合を行うと、副反応が起きやすく、分子量低下、ガス発生、着色などの好ましくない現象が生じやすい。プレポリマーの融点以上での反応は、プレポリマーが溶融するため、もはや固相重合とは呼ばれず、副反応が非常に起こりやすく、高分子量化が困難となる。反応速度を高める上で、固相重合の反応温度を好ましくは100~230℃、より好ましくは150~220℃の範囲内とすることが望ましい。
 固相重合反応中、分子量の増加や、アニール効果により融点が上昇する場合、固相重合反応温度を段階的に上げていくことができる。しかし、その場合でも、反応温度は、その時点におけるプレポリマーの融点より低い温度、好ましくはその時点のプレポリマーの融点よりも5℃以上低い温度、より好ましくはその時点のプレポリマーの融点よりも10℃以上低い温度に制御する。
 固相重合は、通常、(1)窒素やアルゴン等の不活性ガス雰囲気下、(2)減圧下、または(3)流動パラフィンのような不活性溶媒下で、プレポリマーを所定の温度に加熱することにより行われる。これによって、望ましくない副反応を避けて、高分子量化することが容易となる。
 固相重合は、触媒なしでも行うことができるが、必要であれば触媒を添加することができる。触媒としては、例えば、塩化第一錫、塩化第二錫、硫酸第一錫、酸化第一錫、酸化第二錫、テトラフェニル錫、オクタン酸第一錫、酢酸第一錫、酢酸第二錫などの錫系触媒;四塩化チタン、チタン酸イソプロピオネート、チタン酸ブチルなどのチタン系触媒;金属ゲルマニウム、四塩化ゲルマニウム、酸化ゲルマニウムなどのゲルマニウム系触媒;酸化亜鉛、三酸化アンチモン、酸化鉛、酸化アルミニウム、酸化鉄などの金属酸化物系触媒;等が挙げられる。これらの固相重合触媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 固相重合触媒を用いる際は、触媒を、プレポリマー100重量部に対し、好ましくは0.001~2重量部、より好ましくは0.005~0.5重量部の割合で添加する。触媒の添加量が少なすぎると、添加効果が小さく、重合時間を充分に短くすることが難しい。触媒の添加量が多すぎると、生成ポリマーの着色が大きくなり、商品価値を損なうおそれがある。触媒は、そのままで、あるいは適当な液体に溶解ないしは混合して、反応系に添加する。触媒の添加は、一括でも分割でもよい。触媒は、実質的に固相重合反応が完結するまでの間であれば、いずれの時期に反応系に添加してもよい。
 固相重合触媒を使用する場合は、着色防止剤としてリン化合物を用いることができる。リン化合物としては、リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、ポリリン酸モノエチルエステル、ポリリン酸ジエチルエステル、ピロリン酸、ピロリン酸トリエチル、ピロリン酸ヘキサメチルアミド、亜リン酸、亜リン酸トリエチル、亜リン酸トリフェニル等を挙げることができる。これらのリン化合物は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。リン化合物は、リン原子を基準として、触媒の金属原子1当量に対し、好ましくは0.1~10当量、より好ましくは0.3~3当量の割合で添加する。この添加量が少なすぎると、着色防止効果が小さく、多すぎると、反応が遅くなる。リン化合物は、そのままで、あるいは適当な液体に溶解ないしは分散して反応系に添加することができる。リン化合物の添加は、一括でも分割でもよい。リン化合物は、実質的に固相重合反応が完結するまでの間であれば、いずれの時期に反応系に添加してもよい。
 このようなグリコール酸系樹脂の製造方法2としては、特開平11-116666号公報に開示されたポリグリコール酸の製造方法により行うことができる。
 (その他のポリエステル樹脂)
 本発明のポリエステル樹脂組成物においては、前記グリコール酸系樹脂以外のポリエステル樹脂(以下、「その他のポリエステル樹脂」という。)を併用することができる。このようなその他のポリエステル樹脂の含有量は50質量%未満であり、ポリエステル樹脂組成物の分解性が向上するという観点から、45質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。
 前記その他のポリエステル樹脂としては特に制限はないが、乳酸系樹脂、ポリエチレンテレフタレート共重合体、ポリブチレンサクシネート、ポリカプロラクトン、ポリヒドロキシアルカノエートなどの分解性ポリエステル樹脂が挙げられる。これらの分解性ポリエステル樹脂は、1種を単独で使用しても2種以上を併用してもよい。このような分解性ポリエステル樹脂の中でも、ポリエステル樹脂組成物の分解性が向上するという観点から、乳酸系樹脂が好ましい。
 乳酸系樹脂は、乳酸単位(-OCH(CH)-CO-)を有する重合体であり、例えば、前記乳酸単位のみからなるポリ乳酸、乳酸単位および他のモノマー(以下、「コモノマー」という。)に由来する構成単位を有する乳酸共重合体が挙げられる。ポリ乳酸としては、D-乳酸単位のみからなるポリ-D-乳酸(D-乳酸の単独重合体)、L-乳酸単位のみからなるポリ-L-乳酸(L-乳酸の単独重合体)、D-乳酸単位とL-乳酸単位とからなるポリ-DL-乳酸(D-乳酸とL-乳酸の共重合体)が挙げられる。乳酸共重合体としては、共重合体を構成する全構成単位100モル%中に前記乳酸単位が50モル%以上含まれているものが好ましい。また、乳酸共重合体においても、前記乳酸単位は、D-乳酸単位のみであっても、L-乳酸単位のみであっても、D-乳酸単位とL-乳酸単位とが混合したものであってもよい。
 なお、前記乳酸単位は、重合により-OCH(CH)-CO-構造を重合体中に与えるモノマーに由来するものであり、必ずしも乳酸に由来するものである必要はなく、本発明においては、例えば、乳酸の2分子環状エステルであるラクチドに由来する重合体も前記乳酸系樹脂に含まれる。
 前記コモノマーとしては、グリコール酸共重合体におけるコモノマーとして例示したもの(乳酸およびラクチドを除く。)、グリコール酸およびグリコリドが挙げられる。乳酸共重合体としては、ポリエステル樹脂組成物の分解性が向上するという観点から、共重合体を構成する全構成単位100モル%中に前記乳酸単位が50モル%以上含まれているものが好ましく、55モル%以上がより好ましく、80モル%以上含まれているものがさらに好ましく、90モル%以上含まれているものが特に好ましい。また、乳酸系樹脂としては、前記乳酸単位のみからなる乳酸単独重合体が好ましい。
 乳酸系樹脂の重量平均分子量(Mw)としては、10,000~800,000が好ましく、20,000~600,000がより好ましく、30,000~400,000がさらに好ましく、50,000~300,000が特に好ましい。乳酸系樹脂のMwが前記下限未満になると、ポリエステル樹脂組成物からなる成形体の強度が不足する場合があり、他方、前記上限を超えると、溶融粘度の増加によりポリエステル樹脂組成物の成形性が劣る場合がある。
 このような乳酸系樹脂の製造方法としては特に限定はなく、従来公知の方法により製造することができる。また、本発明においては、市販の乳酸系樹脂を用いてもよい。
 〔分解促進剤〕
 本発明に用いられる分解促進剤は、カルボン酸無水物であり、必要に応じてリン化合物を併用することができる。分解促進剤としてカルボン酸無水物を添加することによって、低温(例えば、60℃未満、好ましくは50℃以下)でも分解性に優れたポリエステル樹脂組成物を得ることができ、さらに、このポリエステル樹脂組成物は保管性にも優れている。また、リン化合物を併用することによって、分解性が更に向上する傾向にある。
 (カルボン酸無水物)
 本発明に用いられるカルボン酸無水物としては特に制限はないが、本発明のポリエステル樹脂組成物を成形加工する際の温度に耐えうる耐熱性の観点およびポリエステル樹脂組成物との相溶性の観点から、無水ヘキサン酸、無水オクタン酸、無水デカン酸、無水ラウリン酸、無水ミスチリン酸、無水パルミチン酸、無水ステアリン酸などの脂肪族モノカルボン酸無水物(好ましくは、炭素数6~20のアルキル基を2個有するもの);無水安息香酸などの芳香族モノカルボン酸無水物;無水こはく酸、無水マレイン酸などの脂肪族ジカルボン酸無水物(好ましくは、炭素数2~20の飽和または不飽和の炭化水素鎖を有するもの);無水フタル酸などの芳香族ジカルボン酸無水物;無水トリメリト酸などの芳香族トリカルボン酸無水物;テトラヒドロ無水フタル酸などの脂環式ジカルボン酸無水物;ブタンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物;3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリンビスアンヒドロトリメリテートモノアセテートなどの芳香族テトラカルボン酸二無水物が好ましく、環構造を有するカルボン酸無水物がより好ましく、芳香族モノカルボン酸無水物、芳香族ジカルボン酸無水物、芳香族トリカルボン酸無水物、芳香族テトラカルボン酸二無水物がさらに好ましく、無水フタル酸、無水トリメリト酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物が特に好ましい。これらのカルボン酸無水物は1種を単独で使用しても2種以上を併用してもよい。
 また、このようなカルボン酸無水物のうち、ポリエステル樹脂組成物のガラス転移温度(Tg)を、グリコール酸系樹脂のTgよりも上昇させることが可能なカルボン酸無水物を用いることが好ましい。このようなカルボン酸無水物としては、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物が挙げられる。Tgを上昇させることが可能なカルボン酸無水物を用いると、ポリエステル樹脂組成物を成形加工する際の取り扱い性が向上する傾向にある。例えば、ポリエステル樹脂組成物を用いて繊維を製造する場合には、繊維製造時の膠着が問題となることがあるが、Tgが上昇すると、膠着が起こりづらくなる傾向にある。なお、グリコール酸系樹脂自体のTgは、通常-40~45℃であり、例えばグリコール酸系樹脂がグリコール酸単独重合体である場合には、Tgは通常35~45℃であるが、分解促進剤として3,3’4,4’-ベンゾフェノンテトラカルボン酸二無水物を用いると、Tgが45~55℃のポリエステル樹脂組成物を得ることができる。
 (リン化合物)
 本発明に用いられるリン化合物としては特に制限はないが、リン酸エステルおよび亜リン酸エステルなどの有機リン化合物が好ましく、中でも、炭素数8~24の長鎖アルキル基、芳香族環およびペンタエリスリトール骨格からなる群から選択される少なくとも1種の構造を有する有機リン化合物がより好ましい。これらのリン化合物は、1種を単独で使用しても2種以上を併用してもよい。
 炭素数8~24の長鎖アルキル基を有するリン酸エステルとしては、モノ-またはジ-ステアリルアシッドホスフェートあるいはこれらの混合物、ジ-2-エチルヘキシルアシッドホスフェートなどが挙げられる。芳香族環を有する亜リン酸エステルとしては、トリス(ノニルフェニル)ホスファイトなどが挙げられる。ペンタエリスリトール骨格構造を有する亜リン酸エステルとしては、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイトなどが挙げられる。
 <ポリエステル樹脂組成物>
 本発明のポリエステル樹脂組成物は、前記ポリエステル樹脂100質量部に対して、分解促進剤であるカルボン酸無水物を0.5~50質量部含有するものであり、必要に応じてさらにリン化合物を0.01~10質量部が含有するものである。
 カルボン酸無水物の含有量が前記下限未満になると、低温(例えば、60℃未満、好ましくは50℃以下)での分解性が十分に発現しない。他方、前記上限を超えると、ポリエステル樹脂組成物の成形加工性が低下する。また、このような観点から、カルボン酸無水物の含有量としては、前記ポリエステル樹脂100質量部に対して、1~50質量部が好ましく、3~50質量部がより好ましい。
 また、分解促進剤としてカルボン酸無水物とリン化合物とを併用すると、ポリエステル樹脂組成物の低温での分解性が更に向上する傾向にあるが、リン化合物の含有量が前記上限を超えると、成形加工時の分子量低下や、ブリードアウトにより表面品質を損なう傾向にある。他方、前記下限未満になると、リン化合物の添加効果が十分に得られない傾向にある。また、ポリエステル樹脂組成物の低温での分解性がより向上するという観点から、リン化合物の含有量としては、前記ポリエステル樹脂100質量部に対して、0.1~10質量部がより好ましく、0.5~10質量部がさらに好ましい。
 なお、一般にグリコール酸系樹脂が分解すると、その系中に存在するカルボキシル基の量が増大するため、その系のpHが低下する。グリコール酸系樹脂を含むポリエステル樹脂組成物の分解を促進するための添加剤としては、従来から酸(例えばカルボン酸)、無機物等を用いることが知られている。本発明では、カルボン酸無水物を分解促進剤として用いるため、例えば酸を用いた時よりも、その系の初期のpHを高くすることができる。また、カルボン酸無水物は、従来の分解促進剤(すなわち、カルボン酸無水物およびリン化合物以外の分解促進剤)と比べて、水の存在量が少ない環境下では反応および吸水により樹脂の分解を抑制するため、本発明のポリエステル樹脂組成物は水の存在量が多い環境下では優れた分解性を有するにも関わらず、本発明のポリエステル樹脂組成物の製造時や成形時、さらに成形により得られた成形体を保管している際の水の存在量が少ない環境下ではグリコール酸系樹脂の分解を抑制することが可能となる。
 本発明のポリエステル樹脂組成物においては、ポリエステル樹脂組成物を成形加工する際の熱劣化を抑制するために、従来公知の熱安定剤を配合してもよい。このような熱安定剤としては、炭酸カルシウム、炭酸ストロンチウム等の炭酸金属塩;一般に重合触媒不活性剤として知られる、ビス[2-(2-ヒドロキシベンゾイル)ヒドラジン]ドデカン酸、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジンなどの-CONHNH-CO-単位を有するヒドラジン系化合物;3-(N-サリチロイル)アミノ-1,2,4-トリアゾール等のトリアゾール系化合物;トリアジン系化合物;などが挙げられる。熱安定剤の配合量は、前記ポリエステル樹脂100質量部に対して、通常3質量部以下であり、好ましくは0.001~1質量部、より好ましくは0.005~0.5質量部、特に好ましくは0.01~0.1質量部(100~1,000ppm)である。
 また、本発明のポリエステル樹脂組成物においては、保存性を向上させるために、従来公知のカルボキシル基末端封止剤または水酸基末端封止剤を配合してもよい。このような末端封止剤は、カルボキシル基末端封止作用および水酸基末端封止作用を有する化合物であれば特に制限はないが、カルボキシル基末端封止剤としては、例えば、N,N-2,6-ジイソプロピルフェニルカルボジイミド等のカルボジイミド化合物;2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2-フェニル-2-オキサゾリン、スチレン・イソプロペニル-2-オキサゾリン等のオキサゾリン化合物;2-メトキシ-5,6-ジヒドロ-4H-1,3-オキサジン等のオキサジン化合物;N-グリシジルフタルイミド、シクロへキセンオキシド、トリス(2,3-エポキシプロピル)イソシアヌレート等のエポキシ化合物;などが挙げられる。これらのカルボキシル基末端封止剤の中でも、カルボジイミド化合物が好ましく、芳香族、脂環族、および脂肪族のいずれのカルボジイミド化合物も用いることができるが、とりわけ、芳香族カルボジイミド化合物が好ましく、特に、純度の高いものが保存性の向上効果に優れている。また、水酸基末端封止剤としては、ジケテン化合物、イソシアネート類などが挙げられる。このような末端封止剤の配合量は、前記ポリエステル樹脂100質量部に対して、通常0.01~5質量部であり、好ましくは0.05~3質量部、より好ましくは0.1~1質量部である。
 さらに、本発明のポリエステル樹脂組成物においては、用途に応じて、ポリエステル樹脂以外の樹脂、光安定剤、無機フィラー、有機フィラー、可塑剤、結晶核剤、防湿剤、防水剤、撥水剤、滑剤、離型剤、カップリング剤、酸素吸収剤、顔料、染料等の任意成分をさらに配合してもよい。特に、本発明のポリエステル樹脂組成物からなる成形体を、後述する石油または天然ガスの坑井掘削における破砕流体などの坑井処理流体中の成分として用いる場合には、ポリエステル樹脂組成物には、任意成分として、ポリエステル樹脂以外の樹脂、熱安定剤、光安定剤、無機フィラー、有機フィラー、可塑剤、結晶核剤、防湿剤、防水剤、撥水剤、滑剤が配合されていることが好ましい。
 前記ポリエステル樹脂以外の樹脂としては、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリアミド、ポリエステルアミド、アクリル樹脂、スチレン系共重合体、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート、ポリアセタール、ポリスルホン、ポリフェニレンエーテル、ポリイミド、ポリエーテルイミド、ポリサッカライド、セルロースエステル樹脂等の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂;エチレン/グリシジルメタクリレート共重合体、エチレン/プロピレンコポリマー、エチレン/ブテン-1共重合体などの軟質ポリオレフィン系ポリマー、各種コアシェル型エラストマー、ポリアミドエラストマー等の軟質熱可塑性樹脂が挙げられる。これらの樹脂は1種を単独で使用しても2種以上を併用してもよい。
 また、本発明のポリエステル樹脂組成物は、通常分解性が求められる分野に用いられる。このため、前記ポリエステル樹脂以外の樹脂も分解性を有することが好ましい。このような樹脂としては、ポリアミド、ポリエステルアミド、ポリエーテル、ポリサッカライド、ポリビニルアルコールが好ましい。
 このようなポリエステル樹脂以外の樹脂は、この樹脂と前記ポリエステル樹脂との合計100質量部に対して、前記ポリエステル樹脂に含まれるグリコール酸系樹脂が99~50質量部、ポリエステル樹脂以外の樹脂が1~50質量部となるように配合することが好ましい。
 本発明のポリエステル樹脂組成物の製造方法としては特に制限はないが、例えば、グリコール酸系樹脂および必要に応じて前記その他のポリエステル樹脂を含むポリエステル樹脂に、分解促進剤であるカルボン酸無水物および必要に応じてリン化合物と、必要に応じて熱安定剤、末端封止剤、その他の任意成分とを混合した後、グリコール酸系樹脂の融点以上の温度で溶融混練を行う方法が挙げられる。特に、本発明のポリエステル樹脂組成物には、分解促進剤としてカルボン酸無水物が含まれているため、通常のカルボン酸などの従来の分解促進剤(すなわち、カルボン酸無水物およびリン化合物以外の分解促進剤)が含まれている場合に比べて、溶融混練によるグリコール酸系樹脂の分子量の低下が少なくなるという利点がある。
 <成形体>
 本発明の成形体は、前記本発明のポリエステル樹脂組成物からなるものである。本発明のポリエステル樹脂組成物は、優れた分解性を有し、グリコール酸系樹脂が有するガスバリア性、耐熱性、機械的強度にも優れているため、包装材料、工業材料、医療用繊維等の様々な用途に用いることが可能である。また、本発明のポリエステル樹脂組成物は、高温(例えば、60℃以上)だけでなく、低温(例えば、60℃未満、好ましくは50℃以下)でも分解性に優れているため、坑井掘削において使用される各種の液状流体、すなわち、破砕流体などの坑井処理流体の一成分としても用いることができる。
 本発明の成形体の形状としては、成形体が用いられる用途によって異なるが、例えば、パウダー、ペレット、フィルム、繊維が挙げられる。なお、本発明の成形体を得る方法としては特に限定はないが、例えば、溶融状態の本発明のポリエステル樹脂組成物を直接、所望の形状に成形して本発明の成形体を得る方法や、溶融状態の本発明のポリエステル樹脂組成物からペレットを成形し、このペレットを所望の形状に二次成形して本発明の成形体を得る方法が挙げられる。
 このような本発明の成形体は、石油または天然ガスの坑井掘削において使用される各種の液状流体、すなわち、破砕流体などの坑井処理流体に使用することができる。特に、掘削流体、フラクチャリング流体、セメンティング流体、一時プラグ流体および仕上げ流体からなる群より選ばれる少なくとも1種の坑井処理流体に使用することができる。
 <坑井処理流体>
 本発明の坑井処理流体は、前記本発明の成形体を含有するものである。このような坑井処理流体は、掘削流体、フラクチャリング流体、セメンティング流体、一時プラグ流体及び仕上げ流体からなる群より選ばれる少なくとも1種の坑井処理流体として使用できる。
 本発明の坑井処理流体に含まれる成形体の形状としては、特に限定はないが、例えば、パウダー、ペレット、フィルム、繊維が挙げられる。パウダーとしては、長径/短径が1.9以下で、累積50重量%平均径が1~1000μmであるパウダーが挙げられる。ペレットとしては、長手方向の長さが1~10mmであり、かつアスペクト比が1以上5未満のペレットが挙げられる。フィルムとしては、面積0.01~10cm、厚さ1~1000μmのフィルム片が挙げられる。繊維としては、長さ/断面径(アスペクト比)が10~2000で、短径が5~95μmの短繊維が挙げられる。
 本発明の成形体は、例えば、繊維としてフラクチャリング流体に配合する場合は、前記繊維を0.05~100g/L、好ましくは0.1~50g/Lの濃度でフラクチャリング流体に含有させることによって、プロパントの分散性を向上させることが可能となる。
 フラクチャリング流体に配合された繊維は、坑井の製造中および/または完成後には、機能上、不要となることがあるが、その際、前記本発明のポリエステル樹脂組成物からなる繊維を用いると、通常必要とされる回収または廃棄処理が不要または容易となる。すなわち、前記繊維は、生分解性および加水分解性に優れているので、例えば、地中に形成されたフラクチャ等の中に残置しておいても、土壌中に存在する微生物によって生分解され、あるいは土壌中の水分によって加水分解されて短時間で消失するので、回収作業が不要となる。特に、本発明のポリエステル樹脂組成物が、高温(例えば、60℃以上)だけでなく低温(例えば、60℃未満、好ましくは50℃以下)でも優れた分解性を示すため、高温高圧の土壌環境中だけでなく、比較的低温の土壌環境中においても、前記繊維は短時間で消失する。また、条件によっては、前記繊維が残存する地中にアルカリ性溶液を注入し、繊維と接触させることによって、より短時間で加水分解させることもできる。さらに、前記繊維をフラクチャリング流体と一緒に地上に回収した後、容易に(比較的低温で)生分解または加水分解させることもできる。
 また、本発明の成形体は、高温(例えば、60℃以上)だけでなく低温(例えば、60℃未満、好ましくは50℃以下)でも優れた加水分解性を有することから、機能上、不要となった場合には、地上に回収しても比較的低温で、また、高温高圧の土壌環境中だけでなく、比較的低温の土壌環境中においても、短期間で加水分解させて消失させることができる。なお、前記成形体は酸放出性を有し、坑井製造中において採用されることがある酸処理、すなわち、酸を油層等と接触させる処理を行うことにより、岩石の破砕を容易にしたり、岩石を溶解して油層の浸透率を高めたりする坑井刺激法にとって有効に働く効果を奏させることも可能である。
 本発明の坑井処理流体には、本発明の成形体のほか、坑井処理流体に通常含有される種々の成分や添加剤を含有させることができる。例えば、水圧破砕(フラクチャリング)において使用されるフラクチャリング流体には、本発明の成形体を含有(例えば0.05~100g/Lの濃度)させることに加えて、溶剤または分散媒として、水や有機溶剤を主成分として含有(90~95質量%程度)させ、支持体(プロパント)として、砂、ガラスビーズ、セラミック粒子および樹脂被覆した砂などを含有(9~5質量%程度)させ、さらに、ゲル化剤、スケール防止剤、岩石等を溶解するための酸、摩擦低減剤などの種々の添加剤を含有(0.5~1質量%程度)させることができる。前記成形体を含有する坑井処理流体、例えば、上記繊維を0.05~100g/Lの濃度で含有する坑井処理流体は、掘削流体、フラクチャリング流体、セメンティング流体、一時プラグ流体または仕上げ流体等の坑井処理流体として、優れた特性を有するとともに、使用後の回収や廃棄が極めて容易であるという効果を奏する。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例で使用した樹脂や得られたポリエステル樹脂組成物などの特性は以下の方法により測定した。
 <分子量の測定>
 樹脂(ポリグリコール酸およびポリ乳酸など)の分子量はゲルパーミエーションクロマトグラフィー(GPC)により下記条件で求めた。
(GPC測定条件)
装置:昭和電工株式会社製「Shodex-104」
カラム:2本のHFIP-606Mとプレカラムとして1本のHFIP-Gと直列に接続
カラム温度:40℃
溶離液:5mMのトリフルオロ酢酸ナトリウムを溶解させたヘキサフルオロイソプロパノール(HFIP)溶液
流速:0.6ml/分
検出器:RI(示差屈折率)検出器
分子量較正:分子量の異なる標準ポリメタクリル酸メチル5種を用いた。
 <分解性試験(質量減少率の測定)>
 試料(ポリエステル樹脂組成物(繊維を含む)、ポリグリコール酸、またはポリ乳酸)1gをガラス容器中の50mlのイオン交換水に浸漬し、40℃の恒温槽中で1週間または2週間保持した。その後、自重による濾過を行い、濾紙上に残った固形成分を室温で1日間放置し、さらに、80℃の窒素雰囲気下で乾燥した。乾燥後の固形成分の質量を測定し、40℃保持前の試料の質量(1g)に対する割合(40℃で1週間および2週間保持後の質量減少率)を求めた。
 <ガラス転移温度(Tg)の測定>
 試料(ポリエステル樹脂組成物、ポリグリコール酸、またはポリ乳酸)10mgを示差走査熱量測定装置(メトラー・トレド株式会社製「DSC-822e」)に装着し、窒素雰囲気中(40ml/min)で0℃から100℃付近まで20℃/分で加熱した場合において、ガラス状態からゴム状態への転移領域に相当する中間点ガラス転移温度をガラス転移温度(Tg)とした。
 また、繊維は以下の方法により製造した。
<繊維の製造>
 試料(ポリエステル樹脂組成物、ポリグリコール酸、またはポリ乳酸)をシリンダー径20mmφの一軸押出機に投入し、215~250℃で溶融させた。なお、押出機のシリンダー温度は215~250℃、ヘッド温度、ギアポンプ温度およびスピンパック温度はいずれも250℃に設定した。
 溶融状態の試料を、ギアポンプを用いて24穴ノズル(孔径0.20mm)から吐出させ、冷却塔で空冷(約5℃)して糸状に固化させて未延伸糸を得た。その後、未延伸糸を延伸温度65℃で3倍延伸し、延伸糸を得た。
 (実施例1)
 ポリグリコール酸(PGA、株式会社クレハ製「Kuredux」、重量平均分子量(Mw):176,000)100質量部に3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)1質量部を配合し、スクリュー部温度を200~240℃に設定した二軸押出混練機(東洋精機株式会社製「2D25S」)のフィード部に供給して溶融混練を行い、ペレット状のポリグリコール酸樹脂組成物を得た。このポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例2~6)
 BTDAの配合量を表1に示す量に変更した以外は実施例1と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で1週間(実施例3~5)および2週間(実施例2~6)保持後の質量減少率を求めた。その結果を表1に示す。また、実施例3~5で得られたポリグリコール酸樹脂組成物のガラス転移温度を前記方法に従って測定したところ、それぞれ52℃(実施例3)、52℃(実施例4)、53℃(実施例5)であった。さらに、実施例3で得られたポリグリコール酸樹脂組成物を用いて製造した延伸糸について、前記方法に従って分解性試験を行い、40℃で1週間保持後の質量減少率を求めたところ、15%であった。
 (実施例7~8)
 BTDAの代わりに無水フタル酸をそれぞれ5質量部または30質量部配合した以外は実施例1と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で1週間および2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例9~10)
 BTDAの代わりに無水トリメリト酸をそれぞれ5質量部または30質量部配合した以外は実施例1と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で1週間および2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例11~14)
 BTDAの代わりにそれぞれ無水安息香酸(実施例11)、エチレングリコールビスアンヒドロトリメリテート(TMEG)(実施例12)、ブタンテトラカルボン酸二無水物(BT)(実施例13)またはジフェニルスルホンテトラカルボン酸二無水物(DSDA)(実施例14)を10質量部配合した以外は実施例1と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で1週間(実施例11)および2週間(実施例11~14)保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例15)
 PGA100質量部の代わりにPGA90質量部とポリ乳酸(PLA、Nature Works社製「PLA polymer 4032D」、重量平均分子量(Mw):256,000)10質量部を配合した以外は実施例4と同様にしてペレット状のポリグリコール酸系樹脂組成物を調製した。得られたポリグリコール酸系樹脂組成物について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例16~17)
 PGAとPLAの配合量を表1に示す量に変更した以外は実施例15と同様にしてペレット状のポリグリコール酸系樹脂組成物を調製した。得られたポリグリコール酸系樹脂組成物について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例18~22)
 ジステアリルアシッドホスフェートおよびモノステアリルアシッドホスフェートの混合体(株式会社ADEKA製「アデカスタブAX-71」)0.05質量部をさらに配合した以外はそれぞれ実施例1~5と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (実施例23~25)
 アデカスタブAX-71の配合量を0.5質量部に変更した以外はそれぞれ実施例18~20と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
 (比較例1)
 BTDAを配合しなかった以外は実施例1と同様にしてペレット状のポリグリコール酸を調製した。得られたポリグリコール酸について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。また、得られたポリグリコール酸のガラス転移温度を前記方法に従って測定したところ、43℃であった。
 さらに、得られたポリグリコール酸を用いて、前記方法に従ってポリグリコール酸からなる繊維を製造し、得られた延伸糸について、前記方法に従って分解性試験を行い、40℃で1週間保持後の質量減少率を求めたところ、5%未満であった。
 (比較例2)
 PGAの代わりにPLAを用いた以外は比較例1と同様にしてペレット状のポリ乳酸を調製した。得られたポリ乳酸について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
 さらに、得られたポリ乳酸を用いて、前記方法に従ってポリ乳酸からなる繊維を製造し、得られた延伸糸について、前記方法に従って分解性試験を行い、40℃で1週間保持後の質量減少率を求めたところ、5%未満であった。
 (比較例3)
 BTDAの代わりにアジピン酸10質量部を配合した以外は実施例1と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。得られたポリグリコール酸樹脂組成物について、前記方法に従って分解性試験を行い、40℃で2週間保持後の質量減少率を求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、ポリグリコール酸を50質量%以上含むポリエステル樹脂にカルボン酸無水物を添加した場合(実施例1~25)には、ポリグリコール酸のみの場合(比較例1)やポリ乳酸のみの場合(比較例2)に比べて、40℃における分解性が向上する(質量減少率が高くなる)ことがわかった。特に、カルボン酸無水物とリン化合物とを併用した場合(実施例18~25)には、カルボン酸無水物のみを添加した場合(実施例1~6)に比べて、40℃における分解性が向上する(質量減少率が高くなる)ことがわかった。
 (実施例26)
 無水トリメリト酸の配合量を10質量部に変更した以外は実施例9と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。このポリグリコール酸樹脂組成物を用いて、前記方法に従ってポリグリコール酸樹脂組成物からなる繊維を製造した。得られた延伸糸の水分量を0.2~0.3%に調湿した後、延伸糸0.5gをアルミパックに封入し、80℃の恒温槽中で7日間保管して加速保管試験を行なった。
 試験終了後の延伸糸をHFIP溶液に溶解させ、前記方法に従って重量平均分子量(Mw)を測定し、これを保管試験後の延伸糸の重量平均分子量(Mw)とした。その結果を表2に示す。
 (実施例27)
 BTDAの配合量を3質量部に、アデカスタブAX-71の配合量を0.1質量部に変更した以外は実施例18と同様にしてペレット状のポリグリコール酸樹脂組成物を調製した。このポリグリコール酸樹脂組成物を用いた以外は実施例26と同様にして繊維を製造し、保管試験後の延伸糸の重量平均分子量(Mw)求めた。その結果を表2に示す。
 (実施例28)
 実施例4で調製したポリグリコール酸樹脂組成物を用いた以外は実施例26と同様にして繊維を製造し、保管試験後の延伸糸の重量平均分子量(Mw)求めた。その結果を表2に示す。
 (比較例4)
 比較例1で調製したポリグリコール酸を用いた以外は実施例26と同様にして繊維を製造し、保管試験後の延伸糸の重量平均分子量(Mw)求めた。その結果を表2に示す。
 (比較例5)
 比較例3で調製したポリグリコール酸樹脂組成物を用いた以外は実施例26と同様にして繊維を製造し、保管試験後の延伸糸の重量平均分子量(Mw)求めた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、いずれの実施例および比較例においても、MW=17.6×10のPGAを使用して加速保管試験を開始したが、ポリグリコール酸にカルボン酸無水物を添加した本発明のポリエステル樹脂組成物(実施例26~28)は、ポリグリコール酸のみの場合(比較例4)に比べて、加速保管試験後の重量平均分子量が高く(すなわち、加速保管試験による重量平均分子量の低下の程度が小さく)、保管性に優れていることがわかった。一方、カルボン酸無水物の代わりに酸無水物でないカルボン酸を添加したポリエステル樹脂組成物(比較例5)の保管性は、ポリグリコール酸のみの場合(比較例4)と同等であり、本発明のポリエステル樹脂組成物に比べて劣っていることがわかった。
 以上説明したように、本発明によれば、グリコール酸系樹脂を50質量%以上含むポリエステル樹脂の分解を比較的低温(例えば、60℃未満、好ましくは50℃以下)においても進行させることができ、さらに、保管時の分解を抑制することも可能となる。
 したがって、本発明のポリエステル樹脂組成物は、比較的低温での分解性に優れているため、このようなポリエステル樹脂組成物からなる短繊維などの成形体は、高温(例えば、60℃以上)だけでなく低温(例えば、60℃未満、好ましくは50℃以下)での石油や天然ガスの掘削に適した坑井処理流体材料(例えば、破砕流体用目止め剤)などとして有用である。
 また、本発明のポリエステル樹脂組成物は、保管時に分解劣化しにくいため、短繊維など各種成形体の大量生産に適した原材料としても有用である。

Claims (8)

  1.  グリコール酸系樹脂を50質量%以上含むポリエステル樹脂100質量部と、カルボン酸無水物0.5~50質量部を含有するポリエステル樹脂組成物。
  2.  前記カルボン酸無水物が、脂肪族モノカルボン酸無水物、芳香族モノカルボン酸無水物、脂肪族ジカルボン酸無水物、芳香族ジカルボン酸無水物、芳香族トリカルボン酸無水物、脂環式ジカルボン酸無水物、脂肪族テトラカルボン酸二無水物および芳香族テトラカルボン酸二無水物からなる群から選択される少なくとも1種である、請求項1に記載のポリエステル樹脂組成物。
  3.  前記ポリエステル樹脂100質量部に対して0.01~10質量部のリン化合物をさらに含有する請求項1または2に記載のポリエステル樹脂組成物。
  4.  前記リン化合物がリン酸エステルおよび亜リン酸エステルからなる群から選択される少なくとも1種の有機リン化合物である、請求項3に記載のポリエステル樹脂組成物。
  5.  前記有機リン化合物が、炭素数8~24の長鎖アルキル基、芳香族環およびペンタエリスリトール骨格からなる群から選択される少なくとも1種の構造を有するものである、請求項4に記載のポリエステル樹脂組成物。
  6.  請求項1~5のうちのいずれか一項に記載のポリエステル樹脂組成物からなる成形体。
  7.  パウダー、ペレット、フィルムおよび繊維のうちのいずれかの形状を有する請求項6に記載の成形体。
  8.  請求項6または7に記載の成形体を含有する坑井処理流体。
PCT/JP2013/062400 2012-04-27 2013-04-26 ポリエステル樹脂組成物およびその成形体 WO2013162002A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL13780586T PL2848651T3 (pl) 2012-04-27 2013-04-26 Kompozycja żywicy poliestrowej oraz wyrób formowany z kompozycji żywicy poliestrowej
CA2867111A CA2867111C (en) 2012-04-27 2013-04-26 Polyester resin composition and molded article of same
CN201380008679.2A CN104105758B (zh) 2012-04-27 2013-04-26 聚酯树脂组合物及其成型体
US14/386,595 US9637672B2 (en) 2012-04-27 2013-04-26 Polyester resin composition and molded article of same
EP13780586.7A EP2848651B1 (en) 2012-04-27 2013-04-26 Polyester resin composition and molded article of same
JP2014512713A JP6133847B2 (ja) 2012-04-27 2013-04-26 ポリエステル樹脂組成物およびその成形体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012102935 2012-04-27
JP2012-102935 2012-04-27
JP2013-007401 2013-01-18
JP2013007401 2013-01-18

Publications (1)

Publication Number Publication Date
WO2013162002A1 true WO2013162002A1 (ja) 2013-10-31

Family

ID=49483298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062400 WO2013162002A1 (ja) 2012-04-27 2013-04-26 ポリエステル樹脂組成物およびその成形体

Country Status (7)

Country Link
US (1) US9637672B2 (ja)
EP (1) EP2848651B1 (ja)
JP (1) JP6133847B2 (ja)
CN (1) CN104105758B (ja)
CA (1) CA2867111C (ja)
PL (1) PL2848651T3 (ja)
WO (1) WO2013162002A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112479A1 (ja) * 2013-01-18 2014-07-24 株式会社クレハ 坑井処理流体材料およびそれを含有する坑井処理流体
WO2015068742A1 (ja) * 2013-11-05 2015-05-14 三菱化学株式会社 脂肪族ポリエステル樹脂繊維及び脂肪族ポリエステル樹脂組成物
WO2015137168A1 (ja) * 2014-03-11 2015-09-17 株式会社クレハ 脂肪族ポリエステル樹脂を含有する有効厚みが1mm以上である成形品、及び炭化水素資源回収用ダウンホールツール部材
WO2015137057A1 (ja) * 2014-03-11 2015-09-17 東洋製罐グループホールディングス株式会社 水中投下用樹脂成型体
US9868231B2 (en) 2015-03-30 2018-01-16 Kureha Corporation Polyglycolic acid molded article, component for downhole tool, and method of producing polyglycolic acid molded article
US10208559B2 (en) 2013-12-27 2019-02-19 Kureha Corporation Diameter-expandable annular degradable seal member for downhole tool, plug for well drilling, and method for well drilling
US10280699B2 (en) 2014-03-07 2019-05-07 Kureha Corporation Degradable rubber member for downhole tools, degradable seal member, degradable protecting member, downhole tool, and method for well drilling
WO2022209378A1 (ja) * 2021-03-30 2022-10-06 株式会社クレハ グリコール酸共重合体組成物、および固化押出成形物
CN115975363A (zh) * 2023-02-17 2023-04-18 重庆江际生物技术有限责任公司 一种降解速率可控的高分子量高冲击强度聚乙醇酸pga树脂组合物及其制备方法与应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076390A1 (ja) * 2014-11-13 2016-05-19 株式会社クレハ ポリグリコール酸樹脂組成物、坑井掘削用成形品、及びダウンホールツール部材
US10844276B2 (en) 2017-03-03 2020-11-24 Locus Oil Ip Company, Llc Composition and methods for microbial enhanced digestion of polymers in fracking wells
WO2019022996A1 (en) 2017-07-27 2019-01-31 Locus Oil Company, Llc ENHANCED SELECTIVE AND NON-SELECTIVE SHUTTERING METHODS FOR WATER INJECTION IN ENHANCED PETROLEUM RECOVERY
JP2020007514A (ja) * 2018-07-12 2020-01-16 株式会社クレハ ダウンホールツール
CN112469765B (zh) * 2018-10-29 2023-05-26 上海浦景化工技术股份有限公司 聚乙醇酸共聚物组合物及其制备方法
WO2022075484A1 (ja) 2020-10-09 2022-04-14 株式会社クレハ プラグ、ダウンホールツールおよび坑井処理方法
CN114196174B (zh) * 2021-12-31 2023-05-26 王晖 一种改性聚丁二酸丁二醇酯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116666A (ja) 1997-10-13 1999-04-27 Kureha Chem Ind Co Ltd ポリグリコール酸の製造方法
JP2003118803A (ja) * 2001-10-19 2003-04-23 Matsushita Electric Ind Co Ltd 生ごみ処理機用水きり袋
WO2007066254A2 (en) 2005-12-05 2007-06-14 Schlumberger Canada Limited Degradable material assisted diversion or isolation
US7775278B2 (en) 2004-09-01 2010-08-17 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
JP2011073646A (ja) 2009-10-01 2011-04-14 Sumitomo Rubber Ind Ltd タイヤに作用する力の推定方法、及びそれに用いるタイヤとタイヤホイールとの組立体。
JP2011256220A (ja) * 2010-06-04 2011-12-22 Kureha Corp ポリグリコール酸樹脂組成物
JP2012012560A (ja) * 2010-06-04 2012-01-19 Kureha Corp ポリグリコール酸樹脂組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688330B2 (ja) * 1994-10-25 1997-12-10 株式会社日本触媒 ポリエステル樹脂組成物
DE69731623D1 (de) 1996-04-23 2004-12-23 Ipsen Mfg Ireland Ltd Saure Polymilchsäure Polymere
JP5443765B2 (ja) * 2007-01-22 2014-03-19 株式会社クレハ 芳香族ポリエステル系樹脂組成物
CN101778884A (zh) * 2007-09-12 2010-07-14 株式会社吴羽 低熔融粘度聚乙醇酸和其制备方法以及该低熔融粘度聚乙醇酸的用途
EP2233527A4 (en) * 2007-12-27 2011-08-10 Kureha Corp POLYPROPYLENE RESIN COMPOSITION, RESIN COMPOSITION MOLD AND METHOD FOR PRODUCING THE MOLDED PRODUCT
WO2010071212A1 (ja) * 2008-12-15 2010-06-24 帝人株式会社 環状カルボジイミドを使用する方法
JP6249965B2 (ja) 2013-01-18 2017-12-20 株式会社クレハ 坑井処理流体材料およびそれを含有する坑井処理流体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116666A (ja) 1997-10-13 1999-04-27 Kureha Chem Ind Co Ltd ポリグリコール酸の製造方法
JP2003118803A (ja) * 2001-10-19 2003-04-23 Matsushita Electric Ind Co Ltd 生ごみ処理機用水きり袋
US7775278B2 (en) 2004-09-01 2010-08-17 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
WO2007066254A2 (en) 2005-12-05 2007-06-14 Schlumberger Canada Limited Degradable material assisted diversion or isolation
JP2011073646A (ja) 2009-10-01 2011-04-14 Sumitomo Rubber Ind Ltd タイヤに作用する力の推定方法、及びそれに用いるタイヤとタイヤホイールとの組立体。
JP2011256220A (ja) * 2010-06-04 2011-12-22 Kureha Corp ポリグリコール酸樹脂組成物
JP2012012560A (ja) * 2010-06-04 2012-01-19 Kureha Corp ポリグリコール酸樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848651A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112479A1 (ja) * 2013-01-18 2014-07-24 株式会社クレハ 坑井処理流体材料およびそれを含有する坑井処理流体
WO2015068742A1 (ja) * 2013-11-05 2015-05-14 三菱化学株式会社 脂肪族ポリエステル樹脂繊維及び脂肪族ポリエステル樹脂組成物
US10208559B2 (en) 2013-12-27 2019-02-19 Kureha Corporation Diameter-expandable annular degradable seal member for downhole tool, plug for well drilling, and method for well drilling
US10280699B2 (en) 2014-03-07 2019-05-07 Kureha Corporation Degradable rubber member for downhole tools, degradable seal member, degradable protecting member, downhole tool, and method for well drilling
WO2015137057A1 (ja) * 2014-03-11 2015-09-17 東洋製罐グループホールディングス株式会社 水中投下用樹脂成型体
JP2015172106A (ja) * 2014-03-11 2015-10-01 株式会社クレハ 脂肪族ポリエステル樹脂を含有する有効厚みが1mm以上である成形品、及び炭化水素資源回収用ダウンホールツール部材
CN105934481A (zh) * 2014-03-11 2016-09-07 株式会社吴羽 含有脂肪族聚酯树脂的有效厚度为1mm以上的成型品、以及烃资源回收用钻井工具构件
US9926764B2 (en) 2014-03-11 2018-03-27 Kureha Corporation Molded product having effective thickness of 1 mm or more and containing aliphatic polyester resin, and downhole tool member for hydrocarbon resource recovery
JP2015172107A (ja) * 2014-03-11 2015-10-01 東洋製罐グループホールディングス株式会社 水中投下用樹脂成型体
WO2015137168A1 (ja) * 2014-03-11 2015-09-17 株式会社クレハ 脂肪族ポリエステル樹脂を含有する有効厚みが1mm以上である成形品、及び炭化水素資源回収用ダウンホールツール部材
US9868231B2 (en) 2015-03-30 2018-01-16 Kureha Corporation Polyglycolic acid molded article, component for downhole tool, and method of producing polyglycolic acid molded article
WO2022209378A1 (ja) * 2021-03-30 2022-10-06 株式会社クレハ グリコール酸共重合体組成物、および固化押出成形物
CN115975363A (zh) * 2023-02-17 2023-04-18 重庆江际生物技术有限责任公司 一种降解速率可控的高分子量高冲击强度聚乙醇酸pga树脂组合物及其制备方法与应用
CN115975363B (zh) * 2023-02-17 2024-04-16 重庆江际材料技术有限公司 一种降解速率可控的高分子量高冲击强度聚乙醇酸pga树脂组合物及其制备方法与应用

Also Published As

Publication number Publication date
EP2848651A4 (en) 2016-01-06
CN104105758A (zh) 2014-10-15
US20150051119A1 (en) 2015-02-19
PL2848651T3 (pl) 2018-05-30
JP6133847B2 (ja) 2017-05-24
CA2867111A1 (en) 2013-10-31
CA2867111C (en) 2016-12-20
EP2848651A1 (en) 2015-03-18
JPWO2013162002A1 (ja) 2015-12-24
EP2848651B1 (en) 2017-12-27
CN104105758B (zh) 2016-07-06
US9637672B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
JP6133847B2 (ja) ポリエステル樹脂組成物およびその成形体
JP6249965B2 (ja) 坑井処理流体材料およびそれを含有する坑井処理流体
US7728100B2 (en) Process for producing polyglycolic acid resin composition
US8865304B2 (en) Biodegradable aliphatic polyester particles and production process thereof
US8304500B2 (en) Polyglycolic acid resin particle composition and process for production thereof
TWI429679B (zh) Preparation method of polylactic acid block copolymer
US9534163B2 (en) Polyglycolic acid resin short fibers for use in well treatment fluid
WO2013161755A1 (ja) ポリグリコール酸樹脂短繊維及び坑井処理流体
WO2014057969A1 (ja) ポリグリコール酸樹脂組成物及びその製造方法
JP7397086B2 (ja) 縮合ポリマーの制御された分解促進のための添加剤組成物の使用
US9080013B2 (en) Production method for aliphatic polyester
US8541490B2 (en) Aliphatic polyester resin composition and process for production thereof
WO2012144511A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP2016186055A (ja) ポリグリコール酸組成物および一時目止め材
WO2023228557A1 (ja) 成形体、ダウンホールツール部材およびダウンホールツール
JP2013010866A (ja) ポリグリコ−ル酸樹脂組成物
Steinborn-Rogulska et al. Solid-state polycondensation (SSP) as a method to obtain high molecular weight polymers/Polikondensacja w stanie stalym--metoda otrzymywania polimerow o duzym ciezarze czasteczkowym. cz. i. parametry wplywajace na przebieg procesu
JP2017197699A (ja) ポリグリコール酸樹脂組成物
JP2013147565A (ja) 脂肪族ポリエステル樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013780586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2867111

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14386595

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014512713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE