WO2013161208A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2013161208A1
WO2013161208A1 PCT/JP2013/002484 JP2013002484W WO2013161208A1 WO 2013161208 A1 WO2013161208 A1 WO 2013161208A1 JP 2013002484 W JP2013002484 W JP 2013002484W WO 2013161208 A1 WO2013161208 A1 WO 2013161208A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
side electrode
light emitting
electrode
type layer
Prior art date
Application number
PCT/JP2013/002484
Other languages
English (en)
French (fr)
Inventor
晃子 中村
高瀬 裕志
粂 雅博
均典 廣木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/380,046 priority Critical patent/US20150021626A1/en
Publication of WO2013161208A1 publication Critical patent/WO2013161208A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Definitions

  • the present disclosure relates to a light-emitting element, and more particularly, to a light-emitting element having an n-side electrode conductively connected to an n-type layer by a via penetrating the n-type layer.
  • a light-emitting element in which an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are sequentially stacked flow in a state where current is sufficiently diffused throughout the light-emitting layer.
  • the diffusibility of this current is important.
  • an n-contact (n-side electrode) is etched in a lattice shape through an active region (light-emitting layer) and a p-type semiconductor layer, and the inside of a plurality of n-type vias each formed in a square shape.
  • a contact scheme for large area and small area semiconductor light emitting flip chip devices that are deposited on and in contact with an n-type semiconductor layer is described.
  • the semiconductor light emitting flip-chip device described in Patent Document 1 has n contacts scattered in a lattice shape, it can be expected to have a certain degree of diffusivity, and ensure a wide area of the active region (light emitting layer) and p-type layer. Therefore, the luminance can be improved.
  • the n-contact has a relatively small diameter, its diffusivity is also limited. Further, if the area of the n-contact is small, the resistance value in the forward direction increases and the operating voltage increases. Conversely, the n-type via diameter may be increased to increase the n-contact, but the area of the p-type layer and the light-emitting layer is reduced and the light-emitting region is reduced, which causes a decrease in luminance. End up.
  • an object of the present disclosure is to realize a high-luminance light-emitting element by securing a good diffusibility of injected current while securing a light-emitting region.
  • One embodiment of the present disclosure is directed to a semiconductor stacked body in which an n-type layer, a light-emitting layer, and a p-type layer are sequentially stacked, and a light-emitting layer on an exposed portion from a via formed in the semiconductor stack and exposing the n-type layer And an n-side electrode provided in a non-conductive state with respect to the p-type layer, and a p-side electrode provided on the p-type layer, the n-side electrode being annular in the main surface of the n-type layer Is formed.
  • the light-emitting element According to the light-emitting element according to one embodiment of the present disclosure, current can be diffused not only in the outer direction of the n-side electrode formed in an annular shape but also in the inner direction. For this reason, since a current can be injected into a wide region of the n-type layer, the light emitting layer can emit light efficiently and uniformly.
  • the present disclosure it is possible to improve the light brightness of the light-emitting element by ensuring a good diffusibility of the injected current while securing the light-emitting region.
  • FIG. 1A and 1B show a light emitting device according to an embodiment.
  • FIG. 1A is a cross-sectional view taken along line Ia-Ia in FIG. 1B, and FIG. It is a top view.
  • 2A to 2E are cross-sectional views in order of steps showing a method for manufacturing a light emitting device according to an embodiment.
  • FIG. 3A to FIG. 3D are cross-sectional views in order of steps showing a method for manufacturing a light emitting device according to one embodiment.
  • 4A to 4D are cross-sectional views in order of steps showing a method for manufacturing a light emitting device according to an embodiment.
  • FIG. 5A to FIG. 5E are cross-sectional views in order of steps showing a method for manufacturing a light emitting device according to an embodiment.
  • FIG. 6 is a cross-sectional view showing a state in which the light emitting device according to one embodiment is mounted on a sub-mount device.
  • FIG. 7 is a graph showing the relationship between the n-side electrode occupation ratio and the forward voltage in the light emitting device according to the embodiment and the light emitting device according to the conventional example.
  • FIGS. 8A and 8B are views for explaining the action of the n-side electrode in plan view, and FIG. 8A is a schematic plan view showing the n-side electrode of the light emitting device according to the conventional example.
  • FIG. 1B is a schematic plan view showing an n-side electrode of a light emitting device according to an embodiment.
  • FIGS. 10A to 10D are schematic plan views showing first to fourth modified examples of the n-side electrode of the light emitting device according to the embodiment.
  • FIGS. 10A to 10D are schematic plan views showing fifth to eighth modifications of the n-side electrode of the light emitting device according to the embodiment.
  • 11A and 11B show a light emitting device according to a seventh modification of the embodiment, and
  • FIG. 11A is a cross-sectional view taken along the line XIa-XIa in FIG. 11 (b) is a plan view.
  • FIG. 12 is a cross-sectional view showing a state in which the light emitting element according to the seventh modification of the embodiment is mounted on the submount element.
  • a light emitting device includes a semiconductor stacked body in which an n-type layer, a light emitting layer, and a p-type layer are sequentially stacked, and an exposed portion from a via that is formed in the semiconductor stacked body and exposes the n-type layer, An n-side electrode provided in a non-conductive state with respect to the light emitting layer and the p-type layer, and a p-side electrode provided on the p-type layer, wherein the n-side electrode is a main surface of the n-type layer It is formed in an annular shape.
  • the light emitting device for example, in the case of an n-side electrode formed in a dot shape, even if the number of arrangement is increased, the current is diffused only in the outer direction of the n-side electrode.
  • the n-side electrode is formed in an annular shape, current can be diffused not only in the outer direction of the n-side electrode but also in the inner direction. Thereby, current can be injected into a wide region of the n-type layer, so that the light emitting layer can emit light efficiently and uniformly.
  • a light emitting device is n above a p-type layer in a semiconductor stacked body, and is electrically connected to an n-side electrode and provided in an n-side connection region connected to an n-side power source.
  • a p-side pad electrode provided in a p-side connection region that is electrically connected to the p-side electrode and connected to the p-side power supply, above the p-type layer in the semiconductor stacked body;
  • the p-side insulating layer provided between the n-side pad electrode and the p-side electrode included in the n-side connection region, and the n-side electrode included in the p-side pad electrode and the p-side connection region. And an n-side insulating layer.
  • each planar shape of the n-side pad electrode and the p-side pad electrode connected to the external n-side power source and p-side power source can be designed to an arbitrary shape.
  • the n-side electrode may be formed in a closed annular shape.
  • the current can be diffused on the average in the outer and inner directions.
  • the n-side electrode may be formed in an annular shape with a part opened.
  • the inner region and the outer region of the via can be made conductive, the degree of freedom in determining the planar shape of the n-side electrode and the p-side electrode is increased.
  • the n-side electrode may have a circular shape or a shape including a polygonal shape.
  • the semiconductor stacked body may have a corner in a planar shape
  • the n-side electrode may have a corner at a position facing the corner of the semiconductor stacked body.
  • the current can be diffused from the corner of the n-side electrode toward the corner of the semiconductor stacked body, so that the current can be diffused more uniformly.
  • the semiconductor stacked body may have a corner in a planar shape, and the n-side electrode may have a straight line at a position facing the corner of the semiconductor stacked body.
  • the internal angle of the corner portion of the via and the n-side electrode is increased, and the steepness of the corner portion is relaxed, so that the via and the n-side electrode penetrating to the n-type layer can be easily formed.
  • the semiconductor stacked body has a corner portion in a planar shape
  • the n-side electrode has a branch portion facing the corner portion of the semiconductor stacked body and extending toward the corner portion. May be.
  • the branch part of the n-side electrode can be brought close to the corner of the semiconductor stacked body, the current can be diffused deep into the corner of the semiconductor stacked body.
  • the light emitting device 1 includes a plurality of semiconductor layers stacked on the main surface of the substrate 2, and a plurality of electrodes each supplying current. It is a formed flip chip type LED (LightLiEmitting Diode) element.
  • the light emitting element 1 includes, for example, a substrate 2, a semiconductor stacked body 3 formed on the substrate 2 and provided with a planar annular via 4, and a bottom surface of the via 4. Formed on the n-side electrode 5, the p-side electrode 6 covering the upper surface of the semiconductor stacked body 3, the n-side insulating layer 71 formed on the n-side electrode 5, and the p-side electrode 6. The p-side insulating layer 72, the n-side pad electrode 8 connected to the n-side electrode 5, and the p-side pad electrode 9 connected to the p-side electrode 6.
  • the substrate 2 has light transmittance and is formed in a planar rectangular shape.
  • n-type gallium nitride (GaN), n-type silicon carbide (SiC), sapphire (single crystal Al 2 O 3 ), or the like can be used.
  • the semiconductor laminate 3 is formed by sequentially laminating an n-type layer 31, a light emitting layer 32, and a p-type layer 33 on the substrate 2.
  • the n-type layer 31 can be formed of, for example, n-type aluminum gallium nitride (AlGaN).
  • AlGaN n-type aluminum gallium nitride
  • silicon (Si), germanium (Ge), or the like can be suitably used.
  • the light-emitting layer 32 includes at least gallium (Ga) and nitrogen (N) as constituent elements, and can include a suitable amount of indium (In) as necessary to obtain emitted light having a desired emission wavelength. it can.
  • the light emitting layer 32 may have a single layer structure. For example, an indium gallium nitride (InGaN) layer and a gallium nitride (GaN) layer are paired, and a multiple quantum well (MQW) structure including at least a pair of the layers. It is also possible. By making the light emitting layer 32 have a multiple quantum well structure, the luminance of the emitted light can be further improved.
  • the p-type layer 33 can be formed of p-type AlGaN.
  • the semiconductor laminate 3 can be formed on the main surface of the substrate 2 by using an epitaxial growth technique such as a metal organic vapor deposition (MOCVD) method.
  • MOCVD metal organic vapor deposition
  • a film can be formed by a hydride vapor phase epitaxy (Hydride Vapor Phase Epity: HVPE) method, a molecular beam epitaxy (Molecule Beam Epity: MBE) method, or the like.
  • the via 4 is a through hole that penetrates the p-type layer 33 and the light emitting layer 32 in the semiconductor stacked body 3 and exposes the n-type layer 31 under the light emitting layer 32.
  • the via 4 can be formed in a substantially annular shape in a plan view. In the light emitting element 1 according to the present embodiment, it is formed in a closed circular shape. Therefore, the planar shape of the region exposed from the through region S0 by the via 4 of the n-type layer 31 is a circular shape.
  • a peripheral wall insulating layer 41 that makes the p-type layer 33 and the light emitting layer 32 and the n-side electrode 5 nonconductive is formed.
  • the peripheral wall insulating layer 41 can be formed of, for example, silicon oxide (SiO 2 ).
  • the peripheral wall insulating layer 41 may be formed of silicon nitride (SiN) or aluminum oxide (Al 2 O 3 ) instead of silicon oxide.
  • the n-side electrode 5 is formed on the n-type layer 31 and in the circular through region S0 exposed from the via 4.
  • the n-side electrode 5 can have a multilayer structure in which an aluminum (Al) layer, a Ti (titanium) layer, and a gold (Au) layer are sequentially stacked.
  • the p-side electrode 6 is formed on the p-type layer 33. Therefore, the formation region of the p-side electrode 6 is a region excluding the through region S0 due to the via 4.
  • the p-side electrode 6 can have a multilayer structure in which a nickel (Ni) layer, a silver (Ag) layer, and a titanium (Ti) layer are sequentially stacked.
  • the p-side electrode 6 functions as a reflective layer by including an Ag layer.
  • the n-side insulating layer 71 and the p-side insulating layer 72 can be formed of SiO 2 , SiN or Al 2 O 3 .
  • the n-side insulating layer 71 is formed so as to be interposed between the p-side pad electrode 9 and the n-side electrode 5 of the through region S0 included in the p-side connection region S2.
  • the p-side insulating layer 72 is formed so as to be interposed between the n-side pad electrode 8 and the p-side electrode 6 included in the n-side connection region S1.
  • the n-side pad electrode 8 is provided in a planar rectangular n-side connection region S1 that occupies approximately one-half of one of the through regions S0. Therefore, the n-side pad electrode 8 is conductively connected to the n-side electrode 5 by being formed on the n-side electrode 5 and the p-side insulating layer 72 included in the n-side connection region S1. Note that an n-side power source (cathode power source) to the light emitting element 1 is connected to the n-side pad electrode 8.
  • the p-side pad electrode 9 is provided in a planar rectangular p-side connection region S2 that occupies almost the other half of the other through-region S0. Therefore, the p-side pad electrode 9 is conductively connected to the p-side electrode 6 by being formed on the p-side electrode 6 and the n-side insulating layer 71 included in the p-side connection region S2.
  • the p-side pad electrode 9 is connected to a p-side power source (anode power source) to the light emitting element 1.
  • FIGS. 3A to 3D, and FIGS. 4A to 4 show a method of manufacturing the light emitting device according to this embodiment configured as described above. This will be described with reference to (d) and FIGS. 5 (a) to 5 (e).
  • each semiconductor layer is stacked on a wafer-like original substrate to be the substrate 2 so that a plurality of light emitting elements 1 can be manufactured at a time.
  • a method for manufacturing one light-emitting element is illustrated.
  • an n-type layer 31 made of n-type AlGaN, a well layer made of InGaN, and a barrier made of GaN are formed on the main surface of the substrate 2 by epitaxial crystal growth such as MOCVD.
  • an insulating layer 101 made of SiO 2 serving as a mask layer is formed on the p-type layer 33.
  • an opening pattern for forming the through region S0 is provided in the insulating layer 101 by lithography and etching.
  • vias are formed in the p-type layer 33 and the light emitting layer 32 by, for example, reactive ion etching (RIE) using the insulating layer 101 having an opening pattern as a mask.
  • RIE reactive ion etching
  • the insulating layer 101 is removed.
  • an insulating layer 41A made of SiO 2 , SiN, Al 2 O 3 or the like is formed on the entire surface of the semiconductor stacked body 3 including the through region S0 by, eg, CVD. Film.
  • the insulating layer 41 ⁇ / b> A is formed on the p-type layer 33, the exposed upper portion of the n-type layer 31 from the through region S ⁇ b> 0, and the inner peripheral surface of the via 4.
  • a resist layer 104 having a pattern covering the through region S0 is formed on the insulating layer 41A by lithography. Subsequently, as shown in FIG. 3B, using the resist layer 104 as a mask, the portion of the insulating layer 41A excluding the through region S0 is removed by etching.
  • a Ni layer, an Ag layer, and a Ti layer are sequentially stacked on the resist layer 104 and the p-type layer 33 by a sputtering method, a vacuum deposition method, or the like.
  • a metal layer 6A to be an electrode is formed.
  • the resist layer 104 and the metal layer 6A on the resist layer 104 are removed by a so-called lift-off method, and the p-side made of the metal layer 6A is formed on the p-type layer 33.
  • the electrode 6 is formed.
  • the protective insulating layer 106 made of, for example, SiO 2 and protecting the p-side electrode 6 so as to cover the p-side electrode 6 and the insulating layer 41A covering the through region S0. Is deposited.
  • a resist layer 107 having an opening pattern on the through region S0 is formed on the protective insulating layer 106 by lithography.
  • the protective insulating layer 106 and the insulating layer 41A are sequentially etched using the resist layer 107 as a mask.
  • the n-type layer 31 is exposed from the through region S0, and the peripheral wall insulating layer 41 provided on the inner peripheral wall of the via 4 is formed from the insulating layer 41A.
  • an Al layer, a Ti layer, and an Au layer are sequentially stacked on the resist layer 107 and the n-type layer 31 exposed from the via 4 by sputtering or vacuum deposition. Then, a metal layer 5A to be an n-side electrode is formed.
  • the metal layer 5A is formed on the n-type layer 31 exposed from the via 4 by a lift-off method for removing the resist layer 107 and the metal layer 5A on the resist layer 107.
  • An n-side electrode 5 is formed.
  • the protective insulating layer 106 is removed.
  • an insulating layer 109 made of, for example, SiO 2 is formed so as to cover the p-side electrode 6 including the inside of the peripheral wall insulating layer 41 and the via 4.
  • the insulating layer 109 is etched using the resist layer 110 as a mask.
  • the n-side electrode 5 is exposed from the via 4 in the n-side connection region S1, and the p-side electrode 6 is exposed in the p-side connection region S2.
  • the insulating layer 109 included in the n-side connection region S ⁇ b> 1 becomes the p-side insulating layer 72.
  • the insulating layer 109 on the through region S0 included in the p-side connection region S2 becomes the n-side insulating layer 71.
  • the resist layer 110 is removed, and then the exposed n-side electrode 5 and p-side electrode 6, and the n-side insulating layer 71 and p-side insulating layer are formed by vacuum deposition.
  • a metal layer 111 is formed by sequentially laminating a Ti layer and an Au layer to be an n-side pad electrode and a p-side pad electrode over the entire surface so as to cover 72.
  • a resist layer 112 having a pattern covering the n-side connection region S1 and the p-side connection region S2 shown in FIG. 1 is formed on the metal layer 111 by lithography. . Subsequently, the metal layer 111 is etched using the resist layer 112 as a mask. As a result, the n-side pad electrode 8 is formed in the n-side connection region S1 and the p-side pad electrode 9 is formed in the p-side connection region S2 from the metal layer 111.
  • the resist layer 112 is removed to obtain the light emitting device 1 according to this embodiment.
  • the light emitting device 1 can be used by being mounted on the submount device 20.
  • the submount element 20 can be a protective element such as a Zener diode, a varistor, or a resistor, or can be a mounting base for simply mounting the light emitting element 1 on a flip chip.
  • Each of the submount elements 20 has a planar rectangular shape, and an n-side terminal 21 connected to the n-side pad electrode 8 and a p-side terminal 22 connected to the p-side pad electrode 9 are spaced apart from each other. Is formed.
  • the light-emitting element 1 can be mounted on the submount element 20 with a conductive fixing material 50 such as a solder material or a bump interposed between the n-side terminal 21 and the p-side terminal 22.
  • the light emitting element 1 is die-bonded on the submount element 20, whereby power is supplied to the light emitting element 1 through wires (not shown) wired to the n-side terminal 21 and the p-side terminal 22. can do.
  • the planar size (chip size) of the light-emitting element 1 is a square of 0.8 mm ⁇ 0.8 mm, and the applied current is 1 A.
  • a light emitting element described in Patent Document 1 which is a conventional light emitting element was simultaneously simulated.
  • the electrode structure of the light emitting element described in Patent Document 1 is referred to as a point electrode.
  • the chip size of the comparative example is the same 0.8 mm ⁇ 0.8 mm as in this embodiment, and the applied current is also 1A.
  • the electrode size the outer diameter of the annular n-side electrode 5 when the n-side electrode occupation ratio is 3% is 190 ⁇ m and the inner diameter is 120 ⁇ m.
  • the electrode diameter in the case of a point electrode with an n-side electrode occupation ratio of 3% is 37 ⁇ m.
  • Figure 7 shows the simulation results. As can be seen from the graph shown in FIG. 7, when the light-emitting element according to this embodiment and the comparative example have the same n-side electrode occupancy value, the forward voltage of the light-emitting element according to this embodiment is compared. The voltage is lower than the example. Therefore, the light emitting element according to this embodiment can suppress the driving voltage lower than that of the comparative example.
  • the light-emitting element 1 In the case of a point electrode in which a plurality of n-side electrodes are interspersed in a grid pattern, as shown in FIG. 8A, current is diffused only from the n-side electrode, which is a point electrode, in the outward direction. do not do.
  • the n-side electrode 5 formed in an annular shape shown in FIG. 1 as in this embodiment, as shown in FIG. This is because the current can be diffused also in the direction. Therefore, since the current injected into the n-type layer 31 can be spread over a wide range, the light emitting layer 32 can emit light efficiently and uniformly. As a result, the light-emitting element 1 according to the present embodiment can achieve high brightness by securing a good current diffusivity while securing a light-emitting region.
  • the n-side electrode 5a is formed in a planar rectangular shape.
  • the n-side electrode 5b has a substantially planar shape, and a straight portion 5x is formed at each corner of the n-side electrode 5b.
  • the n-side electrode 5c is formed in a planar octagon shape.
  • the n-side electrodes 5a and 5c of the respective light emitting elements according to the first modification shown in FIG. 9A and the third modification shown in FIG. Each has a corner. Thereby, current can be diffused from each corner of the n-side electrodes 5a, 5c toward the corner of the semiconductor stacked body 3 facing the n-side electrodes 5a, 5c, so that more uniform current can be diffused.
  • the linear portion 5 x is formed on the n-side electrode 5 b at a position facing each corner of the semiconductor stacked body 3.
  • the inner angle that forms the outline of each corner of the n-side electrode 5b is increased and the steepness of the corner is relaxed, so that the n-side electrode 5b can be easily manufactured.
  • straight portions may be formed at the corners of the n-side electrode 5c facing the corners of the semiconductor stacked body 3.
  • the arrangement may be changed so that four of the outer eight sides face each corner of the semiconductor stacked body 3.
  • annular n-side electrode 5d of the light emitting element according to the fourth modification shown in FIG. 9D has a plurality of branches extending toward the corners at positions facing the corners of the semiconductor stacked body 3. Part 5y is formed.
  • each branch portion 5y of the n-side electrode 5d can be brought close to each corner portion of the semiconductor stacked body 3. Thereby, the current can be diffused to the back of each corner of the semiconductor stacked body 3.
  • branch portions 5y are provided on the annular n-side electrode 5d.
  • Branch portions 5y can also be provided in the n-side electrodes 5a to 5c according to the first to third modifications.
  • the linear portion 5x and the branch portion 5y are provided at four positions respectively facing the four corners of the semiconductor stacked body 3, but the effect is obtained even if at least one is provided. be able to.
  • the planar shape of the n-side electrodes 5a to 5d according to the modified examples shown in FIGS. 9A to 9D is a closed ring shape.
  • the n-side electrodes 5e to 5h of the light emitting elements according to the fifth to eighth modifications shown in FIGS. 10 (a) to 10 (d) below are formed in an annular shape with a part opened.
  • the n-side electrode 5e according to the fifth modification shown in FIG. 10A is cut out along the radial direction so as to open at a position facing one corner of the semiconductor stacked body 3 in a planar circular shape. Yes.
  • the n-side electrode 5f according to the sixth modification shown in FIG. 10 (b) is cut out along the diagonal direction so as to open at a position facing one corner of the semiconductor stacked body 3 in the planar rectangular shape. ing.
  • the n-side electrode 5g according to the seventh modification shown in FIG. 10C is a planar circular shape, and is notched along the radial direction so as to open toward the end side of the semiconductor stacked body 3. ing.
  • the n-side electrode 5 h according to the eighth modification shown in FIG. 10D is a planar square shape, and one side is cut out so as to open toward the end side of the semiconductor stacked body 3.
  • the annular n-side electrode 5 is made into n-side electrodes 5e to 5h each having an annular part opened, whereby the n-side electrode in the p-side electrode 6 is formed. A region inside the electrodes 5e to 5h and a region outside the n-side electrodes 5e to 5h are brought into conduction.
  • the connection point between the p-side electrode 6 and the p-side pad electrode 9 connected to the p-side electrode 6 is Since only one location is required, the degree of freedom in layout of the n-side pad electrode 8 and the p-side pad electrode 9 can be increased.
  • the n-side electrode 5g according to the seventh modification shown in FIG. 10C is taken as an example.
  • the light emitting element 11 according to the seventh modified example can be mounted on the submount element 25 shown in FIG.
  • a p-side terminal 27 connected to the p-side pad electrode 9a is formed at the center of the upper surface, and an n-side terminal 26 connected to the n-side pad electrode 8a is formed outside thereof.
  • the submount element 25 is formed with a through hole 29 for electrically connecting the p-side pad electrode 9a and the bottom terminal 28.
  • the light emitting element 11 can be mounted with a conductive fixing material 50 such as a solder material or a bump interposed between the light emitting element 11 and the submount element 25.
  • the light emitting element 11 is mounted on the submount element 25 so that power is supplied from the bottom terminal 28 to the p-side pad electrode 9a. Further, power is supplied to the n-side pad electrode 8a through a wire (not shown) wired to the n-side terminal 26.
  • each n-side electrode 5e to 5h shown in FIG. 10 may be provided with a branch portion that faces at least one corner portion of the semiconductor stacked body 3 and extends toward the corner portion. Further, the n-side electrodes 5e to 5h shown in FIG. 10 may be provided with a linear portion at a position facing at least one corner of the semiconductor stacked body 3.
  • the present disclosure can improve luminance by securing a good diffusibility of injected current while securing a light emitting region, and an n-side electrode that is conductively connected to an n-type layer in a through region by a via. And a p-side electrode conductively connected to the p-type layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 発光素子(1)は、n型層(31)、発光層(32)及びp型層(33)が順次積層された半導体積層体(3)と、半導体積層体(3)に形成されn型層(31)を露出するビア(4)からの露出部分の上に、発光層(32)及びp型層(33)に対して非導通状態で設けられたn側電極(5)と、p型層(33)の上に設けられたp側電極(6)とを有している。n側電極(5)は、n型層(31)の主面内で環状に形成されている。

Description

発光素子
 本開示は、発光素子に関し、特にn型層に貫通したビア(ヴィア:via)によってn型層と導通接続したn側電極を有する発光素子に関する。
 n型半導体層、発光層及びp型半導体層が順次積層されてなる発光素子は、電流が発光層の全体に十分に拡散された状態で流れることが望ましい。特に、発光面積が大きい発光素子の場合は、この電流の拡散性は重要である。例えば、特許文献1には、n接点(n側電極)が、活性領域(発光層)及びp型半導体層を通して格子状にエッチングされ、それぞれが方形状に形成された複数のn型ビアの内部に堆積されてn型半導体層と接触する、大面積及び小面積半導体発光フリップチップ(flip chip)装置のための接触方式が記載されている。
特開2004-47988号公報
 特許文献1に記載の半導体発光フリップチップ装置は、n接点を格子状に点在させているため、拡散性はある程度期待でき、活性領域(発光層)及びp型層の面積を広く確保することができるので、輝度の向上を図ることができる。しかしながら、n接点が比較的に小径であるため、その拡散性も限定的である。また、n接点の面積が小さいと、順方向の抵抗値が高くなって動作電圧が上昇してしまう。逆に、n型ビアの径を大きくして、n接点を大きくすればよいが、p型層及び発光層の面積が小さくなって、発光領域が減少するため、輝度が低下する原因となってしまう。
 そこで、本開示は、発光領域を確保しつつ、注入される電流の良好な拡散性を確保することにより、高輝度な発光素子を実現できるようにすることを目的とする。
 本開示の一態様は、n型層、発光層及びp型層が順次積層された半導体積層体と、半導体積層体に形成されn型層を露出するビアからの露出部分の上に、発光層及びp型層に対して非導通状態で設けられたn側電極と、p型層の上に設けられたp側電極とを備え、n側電極は、n型層の主面内で環状に形成されている。
 本開示の一態様に係る発光素子によれば、環状に形成されたn側電極の外側方向だけでなく、内側方向にも電流を拡散させることができる。このため、n型層の広い領域に電流を注入することができるので、発光層を効率的に且つ均一に発光させることができる。
 本開示によると、発光領域を確保しつつ、注入される電流の良好な拡散性を確保することにより、発光素子の光の輝度を向上することができる。
図1(a)及び図1(b)は一実施形態に係る発光素子を示し、図1(a)は図1(b)のIa-Ia線における断面図であり、図1(b)は平面図である。 図2(a)~図2(e)は一実施形態に係る発光素子の製造方法を示す工程順の断面図である。 図3(a)~図3(d)は一実施形態に係る発光素子の製造方法を示す工程順の断面図である。 図4(a)~図4(d)は一実施形態に係る発光素子の製造方法を示す工程順の断面図である。 図5(a)~図5(e)は一実施形態に係る発光素子の製造方法を示す工程順の断面図である。 図6は一実施形態に係る発光素子をサブマウント(sub-mount)素子に搭載した状態を示す断面図である。 図7は一実施形態に係る発光素子と従来例に係る発光素子とにおけるn側電極占有率と順方向電圧との関係を示すグラフである。 図8(a)及び図8(b)はn側電極の平面形状による作用を説明する図であって、図8(a)は従来例に係る発光素子のn側電極を示す模式的な平面図であり、図1(b)は一実施形態に係る発光素子のn側電極を示す模式的な平面図である。 図9(a)~図9(d)は一実施形態に係る発光素子のn側電極における第1変形例から第4変形例を示す模式的な平面図である。 図10(a)~図10(d)は一実施形態に係る発光素子のn側電極における第5変形例から第8変形例を示す模式的な平面図である。 図11(a)及び図11(b)は一実施形態の第7変形例に係る発光素子を示し、図11(a)は図11(b)のXIa-XIa線における断面図であり、図11(b)は平面図である。 図12は一実施形態の第7変形例に係る発光素子をサブマウント素子に搭載した状態を示す断面図である。
 一実施形態に係る発光素子は、n型層、発光層及びp型層が順次積層された半導体積層体と、半導体積層体に形成されn型層を露出するビアからの露出部分の上に、発光層及び前記p型層に対して非導通状態で設けられたn側電極と、p型層の上に設けられたp側電極とを備え、n側電極は、前記n型層の主面内で環状に形成されている。
 一実施形態に係る発光素子によると、例えばドット状に形成されたn側電極の場合は、配置数を多くしても、n側電極の外側方向にしか電流が拡散しない。これに対し、一実施形態に係る発光素子の場合は、n側電極が環状に形成されているため、n側電極の外側方向だけでなく、内側方向にも電流を拡散させることができる。これにより、n型層の広い領域に電流を注入することができるので、発光層を効率的且つ均一に発光させることができる。
 一実施形態に係る発光素子は、半導体積層体におけるp型層の上側であって、n側電極と電気的に接続されると共に、n側電源と接続されるn側接続領域に設けられたn側パッド電極と、半導体積層体におけるp型層の上側であって、p側電極と電気的に接続されると共に、p側電源と接続されるp側接続領域に設けられたp側パッド電極と、n側パッド電極とn側接続領域に含まれるp側電極との間に設けられたp側絶縁層と、p側パッド電極とp側接続領域に含まれるn側電極との間に設けられたn側絶縁層とをさらに備えていてもよい。
 このようにすると、外部のn側電源及びp側電源とそれぞれ接続されるn側パッド電極及びp側パッド電極の各平面形状を任意の形状に設計することができる。
 一実施形態に係る発光素子において、n側電極は閉じた環状に形成されていてもよい。
 このようにすると、外側方向及び内側方向に平均的に電流を拡散させることができる。
 一実施形態に係る発光素子において、n側電極は一部が開いた環状に形成されていてもよい。
 このようにすると、ビアの内側の領域と外側の領域とを導通状態とすることができるため、n側電極とp側電極との平面形状を決定する際の自由度が増す。
 一実施形態に係る発光素子において、n側電極は、円形状又は多角形状を含む形状であってもよい。
 一実施形態に係る発光素子において、半導体積層体は平面形状に隅部を有し、n側電極は、半導体積層体の隅部と対向する位置に角部を有していてもよい。
 このようにすると、n側電極の角部から半導体積層体の隅部に向かって電流を拡散させることができるので、電流の拡散をより均一に行うことができる。
 一実施形態に係る発光素子において、半導体積層体は平面形状に隅部を有し、n側電極は、半導体積層体の隅部と対向する位置に直線部を有していてもよい。
 このようにすると、ビア及びn側電極における角部の内角が大きくなって該角部の急峻度が緩和されるため、n型層にまで貫通したビア及びn側電極の形成が容易となる。
 一実施形態に係る発光素子において、半導体積層体は平面形状に隅部を有し、n側電極は、半導体積層体の隅部と対向し且つ該隅部に向かって延びる枝部を有していてもよい。
 このようにすると、n側電極の枝部を半導体積層体の隅部に接近させることができるので、該半導体積層体の隅部の奥にまで電流を拡散させることができる。
 (一実施形態)
 一実施形態に係る発光素子を図1(a)及び図1(b)に基づいて説明する。
 図1(a)及び図1(b)に示すように、本実施形態に係る発光素子1は、基板2の主面上に複数の半導体層が積層され、それぞれ電流を供給する複数の電極が形成されたフリップチップ型のLED(Light Emitting Diode)素子である。
 具体的には、本実施形態に係る発光素子1は、例えば、基板2と、該基板2の上に形成され、平面環状のビア4が設けられた半導体積層体3と、ビア4の底面上に形成されたn側電極5と、半導体積層体3の上面を覆うp側電極6と、n側電極5の上に形成されたn側絶縁層71と、p側電極6の上に形成されたp側絶縁層72と、n側電極5と接続されたn側パッド(pad)電極8と、p側電極6と接続されたp側パッド電極9とを有している。
 基板2は、光透過性を有し、平面方形状に形成されている。基板2には、n型の窒化ガリウム(GaN)、n型の炭化シリコン(SiC)又はサファイア(単結晶Al)等を用いることができる。
 半導体積層体3は、基板2の上に、n型層31、発光層32及びp型層33が順次積層されて形成されている。n型層31は、例えばn型の窒化アルミニウムガリウム(AlGaN)により形成することができる。n型層31に添加されるn型ドーパントには、シリコン(Si)又はゲルマニウム(Ge)等を好適に用いることができる。
 発光層32は、構成元素に少なくともガリウム(Ga)と窒素(N)とを含み、必要に応じて適量のインジウム(In)を含ませることにより、所望の発光波長を有する発光光を得ることができる。また、発光層32の構成として、単層構造としてもよく、また、例えば窒化インジウムガリウム(InGaN)層と窒化ガリウム(GaN)層とを対とし、その少なくとも一対を含む多重量子井戸(MQW)構造とすることも可能である。発光層32を多重量子井戸構造とすることにより、発光光の輝度をさらに向上することができる。p型層33は、p型AlGaNにより形成することができる。
 半導体積層体3は、基板2の主面上に、有機金属気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法等のエピタキシャル成長技術を用いて成膜することができる。MOCVD法に代えて、例えば、ハイドライド気相成長(Hydride Vapor Phase Epitaxy:HVPE)法、又は分子線エピタキシ(Molecule Beam Epitaxy:MBE)法等により成膜することも可能である。
 ビア4は、半導体積層体3におけるp型層33と発光層32とを貫通して、該発光層32の下のn型層31を露出する貫通孔である。ビア4は、例えば平面視でほぼ環状に形成することができる。本実施形態に係る発光素子1においては、閉じた環状である円形状に形成されている。従って、n型層31のビア4による貫通領域S0から露出する領域の平面形状は円形状となる。
 ビア4の内周面には、p型層33及び発光層32とn側電極5とを非導通状態とする周壁絶縁層41が形成されている。周壁絶縁層41は、例えば酸化シリコン(SiO)により形成することができる。なお、周壁絶縁層41は、酸化シリコンに代えて、窒化シリコン(SiN)又は酸化アルミニウム(Al)により形成してもよい。
 n側電極5は、n型層31上であって、ビア4から露出した円形状の貫通領域S0に形成されている。n側電極5は、アルミニウム(Al)層とTi(チタン)層と金(Au)層とを順次積層した多層構造とすることができる。
 p側電極6は、p型層33の上に形成されている。従って、p側電極6の形成領域は、ビア4による貫通領域S0を除く領域となる。p側電極6は、ニッケル(Ni)層と銀(Ag)層とチタン(Ti)層とを順次積層した多層構造とすることができる。p側電極6は、Ag層を含めることにより反射層として機能する。
 n側絶縁層71及びp側絶縁層72は、SiO、SiN又はAlにより形成することができる。n側絶縁層71は、p側パッド電極9とp側接続領域S2に含まれる貫通領域S0のn側電極5との間に介在するように形成されている。これに対し、p側絶縁層72は、n側パッド電極8とn側接続領域S1に含まれるp側電極6との間に介在するように形成されている。
 n側パッド電極8は、貫通領域S0の一方のほぼ2分の1の領域を占める平面方形状のn側接続領域S1に設けられている。従って、n側パッド電極8は、n側接続領域S1に含まれるn側電極5及びp側絶縁層72の上に形成されることにより、n側電極5と導通接続されている。なお、n側パッド電極8には、発光素子1へのn側電源(カソード電源)が接続される。
 p側パッド電極9は、貫通領域S0の他方のほぼ2分の1の領域を占める平面方形状のp側接続領域S2に設けられている。従って、p側パッド電極9は、p側接続領域S2に含まれるp側電極6及びn側絶縁層71の上に形成されることにより、p側電極6と導通接続されている。なお、p側パッド電極9には、発光素子1へのp側電源(アノード電源)が接続される。
 (製造方法)
 以上のように構成された本実施形態に係る発光素子の製造方法を図2(a)~図2(e)、図3(a)~図3(d)、図4(a)~図4(d)及び図5(a)~図5(e)に基づいて説明する。なお、本来の製造方法においては、一度に複数の発光素子1を製造可能なように、各半導体層を基板2となるウエハ状態の原基板の上に積層する。ここでは、便宜上、1個の発光素子の製造方法を図示する。
 まず、図2(a)に示すように、基板2の主面上に、MOCVD法等のエピタキシャル結晶成長により、例えばn型AlGaNからなるn型層31、InGaNからなる井戸層とGaNからなるバリア層とが交互に積層された多重量子井戸構造を有する発光層32及びp型AlGaNからなるp型層33を順次積層する。
 次に、図2(b)に示すように、p型層33の上に、マスク層となるSiOからなる絶縁層101を成膜する。
 次に、図2(c)に示すように、リソグラフィ法及びエッチング法により、絶縁層101に、貫通領域S0を形成するための開口パターンを設ける。
 次に、図2(d)に示すように、例えば、反応性イオンエッチング(Reactive Ion Etching:RIE)により、開口パターンを有する絶縁層101をマスクとして、p型層33及び発光層32にビアとなる貫通領域S0を形成する。
 次に、図2(e)に示すように、絶縁層101を除去する。
 次に、図3(a)に示すように、例えばCVD法により、貫通領域S0を含む半導体積層体3の上の全面に、SiO、SiN又はAl等からなる絶縁層41Aを成膜する。これにより、絶縁層41Aが、p型層33の上と、n型層31における貫通領域S0からの露出上部分と、ビア4の内周面上に形成される。
 次に、リソグラフィ法により、絶縁層41Aの上に、貫通領域S0を覆うパターンを有するレジスト層104を形成する。続いて、図3(b)に示すように、レジスト層104をマスクとして、絶縁層41Aにおける貫通領域S0を除く部分をエッチングにより除去する。
 次に、図3(c)に示すように、スパッタ法又は真空蒸着法等により、レジスト層104及びp型層33の上に、Ni層、Ag層及びTi層を順次積層して、p側電極となる金属層6Aを成膜する。
 次に、図3(d)に示すように、レジスト層104と該レジスト層104上の金属層6Aを除去する、いわゆるリフトオフ法により、p型層33の上に、金属層6Aからなるp側電極6を形成する。
 次に、図4(a)に示すように、p側電極6と、貫通領域S0を覆う絶縁層41Aとを覆うように、例えばSiOからなり、p側電極6を保護する保護絶縁層106を成膜する。
 次に、図4(b)に示すように、リソグラフィ法により、保護絶縁層106の上に、貫通領域S0の上に開口パターンを有するレジスト層107を形成する。続いて、レジスト層107をマスクとして、保護絶縁層106及び絶縁層41Aを順次エッチングする。これにより、貫通領域S0からn型層31が露出すると共に、絶縁層41Aからビア4の内周壁に設けられた周壁絶縁層41が形成される。
 次に、図4(c)に示すように、スパッタ法又は真空蒸着法等により、レジスト層107及びビア4から露出するn型層31の上に、Al層、Ti層及びAu層を順次積層して、n側電極となる金属層5Aを成膜する。
 次に、図4(d)に示すように、レジスト層107と該レジスト層107上の金属層5Aを除去するリフトオフ法により、ビア4から露出するn型層31の上に、金属層5Aからなるn側電極5を形成する。
 次に、図5(a)に示すように、保護絶縁層106を除去する。続いて、周壁絶縁層41及びビア4の内部を含めp側電極6を覆うように、例えばSiOからなる絶縁層109を成膜する。
 次に、図5(b)に示すように、リソグラフィ法により、絶縁層109の上に、図1(b)に示すn側接続領域S1であって、n側電極5と接続されるビア4の上側部分に第1開口パターンを有すると共に、図1(b)に示すp側接続領域S2であって、p側電極6と接続される部分の上側に第2開口パターンを有するレジスト層110を形成する。続いて、レジスト層110をマスクとして、絶縁層109をエッチングする。これにより、n側接続領域S1においてビア4からn側電極5が露出し、且つ、p側接続領域S2においてp側電極6が露出する。ここで、n側接続領域S1に含まれる絶縁層109がp側絶縁層72となる。また、p側接続領域S2に含まれる貫通領域S0の上の絶縁層109がn側絶縁層71となる。
 次に、図5(c)に示すように、レジスト層110を除去し、その後、真空蒸着法により、露出したn側電極5及びp側電極6、並びにn側絶縁層71及びp側絶縁層72を覆うように全面にわたって、n側パッド電極及びp側パッド電極となるTi層とAu層とを順次積層して金属層111を形成する。
 次に、図5(d)に示すように、リソグラフィ法により、金属層111の上に、図1に示すn側接続領域S1及びp側接続領域S2を覆うパターンを有するレジスト層112を形成する。続いて、レジスト層112をマスクとして、金属層111をエッチングする。これにより、金属層111から、n側接続領域S1にn側パッド電極8が形成され、p側接続領域S2にp側パッド電極9とが形成される。
 次に、図5(e)に示すように、レジスト層112を除去することにより、本実施形態に係る発光素子1を得る。
 以下、本実施形態に係る発光素子1の実装使用状態を図6に基づいて説明する。
 本実施形態に係る発光素子1は、サブマウント素子20の上に搭載して使用することができる。サブマウント素子20は、ツェナーダイオード、バリスタ及び抵抗器等の保護素子としたり、発光素子1を単にフリップチップ実装するためだけの搭載基台としたりすることができる。サブマウント素子20には、いずれも平面方形状で、n側パッド電極8と接続されるn側端子21と、p側パッド電極9と接続されるp側端子22とがそれぞれ互いに間隔をおいて形成されている。発光素子1は、サブマウント素子20に対して、n側端子21及びp側端子22との間にそれぞれ半田材又はバンプ等の導電性の固着材50  を介在させて搭載することができる。
 このように、発光素子1がサブマウント素子20の上にダイボンドされることにより、発光素子1には、n側端子21とp側端子22とに配線された図示しないワイヤを介して電源を供給することができる。
 次に、本実施形態に係る発光素子1について、n側電極5が発光層32に占める電極占有率と、順方向電圧との関係をシミュレーションした結果を示す。
 ここでのシミュレーションは、発光素子1の平面サイズ(チップサイズ)を0.8mm×0.8mmの正方形状とし、印加電流を1Aとしている。
 比較例として従来の発光素子である特許文献1に記載の発光素子を同時にシミュレーションした。ここで、特許文献1に記載の発光素子の電極構造を点電極と称する。比較例のチップサイズは、本実施形態と同一の0.8mm×0.8mmであり、その印加電流も1Aとしている。電極サイズの一例として、n側電極占有率が3%の場合の環状のn側電極5の外径は190μmで、内径は120μmである。また、n側電極占有率が3%の点電極の場合の電極径は37μmとなる。
 図7にシミュレーションの結果を示す。図7に示すグラフから分かるように、本実施形態に係る発光素子と比較例とのn側電極占有率の値が同一である場合には、本実施形態に係る発光素子の順方向電圧が比較例よりも低電圧である。従って、本実施形態に係る発光素子は、比較例と比べて駆動電圧を低く抑えることができる。
 これは、複数のn側電極を格子状に点在させた点電極の場合は、図8(a)に示すように、点電極であるn側電極からは、その外側方向にしか電流が拡散しない。これに対し、本実施形態のように、図1に示す環状に形成されたn側電極5の場合は、図8(b)に示すように、n側電極5の外側方向だけでなく、内側方向にも電流を拡散させることができるためである。従って、n型層31に注入される電流を広い範囲に行き渡らせることができるので、発光層32を効率的に且つ均一に発光させることができる。その結果、本実施形態に係る発光素子1は、発光領域を確保しつつ、電流の良好な拡散性が確保されることにより、高輝度化を図ることができる。
 (変形例)
 次に、本実施形態に係る発光素子のn側電極の平面形状における種々の変形例を図9(a)~図9(d)及び図10(a)~図10(d)に基づいて説明する。
 図9(a)に示す第1変形例に係る発光素子は、n側電極5aが平面方形状に形成されている。図9(b)に示す第2変形例に係る発光素子は、n側電極5bがほぼ平面方形状であり、さらに、n側電極5bの各角部には直線部5xがそれぞれ形成されている。さらに、図9(c)に示す第3変形例に係る発光素子は、n側電極5cが平面八角形状に形成されている。
 図9(a)に示す第1変形例及び図9(c)に示す第3変形例に係る各発光素子のn側電極5a、5cには、半導体積層体3の各隅部と対向する位置にそれぞれ角部が形成されている。これにより、n側電極5a、5cの各角部からそれと対向する半導体積層体3の隅部に向かって電流を拡散させることができるので、より均一な電流の拡散を図ることができる。
 図9(b)に示す第2変形例に係る発光素子は、n側電極5bに、半導体積層体3の各隅部と対向する位置にそれぞれ直線部5xが形成されている。これにより、n側電極5bの各角部の輪郭を形成する内角が大きくなって該角部の急峻度が緩和されるため、n側電極5bの作製が容易となる。
 なお、図9(c)の第3変形例に係るn側電極5cにおいても、該n側電極5cにおける半導体積層体3の各隅部と対向する各角部に直線部を形成してもよい。また、n側電極5cの平面形状を変える代わりに、外側の8辺のうちの4辺が半導体積層体3の各隅部とそれぞれ対向するように配置を変えてもよい。
 また、図9(d)に示す第4変形例に係る発光素子の環状のn側電極5dには、半導体積層体3の各隅部と対向する位置に該隅部に向かって延びる複数の枝部5yが形成されている。
 第4変形例においては、n側電極5dの各枝部5yを半導体積層体3の各隅部に接近させることができる。これにより、半導体積層体3の各隅部の奥にまで電流を拡散させることができる。
 なお、第4変形例においては、環状のn側電極5dに複数の枝部5yを設ける構成である。第1変形例から第3変形例に係るn側電極5a~5cにおいても枝部5yを設けることができる。
 また、これらの変形例において、直線部5x及び枝部5yは、半導体積層体3の4つの隅部とそれぞれ対向する位置の4箇所に設けたが、少なくとも1つを設けてもその効果を得ることができる。
 図9(a)~図9(d)に示す変形例に係るn側電極5a~5dの平面形状は、閉じた環状である。以下の図10(a)~図10(d)に示す第5変形例~第8変形例に係る発光素子のn側電極5e~5hは、一部が開いた環状に形成されている。
 図10(a)に示す第5変形例に係るn側電極5eは、平面円形状における半導体積層体3の一隅部と対向する位置に開口するように、その半径方向に沿って切り欠かれている。図10(b)に示す第6変形例に係るn側電極5fは、平面方形状における半導体積層体3の一隅部と対向する位置に開口するように、その対角方向に沿って切り欠かれている。図10(c)に示す第7変形例に係るn側電極5gは、平面円形状であって、半導体積層体3の端辺に向かって開口するように、その半径方向に沿って切り欠かれている。図10(d)に示す第8変形例に係るn側電極5hは、平面方形状であって、半導体積層体3の端辺に向かって開口するように、一辺が切り欠かれている。
 図10(a)~図10(d)に示すように、環状のn側電極5を、それぞれ環状の一部が開いたn側電極5e~5hとすることにより、p側電極6におけるn側電極5e~5hの内側の領域とn側電極5e~5hの外側の領域とが導通状態となる。
 このように、p側電極6がn側電極5の内側と外側とで導通状態にあると、p側電極6と、該p側電極6と接続されるp側パッド電極9との接続点が1ヵ所あればよいため、n側パッド電極8とp側パッド電極9とのレイアウトの自由度を高めることができる。
 例えば、図10(c)に示す第7変形例に係るn側電極5gを例に採る。
 図11(a)及び図11(b)に示すように、n側電極5gの内側の領域をp側パッド電極9aとし、n側電極5gを含む外側の領域をn側パッド電極8aとした発光素子11を得ることができる。
 このような第7変形例に係る発光素子11は、図12に示すサブマウント素子25の上に搭載することができる。サブマウント素子25には、上面の中央部にp側パッド電極9aと接続されるp側端子27が形成され、その外側にn側パッド電極8aと接続されるn側端子26が形成されている。さらに、サブマウント素子25には、p側パッド電極9aと底面端子28とを導通接続するためのスルーホール29が形成されている。発光素子11は、サブマウント素子25との間にそれぞれ半田材又はバンプ等の導電性の固着材50を介在させて搭載することができる。
 発光素子11は、サブマウント素子25に搭載されることにより、底面端子28からp側パッド電極9aに電源が供給される。また、n側端子26に配線された図示しないワイヤを介してn側パッド電極8aに電源が供給される。
 以上、本実施形態に係る発光素子及びその変形例を説明したが、本開示は、上記の実施形態及びその変形例に限定されない。例えば、図10に示す各n側電極5e~5hに、半導体積層体3の少なくとも1つの隅部と対向し且つ該隅部に向かって延びる枝部を設けてもよい。また、図10に示すn側電極5e~5hに、半導体積層体3の少なくとも1つの隅部と対向する位置に直線部を設けてもよい。
 本開示は、発光領域を確保しつつ、注入される電流の良好な拡散性を確保することにより、輝度の向上を図ることができ、ビアによる貫通領域のn型層と導通接続したn側電極と、p型層と導通接続したp側電極とを有する発光素子等に好適である。
 1,11 発光素子
 2 基板
 3 半導体積層体
 4 ビア
 5,5a~5h n側電極
 5A 金属層
 5x 直線部
 6 p側電極
 6A 金属層
 8,8a n側パッド電極
 9,9a p側パッド電極
 20,25 サブマウント素子
 21,26 n側端子
 22,27 p側端子
 28 底面端子
 29 スルーホール
 31 n型層
 32 発光層
 33 p型層
 41 周壁絶縁層
 41A 絶縁層
 50 固着材 
 71 n側絶縁層
 72 p側絶縁層
 101 絶縁層
 104 レジスト層
 106 保護絶縁層
 107 レジスト層
 109 絶縁層
 110 レジスト層
 111 金属層
 112 レジスト層
 S0 貫通領域
 S1 n側接続領域
 S2 p側接続領域

Claims (8)

  1.  n型層、発光層及びp型層が順次積層された半導体積層体と、
     前記半導体積層体に形成され前記n型層を露出するビアからの露出部分の上に、前記発光層及び前記p型層に対して非導通状態で設けられたn側電極と、
     前記p型層の上に設けられたp側電極とを備え、
     前記n側電極は、前記n型層の主面内で環状に形成されている発光素子。
  2.  請求項1において、
     前記半導体積層体における前記p型層の上側であって、前記n側電極と電気的に接続されると共に、n側電源と接続されるn側接続領域に設けられたn側パッド電極と、
     前記半導体積層体における前記p型層の上側であって、前記p側電極と電気的に接続されると共に、p側電源と接続されるp側接続領域に設けられたp側パッド電極と、
     前記n側パッド電極と前記n側接続領域に含まれる前記p側電極との間に設けられたp側絶縁層と、
     前記p側パッド電極と前記p側接続領域に含まれる前記n側電極との間に設けられたn側絶縁層とをさらに備えている発光素子。
  3.  請求項1又は2において、
     前記n側電極は、閉じた環状に形成されている発光素子。
  4.  請求項1又は2において、
     前記n側電極は、一部が開いた環状に形成されている発光素子。
  5.  請求項1から4のいずれか1項において、
     前記n側電極は、円形状又は多角形状を含む形状である発光素子。
  6.  請求項1から4のいずれか1項において、
     前記半導体積層体は、平面形状に隅部を有し、
     前記n側電極は、前記半導体積層体の隅部と対向する位置に角部を有している発光素子。
  7.  請求項1から4のいずれか1項において、
     前記半導体積層体は、平面形状に隅部を有し、
     前記n側電極は、前記半導体積層体の隅部と対向する位置に直線部を有している発光素子。
  8.  請求項1から7のいずれか1項において、
     前記半導体積層体は、平面形状に隅部を有し、
     前記n側電極は、前記半導体積層体の隅部と対向し且つ該隅部に向かって延びる枝部を有している発光素子。
PCT/JP2013/002484 2012-04-27 2013-04-11 発光素子 WO2013161208A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/380,046 US20150021626A1 (en) 2012-04-27 2013-04-11 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-102224 2012-04-27
JP2012102224 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161208A1 true WO2013161208A1 (ja) 2013-10-31

Family

ID=49482560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002484 WO2013161208A1 (ja) 2012-04-27 2013-04-11 発光素子

Country Status (3)

Country Link
US (1) US20150021626A1 (ja)
JP (1) JPWO2013161208A1 (ja)
WO (1) WO2013161208A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119014A (ja) * 2013-12-18 2015-06-25 日亜化学工業株式会社 半導体発光素子及びその電極形成方法
JP2015176713A (ja) * 2014-03-14 2015-10-05 日亜化学工業株式会社 照明装置
JP2016092414A (ja) * 2014-11-03 2016-05-23 エルジー イノテック カンパニー リミテッド 発光素子及び照明システム
JP2016207870A (ja) * 2015-04-24 2016-12-08 日亜化学工業株式会社 発光素子
JP2017028265A (ja) * 2015-07-16 2017-02-02 日亜化学工業株式会社 発光素子及び発光装置
JP2017112289A (ja) * 2015-12-18 2017-06-22 日亜化学工業株式会社 発光装置
WO2018221351A1 (ja) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140134420A (ko) * 2013-05-14 2014-11-24 삼성전자주식회사 반도체 발광소자 패키지의 제조 방법
US9577171B2 (en) 2014-06-03 2017-02-21 Seoul Viosys Co., Ltd. Light emitting device package having improved heat dissipation efficiency
US9728698B2 (en) * 2014-06-03 2017-08-08 Seoul Viosys Co., Ltd. Light emitting device package having improved heat dissipation efficiency
US10629577B2 (en) * 2017-03-16 2020-04-21 Invensas Corporation Direct-bonded LED arrays and applications
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
CN110707186A (zh) * 2019-10-21 2020-01-17 深圳市华星光电半导体显示技术有限公司 Led显示面板的制备方法
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
TWI719931B (zh) * 2020-10-22 2021-02-21 光鋐科技股份有限公司 微型發光二極體
CN115172556A (zh) * 2021-06-17 2022-10-11 厦门三安光电有限公司 一种发光二极管芯片、发光装置及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319704A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップ
JP2006012916A (ja) * 2004-06-22 2006-01-12 Toyoda Gosei Co Ltd 発光素子
JP2006128457A (ja) * 2004-10-29 2006-05-18 Toyoda Gosei Co Ltd 発光素子および発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333522B1 (en) * 1997-01-31 2001-12-25 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
US6380564B1 (en) * 2000-08-16 2002-04-30 United Epitaxy Company, Ltd. Semiconductor light emitting device
KR100568269B1 (ko) * 2003-06-23 2006-04-05 삼성전기주식회사 플립-칩 본딩용 질화갈륨계 발광 다이오드 및 그 제조방법
KR100576855B1 (ko) * 2003-12-20 2006-05-10 삼성전기주식회사 고출력 플립 칩 발광다이오드
US7179670B2 (en) * 2004-03-05 2007-02-20 Gelcore, Llc Flip-chip light emitting diode device without sub-mount
US9070851B2 (en) * 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319704A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップ
JP2006012916A (ja) * 2004-06-22 2006-01-12 Toyoda Gosei Co Ltd 発光素子
JP2006128457A (ja) * 2004-10-29 2006-05-18 Toyoda Gosei Co Ltd 発光素子および発光装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119014A (ja) * 2013-12-18 2015-06-25 日亜化学工業株式会社 半導体発光素子及びその電極形成方法
JP2015176713A (ja) * 2014-03-14 2015-10-05 日亜化学工業株式会社 照明装置
JP2016092414A (ja) * 2014-11-03 2016-05-23 エルジー イノテック カンパニー リミテッド 発光素子及び照明システム
JP2016207870A (ja) * 2015-04-24 2016-12-08 日亜化学工業株式会社 発光素子
JP2017028265A (ja) * 2015-07-16 2017-02-02 日亜化学工業株式会社 発光素子及び発光装置
JP2017112289A (ja) * 2015-12-18 2017-06-22 日亜化学工業株式会社 発光装置
WO2018221351A1 (ja) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP2018206860A (ja) * 2017-05-31 2018-12-27 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
CN110678991A (zh) * 2017-05-31 2020-01-10 精工爱普生株式会社 发光装置、投影仪以及发光装置的制造方法
US11239390B2 (en) 2017-05-31 2022-02-01 Seiko Epson Corporation Light emitting apparatus, projector, method for manufacturing light emitting apparatus

Also Published As

Publication number Publication date
JPWO2013161208A1 (ja) 2015-12-21
US20150021626A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2013161208A1 (ja) 発光素子
CN106067499B (zh) 发光二极管及制造该发光二极管的方法
KR101493321B1 (ko) 전류 분산 효과가 우수한 발광소자 및 그 제조 방법
US9590137B2 (en) Light-emitting diode
JP4091049B2 (ja) 静電気放電防止機能を有する窒化物半導体発光素子
KR100999726B1 (ko) 발광소자 및 그 제조방법
US8853719B2 (en) Semiconductor light-emitting device and light-emitting device package having the same
US20120049236A1 (en) Light-emitting element
KR20090062619A (ko) 반도체 발광소자 및 그 제조방법
US20220190207A1 (en) Semiconductor light-emitting device including a reflector layer having a multi-layered structure
TWI437737B (zh) 發光二極體結構及其製造方法
US20130015465A1 (en) Nitride semiconductor light-emitting device
US10134806B2 (en) Semiconductor light emitting device
JP2011066053A (ja) 発光素子の製造方法及び発光素子
US20120228651A1 (en) Light-emitting-diode array
CN111052409B (zh) 发光二极管装置及制造发光二极管装置的方法
KR20130111792A (ko) 전류 분산 효과가 우수한 고휘도 질화물 발광소자
US9306120B2 (en) High efficiency light emitting diode
KR20110132160A (ko) 반도체 발광 소자 및 그 제조방법
JP2017055045A (ja) 半導体発光装置
JP2017054902A (ja) 半導体発光装置
KR20160059221A (ko) 발광소자 및 조명시스템
KR102251237B1 (ko) 발광 소자
KR102075059B1 (ko) 발광 소자 및 발광 소자 패키지
JP5772213B2 (ja) 発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512326

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780593

Country of ref document: EP

Kind code of ref document: A1