WO2013161567A1 - 継目無鋼管及びその製造方法 - Google Patents

継目無鋼管及びその製造方法 Download PDF

Info

Publication number
WO2013161567A1
WO2013161567A1 PCT/JP2013/060828 JP2013060828W WO2013161567A1 WO 2013161567 A1 WO2013161567 A1 WO 2013161567A1 JP 2013060828 W JP2013060828 W JP 2013060828W WO 2013161567 A1 WO2013161567 A1 WO 2013161567A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
seamless steel
grains
surface layer
Prior art date
Application number
PCT/JP2013/060828
Other languages
English (en)
French (fr)
Inventor
侑正 上田
勇次 荒井
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CA2870113A priority Critical patent/CA2870113C/en
Priority to MX2014012191A priority patent/MX355667B/es
Priority to JP2013518891A priority patent/JP5408389B1/ja
Priority to CN201380022368.1A priority patent/CN104271786B/zh
Priority to EP13781239.2A priority patent/EP2843072B1/en
Priority to US14/396,837 priority patent/US10392675B2/en
Priority to AU2013253775A priority patent/AU2013253775B2/en
Priority to ES13781239.2T priority patent/ES2635239T3/es
Priority to IN9528DEN2014 priority patent/IN2014DN09528A/en
Publication of WO2013161567A1 publication Critical patent/WO2013161567A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a seamless steel pipe and a manufacturing method thereof.
  • submarine oil wells Onshore and shallow water oil and gas wells have been depleted in recent years. Therefore, the development of deep-sea submarine oil wells and submarine gas wells (hereinafter referred to as “submarine oil wells” collectively).
  • the flow line and riser are arranged between the wellhead located on the seabed and the offshore platform.
  • Production fluids including crude oil or natural gas, are conveyed from the offshore well to the platform through a flow line or riser.
  • a flow line is a line pipe laid along the terrain on the ground surface or sea bottom.
  • a riser is a line pipe that is arranged to rise from the bottom of the sea in the platform direction (that is, upward).
  • the production fluid that passes through the steel pipes that make up these line pipes is at high pressure. Further, when the operation is stopped, seawater pressure is applied to these flow lines and risers from the outside. Furthermore, the flow line and riser are also subjected to repeated stresses caused by waves and ocean currents. Therefore, a thick high-strength steel pipe is required for use as a line pipe such as a flow line or a riser.
  • the welded steel pipe has a welded portion (seam portion) along the longitudinal direction, the welded portion has lower toughness than the base material. Therefore, seamless steel pipes are more suitable for submarine pipelines than welded steel pipes.
  • Patent Document 1 proposes a method of manufacturing a seamless steel pipe.
  • a seamless steel pipe manufactured by hot rolling is cooled to a temperature not higher than the Ar3 transformation point at a cooling rate of 80 ° C./min or higher, and then quenched and tempered.
  • the seamless steel pipe manufactured by the manufacturing method of Patent Document 1 it is described that crystal grains are refined and high strength and toughness are obtained.
  • the toughness may vary and the toughness may be lowered.
  • Nb is effective for increasing the strength.
  • the toughness of the surface layer portion is further lowered, and the variation in toughness may be increased between the surface layer portion and the thickness center portion.
  • An object of the present invention is to provide a seamless steel pipe having high strength and toughness even if it is thick.
  • the seamless steel pipe according to the present embodiment is, in mass%, C: 0.03 to 0.08%, Si: 0.25% or less, Mn: 0.3 to 2.0%, P: 0.05% or less. S: 0.005% or less, Al: 0.001 to 0.10%, Cr: 0.02 to 1.0%, Ni: 0.02 to 1.0%, Mo: 0.02 to 0.0.
  • the average grain size of the prior austenite grains in the surface layer portion that is a region of 500 ⁇ m ⁇ 500 ⁇ m centering on the position of a depth of 2 mm from the surface in the cross section perpendicular to the axial direction of the seamless steel pipe having the above thickness
  • the diameter is less than 80 ⁇ m
  • the average crystal grain size of the prior austenite grains in the surface layer portion is less than 50 [mu] m.
  • the seamless steel pipe according to the present embodiment may further contain Ti: 0.010% or less instead of part of Fe.
  • the seamless steel pipe according to the present embodiment may further contain at least one selected from the group consisting of V: 0.1% or less and Cu: 1.0% or less, instead of part of Fe. Good.
  • the production method of the seamless steel pipe according to the present embodiment is, in mass%, C: 0.03 to 0.08%, Si: 0.25% or less, Mn: 0.3 to 2.0%, P: 0.00. 05% or less, S: 0.005% or less, Al: 0.001 to 0.10%, Cr: 0.02 to 1.0%, Ni: 0.02 to 1.0%, Mo: 0.02 -0.8%, N: 0.002-0.008%, Ca: 0.0005-0.005%, and Nb: 0.01-0.1%, with the balance being Fe and impurities Heating the raw material, hot-working the heated material to produce a raw tube, accelerating and cooling the hot-worked raw tube, and reheating the accelerated and cooled raw tube , A step of soaking at 990 to 1100 ° C., a step of cooling and quenching the soaked raw tube, and a step of tempering the quenched raw tube
  • the seamless steel pipe according to this embodiment has excellent strength and toughness even if it is thick.
  • FIG. 1 is a graph showing the relationship between the average crystal grain size and the reheating temperature when steel having the chemical composition of the present embodiment is heated to various temperatures after quenching at 5 ° C./min.
  • FIG. 2 is a layout diagram of equipment showing an example of a seamless steel pipe manufacturing apparatus according to the present embodiment.
  • FIG. 3 is a flowchart showing an example of a method for manufacturing a seamless steel pipe according to the present embodiment.
  • the inventors of the present invention have completed the seamless steel pipe according to the present embodiment based on the following knowledge.
  • Nb combines with carbon to form NbC, increasing the strength of the steel. Therefore, in order to produce a thick-walled seamless steel pipe having high strength, particularly X80 grade or higher (yield strength of 551 MPa or more) specified by API (American Petroleum Institute) standard, one containing Nb Is preferred.
  • the old austenite grains after quenching and tempering (hereinafter referred to as old ⁇ grains) are not refined, and in particular, the old ⁇ grains in the surface layer are coarse.
  • the surface layer means a region having a depth of 1 to 3 mm from the surface of the seamless steel pipe.
  • Nb thick material The reason why the old ⁇ grain becomes coarse in a thick-walled seamless steel pipe containing Nb (hereinafter referred to as Nb thick material) is that NbC suppresses the growth of granular reverse-transformed ⁇ grains during reheating. is there. Hereinafter, this point will be described in detail.
  • the surface layer of the Nb thick material being reheated has needle-like reverse transformed ⁇ grains and granular reverse transformed ⁇ grains.
  • the reverse transformation ⁇ means ⁇ generated during heating. Therefore, the crystal orientation of the needle-like reverse transformed ⁇ grains and the crystal orientation of the granular reverse transformed ⁇ grains were investigated using an EBSD (Electron Back Scattering Diffraction: electron beam backscatter diffraction) method. As a result, the crystal orientations of the plurality of needle-like reverse transformed ⁇ grains produced in the same old ⁇ grain were the same. On the other hand, the crystal orientation of the granular reverse-transformed ⁇ grains was different from that of the acicular reverse-transformed ⁇ grains.
  • NbC exhibits a pinning effect during reheating and suppresses the growth of granular reverse transformed ⁇ grains. Therefore, in reheating, the ratio of the needle-like reverse transformed ⁇ grains increases, and as a result, the old ⁇ grains tend to be coarse in the surface layer portion of the Nb thick material after tempering.
  • the Nb thick material excellent strength and toughness can be obtained by reducing the variation by reducing the particle size of the old ⁇ grains in the central portion and the surface layer portion.
  • the average crystal grain size of the old ⁇ grains in the surface layer portion is less than 80 ⁇ m, and the difference in the average crystal grain size of the old ⁇ grains in the surface layer portion and the thickness central portion is less than 50 ⁇ m. Further, yield strength and toughness can be obtained, and variation in toughness between the surface layer portion and the thickness center portion can also be suppressed.
  • FIG. 1 is a diagram showing the relationship between the average crystal grain size and the reheating temperature when steel containing Nb and having the chemical composition of the present embodiment is heated to various temperatures after quenching.
  • FIG. 1 was obtained by the following method.
  • a rectangular parallelepiped block was obtained from steel within the above chemical composition range by the same manufacturing method as in Example 1 described later.
  • a cylindrical small test piece (diameter 3 mm, height 10 mm) for heat treatment was collected from this block. After soaking at 1200 ° C. for 5 minutes, the mixture was rapidly cooled to room temperature and subsequently heated to a temperature between 950 ° C. and 1200 ° C. After soaking at each temperature for 5 minutes, it was rapidly cooled to room temperature again. The heating rate was 5 ° C./min corresponding to the heating rate when the thick steel pipe was heated in the furnace.
  • the average particle diameter ( ⁇ m) of the old ⁇ grains after the heat treatment was determined according to the method for measuring the average crystal grain diameter described later.
  • FIG. 1 was obtained using the obtained average crystal grain size.
  • the average crystal grain size became smaller.
  • the heating temperature is raised, crystal grains grow and become coarse. Therefore, a phenomenon different from conventional technical common sense occurred in the Nb thick material.
  • the reheating temperature is 990 ° C. to 1100 ° C.
  • the average crystal grain size of the old ⁇ grains remains small, and the old ⁇ grains become finer.
  • the reheating temperature exceeded 1100 ° C., the old ⁇ grains were coarsened again.
  • the reheating temperature is 990 to 1100 ° C.
  • NbC melts during the reheating. Therefore, granular reverse transformation ⁇ grains are generated and grown. As a result, the old ⁇ grains after tempering become fine. Furthermore, the difference in average crystal grain size of the old ⁇ grains in the surface layer portion and the central thickness portion is reduced, and excellent toughness is obtained. Further, the molten NbC is finely precipitated again after tempering. Therefore, high strength can be obtained.
  • the chemical composition of the seamless steel pipe according to the present embodiment contains the following elements.
  • C 0.03-0.08% Carbon (C) increases the strength of the steel. However, if the C content is too high, the toughness of the steel decreases. Therefore, the C content is 0.03 to 0.08%.
  • Si 0.25% or less Silicon (Si) not only is added for the purpose of deoxidizing steel, but also contributes to an increase in strength and an increase in softening resistance during tempering. However, if the Si content is too high, the toughness of the steel decreases. Therefore, the Si content is 0.25% or less. A preferred lower limit of the Si content is 0.05%.
  • Mn 0.3 to 2.0%
  • Manganese (Mn) increases the hardenability of the steel. For this reason, the strength of the thickness center portion can be increased. However, if the Mn content is too high, the toughness of the steel decreases. Therefore, the Mn content is 0.3 to 2.0%.
  • the minimum with preferable Mn content is higher than 0.3%, More preferably, it is 0.5%, More preferably, it is 1.0%.
  • P 0.05% or less Phosphorus (P) is an impurity. P decreases the toughness of the steel. Therefore, a lower P content is preferable.
  • the P content is 0.05% or less.
  • the P content is preferably 0.02% or less, and more preferably 0.01% or less.
  • S 0.005% or less Sulfur (S) is an impurity. S decreases the toughness of the steel. Accordingly, a lower S content is preferable. S content is 0.005% or less. The preferable S content is 0.003% or less, and more preferably 0.001% or less.
  • Al 0.001 to 0.10%
  • the content of aluminum (Al) in the present invention means the content of acid-soluble Al (so-called Sol. Al). Al deoxidizes steel. However, if the Al content is too high, cluster-like inclusions are formed, and the toughness of the steel decreases. Therefore, the Al content is 0.001 to 0.10%.
  • the minimum with preferable Al content is higher than 0.001%, More preferably, it is 0.01%.
  • the upper limit with preferable Al content is less than 0.10%, More preferably, it is 0.07%.
  • Chromium (Cr) increases the hardenability of the steel and increases the strength of the steel. However, if the Cr content is too high, the toughness of the steel decreases. Therefore, the Cr content is 0.02 to 1.0%.
  • the minimum with preferable Cr content is higher than 0.02%, More preferably, it is 0.1%.
  • the upper limit with preferable Cr content is less than 1.0%, More preferably, it is 0.8%.
  • Ni 0.02 to 1.0%
  • Nickel (Ni) increases the hardenability of the steel and increases the strength of the steel. However, if the Ni content is too high, the effect is saturated. Therefore, the Ni content is 0.02 to 1.0%.
  • the minimum with preferable Ni content is higher than 0.02%, More preferably, it is 0.1%.
  • Mo 0.02 to 0.8% Molybdenum (Mo) increases the hardenability of the steel and increases the strength of the steel. However, if the Mo content is too high, the toughness of the steel decreases. Therefore, the Mo content is 0.02 to 0.8%.
  • the minimum with preferable Mo content is higher than 0.02%, More preferably, it is 0.1%.
  • the upper limit with preferable Mo content is less than 0.8%, More preferably, it is 0.5%.
  • N 0.002 to 0.008% Nitrogen (N) combines with Al, Ti, or the like to form a nitride.
  • N Nitrogen
  • the N content is 0.002 to 0.008%.
  • the minimum with preferable N content is higher than 0.002%, More preferably, it is 0.004%.
  • the upper limit with preferable N content is less than 0.008%, More preferably, it is 0.007%.
  • Ca 0.0005 to 0.005% Calcium (Ca) deoxidizes steel. Ca further combines with S in the steel to form CaS. Generation of MnS is suppressed by generation of CaS. That is, Ca suppresses the generation of MnS and improves the toughness and hydrogen induced cracking (HIC) resistance of the steel. However, if the Ca content is too high, cluster-like inclusions are formed, and toughness and HIC resistance are lowered.
  • Niobium (Nb) combines with C and N in the steel to form fine Nb carbonitrides and increases the strength of the steel. Furthermore, fine Nb carbonitride increases the strength of the steel by dispersion strengthening. However, if the Nb content is too high, the Nb carbonitride becomes coarse and the toughness of the steel decreases. Therefore, the Nb content is 0.01 to 0.1%.
  • the upper limit with preferable Nb content is less than 0.1%, More preferably, it is less than 0.08%.
  • the balance of the seamless steel pipe according to this embodiment is iron (Fe) and impurities.
  • the impurities here refer to ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
  • the seamless steel pipe according to the present embodiment may further contain Ti instead of a part of Fe.
  • Ti is not an essential element but an optional element.
  • Titanium (Ti) combines with N in the steel to form TiN, and suppresses a decrease in the toughness of the steel due to the solid solution N. Furthermore, when fine TiN is dispersed and precipitated, an effect of suppressing the coarsening of austenite grains during hot pipe making is obtained, and the toughness of the steel is further improved. If Ti is contained even a little, the above effect can be obtained. However, if the Ti content is too high, TiN is coarsened or coarse TiC is formed, so that the toughness of the steel is lowered. That is, in order to finely disperse TiN, the Ti content is limited. Therefore, the Ti content is 0.010% or less. The minimum with preferable Ti content is 0.001%, More preferably, it is 0.004%.
  • the seamless steel pipe according to the present embodiment may further contain one or more selected from the group consisting of V and Cu instead of part of Fe.
  • V and Cu are not essential elements but are selective elements. All of these elements increase the strength of the steel.
  • V 0.1% or less Vanadium (V) combines with C and N in the steel to form fine carbonitrides and increases the strength of the steel. If V is contained even a little, the above effect can be obtained. However, if the V content is too high, the V carbonitride becomes coarse and the toughness of the steel decreases. Therefore, the V content is 0.1% or less. A preferable lower limit of the V content is 0.01%. The upper limit with preferable V content is less than 0.1%, More preferably, it is 0.08%.
  • Cu 1.0% or less Copper (Cu) increases the hardenability of the steel and increases the strength of the steel. However, if the Cu content is too high, the toughness of the steel decreases. Therefore, the Cu content is 1.0% or less. A preferable lower limit of the Cu content is 0.1%. The upper limit with preferable Cu content is less than 1.0%, More preferably, it is 0.6%.
  • the wall thickness of the seamless steel pipe according to this embodiment is 50 mm or more. That is, the seamless steel pipe of this embodiment is a thick-walled steel pipe.
  • the upper limit of the preferable wall thickness is 80 mm, more preferably 70 mm.
  • the crystal grain size tends to vary between the surface layer of the steel pipe and the central portion of the wall thickness.
  • the average crystal grain size of the old ⁇ grains in the surface layer portion is less than 80 ⁇ m, and the difference in the average diameter of the old ⁇ grains in the surface layer portion and the wall thickness central portion is less than 50 ⁇ m. is there. Therefore, it has excellent toughness, and variation in toughness can be suppressed between the surface layer portion and the thickness center portion.
  • the average crystal grain size of the old ⁇ grains in the surface layer is obtained by the following method.
  • the old ⁇ grains within the measurement region 500 ⁇ m ⁇ 500 ⁇ m
  • the diameter (average crystal grain size of old ⁇ grains) is measured.
  • the former ⁇ grain boundary is revealed using a picric acid saturated aqueous solution.
  • Measurement of the average crystal grain size of the old ⁇ grains in the measurement region is performed following the method described in JIS G0551 (2005), and evaluation is performed by converting the grain size number into the average crystal grain size. This average crystal grain size is defined as the average crystal grain size of the former ⁇ grains in the surface layer portion.
  • a measurement region (500 ⁇ m ⁇ 500 ⁇ m) centering on the center position of the wall thickness is selected from the above-described cross section, and the average crystal grain size is calculated by the same method as described above.
  • This average crystal grain size is defined as the average crystal grain size of old ⁇ grains at the center of the wall thickness.
  • the coarsening of the old ⁇ grains in the surface layer portion is suppressed. Therefore, it exhibits excellent toughness. Furthermore, since the hardness of the surface layer can be suppressed, excellent sour resistance can also be obtained. Furthermore, the difference in the average crystal grain size of the former ⁇ grains in the surface layer part and the central part of the wall thickness is small. Therefore, variation in toughness can be suppressed between the surface layer portion and the central thickness portion of the seamless steel pipe. In addition, the average crystal grain size is smaller in the thickness center part than in the surface layer part.
  • FIG. 2 is a block diagram showing an example of a production line for seamless steel pipes for line pipes according to the present embodiment.
  • the production line includes a heating furnace 1, a piercing machine 2, a drawing mill 3, a constant diameter rolling mill 4, a reheating furnace 5, a water cooling device 6, a quenching device 7, A tempering device 8 is provided.
  • a plurality of transport rollers 10 are arranged between the devices.
  • a quenching device 7 and a tempering device 8 are also included in the production line.
  • the hardening device 7 and the tempering device 8 may be arranged away from the production line. In short, the hardening device 7 and the tempering device 8 may be arranged off-line.
  • FIG. 3 is a flowchart showing the manufacturing process of the seamless steel pipe according to the present embodiment.
  • the material is heated in heating furnace 1 (S1).
  • the material is, for example, a round billet.
  • the material may be manufactured by a continuous casting apparatus such as round CC.
  • a raw material may be manufactured by forging or partial rolling an ingot or a slab.
  • the description is continued assuming that the material is a round billet.
  • the heated round billet is hot-worked into a raw tube (S2 and S3).
  • the manufactured raw tube is heated to a predetermined temperature by the auxiliary heating furnace 5 as required (S4), and the raw tube is water-cooled by the water cooling device 6 (accelerated cooling: S5).
  • the water-cooled element tube is quenched by the quenching device 7 (S6) and tempered by the tempering device 8 (S7).
  • the seamless steel pipe of this embodiment is manufactured by the above process. Hereinafter, each process will be described in detail.
  • Heating step (S1) First, the round billet is heated in the heating furnace 1.
  • a preferred heating temperature is 1150 to 1280 ° C. If heating temperature is 1150 degreeC or more, the deformation
  • the heating furnace 1 is, for example, a known walking beam furnace or a rotary furnace.
  • [Punching step (S2)] Remove the round billet from the furnace. Then, the heated round billet is pierced and rolled by the piercing machine 2.
  • the punching machine 2 includes a pair of inclined rolls and a plug. The plug is disposed between the inclined rolls.
  • a preferred drilling machine 2 is a cross-type drilling machine. This is because drilling at a high expansion rate is possible.
  • the drawing mill 3 includes a plurality of roll stands arranged in series.
  • the drawing mill 3 is, for example, a mandrel mill.
  • the drawn and rolled raw pipe is subjected to constant diameter rolling by a constant diameter rolling mill 4 to produce a seamless steel pipe.
  • the constant diameter rolling mill 4 includes a plurality of roll stands arranged in series.
  • the constant diameter rolling mill 4 is, for example, a sizer or a stretch reducer.
  • finishing temperature The surface temperature of the raw tube rolled by the last roll stand among the plurality of roll stands of the constant diameter rolling mill 4 is defined as “finishing temperature”.
  • the finishing temperature is measured by, for example, a temperature sensor arranged on the exit side of the last roll stand of the constant diameter rolling mill 4.
  • a preferred finishing temperature is 900 ° C. to 1100 ° C.
  • a soaking furnace may be provided between the drawing mill 3 and the constant diameter rolling machine 4 so as to soak the raw tube stretched and rolled by the drawing mill 3.
  • a reheating process (S4) is implemented as needed. When not performing a reheating process, it progresses to step S5 from step S3 in FIG. Further, when the reheating step is not performed, the auxiliary heating furnace 5 is not arranged in FIG.
  • the auxiliary heat furnace means a heating furnace that maintains the produced seamless steel pipe at a quenching temperature without cooling.
  • the manufactured seamless steel pipe is charged into the reheating furnace 5 and heated. By this treatment, the distribution of the old ⁇ particle size is made more uniform.
  • a preferable heating temperature in the auxiliary heating furnace 5 is 900 ° C. to 1100 ° C.
  • a preferable soaking time is 30 minutes or less. This is because if the soaking time is too long, the old ⁇ grains may be coarsened.
  • the base tube manufactured in step S3 or the base tube reheated in step S4 is accelerated and cooled.
  • the raw tube is water cooled by the water cooling device 6.
  • the temperature (surface temperature) of the tube immediately before water cooling is Ar3 or higher, preferably 900 ° C or higher.
  • the raw tube is reheated using the above-described auxiliary heat furnace 5 or an induction heating device, and the temperature of the raw tube is set to the Ar 3 point or higher.
  • a preferable cooling rate of the raw tube during accelerated cooling is 100 ° C./min or more, and a preferable cooling stop temperature is Ar 1 point or less.
  • a more preferable water cooling stop temperature is 450 ° C. or lower.
  • the configuration of the water cooling device 6 is, for example, as follows.
  • the water cooling device 6 includes a plurality of rotating rollers, a laminar water flow device, and a jet water flow device.
  • the plurality of rotating rollers are arranged in two rows.
  • the raw tubes are arranged between a plurality of rotating rollers arranged in two rows. At this time, each of the two rows of rotating rollers comes into contact with the lower part of the outer surface of the raw tube.
  • the laminar water flow device is disposed above the rotating roller, and pours water from above into the raw tube. At this time, the water poured into the raw tube forms a laminar water flow.
  • the jet water flow device is disposed in the vicinity of the end of the raw tube disposed on the rotating roller.
  • the jet water flow apparatus injects a jet water flow from the end of the raw pipe toward the inside of the raw pipe.
  • the laminar water flow device and the jet water flow device simultaneously cool the outer surface and the inner surface of the raw pipe.
  • Such a configuration of the water cooling device 6 is particularly suitable for accelerated cooling of the thick-walled seamless steel pipe of the present embodiment having a thickness of 50 mm or more.
  • the water cooling device 6 may be a device other than the above-described rotating roller, laminar water flow device, and jet water flow device.
  • the water cooling device 6 may be a water tank, for example. In this case, the raw tube manufactured in step S3 is immersed in the water tank and cooled.
  • the water cooling device 6 may also be only a laminar water flow device. In short, the type of the cooling device 6 is not limited.
  • the raw tube cooled by the water cooling device 6 is reheated and quenched (S6).
  • the seamless steel pipe is heated by the quenching device 7 (reheating process).
  • the reheating temperature at this time is set to 990 to 1100 ° C.
  • NbC suppresses the growth of granular reverse-transformed ⁇ grains effective for refinement of old ⁇ grains by the pinning effect. Therefore, the old ⁇ grains of the product are difficult to be miniaturized, and in particular, the old ⁇ grains in the surface layer are coarsened.
  • the reheating temperature exceeds 1100 ° C., the old ⁇ grains of the product are coarsened in both the surface layer and the thickness center.
  • the reheating temperature is 990 to 1100 ° C.
  • NbC is melted and Nb and C are dissolved. Therefore, at the time of reheating, the granular reverse-transformed ⁇ grains easily grow, and the coarsening of the old ⁇ grains of the product is suppressed.
  • the average crystal grain size of the old ⁇ grains in the surface layer is less than 80 ⁇ m, and the toughness is increased. Furthermore, the difference in the average crystal grain size of the old ⁇ grains between the surface layer part and the thickness center part is suppressed to less than 50 ⁇ m, and variation in the toughness of the steel is suppressed.
  • Quenching by cooling the heated tube is performed by water cooling.
  • the raw tube temperature is cooled to room temperature.
  • the matrix structure becomes martensite or bainite, and the structure becomes dense.
  • Tempering the quenched pipe is not more than A c1 point, preferably 550 to 700 ° C.
  • a preferable holding time (soaking time) at the tempering temperature is 10 to 120 minutes.
  • the strength grade of the seamless steel pipe can be made to be X80 grade or higher based on the API standard, that is, the yield stress of the seamless steel pipe can be made 551 MPa or more.
  • the seamless steel pipe manufactured by the above manufacturing process high strength is obtained by containing Nb. Furthermore, even if the wall thickness is 50 mm or more, the average crystal grain size of the old ⁇ grains in the surface layer portion is less than 80 ⁇ m, and the difference in the average diameter of the old ⁇ grains in the surface layer portion and the central thickness portion is less than 50 ⁇ m. become. Therefore, excellent toughness is obtained in both the surface layer portion and the thickness center portion, and there is little variation in toughness.
  • the manufactured ingot was charged into a heating furnace and soaked at 1250 ° C. for 1 hour.
  • the ingot extracted from the heating furnace was hot forged to produce a rectangular parallelepiped block.
  • the block was placed in a heating furnace and soaked at 1250 ° C. for 30 minutes.
  • the soaked block was hot-rolled to produce a thick plate having a plate thickness of 53 mm or 60 mm.
  • the finishing temperature in hot rolling was 1050 ° C.
  • the manufactured thick plate was held at 950 ° C. for 5 minutes, and then water quenching (accelerated cooling) was performed on the plate thickness.
  • test materials of test numbers 1 to 17 were reheated at the reheating temperature (° C.) shown in Table 2. At this time, all the test materials were heated at a temperature rising rate of 5 ° C./min. The soaking time was 5 minutes. After soaking, water quenching was performed on the test material. The test material after quenching was tempered at 650 ° C. for 30 minutes to obtain a test material.
  • the center position of the plate thickness (that is, the position of 26.5 mm from the surface when the thickness is 53 mm, and the position of 30 mm from the surface when the thickness is 60 mm) is the center of the thickness.
  • the average crystal grain size of the former ⁇ grains in the central part of the wall thickness was obtained.
  • the former ⁇ grain boundary is made to appear using a picric acid saturated aqueous solution, and according to the method shown in JIS G0551, the grain size number is converted into the grain size and the average crystal grain size of the former ⁇ grain is Asked.
  • V-notch test pieces conforming to JIS Z2242 No. 4 test piece were collected from the surface layer part and thickness center part (sheet thickness center part) of test numbers 1 to 17 so as to be parallel to the cross-sectional direction of the plate material. .
  • the V-notch test piece in the surface layer portion includes the surface, the cross section is 10 mm ⁇ 10 mm, and the depth of the V-notch is 2 mm.
  • the center of the plate thickness was located at the center of the cross section (10 mm ⁇ 10 mm), and the depth of the V notch was 2 mm.
  • the Vickers hardness of the surface layer portion was measured by the following method. Three measurement points were arbitrarily selected from a depth position of 2 mm from the surface of each test material. At each measurement point, a Vickers hardness test according to JIS Z2244 (2009) was performed. At this time, the test force was 10 kgf. The average of the Vickers hardness obtained at three measurement points was defined as the hardness (HV) of the surface layer portion of the test material.
  • Table 2 shows the test results. Referring to Table 2, all of test numbers 9, 10, 12, 13, and 16 had appropriate chemical compositions. Therefore, the yield strength was as high as 551 MPa or more. Furthermore, since the reheating temperature was appropriate, the average crystal grain size of the old ⁇ grains in the surface layer portion was less than 80 ⁇ m. Therefore, the Vickers hardness of the surface layer portion was as low as less than 245HV.
  • the difference in the average crystal grain size between the surface layer portion and the thickness center portion (hereinafter referred to as the particle size difference) is less than 50 ⁇ m, and the thickness center portion and The absorbed energy of the surface layer part was 100 J or more. Furthermore, the difference in absorbed energy between the thickness center portion and the surface layer portion was as small as less than 100 J, and the variation in toughness was small.
  • the reheating temperature was low. Therefore, the average crystal grain size of the former ⁇ grains in the surface layer portion was as large as 80 ⁇ m or more. For this reason, the Vickers hardness of the surface layer portion was high, and the absorbed energy at ⁇ 40 ° C. of the surface layer portion was low. Furthermore, since the particle size difference was as large as 50 ⁇ m or more, the difference in absorbed energy between the central portion of the thickness and the surface layer portion was as large as 100 J or more, and the variation in toughness was large.
  • Test No. 15 had a low reheating temperature. Therefore, the particle size difference between the surface layer part and the thickness center part was as large as 50 ⁇ m or more. Therefore, the difference in absorbed energy at ⁇ 40 ° C. between the surface layer portion and the thickness center portion was as large as 100 J or more, and the variation in toughness was large.
  • Test numbers 14 and 17 had a high reheating temperature. Therefore, the average crystal grain size of the old ⁇ grain size in the central part and the surface layer part was as large as 80 ⁇ m or more. Therefore, the absorbed energy at ⁇ 40 ° C. in the central part and the surface layer part was low. Furthermore, the Vickers hardness of the surface layer portion was high.
  • the chemical composition shown in Table 3 was appropriate.
  • the round billet was heated to 1250 ° C. in a heating furnace. Subsequently, the round billet was pierced and rolled with a piercing machine to form a raw pipe. Subsequently, each raw tube was drawn and rolled by a mandrel mill. Subsequently, each raw pipe was subjected to constant diameter rolling with a sizer to produce a raw pipe having a wall thickness of 53 mm.
  • the raw tube was soaked to 950 ° C. in a reheating furnace without cooling to room temperature. Thereafter, water quenching was performed. Reheating was performed on the blank after quenching. The reheating temperature at this time was 1050 ° C. After reheating, water quenching was again performed on the base tube. The quenched pipe was tempered at 600 ° C. for 30 minutes to produce a seamless steel pipe.
  • the chemical composition of test number 18 was appropriate. Therefore, the yield strength was as high as 551 MPa or more. Furthermore, since the reheating temperature was appropriate, the average crystal grain size of the old ⁇ grains in the surface layer portion (inner surface side and outer surface side) was less than 80 ⁇ m. Therefore, the Vickers hardness of the surface layer portion was as low as less than 245HV. Furthermore, the absorbed energy at ⁇ 40 ° C. was as high as 100 J or more.
  • the wall thickness was as thick as 53 mm
  • the particle size difference between the surface layer portion and the wall thickness center portion was less than 50 ⁇ m
  • the difference in absorbed energy between the wall thickness center portion and the surface layer portion was as small as less than 100 J.
  • the seamless steel pipe according to the present invention can be used as, for example, a line pipe, and is particularly suitable for a submarine line pipe (flow line and riser).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 厚肉であっても、高い強度及び靭性を有する、継目無鋼管を提供する。本実施形態による継目無鋼管は、質量%で、C:0.03~0.08%、Si:0.25%以下、Mn:0.3~2.0%、P:0.05%以下、S:0.005%以下、Al:0.001~0.10%、Cr:0.02~1.0%、Ni:0.02~1.0%、Mo:0.02~0.8%、N:0.002~0.008%、Ca:0.0005~0.005%、及び、Nb:0.01~0.1%を含有し、残部はFe及び不純物からなり、50mm以上の肉厚を有し、継目無鋼管の軸方向に垂直な断面のうち、表面から2mmの深さの位置を中心とする500μm×500μmの領域である表層部における旧オーステナイト粒の平均結晶粒径が80μm未満であり、表層部における旧オーステナイト粒の平均結晶粒径と、断面のうち肉厚の中心位置を中心とする500μm×500μmの領域である肉厚中央部における旧オーステナイト粒の平均結晶粒径との差が50μm未満である。

Description

継目無鋼管及びその製造方法
 本発明は、継目無鋼管及びその製造方法に関する。
 陸上及び浅海の油井及びガス井は近年枯渇しつつある。そのため、深海の海底油井及び海底ガス井(以下、海底油井及び海底ガス井の総称を、「海底油井」という。)の開発が進んでいる。
 海底油井では、フローライン及びライザが、海底に配置された坑口から洋上のプラットホームまでの間に配置される。原油又は天然ガスを含む生産流体は、フローライン又はライザを通って、海底油井からプラットホームまで搬送される。フローラインとは、地表又は海底面の地勢に沿って敷設されたラインパイプである。ライザとは、海底面からプラットホーム方向(つまり上方)に立ち上がって配置されるラインパイプである。
 これらのラインパイプ(フローライン及びライザ)を構成する鋼管内を通る生産流体は高圧である。また、操業が停止した場合、これらのフローライン及びライザには外部から海水圧が負荷される。さらに、フローライン及びライザには、波浪及び海流による繰り返し応力も負荷される。そのため、フローライン又はライザといったラインパイプ用途として、厚肉の高強度鋼管が求められる。
 しかしながら、鋼管の肉厚及び強度を増大させると靭性が低下し、脆性破壊しやすくなる。そのため、厚肉の高強度鋼管では、優れた靭性が求められる。
 このように、海底パイプライン用の厚肉の鋼管には高強度及び高靭性が要求される。溶接鋼管は、長手方向に沿って溶接部(シーム部)を有するため、溶接部は母材と比較して靭性が低くなる。そのため、海底パイプラインには、溶接鋼管よりも、継目無鋼管が適する。
 特開平9-287028号公報(特許文献1)は、継目無鋼管の製造方法を提案する。特許文献1では、熱間圧延により製造された継目無鋼管を80℃/分以上の冷却速度でAr3変態点以下の温度に冷却し、その後、焼入れ及び焼戻しを実施する。特許文献1の製造方法により製造された継目無鋼管では、結晶粒が微細化され、高い強度及び靭性が得られると記載されている。
 しかしながら、特許文献1に開示された製造方法により、たとえば、肉厚が50mm以上といった厚肉の継目無鋼管を製造する場合、靭性にばらつきが生じ、靭性が低くなる場合がある。強度を高めるためにはNbが有効であるが、Nbを含有した場合、表層部の靭性がさらに低下し、表層部と肉厚中央部とで靭性のばらつきが大きくなる場合がある。
 本発明の目的は、厚肉であっても、高い強度及び靭性を有する、継目無鋼管を提供することである。
 本実施形態による継目無鋼管は、質量%で、C:0.03~0.08%、Si:0.25%以下、Mn:0.3~2.0%、P:0.05%以下、S:0.005%以下、Al:0.001~0.10%、Cr:0.02~1.0%、Ni:0.02~1.0%、Mo:0.02~0.8%、N:0.002~0.008%、Ca:0.0005~0.005%、及び、Nb:0.01~0.1%を含有し、残部はFe及び不純物からなり、50mm以上の肉厚を有し、継目無鋼管の軸方向に垂直な断面のうち、表面から2mmの深さの位置を中心とする500μm×500μmの領域である表層部における旧オーステナイト粒の平均結晶粒径が80μm未満であり、表層部における旧オーステナイト粒の平均結晶粒径と、前記断面のうち前記継目無鋼管の肉厚の中心位置を中心とする500μm×500μmの領域である肉厚中央部における平均結晶粒径との差が50μm未満である。
 本実施形態による継目無鋼管はさらに、Feの一部に代えて、Ti:0.010%以下を含有してもよい。本実施形態による継目無鋼管はさらに、Feの一部に代えて、V:0.1%以下、及び、Cu:1.0%以下からなる群から選択される1種以上を含有してもよい。
 本実施形態による継目無鋼管の製造方法は、質量%で、C:0.03~0.08%、Si:0.25%以下、Mn:0.3~2.0%、P:0.05%以下、S:0.005%以下、Al:0.001~0.10%、Cr:0.02~1.0%、Ni:0.02~1.0%、Mo:0.02~0.8%、N:0.002~0.008%、Ca:0.0005~0.005%、及び、Nb:0.01~0.1%を含有し、残部はFe及び不純物からなる素材を加熱する工程と、加熱された素材を熱間加工して素管を製造する工程と、熱間加工後の素管を加速冷却する工程と、加速冷却された素管を再加熱し、990~1100℃で均熱する工程と、均熱された素管を冷却して焼入れする工程と、焼入れされた素管を焼戻しする工程とを備える。
 本実施形態による継目無鋼管は、厚肉であっても優れた強度及び靭性を有する。
図1は、本実施形態の化学組成を有する鋼を、焼入れ後種々の温度まで5℃/分で加熱した時の平均結晶粒径と再加熱温度の関係を示す図である。 図2は、本実施形態による継目無鋼管の製造装置の一例を示す設備のレイアウト図である。 図3は、本実施形態による継目無鋼管の製造方法の一例を示すフロー図である。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。以降、元素に関する%は「質量%」を意味する。
 本発明者らは、以下の知見に基づいて、本実施形態による継目無鋼管を完成した。
 50mm以上の厚肉の継目無鋼管において、Nbは炭素と結合してNbCを形成し、鋼の強度を高める。したがって、高強度、特に、API(米国石油協会)規格で規定されるX80級以上(降伏強度が551MPa以上)の強度を有する厚肉の継目無鋼管を製造するためには、Nbを含有する方が好ましい。
 しかしながら、Nbを含有した厚肉の継目無鋼管を製造する場合、焼入れ焼戻し後の旧オーステナイト粒(以下、旧γ粒という)が微細化せず、特に、表層部の旧γ粒が粗粒になる場合がある。ここで、表層部とは、継目無鋼管の表面から1~3mm深さの領域を意味する。
 Nbを含有する厚肉の継目無鋼管(以下、Nb厚肉材という)において、旧γ粒が粗粒になる原因は、再加熱時にNbCが粒状の逆変態γ粒の成長を抑制するためである。以下、この点について詳述する。
 熱間加工されたNb厚肉材を焼入れした後、再加熱するとき、再加熱中のNb厚肉材の表層部には、針状の逆変態γ粒と、粒状の逆変態γ粒とが生成される。ここで逆変態γとは、加熱途中に生成するγを意味する。そこで、EBSD(Electron Back Scatting Diffraction:電子線後方散乱回折)法を用いて、針状の逆変態γ粒の結晶方位と、粒状の逆変態γ粒の結晶方位とを調査した。その結果、同一の旧γ粒内に生成された複数の針状の逆変態γ粒の結晶方位は同一であった。一方、粒状の逆変態γ粒の結晶方位は、針状の逆変態γ粒とは異なっていた。
 以上より、次の事項が推定される。複数の針状の逆変態γ粒は、同じ結晶方位を有するため、互いに成長して合体しやすい。この場合、粗大なγ粒が形成される。一方、粒状の逆変態γ粒は針状の逆変態γ粒と異なる結晶方位を有するため、針状の逆変態γ粒と合体しにくい。そのため、粒状の逆変態γ粒が多いほど、微細なγ粒を形成しやすい。
 NbCは、再加熱中に、ピン止め効果を発揮して、粒状の逆変態γ粒の成長を抑制する。そのため、再加熱において、針状の逆変態γ粒の占める割合が増加し、その結果、焼戻し後のNb厚肉材の表層部において、旧γ粒が粗粒になりやすい。
 旧γ粒が粗粒になれば、靭性は低くなる。さらに、厚肉材の場合、肉厚中央部と表層部との旧γ粒の粒径にばらつきが生じ、靭性もばらつく。
 したがって、Nb厚肉材において、肉厚中央部及び表層部の旧γ粒の粒径を微細にし、ばらつきを低減することにより、優れた強度及び靭性が得られる。具体的には、表層部における旧γ粒の平均結晶粒径を80μm未満とし、表層部と肉厚中央部とでの旧γ粒の平均結晶粒径の差を50μm未満とすることにより、優れた降伏強度及び靭性を得ることができ、表層部と肉厚中央部での靭性のばらつきも抑制できる。
 Nb厚肉材の表層部における旧γ粒の粗粒化を抑制するために、再加熱時の加熱温度を990℃~1100℃にする。図1は、Nbを含有する本実施形態の化学組成を有する鋼を、焼入れ後種々の温度まで加熱した時における平均結晶粒径と再加熱温度の関係を示す図である。図1は次の方法により得られた。
 上述の化学組成の範囲内にある鋼から、後述する実施例1と同じ製法により、直方体状のブロックを得た。このブロックから熱処理用の円柱状小型試験片(直径3mm、高さ10mm)を採取した。1200℃で5分均熱した後、室温まで急冷し、続けて950℃~1200℃の間の温度まで加熱した。各温度で5分均熱した後、再び室温まで急冷した。加熱速度は、厚肉の鋼管を炉加熱する際の加熱速度に相当する5℃/分であった。
 熱処理後の旧γ粒の平均粒径(μm)を、後述する平均結晶粒径の測定方法に準じて求めた。求めた平均結晶粒径を利用して、図1を得た。
 図1を参照して、再加熱温度が950℃から高くなるに従って、平均結晶粒径は小さくなった。一般的な技術常識では、加熱温度を上げると結晶粒が成長して粗粒化する。したがって、Nb厚肉材では、従来の技術常識と異なる現象が生じた。再加熱温度が990℃~1100℃の場合、旧γ粒の平均結晶粒径は小さいままであり、旧γ粒は細粒化する。一方、再加熱温度が1100℃を超えると、旧γ粒が再び粗粒化した。
 このような図1に示す現象は、Nb厚肉材特有であり、次の原因が推定される。再加熱温度が990℃未満である場合、再加熱中にNbCが粒状の逆変態γ粒の成長を抑制する。そのため、針状の逆変態γ粒が占める割合が増加し、これらが合体し、焼戻し後の旧γ粒が粗粒化する。
 一方、再加熱温度が990~1100℃である場合、再加熱中にNbCが溶融する。そのため、粒状の逆変態γ粒が生成、成長する。その結果、焼戻し後の旧γ粒が細粒になる。さらに、表層部及び肉厚中央部での旧γ粒の平均結晶粒径差が小さくなり、優れた靭性が得られる。さらに、溶融したNbCは、焼戻し後に再度微細に析出する。そのため、高強度を得ることもできる。
 再加熱温度がさらに上昇して1100℃を超えると、細粒化されたγ粒が粒成長する。その結果、焼戻し後の旧γ粒が粗粒化する。
 以上の知見に基づいて、本実施形態による継目無鋼管が完成した。以下、本実施の形態による継目無鋼管の詳細を説明する。
 [化学組成]
 本実施形態による継目無鋼管の化学組成は、以下の元素を含有する。
 C:0.03~0.08%
 炭素(C)は、鋼の強度を高める。しかしながら、C含有量が高すぎれば、鋼の靭性が低下する。したがって、C含有量は0.03~0.08%である。
 Si:0.25%以下
 珪素(Si)は、鋼の脱酸を目的として添加するだけでなく、強度の上昇及び焼戻し時の軟化抵抗を高めることに寄与する。しかしながら、Si含有量が高すぎれば、鋼の靭性が低下する。したがって、Si含有量は0.25%以下である。Si含有量の好ましい下限は0.05%である。
 Mn:0.3~2.0%
 マンガン(Mn)は鋼の焼入れ性を高める。そのため、肉厚中央部の強度を高めることができる。しかしながら、Mn含有量が高すぎれば、鋼の靭性が低下する。したがって、Mn含有量は0.3~2.0%である。Mn含有量の好ましい下限は0.3%よりも高く、さらに好ましくは0.5%であり、さらに好ましくは1.0%である。
 P:0.05%以下
 燐(P)は、不純物である。Pは、鋼の靭性を低下する。したがって、P含有量は低い方が好ましい。P含有量は0.05%以下である。好ましいP含有量は、0.02%以下であり、さらに好ましくは、0.01%以下である。
 S:0.005%以下
 硫黄(S)は、不純物である。Sは、鋼の靭性を低下する。したがって、S含有量は低い方が好ましい。S含有量は0.005%以下である。好ましいS含有量は、0.003%以下であり、さらに好ましくは、0.001%以下である。
 Al:0.001~0.10%
 本発明におけるアルミニウム(Al)の含有量は、酸可溶Al(いわゆるSol.Al)の含有量を意味する。Alは、鋼を脱酸する。しかしながら、Al含有量が高すぎれば、クラスター状の介在物が形成され、鋼の靭性が低下する。したがって、Al含有量は、0.001~0.10%である。Al含有量の好ましい下限は0.001%よりも高く、さらに好ましくは0.01%である。Al含有量の好ましい上限は0.10%未満であり、さらに好ましくは0.07%である。
 Cr:0.02~1.0%
 クロム(Cr)は、鋼の焼入れ性を高め、鋼の強度を高める。しかしながら、Cr含有量が高すぎれば、鋼の靭性が低下する。したがって、Cr含有量は0.02~1.0%である。Cr含有量の好ましい下限は0.02%よりも高く、さらに好ましくは0.1%である。Cr含有量の好ましい上限は1.0%未満であり、さらに好ましくは0.8%である。
 Ni:0.02~1.0%
 ニッケル(Ni)は、鋼の焼入れ性を高め、鋼の強度を高める。しかしながら、Ni含有量が高すぎれば、その効果が飽和する。したがって、Ni含有量は0.02~1.0%である。Ni含有量の好ましい下限は0.02%よりも高く、さらに好ましくは0.1%である。
 Mo:0.02~0.8%
 モリブデン(Mo)は、鋼の焼入れ性を高め、鋼の強度を高める。しかしながら、Mo含有量が高すぎれば、鋼の靭性が低下する。したがって、Mo含有量は0.02~0.8%である。Mo含有量の好ましい下限は0.02%よりも高く、さらに好ましくは0.1%である。Mo含有量の好ましい上限は0.8%未満であり、さらに好ましくは0.5%である。
 N:0.002~0.008%
 窒素(N)は、AlやTi等と結合して窒化物を形成する。Nが多量に存在すると、窒化物の粗大化を招き、靭性に悪影響を及ぼす。一方、N の含有量が少なすぎれば、窒化物の量が少なすぎて、熱間製管時のオーステナイト粒の粗大化を抑制する効果が得られにくい。したがって、Nの含有量は0.002~0.008%である。N含有量の好ましい下限は0.002%よりも高く、さらに好ましくは0.004%である。N含有量の好ましい上限は0.008%未満であり、さらに好ましくは0.007%である。
 Ca:0.0005~0.005%
 カルシウム(Ca)は、鋼を脱酸する。Caはさらに、鋼中のSと結合してCaSを形成する。CaSの生成により、MnSの生成が抑制される。つまり、Caは、MnSの生成を抑制し、鋼の靭性及び耐水素誘起割れ(Hydrogen Induced Cracking、HIC)性を向上する。しかしながら、Ca含有量が高すぎれば、クラスター状の介在物が形成され、靭性及び耐HIC性が低下する。
 Nb:0.01~0.1%
 ニオブ(Nb)は、鋼中のCやNと結合して微細なNb炭窒化物を形成し、鋼の強度を高める。さらに、微細なNb炭窒化物は、分散強化により鋼の強度を高める。しかしながら、Nb含有量が高すぎれば、Nb炭窒化物が粗大化し、鋼の靭性が低下する。したがって、Nb含有量は0.01~0.1%である。Nb含有量の好ましい上限は0.1%未満であり、さらに好ましくは0.08%未満である。
 本実施形態による継目無鋼管の残部は鉄(Fe)及び不純物である。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、あるいは製造過程の環境等から混入される元素をいう。
 本実施の形態による継目無鋼管はさらに、Feの一部に代えて、Tiを含有してもよい。Tiは必須元素ではなく、選択元素である。
 Ti:0.010%以下
 チタン(Ti)は、鋼中のNと結合してTiNを形成し、固溶したNによる鋼の靭性の低下を抑制する。さらに、微細なTiNが分散析出することにより、熱間製管時のオーステナイト粒の粗大化を抑制する効果が得られ、鋼の靭性がさらに向上する。Tiが少しでも含有されれば、上記効果が得られる。しかしながら、Ti含有量が高すぎれば、TiNが粗大化したり、粗大なTiCが形成されるため、鋼の靭性が低下する。つまり、TiNを微細分散するために、Ti含有量は制限される。したがって、Ti含有量は0.010%以下である。Ti含有量の好ましい下限は0.001%であり、さらに好ましくは0.004%である。
 本実施の形態による継目無鋼管はさらに、Feの一部に代えて、V及びCuからなる群から選択される1種以上を含有してもよい。V及びCuは必須元素ではなく、選択元素である。これらの元素はいずれも、鋼の強度を高める。
 V:0.1%以下
 バナジウム(V)は、鋼中のCやNと結合して微細な炭窒化物を形成し、鋼の強度を高める。Vが少しでも含有されれば、上記効果が得られる。しかしながら、V含有量が高すぎれば、V炭窒化物が粗大化し、鋼の靭性が低下する。したがって、V含有量は、0.1%以下である。V含有量の好ましい下限は0.01%である。V含有量の好ましい上限は0.1%未満であり、さらに好ましくは0.08%である。
 Cu:1.0%以下
 銅(Cu)は鋼の焼入れ性を高め、鋼の強度を高める。しかしながら、Cu含有量が高すぎれば、鋼の靭性が低下する。したがって、Cu含有量は1.0%以下である。Cu含有量の好ましい下限は0.1%である。Cu含有量の好ましい上限は1.0%未満であり、さらに好ましくは0.6%である。
 [肉厚について]
 本実施形態による継目無鋼管の肉厚は50mm以上である。つまり、本実施形態の継目無鋼管は厚肉鋼管である。好ましい肉厚の上限は80mmであり、さらに好ましくは70mmである。
 [旧オーステナイト粒径(旧γ粒)]
 上述の肉厚を有する厚肉鋼管では通常、鋼管の表層と肉厚中央部とでの結晶粒径にばらつきが生じやすい。しかしながら、本実施形態による継目無鋼管では、表層部における旧γ粒の平均結晶粒径が80μm未満であり、表層部と肉厚中央部とでの旧γ粒の平均径の差が50μm未満である。そのため、優れた靭性を有し、表層部と肉厚中央部とで、靭性のばらつきを抑えることができる。
 ここで、表層部における旧γ粒の平均結晶粒径は、次の方法で求められる。継目無鋼管の横断面(継目無鋼管の軸方向に垂直な面)のうち、表面(外面又は内面から)2mmの深さの位置を中心とする測定領域(500μm×500μm)内で旧γ粒径(旧γ粒の平均結晶粒径)を測定する。旧γ粒界は、ピクリン酸飽和水溶液を用いて現出させる。測定領域内の旧γ粒の平均結晶粒径の測定は、JIS G0551(2005)に示される手法に倣って行い、粒度番号を平均結晶粒径に換算して評価を行う。この平均結晶粒径を、表層部の旧γ粒の平均結晶粒径と定義する。
 同様に、上述の横断面のうち、肉厚の中心位置を中心とする測定領域(500μm×500μm)を選択し、平均結晶粒径を上述と同じ方法により算出する。この平均結晶粒径を、肉厚中央部の旧γ粒の平均結晶粒径と定義する。
 本実施形態による継目無鋼管では、表層部の旧γ粒の粗粒化が抑制される。そのため、優れた靭性を示す。さらに、表層の硬度を抑えることができるため、優れた耐サワー性も得られる。さらに、表層部及び肉厚中央部の旧γ粒の平均結晶粒径の差が小さい。そのため、継目無鋼管の表層部と肉厚中央部とで靭性のばらつきを抑えることができる。なお、平均結晶粒径は、肉厚中央部の方が表層部よりも小さい。
 [製造方法]
 上述の継目無鋼管の製造方法の一例を説明する。上述の継目無鋼管は、他の製造方法により製造されてもよい。
 [製造設備]
 図2は、本実施の形態によるラインパイプ用継目無鋼管の製造ラインの一例を示すブロック図である。図2を参照して、製造ラインは、加熱炉1と、穿孔機2と、延伸圧延機3と、定径圧延機4と、補熱炉5と、水冷装置6と、焼入れ装置7と、焼戻し装置8とを備える。各装置間には、複数の搬送ローラ10が配置される。図2では、焼入れ装置7及び焼戻し装置8も製造ラインに含まれている。しかしながら、焼入れ装置7及び焼戻し装置8は、製造ラインから離れて配置されていてもよい。要するに、焼入れ装置7及び焼戻し装置8はオフラインに配置されていてもよい。
 [製造フロー]
 図3は、本実施の形態による継目無鋼管の製造工程を示すフロー図である。
 図3を参照して、本実施の形態による継目無鋼管の製造方法では、初めに、素材を加熱炉1で加熱する(S1)。素材はたとえば、丸ビレットである。素材は、ラウンドCC等の連続鋳造装置により製造されてもよい。また、素材は、インゴットやスラブを鍛造又は分塊圧延することにより製造されてもよい。本例では、素材は丸ビレットであると仮定して、説明を続ける。加熱された丸ビレットを熱間加工して素管にする(S2及びS3)。製造された素管を、必要に応じて補熱炉5により所定の温度に加熱し(S4)、素管を水冷装置6により水冷する(加速冷却:S5)。水冷された素管を焼入れ装置7により焼入れし(S6)、焼戻し装置8により焼戻しする(S7)。以上の工程により、本実施形態の継目無鋼管が製造される。以下、それぞれの工程について詳しく説明する。
 [加熱工程(S1)]
 初めに、丸ビレットを加熱炉1で加熱する。好ましい加熱温度は、1150~1280℃である。加熱温度が1150℃以上であれば、素材の熱間での変形抵抗が小さく、疵が発生しにくい。加熱温度が1280℃以下であれば、スケールロスを抑えることができ、燃料原単位も低減する。加熱温度の好ましい上限は1200℃である。加熱炉1はたとえば、周知のウォーキングビーム炉やロータリー炉である。
 [穿孔工程(S2)]
 丸ビレットを加熱炉から出す。そして、加熱された丸ビレットを穿孔機2により穿孔圧延する。穿孔機2は、一対の傾斜ロールと、プラグとを備える。プラグは、傾斜ロール間に配置される。好ましい穿孔機2は交叉型の穿孔機である。高い拡管率での穿孔が可能だからである。
 [圧延工程(S3)]
 次に、素管を圧延する。具体的には、素管を延伸圧延機3により延伸圧延する。延伸圧延機3は直列に配列された複数のロールスタンドを含む。延伸圧延機3はたとえば、マンドレルミルである。続いて、延伸圧延された素管を、定径圧延機4により定径圧延して、継目無鋼管を製造する。定径圧延機4は、直列に配列された複数のロールスタンドを含む。定径圧延機4はたとえば、サイザやストレッチレデューサである。
 定径圧延機4の複数のロールスタンドのうち、最後尾のロールスタンドで圧延された素管の表面温度を「仕上げ温度」と定義する。仕上げ温度はたとえば、定径圧延機4の最後尾のロールスタンドの出側に配置された温度センサにより計測される。好ましい仕上げ温度は、900℃~1100℃である。上述の好適な仕上げ温度を得るために、延伸圧延機3と定径圧延機4との間に均熱炉を設けて、延伸圧延機3により延伸圧延された素管を均熱しても良い。
 [再加熱工程(S4)]
 再加熱工程(S4)は、必要に応じて実施される。再加熱工程を実施しない場合、図4において、ステップS3からステップS5に進む。また、再加熱工程を実施しない場合、図3において、補熱炉5は配置されない。補熱炉とは、製造された継目無鋼管を冷却することなく焼入れ温度に保持する加熱炉を意味する。
 製造された継目無鋼管を補熱炉5に装入し、加熱する。この処理により、旧γ粒径の分布はより均一化する。補熱炉5における好ましい加熱温度は、900℃~1100℃である。好ましい均熱時間は、30分以下である。均熱時間が長すぎれば、旧γ粒が粗粒化する可能性があるからである。
 [加速冷却工程(S5)]
 ステップS3で製造された素管、又は、ステップS4で再加熱された素管を加速冷却する。具体的には、素管を水冷装置6により水冷する。水冷直前の素管の温度(表面温度)はAr3点以上であり、好ましくは900℃以上である。加速冷却前の素管の温度がAr3点未満である場合、上述の補熱炉5や、インダクション加熱装置等を利用して、素管を再加熱し、素管の温度をAr3点以上にする。
 加速冷却時にける素管の好ましい冷却速度は、100℃/分以上であり、好ましい冷却停止温度はAr1点以下である。さらに好ましい水冷停止温度は450℃以下である。
 加速冷却を行わずに圧延後に放冷を行う場合、冷却速度が遅いため、粗大で不均一なフェライト・パーライト主体の組織になる。この場合、逆変態γ粒の核生成サイトが少なくなる。一方、上述の加速冷却を実施すれば、母相組織はマルテンサイト化又はベイナイト化し、緻密化され、逆変態γ粒の核生成サイトが多くなる。
 水冷装置6の構成は、たとえば、以下のとおりである。水冷装置6は、複数の回転ローラと、ラミナー水流装置と、ジェット水流装置とを備える。複数の回転ローラは2列に配置される。素管は2列に配列された複数の回転ローラの間に配置される。このとき、2列の回転ローラはそれぞれ、素管の外面下部と接触する。回転ローラが回転すると、素管が軸周りに回転する。ラミナー水流装置は、回転ローラの上方に配置され、素管に対して上方から水を注ぐ。このとき、素管に注がれる水は、ラミナー状の水流を形成する。ジェット水流装置は、回転ローラに配置された素管の端近傍に配置される。ジェット水流装置は、素管の端から素管内部に向かってジェット水流を噴射する。ラミナー水流装置及びジェット水流装置により、素管の外面及び内面は同時に冷却される。このような水冷装置6の構成は、特に、50mm以上の肉厚を有する本実施形態の厚肉継目無鋼管の加速冷却に好適である。
 水冷装置6は、上述の回転ローラ、ラミナー水流装置及びジェット水流装置以外の他の装置であってもよい。水冷装置6はたとえば、水槽であってもよい。この場合、ステップS3で製造された素管は水槽内に浸漬され、冷却される。水冷装置6はまた、ラミナー水流装置のみであってもよい。要するに、冷却装置6の種類は限定されない。
 [焼入れ工程(S6)]
 水冷装置6により水冷された素管を再加熱し、焼入れする(S6)。はじめに、焼入れ装置7で継目無鋼管を加熱する(再加熱工程)。このときの再加熱温度を990~1100℃にする。上述のとおり、再加熱温度が990℃未満である場合、旧γ粒の微細化に有効な粒状の逆変態γ粒の成長をNbCがピン止め効果により抑制する。そのため、製品の旧γ粒が微細化されにくくなり、特に、表層部の旧γ粒が粗大化する。一方、再加熱温度が1100℃を超える場合、表層及び肉厚中央部ともに、製品の旧γ粒が粗粒化する。
 再加熱温度が990~1100℃であれば、NbCが溶融し、Nb及びCが固溶する。そのため、再加熱時において、粒状の逆変態γ粒が成長しやすくなり、製品の旧γ粒の粗粒化が抑制される。これにより、特に表層部の旧γ粒の平均結晶粒径が80μm未満になり、靭性が高まる。さらに、表層部と肉厚中央部とでの旧γ粒の平均結晶粒径の差が50μm未満に抑えられ、鋼の靭性のばらつきが抑制される。
 加熱された素管を冷却することにより焼入れする(冷却工程)。たとえば、水冷により焼入れする。好ましくは、素管温度を室温まで冷却する。これにより、母相組織はマルテンサイト化、又は、ベイナイト化し、組織が緻密化する。
 [焼戻し工程(S7)]
 焼入れされた素管を、焼戻しする。焼戻し温度は、Ac1点以下であり、好ましくは、550~700℃である。焼戻し温度での好ましい保持時間(均熱時間)は10~120分である。焼戻し処理により、継目無鋼管の強度グレードを、API規格に基づくX80級以上、つまり、継目無鋼管の降伏応力を551MPa以上にすることができる。
 なお、焼戻し工程において、微細なNbCが再析出するため、鋼の強度が高まる。
 以上の製造工程により製造された継目無鋼管では、Nbを含有することにより高強度が得られる。さらに、肉厚が50mm以上であっても、表層部における旧γ粒の平均結晶粒径が80μm未満であり、表層部と肉厚中央部とでの旧γ粒の平均径の差が50μm未満になる。そのため、表層部及び肉厚中央部ともに優れた靭性が得られ、かつ、靭性のばらつきが少ない。
 [調査方法]
 [試験材の製造]
 表1に示す化学組成を有する複数の鋼を真空溶解炉で溶製し、各鋼番号ごとに180kgのインゴットを製造した。
Figure JPOXMLDOC01-appb-T000001
 製造されたインゴットを加熱炉に装入し、1250℃で1時間均熱した。加熱炉から抽出されたインゴットを熱間鍛造して直方体状のブロックを製造した。ブロックを加熱炉に装入し、1250℃で30分均熱した。均熱されたブロックに対して、熱間圧延を実施し、板厚が53mm又は60mmの厚板を製造した。熱間圧延での仕上がり温度はいずれも、1050℃であった。製造された厚板を950℃で5分間保持し、その後、板厚に対して水焼入れ(加速冷却)を実施した。
 水焼入れ後、試験番号1~17の試験材に対して、表2に示す再加熱温度(℃)で、再加熱を実施した。このとき、いずれの試験材に対しても、5℃/分の昇温速度で加熱した。均熱時間はいずれも5分とした。均熱後、試験材に対して水焼入れを実施した。焼入れ後の試験材に対して、650℃で30分の焼戻しを実施し、試験材を得た。
Figure JPOXMLDOC01-appb-T000002
 [評価試験]
 [旧γ粒の平均結晶粒径測定試験]
 試験番号1~17の各試験材(厚板)について、上述の測定及び算出方法に基づいて、表層部(厚板の厚さ方向の断面において、表面(上面又は下面)から2mmの深さの位置を中心とする500μm×500μmの領域)の旧γ粒の平均結晶粒径(μm)と、肉厚中央部(厚板の厚さ方向の断面において、厚さ方向の中心位置を中心とする500μm×500μmの領域)の旧γ粒の平均結晶粒径(μm)を求めた。旧γ粒径の試験材は板材であるため、板厚の中心位置(つまり、厚さ53mmの場合は、表面から26.5mm位置、厚さ60mmの場合は表面から30mm位置)を肉厚中央部の中心とみなして、肉厚中央部の旧γ粒の平均結晶粒径を得た。上述の測定方法のとおり、旧γ粒界をピクリン酸飽和水溶液を用いて現出させ、JIS G0551に示される手法に倣って、粒度番号を粒径に換算して旧γ粒の平均結晶粒径を求めた。
 [引張試験]
 各試験材の板厚中央部から、JIS Z2201(1998)に準拠した14A号引張試験片(D=8.5mmφ)を採取した。採取された試験片を用いて、JIS Z 2241(1998)に準拠した引張試験を、常温(25℃)の大気中で実施し、降伏強度(0.2%耐力)を求めた。
 [靭性評価試験]
 試験番号1~17の表層部及び肉厚中央部(板厚中央部)から、JIS Z2242の4号試験片に準拠したVノッチ試験片を、板材の横断面方向に平行になるように採取した。表層部のVノッチ試験片は、表面を含み、横断面が10mm×10mmであり、Vノッチの深さは2mmであった。肉厚中心部のVノッチ試験は、横断面(10mm×10mm)の中心に、板厚の中心が位置し、Vノッチの深さは2mmであった。
 採取されたVノッチ試験片を用いて、JIS Z2242に準拠したシャルピー衝撃試験を、-40℃で実施し、-40℃での吸収エネルギを求めた。
 [表層部の硬さ試験]
 試験番号1~17の各試験材において、表層部のビッカース硬さを次の方法で測定した。各試験材の表面から2mmの深さ位置から、任意に3つの測定点を選択した。各測定点において、JIS Z2244(2009)に準拠したビッカース硬さ試験を実施した。このとき、試験力は10kgfであった。3つの測定点で得られたビッカース硬さの平均を、その試験材の表層部の硬さ(HV)と定義した。
 [試験結果]
 表2に試験結果を示す。表2を参照して、試験番号9、10、12、13、16はいずれも、化学組成が適切であった。そのため、降伏強度が551MPa以上と高かった。さらに、再加熱温度が適切であったため、表層部の旧γ粒の平均結晶粒径が80μm未満であった。そのため、表層部のビッカース硬さは245HV未満と低かった。
 さらに、板厚が53mm、60mmと厚かったにもかかわらず、表層部及び肉厚中央部の平均結晶粒径の差分(以下、粒径差という)は、50μm未満であり、肉厚中央部及び表層部の吸収エネルギはいずれも100J以上であった。さらに、肉厚中央部と表層部とでの吸収エネルギ差が100J未満と小さく、靭性のばらつきが小さかった。
 一方、試験番号1~3で使用された鋼番号Aの化学組成では、Nbが含有されなかった。そのため、試験番号1~3の試験材の降伏強度は、試験番号9、10、12、13、16よりも低かった。
 試験番号4~6で使用された鋼番号Bの化学組成では、Ti含有量が高かった。そのため、肉厚中央部及び表層部での-40℃での吸収エネルギが低かった。
 試験番号7、8及び11では、再加熱温度が低かった。そのため、表層部の旧γ粒の平均結晶粒径が80μm以上と大きかった。そのため、表層部のビッカース硬さは高く、表層部の-40℃の吸収エネルギは低かった。さらに、粒径差が50μm以上と大きかったがため、肉厚中央部と表層部とでの吸収エネルギ差が100J以上と大きく、靭性のばらつきが大きかった。
 試験番号15は、再加熱温度が低かった。そのため、表層部及び肉厚中央部の粒径差は50μm以上と大きかった。そのため、表層部及び肉厚中央部の-40℃の吸収エネルギ差は100J以上と大きく、靭性のばらつきが大きかった。
 試験番号14及び17は、再加熱温度が高かった。そのため、中央部及び表層部の旧γ粒径の平均結晶粒径が80μm以上と大きかった。そのため、中央部及び表層部の-40℃の吸収エネルギは低かった。さらに、表層部のビッカース硬さは高かった。
 [試験材の製造]
 表3に示す化学組成を有する鋼を転炉溶製し、連続鋳造法により複数の丸ビレットを製造した。
Figure JPOXMLDOC01-appb-T000003
 表3に示す化学組成は適切であった。丸ビレットを加熱炉により1250℃に加熱した。続いて、丸ビレットを穿孔機により穿孔圧延して素管にした。続いて、マンドレルミルにより各素管を延伸圧延した。続いて、サイザにより各素管を定径圧延し、肉厚53mmの素管を製造した。
 定形圧延直後、素管を室温まで冷却せずに、補熱炉で950℃に均熱した。その後、水焼入れを実施した。焼入れ後の素管に対して再加熱を実施した。このときの再加熱温度は1050℃であった。再加熱後、素管に対して再び水焼入れを実施した。焼入れ後の素管に対して、600℃で30分間焼戻しを実施し、継目無鋼管を製造した。
 [評価試験]
 実施例1と同様に、旧γ粒の平均結晶粒径測定試験、引張試験、靭性評価試験及び表層部の硬さ試験を実施した。なお、表層部については、継目無鋼管の内面側の表層部と、外面側の表層部とで、それぞれビッカース硬さ、吸収エネルギ及び平均結晶粒径を求めた。
 [試験結果]
 表4に試験結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4を参照して、試験番号18の化学組成は適切であった。そのため、降伏強度が551MPa以上と高かった。さらに、再加熱温度が適切であったため、表層部(内面側及び外面側)の旧γ粒の平均結晶粒径が80μm未満であった。そのため、表層部のビッカース硬度は245HV未満と低かった。さらに、-40℃での吸収エネルギは100J以上と高かった。
 さらに、肉厚が53mmと厚かったにもかかわらず、表層部及び肉厚中央部の粒径差は、50μm未満であり、肉厚中央部及び表層部の吸収エネルギ差は100J未満と小さかった。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明による継目無鋼管は、たとえば、ラインパイプとして利用可能であり、特に、海底ラインパイプ(フローライン及びライザ)に好適である。

Claims (6)

  1.  質量%で、
     C:0.03~0.08%、
     Si:0.25%以下、
     Mn:0.3~2.0%、
     P:0.05%以下、
     S:0.005%以下、
     Al:0.001~0.10%、
     Cr:0.02~1.0%、
     Ni:0.02~1.0%、
     Mo:0.02~0.8%、
     N:0.002~0.008%、
     Ca:0.0005~0.005%、及び、
     Nb:0.01~0.1%を含有し、
     残部はFe及び不純物からなり、
     50mm以上の肉厚を有し、
     前記継目無鋼管の軸方向に垂直な断面のうち、表面から2mmの深さの位置を中心とする500μm×500μmの領域である表層部における旧オーステナイト粒の平均結晶粒径が80μm未満であり、
     前記表層部における旧オーステナイト粒の平均結晶粒径と、前記断面のうち前記継目無鋼管の肉厚の中心位置を中心とする500μm×500μmの領域である肉厚中央部における旧オーステナイト粒の平均結晶粒径との差が50μm未満である、継目無鋼管。
  2.  請求項1に記載の継目無鋼管であってさらに、
     前記Feの一部に代えて、
     Ti:0.010%以下を含有する、継目無鋼管。
  3.  請求項1又は請求項2に記載の継目無鋼管であって、
     前記Feの一部に代えて、
     Cu:1.0%以下、及び、V:0.1%以下からなる群から選択される1種以上を含有する、継目無鋼管。
  4.  質量%で、C:0.03~0.08%、Si:0.25%以下、Mn:0.3~2.0%、P:0.05%以下、S:0.005%以下、Al:0.001~0.10%、Cr:0.02~1.0%、Ni:0.02~1.0%、Mo:0.02~0.8%、N:0.002~0.008%、Ca:0.0005~0.005%、及び、Nb:0.01~0.1%を含有し、残部はFe及び不純物からなる素材を加熱する工程と、
     加熱された前記素材を穿孔及び圧延して素管を製造する工程と、
     圧延後の前記素管を加速冷却する工程と、
     加速冷却された前記素管を再加熱し、990~1100℃で均熱する工程と、
     均熱された前記素管を急冷して焼入れする工程と、
     焼入れされた前記素管を焼戻しする工程とを備える、継目無鋼管の製造方法。
  5.  請求項4に記載の継目無鋼管の製造方法であって、
     前記素材はさらに、前記Feの一部に代えて、
     Ti:0.010%以下を含有する、継目無鋼管の製造方法。
  6.  請求項4又は請求項5に記載の継目無鋼管の製造方法であって、
     前記素材はさらに、前記Feの一部に代えて、
     Cu:1.0%以下、及び、V:0.1%以下からなる群から選択される1種以上を含有する、継目無鋼管の製造方法。
PCT/JP2013/060828 2012-04-27 2013-04-10 継目無鋼管及びその製造方法 WO2013161567A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2870113A CA2870113C (en) 2012-04-27 2013-04-10 Seamless steel pipe and method for producing the same
MX2014012191A MX355667B (es) 2012-04-27 2013-04-10 Tuberia de acero sin soldadura y metodo para producir la misma.
JP2013518891A JP5408389B1 (ja) 2012-04-27 2013-04-10 継目無鋼管及びその製造方法
CN201380022368.1A CN104271786B (zh) 2012-04-27 2013-04-10 无缝钢管及其制造方法
EP13781239.2A EP2843072B1 (en) 2012-04-27 2013-04-10 Seamless steel pipe and method for manufacturing same
US14/396,837 US10392675B2 (en) 2012-04-27 2013-04-10 Seamless steel pipe and method for producing the same
AU2013253775A AU2013253775B2 (en) 2012-04-27 2013-04-10 Seamless steel pipe and method for producing the same
ES13781239.2T ES2635239T3 (es) 2012-04-27 2013-04-10 Tubería de acero sin soldadura y método de fabricación de la misma
IN9528DEN2014 IN2014DN09528A (ja) 2012-04-27 2013-04-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012103838 2012-04-27
JP2012-103838 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161567A1 true WO2013161567A1 (ja) 2013-10-31

Family

ID=49482896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060828 WO2013161567A1 (ja) 2012-04-27 2013-04-10 継目無鋼管及びその製造方法

Country Status (10)

Country Link
US (1) US10392675B2 (ja)
EP (1) EP2843072B1 (ja)
JP (1) JP5408389B1 (ja)
CN (1) CN104271786B (ja)
AU (1) AU2013253775B2 (ja)
CA (1) CA2870113C (ja)
ES (1) ES2635239T3 (ja)
IN (1) IN2014DN09528A (ja)
MX (1) MX355667B (ja)
WO (1) WO2013161567A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018108A1 (ja) * 2015-07-27 2017-02-02 新日鐵住金株式会社 ラインパイプ用鋼管及びその製造方法
JP6112267B1 (ja) * 2016-02-16 2017-04-12 新日鐵住金株式会社 継目無鋼管及びその製造方法
JP7464900B1 (ja) 2022-10-03 2024-04-10 日本製鉄株式会社 継目無鋼管及び継目無鋼管の製造方法
WO2024075433A1 (ja) * 2022-10-03 2024-04-11 日本製鉄株式会社 継目無鋼管及び継目無鋼管の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084298A1 (ja) * 2014-11-27 2016-06-02 Jfeスチール株式会社 継目無鋼管製造用装置列およびそれを利用した二相ステンレス継目無鋼管の製造方法
CN104775079A (zh) * 2015-03-24 2015-07-15 天津市精成伟业机器制造有限公司 一种海洋用高可焊、大口径、厚壁高钢级无缝钢管及其制备工艺
MX2018011404A (es) * 2016-07-28 2019-03-28 Nippon Steel & Sumitomo Metal Corp Tubo de acero sin costura de resistencia alta y tubo ascendente.
ES2906376T3 (es) * 2018-09-20 2022-04-18 Vallourec Tubes France Tubo sin costura de acero microaleado de alta resistencia para servicio en entornos ácidos y aplicaciones de alta tenacidad

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235617A (ja) * 1996-02-29 1997-09-09 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
JPH09287028A (ja) 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法および製造設備
JPH1150148A (ja) * 1997-08-06 1999-02-23 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
JP2000104117A (ja) * 1998-09-30 2000-04-11 Sumitomo Metal Ind Ltd 強度の均一性と靱性に優れたラインパイプ用継目無鋼管の製造方法
JP2000219914A (ja) * 1999-01-29 2000-08-08 Sumitomo Metal Ind Ltd 細粒組織で強度バラツキの小さい継目無鋼管
JP2000328177A (ja) * 1999-05-24 2000-11-28 Kobe Steel Ltd アレスト特性および延性破壊特性に優れた鋼板
US20100193085A1 (en) * 2007-04-17 2010-08-05 Alfonso Izquierdo Garcia Seamless steel pipe for use as vertical work-over sections
JP2010196165A (ja) * 2009-01-30 2010-09-09 Jfe Steel Corp 低温靭性に優れた極厚高張力熱延鋼板およびその製造方法
WO2011152240A1 (ja) * 2010-06-02 2011-12-08 住友金属工業株式会社 ラインパイプ用継目無鋼管及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435617A (ja) * 1990-06-01 1992-02-06 Matsushita Electric Ind Co Ltd 就寝装置
JP4792778B2 (ja) * 2005-03-29 2011-10-12 住友金属工業株式会社 ラインパイプ用厚肉継目無鋼管の製造方法
CN1840726A (zh) 2005-03-31 2006-10-04 住友金属工业株式会社 具有优异强度与韧性的钢材及其制造方法
CN101506392B (zh) * 2006-06-29 2011-01-26 特纳瑞斯连接股份公司 用于液压缸的在低温下具有增强各向同性刚度的无缝精密钢管及其制造工序
CN101417296B (zh) * 2008-12-04 2010-09-08 天津钢管集团股份有限公司 直径为Ф219.0~460.0mm大口径高钢级耐腐蚀无缝钢管的制造方法
CN102762208A (zh) * 2009-12-04 2012-10-31 赛林药物股份有限公司 作为ck2抑制剂的吡唑嘧啶和相关杂环
JP4793499B2 (ja) * 2010-05-27 2011-10-12 住友金属工業株式会社 ラインパイプ用厚肉継目無鋼管
IT1403688B1 (it) * 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio con pareti spesse con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensione da solfuri.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235617A (ja) * 1996-02-29 1997-09-09 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
JPH09287028A (ja) 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法および製造設備
JPH1150148A (ja) * 1997-08-06 1999-02-23 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
JP2000104117A (ja) * 1998-09-30 2000-04-11 Sumitomo Metal Ind Ltd 強度の均一性と靱性に優れたラインパイプ用継目無鋼管の製造方法
JP2000219914A (ja) * 1999-01-29 2000-08-08 Sumitomo Metal Ind Ltd 細粒組織で強度バラツキの小さい継目無鋼管
JP2000328177A (ja) * 1999-05-24 2000-11-28 Kobe Steel Ltd アレスト特性および延性破壊特性に優れた鋼板
US20100193085A1 (en) * 2007-04-17 2010-08-05 Alfonso Izquierdo Garcia Seamless steel pipe for use as vertical work-over sections
JP2010196165A (ja) * 2009-01-30 2010-09-09 Jfe Steel Corp 低温靭性に優れた極厚高張力熱延鋼板およびその製造方法
WO2011152240A1 (ja) * 2010-06-02 2011-12-08 住友金属工業株式会社 ラインパイプ用継目無鋼管及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018108A1 (ja) * 2015-07-27 2017-02-02 新日鐵住金株式会社 ラインパイプ用鋼管及びその製造方法
JPWO2017018108A1 (ja) * 2015-07-27 2017-11-02 新日鐵住金株式会社 ラインパイプ用鋼管及びその製造方法
JP6112267B1 (ja) * 2016-02-16 2017-04-12 新日鐵住金株式会社 継目無鋼管及びその製造方法
WO2017141341A1 (ja) * 2016-02-16 2017-08-24 新日鐵住金株式会社 継目無鋼管及びその製造方法
RU2706257C1 (ru) * 2016-02-16 2019-11-15 Ниппон Стил Корпорейшн Бесшовная стальная труба и способ ее производства
JP7464900B1 (ja) 2022-10-03 2024-04-10 日本製鉄株式会社 継目無鋼管及び継目無鋼管の製造方法
WO2024075433A1 (ja) * 2022-10-03 2024-04-11 日本製鉄株式会社 継目無鋼管及び継目無鋼管の製造方法

Also Published As

Publication number Publication date
AU2013253775B2 (en) 2015-10-15
MX2014012191A (es) 2015-01-19
CA2870113A1 (en) 2013-10-31
CA2870113C (en) 2017-05-09
US20150083282A1 (en) 2015-03-26
CN104271786B (zh) 2016-07-06
EP2843072B1 (en) 2017-06-14
AU2013253775A1 (en) 2014-11-06
IN2014DN09528A (ja) 2015-07-17
JPWO2013161567A1 (ja) 2015-12-24
EP2843072A4 (en) 2016-05-11
EP2843072A1 (en) 2015-03-04
JP5408389B1 (ja) 2014-02-05
ES2635239T3 (es) 2017-10-03
US10392675B2 (en) 2019-08-27
MX355667B (es) 2018-04-25
CN104271786A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
JP4911265B2 (ja) ラインパイプ用継目無鋼管及びその製造方法
JP5408389B1 (ja) 継目無鋼管及びその製造方法
US10287645B2 (en) Method for producing high-strength steel material excellent in sulfide stress cracking resistance
US7896985B2 (en) Seamless steel pipe for line pipe and a process for its manufacture
JP4821939B2 (ja) スチームインジェクション用継目無鋼管及びその製造方法
AU2011210499B2 (en) Production method for seamless steel pipe used in line pipe, and seamless steel pipe used in line pipe
JP6112267B1 (ja) 継目無鋼管及びその製造方法
US20190040480A1 (en) Seamless steel pipe and method for producing same
JP2017031493A (ja) ステンレス鋼管の製造方法
JP6256655B2 (ja) 構造管用鋼板、構造管用鋼板の製造方法、および構造管
JP2013129870A (ja) 高強度ラインパイプ用継目無鋼管の製造方法
JP2017179482A (ja) ラインパイプ用電縫鋼管及びその製造方法
JP2013129873A (ja) 高強度ラインパイプ用継目無鋼管の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013518891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2870113

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/012191

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2013781239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013781239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201406391

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14396837

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013253775

Country of ref document: AU

Date of ref document: 20130410

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025549

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014025549

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141014