KR20160059221A - 발광소자 및 조명시스템 - Google Patents

발광소자 및 조명시스템 Download PDF

Info

Publication number
KR20160059221A
KR20160059221A KR1020140160839A KR20140160839A KR20160059221A KR 20160059221 A KR20160059221 A KR 20160059221A KR 1020140160839 A KR1020140160839 A KR 1020140160839A KR 20140160839 A KR20140160839 A KR 20140160839A KR 20160059221 A KR20160059221 A KR 20160059221A
Authority
KR
South Korea
Prior art keywords
light emitting
electrode layer
semiconductor layer
layer
conductive semiconductor
Prior art date
Application number
KR1020140160839A
Other languages
English (en)
Other versions
KR102237149B1 (ko
Inventor
이은형
강유환
김원호
김태기
노승원
문효정
전용한
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020140160839A priority Critical patent/KR102237149B1/ko
Priority to PCT/KR2015/011473 priority patent/WO2016080671A1/ko
Priority to US15/528,058 priority patent/US20170324004A1/en
Publication of KR20160059221A publication Critical patent/KR20160059221A/ko
Application granted granted Critical
Publication of KR102237149B1 publication Critical patent/KR102237149B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Abstract

실시예에 따른 발광소자는 적어도 2 이상의 발광영역으로 구분되는 전도성 반도체층; 상기 전도성 반도체층 상에 복수의 발광구조물; 상기 복수의 발광구조물 상에 전극층; 상기 전극층과 전기적으로 연결된 제 2 전극; 및 상기 전도성 반도체층과 전기적으로 연결된 제 1 전극을 포함하고, 상기 발광구조물은 라드 형상의 제 1 도전형 반도체층과, 상기 제 1 도전형 반도체층을 감싸는 활성층과, 상기 활성층을 감싸는 제 2 도전형 반도체층을 포함하고, 상기 발광구조물은 상기 전도성 반도체층 상면을 기준으로 연장방향을 달리하는 적어도 2 이상의 외면을 갖는 것을 특징으로 한다.

Description

발광소자 및 조명시스템{LIGHT EMITTING DEVICE AND LIGHTING SYSTEM}
실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템에 관한 것으로, 좀더 구체적으로, 라드 형상의 발광구조물을 갖는 발광소자에 관한 것이다.
발광소자(Light Emitting Device)는 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드로서, 주기율표상에서 Ⅲ족과 Ⅴ족 등의 화합물 반도체로 생성될 수 있고 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
발광소자는 순방향전압 인가 시 n층의 전자(electron)와 p층의 정공(hole)이 결합하여 전도대(Conduction band)와 가전대(Valance band)의 밴드갭 에너지에 해당하는 만큼의 에너지를 발산하는데, 이 에너지는 주로 열이나 빛의 형태로 방출되며, 빛의 형태로 발산되면 발광소자가 된다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자 등은 상용화되어 널리 사용되고 있다.
최근 고효율 LED 수요가 증가함에 광도 개선이 이슈가 되고 있다.
특히, 광을 직접적으로 방출하는 발광구조물의 경우, 단순 적층형 에피 구조형태를 탈피하여, 다양한 구조 변화를 통해 광도를 개선하는 방안들이 제안되었다.
이때, 발광구조물의 개선방향으로, 반도체층의 결정 퀄리티가 향상되어야 하고, 발광영역이 확장되어야 하며, 발생한 빛이 발광구조물의 외부로 효과적으로 방출될 것 등이 요구된다.
한편, 반도체를 이용한 백색 발광소자는 적색, 녹색, 청색 발광소자를 모두 사용하여 제조될 수 있으나, 이는 제조 비용이 고가이고, 구동회로가 복잡하기 때문에 제품의 크기가 커진다는 단점이 있다.
실시예는 연색성이 높은 백색광을 제공하면서, 광도를 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공하고자 한다.
실시예에 따른 발광소자는 적어도 2 이상의 발광영역으로 구분되는 전도성 반도체층; 상기 전도성 반도체층 상에 복수의 발광구조물; 상기 복수의 발광구조물 상에 전극층; 상기 전극층과 전기적으로 연결된 제 2 전극; 및 상기 전도성 반도체층과 전기적으로 연결된 제 1 전극을 포함하고, 상기 발광구조물은 라드 형상의 제 1 도전형 반도체층과, 상기 제 1 도전형 반도체층을 감싸는 활성층과, 상기 활성층을 감싸는 제 2 도전형 반도체층을 포함하고, 상기 발광구조물은 상기 전도성 반도체층 상면을 기준으로 연장방향을 달리하는 적어도 2 이상의 외면을 갖는 것을 특징으로 한다.
다른 측면에서, 실시예에 따른 발광소자는 적어도 2 이상의 발광영역으로 구분되는 전도성 반도체층; 상기 전도성 반도체층 상에 라드 형상을 갖는 복수의 발광구조물; 상기 복수의 발광구조물 상에 전극층; 상기 전극층과 전기적으로 연결된 제 2 전극; 및 상기 전도성 반도체층과 전기적으로 연결된 제 1 전극을 포함하고, 상기 전도성 반도체층의 각각의 발광영역에 속하는 발광구조물은 동작시 서로 다른 전계가 형성되어, 서로 다른 파장대역의 빛을 발광하는 것을 특징으로 한다.
또한, 실시예에 따른 조명시스템은 상기 발광소자를 구비하는 발광모듈을 포함할 수 있다.
실시예에 의하면 광도를 증대시킬 수 있는 최적의 구조를 구비한 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
실시예의 발광구조물은 적층형 나노 라드 구조물에 비하여 활성층이 반도체층과 맞닿는 표면적이 비약적으로 증가하여 발광효율이 크게 향상될 수 있고, 빛이 공진할 수 있는 면적 또한 증가되는 장점이 있다.
또한, 발광구조물 또한 기판에서 성장될 때 기판 계면과 맞닿는 면적이 작아 TDD가 발생할 확률이 줄어들어 활성층의 퀄리티 개선에도 유리한 효과가 있다.
그리고, 실시예의 발광구조물은 활성층에서 발광구조물의 측면으로 빛이 방출될 때, 발광구조물 측면에 각진 형상으로 인하여 광추출 효율도 향상될 수 있다.
특히 실시예는 단일 발광소자에서 별도의 구성 추가 없이 다양한 파장대역의 빛을 발광할 수 있도록 하여, 높은 연색성의 백색광을 발광할 수 있다.
또한, 실시예에 의하면 복수의 양자우물 전반에 걸쳐 홀과 전자 결합시켜 발광효율이 향상된 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한, 실시예에 의하면 활성층의 품질을 향상시켜 동작전압을 감소시키고 신뢰성 및 재현성을 향상시킬 수 있는 장점이 있다.
그리고, 실시예에 의하면 양자구속효과의 개선, 발광효율의 개선 및 소자신뢰성 개선할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
도 1은 실시예에 따른 발광소자의 평면도다.
도 2는 도 1 의 A-A 측 단면도다.
도 3은 다른 실시예에 따른 발광소자의 평면도다.
도 4는 실시예에 따른 발광구조물의 하부의 사시도다.
도 5는 다른 실시예에 따른 발광구조물의 하부의 사시도다.
도 6은 실시예에 따른 발광구조물의 상부의 사시도다.
도 7은 실시예에 따른 발광구조물의 상부의 단면도다.
도 8은 다른 실시예에 따른 발광구조물의 상부의 사시도다.
도 9는 다른 실시예에 따른 발광구조물의 상부의 단면도이다.
도 10은 제 1 실시예에 따른 제 1 발광영역의 측 단면도다.
도 11은 제 1 실시예에 따른 제 2 발광영역 측 단면도다.
도 12는 제 2 실시예에 따른 제 1 발광영역에 측 단면도다.
도 13은 제 2 실시예에 따른 제 2 발광영역에 측 단면도다.
도 14는 제 3 발광영역에 측 단면도이다.
도 15는 제 3 실시예에 따른 제 1 발광영역에 측 단면도다.
도 16은 제 3 실시예에 따른 제 2 발광영역에 측 단면도다.
도 17은 제 3 실시예에 따른 제 3 발광영역에 측 단면도이다.
도 18는 제 4 실시예에 따른 제 1 발광영역에 측 단면도다.
도 19는 제 4 실시예에 따른 제 2 발광영역에 측 단면도다.
도 20은 제 4 실시예에 따른 제 3 발광영역에 측 단면도이다.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
백색 발광소자는 청색 발광소자에 황색 형광체를 더하여 구현할 수 있다. 그러나 두가지 색의 빛만을 섞어 백색 광을 구현하는 경우, 일부 파장대역의 빛이 포함되지 않아 저열한 연색성을 갖는 문제가 있다. 이러한 문제점을 극복하기 위하여, 적색 형광체를 더 추가하는 방안 등이 제안되었으나 적색 형광체 값이 비싸고 형광체의 파장변환에 따른 효율저하가 수반되는 문제가 있다.
실시예는 형광체와 같은 별도의 구성 추가 없이 발광소자의 구조를 변형하여 단일 발광소자에서 원하는 파장대역의 빛을 발광할 수 있고, 나아가 단일 발광소자에서 다양한 파장대역의 빛을 발광할 수 있도록 하여 고효율로 높은 연색성의 백색 빛을 발광할 수 있는 발광소자를 제안하고자 한다.
도 1은 실시예에 따른 발광소자의 평면도이고, 도 2는 도 1 의 A-A 측 단면도이고, 도 3은 다른 실시예에 따른 발광소자의 평면도이고, 도 4는 실시예에 따른 발광구조물의 하부의 사시도이고, 도 5는 다른 실시예에 따른 발광구조물의 하부의 사시도이고, 도 6은 실시예에 따른 발광구조물의 상부의 사시도이고, 도 7은 실시예에 따른 발광구조물의 상부의 단면도이고, 도 8은 다른 실시예에 따른 발광구조물의 상부의 사시도이고, 도 9는 다른 실시예에 따른 발광구조물의 상부의 단면도이다.
이하, 도 1 내지 도 9를 참조하여 실시예에 따른 발광소자(100)를 설명한다.
도 1 내지 도 2를 참조하면, 실시예에 따른 발광소자(100)는 기판(101), 기판(101) 상에 전도성 반도체층(110), 전도성 반도체층(110) 상에 복수의 발광구조물(150), 발광구조물(150) 상에 전극층(170), 전극층(170) 상에 제 2 전극(183A, 183B), 전도성 반도체층(110) 상에 제 1 전극(181)을 포함할 수 있다. 그리고 발광구조물(150)은 제 1 도전형 반도체층(115), 제 1 도전형 반도체층(115) 상에 활성층(120), 활성층(120) 상에 제 2 도전형 반도체층(130)을 포함할 수 있다.
도 1을 보면, 실시예에 따른 발광소자(100)는 탑뷰에서 적어도 2 이상의 발광영역으로 구분될 수 있다. 발광소자(100)의 발광영역을 구분하는 기준은 각 발광영역에서 발광하는 빛의 파장대역이 될 수 있다. 즉, 실시예에서 발광소자(100)는 탑뷰에서 볼 때 제 1 파장대역의 빛을 발광하는 제 1 발광영역(L1)과, 제 2 파장대역의 빛을 발광하는 제 2 발광영역(L2)으로 구분될 수 있다.
발광영역의 구분은 동일한 면적으로 규칙적이게 나뉠 수 있으며, 도 1에 도시된 바와 다르게, 랜덤한 면적으로 불규칙하게 나뉠 수도 있다.
각 발광영역은 동일한 구조의 발광구조물(150)을 포함할 수 있으며, 기판(101)과 전도성 반도체층(110)과 제 1 전극(181)을 공유할 수 있으나, 이에 한정하지는 않는다. 도 1과 도 2에는 제 1 발광영역(L1)과 제 2 발광영역(L2)에 각각 제 2 전극(183A, 183B)이 배치된 것으로 도시하였으나, 제 1 전극(181)과 마찬가지로 제 1 발광영역(L1)과 제 2 발광영역(L2)이 제 2 전극(183A, 183B)도 공유할 수 있는 구조 또한 가능하다.
도 3과 같이, 다른 실시예에 따른 발광소자(100)는 탑뷰에서 4 영역으로 구분될 수 있으며, 각 영역은 각기 다른 파장대역의 빛을 발광할 수 있다. 즉 다른 실시예에서 발광소자(100)는 탑뷰에서 볼 때 제 1 파장대역의 빛을 발광하는 제 1 발광영역(L1)과, 제 2 파장대역의 빛을 발광하는 제 2 발광영역(L2)과, 제 3 파장대역의 빛을 발광하는 제 3 발광영역(L3)과, 제 4 파장대역의 빛을 발광하는 제 4 발광영역으로 구분될 수 있다. 다른 실시예에서도 각 발광영역은 동일한 구조의 발광구조물(150)을 포함할 수 있으며, 기판(101)과 전도성 반도체층(110)과 제 1 전극(181)을 공유할 수 있다. 도 3에는 각각의 발광영역에는 각각 제 2 전극(183A, 183B, 183C, 183D)이 배치된 것으로 도시하였으나, 각각의 발광영역들은 제 1 전극(181)과 마찬가지로 제 2 전극(183A, 183B, 183C, 183D)도 공유할 수 있다.
이하에서는 제 1 발광영역(L1)과 제 2 발광영역(L2)이 각각 다른 파장대역의 빛을 발광할 수 있는 원리를 발광소자(100)의 각 구성에 대한 설명과 더불어 설명하기로 한다.
실시예의 발광소자(100)는 먼저, 기판(101)을 포함할 수 있다.
기판(101)은 전도성 또는 절연성 재질의 기판일 수 있으며, 또는 투광성 또는 비 투광성 재질의 기판일 수 있다. 기판(101)은 사파이어 기판(Al2O3), GaN, SiC, ZnO, Si, GaP, InP, Ga2O3, GaAs와 같은 군에서 선택될 수 있다. 기판(101)은 발광소자(100)를 지지하기 위한 층으로 사용될 수 있다.
기판(101) 상에는 II족 내지 VI족 원소의 화합물 반도체층이 배치될 수 있다. 기판(101)과 전도성 반도체층(110) 사이에는 질화물 버퍼층(미도시), 및 언도프드(undoped) 반도체층(미도시) 중 적어도 한 층이 배치될 수 있다. 버퍼층 및 언도프드 반도체층은 III족-V족 원소의 화합물 반도체로 배치될 수 있으며, 버퍼층은 기판(101)과의 격자 상수의 차이를 줄여주게 되며, 언도프드 반도체층은 도핑하지 않는 GaN계 반도체로 배치될 수 있다.
전도성 반도체층(110)은 II족 내지 VI족 원소의 화합물 반도체로 배치될 수 있으며, 예컨대 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 적어도 하나로 형성될 수 있다. 전도성 반도체층(110)은 라드(rod) 타입의 제 1 도전형 반도체층(115)을 형성하기 위한 층으로서, III족-V족 원소의 화합물 반도체 예컨대, GaN으로 형성될 수 있다. 전도성 반도체층(110)은 단층 또는 복수의 층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
그리고 전도성 반도체층(110)은 제 1 도전형 도펀트를 포함할 수 있으며, 제 1 도전형 도펀트는 n형 도펀트를 포함하며, 예컨대 Si, Ge, Sn, Se, Te와 같은 도펀트를 포함한다. 전도성 반도체층(110)은 제 1 도전형의 반도체층으로서, 발광구조물(150)에 포함될 수 있으며, 이에 대해 한정하지는 않는다.
전도성 반도체층(110) 상에는 마스크층(103)이 배치될 수 있으며, 마스크층(103)은 복수의 홀(105)을 갖는다. 홀(105)에는 라드 타입의 발광구조물(150)이 배치된다. 마스크층(103)은 절연 재질로 형성될 수 있으며, 예컨대 SiO2, SiOx, SiOxNy, Si3N4, Al2O3 중 적어도 하나로 형성될 수 있다. 홀(105)은 복수개가 서로 이격될 수 있으며, 예컨대 일정한 간격, 불규칙한 간격, 또는 랜덤한 간격으로 배치될 수 있다. 홀(105)은 탑뷰 형상이 원 형상, 타원 형상 또는 다각형 형상으로 형성될 수 있으며, 이러한 홀(105)의 형상에 따라서 제 1 도전형 반도체층(115)의 라드 형상이 결정될 수 있다.
이러한 홀(105) 상에는 발광구조물(150)의 제 1 도전형 반도체층(115)이 배치된다.
발광구조물(150)은 제 1 도전형 반도체층(115), 활성층(120) 및 제 2 도전형 반도체층(130)을 포함한다. 발광구조물(150)은 전도성 반도체층(110)을 더 포함할 수 있으며, 이에 대해 한정하지는 않는다.
제 1 도전형 반도체층(115)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함한다. 제 1 도전형 반도체층(115)은 제 1 도전형 도펀트가 도핑된 III족-V족 원소의 화합물 반도체, 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중에서 적어도 하나 이상 포함할 수 있다. 예를 들어, 제 1 도전형 반도체층(115)은 수직한 라드 형상을 갖는 GaN을 포함할 수 있다. GaN은 마스크층(103)의 홀(105) 형상 및 성장 조건에 따라 수직 방향(0001 방향), Facet 방향, 또는 수평 방향 중에서 선택적으로 성장될 수 있으며, 예컨대 실시예에서는 수직한 라드 형상으로 형성될 수 있다.
실시예에서, 제 1 도전형 반도체층(115)은 라드 형상이 도 4 및 도 5와 같이, 다각 기둥 형상일 수 있으며, 예컨대 도 4와 같이 육각 기둥 형상일 수 있고 도 5와 같이 12각 기둥 형상일 수 있다. 이때 제 1 도전형 반도체층(115)의 하부는 전도성 반도체층(110)으로부터 수직방향으로 연장될 수 있다. 그리고 제 1 도전형 반도체층(115)의 상부는 전도성 반도체층(110)으로부터 소정의 각을 이루며 상측으로 연장될 수 있다. 예를 들어, 제 1 도전형 반도체층(115)의 하부는 육각 기둥 형상일 수 있고, 제 1 도전형 반도체층(115)의 상부는 하부에서 연장된 육각 뿔 형상일 수 있다.
제 1 도전형 반도체층(115)은 제 1 도전형 도펀트를 포함하며, 에컨대 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다. 제 1 도전형 반도체층(115)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
제 1 도전형 반도체층(115)의 라드 형상은, 직경이 5nm <직경 < 5㎛ 범위로 형성될 수 있다. 자세하게, 제 1 도전형 반도체층(115)의 라드 형상은, 직경이 10nm <직경 < 2㎛ 범위로 형성될 수 있다. 더 자세하게, 제 1 도전형 반도체층(115)의 라드 형상은, 직경이 50nm <직경 < 1㎛ 범위로 형성될 수 있다.
라드 직경이 2㎛ 이상이 되면 활성층(120)의 면적이 라드 직경에 비례하여 증가되지 않게 되고 활성층(120)이나 제 2 도전형 반도체층(130)의 성장 레이트(rate)가 낮아질 수 있고 양자 효율의 개선도 미미한 문제가 있다. 또한 라드 직경을 5nm 이하로 할 경우 마스크층(103)의 홀(105)을 제조하거나 홀(105)을 통해 성장하는 데 어려움이 있다.
제 1 도전형 반도체층(115)의 라드 형상은, 높이가 10nm < 높이 < 5㎛ 범위 예컨대, 1㎛ < 높이 < 3㎛ 범위로 제공될 수 있다. 라드의 높이가 5㎛이상인 경우, 캐리어의 주입 거리 및 캐리어의 이동도가 저하되며, 또한 라드 성장에 어려움이 있다. 라드의 높이가 10nm이하인 경우 캐리어의 주입 거리, 캐리어의 이동도 및 발광 면적이 수평 LED 칩과 비교할 때 개선되지 않는 문제가 있다.
실시예에 따른 라드 형상의 제 1 도전형 반도체층(115)은 복수의 측면 및 상면을 갖고 활성층(120)과 대면하게 되므로, 활성층(120)의 면적을 증대시켜 줄 수 있다. 또한, 전도성 반도체층(110) 상에 라드 형상의 제 1 도전형 반도체층(115)이 배치되므로, 기판(101)으로부터 전달되는 결함 밀도를 줄여줄 수 있다. 이에 따라 활성층(120)의 결정 품질이 개선될 수 있다.
이러한 제 1 도전형 반도체층(115)과 활성층(120) 사이에는 반사층(미도시)가 더 배치될 수 있다. 이러한 반사층은 서로 다른 굴절률을 갖는 복수의 반도체층(예컨대, 두개의 층)인 분산형 브래그 반사(Distributed Bragg Reflector: DBR)층을 포함할 수 있다. DBR은 서로 다른 굴절률을 가지고 있어, 활성층(120)에서 발광하여 제 1 도전형 반도체층(115)을 향하는 빛을 반사할 수 있다. 실시예에서 반사층을 이루는 반도체층들은 모두 제 1 도전형 도펀트를 포함할 수 있다. 제 1 도전형 도펀트는 n형 도펀트일 수 있으며, 예컨대 Si, Ge, Sn, Se, Te와 같은 도펀트일 수 있다. 이러한 반사층은 제 1 도전형 반도체층(115)에서 발생된 캐리어를 활성층(120)으로 통과시킬 수 있으며, 반사층 자체에서 발생된 캐리어를 활성층(120)으로 주입할 수 있어, 발광효율을 향상시킬 수 있다. 이러한 반사층은 활성층(120)에서 제 1 도전형 반도체층(115)을 향해 발광된 빛을 반사시켜 광 효율을 향상시킬 수 있다. 특히 반사층은 400nm 이하의 파장대역의 빛을 발광하는 발광소자(100)에서 제 1 도전형 반도체층(115)의 광 흡수율을 급격하게 감소시킬 수 있다.
한편, 제 1 도전형 반도체층(115) 상에는 활성층(120)이 배치될 수 있다. 구체적으로 활성층(120)은 제 1 도전형 반도체층(115)을 감싸도록 배치될 수 있다. 활성층(120)은 제 1 반도체층의 복수의 측면 및 복수의 상면에 배치될 수 있다. 활성층(120)은 복수의 측면 및 복수의 상면을 포함하며, 복수의 측면 및 복수의 상면은 제 1 도전형 반도체층(115)의 복수의 측면 및 복수의 상면에 각각 대면할 수 있다.
활성층(120)은 단일 양자 우물, 다중 양자 우물(MQW), 양자 선(quantum wire) 구조 또는 양자 점(quantum dot) 구조를 선택적으로 포함한다. 활성층(120)은 우물층과 장벽층의 주기를 포함한다. 우물층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함하며, 장벽층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함할 수 있다. 우물층/장벽층의 주기는 예컨대, InGaN/GaN, InGaN/AlGaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/InAlGaN, AlGaAs/GaAs, InGaAs/GaAs, InGaP/GaP, AlInGaP/InGaP, InP/GaAs의 페어로 구현될 수 있다. 우물층/장벽층의 주기는 2주기 이상으로 형성될 수 있으며, 장벽층은 우물층의 밴드 갭보다 넓은 밴드 갭을 가지는 반도체 물질로 형성될 수 있다. 활성층(120)은 가시 광선부터 자외선까지의 파장 범위 내에서 선택적으로 발광할 수 있으며, 예컨대 가시광선의 피크 파장을 갖는 광 또는 청색 피크 파장의 광을 발광할 수 있으며, 이에 대해 한정하지는 않는다.
제 2 도전형 반도체층(130)은 활성층(120)을 감싸게 배치될 수 있다. 제 2 도전형 반도체층(130)은 복수의 측면 및 상면을 포함하며, 복수의 측면 및 상면은 활성층(120)의 측면 및 상면과 대면할 수 있다.
제 2 도전형 반도체층(130)은 제 2 도전형 도펀트가 도핑된 반도체 예컨대, InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함한다. 제 2 도전형 반도체층(130)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP와 같은 화합물 반도체 중 적어도 하나로 이루어질 수 있다. 활성층(120)이 자외선 파장대역의 빛을 발광하는 경우, 제 2 도전형 반도체층(130)은 AlGaN을 포함하도록 구성될 수 있다. 그리고 제 2 도전형 반도체층(130)은 p형 반도체층일 수 있고, 제 2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba을 포함할 수 있다.
이하 도 2와 도 4 내지 도 8을 참조하여, 발광구조물(150)을 형상을 중심으로 설명한다.
발광구조물(150)의 외형은 라드 형상을 가진다. 구체적으로 발광구조물(150)은 측 단면에서 볼 때, 전도성 반도체층(110)의 상면과 각기 다른 각을 이루며 연장되는 적어도 2 이상의 외면을 가질 수 있다.
예를 들어, 발광구조물(150)은 전도성 반도체층(110)의 상면에서 수직방향으로 연장된 제 1 외면(도 7의 161)과, 전도성 반도체층(110)의 상면에서 소정의 각을 이루며 연장되는 제 2 외면(도 7의 162)를 포함할 수 있다.
도 2를 보면, 발광구조물(150)의 하부(150A)는 수직방향으로 연장된 라드 형상일 수 있다. 예를 들어, 실시예의 발광구조물(150)의 하부(150A)는 도 4와 같이 육각 기둥 형상을 가질 수 있다.
다른 실시예에서 발광구조물(150)의 하부(150A)는 도 5와 같이 12각 기둥 형상을 가질 수 있다.
따라서, 각 실시예에서의 발광구조물(150)의 하부(150A)의 외면은 전도성 반도체층(110) 상면과 수직을 이룰 수 있다.
이러한 발광구조물(150)의 상부(150B)는 전도성 반도체층(110)의 상면에서 소정의 각을 이루며 틸트되어 상측으로 연장될 수 있다. 예를 들어, 실시예의 발광구조물(150)의 상부(150B)는 도 6 및 도 7과 같이 육각 뿔 형상을 가질 수 있다. 따라서 발광구조물(150)의 상부(150B)의 외면은 전도성 반도체층(110)의 상면과 소정의 각을 이룰 수 있다.
따라서, 실시예의 발광구조물(150)은 도 7과 같이 하부(150A)에서 제 1 외면(161)을 포함하고, 상부(150B)에서 제 2 외면(162)을 포함할 수 있다.
이와 같이, 전도성 반도체층(110) 상면에서 연장방향을 달리하여 성장된 각각의 외면(161, 162)에 포함되는 활성층(120)은 서로 두께가 다를 수 있다. 즉, 제 1 외면(161)에 포함되는 활성층(120)(에컨데, 발광구조물 하부(150A)에 포함되는 활성층(120))과 제 2 외면(162)에 포함되는 활성층(120)(예컨데, 발광구조물 상부(150B)에 포함되는 활성층(120))은 두께를 달리할 수 있다. 제 1 도전형 반도체층(115)은 연장방향을 달리하여 성장함에 따라서, 제 1 외면(161)의 제 1 도전형 반도체층(115)의 외측 결정면과 제 2 외면(162)의 제 1 도전형 반도체층의 외측 결정면은 서로 다른 방향의 결정면을 갖기 때문에, 서로 다른 결정면에서 성장하는 활성층(120)의 성장속도가 달라짐으로써 각 외면에 따라서 활성층(120)의 두께가 달라질 수 있다.
그리고 실시예에서 제 1 외면(161)에 포함되는 활성층(120)과 제 2 외면(162)에 포함되는 활성층(120)은 In의 조성이 서로 다를 수 있다. 전술하였듯이, 제 1 외면(161)의 제 1 반도체층의 외면과 제 2 외면(162)의 제 1 반도체층의 외면은 서로 다른 결정면을 갖기 때문에, 서로 다른 결정면에서 성장하는 활성층(120)의 성장속도가 달라짐으로써, 각 외면에 포함되는 활성층(120)은 서로 다른 In 조성을 가질 수 있다.
따라서 제 1 외면(161)의 활성층(120)과 제 2 외면(162)의 활성층(120)의 In 조성이 서로 다르기 때문에 발광구조물(150)의 제 1 외면(161)과 제 2 외면(162)은 다른 파장의 광을 발생할 수 있다. 예를 들어 발광구조물(150)의 제 1 외면(161)은 In 조성이 낮아 청색광을 발광할 수 있다. 그리고 발광구조물(150)의 제 2 외면(162)은 In 조성이 높아 녹색, 황색 또는 적색 파장대역의 광을 발광할 수 있다.
다른 실시예에서 발광구조물(150)의 상부(150B)는 도 8 및 도 9과 같이 꼭지점 부근이 수평방향으로 잘려나간 육각 뿔 형상을 가질 수 있다. 따라서 발광구조물(150)의 상부(150B)의 외면은 전도성 반도체층(110)의 상면과 소정의 각을 이루는 제 2 외면(162)과 전도성 반도체층(110)과 평행한 제 3 외면(163)을 더 포함할 수 있다.
전술한 바와 같이 다른 실시예에서도, 제 1 외면(161)에 포함되는 활성층(120)과 제 2 외면(162)에 포함되는 활성층(120)과 제 3 외면(163)에 포함되는 활성층(120)은 In의 조성이 서로 다를 수 있다. 전술하였듯이, 제 1 외면(161)의 제 1 도전형 반도체층(115B)과 제 2 외면(162)의 제 1 도전형 반도체층(115B)과 제 3 외면(163)의 제 1 도전형 반도체층(115B)은 서로 다른 결정면을 갖기 때문에, 서로 다른 결정면에서 성장하는 활성층(120)의 성장속도가 달라짐으로써, 각 외면에 포함되는 활성층(120)은 서로 다른 In 조성을 가질 수 있다.
따라서 제 1 외면(161), 제 2 외면(162) 및 제 3 외면(163)은 In 조성이 서로 다르기 때문에 각기 다른 파장대역으로 발광할 수 있다. 예를 들어 발광구조물(150)의 제 1 외면(161)의 활성층(120)은 In 조성이 낮아 청색광을 발광할 수 있다. 그리고 발광구조물(150)의 제 3 외면(163)의 활성층(120)은 In 조성이 높아 적색광을 발광할 수 있다. 마지막으로 제 3 외면(163)의 활성층(120)은 제 1 외면(161)과 제 2 외면(162)의 활성층(120)의 중간 In 조성을 가져 녹색 또는 황색광을 발광할 수 있다.
발광구조물(150)의 각각의 외면은 다른 파장대역의 빛을 발광하기 때문에 발광구조물(150)은 인가되는 전압에 따라서 발광하는 외면이 선택되어 각기 다른 파장대역의 빛을 발광할 수 있다.
따라서 실시예는 발광소자(100)의 발광영역을 구분하여 각기 다른 전압을 인가함으로써, 단일 발광소자(100)에서 여러 파장대역의 빛을 발광할 수 있다. 이러한 실시예는 별도의 파장변환 과정을 거치지 않으므로 높은 광 효율을 얻을 수 있으며 또한 여러 파장대역의 빛을 단일 발광소자(100)에서 구현 가능하여 높은 연색성을 갖는 백색광을 구현할 수 있다.
발광소자(100)에서 각 발광영역별로 다른 전압을 인가하는 방법으로는 각 발광영역에 배치된 제 2 전극(183A, 183B)에 인가하는 전압을 달리할 수 있고, 각 영역에 배치된 제 2 전극(183A, 183B)의 크기 등을 달리할 수 있으며, 전극층(170)의 구조, 재질 등을 달리할 수 있다.
도 2와 같이, 전극층(170)은 라드 형상의 발광구조물(150) 상에 배치될 수 있다. 전극층(170)은 복수의 라드 형상의 발광구조물(150)을 커버할 수 있다. 구체적으로 전극층(170)은 제 2 도전형 반도체층(130)의 상면에 배치될 수 있다. 전극층(170)은 제 2 도전형 반도체층(130)의 외 형상을 따라서 형성될 수 있으나, 이에 한정하지 않는다.
그리고 전극층(170)은 발광구조물(150) 사이의 영역에 배치된 마스크층(103) 상에 배치될 수 있다. 이를 통해 전극층(170)은 복수의 발광구조물(150)을 전기적으로 연결할 수 있다. 다만, 각 발광영역 별로 개별적으로 전극층(170)이 배치되어, 서로 다른 발광영역에 배치된 발광구조물(150)은 전극층(170)에 의해 전기적으로 연결되지 않을 수 있다.
실시예에서, 전극층(170)은 투광성 물질 또는 금속 물질 중에서 선택될 수 있으며, 예컨대 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 중 적어도 하나를 포함할 수 있으며, 이러한 재료로 한정하지는 않는다. 전극층(170)은 광을 투과하는 물질이 아닌, 광을 반사하는 금속으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
한편, 복수의 발광구조물(150) 사이의 영역에는 절연층(160)이 배치될 수 있다. 절연층(160)은 복수의 발광구조물(150) 사이에 배치되고 전극층(170) 상에 배치될수 있다. 절연층(160)은 전극층(170)의 둘레에 접촉될 수 있다. 실시예에서, 절연층(160)은 SiO2, SiOx, SiOxNy, Si3N4, Al2O3 중 적어도 하나를 포함할 수 있다.
제 1 전극(181)은 전도성 반도체층(110) 및 제 1 도전형 반도체층(115) 중 적어도 하나와 전기적으로 연결되거나 접촉될 수 있다. 제 1 전극(181)은 예컨대 전도성 반도체층(110)의 접촉부(112) 상에 배치될 수 있다. 전도성 반도체층(110)의 접촉부(112)는 다른 영역보다 돌출될 수 있으며, 이에 대해 한정하지는 않는다. 다른 예로서, 접촉부(112)는 홈으로 구성될 수 있다.
제 1 전극(181)은 전극패드를 포함하며, 소정의 패턴으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 제 1 전극(181)은 전류 확산을 위해 암(arm) 구조로 분기될 수 있다. 제 1 전극(181)은 금속 예컨대, Ti, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au 중에서 단일 금속 또는 합금을 포함하며, 단층 또는 다층으로 형성될 수 있다.
제 1 전극(181)은 도 2에 도시된 바와 같이 각 발광영역이 모두 공유할 수 있도록 배치될 수 있으나, 이에 한정하지는 않는다.
제 2 전극(183A, 183B)은 전극층(170) 및 제 2 도전형 반도체층(130) 중 적어도 하나와 전기적으로 연결되거나 접촉될 수 있다. 제 2 전극(183A, 183B)은 전극층(170)의 일측 위에 배치될 수 있다. 제 2 전극(183A, 183B)은 적어도 1 이상의 전극패드를 포함하며, 소정의 패턴으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 제 2 전극(183A, 183B)은 전류 공급을 위해 암(arm) 구조로 분기될 수 있다. 제 2 전극(183A, 183B)은 금속 예컨대, Ti, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au 중에서 단일 금속 또는 합금을 포함하며, 단층 또는 다층으로 형성될 수 있다.
제 2 전극(183A, 183B)은 도 2에 도시된 바와 같이 각 발광영역 별로 배치될 수 있으나, 이에 한정하지 않는다. 도 2에 도시된 바와 다르게, 제 2 전극(183A, 183B) 또한 제 1 전극(181)과 마찬가지로 복수의 발광영역들이 하나의 제 2 전극(183A, 183B)을 공유할 수도 있다.
라드 형상의 제 1 도전형 반도체층(115)/반사층/활성층(120)/제 2 도전형 반도체층(130)을 포함하는 발광구조물(150)에 의해 발광 면적 및 발광효율이 향상될 수 있다. 그리고 실시예의 라드 형상의 발광구조물(150)은 반사층으로 제 1 도전형 반도체층(115)의 광 흡수를 막아 광 효율을 향상시킬 수 있다. 또한 기판(101)으로부터 전파되는 결함 밀도를 차단할 수 있어, 활성층(120)의 결정 품질이 저하되는 것을 방지할 수 있으며 내부 양자 효율도 개선시켜 줄 수 있다. 또한 발광구조물(150)의 측면 및 상면을 통해 광이 방출될 때, 발광구조물(150)의 각진 형상으로 인하여 광 추출 효율도 향상될 수 있다.
다른 실시예로서, 발광구조물(150)은 제 1 도전형 반도체층(115)이 p형 반도체층이고, 제 2 도전형 반도체층(130)이 n형 반도체층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
전술했듯이, 발광구조물(150)은 적어도 2 이상의 외면을 가져, 발광소자(100)의 발광영역을 구분하여 각기 다른 전압을 인가함으로써, 단일 발광소자(100)에서 여러 파장대역의 빛을 발광할 수 있다.
이하에서는 전극층(170) 또는 제 2 전극(183A, 183B)을 변형 다양한 실시예를 통해 각 발광영역별로 다른 전압을 인가하여 다양한 파장대역의 빛을 발광할 수 있는 발광소자(100)에 대해 설명한다. 이때, 여러 실시예에 대한 설명에서 유사한 특성을 갖는 구성에 대해서는 동일한 도면부호를 부여할 수 있다.
도 10은 제 1 실시예에 따른 제 1 발광영역(L1)의 측 단면도이고, 도 11은 제 1 실시예에 따른 제 2 발광영역(L2) 측 단면도다.
도 10 내지 도 11을 참조하면, 제 1 실시예의 전극층(171)은 발광영역 별로 구조를 달리하여 각 발광영역에서 상이한 파장대역의 빛을 발광하도록 할 수 있다. 제 1 실시예의 전극층(171)은 제 1 발광영역(L1)에 포함되는 제 1 전극층(171A)과, 제 2 발광영역(L2)에 포함되는 제 2 전극층(171B)을 포함할 수 있다.
도 10을 보면, 제 1 발광영역(L1)에 포함되는 제 1 전극층(171A)은 제 1 발광영역(L1)에 배치된 발광구조물(150) 상에 배치될 수 있다. 구체적으로, 제 1 전극층(171A)은 발광구조물(150)을 감싸도록 배치될 수 있다. 이때 제 1 전극층(171A)은 발광구조물(150)의 하부(150A)에서 상부(150B) 전체를 덮도록 배치될 수 있다. 그리고 제 1 전극층(171A)은 마스크층(103) 상에도 배치되어, 인접한 발광구조물(150) 사이를 전기적으로 연결할 수 있다.
또한, 제 1 전극층(171A)의 일측에는 제 2 전극(183A)이 배치될 수 있다.
제 1 전극층(171A)은 제 2 전극(183A, 183B)과 제 1 발광영역(L1)에 배치된 발광구조물(150)을 전기적으로 연결하여, 발광구조물(150)의 상부(150B)와 하부(150A)에 전압을 가할 수 있다.
도 11을 보면, 제 2 발광영역(L2)에 포함되는 제 2 전극층(171B)은 제 2 발광영역(L2)에 배치된 발광구조물(150) 상에 배치될 수 있다. 구체적으로, 제 2 전극층(171B)은 발광구조물(150)을 감싸도록 배치될 수 있다. 이때 제 2 전극층(171B)은 발광구조물(150)의 하부(150A)에만 배치될 수 있다. 그리고 제 2 전극층(171B)은 마스크층(103) 상에도 배치되어, 인접한 발광구조물(150) 사이를 전기적으로 연결할 수 있다.
또한 제 2 전극층(171B)의 일측에는 제 2 전극(183B)이 배치될 수 있다.
제 2 전극층(171B)은 제 2 전극(183B)과 제 2 발광영역(L2)에 배치된 발광구조물(150)을 전기적으로 연결하여, 발광구조물(150)의 하부(150A)에만 전압을 가할 수 있다.
제 1 전극층(171A)과 제 2 전극층(171B)의 구조적 차이로 인하여, 제 1 발광영역(L1)에 속하는 발광구조물(150)은 상부(150B)와 하부(150A)가 모두 발광할 수 있으며, 제 2 발광영역(L2)에 발광구조물(150)은 하부(150A) 측만 집중적으로 발광할 수 있다.
따라서, 제 1 발광영역(L1)과 제 2 발광영역(L2)을 다른 파장대역의 빛을 발광할 수 있다.
이러한 제 1 실시예의 전극층(171)은 별도의 구성추가 없이 전극층(171)의 구조 변경을 통해 각 발광영역별로 다른 전계를 가하여 다양한 파장대역의 빛을 발광할 수 있다. 이를 통해, 제 1 실시예의 발광소자(100)는 고효율로 높은 연색성을 갖는 백색광을 발광할 수 있는 장점이 있다.
도 12는 제 2 실시예에 따른 제 1 발광영역(L1)에 측 단면도이고, 도 13은 제 2 실시예에 따른 제 2 발광영역(L2)에 측 단면도이고, 도 14는 제 3 발광영역(L3)에 측 단면도이다.
도 12 내지 도 14을 참조하면, 제 2 실시예의 전극층(172)은 발광영역 별로 구조를 달리하여 각 발광영역에서 상이한 파장대역의 빛을 발광하도록 할 수 있다. 제 2 실시예의 전극층(172)은 제 1 발광영역(L1)에 포함되는 제 1 전극층(172A)과, 제 2 발광영역(L2)에 포함되는 제 2 전극층(172B)과, 제 3 발광영역(L3)에 포함되는 제 3 전극층(172C)을 포함할 수 있다. 그리고 각각의 전극층(172)들은 제 2 전극(183A, 183B, 183C)에 전기적으로 연결될 수 있다.
도 12와 같이, 제 1 전극층(172A)은 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 1 전극층(172A)은 배치 위치에 따라서 다른 두께를 가질 수 있다. 예를 들어, 실시예의 제 1 전극층(172A)은 발광구조물(150)의 상부(150B)와 하부(150A)의 분기점에서 가장 두껍게 형성되고, 분기점에서 멀어질수록 두께가 얇아질 수 있다.
이러한 제 1 전극층(172A)은 발광구조물(150) 상하부(150A)로 골고루 전압을 가하여, 제 1 발광영역(L1)에 속하는 발광구조물(150)이 제 1 파장대역으로 발광하도록 할 수 있다.
도 13과 같이, 제 2 전극층(172B)은 발광구조물(150)의 상부(150B)와, 하부(150A)의 일부를 감싸도록 배치될 수 있다. 구체적으로 제 2 전극층(172B)은 상부(150B)와 하부(150A)를 구분하는 분기점에서 하부(150A)로 갈수록 점차 얇아져서 발광구조물(150)의 최하부에는 형성되지 않을 수 있다. 그리고 제 2 전극층(172B)은 배치 위치에 따라서 다른 두께를 가질 수 있다. 예를 들어, 실시예의 제 2 전극층(172B)은 발광구조물(150)의 상부(150B)와 하부(150A)의 분기점에서 가장 두껍게 형성되고, 분기점에서 멀어질수록 두께가 얇아질 수 있다.
이러한 제 2 전극층(172B)은 발광구조물(150)의 상부(150B)와 하부(150A)의 일부에만 전압을 가하여, 제 2 발광영역(L2)에 속하는 발광구조물(150)이 제 2 파장대역으로 발광하도록 할 수 있다.
도 14와 같이, 제 3 전극층(172C)은 발광구조물(150)의 상부(150B)를 감싸도록 배치될 수 있다.
이러한 제 3 전극층(172C)은 발광구조물(150)의 상부(150B)에만 전압을 가하여, 제 3 발광영역(L3)에 속하는 발광구조물(150)이 제 3 파장대역으로 발광하도록 할 수 있다.
이러한 제 2 실시예의 전극층(172)은 별도의 구성추가 없이 전극층(172)의 구조 변경을 통해 각 발광영역별로 다른 전계를 가하여 다양한 파장대역의 빛을 발광할 수 있다. 이를 통해, 제 2 실시예의 발광소자(100)는 고효율로 높은 연색성을 갖는 백색광을 발광할 수 있는 장점이 있다.
도 15는 제 3 실시예에 따른 제 1 발광영역(L1)에 측 단면도이고, 도 16은 제 3 실시예에 따른 제 2 발광영역(L2)에 측 단면도이고, 도 17은 제 3 실시예에 따른 제 3 발광영역(L3)에 측 단면도이다.
도 15 내지 도 17을 참조하면, 제 3 실시예의 전극층(173)은 발광영역 별로 구조를 달리하여 각 발광영역에서 상이한 파장대역의 빛을 발광하도록 할 수 있다. 제 3 실시예의 전극층(173)은 제 1 발광영역(L1)에 포함되는 제 1 전극층(173A)과, 제 2 발광영역(L2)에 포함되는 제 2 전극층(173B)과, 제 3 발광영역(L3)에 포함되는 제 3 전극층(173C)을 포함할 수 있다. 그리고 각각의 전극층(173)들은 제 2 전극(183A, 183B, 183C)에 전기적으로 연결될 수 있다. 그리고 각각의 전극층(173)들은 각 발광영역에 속한 발광구조물(150)들을 감싸도록 배치될 수 있다.
도 15와 같이, 제 1 전극층(173A)은 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 1 전극층(173A)은 전기 전도도가 상대적으로 낮은 물질로 형성될 수 있다. 예를 들어, 제 1 전극층(173A)은 TiO2, Ga2O3, MgIn2O4, GaInO3, CdSb2O6, Zn2SnO4, ZnSnO3 중 적어도 하나 이상을 포함할 수 있다.
도 16과 같이, 제 2 전극층(173B)은 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 2 전극층(173B)은 전기 전도도가 제 1 전극층(173A)의 전기 전도도 보다 상대적으로 높은 물질로 형성될 수 있다. 예를 들어, 제 2 전극층(173B)은 SnO2, Zn2In2O5, Zn3In2O6, In4Sn3O2, CdIn2O4, CdSnO4, CdSnO3 중 적어도 하나 이상을 포함할 수 있다.
도 17과 같이, 제 3 전극층(173C)은 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 3 전극층(173C)은 전기 전도도가 제 2 전극층(173B)의 전기 전도도 보다 상대적으로 높은 물질로 형성될 수 있다. 예를 들어, 제 3 전극층(173C)은 ZnO, CdO, In2O3 중 적어도 하나 이상을 포함할 수 있다.
이러한 제 3 실시예의 전극층(173)은 각 발광영역별도 다른 재질의 전극층(173)을 배치하여, 제 2 전극(183A, 183B, 183C)이 각 전극층(173)에 동일한 전압을 가하여도, 발광구조물(150)은 각기 다른 강도의 전계를 갖게 된다. 따라서, 각 발광영역에 속한 발광구조물(150)들은 각기 다른 파장대역의 광을 발광할 수 있다.
예를 들어, 제 1 발광영역(L1)은 낮은 강도로 전계가 형성되어 적색광을 발광할 수 있다. 그리고 제 2 발광영역(L2)은 중간 강도로 전계가 형성되어 녹색 또는/및 황색광을 발광할 수 있다. 마지막으로 제 3 발광영역(L3)은 높은 강도로 전계가 형성되어 청색광을 발광할 수 있다.
이러한 제 3 실시예의 전극층(173)은 별도의 구성추가 없이 전극층(173)의 재질 변경을 통해 각 발광영역별로 다른 전계를 가하여 다양한 파장대역의 빛을 발광할 수 있다. 이를 통해, 제 3 실시예의 발광소자(100)는 고효율로 높은 연색성을 갖는 백색광을 발광할 수 있는 장점이 있다.
도 18는 제 4 실시예에 따른 제 1 발광영역(L1)에 측 단면도이고, 도 19는 제 4 실시예에 따른 제 2 발광영역(L2)에 측 단면도이고, 도 20은 제 4 실시예에 따른 제 3 발광영역(L3)에 측 단면도이다.
도 18 내지 도 20을 참조하면, 제 4 실시예의 전극층(174)은 발광영역 별로 구조를 달리하여 각 발광영역에서 상이한 파장대역의 빛을 발광하도록 할 수 있다. 제 4 실시예의 전극층(174)은 제 1 발광영역(L1)에 포함되는 제 1 전극층(174A)과, 제 2 발광영역(L2)에 포함되는 제 2 전극층(174B)과, 제 3 발광영역(L3)에 포함되는 제 3 전극층(174C)을 포함할 수 있다. 그리고 각각의 전극층(174)들은 제 2 전극(183A, 183B, 183C)에 전기적으로 연결될 수 있다. 그리고 각각의 전극층(174)들은 각 발광영역에 속한 발광구조물(150)들을 감싸도록 배치될 수 있다.
도 18과 같이, 제 1 전극층(174A)은 제 1 발광영역(L1)의 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 1 전극층(174A)은 상대적으로 두꺼운 두께를 가질 수 있다. 예를 들어, 실시예의 제 1 전극층(174A)의 두께는 100nm를 초과하도록 형성될 수 있다.
도 19와 같이, 제 2 전극층(174B)은 제 2 발광영역(L2)의 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 2 전극층(174B)은 제 1 전극층(174A)에 비해 얇은 두께를 가질 수 있다. 예를 들어, 실시예의 제 2 전극층(174B)의 두께는 20~100nm 사이로 형성될 수 있다.
도 20과 같이, 제 3 전극층(174C)은 제 3 발광영역(L3)의 발광구조물(150)의 상하부(150A)를 감싸도록 배치될 수 있다. 그리고 제 3 전극층(174C)은 제 2 전극층(174B)에 비해 얇은 두께를 가질 수 있다. 예를 들어, 실시예의 제 3 전극층(174C)의 두께는 20nm 미만으로 형성될 수 있다.
전극층(174)의 두께는 전극층(174)의 저항과 반비례하므로, 제 2 전극(183A, 183B)이 각 전극층(174)에 동일한 전압을 가하여도, 발광구조물(150)은 각기 다른 강도의 전계를 갖게 된다. 따라서, 각 발광영역에 속한 발광구조물(150)들은 각기 다른 파장대역의 광을 발광할 수 있다.
예를 들어, 제 1 발광영역(L1)은 청색광을 발광할 수 있다. 그리고 제 2 발광영역(L2)은 녹색 또는/및 황색광을 발광할 수 있다. 마지막으로 제 3 발광영역(L3)은 적색광을 발광할 수 있다.
이러한 제 4 실시예의 전극층(174)은 별도의 구성추가 없이 전극층(174)의 구조 변경을 통해 각 발광영역별로 다른 전계를 가하여 다양한 파장대역의 빛을 발광할 수 있다. 이를 통해, 제 4 실시예의 발광소자(100)는 고효율로 높은 연색성을 갖는 백색광을 발광할 수 있는 장점이 있다.
도 21은 도 2의 발광소자(100)를 갖는 발광소자(100) 패키지를 나타낸 도면이다.
도 21을 참조하면, 발광소자(100) 패키지(200)는 몸체(210)와, 몸체(210)에 적어도 일부가 배치된 제 1 리드전극(211) 및 제 2 리드전극(212)과, 몸체(210) 상에 제 1 리드전극(211) 및 제 2 리드전극(212)과 전기적으로 연결되는 발광소자(100)와, 몸체(210) 상에 발광소자(100)를 포위하는 몰딩부재(220)를 포함한다.
몸체(210)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있다. 몸체(210)는 위에서 볼 때 내부에 캐비티(cavity) 및 그 둘레에 경사면을 갖는 반사부(215)를 포함한다.
제 1 리드전극(211) 및 제 2 리드전극(212)은 서로 전기적으로 분리되며, 몸체(210) 내부를 관통하도록 형성될 수 있다. 즉, 제 1 리드전극(211) 및 제 2 리드전극(212)은 일부는 캐비티 내부에 배치되고, 다른 부분은 몸체(210)의 외부에 배치될 수 있다.
제 1 리드전극(211) 및 제 2 리드전극(212)은 발광소자(100)에 전원을 공급하고, 발광소자(100)에서 발생된 빛을 반사시켜 광 효율을 증가시킬 수 있으며, 발광소자(100)에서 발생된 열을 외부로 배출시키는 기능을 할 수도 있다.
발광소자(100)는 몸체(210) 상에 설치되거나 제 1 리드전극(211) 또는/및 제 2 리드전극(212) 상에 설치될 수 있다. 발광소자(100)에 연결된 와이어(216)는 제 1 리드전극(211) 및 제 2 리드전극(212)에 전기적으로 연결될 수 있으며, 이에 한정되지 않는다.
몰딩 부재(220)는 발광소자(100)를 포위하여 발광소자(100)를 보호할 수 있다. 또한, 몰딩부재(220)에는 형광체가 포함되고, 이러한 형광체에 의해 발광소자(100)에서 방출된 광의 파장이 변화될 수 있다.
실시예에 따른 발광소자(100) 또는 발광소자(100) 패키지는 라이트 유닛에 적용될 수 있다. 라이트 유닛은 복수의 발광소자(100) 또는 발광소자(100) 패키지가 어레이된 구조를 포함하며, 조명등, 신호등, 차량 전조등, 전광판 등이 포함될 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. 적어도 2 이상의 발광영역으로 구분되는 전도성 반도체층;
    상기 전도성 반도체층 상에 복수의 발광구조물;
    상기 복수의 발광구조물 상에 전극층;
    상기 전극층과 전기적으로 연결된 제 2 전극; 및
    상기 전도성 반도체층과 전기적으로 연결된 제 1 전극을 포함하고,
    상기 발광구조물은 라드 형상의 제 1 도전형 반도체층과, 상기 제 1 도전형 반도체층을 감싸는 활성층과, 상기 활성층을 감싸는 제 2 도전형 반도체층을 포함하고,
    상기 발광구조물은 상기 전도성 반도체층 상면을 기준으로 연장방향을 달리하는 적어도 2 이상의 외면을 갖는 발광소자.
  2. 제 1 항에 있어서,
    상기 발광구조물은 육각 기둥, 12각 기둥 또는 다각 기둥 형상의 하부를 포함하는 발광소자.
  3. 제 1 항에 있어서,
    상기 발광구조물은 육각 뿔, 12각 뿔 또는 다각 뿔 형상의 상부를 포함하는 발광소자.
  4. 제 1 항에 있어서,
    상기 발광구조물은 상기 전도성 반도체층의 상면과 수직한 방향으로 상측으로 연장되는 제 1 외면과, 상기 전도성 반도체층의 상면과 소정의 각을 이루며 상측으로 연장되는 제 2 외면을 포함하는 발광소자.
  5. 제 4 항에 있어서,
    상기 발광구조물은 상기 전도성 반도체층의 상면과 수평한 제 3 외면을 포함하는 발광소자.
  6. 제 1 항에 있어서,
    상기 전도성 반도체층은 제 1 파장대역의 빛을 발광하는 제 1 발광영역과, 제 2 파장대역의 빛을 발광하는 제 2 발광영역을 포함하는 발광소자.
  7. 제 6 항에 있어서,
    상기 전도성 반도체층은 상기 제 1 발광영역과 상기 제 2 발광영역은 상기 제 1 전극을 공유하는 발광소자.
  8. 제 6 항에 있어서,
    상기 전극층은 상기 제 1 발광영역의 발광구조물의 상부와 하부 상에 배치되는 제 1 전극층과, 상기 제 2 발광영역의 발광구조물의 하부 상에 배치되는 제 2 전극층을 포함하는 발광소자.
  9. 제 6 항에 있어서,
    상기 전도성 반도체층은 제 3 파장대역의 빛을 발광하는 제 3 발광영역을 더 포함하는 발광소자.
  10. 제 9 항에 있어서,
    상기 전극층은 상기 제 1 발광영역의 발광구조물 상에 배치되는 제 1 전극층과, 상기 제 2 발광영역 상에 배치되는 제 2 전극층과, 상기 제 3 발광영역 상에 배치되는 제 3 전극층을 포함하는 발광소자.
  11. 제 10 항에 있어서,
    상기 제 1 전극층은 상기 제 1 발광영역의 발광구조물 상부와 하부에 배치되고, 상기 제 2 전극층은 상기 제 2 발광영역의 발광구조물 상부와 하부의 일부에 배치되며, 상기 제 3 전극층은 상기 제 3 발광영역의 발광구조물 상부에 배치되는 발광소자.
  12. 제 10 항에 있어서,
    상기 제 1 전극층은 전기 전도도가 상기 제 2 전극층의 전기 전도도 보다 낮고, 상기 제 2 전극층은 전기 전도도가 상기 제 3 전극층의 전기 전도도 보다 낮은 발광소자.
  13. 제 10 항에 있어서,
    상기 제 1 전극층은 TiO2, Ga2O3, MgIn2O4, GaInO3, CdSb2O6, Zn2SnO4, ZnSnO3 중 하나로 형성되고,
    상기 제 2 전극층은 SnO2, Zn2In2O5, Zn3In2O6, In4Sn3O2, CdIn2O4, CdSnO4, CdSnO3 중 하나로 형성되며,
    상기 제 3 전극층은 ZnO, CdO, In2O3 중 하나로 형성되는 발광소자.
  14. 제 10 항에 있어서,
    상기 제 1 전극층은 두께가 상기 제 2 전극층의 두께 보다 두껍고, 상기 제 2 전극층은 두께가 상기 제 3 전극층의 두께 보다 두꺼운 발광소자.
  15. 제 14 항에 있어서,
    상기 제 1 전극층의 두께는 100nm를 초과하고,
    상기 제 2 전극층의 두께는 20~100nm 사이이며,
    상기 제 3 전극층의 두께는 20nm 미만인 발광소자.
  16. 적어도 2 이상의 발광영역으로 구분되는 전도성 반도체층;
    상기 전도성 반도체층 상에 라드 형상을 갖는 복수의 발광구조물;
    상기 복수의 발광구조물 상에 전극층;
    상기 전극층과 전기적으로 연결된 제 2 전극; 및
    상기 전도성 반도체층과 전기적으로 연결된 제 1 전극을 포함하고,
    상기 전도성 반도체층의 각각의 발광영역에 속하는 발광구조물은 동작시 서로 다른 전계가 형성되어, 서로 다른 파장대역의 빛을 발광하는 발광소자.
  17. 제 1 항 내지 제 16 항 중 어느 하나의 발광소자를 구비하는 발광모듈을 포함하는 조명시스템.
KR1020140160839A 2014-11-18 2014-11-18 발광소자 및 조명시스템 KR102237149B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140160839A KR102237149B1 (ko) 2014-11-18 2014-11-18 발광소자 및 조명시스템
PCT/KR2015/011473 WO2016080671A1 (ko) 2014-11-18 2015-10-29 발광소자 및 조명시스템
US15/528,058 US20170324004A1 (en) 2014-11-18 2015-10-29 Light-emitting device and lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140160839A KR102237149B1 (ko) 2014-11-18 2014-11-18 발광소자 및 조명시스템

Publications (2)

Publication Number Publication Date
KR20160059221A true KR20160059221A (ko) 2016-05-26
KR102237149B1 KR102237149B1 (ko) 2021-04-07

Family

ID=56014153

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140160839A KR102237149B1 (ko) 2014-11-18 2014-11-18 발광소자 및 조명시스템

Country Status (3)

Country Link
US (1) US20170324004A1 (ko)
KR (1) KR102237149B1 (ko)
WO (1) WO2016080671A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045208A1 (ko) * 2017-08-30 2019-03-07 고려대학교 산학협력단 재구성 가능한 광도전 전기 배선 칩

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200388723A1 (en) * 2019-06-07 2020-12-10 Intel Corporation Micro light-emitting diode display having truncated nanopyramid structures
KR20220060912A (ko) * 2020-11-05 2022-05-12 삼성전자주식회사 나노로드형태의 마이크로 led와 이를 포함하는 화소 플레이트와 이를 포함하는 디스플레이 장치와 전자장치들

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096970A (ko) * 2013-01-29 2014-08-06 삼성전자주식회사 나노구조 반도체 발광소자 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162715A1 (en) * 2010-06-24 2011-12-29 Glo Ab Substrate with buffer layer for oriented nanowire growth
KR101891777B1 (ko) * 2012-06-25 2018-08-24 삼성전자주식회사 유전체 리플렉터를 구비한 발광소자 및 그 제조방법
KR101898679B1 (ko) * 2012-12-14 2018-10-04 삼성전자주식회사 나노구조 발광소자
KR101603207B1 (ko) * 2013-01-29 2016-03-14 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
JP6198416B2 (ja) * 2013-03-08 2017-09-20 スタンレー電気株式会社 半導体発光素子及びその製造方法
KR102188497B1 (ko) * 2014-03-27 2020-12-09 삼성전자주식회사 나노구조 반도체 발광소자
KR102188499B1 (ko) * 2014-07-11 2020-12-09 삼성전자주식회사 나노구조 반도체 발광소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096970A (ko) * 2013-01-29 2014-08-06 삼성전자주식회사 나노구조 반도체 발광소자 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045208A1 (ko) * 2017-08-30 2019-03-07 고려대학교 산학협력단 재구성 가능한 광도전 전기 배선 칩

Also Published As

Publication number Publication date
KR102237149B1 (ko) 2021-04-07
WO2016080671A1 (ko) 2016-05-26
US20170324004A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US10243109B2 (en) Light-emitting diode with improved light extraction efficiency
US10573786B2 (en) Semiconductor light emitting device
KR100969100B1 (ko) 발광소자, 발광소자의 제조방법 및 발광소자 패키지
US7880181B2 (en) Light emitting diode with improved current spreading performance
CN105576108B (zh) 发光器件
US9780260B2 (en) Semiconductor light emitting device and manufacturing method of the same
US20230261157A1 (en) Contact structures of led chips for current injection
US20130015465A1 (en) Nitride semiconductor light-emitting device
KR102175345B1 (ko) 발광소자 및 조명시스템
KR101039880B1 (ko) 발광소자 및 발광소자 패키지
KR101259482B1 (ko) 고효율 발광다이오드
KR101114047B1 (ko) 발광소자 및 그 제조방법
CN111052409B (zh) 发光二极管装置及制造发光二极管装置的方法
KR101981119B1 (ko) 자외선 반도체 발광 소자
KR102237149B1 (ko) 발광소자 및 조명시스템
KR20110111799A (ko) 비극성 기판을 채택한 발광 다이오드
KR20110132161A (ko) 반도체 발광 소자 및 그 제조방법
KR102250523B1 (ko) 발광소자 및 조명시스템
KR102053415B1 (ko) 발광 소자 및 발광 소자 패키지
KR102008349B1 (ko) 발광 소자 및 발광 소자 패키지
KR102237129B1 (ko) 발광 소자
KR102199997B1 (ko) 발광소자 및 발광 소자 패키지
KR101838986B1 (ko) 발광 소자용 기판, 발광 소자의 제조 방법 및 그 제조 장치
KR101728545B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20120029232A (ko) 발광소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant