WO2013161765A1 - リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池 - Google Patents

リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池 Download PDF

Info

Publication number
WO2013161765A1
WO2013161765A1 PCT/JP2013/061795 JP2013061795W WO2013161765A1 WO 2013161765 A1 WO2013161765 A1 WO 2013161765A1 JP 2013061795 W JP2013061795 W JP 2013061795W WO 2013161765 A1 WO2013161765 A1 WO 2013161765A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
titanium oxide
sintered body
oxide sintered
lanthanum
Prior art date
Application number
PCT/JP2013/061795
Other languages
English (en)
French (fr)
Inventor
護 中島
宜之 稲熊
中島 幹夫
Original Assignee
東邦チタニウム株式会社
中島産業株式会社
学校法人 学習院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社, 中島産業株式会社, 学校法人 学習院 filed Critical 東邦チタニウム株式会社
Priority to JP2014512559A priority Critical patent/JP6222606B2/ja
Priority to EP13780889.5A priority patent/EP2842926B1/en
Priority to CN201380021848.6A priority patent/CN104245624B/zh
Priority to US14/396,955 priority patent/US9711822B2/en
Priority to KR1020147029473A priority patent/KR101930123B1/ko
Publication of WO2013161765A1 publication Critical patent/WO2013161765A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium primary battery, a solid electrolyte of a lithium secondary battery, for example, a lithium lanthanum titanium oxide sintered body that can be used as a solid electrolyte of an all solid lithium ion battery or a solid electrolyte of a lithium air battery.
  • a general lithium ion secondary battery is composed of a positive electrode active material layer, a negative electrode active material layer, and an electrolyte between the positive electrode active material layer and the negative electrode active material.
  • Patent Document 1 proposes a lithium-air battery using a water-soluble electrolyte on the air electrode side.
  • This lithium-air battery is a lithium-air battery in which a negative electrode, an organic electrolyte for the negative electrode, a separator made of a solid electrolyte, a water-soluble electrolyte for the air electrode, and an air electrode are provided in this order.
  • the solid electrolyte, water, dissolved gas, protons (H +), ion hydroxide - is required substances impervious etc. (OH).
  • the all solid lithium ion battery is a lithium ion battery using a solid electrolyte as an electrolyte.
  • the all solid lithium ion battery is attracting attention as a battery to replace the lithium ion secondary battery using an organic electrolytic solution as a commercially available electrolyte, since there is no concern of electrolyte leakage or gas generation.
  • a material having high lithium ion conductivity is required for the solid electrolyte of the air battery or the all solid lithium ion battery.
  • lithium lanthanum titanium oxide has been attracting attention as a material having high lithium ion conductivity (see, for example, Patent Documents 2 and 3).
  • Non-Patent Document 1 reports that lithium lanthanum titanium oxide exhibits a high lithium ion conductivity of 7 ⁇ 10 ⁇ 5 Scm ⁇ 1 .
  • Non-Patent Document 2 by adding Si to lithium-lanthanum-titanium oxide to make the SiO 2 concentration 0.58 to 2.89% by weight, the lithium ion conductivity is at most 8.9 ⁇ 10. It is reported to improve to ⁇ 5 Scm ⁇ 1 (SiO 2 concentration 2.31 wt%, measurement temperature 30 ° C.).
  • Patent Document 4 by adding Al 2 O 3 to lithium-lanthanum-titanium oxide to make the concentration of Al 2 O 3 a weight of 11.1%, the lithium ion conductivity within the grains is 9.33. It is reported that the conductivity is improved to 2.38 ⁇ 10 ⁇ 5 Scm ⁇ 1 (measurement temperature 30 ° C.) at the grain boundary at 10 ⁇ 4 Scm ⁇ 1 .
  • An object of the present invention is to provide a lithium-lanthanum-titanium oxide sintered body having a lithium ion conductivity of 3.0 ⁇ 10 -4 Scm -1 or more at a measurement temperature of 27 ° C. as a solid electrolyte material.
  • the inventors of the present invention conducted intensive studies, and as a result, by making Al 2 O 3 and SiO 2 which are unavoidable impurities in the manufacturing process equal to or less than specific amounts, the lithium ion conductivity is 3.0 ⁇ 10 at a measurement temperature of 27 ° C.
  • the average particle diameter here does not mean the particle diameter of the raw material powder, but means the crystal particle size of one section separated by the grain boundary which constitutes the sintered body.
  • a lithium-lanthanum-titanium oxide sintered body having a lithium ion conductivity of 3.0 ⁇ 10 -4 Scm -1 or more can be obtained, and the lithium-lanthanum-titanium oxide sintered body is used as a solid electrolyte material. It can be used. Therefore, it can be used as a solid electrolyte of a lithium air battery or an all solid lithium battery.
  • the solid electrolyte of the present invention is characterized in that it contains the above lithium lanthanum titanium oxide sintered body.
  • the lithium-air battery of the present invention is characterized by including the lithium lanthanum titanium oxide sintered body as a solid electrolyte.
  • the all-solid-state lithium ion battery of the present invention is characterized by including the lithium lanthanum titanium oxide sintered body as a solid electrolyte.
  • the present invention can obtain a lithium lanthanum titanium oxide sintered body having a lithium ion conductivity of 3.0 ⁇ 10 -4 Scm -1 or more, which is suitable as a solid electrolyte material for an air battery or an all solid lithium ion battery. .
  • the lithium-lanthanum-titanium oxide sintered body according to the present invention has a general formula (1-a) La x Li 2-3 x TiO 3 -a SrTiO 3 , (1-a) La x Li 2-3 x TiO 3 -aLa 0.5 K 0.5 TiO 3 , La x Li 2-3 x Ti 1-a M a O 3-a , Srx-1.5 a La a Li 1.5-2 x Ti 0.5 Ta 0.5 O 3 (0 .55 ⁇ x ⁇ 0.59, 0 ⁇ a ⁇ 0.2, M is any one or more of Fe and Ga), and the Al 2 O 3 content is 0.35 weight %, And the content of SiO 2 is 0.1 wt% or less, and the average particle diameter is 18 ⁇ m or more.
  • a lithium lanthanum titanium oxide sintered body having a lithium ion conductivity of 3.0 ⁇ 10 ⁇ 4 Scm ⁇ 1 or more at a measurement temperature of 27 ° C. can be obtained
  • a lithium lanthanum titanium oxide sintered body represented by x 0.57 and a ⁇ 0.05 in the above composition formula.
  • x 0.57
  • a lithium lanthanum titanium oxide sintered body having a lithium ion conductivity of 4.0 ⁇ 10 ⁇ 4 Scm ⁇ 1 or more at a measurement temperature of 27 ° C. can be obtained.
  • a lithium lanthanum titanium oxide sintered body having a lithium ion conductivity of 5.0 ⁇ 10 ⁇ 4 Scm ⁇ 1 or more at a measurement temperature of 27 ° C. can be obtained.
  • the Al 2 O 3 concentration and the SiO 2 concentration of the lithium-lanthanum-titanium oxide sintered body of the present invention are determined using a wavelength dispersive fluorescent X-ray apparatus.
  • the composition (x, a) of the lithium lanthanum titanium oxide sintered body of the present invention is determined by the following method. Lithium lanthanum titanium oxide, Na 2 O 2 and NaOH are placed in a zirconium crucible and heated to melt. It is then allowed to cool and dissolved by adding water and HCl. The dissolved liquid fraction was separated, and Ti was quantified by aluminum reduction-ammonium iron sulfate (III) titration method, and the other elements were quantified by ICP emission spectroscopy.
  • the lithium ion conductivity of the lithium lanthanum titanium oxide sintered body of the present invention is determined by the following method.
  • the sample surface of a plate-like (15 mm ⁇ 15 mm ⁇ 2.5 mm) lithium-lanthanum-titanium oxide sintered body is polished with a # 150 diamond grindstone, and is finally polished with a # 600 diamond grindstone.
  • Two sheets of filter paper cut into a size of 10 mm ⁇ 10 mm are impregnated with a 1 M aqueous solution of lithium chloride, and attached so as to sandwich a plate-like lithium lanthanum titanium oxide.
  • Lithium ion conductivity (Scm -1 ) 1 / (R b + R gb ) ⁇ (L / S)
  • R b Resistance value inside grain ( ⁇ )
  • R gb resistance value of grain boundary ( ⁇ )
  • L Thickness of plate-like lithium lanthanum titanium oxide (cm)
  • S Area of electrode (cm 2 )
  • the lithium-lanthanum-titanium oxide sintered body of the present invention is a sintered body of lithium-lanthanum-titanium oxide having a single phase conversion ratio of 90% or more.
  • the single phase conversion rate is defined by the following method.
  • the lithium-lanthanum-titanium oxide sintered body is pulverized in a mortar made of alumina to obtain a measurement sample, and measurement is performed using a powder X-ray diffractometer (X-ray source: CuK ⁇ ray). From the heights of the main peaks of the lithium lanthanum titanium oxide and the impurity in the obtained diffraction pattern, the single-phase ratio is determined by the following formula.
  • Single phase conversion rate (%) I / (I + S) ⁇ 100
  • S sum of heights of main peaks of all impurities TiO 2 , La 2 O 3 , Li 2 Ti as impurities 3 O 7 , La 2 Ti 2 O 7 and the like.
  • the average particle size (the size of one section separated by grain boundaries constituting the sintered body) of the lithium lanthanum titanium oxide sintered body of the present invention is determined by the following method. After platinum is vapor-deposited on the surface of the obtained lithium-lanthanum-titanium oxide sintered body, it is photographed with a scanning electron microscope at a magnification such that the number of particles is about 1,200 in one field of view. Based on the obtained image, each crystal particle is surrounded by the smallest rectangle using image analysis type particle size distribution measurement software, and the longer one of two orthogonal axes is the particle size of 1000 or more crystal particles. The diameter was measured, and the average was taken as the average particle diameter of the particles.
  • the method for producing a lithium-lanthanum-titanium oxide sintered body according to the present invention will be described below as an example.
  • the method for producing a lithium-lanthanum-titanium oxide sintered body according to the present invention may be any method as long as the composition and the content of SiO 2 and Al 2 O 3 fall within the range of the present invention.
  • the lithium-lanthanum-titanium oxide sintered body according to the present invention may be, for example, a lithium compound such as lithium hydroxide or lithium carbonate as a lithium source, a titanium compound such as titanium oxide, metatitanic acid or orthotitanic acid as a titanium source, or Mixture, using lanthanum oxide as a source of lanthanum.
  • a lithium compound such as lithium hydroxide or lithium carbonate as a lithium source
  • a titanium compound such as titanium oxide, metatitanic acid or orthotitanic acid as a titanium source
  • Mixture using lanthanum oxide as a source of lanthanum.
  • the other element (Sr, K, Fe, Ga, Ta) raw materials oxides, hydroxides, chlorides, carbonates and the like are used. These mixed powders can be obtained by calcining after grinding under specific conditions.
  • Each raw material is weighed at the desired molar ratio.
  • the lithium raw material is added in excess of 0 to 15% by weight of the lithium raw material with respect to the lithium raw material in consideration of volatilization of the lithium compound at the time of calcination and sintering.
  • the measured raw materials are charged into a ball mill, mixed and pulverized (primary pulverization) to obtain primary pulverized raw materials.
  • a dispersion medium a mixed solvent of pure water and alcohol (for example, ethanol), and as necessary, a dispersion medium such as a surfactant is added and pulverized.
  • the grinding time is 20 to 50 minutes after grinding, left for 10 to 20 hours, and then ground again for 20 to 50 minutes.
  • a grinding device can use a urethane lining ball mill, a nylon ball mill, a natural rubber lining ball mill, and grinding media can use zirconia media and alumina media.
  • alumina lining ball mill a component of the lining material is Al 2 O 3 94%, SiO 2 4%) incorporation of Al 2 O 3 and SiO 2 components can be suppressed as compared with.
  • the drying method is not particularly limited, and, for example, drying using a spray dryer, a fluid bed dryer, a tumbling granulator, a freeze dryer, or a hot air dryer can be used.
  • the drying conditions for spray dryer drying are a hot air inlet temperature of 200 to 250 ° C. and an exhaust air temperature of 90 to 120 ° C.
  • the primary dry powder is then calcined to obtain a calcined powder.
  • calcination condition calcination is performed at 1000 to 1200 ° C. for 1 to 12 hours in an oxygen atmosphere, in the air, or in an inert atmosphere (in a nitrogen atmosphere or an inert gas atmosphere).
  • the obtained calcined powder is charged into a ball mill and subjected to secondary crushing to obtain a secondary crushed raw material.
  • a dispersion medium a mixed solvent of pure water and alcohol (for example, ethanol), and as necessary, a dispersion medium such as a surfactant is added and pulverized.
  • the grinding time is 1 to 6 hours.
  • the grinding apparatus uses a urethane lined ball mill, a nylon ball mill, or a natural rubber lined ball mill. By using the ball mill, contamination with Al 2 O 3 and SiO 2 components can be suppressed.
  • the second ground material is dried in the same manner as the first ground material to obtain a second dry powder.
  • the drying method is not particularly limited. For example, spray drier drying or drying with a hot air drier can be performed.
  • the obtained secondary dry powder is molded into a desired shape using a molding method such as CIP molding, mold molding, casting molding, extrusion molding, green sheet casting molding and the like to obtain a molded body.
  • the molding conditions for molding a mold are, for example, a molding pressure of 400 to 1500 kg / cm 2 .
  • the resulting compact is sintered to obtain the lithium lanthanum titanium oxide of the present invention.
  • secondary sintering is performed at 1200 to 1500 ° C. for 4 to 10 hours.
  • the grain size of crystal grains can be controlled by changing the secondary sintering conditions.
  • the sintering atmosphere for primary sintering and secondary sintering is oxygen atmosphere, air, or inert atmosphere (nitrogen atmosphere or inert gas atmosphere).
  • lithium lanthanum titanium oxide is produced by a solid phase method. For this reason, when compared with the liquid phase method of growing crystal particles in a solvent and removing the solvent, it is possible to inexpensively manufacture a sintered body having large crystal particles having an average particle diameter of 18 ⁇ m or more.
  • the average particle diameter needs to be 18 ⁇ m or more, preferably 21 ⁇ m or more.
  • the upper limit is 100 ⁇ m.
  • the reason why the lithium ion conductivity is improved is not clear but is considered as follows. It is considered that the Si compound and the Al compound contained in the lithium-lanthanum-titanium oxide sintered body accumulate at grain boundaries and inhibit lithium ion conductivity.
  • the content of Al 2 O 3 is 0.35% by weight or less, and the content of SiO 2 is 0.1% by weight or less, thereby reducing Si compounds and Al compounds accumulated in grain boundaries.
  • lithium ion conductivity can be improved by reducing the volume of the grain boundary of the lithium lanthanum titanium oxide sintered body. By sintering at 1200 ° C.
  • the average particle diameter of the lithium lanthanum titanium oxide sintered body becomes 18 ⁇ m or more, and the volume of grain boundaries is reduced. Furthermore, sintering at 1200 ° C. or higher has the effect of discharging the Si compound and Al compound accumulated in the grain boundaries from the interface. As a result, it is considered that a lithium-lanthanum-titanium oxide sintered body having a lithium ion conductivity of 3.0 ⁇ 10 -4 Scm -1 or more can be obtained.
  • the all solid lithium ion battery according to the present invention comprises a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, the positive electrode active material layer and the negative electrode active material It consists of a solid electrolyte layer consisting of a lithium lanthanum titanium oxide sintered body of the present invention provided between layers.
  • the positive electrode active material layer is, for example, LiCoO 2 , LiMnO 2 , LiNiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and the like. It comprises a positive electrode active material, and optionally, a conductive material and a binder.
  • the conductive material include acetylene black, ketjen black, carbon fiber and the like.
  • the binder include fluorine-containing binders such as polytetrafluoroethylene (PTFE).
  • the negative electrode active material layer is composed of a negative electrode active material such as metal, carbon, or ceramic, a conductive material, and a binder.
  • a negative electrode active material such as metal, carbon, or ceramic
  • a conductive material such as copper, carbon, or ceramic
  • a binder such as a binder
  • the metal active material lithium and an alloy containing lithium metal can be mentioned.
  • the carbon active material include meso carbon micro beads (MCMB), highly oriented graphite (HOPG), hard carbon, soft carbon and the like.
  • HOPG highly oriented graphite
  • the ceramic active material can be mentioned Li 4 Ti 5 O 12.
  • the conductive material, the solid electrolyte material, and the binder are the same as those of the above-described positive electrode active material layer.
  • the all solid lithium ion battery according to the present invention may include a positive electrode current collector for collecting current in the positive electrode active material layer, and a negative electrode current collector for collecting current in the negative electrode active material layer.
  • the material of the positive electrode current collector is not particularly limited as long as the material can withstand the use environment.
  • stainless steel, aluminum, nickel, iron, titanium, etc., an alloy containing the above metal, carbon, etc. can be mentioned.
  • the material of the negative electrode current collector include stainless steel, copper, nickel, an alloy containing the above metal, and carbon.
  • An air battery according to the present invention comprises a negative electrode active material layer, a solid electrolyte comprising the lithium lanthanum titanium oxide sintered body of the present invention, a positive electrode active material layer, and between the negative electrode active material layer and the solid electrolyte An electrolytic solution is provided between the active material layer and the solid electrolyte.
  • the form of the positive electrode active material layer is not particularly limited as long as it can function as the positive electrode of the air battery, and can be a known form.
  • a carbon-free porous, gas-permeable, conductive composite oxide such as a lanthanum strontium manganese composite oxide or a lanthanum strontium cobalt composite oxide, a lanthanum strontium copper composite oxide
  • Examples include lanthanum calcium manganese based composite oxide, lanthanum calcium cobalt based composite oxide, lanthanum calcium copper based composite oxide, lanthanum barium manganese based composite oxide, lanthanum barium cobalt based composite oxide, lanthanum barium copper based composite oxide, etc. be able to.
  • the negative electrode active material layer contains a negative electrode active material capable of releasing lithium ions, preferably an active material capable of inserting and extracting lithium ions.
  • Examples of the negative electrode active material include metal active materials such as lithium and an alloy containing lithium, and Li 4 Ti 5 O 12 .
  • the electrolytic solution is composed of an electrolyte and a solvent.
  • the electrolyte is not particularly limited as long as it forms lithium ions in a solvent.
  • LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiSbF 6 and the like can be mentioned. These electrolytes may be used alone or in combination.
  • solvent for example, propylene carbonate, tetrahydrofuran, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, sulfolane
  • solvents include diethyl carbonate, dimethylformamide, acetonitrile, dimethyl carbonate, ethylene carbonate and the like. These solvents may be used alone or in combination.
  • Electrode solution between positive electrode active material layer and solid electrolyte As an electrolyte between the positive electrode active material layer and the solid electrolyte, a water-based electrolyte or an organic electrolyte used in a general air battery can be used. For example, LiOH aqueous solution is mentioned.
  • the air battery according to the present invention generally includes a positive electrode current collector for collecting current in the positive electrode active material layer, and a negative electrode current collector for collecting current in the negative electrode active material layer.
  • the material of the current collector is not particularly limited as long as the material can withstand the environment when using the air battery.
  • a material of the positive electrode current collector for example, metals such as manganese, cobalt, nickel, ruthenium, rhodium, silver, iridium, platinum, gold, stainless steel, aluminum, iron, titanium and the like, alloys containing the above metals, and carbon Etc. can be mentioned.
  • a material of the negative electrode current collector for example, metals such as platinum, gold, stainless steel, copper, nickel and the like, alloys containing the metals, carbon and the like can be mentioned.
  • the above-mentioned all solid lithium ion battery and air battery can be used for mobile devices, facility system devices, and backup power supplies.
  • the mobile device is, for example, a car, a hawk lift, a construction machine, a motorcycle, a bicycle, a robot, an aircraft, a ship, a train, a satellite, or the like.
  • the installation system device is, for example, a hydropower generation system, a thermal power generation system, a nuclear power generation system, a solar power generation system, a wind power generation system, a geothermal power generation system, a tidal current (sea current, wave power) power generation system.
  • the backup power supply system apparatus is, for example, an emergency power supply system apparatus of a structure (public facility, commercial facility, factory, hospital, house, etc.).
  • Image analysis type particle size distribution measurement software Model name: Mac-View Ver.
  • the crystal grain is enclosed by the smallest rectangle by 4 (Muntech Co., Ltd.), and the longer side of the two orthogonal axes is taken as the grain size, and the grain size of 1000 or more particles is measured. .
  • Example 1 Raw materials: Lithium carbonate (made by Sociedad Quimica y Minera de Chile S.A., purity 99.2% or more), lanthanum oxide (made by Xing Xing Wei Wei Cai rare earth Co., Ltd., purity 99.99% or more), titanium oxide (Toho Titanium Co., Ltd., purity 99.99% or more) was used. The weight of each raw material is shown in Table 1, and the excess addition amount of lithium carbonate was 7.5% by weight.
  • Lithium carbonate made by Sociedad Quimica y Minera de Chile S.A., purity 99.2% or more
  • lanthanum oxide made by Xing Xing Wei Wei Cai rare earth Co., Ltd., purity 99.99% or more
  • titanium oxide Toho Titanium Co., Ltd., purity 99.99% or more
  • Primary Drying Primary pulverized powder was dried by a spray dryer to obtain primary dried powder.
  • the conditions of the spray dryer are as follows. Raw material supply amount: 10 to 30 L / h Hot air inlet temperature: 200 to 250 ° C Exhaust temperature: 90 to 120 ° C
  • the primary dry powder was put in a mochi bowl made of koujirite mullite and calcined in an electric furnace to obtain a calcined powder.
  • the calcination was performed in the air at a calcination temperature of 1150 ° C. and a calcination time of 2 hours.
  • the secondary pulverized powder was dried by a spray dryer to obtain a secondary dried powder.
  • the conditions of the spray dryer are as follows.
  • Raw material supply amount 10 to 30 L / h
  • Hot air inlet temperature 200 to 250 ° C
  • Exhaust temperature 90 to 120 ° C
  • Molding 15 g of the secondary dry powder was molded into a flat plate of 40 mm ⁇ 40 mm ⁇ 3 mm in thickness by molding (molding pressure: 1000 kg / cm 2 ) to obtain a molded body.
  • the sintered compact is subjected to primary sintering in the atmosphere at 1100 ° C. for 2 hours in an electric furnace, and then to secondary sintering at 1460 ° C. for 6 hours to obtain a lithium lanthanum titanium oxide sintered body. Obtained.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 2 A lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 1 except that the alumina media (diameter 3 mm) in “2. Primary pulverization” of Example 1 was changed to zirconia media (diameter 3 mm). The single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 3 A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except that the weight of each raw material in Example 1 was changed as shown in Table 1.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 4 A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except that the weight of each raw material in Example 1 was changed as shown in Table 1.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 5 A lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 1 except that the sintering temperature of “8. Sintering” in Example 1 was changed from 1460 ° C. to 1430 ° C.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 6 A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except that the weight of each raw material of Example 1 was changed as shown in Table 1, and 3.666 kg of SrCO 3 was further added. .
  • the single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 7 The lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 1 except that the weight of each raw material of Example 1 was changed as shown in Table 1, and 11.00 kg of SrCO 3 was further added. .
  • the single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 8 The lithium lanthanum titanium oxide sintered body was prepared in the same manner as in Example 1 except that the weight of each raw material of Example 1 was changed as shown in Table 1, and 1.884 kg of Fe 2 O 3 was further added. Made. The single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 9 The lithium lanthanum titanium oxide sintered body was prepared in the same manner as in Example 1 except that the weight of each raw material of Example 1 was changed as shown in Table 1, and 5.651 kg of Fe 2 O 3 was further added. Made. The single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 10 Lithium lanthanum was prepared in the same manner as in Example 1 except that the weight of each raw material of Example 1 was changed as shown in Table 1, and 36.29 kg of SrCO 3 and 54.86 kg of Ta 2 O 5 were further added. A titanium oxide sintered body was produced. The single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 11 Lithium lanthanum was prepared in the same manner as in Example 1, except that the weight of each raw material of Example 1 was changed as shown in Table 1, and 25.30 kg of SrCO 3 and 54.86 kg of Ta 2 O 5 were further added. A titanium oxide sintered body was produced. The single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 12 “7. Molding” of Example 1 “110 g of secondary dry powder” by CIP molding (molding pressure ⁇ 1000 kg / cm 2 ) Outer diameter 23 mm, inner diameter 17 mm, length 180 mm, bottom thickness 5 mm, bottomed cylindrical A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except that the molded body was obtained.
  • An air battery 1 as shown in FIG. 1 was produced using the produced lithium-lanthanum-titanium oxide sintered body as a solid electrolyte.
  • the negative electrode active material layer 3, the first electrolyte solution 4, the positive electrode active material layer 7 and the solid electrolyte 5 between the negative electrode active material layer 3 and the solid electrolyte 5 are formed on the inner side surface of the negative electrode active material support 2 a.
  • the second electrolytic solution 6 and the lid 2b were placed on the negative electrode active material support 2a.
  • the negative electrode active material support 2a, the solid electrolyte 5, and the positive electrode active material layer 7 used in the air battery 1 have a cylindrical shape with a bottom. After the air battery 1 was manufactured, oxygen was allowed to flow inside the positive electrode active material layer 7 to perform discharge and charge / discharge measurement.
  • Negative electrode active material support 2 a negative electrode active material layer 3, positive electrode active material layer 7, electrolyte solution 4 between negative electrode active material layer 3 and solid electrolyte 5, electrolyte solution 6 between positive electrode active material layer 7 and solid electrolyte 5
  • the material of the lid 2b is as follows.
  • Negative electrode active material support 2a SUS316L
  • Negative electrode active material layer 3 Metal lithium Positive electrode active material layer 7: Porous carbon
  • Second electrolytic solution 6 0.5 M LiOH aqueous solution lid 2 b: SUS 316 L
  • the discharge measurement was performed at a constant current (1 mA) and a temperature of 27 ° C. while flowing 100 mL / min of oxygen (99.5% or more) to the positive electrode active material layer 7.
  • the results are shown in FIG. It can be seen that the battery can be stably discharged for 47 hours at a discharge voltage of about 2.9 V, and has high discharge characteristics.
  • Comparative Example 1 After the grinding and mixing conditions of "2. Primary grinding” of Example 1 are performed for 30 minutes, it is left in a ball mill for 15 hours and ground again for 30 minutes to continuous 20 hours grinding, zirconia of "5.
  • the media (diameter 3 mm) was alumina media (diameter 3 mm), and the grinding time was changed from 6 hours to 10 hours.
  • a lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except for these changes.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 2 A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except that the weight of each raw material in Example 1 was changed as shown in Table 1. The single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 3 A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 1 except that the weight of each raw material in Example 1 was changed as shown in Table 1. The single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 4 A lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 1 except that 0.8527 kg of Al 2 O 3 was added when the pulverization of “5. Secondary pulverization” of Example 1 was performed.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 5 A lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 1 except that 0.8527 kg of SiO 2 was added when the pulverization of “5. Secondary pulverization” in Example 1 was performed.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 6 A lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 1 except that the sintering temperature of “8. Sintering” in Example 1 was changed from 1460 ° C. to 1410 ° C.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 7 The “2. Primary pulverization” of Example 1 was changed to “the raw material weighed, 0.035 L of ethanol was charged into a mortar and mortar and mixing was performed for 30 minutes”. In addition, “3. Primary drying” was changed to “Primed ground powder was placed in a vat and dried at 120 ° C.”. Moreover, the calcination temperature 1150 degreeC of "4. calcination” was changed into 800 degreeC, and the calcination time 2 was changed into 4 hours. In addition, “5. Secondary pulverization” was changed to “the 0.07 kg of calcined powder was put into a mortar mortar and the pulverization was performed for 30 minutes”. In addition, “6.
  • the secondary drying was changed to “the primary pulverized powder was put into a vat and dried at 120 ° C.”.
  • “8. Sintering” was changed to “The secondary sintered body was sintered in an electric furnace at 1150 ° C. for 6 hours to obtain a lithium lanthanum titanium oxide sintered body”.
  • the single phase conversion ratio, the Al 2 O 3 concentration, the SiO 2 concentration, the lithium ion conductivity, and the average particle diameter of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 8 After the grinding and mixing conditions of "2. Primary grinding” of Example 1 are performed for 30 minutes, it is left in a ball mill for 15 hours and ground again for 30 minutes to continuous 20 hours grinding, zirconia of "5. The media (diameter 3 mm) was alumina media (diameter 3 mm), and the grinding time was changed from 6 hours to 10 hours. A lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 6 except for these changes. The single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Comparative Example 9 After the grinding and mixing conditions of "2. Primary grinding” of Example 1 are performed for 30 minutes, it is left in a ball mill for 15 hours and ground again for 30 minutes to continuous 20 hours grinding, zirconia of "5. The media (diameter 3 mm) was alumina media (diameter 3 mm), and the grinding time was changed from 6 hours to 10 hours. A lithium lanthanum titanium oxide sintered body was produced in the same manner as in Example 8 except for these changes. The single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Example 10 After the grinding and mixing conditions of "2. Primary grinding” of Example 1 are performed for 30 minutes, it is left in a ball mill for 15 hours and ground again for 30 minutes to continuous 20 hours grinding, zirconia of "5.
  • the media (diameter 3 mm) was alumina media (diameter 3 mm), and the grinding time was changed from 6 hours to 10 hours.
  • a lithium-lanthanum-titanium oxide sintered body was produced in the same manner as in Example 10 except for these changes.
  • the single phase conversion ratio, Al 2 O 3 concentration, SiO 2 concentration, and lithium ion conductivity of the obtained lithium lanthanum titanium oxide sintered body are shown in Table 2.
  • Each comparative example in which any one or more of the Al 2 O 3 concentration, the SiO 2 concentration, and the average particle diameter is out of the range defined in the present invention has a lithium ion conductivity of 3.0 ⁇ 10 ⁇ 4. It was less than Scm -1 .
  • the lithium ion conductivity was 3.0 ⁇ 10 ⁇ 4 Scm ⁇ 1 or more.
  • Examples 1, 2, 5, 8 and 10 had particularly good conductivity.
  • the present invention can provide a lithium primary battery, a solid electrolyte of a lithium secondary battery, for example, a lithium lanthanum titanium oxide sintered body that can be used as a solid electrolyte of an all solid lithium ion battery or a solid electrolyte of a lithium air battery. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 測定温度27℃でリチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を提供する。一般式(1-a)LaLi2-3xTiO―aSrTiO、(1-a)LaLi2-3xTiO―aLa0.50.5TiO、LaLi2-3xTi1-a3-a、Srx-1.5aLaLi1.5-2xTi0.5Ta0.5(0.55≦x≦0.59、0≦a≦0.2、M=Fe、Gaから選択される少なくとも一種)で表され、Alの含有量がAlとして0.35重量%以下、かつSiの含有量がSiOとして0.1重量%以下であり、かつ平均粒子径が18μm以上であることを特徴とするリチウムランタンチタン酸化物焼結体。

Description

リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池
 本発明は、リチウム一次電池、リチウム二次電池の固体電解質、例えば全固体リチウムイオン電池の固体電解質やリチウム空気電池の固体電解質として利用できるリチウムランタンチタン酸化物焼結体に関する。
 近年、パソコン、ビデオカメラ、携帯電話等の情報機器や通信装置の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車業界においても、電気自動車やハイブリッド自動車の高出力かつ高容量の電池の開発が進められている。これらに利用される各種電池の中で、エネルギー密度と出力が高いことから、リチウムイオン二次電池が注目されている。一般的なリチウムイオン二次電池は、正極活物質層、負極活物質層と、これら正極活物質層と負極活物質の間の電解質から構成される。
 一方、空気電池は、高容量二次電池として着目されている。特許文献1には空気極側に水溶性電解液を用いたリチウム空気電池が提案されている。このリチウム空気電池は、負極、負極用の有機電解液、固体電解質からなるセパレータ、空気極用の水溶性電解液及び空気極の順に設けられたリチウム空気電池である。固体電解質には、水分、溶存ガス、プロトン(H)、水酸化イオン(OH)などを通さない物質が必要となる。
 また、全固体リチウムイオン電池は、電解質として固体電解質を用いたリチウムイオン電池である。全固体リチウムイオン電池は、電解液の漏液やガス発生の心配がないため、現在市販されている電解質に有機電解液を用いたリチウムイオン二次電池に代わる電池として注目されている。
 前記空気電池や全固体リチウムイオン電池の固体電解質には、リチウムイオン伝導度の高い材料が必要である。このような材料として、リチウムイオン伝導度が高い材料として、リチウムランタンチタン酸化物が注目されている(例えば、特許文献2および3参照)。
 非特許文献1には、リチウムランタンチタン酸化物が7×10-5Scm-1と高いリチウムイオン伝導度を示すことが報告されている。また、非特許文献2では、リチウムランタンチタン酸化物にSiを添加して、SiO濃度を0.58~2.89重量%にすることによりリチウムイオン伝導度が、最大で8.9×10-5Scm-1(SiO濃度2.31重量%、測定温度30℃)に向上すると報告されている。また、特許文献4では、リチウムランタンチタン酸化物にAlを添加して、Al濃度を重量11.1%にすることによりリチウムイオン伝導度が粒内で伝導度9.33×10-4Scm-1、粒界で伝導度2.38×10-5Scm-1(測定温度30℃)に向上すると報告されている。
特開2011-134628号公報 特開2010-262876号公報 特開2011-222415号公報 アメリカ公開2011/0318650号公報
Y.Inaguma,et al.,Solid State Comunications 689-693(1993) 86. A.Mei,et al.,Solid State Ionics 2255-2259(2008)179.
 電池の高出力化の観点から、よりリチウムイオン伝導度が高い固体電解質材料が求められている。本発明は、測定温度27℃でリチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を固体電解質材料として提供することを目的としている。
 本発明者らは鋭意検討を重ねた結果、製造工程における不可避的不純物であるAlとSiOを特定量以下にすることで測定温度27℃でリチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることに成功した。
 すなわち、本発明のリチウムランタンチタン酸化物焼結体は、一般式(1-a)LaLi2-3xTiO―aSrTiO、(1-a)LaLi2-3xTiO―aLa0.50.5TiO、LaLi2-3xTi1-a3-a、Srx-1.5aLaLi1.5-2xTi0.5Ta0.5(0.55≦x≦0.59、0≦a≦0.2、M=Fe、Gaのいずれか一つまたは二つ以上を含む)で表され、Alの含有量がAlとして0.35重量%以下、かつSiの含有量がSiOとして0.1重量%以下であり、かつ平均粒子径が18μm以上であることを特徴とする。なお、ここでいう平均粒径とは、原料粉の粒径ではなく、焼結体を構成する、粒界で隔てられる1セクションの結晶粒子サイズを意味する。本発明によれば、リチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることができ、リチウムランタンチタン酸化物焼結体を固体電解質材料として用いることができる。よって、リチウム空気電池、全固体リチウム電池の固体電解質として用いることができる。
 また、本発明の固体電解質は、前記リチウムランタンチタン酸化物焼結体を含むことを特徴とする。
 更に、本発明のリチウム空気電池は、前記リチウムランタンチタン酸化物焼結体を固体電解質として備えることを特徴とする。
 また、本発明の全固体リチウムイオン電池は、前記リチウムランタンチタン酸化物焼結体を固体電解質として備えることを特徴とする。
 本発明は、空気電池や全固体リチウムイオン電池用の固体電解質材料として適したリチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることができる。
本発明の実施例に使用した空気電池の概略図である。 本発明の実施例の空気電池の放電測定の結果である。
 本発明のリチウムランタンチタン酸化物焼結体は、一般式(1-a)LaLi2-3xTiO―aSrTiO、(1-a)LaLi2-3xTiO―aLa0.50.5TiO、LaLi2-3xTi1-a3-a、Srx-1.5aLaLi1.5-2xTi0.5Ta0.5(0.55≦x≦0.59、0≦a≦0.2、M=Fe、Gaのいずれか一つまたは二つ以上を含む)で表され、Al含有量としては0.35重量%以下、かつSiO含有量としては0.1重量%以下であり、かつ平均粒子径が18μm以上である固体電解質材料である。前記の範囲とすることにより、測定温度27℃でリチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることができる。
 より好ましくは、上記組成式においてx=0.57、a≦0.05で表されるリチウムランタンチタン酸化物焼結体である。前記の範囲とすることにより、測定温度27℃でリチウムイオン伝導度が4.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることができる。
 さらに好ましくは上記組成式においてx=0.57、a=0で表され、平均粒径が21μm以上のリチウムランタンチタン酸化物焼結体である。前記の範囲とすることにより、測定温度27℃でリチウムイオン伝導度が5.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることができる。
 本発明のリチウムランタンチタン酸化物焼結体のAl濃度、SiO濃度は、波長分散型蛍光X線装置を用い求める。
 本発明のリチウムランタンチタン酸化物焼結体の組成(x、a)は以下の方法により決定する。リチウムランタンチタン酸化物とNaとNaOHをジルコニウム坩堝に入れて、加熱して溶融する。その後放冷し、水とHClを加えて溶解する。溶解した液分を分取し、Tiについてはアルミニウム還元-硫酸アンモニウム鉄(III)滴定法により、その他の元素についてはICP発光分光法により定量を行った。
 本発明のリチウムランタンチタン酸化物焼結体のリチウムイオン伝導度は、以下の方法により求める。板状(15mm×15mm×2.5mm)のリチウムランタンチタン酸化物焼結体の試料表面を#150のダイヤモンド砥石で研磨を行い、仕上げに#600のダイヤモンド砥石で研磨を行う。10mm×10mmの大きさに切り取った2枚のろ紙に、1Mの塩化リチウム水溶液を染み込ませ、板状のリチウムランタンチタン酸化物を挟むように貼り付ける。インピーダンスアナライザーを用いて測定周波数5~13MHz、測定温度27℃でコール・コールプロットを測定し、測定データから粒内、粒界の抵抗値を読み取る。リチウムイオン伝導度は、以下の計算式より求めた。
 リチウムイオン伝導度(Scm-1)=1/(R+Rgb)×(L/S)
 R:粒内の抵抗値(Ω)
 Rgb:粒界の抵抗値(Ω)
 L:板状のリチウムランタンチタン酸化物の厚み(cm)
 S:電極の面積(cm
 また、本発明のリチウムランタンチタン酸化物焼結体は単相化率90%以上のリチウムランタンチタン酸化物の焼結体である。なお、単相化率は、以下の方法により定義されるものである。リチウムランタンチタン酸化物焼結体をアルミナ製の乳鉢で粉砕して測定試料とし、粉末X線回折装置(X線源:CuKα線)を用いて測定する。得られた回折パターンのリチウムランタンチタン酸化物と不純物のメインピークの高さから、単相化率を以下の計算式により求める。
 単相化率(%)=I/(I+S)×100
 I:リチウムランタンチタン酸化物の2θ=0~50°における最強ピークの高さ
 S:全ての不純物のメインピークの高さの和
 なお、不純物としては、TiO、La、LiTi、LaTiなどがある。
 本発明のリチウムランタンチタン酸化物焼結体の平均粒径(焼結体を構成する、粒界で隔てられる1セクションの寸法)は以下の方法により求めたものである。得られたリチウムランタンチタン酸化物焼結体の表面に白金を蒸着後、走査型電子顕微鏡により一視野に粒子数が1200個程度となるような倍率で撮影を行う。得られた画像を基に、画像解析式粒度分布測定ソフトウェアを用いて、各結晶粒子を最小の長方形で囲み、直交する二つの軸のうち長い方を粒径として1000個以上の結晶粒子の粒径を測定し、その平均を粒子の平均粒径とした。
 本発明のリチウムランタンチタン酸化物焼結体の製造方法について、以下に一例として述べる。本発明のリチウムランタンチタン酸化物焼結体の製造方法は、組成及びSiO、Alの含有量が本発明の範囲内となる製造方法であれば良い。
 本発明のリチウムランタンチタン酸化物焼結体は、例えば、リチウム原料として、水酸化リチウム及び炭酸リチウム等のリチウム化合物、チタン原料として酸化チタン、メタチタン酸、オルトチタン酸等のチタン化合物、あるいはこれらの混合物、ランタン原料として酸化ランタンを用いる。その他の元素(Sr、K、Fe、Ga、Ta)原料も、酸化物、水酸化物、塩化物、炭酸塩等を用いる。これらの混合粉を、特定の条件で粉砕を行った後、焼成することにより得ることができる。
 各原料を所望のモル比にて計量する。なお、リチウム原料は、仮焼と焼結の際のリチウム化合物の揮発を考慮して、リチウム原料に対して0~15重量%のリチウム原料を過剰添加する。計量した各原料は、ボールミルに投入し、混合・粉砕を行ない(一次粉砕)、一次粉砕原料を得る。分散媒として純水とアルコール(例えばエタノール)の混合溶媒、必要に応じて界面活性剤等の分散媒を加え、粉砕を行なう。粉砕時間は、粉砕を20~50分行った後に10~20時間ボールミルを放置後、再度20~50分粉砕を行う。10~20時間放置することにより、原料のリチウム化合物、ランタン化合物の一部が溶出し粒径が小さくなり、粉砕時間を短縮することができる。また、純水とアルコールの混合溶媒を用いることにより、原料が凝集せず均一に分散し、水のみの粉砕に比べ粉砕時間を短縮することができる。粉砕時間の短縮により、Al及びSiO成分の混入が抑制できる。なお、粉砕装置は、ウレタンライニングボールミル、ナイロン製ボールミル、天然ゴムライニングボールミル、粉砕メディアはジルコニアメディア、アルミナメディアを用いることができる。前記ボールミルを使用することにより、アルミナライニングボールミル(ライニング材の成分はAl94%、SiO4%)に比べてAl及びSiO成分の混入が抑制できる。
 続いて一次粉砕原料を乾燥し、一次乾燥粉を得る。乾燥方法には特に制限は無く、例えば、スプレードライヤー乾燥機、或いは流動層乾燥機、或いは転動造粒乾燥機、或いは凍結乾燥機、或いは熱風乾燥機による乾燥を用いることができる。スプレードライヤー乾燥での乾燥条件は、熱風入口温度が200~250℃、排風温度が90~120℃である。
 次いで一次乾燥粉の仮焼を行ない、仮焼粉を得る。仮焼条件としては、酸素雰囲気中、大気中、或いは不活性雰囲気中(窒素雰囲気中や不活性ガス雰囲気中)で1000~1200℃、1~12時間にて仮焼を行う。
 得られた仮焼粉は、ボールミルに投入し二次粉砕を行ない、二次粉砕原料を得る。分散媒として純水とアルコール(例えばエタノール)の混合溶媒、必要に応じて界面活性剤等の分散媒を加え、粉砕を行なう。粉砕時間は1~6時間である。粉砕装置は、ウレタンライニングボールミル、ナイロン製ボールミル、或いは天然ゴムライニングボールミルを用いる。前記ボールミルを使用することにより、Al及びSiO成分の混入が抑制できる。
 続いて二次粉砕材料は一次粉砕原料と同様に乾燥し、二次乾燥粉を得る。乾燥方法は特に制限は無い。例えば、スプレードライヤー乾燥、或いは熱風乾燥機による乾燥を行うことができる。
 得られた二次乾燥粉は、例えば、CIP成形、金型成形、キャスティング成形、押し出し成形、グリーンシートキャスティング成形等の成形方法を用い、所望形状に成形を行ない、成形体を得る。金型成形の際の成形条件としては、例えば、成形圧力400~1500kg/cmである。
 得られた成形体を焼結し、本発明のリチウムランタンチタン酸化物を得る。1000~1200℃、1~4時間で一次焼結を行った後、1200~1500℃、4~10時間にて二次焼結を行う。前記二次焼結条件を変えることにより結晶粒子の粒径を制御することができる。一次焼結、二次焼結の焼結雰囲気は、酸素雰囲気中、大気中、或いは不活性雰囲気中(窒素雰囲気中や不活性ガス雰囲気中)である。また、本発明では、固相法によってリチウムランタンチタン酸化物を製造する。このため、結晶粒子を溶媒中で成長させて溶媒を除去する液相法と比較した場合、平均粒径が18μm以上の大きな結晶粒子を有する焼結体を安価に製造することができる。
 本発明においては、リチウムイオン伝導度を向上させるために、平均粒径が18μ以上であることが必要であり、好ましくは、21μm以上である。また、上限は、100μmである。
 本発明においては、リチウムイオン伝導度が向上する理由は、定かではないが、以下のように考えられる。リチウムランタンチタン酸化物焼結体に含まれるSi化合物、Al化合物は粒界に蓄積し、リチウムイオン伝導性を阻害すると考えられる。Al含有量を0.35重量%以下、かつSiO含有量を0.1重量%以下とし、粒界に蓄積するSi化合物、Al化合物を減少させる。また、リチウムランタンチタン酸化物焼結体の粒界の体積を減少させることにより、リチウムイオン伝導度を向上させることができる。1200℃以上で焼結を行うことにより、リチウムランタンチタン酸化物焼結体の平均粒子径が18μm以上となり、粒界の体積が減少する。さらに、1200℃以上での焼結は、粒界に蓄積されたSi化合物、Al化合物が界面から排出される効果を有する。その結果、リチウムイオン伝導度が3.0×10-4Scm-1以上のリチウムランタンチタン酸化物焼結体を得ることができると考えられる。
全固体リチウムイオン電池
 本発明に係る全固体リチウムイオン電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層及び前記負極活物質層の間に備えられた本発明のリチウムランタンチタン酸化物焼結体からなる固体電解質層からなる。
(正極活物質層)
 正極活物質層は、例えば、LiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等の正極活物質、必要に応じて、導電材、結着材から構成される。導電材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材を挙げることができる。
(負極活物質層)
 負極活物質層は金属、カーボン、セラミックス等の負極活物質、導電材、結着材より構成される。例えば、金属活物質としては、リチウム、及びリチウム金属を含む合金を挙げることができる。カーボン活物質としては、例えば、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。またセラミックス活物質としてはLiTi12を挙げることができる。導電材、固体電解質材料及び結着材は、前述の正極活物質層と同様である。
(その他の構成)
 本発明に係る全固体リチウムイオン電池は、正極活物質層の集電を行う正極集電体、及び、負極活物質層の集電を行う負極集電体を備えていてもよい。正極集電体の材料は、使用環境に耐えうる材料であれば特に限定されるものではない。例えば、正極集電体の材料としては、ステンレス、アルミニウム、ニッケル、鉄、チタン等、及び前記金属を含む合金、或いは、カーボン等を挙げることができる。負極集電体の材料としては、ステンレス、銅、ニッケル及び前記金属を含む合金、或いは、カーボン等を挙げることができる。
空気電池
 本発明に係る空気電池は、負極活物質層、本発明のリチウムランタンチタン酸化物焼結体からなる固体電解質、正極活物質層を有し、負極活物質層と固体電解質の間及び正極活物質層と固体電解質の間に電解液を備えることを特徴とする。
(正極活物質層)
 正極活物質層としては、空気電池の正極として機能可能であれば、その形態は特に限定されるものではなく、公知の形態とすることができる。例えば、炭素を含まない多孔質、気体通過性を有し、導電性を有する複合酸化物、例えば、ランタンストロンチウムマンガン系複合酸化物或いはランタンストロンチウムコバルト系複合酸化物、ランタンストロンチウム銅系複合酸化物、ランタンカルシウムマンガン系複合酸化物、ランタンカルシウムコバルト系複合酸化物、ランタンカルシウム銅系複合酸化物、ランタンバリウムマンガン系複合酸化物、ランタンバリウムコバルト系複合酸化物、ランタンバリウム銅系複合酸化物等を挙げることができる。
(負極活物質層)
 負極活物質層は、リチウムイオンを放出可能、好ましくは、リチウムイオンを吸蔵及び放出可能活物質である負極活物質が含有されている。負極活物質としては、金属活物質、例えば、リチウム、及びリチウムを含む合金等、及びLiTi12を挙げることができる。
(負極活物質層と固体電解質間の電解液)
 電解液は、電解質と溶媒より構成される。電解質は、溶媒中でリチウムイオンを形成するものであれば特に限定されない。例えば、LiPF、LiClO、LiBF、LiAsF、LiAlCl、LiCFSO、LiSbF等が挙げられる。これら電解質は単独でもよいが組み合わせて使用してもよい。また、溶媒としては、例えば、プロピレンカーボネート、テトラヒドロフラン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-ジメトキシエタン、2-メチルテトラヒドロフラン、スルホラン、ジエチルカーボネート、ジメチルホルムアミド、アセトニトリル、ジメチルカーボネート、エチレンカーボネート等が挙げられる。これら溶媒は、単独でもよいが、組み合わせて使用してもよい。
(正極活物質層と固体電解質間の電解液)
 正極活物質層と固体電解質間の電解液は、通常の空気電池に用いられる水系電解液や有機電解液を用いることができる。例えば、LiOH水溶液が挙げられる。
(その他の構成)
 本発明に係る空気電池は、通常、正極活物質層の集電を行う正極集電体、及び、負極活物質層の集電を行う負極集電体を備える。前記集電体の材料は、空気電池の使用時における環境に耐えうる材料であれば特に限定されるものではない。正極集電体の材料としては、例えば、マンガン、コバルト、ニッケル、ルテニウム、ロジウム、銀、イリジウム、白金、金、ステンレス、アルミニウム、鉄、チタン等の金属、及び前記金属を含む合金、及び、カーボン等を挙げることができる。一方、負極集電体の材料としては、例えば、白金、金、ステンレス、銅、ニッケル等の金属、及び前記金属を含む合金、或いは、カーボン等を挙げることができる。
 前記の全固体リチウムイオン電池、空気電池は、移動体装置、設備システム装置、バックアップ電源装置に用いることができる。移動体装置としては、例えば自動車、ホークリフト、建設機械、バイク、自転車、ロボット、航空機、船舶、列車、人工衛星等である。設置システム装置としては、例えば水力発電システム、火力発電システム、原子力発電システム、太陽光発電システム、風力発電システム、地熱発電システム、潮流(海流、波力)発電システム等である。バックアップ電源システム装置としては、例えば、構造物(公共施設、商業施設、工場、病院、住宅等)の緊急電源システム装置等である。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
1.リチウムランタンチタン酸化物焼結体の評価方法
(組成式のx、aの決定方法)
 リチウムランタンチタン酸化物焼結体とNaとNaOHをジルコニウム坩堝に入れて、加熱して溶融する。その後放冷し、水とHClを加えて溶解する。溶解した液分を分取し、Tiについてはアルミニウム還元-硫酸アンモニウム鉄(III)滴定法により、その他の元素についてはICP発光分光法により定量を行い、一般式(1-a)LaLi2-3xTiO―aSrTiO、(1-a)LaLi2-3xTiO―aLa0.50.5TiO、LaLi2-3xTi1-a3-a、Srx-1.5aLaLi1.5-2xTi0.5Ta0.5(0.55≦x≦0.59、0≦a≦0.2、M=Fe、Gaのいずれか一つまたは二つ以上を含む)のx、aの値を決定した。
(Al、SiOの定量方法)
 得られた板状のリチウムランタンチタン酸化物焼結体を分析用セルに直接入れ、その試料表面を波長分散型蛍光X線装置 型式名:LIX3000(株式会社リガク製)を用いて定性・定量分析を行い、Al濃度、SiO濃度を算出した。
(リチウムイオン伝導度測定方法)
 板状(15mm×15mm×2.5mm)のリチウムランタンチタン酸化物焼結体の試料表面を#150のダイヤモンド砥石で研磨を行い、仕上げに#600のダイヤモンド砥石で研磨を行った。10mm×10mmの大きさに切り取った2枚のろ紙に、1Mの塩化リチウム水溶液を染み込ませ、板状のリチウムランタンチタン酸化物焼結体を挟むように貼り付けた。インピーダンスアナライザー 型式名:4192A(ヒューレットパッカード社製)を用いて測定周波数5Hz~13MHz、測定温度27℃でコール・コールプロットを測定し、測定データから粒内、粒界の抵抗値を読み取り、リチウムイオン伝導度を以下の計算式より求めた。
 リチウムイオン伝導度(Scm-1)=1/(R+Rgb)×(L/S)
 R:粒内の抵抗値(Ω)
 Rgb:粒界の抵抗値(Ω)
 L:板状のリチウムランタンチタン酸化物の厚み(cm)
 S:電極の面積(cm
(粒径測定方法)
 得られたリチウムランタンチタン酸化物焼結体の表面を、イオンスパッター(株式会社日立サイエンスシステムズ製)により白金を蒸着後、走査型電子顕微鏡 型式名:S-4700(株式会社日立ハイテクノロジーズ製)により一視野に粒子数が1200個程度となるように撮影を行った。
 画像解析式粒度分布測定ソフトウェア 型式名:Mac-View Ver.4(株式会社マウンテック製)により結晶粒子を最小の長方形で囲み、直交する二つの軸のうち長い方を粒径として1000個以上の粒径を測定し、その平均を粒子の平均粒径とした。
(単相化率の測定方法)
 得られたリチウムランタンチタン酸化物焼結体をアルミナ製の乳鉢で粉砕して測定試料とし、X線回折装置(X線源:CuKα線) 型式名:X’Part-ProMPD(パナリティカル社製)を用いて測定した。得られたX線回折パターンより、リチウムランタンチタン酸化物焼結体と不純物のメインピークの高さから、単相化率を以下の計算式により求めた。
 単相化率(%)=I/(I+S)×100
 I:リチウムランタンチタン酸化物の2θ=0~50°における最強ピークの高さ
 S:全ての不純物のメインピークの高さの和
[実施例1]
1.原料
 原料として炭酸リチウム(Sociedad Quimica y Minera de Chile S.A.製、純度99.2%以上)、酸化ランタン(宣興新威利成稀土有限公司製、純度99.99%以上)、酸化チタン(東邦チタニウム株式会社製、純度99.99%以上)を使用した。ぞれぞれの原料の重量を表1に示し、炭酸リチウムの過剰添加量は7.5重量%とした。
2.一次粉砕
 ウレタンライニングボールミル(容量200L)に、秤量した原料、アルミナメディア(径3mm)200kg、イオン交換水35L及びエタノール35L投入し、粉砕・混合30分行った後、15時間ボールミル内で放置し再度30分粉砕を行い、一次粉砕粉を得た。
3.一次乾燥
 一次粉砕粉をスプレードライヤーにより乾燥を行い、一次乾燥粉を得た。スプレードライヤーの条件は以下である。
 原料供給量:10~30L/h
 熱風入口温度:200~250℃
 排風温度:90~120℃
4.仮焼
 一次乾燥粉をコウジライトムライト材質の匣鉢にいれ、電気炉にて仮焼を行い、仮焼粉を得た。仮焼条件は、大気中、仮焼温度1150℃、仮焼時間2時間にて行った。
5.二次粉砕
 ウレタンライニングボールミル(容量200L)に、仮焼粉70kg、ジルコニアメディア(径3mm)200kg、イオン交換水60L、分散剤(ポリアクリル酸アンモニウム塩)700gを投入し、粉砕を6時間行った。その後、アクリル樹脂系バインダー4.5kgを投入し、15分間混合を行い、二次粉砕粉を得た。
6.二次乾燥
 二次粉砕粉をスプレードライヤーにより乾燥し、二次乾燥粉を得た。スプレードライヤーの条件は以下である。
 原料供給量:10~30L/h
 熱風入口温度:200~250℃
 排風温度:90~120℃
7.成形
 二次乾燥粉15gを、金型成形(成形圧力・1000kg/cm)により40mm×40mm×厚み3mmの平板状に成形し、成形体を得た。
8.焼結
 成形体を電気炉にて、大気中で1100℃、2時間で一次焼結を行った後、1460℃、6時間にて二次焼結を行い、リチウムランタンチタン酸化物焼結体を得た。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[実施例2]
 実施例1の「2.一次粉砕」のアルミナメディア(径3mm)をジルコニアメディア(径3mm)に変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[実施例3]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[実施例4]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[実施例5]
 実施例1の「8.焼結」の焼結温度を1460℃から1430℃へ変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[実施例6]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更し、さらにSrCOを3.666kg添加した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[実施例7]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更し、さらにSrCOを11.00kg添加した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[実施例8]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更し、さらにFeを1.884kg添加した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[実施例9]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更し、さらにFeを5.651kg添加した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[実施例10]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更し、さらにSrCOを36.29kg、Taを54.86kg添加した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[実施例11]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更し、さらにSrCOを25.30kg、Taを54.86kg添加した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[実施例12]
 実施例1の「7.成形」を「二次乾燥粉110gを、CIP成形(成形圧力・1000kg/cm)により外径23mm、内径17mm、長さ180mm、底の厚み5mmの有底円筒状に成形し、成形体を得た。」に変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。
 作製したリチウムランタンチタン酸化物焼結体を固体電解質として用い、図1に示すような、空気電池1を作製した。具体的には、負極活物質支持体2aの内側面上に負極活物質層3、負極活物質層3と固体電解質5の間に第1の電解液4、正極活物質層7と固体電解質5の間に第2の電解液6、蓋2bを負極活物質支持体2aの上に配置した。空気電池1に用いた負極活物質支持体2a、固体電解質5、正極活物質層7は有底円筒状である。空気電池1を作製した後、正極活物質層7の内側に酸素を流通させて放電、充放電測定を行った。
 負極活物質支持体2a、負極活物質層3、正極活物質層7、負極活物質層3と固体電解質5の間の電解液4、正極活物質層7と固体電解質5の間の電解液6、蓋2bの材料は以下の通りである。
 負極活物質支持体2a: SUS316L
 負極活物質層3:金属リチウム
 正極活物質層7:多孔質カーボン
 第1の電解液4:1.0M LiClO溶液(溶媒はエチレンカーボネート、ジメチルカーボネート)
 第2の電解液6:0.5M LiOH水溶液
 蓋2b:SUS316L
 正極活物質層7へ酸素(99.5%以上)100mL/minを流通させながら、定電流(1mA)、温度27℃にて放電測定を行なった。結果を図2に示す。放電電圧約2.9Vで47時間安定して放電でき、高い放電特性を有していることがわかる。
[比較例1]
 実施例1の「2.一次粉砕」の粉砕・混合条件を30分行った後に15時間ボールミル内で放置して再度30分粉砕から、連続20時間粉砕に、「5.二次粉砕」のジルコニアメディア(径3mm)をアルミナメディア(径3mm)、粉砕時間を6時間から10時間に変更した。これらの変更以外は実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例2]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例3]
 実施例1のそれぞれの原料の重量を表1に示したとおりに変更した以外は、実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例4]
 実施例1の「5.二次粉砕」の粉砕を行う際に、Alを0.8527kg添加した以外は実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例5]
 実施例1の「5.二次粉砕」の粉砕を行う際に、SiOを0.8527kg添加した以外は実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例6]
 実施例1の「8.焼結」の焼結温度を1460℃から1410℃へ変更した以外は実施例1と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例7]
 実施例1の「2.一次粉砕」を「瑪瑙乳鉢に、秤量した原料、エタノール0.035Lを投入し、粉砕・混合を30分行った」に変更した。また、「3.一次乾燥」を「一次粉砕粉をバットに投入し、120℃で乾燥した」に変更した。また、「4.仮焼」の仮焼温度1150℃を800℃に変更し、仮焼時間2時間を4時間に変更した。また、「5.二次粉砕」を「瑪瑙乳鉢に仮焼粉0.07kgを投入し、粉砕を30分行った」に変更した。また、「6.二次乾燥」を「一次粉砕粉をバットに投入し、120℃で乾燥した」に変更した。また、「8.焼結」を「成形体を電気炉にて、1150℃、6時間にて二次焼結を行い、リチウムランタンチタン酸化物焼結体を得た」に変更した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度、平均粒径を表2に示す。
[比較例8]
 実施例1の「2.一次粉砕」の粉砕・混合条件を30分行った後に15時間ボールミル内で放置して再度30分粉砕から、連続20時間粉砕に、「5.二次粉砕」のジルコニアメディア(径3mm)をアルミナメディア(径3mm)、粉砕時間を6時間から10時間に変更した。これらの変更以外は実施例6と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[比較例9]
 実施例1の「2.一次粉砕」の粉砕・混合条件を30分行った後に15時間ボールミル内で放置して再度30分粉砕から、連続20時間粉砕に、「5.二次粉砕」のジルコニアメディア(径3mm)をアルミナメディア(径3mm)、粉砕時間を6時間から10時間に変更した。これらの変更以外は実施例8と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
[比較例10]
 実施例1の「2.一次粉砕」の粉砕・混合条件を30分行った後に15時間ボールミル内で放置して再度30分粉砕から、連続20時間粉砕に、「5.二次粉砕」のジルコニアメディア(径3mm)をアルミナメディア(径3mm)、粉砕時間を6時間から10時間に変更した。これらの変更以外は実施例10と同じ方法でリチウムランタンチタン酸化物焼結体を作製した。得られたリチウムランタンチタン酸化物焼結体の単相化率、Al濃度、SiO濃度、リチウムイオン伝導度を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 Al濃度、SiO濃度および平均粒径のうちいずれか1項目以上が本発明で規定される範囲外である各比較例は、いずれもリチウムイオン伝導度が3.0×10-4Scm-1未満であった。一方、いずれの数値も本発明の範囲内である各実施例は、リチウムイオン伝導度が3.0×10-4Scm-1以上であった。特に、実施例1,2、5、8および10は、伝導度が特に良好であった。
 本発明は、リチウム一次電池、リチウム二次電池の固体電解質、例えば全固体リチウムイオン電池の固体電解質やリチウム空気電池の固体電解質として利用できるリチウムランタンチタン酸化物焼結体を提供でき、有望である。
1…空気電池
2a…負極活物質支持体
2b…蓋
3…負極活物質層
4…第1の電解液
5…固体電解質
6…第2の電解液
7…正極活物質層
 

 

Claims (7)

  1.  一般式(1-a)LaLi2-3xTiO―aSrTiO、(1-a)LaLi2-3xTiO―aLa0.50.5TiO、LaLi2-3xTi1-a3-a、Srx-1.5aLaLi1.5-2xTi0.5Ta0.5(0.55≦x≦0.59、0≦a≦0.2、M=Fe、Gaから選択される少なくとも一種)で表され、Alの含有量がAlとして0.35重量%以下、かつSiの含有量がSiOとして0.1重量%以下であり、かつ平均粒子径が18μm以上であることを特徴とするリチウムランタンチタン酸化物焼結体。
  2.  リチウムイオン伝導度が3.0×10-4Scm-1以上であることを特徴とする請求項1に記載のリチウムランタンチタン酸化物焼結体。
  3.  x=0.57、a≦0.05であることを特徴とする請求項1または2に記載のリチウムランタンチタン酸化物焼結体。
  4.  請求項1~3のいずれかに記載のリチウムランタンチタン酸化物焼結体を含むことを特徴とする固体電解質。
  5.  請求項4に記載の固体電解質を備えることを特徴とするリチウム空気電池。
  6.  前記リチウム空気電池は、負極活物質層、固体電解質、正極活物質層を有し、負極活物質層と固体電解質の間、正極活物質層と固体電解質の間に電解液を備えることを特徴とする請求項5に記載のリチウム空気電池。
  7.  請求項4に記載の固体電解質を備えることを特徴とする全固体リチウムイオン電池。
     
PCT/JP2013/061795 2012-04-25 2013-04-22 リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池 WO2013161765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014512559A JP6222606B2 (ja) 2012-04-25 2013-04-22 リチウムランタンチタン酸化物焼結体の製造方法、前記酸化物を含む固体電解質の製造方法、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池の製造方法
EP13780889.5A EP2842926B1 (en) 2012-04-25 2013-04-22 Lithium lanthanum titanium oxide sintered body, solid electrolyte containing oxide, lithium air battery employing solid electrolyte and all-solid lithium battery
CN201380021848.6A CN104245624B (zh) 2012-04-25 2013-04-22 锂镧钛氧化物烧结体、含有前述氧化物的固体电解质、以及具备前述固体电解质的锂空气电池和全固态锂电池
US14/396,955 US9711822B2 (en) 2012-04-25 2013-04-22 Lithium-lanthanum-titanium oxide sintered material, solid electrolyte containing the oxide, and lithium air battery and all-solid lithium battery including the solid electrolyte
KR1020147029473A KR101930123B1 (ko) 2012-04-25 2013-04-22 리튬란탄티탄 산화물 소결체, 상기 산화물을 포함하는 고체 전해질, 및 상기 고체 전해질을 구비한 리튬 공기 전지 및 전고체 리튬 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012099456 2012-04-25
JP2012-099456 2012-04-25
JP2012167432 2012-07-27
JP2012-167432 2012-07-27

Publications (1)

Publication Number Publication Date
WO2013161765A1 true WO2013161765A1 (ja) 2013-10-31

Family

ID=49483078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061795 WO2013161765A1 (ja) 2012-04-25 2013-04-22 リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池

Country Status (6)

Country Link
US (1) US9711822B2 (ja)
EP (1) EP2842926B1 (ja)
JP (1) JP6222606B2 (ja)
KR (1) KR101930123B1 (ja)
CN (1) CN104245624B (ja)
WO (1) WO2013161765A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139657A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 電極積層体及び全固体リチウム電池
WO2020066301A1 (ja) * 2018-09-27 2020-04-02 堺化学工業株式会社 固体酸化物形燃料電池空気極用の粉体およびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6272613B2 (ja) * 2013-09-30 2018-01-31 京セラ株式会社 全固体型キャパシタ
WO2017112804A1 (en) 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
CN105742761B (zh) * 2016-02-29 2018-03-23 苏州大学 一种全固态锂‑空气电池及其制备方法与应用
CN107732296B (zh) * 2017-10-09 2020-02-04 中国科学院深圳先进技术研究院 一种全固态锂离子电池固态电解质的制备方法
CN112117488B (zh) * 2020-07-31 2021-11-02 华中科技大学 固态电解质、锂金属负极及其制备方法
CN111960831B (zh) * 2020-08-21 2022-05-27 浙江锦诚新材料股份有限公司 一种水泥窑预热器用喷涂料
CN113889661A (zh) * 2021-09-08 2022-01-04 中钢集团南京新材料研究院有限公司 界面改性锂镧锆氧的方法及应用、制备方法和固态锂电池
CN116141215A (zh) * 2022-08-04 2023-05-23 华侨大学 一种含稀土化合物的软胶抛光垫的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (ja) * 1993-03-25 1995-07-04 Ngk Insulators Ltd リチウムイオン伝導体及びリチウム電池のカソード材料
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法
JP2010262876A (ja) 2009-05-11 2010-11-18 Toyota Motor Corp 空気電池
JP2011134628A (ja) 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology リチウム−空気電池
JP2011222415A (ja) 2010-04-13 2011-11-04 Toyota Motor Corp 固体電解質材料、リチウム電池および固体電解質材料の製造方法
US20110318650A1 (en) 2010-03-30 2011-12-29 West Virginia University Inorganic Solid Electrolyte Glass Phase Composite and a Battery Containing an Inorganic Solid Electrolyte Glass Phase Composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103117A (ja) * 1981-12-16 1983-06-20 太陽誘電株式会社 コンデンサ用半導体磁器
JPH06333577A (ja) 1993-03-25 1994-12-02 Ngk Insulators Ltd リチウム固体電解質電池
JP4038699B2 (ja) * 1996-12-26 2008-01-30 株式会社ジーエス・ユアサコーポレーション リチウムイオン電池
WO2008059987A1 (en) 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (ja) * 1993-03-25 1995-07-04 Ngk Insulators Ltd リチウムイオン伝導体及びリチウム電池のカソード材料
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法
JP2010262876A (ja) 2009-05-11 2010-11-18 Toyota Motor Corp 空気電池
JP2011134628A (ja) 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology リチウム−空気電池
US20110318650A1 (en) 2010-03-30 2011-12-29 West Virginia University Inorganic Solid Electrolyte Glass Phase Composite and a Battery Containing an Inorganic Solid Electrolyte Glass Phase Composite
JP2011222415A (ja) 2010-04-13 2011-11-04 Toyota Motor Corp 固体電解質材料、リチウム電池および固体電解質材料の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. MEI ET AL., SOLID STATE IONICS, vol. 2255-225, 2008, pages 179
INAGUMA,YOSHIYUKI ET AL.: "A rechargeable lithium-air battery using a lithium ion- conducting lanthanum lithium titanate ceramics as an electrolyte separator", JOURNAL OF POWER SOURCES, vol. 228, 29 November 2012 (2012-11-29), pages 250 - 255, XP028963194 *
MEI,AO ET AL.: "Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica", SOLID STATE IONICS, vol. 179, 2008, pages 2255 - 2259, XP025716254 *
Y. INAGUMA ET AL., SOLID STATE COMMUNICATIONS, vol. 689-693, 1993, pages 86
YOSHIYUKI INAGUMA: "Perovskite-Type Lithium Ion-Conducting Oxides", CERAMICS, vol. 43, no. 7, 2008, pages 540 - 546, XP008175332 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139657A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 電極積層体及び全固体リチウム電池
WO2020066301A1 (ja) * 2018-09-27 2020-04-02 堺化学工業株式会社 固体酸化物形燃料電池空気極用の粉体およびその製造方法
JP6690795B1 (ja) * 2018-09-27 2020-04-28 堺化学工業株式会社 固体酸化物形燃料電池空気極用の粉体およびその製造方法

Also Published As

Publication number Publication date
US20150099197A1 (en) 2015-04-09
CN104245624B (zh) 2016-11-16
US9711822B2 (en) 2017-07-18
JPWO2013161765A1 (ja) 2015-12-24
JP6222606B2 (ja) 2017-11-01
KR101930123B1 (ko) 2018-12-17
EP2842926B1 (en) 2018-11-28
KR20150016216A (ko) 2015-02-11
EP2842926A1 (en) 2015-03-04
EP2842926A4 (en) 2015-12-30
CN104245624A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6222606B2 (ja) リチウムランタンチタン酸化物焼結体の製造方法、前記酸化物を含む固体電解質の製造方法、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池の製造方法
Jiang et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material
KR101234965B1 (ko) 비수전해질 이차전지용 양극 활물질 및 그것을 이용한 비수전해질 이차전지
JP6919112B2 (ja) 球形又は類球形層状構造のリチウム電池の正極材料、製造方法、リチウムイオン電池、及び、応用
JP5971109B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR101624805B1 (ko) 고체 전해질층을 포함하는 이차전지
EP2369666B1 (en) Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
US20160254539A1 (en) Method for Manufacturing Over-Lithiated Layered Lithium Metal Composite Oxide
EP2903073B1 (en) Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
JP4919147B2 (ja) 非水系リチウム二次電池用正極活物質の製造方法
EP3806204A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019163846A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2006318928A (ja) リチウム二次電池用正極活物質及び非水系リチウム二次電池
JP4172024B2 (ja) リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
Chchiyai et al. Synthesis and electrochemical properties of Mn-doped porous Mg0. 9Zn0. 1Fe2− xMnxO4 (0≤ x≤ 1.25) spinel oxides as anode materials for lithium-ion batteries
US9698430B2 (en) Lithium-lanthanum-titanium oxide sintered material, solid electrolyte containing the oxide, lithium air battery and all-solid lithium battery including the solid electrolyte, and method for producing the lithium-lanthanum-titanium oxide sintered material
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
JP2011116582A (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2014120264A (ja) 全固体リチウム電池
KR20120112764A (ko) 복합 산화물의 제조 방법, 리튬 이온 2차 전지용 정극 활물질, 리튬 이온 2차 전지 및 차량
US11637316B2 (en) Ceramic powder material, sintered body, and battery
JP6032700B2 (ja) リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池
Xu et al. Oxalate co-precipitation synthesis of LiNi0. 45Cr0. 05Mn1. 5O4/Ag composite for lithium-ion batteries
WO2023171541A1 (ja) 非水電解質二次電池用電極および非水電解質二次電池
US20230282819A1 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery in which same is used

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512559

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147029473

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013780889

Country of ref document: EP