WO2013157635A1 - ガスフロー蒸着装置、及びガスフロー蒸着方法 - Google Patents

ガスフロー蒸着装置、及びガスフロー蒸着方法 Download PDF

Info

Publication number
WO2013157635A1
WO2013157635A1 PCT/JP2013/061645 JP2013061645W WO2013157635A1 WO 2013157635 A1 WO2013157635 A1 WO 2013157635A1 JP 2013061645 W JP2013061645 W JP 2013061645W WO 2013157635 A1 WO2013157635 A1 WO 2013157635A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
carrier gas
vapor deposition
flow rate
heat exchanger
Prior art date
Application number
PCT/JP2013/061645
Other languages
English (en)
French (fr)
Inventor
森田 治
良介 海老原
志門 大槻
紳治 久保田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013157635A1 publication Critical patent/WO2013157635A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition

Definitions

  • Various aspects and embodiments of the present invention relate to a gas flow vapor deposition apparatus and a gas flow vapor deposition method.
  • organic EL displays using organic electroluminescence (EL) elements that emit light using organic compounds.
  • An organic EL element used for an organic EL display has features such as self-emission, fast reaction speed, and low power consumption, and thus does not require a backlight.
  • a display unit of a portable device, etc. Application to is expected.
  • the organic EL element is formed on a glass substrate and has a structure in which an organic layer is sandwiched between an anode (anode) and a cathode (cathode).
  • anode anode
  • cathode cathode
  • a voltage is applied to the anode and cathode of the organic EL element, holes (holes) are injected into the organic layer from the anode, and electrons are injected into the organic layer from the cathode.
  • the injected holes and electrons recombine in the organic layer, and light emission occurs at this time.
  • a gas flow vapor deposition apparatus may be used for the film formation of the organic EL element.
  • the gas flow vapor deposition apparatus heats and evaporates an organic material accommodated in a material container, transports the vaporized organic material gas to a vapor deposition head, and injects it onto the substrate through the vapor deposition head.
  • the gas flow deposition apparatus uses a MFC (Mass Flow Controller) to transport a carrier gas such as argon gas to the material container by controlling the flow rate.
  • the gas flow vapor deposition apparatus transports the organic material gas evaporated in the material container together with the carrier gas to the vapor deposition head and injects it from the vapor deposition head to the substrate.
  • Patent Document 1 an external heater is wound around the outer periphery of a material container, an internal heater is installed inside the material container, and the material container is heated using the external heater and the internal heater to vaporize the organic material.
  • the structure to be made is disclosed.
  • the conventional method has a problem that a high-quality film cannot be generated.
  • the organic material when an impurity is contained in an organic material, the organic material itself is deteriorated, and a film generated thereby is also deteriorated. Even if there is no deterioration of the organic material, impurities adhere to the substrate in the film formation process or are taken into the film, which leads to deterioration of the quality of the similarly formed film.
  • a gas flow vapor deposition apparatus includes a flow rate control unit that controls the flow rate of a carrier gas, and a heat exchanger that heats the carrier gas whose flow rate is controlled by the flow rate control unit.
  • the gas flow vapor deposition apparatus contains a vapor deposition material inside, a material container that flows out vapor of the vapor deposition material together with the carrier gas heated by the heat exchanger, and the vapor deposition material that has flowed out of the material container.
  • a vapor deposition head for injecting a gas containing vapor and the carrier gas.
  • the heat exchanger is a heat exchanger that generates a differential pressure between the pressure on the inflow side of the carrier gas and the pressure on the outflow side of the carrier gas.
  • FIG. 1 is a schematic configuration diagram of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of a gas flow vapor deposition apparatus according to an embodiment.
  • FIG. 3 is a schematic configuration diagram of an organic EL element formed by a gas flow vapor deposition apparatus according to an embodiment.
  • FIG. 4 is a schematic configuration diagram of a heat exchanger according to an embodiment.
  • FIG. 5 is a schematic configuration diagram of a heat exchanger according to an embodiment.
  • FIG. 6 is a schematic configuration diagram of another example of the heat exchanger according to the embodiment.
  • FIG. 7 is a diagram showing the ratio of backflow moisture by the heat exchanger according to one embodiment.
  • FIG. 8 is a diagram illustrating a temperature change of the carrier gas by the heat exchanger according to the embodiment.
  • FIG. 9 is a schematic configuration diagram illustrating an example of a gas flow vapor deposition apparatus when a filter is provided.
  • FIG. 10 is a schematic configuration diagram illustrating an example of a gas flow vapor deposition apparatus when a filter is provided.
  • FIG. 11 is a diagram illustrating an example of a configuration of a gas flow vapor deposition apparatus in the case where a filter is provided.
  • FIG. 12A is a diagram illustrating an example of the appearance of a filter.
  • FIG. 12B is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12C is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12D is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12-5 is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12 is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12-6 is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12-7 is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12-8 is a diagram illustrating an example of the appearance of the filter.
  • FIG. 12-9 is a diagram illustrating an example of the appearance of the filter.
  • FIG. 13A is a diagram illustrating an example of the internal structure of the filter when arranged vertically.
  • FIG. 13B is a diagram illustrating an example of the internal structure of the filter when arranged vertically.
  • FIG. 13C is a diagram illustrating an example of the internal structure of the filter when arranged vertically.
  • FIG. 14A is a diagram illustrating an example of the internal structure of the filter when it is disposed at an angle.
  • FIG. 14B is a diagram of an example of the internal structure of the filter when it is disposed at an angle.
  • FIG. 14C is a diagram illustrating an example of the internal structure of the filter when it is disposed at an angle.
  • FIG. 15A is a diagram illustrating an example of the internal structure of a filter when a helix is formed by a single metal getter.
  • FIG. 15B is a diagram illustrating an example of the internal structure of the filter when a spiral is formed by a single metal getter.
  • FIG. 15C is a diagram illustrating an example of the internal structure of the filter when a helix is formed with a single metal getter.
  • FIG. 15A is a diagram illustrating an example of the internal structure of a filter when a helix is formed by a single metal getter.
  • FIG. 15B is a diagram illustrating an example of the internal structure of the filter when a spiral is formed by a single metal getter.
  • FIG. 15C is a diagram illustrating an example
  • FIG. 16A is a diagram illustrating an example of the internal structure of a filter when a helix is formed by a single metal getter.
  • FIG. 16B is a diagram illustrating an example of the internal structure of the filter when a helix is formed by a single metal getter.
  • FIG. 16C is a diagram illustrating an example of the internal structure of the filter when a helix is formed by a single metal getter.
  • FIG. 17A is a diagram illustrating an example of an internal structure of a filter when a porous material is used.
  • FIG. 17-2 is a diagram illustrating an example of the internal structure of the filter when a porous material is used.
  • FIG. 18A is a diagram illustrating an example of an internal structure of a filter when a small sphere or a fragment is used.
  • FIG. 18B is a diagram illustrating an example of the internal structure of the filter when a small sphere or a fragment is used.
  • FIG. 19A is a diagram illustrating an example of the internal structure of a filter when a mesh material is used.
  • FIG. 19-2 is a diagram illustrating an example of the internal structure of the filter when a mesh material is used.
  • FIG. 19C is a diagram illustrating an example of the internal structure of the filter when a mesh material is used.
  • FIG. 1 is a schematic configuration diagram of a substrate processing system according to an embodiment.
  • a substrate processing system 10 As shown in FIG. 1, a substrate processing system 10 according to the present embodiment is a cluster type apparatus having a plurality of processing containers, and includes a load lock chamber LLM, a transfer chamber TM, a preprocessing chamber CM, and four process modules PM1 to PM1. It has PM4.
  • the substrate processing system 10 is used for manufacturing an organic EL element, for example.
  • the load lock chamber LLM keeps the inside in a reduced pressure state in order to transfer a glass substrate (hereinafter referred to as “substrate G”) transferred from the atmospheric system to the process module PM having a high degree of vacuum.
  • substrate G glass substrate
  • ITO Indium Tin Oxide
  • the substrate G is transferred to the pretreatment chamber CM using the transfer arm Arm of the transfer chamber TM, and after the ITO surface is cleaned, it is transferred to the process module PM1.
  • the substrate G is transferred to the process module PM4, and a metal electrode (cathode layer) is formed on the organic layer of the substrate G by sputtering.
  • a metal electrode cathode layer
  • the substrate G is transported to the process module PM2, and a wiring pattern is formed by etching.
  • metal wiring is formed on the etched portion by sputtering again in the process module PM4, and finally transported to the process module PM3.
  • CVD Chemical Vapor Deposition
  • FIG. 2 is a schematic configuration diagram of a gas flow vapor deposition apparatus according to an embodiment.
  • the six gas flow vapor deposition apparatuses 20 installed in the process module PM1 have substantially the same structure. Therefore, only one gas flow vapor deposition apparatus 20 will be described with reference to FIG. 2, and description of the other gas flow vapor deposition apparatus 20 will be omitted.
  • the gas flow vapor deposition apparatus 20 includes an MFC 400 that controls the flow rate of the carrier gas and a heat exchanger 300 that heats the carrier gas whose flow rate is controlled by the MFC 400.
  • the gas flow vapor deposition apparatus 20 includes a material container 200 that houses a vapor deposition material (organic material) therein and discharges vapor of the vapor deposition material together with the carrier gas heated by the heat exchanger 300.
  • the gas flow vapor deposition apparatus 20 includes a vapor deposition head 100 that ejects a gas containing vapor of a vapor deposition material flowing out from the material container 200 and a carrier gas.
  • a valve V60 is provided between the pipe L11 and the pipe L12 on the upstream side of the carrier gas flow of the MFC 400.
  • a pipe L13 and a pipe L14 are provided in order from the upstream side between the MFC 400 and the heat exchanger 300, and a valve V50 is provided between the pipe L13 and the pipe L14.
  • a vent (VENT) pipe L15 is branched from the pipe L14 between the valve V50 and the heat exchanger 300, and a valve V40 is provided in the pipe L15.
  • a pipe L16 and a pipe L17 are provided in order from the upstream side between the heat exchanger 300 and the material container 200, and a valve V30 is provided between the pipe L16 and the pipe L17.
  • a pipe L18 and a pipe L20 are provided in order from the upstream side between the material container 200 and the vapor deposition head 100, and a valve V10 is provided between the pipe L18 and the pipe L20.
  • a vent pipe L19 is provided from the pipe L18 between the material container 200 and the valve V10, and a valve V20 is provided to the pipe L19.
  • a carrier gas such as argon gas flows from the pipe L11 to the MFC 400 via the valve V60 and the pipe L12.
  • the carrier gas whose flow rate is controlled by the MFC 400 flows to the heat exchanger 300 through the pipe L13, the valve V50, and the pipe L14.
  • the carrier gas heated by the heat exchanger 300 flows into the material container 200 through the pipe L16, the valve V30, and the pipe L17.
  • the organic material gas evaporated by heating in the material container 200 and the carrier gas flow through the pipe L18, the valve V10, and the pipe L20 to the vapor deposition head 100 and are jetted from the vapor deposition head 100 toward the substrate.
  • FIG. 3 shows the result of the six-layer continuous film forming process using six gas flow vapor deposition apparatuses 20 shown in FIG.
  • FIG. 3 is a schematic configuration diagram of an organic EL element formed by a gas flow vapor deposition apparatus according to an embodiment.
  • the substrate G advances at a speed above the vapor deposition head 100 of the first to sixth gas flow vapor deposition apparatuses 20 to sequentially inject holes in the first layer onto the ITO of the substrate G.
  • a layer, a second hole transport layer, a third blue light emitting layer, a fourth green light emitting layer, a fifth red light emitting layer, and a sixth electron transport layer are formed.
  • the third to fifth blue light-emitting layers, green light-emitting layers, and red light-emitting layers are light-emitting layers that emit light by recombination of holes and electrons.
  • the metal layer Al or the like on the organic layer is formed by sputtering in the process module PM4 of the substrate processing system 10, but the film forming method is not limited to sputtering. For example, vacuum deposition or application of a paste-like conductive material may be used.
  • the heat exchanger 300 includes a disk-shaped dispersion portion 312 connected to an end opposite to the connection end of the pipe L14 to the valve V50, and a connection end of the pipe L16 to the valve V30. It has a disk-shaped dispersion part 314 connected to the end opposite to.
  • the dispersing unit 312 and the dispersing unit 314 are arranged with a distance from each other with their disk surfaces facing each other.
  • the heat exchanger 300 includes a plurality of thin tubes 320 that connect the disk surfaces of the dispersion unit 312 and the dispersion unit 314 and have a smaller diameter than the pipe L14 and the pipe L16.
  • the plurality of thin tubes 320 are arranged in parallel to each other.
  • the heat exchanger 300 includes a dispersion unit 312, a dispersion unit 314, a plurality of thin tubes 320, and a heater 350.
  • the heater 350 covers the dispersion unit 312, the dispersion unit 314, the plurality of thin tubes 320, and the pipe L ⁇ b> 16, and heats the gas flowing through the dispersion unit 312, the dispersion unit 314, the plurality of thin tubes 320, and the pipe L ⁇ b> 16.
  • the gas flow path is formed by the plurality of thin tubes 320, and thus a differential pressure between the pressure on the inflow side of the carrier gas and the pressure on the outflow side of the carrier gas is generated.
  • the diameter ⁇ of the narrow tube 320 can be 1.0 mm, and the number of the thin tubes 320 can be four. The diameter and number of the thin tubes 320 are not limited to this.
  • FIG. 6 is a schematic configuration diagram of another example of the heat exchanger according to the embodiment.
  • a heater for heating the gas flowing through the piping is not shown, and only the shape of the piping through which the gas flows is shown.
  • the heat exchanger 300 may be, for example, a needle-type heat exchanger. That is, the heat exchanger 300 is provided with a needle 370 that can advance and retreat in the radial direction of the pipe between the pipe L14 and the pipe L16, and by adjusting the position of the needle 370, the flow path of the gas flow is provided. It is a heat exchanger with adjustable diameter. Even in such a heat exchanger 300, the difference is caused between the pressure on the inflow side of the carrier gas and the pressure on the outflow side of the carrier gas.
  • a heat exchanger that generates a differential pressure between the pressure on the inflow side of the carrier gas and the pressure on the outflow side of the carrier gas such as a heat exchanger with adjustable pressure (differential pressure). If it is a vessel, it can be used as appropriate.
  • the gas flow vapor deposition apparatus 20 performs a moisture depletion process before performing the gas flow vapor deposition process.
  • the moisture withdrawing process will be described.
  • the gas flow vapor deposition apparatus 20 allows the carrier gas to flow while heating the primary heater from the heat exchanger 300 with the valve V30 closed and the valve V40 opened. Thereby, the moisture previously attached to the heat exchanger 300 and the pipes L13 and L14 between the heat exchanger 300 and the MFC 400 is vented (exhausted) through the pipe L15 (first moisture depletion process). ).
  • the gas flow deposition apparatus 20 opens the valve V30, closes the valve V40, closes the valve V10, and opens the valve V20, and allows the carrier gas to flow while heating the heater of the heat exchanger 300. Thereby, the water
  • the moisture evaporated in the material container 200 during the second moisture dehydration process is transferred between the heat exchanger 300 or the heat exchanger 300 and the MFC 400. Back diffusion to the pipes L13 and L14 can be suppressed.
  • the heat exchanger 300 of one embodiment is formed so as to generate a differential pressure between the pressure on the carrier gas inflow side and the pressure on the carrier gas outflow side.
  • the heat exchanger 300 according to an embodiment is formed such that the differential pressure between the pressure on the carrier gas inflow side and the pressure on the carrier gas outflow side is 250 Pa or more.
  • the amount of moisture diffused. That is, the moisture reverse diffusion rate (amount of moisture diffused per unit time from the downstream side to the upstream side of the heat exchanger 300 / the carrier flown per unit time from the upstream side to the downstream side of the heat exchanger 300) Gas amount).
  • the Peclet number is also called a reverse diffusion coefficient, and is a dimensionless number that represents the ratio of the diffusion transport amount to the carrier gas transport amount by advection.
  • Peclet number (Pe) uL / D.
  • u velocity
  • L length of the thin tube 320
  • D diffusion coefficient. More specifically, the velocity u is derived from the gas molecular weight M1, the molecular diameter ⁇ 1, the temperature T, the viscosity coefficient ⁇ , the operating gas condition of the flow rate Q, the hole diameter, the number of holes, and the like.
  • Speed u mass flow rate Q / (pressure P ⁇ hole opening area A).
  • the diffusion coefficient D of the binary gas is expressed by the following formula 1.
  • M 1 and M 2 are the molecular weights of the first component and the second component
  • n is the number of molecules in the mixture
  • k is the Boltzmann constant
  • T is the absolute temperature.
  • ⁇ D is the collision integral in diffusion, is determined by the law of intermolecular forces between collision molecules, and is a function of temperature.
  • ⁇ 12 is the molecular diameter determined from the law of intermolecular force.
  • f D is a correction term and is approximately 1.
  • Equation 2 the influence of mixing and diffusion in the gas flow direction is disclosed as the basic equation (Equation 2) of the steady concentration distribution in the X direction one-dimensional tube and the steady solution of Equation 2 (Equation 3).
  • Equation 3 the steady solution of Equation 2
  • u speed
  • D diffusion coefficient
  • C concentration
  • FIG. 7 is a diagram showing the ratio of backflow moisture by the heat exchanger according to one embodiment.
  • the horizontal axis represents the distance (length) of the thin tube 320
  • the vertical axis represents the moisture reverse diffusion rate.
  • graphs 502, 504, 506, and 508 indicate the moisture reverse diffusivity of the heat exchanger (comparative example) in which the diameter ⁇ of the narrow tube 320 is 2.0 mm and the number of the thin tubes 320 is 90, for example. .
  • Graphs 502, 504, 506, and 508 indicate the moisture reverse diffusion rates when the carrier gas flow rates are 5 sccm, 10 sccm, 15 sccm, and 20 sccm, respectively.
  • the graphs 512, 514, 516, and 518 show the reverse diffusivity of the moisture of the heat exchanger in which the diameter ⁇ of the thin tube 320 is 1.0 mm and the number of the thin tubes 320 is four as in this embodiment. ing. Graphs 512, 514, 516, and 518 show the moisture reverse diffusion rates when the carrier gas flow rates are 5 sccm, 10 sccm, 15 sccm, and 20 sccm, respectively.
  • the moisture reverse diffusivity decreases, but the moisture reverse diffusivity is 1.0% (1.E). -02) is larger than
  • the flow rate of the carrier gas is 5 sccm
  • the narrow tube 320 has a length of about 10 mm or more, the moisture reverse diffusion rate becomes 1% or less, As the narrow tube 320 becomes longer, the back diffusion rate of moisture becomes smaller. For example, when the length of the thin tube 320 is about 30 mm, the moisture reverse diffusion rate is reduced to about 0.001%.
  • the moisture reverse diffusion rate when the carrier gas flow rate is 10, 15, 20 sccm, even if the capillary 320 has a relatively short length that is less than 10 mm, the moisture reverse diffusion rate. Becomes 1% or less, and the reverse diffusion rate of moisture decreases as the narrow tube 320 becomes longer. For example, when the flow rate of the carrier gas is 15 sccm, the moisture reverse diffusion rate is reduced to about 0.001% when the length of the narrow tube 320 is about 10 mm.
  • FIG. 8 is a diagram illustrating a temperature change of the carrier gas by the heat exchanger according to the embodiment.
  • the horizontal axis represents the distance (length) of the narrow tube 320
  • the vertical axis represents the temperature of the carrier gas.
  • the temperature of the carrier gas can be heated from about 25 ° C. to a desired about 450 ° C. .
  • the diameter of the narrow tube 320 is relatively small and the number is relatively small.
  • the length of the narrow tube 320 is generally not significantly increased. If a sufficient distance is provided, the function (heating) as a heat exchanger can be sufficiently achieved.
  • the diameter of the narrow tube 320 relatively small and relatively small in number. That is, if the differential pressure in the heat exchanger is large, it takes a long time to reach the desired other flow rate when the flow rate of the carrier gas is changed from a certain flow rate to the desired other flow rate.
  • the flow rate of the carrier gas becomes 1 sccm after the flow rate change command is generated.
  • the time to complete was 5.0 sec.
  • the flow rate change command is generated until the carrier gas flow rate becomes 15 sccm.
  • the carrier gas flow rate becomes 15 sccm.
  • the differential pressure in the heat exchanger is generated by making the diameter of the thin tubes 320 relatively small and relatively small in number.
  • the responsiveness can be greatly shortened by shortening the transportation path length (for example, 1 sec or less).
  • the flow rate of the carrier gas is greatly changed from 20 sccm to 1 sccm, but the actual evaporation amount control is a small amount change control. Therefore, it can be said that the response when the flow rate of the carrier gas is changed is within an allowable range.
  • a process water draining process
  • a valve is provided in a transport pipe between the material container and the vapor deposition head, and a vent pipe branched from the transport pipe between the material container and the valve is provided. Then, with the valve closed, it is conceivable to heat the material container, the transport pipe, and the valve to flow the carrier gas while evaporating the moisture, and to exhaust the moisture from the vent pipe. It is considered that the water attached to the organic material can be exhausted to some extent from the vent pipe by performing this water draining treatment.
  • the transport pipe including the material container and the valve after the material container corresponds to the evaporation temperature of various organic materials, so that it can be heated up to about 450 ° C.
  • the primary transport pipe including MFC is Since MFC is a precision control device, many heat resistant temperatures do not reach that temperature. Therefore, the specification of the primary side transport pipe is lower than that of the secondary side transport pipe. Therefore, in order to raise the carrier gas in advance to the same temperature as the material evaporation temperature, a heat exchanger may be installed between the MFC and the material container, and the carrier gas may be heated by the heat exchanger.
  • the temperature of the primary transport pipe is lower, so that there is a risk of moisture adhering.
  • the adhering water is heated at a higher temperature setting, re-evaporated and transported to the substrate during the gas flow vapor deposition process, resulting in film formation of the organic material. There is a risk of performance degradation.
  • the amount of moisture contained in the organic material formed on the substrate can be reduced. That is, in the gas flow vapor deposition apparatus 20 of the present embodiment, the material container 200 is heated by using the heat exchanger 300 that generates a differential pressure between the pressure on the carrier gas inflow side and the pressure on the carrier gas outflow side. Transport to. Therefore, it is possible to prevent the water evaporated in the material container 200 from back-diffusion to the upstream side of the heat exchanger 300 and the heat exchanger 300 in the moisture withering process. As a result, the amount of moisture remaining in the carrier gas flow path can be suppressed by the moisture depletion process, so that the amount of moisture contained in the organic material deposited on the substrate can be reduced in the gas flow deposition process. Can do.
  • the valve V30 between the heat exchanger 300 and the material container 200 is closed, and the vent pipe L15 branched from the pipe L14 between the MFC 400 and the heat exchanger 300 is used.
  • the valve V40 is opened, and the first exhaust process is performed from the vent pipe L15.
  • the valve V30 is opened and the valve V40 is closed.
  • the valve V10 between the material container 200 and the vapor deposition head 100 is closed, and the material container 200 and the valve V10 are interposed.
  • the valve V20 of the vent pipe L19 branched from this pipe is opened, and the second exhaust process is performed from the vent pipe L19.
  • the heat exchanger 300 may have a function as a filter, and a filter may be provided instead of the heat exchanger 300.
  • a filter may be provided instead of the heat exchanger 300.
  • the filter 500 may be realized by adding a filter function to the heat exchanger 300 described above, or may be realized as a filter having no function as a heat exchanger.
  • the description of the same points as in the case of having the heat exchanger 300 will be omitted as appropriate.
  • the gas flow vapor deposition apparatus 20a includes a flow rate control unit 400 that controls the flow rate of the carrier gas. Further, the gas flow vapor deposition apparatus 20 a includes a filter 500 for removing impurities in the carrier gas whose flow rate is controlled by the flow rate control unit 400. Further, the gas flow vapor deposition apparatus 20 a includes a material container 200 that houses a vapor deposition material and flows out vapor of the vapor deposition material together with the carrier gas that has passed through the filter 500. Moreover, the gas flow vapor deposition apparatus 20a has the vapor deposition head 100 which injects the gas containing the vapor
  • FIG. 9 is a schematic configuration diagram showing an example of a gas flow vapor deposition apparatus in the case of having a filter.
  • the gas flow vapor deposition apparatus 20 a has a filter 500 for removing impurities in the carrier gas whose flow rate is controlled by the flow rate control unit 400, and the carrier in which the material container 200 has passed through the filter 500.
  • the vapor of the vapor deposition material flows out together with the gas.
  • the gas flow vapor deposition apparatus 20 a includes an exhaust pump 600 for exhausting from the filter 500, and a valve V ⁇ b> 70 in a pipe between the filter 500 and the exhaust pump 600.
  • the pipe between the valve V50 and the filter 500 is described as “L21”
  • the pipe between the filter 500 and the valve V30 is described as “L22”
  • the filter 500 and the valve V70 is described as “L24”.
  • FIG. 10 is a schematic configuration diagram illustrating an example of a gas flow vapor deposition apparatus when a filter is provided.
  • a pipe connecting the exhaust pump 600 of the gas flow vapor deposition apparatus 20 a and the filter 500 may be a pipe branched from a pipe connecting the filter 500 and the material container 200.
  • FIG. 11 is a diagram showing an example of the configuration of the gas flow vapor deposition apparatus when it has a filter.
  • the gas flow vapor deposition apparatus 20a includes a filter 500, a material container 200, a vapor deposition head 100, a heater 800 for heating a pipe between the filter 500 and the material container 200, and the vapor deposition head 100, and the like. And a thermocouple 700 for measuring the temperature of each part.
  • a case where the pipe connecting the exhaust pump 600 and the filter 500 of the gas flow vapor deposition apparatus 20 a is different from the pipe connecting the filter 500 and the material container 200 is shown as an example. It was.
  • the filter 500 includes, for example, a metal getter 510 inside.
  • a known metal getter 510 may be used.
  • the filter 500 is formed from a combination of single or plural types of filter structures.
  • the filter 500 captures and removes impurities other than the carrier gas.
  • the filter 500 captures and removes an organic film forming material or a substance that adversely affects the thin film.
  • the carrier gas is selected from, for example, nitrogen, helium, neon, argon, krypton, xenon and the like.
  • the substance captured by the filter 500 indicates, for example, water, hydrogen, oxygen, carbon dioxide, hydrocarbons, and various particles. Note that when nitrogen is not used as the carrier gas, nitrogen may be removed.
  • the hydrocarbon is an organic gas having a C—H bond site such as methane.
  • the various particles are dust, for example.
  • the organic film forming material indicates, for example, an organic compound or an organic complex used as an organic EL material.
  • a filter agent composed of a metal, an alloy, a compound, and a powder, a piece, a plate, a small sphere, a porous material, a mesh material having a filter function / capturing function, etc. It is.
  • the metal, alloy, or compound is, for example, at least one of carbon, ammonium, silicon, titanium, vanadium, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, tantalum, platinum, gold, and bismuth. including.
  • the material used as a filter may be used by coating it by coating or vapor-depositing it on an arbitrary member.
  • the exhaust pump 600 uses, for example, at least one of a turbo molecular pump, a cryopump, a dry pump, and an ion pump. However, it is not limited to this.
  • the exhaust pump 600 preferably has a cold trap and a heater facility.
  • FIGS. 12-1 to 12-9 are diagrams showing an example of the appearance of the filter.
  • the filter 500 may be cylindrical as shown in FIG. Further, as shown in FIG. 12-2, the filter 500 may have a cylindrical shape on the inlet side and a conical shape on the outlet side. Further, as shown in FIG. 12C, the filter 500 may have a conical shape with the inlet side as the bottom surface. Further, as shown in FIG. 12-4, the filter 500 may have a cylindrical shape at the center, and the inlet side and the outlet side may have a conical shape with the center side as the bottom surface. Further, the filter 500 may have a rounded shape on the outlet side as shown in FIG. 12-5. Further, as shown in FIG.
  • the filter 500 may have a shape in which the inlet side and the outlet side are rounded.
  • the filter 500 may have a shape in which two cones are connected as shown in FIG. 12-7.
  • the filter 500 may be a rectangular parallelepiped as shown in FIG. 12-8.
  • the filter 500 is not connected to the vicinity of the center of the filter, but is provided at the end, and has a rectangular shape with rounded corners. Also good. Note that the appearance of the filter 500 shown in FIGS. 12-1 to 12-9 is an example, and the present invention is not limited to this, and the shapes shown in FIGS. 12-1 to 12-9 may be combined as appropriate. Other shapes may be used.
  • the depth direction connecting the pipe L21 to the pipe L22 is taken as the z axis
  • the horizontal direction is taken as the z axis
  • the vertical direction is taken as the y axis.
  • FIG. 13-1 to FIG. 13-3 are diagrams showing an example of the internal structure of the filter 500 when arranged vertically.
  • FIG. 13A illustrates an example of a cross-sectional view of the filter 500 in the yz plane
  • FIGS. 13B and 13C illustrate cross-sectional views in an xy plane at an arbitrary position on the z axis.
  • the figure shows a case where the pipe L22 side is viewed from the cross section after cutting the filter 500 at an arbitrary location on the z-axis to remove the pipe L21 side.
  • FIG. 13-2 shows a case where the filter 500 is cylindrical
  • FIG. 13-3 shows a case where the filter 500 is a rectangular parallelepiped.
  • a plurality of metal getters 510a to 510g are vertically fixed inside the filter so as to leave a part of the opening.
  • the filter 500 has a portion that is not blocked by the metal getter 510 at the z-axis position where the metal getter 510 is provided.
  • the metal getter 510 is fixed so that a portion not covered by the metal getter draws a spiral.
  • FIGS. 14-1 to 14-3 are diagrams showing an example of the internal structure of the filter when it is disposed at an angle.
  • the metal getters 510h to 510k are fixed by being inclined from the vertical direction to the pipe L21 side, not in the vertical direction. The case is shown as an example.
  • FIGS. 15-1 to 15-3 and FIGS. 16-1 to 16-3 are diagrams showing an example of the internal structure of the filter when a helix is formed with a single metal getter.
  • 15-1 and 16-1 show an example of a cross-sectional view of the filter 500 in the yz plane
  • FIGS. 15-2 and 16-2 show cross-sectional views in the xy plane at arbitrary positions on the z-axis. .
  • the figure shows a case where the pipe L22 side is viewed from the cross section after cutting the filter 500 at an arbitrary location on the z-axis to remove the pipe L21 side.
  • 15-3 and 16-3 show an example of the metal getter 510 provided in the filter 500.
  • FIGS. 15-1 to 15-3 and FIGS. 16-1 to 16-3 unlike the examples shown in FIGS. 13-1 to 14-3, a single metal getter 510m, n is used. It may be provided inside the filter 500 after being formed so as to draw a spiral.
  • 15-1 to 15-3 show the case where the filter 500 is cylindrical
  • FIGS. 16-1 to 16-3 show the case where the filter 500 is a rectangular parallelepiped.
  • FIGS. 17-1 and 17-2 are diagrams showing an example of the internal structure of the filter when a porous material is used.
  • the filter 500 may include a metal getter 510p or a metal getter 510q formed of a porous material inside the filter.
  • FIG. 17A shows a case where the filter 500 is cylindrical
  • FIG. 17-2 shows an example where the filter 500 is a rectangular parallelepiped.
  • the carrier gas passes p and q through the metal getter 510 formed of a porous material.
  • FIGS. 18A and 18B are diagrams showing an example of the internal structure of the filter when small spheres or fragments are used.
  • the filter 500 may be laid with metal getters 510r that are small spheres or fragments.
  • FIG. 18A illustrates a case where the filter 500 is cylindrical
  • FIG. 18B illustrates an example where the filter 500 is a rectangular parallelepiped.
  • the carrier gas passes through gaps between small spheres or pieces formed by the metal getter 510r.
  • FIGS. 19A to 19C are diagrams showing an example of the internal structure of the filter when a mesh material is used.
  • a metal getter 510s formed of a mesh material may be provided inside the filter 500, and an outlet of the pipe L21 may be provided inside the metal getter 510s formed of a mesh material.
  • the carrier gas flowing out from the pipe L21 moves to the pipe L22 after diffusing the mesh material.
  • FIG. 19-2 shows a case where the inlet of the pipe L22 is provided inside a metal getter 510s formed of a mesh material, contrary to FIG. 19-1. That is, after the carrier gas is converged on the metal getter 510s, it moves to the pipe L22. Further, FIG.
  • FIGS. 19A to 19C shows that the metal getter 510s formed of a plurality of mesh materials is provided in the center of the filter 500, and both the outlet of the pipe L21 and the inlet of the pipe L22 are formed of the mesh material. A case where the metal getter 510s is not provided inside is shown.
  • one mesh material may be used as the mesh material, or a plurality of mesh materials having different porosity may be used in combination.
  • the activation temperature for operating the metal getter 510s is at least 50 ° C. higher than the evaporation temperature of impurities removed by the filter 500.
  • the filter 500 is heated to 370 ° C. or higher by the heater 800 covering the filter 500. Used in As a result, the carrier gas is also heated by the filter 500.
  • the filter 500 can be used from about 25 ° C. to 800 ° C.
  • the filter 500 can be used in a vacuum and under a reduced pressure environment, and the working pressure range is, for example, 1.0 ⁇ 10 ⁇ 6 Pa to 10 Pa, but is not limited thereto.
  • the pressure on the outlet side is lower than the pressure on the inlet side.
  • the pressure on the outlet side is 30 Pa.
  • the temperature of the filter 500, the temperature of the pipe between the filter 500 and the material container 200, and the temperature of the pipe between the material container 200 and the vapor deposition head 100 are the same temperature.
  • it has the temperature control part which controls so that it may become in a predetermined temperature difference.
  • the temperature of each part is controlled to be the same temperature or within a predetermined temperature difference.
  • the gas flow vapor deposition apparatus 20a is controlled so that it may become the same temperature or within 20 degreeC.
  • the temperature control unit is realized by, for example, a processing circuit such as a CPU mounted on the gas flow vapor deposition apparatus 20a.
  • the filter 500 is heated by the heater 800, once raised to the activation temperature of the metal getter 510, and then kept at a temperature at which the filter 500 functions most efficiently.
  • the temperature at which the filter 500 functions most efficiently depends on the material to be trapped, the metal getter 510.
  • the temperature at which the filter 500 functions most efficiently is, for example, 25 ° C. to 350 ° C.
  • the flow rate controller 400 adjusts the flow rate of the carrier gas to the carrier gas, and the carrier gas whose flow rate has been adjusted is sent to the filter 500.
  • the filter 500 is highly purified by removing impurities.
  • the highly purified carrier gas is sent to the material container 200 by opening the valve
  • the gas flow vapor deposition apparatus 20a has a control unit that removes impurities accumulated in the filter 500 by closing the pipe between the filter 500 and the material container 200 and heating the filter 500 to a predetermined temperature. .
  • the filter 500 is heated by the heater 800 and raised to a temperature suitable for flushing.
  • the temperature is raised at least once to the activation temperature and then raised from 300 ° C. to 800 ° C. Then, the temperature is maintained and heated for 30 minutes or more.
  • the heating time may be any time, may be less than 30 minutes, or may be 30 minutes or more. As a result, degassing from the filter 500 and reactivation of the filter 500 are performed.
  • the degas generated from the filter 500 is exhausted.
  • the valve V50 is opened once and the carrier gas is once accumulated in the filter 500, and then heated and exhausted. Heating and exhausting while flowing the carrier gas while the valve V50 is opened. You may do it.
  • the gas flow vapor deposition apparatus 20a further has a pipe for exhausting from the filter 500, and after closing the pipe between the filter 500 and the material container 200 and opening the pipe for exhausting from the filter 500,
  • the impurities accumulated in the filter 500 may be removed by heating the filter 500 to a predetermined temperature while flowing the carrier gas from the flow rate control unit 400 to the filter 500.
  • the gas flow vapor deposition apparatus 20a includes the flow rate control unit 400 that controls the flow rate of the carrier gas, the filter 500 for removing impurities of the carrier gas whose flow rate is controlled by the flow rate control unit 400, and the vapor deposition material.
  • a material container 200 that is housed inside and flows out the vapor of the vapor deposition material together with the carrier gas that has passed through the filter 500, and a vapor deposition head 100 that ejects the vapor containing the vapor of the vapor deposition material and the carrier gas that has flowed out of the material container 200.
  • a vapor deposition head 100 that ejects the vapor containing the vapor of the vapor deposition material and the carrier gas that has flowed out of the material container 200.
  • the carrier gas impurities flowing out from the flow rate control unit 400 that controls the flow rate of the carrier gas are removed by the filter 500, and the impurities are removed and the carrier flows into the material container via the first valve, for example, the pipe L22.
  • the vapor of the vapor deposition material stored in the material container 200 together with the gas flows out, and the vapor including the vapor of the vapor deposition material and the carrier gas that flows out through the second valve, for example, the pipe L18, is jetted from the vapor deposition head 100.
  • the carrier gas can be highly purified, and for example, the amount of moisture contained in the organic material formed on the substrate can be reduced.
  • the temperature of the filter 500, the temperature of the pipe between the filter 500 and the material container 200, and the temperature of the pipe between the material container 200 and the vapor deposition head 100 are the same temperature or Control to be within a predetermined temperature difference. As a result, once evaporated, it can be prevented from adhering.
  • the filter 500 has a metal getter 510, and the activation temperature at which the metal getter 510 is operated is at least 50 ° C. higher than the evaporation temperature of impurities removed by the filter 500. As a result, impurities can be efficiently removed.
  • the filter 500 has a lower outlet side pressure than the inlet side pressure. As a result, backflow can be prevented.
  • the filter 500 is heated to a predetermined temperature to remove impurities accumulated in the filter 500.
  • a control unit As a result, the filter 500 can be used permanently.
  • the gas flow vapor deposition apparatus 20a further includes a pipe for exhausting from the filter 500, closing the pipe between the filter 500 and the material container 200, and opening the pipe for exhausting from the filter 500,
  • the filter 500 is heated to a predetermined temperature while allowing the carrier gas to flow out from the flow rate control unit 400, thereby removing impurities accumulated in the filter 500. As a result, impurities can be efficiently removed.
  • Substrate processing system 20 Gas flow vapor deposition apparatus 100 Vapor deposition head 200 Material container 300 Heat exchanger 320 Narrow tube 350 Heater 370 Needle 400 Flow control part 500 Filter V10, V20, V30, V40, V50, V60 Valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 ガスフロー蒸着装置20は、キャリアガスの流量を制御するMFC400と、MFCによって流量を制御されたキャリアガスを加熱する熱交換器300とを備える。また、ガスフロー蒸着装置20は、蒸着材料を内部に収容し、熱交換器によって加熱されたキャリアガスととともに蒸着材料の蒸気を流出する材料容器200と、材料容器200から流出された蒸着材料の蒸気及びキャリアガスを含むガスを噴射する蒸着ヘッド100とを備える。熱交換器300は、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が生じるよう形成されている。

Description

ガスフロー蒸着装置、及びガスフロー蒸着方法
 本発明の種々の側面及び実施形態は、ガスフロー蒸着装置、及びガスフロー蒸着方法に関するものである。
 近年、有機化合物を用いて発光させる有機エレクトロルミネッセンス(EL:Electro-Luminescence)素子を利用した有機ELディスプレイが注目されている。有機ELディスプレイに用いられる有機EL素子は、自発光し、反応速度が速く、消費電力が低い等の特徴を有しているため、バックライトを必要とせず、例えば、携帯型機器の表示部等への応用が期待されている。
 有機EL素子は、ガラス基板上に形成され、有機層を陽極(アノード)及び陰極(カソード)にてサンドイッチした構造をしている。有機EL素子の陽極及び陰極に電圧を印加すると、陽極からはホール(正孔)が有機層に注入され、陰極からは電子が有機層に注入される。注入されたホール及び電子は有機層にて再結合し、このとき発光が生じる。
 ここで、有機EL素子の成膜には、ガスフロー蒸着装置が用いられる場合がある。ガスフロー蒸着装置は、材料容器に収容した有機材料を加熱して蒸発させ、蒸発させた有機材料ガスを蒸着ヘッドへ輸送し、蒸着ヘッドを介して基板へ噴射する。より具体的には、ガスフロー蒸着装置は、MFC(Mass Flow Controller)を用いて、例えばアルゴンガスのようなキャリアガスを流量制御して材料容器に輸送する。そして、ガスフロー蒸着装置は、材料容器で蒸発した有機材料ガスをキャリアガスとともに蒸着ヘッドへ輸送し、蒸着ヘッドから基板へ噴射する。
 例えば、特許文献1には、材料容器の外周に外部ヒータを巻きつけるとともに、材料容器の内部に内部ヒータを設置し、外部ヒータ及び内部ヒータを用いて材料容器を加熱することによって有機材料を気化させる構造が開示されている。
特開2010-31324号公報
 しかしながら、従来の手法では、高品質な膜を生成できないという問題がある。例えば、有機材料に不純物が含まれると、有機材料自体が劣化し、それによって生成された膜も劣化した状態になってしまう。また、有機材料の劣化が無くとも、成膜過程で不純物が基板に付着する、もしくは膜中に取り込まれることで、同様に生成された膜の品質劣化を招いてしまう。
 本発明の一側面に係るガスフロー蒸着装置は、キャリアガスの流量を制御する流量制御部と、前記流量制御部によって流量を制御されたキャリアガスを加熱する熱交換器とを備える。また、ガスフロー蒸着装置は、蒸着材料を内部に収容し、前記熱交換器によって加熱されたキャリアガスとともに前記蒸着材料の蒸気を流出する材料容器と、前記材料容器から流出された前記蒸着材料の蒸気及び前記キャリアガスを含むガスを噴射する蒸着ヘッドとを備える。前記熱交換器は、前記キャリアガスの流入側の圧力と前記キャリアガスの流出側の圧力との差圧が生じる熱交換器であることを特徴とする。
 本発明の種々の側面及び実施形態によれば、基板に成膜される有機材料中に含まれる不純物を低減し、それに伴い生成される有機薄膜中の不純物を低減することが可能となる。
図1は、一実施形態に係る基板処理システムの概略構成図である。 図2は、一実施形態に係るガスフロー蒸着装置の概略構成図である。 図3は、一実施形態に係るガスフロー蒸着装置により形成される有機EL素子の概略構成図である。 図4は、一実施形態に係る熱交換器の概略構成図である。 図5は、一実施形態に係る熱交換器の概略構成図である。 図6は、一実施形態に係る熱交換器の他の一例の概略構成図である。 図7は、一実施形態に係る熱交換器による逆流水分の比率を示す図である。 図8は、一実施形態に係る熱交換器によるキャリアガスの温度変化を示す図である。 図9は、フィルタを有する場合におけるガスフロー蒸着装置の一例を示す概略構成図である。 図10は、フィルタを有する場合におけるガスフロー蒸着装置の一例を示す概略構成図である。 図11は、フィルタを有する場合におけるガスフロー蒸着装置の構成の一例を示す図である。 図12-1は、フィルタの外観の一例を示す図である。 図12-2は、フィルタの外観の一例を示す図である。 図12-3は、フィルタの外観の一例を示す図である。 図12-4は、フィルタの外観の一例を示す図である。 図12-5は、フィルタの外観の一例を示す図である。 図12-6は、フィルタの外観の一例を示す図である。 図12-7は、フィルタの外観の一例を示す図である。 図12-8は、フィルタの外観の一例を示す図である。 図12-9は、フィルタの外観の一例を示す図である。 図13-1は、垂直に配置した場合におけるフィルタの内部の構造の一例を示す図である。 図13-2は、垂直に配置した場合におけるフィルタの内部の構造の一例を示す図である。 図13-3は、垂直に配置した場合におけるフィルタの内部の構造の一例を示す図である。 図14-1は、傾けて配置した場合におけるフィルタの内部の構造の一例を示す図である。 図14-2は、傾けて配置した場合におけるフィルタの内部の構造の一例を示す図である。 図14-3は、傾けて配置した場合におけるフィルタの内部の構造の一例を示す図である。 図15-1は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。 図15-2は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。 図15-3は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。 図16-1は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。 図16-2は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。 図16-3は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。 図17-1は、多孔質材を用いた場合におけるフィルタの内部の構造の一例を示す図である。 図17-2は、多孔質材を用いた場合におけるフィルタの内部の構造の一例を示す図である。 図18-1は、小球又は断片を用いた場合におけるフィルタの内部の構造の一例を示す図である。 図18-2は、小球又は断片を用いた場合におけるフィルタの内部の構造の一例を示す図である。 図19-1は、メッシュ材を用いた場合におけるフィルタの内部の構造の一例を示す図である。 図19-2は、メッシュ材を用いた場合におけるフィルタの内部の構造の一例を示す図である。 図19-3は、メッシュ材を用いた場合におけるフィルタの内部の構造の一例を示す図である。
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
 まず、ガスフロー蒸着装置を含んだ基板処理システム10について、図1を参照しながら説明する。図1は、一実施形態に係る基板処理システムの概略構成図である。
(基板処理システム)
 図1に示すように、本実施形態にかかる基板処理システム10は、複数の処理容器を有するクラスタ型装置であり、ロードロック室LLM、搬送室TM、前処理室CM及び4つのプロセスモジュールPM1~PM4を有している。基板処理システム10は、例えば、有機EL素子の製造に使用される。
 ロードロック室LLMは、大気系から搬送されたガラス基板(以下「基板G」という)を、真空度の高いプロセスモジュールPMに搬送するために内部を減圧状態に保持する。基板G上には、予め陽極としてインジウムスズ酸化物(ITO:Indium Tin Oxide)が形成されている。基板Gは、搬送室TMの搬送アームArmを用いて前処理室CMに搬送され、ITO表面をクリーニングした後、プロセスモジュールPM1に搬送される。
 プロセスモジュールPM1には、図2に示したガスフロー蒸着装置20が6つ並べて配置され、ITO上に6層の有機層が連続成膜される。成膜後、基板Gは、プロセスモジュールPM4に搬送され、スパッタリングにより基板Gの有機層上にメタル電極(陰極層)を形成する。ここで、プロセスモジュールPM4でメタル電極を形成する際には、スパッタリングのほかに真空蒸着、ペースト状の導電性材料の塗布などの手法を用いても良いこととし、またこれらに限定されるものではない。更に、基板Gは、プロセスモジュールPM2に搬送され、配線用のパターンをエッチングにより形成し、再び、プロセスモジュールPM4にてスパッタリングによりエッチング部分に金属配線を成膜し、最後に、プロセスモジュールPM3に搬送され、CVD(Chemical Vapor Deposition:気相成長法)により有機層を封止する封止膜を形成する。
(有機層の連続成膜)
 次に、6層の有機層を連続成膜する機構について説明する。図2は、一実施形態に係るガスフロー蒸着装置の概略構成図である。プロセスモジュールPM1に設置された6つのガスフロー蒸着装置20は、ほぼ同一構造である。そこで、図2を参照しながら、一のガスフロー蒸着装置20についてのみ説明することにより、他のガスフロー蒸着装置20の説明を省略する。
 図2に示すように、ガスフロー蒸着装置20は、キャリアガスの流量を制御するMFC400と、MFC400によって流量を制御されたキャリアガスを加熱する熱交換器300とを備える。また、ガスフロー蒸着装置20は、蒸着材料(有機材料)を内部に収容し、熱交換器300によって加熱されたキャリアガスとともに蒸着材料の蒸気を流出する材料容器200を備える。また、ガスフロー蒸着装置20は、材料容器200から流出された蒸着材料の蒸気及びキャリアガスを含むガスを噴射する蒸着ヘッド100を備える。
 MFC400のキャリアガスの流れの上流側の配管L11及び配管L12の間には、バルブV60が設けられる。また、MFC400と熱交換器300との間には、上流側から順に配管L13,配管L14が設けられ、配管L13と配管L14の間には、バルブV50が設けられる。また、バルブV50と熱交換器300との間の配管L14からはベント(VENT)用の配管L15が分岐して設けられ、配管L15には、バルブV40が設けられる。
 また、熱交換器300と材料容器200との間には、上流側から順に配管L16,配管L17が設けられ、配管L16と配管L17との間には、バルブV30が設けられる。また、材料容器200と蒸着ヘッド100との間には、上流側から順に配管L18,配管L20が設けられ、配管L18と配管L20との間には、バルブV10が設けられる。また、材料容器200とバルブV10との間の配管L18からはベント用の配管L19が設けられ、配管L19には、バルブV20が設けられる。
 通常のガスフロー蒸着処理時には、例えばアルゴンガスなどのキャリアガスは、配管L11からバルブV60,配管L12を介してMFC400へ通流する。MFC400で流量を制御されたキャリアガスは、配管L13,バルブV50,配管L14を介して熱交換器300へ通流する。熱交換器300で加熱されたキャリアガスは、配管L16,バルブV30,配管L17を介して材料容器200へ通流する。材料容器200で加熱により蒸発した有機材料のガスとキャリアガスは、配管L18,バルブV10,配管L20を介して蒸着ヘッド100へ通流し、蒸着ヘッド100から基板へ向けて噴射される。
 図2に示すガスフロー蒸着装置20を6つ用いて6層連続成膜処理を実行した結果を図3に示す。図3は、一実施形態に係るガスフロー蒸着装置により形成される有機EL素子の概略構成図である。図3に示すように、基板Gが、1~6番目のガスフロー蒸着装置20の蒸着ヘッド100の上方をある速度で進行することにより、基板GのITO上に順に、第1層のホール注入層、第2層のホール輸送層、第3層の青発光層、第4層の緑発光層、第5層の赤発光層、第6層の電子輸送層が形成される。このうち、第3層~第5層の青発光層、緑発光層、赤発光層がホールと電子の再結合により発光する発光層である。また、有機層上のメタル層Al等は、前述したとおり、基板処理システム10のプロセスモジュールPM4にてスパッタリングにより成膜されるが、成膜方法はスパッタリングに限定されるものではない。例えば、真空蒸着、ペースト状導電性材料の塗布でもよい。
 続いて、熱交換器300の構成について具体的に説明する。図4,5は、一実施形態に係る熱交換器の概略構成図である。図4に示すように、熱交換器300は、配管L14のバルブV50への接続端とは反対側の端部に接続された円盤状の分散部312と、配管L16のバルブV30への接続端とは反対側の端部に接続された円盤状の分散部314を有する。分散部312及び分散部314は、互いに円盤面を対向させて、距離を離して配置される。また、熱交換器300は、分散部312及び分散部314の円盤面同士を接続し、配管L14及び配管L16に比べて径が小さい複数の細管320を有する。複数の細管320は、互いに並列に配置されている。また、熱交換器300は、分散部312、分散部314、複数の細管320、及びヒータ350を有する。ヒータ350は、分散部312、分散部314、複数の細管320、及び配管L16を覆い、分散部312、分散部314、複数の細管320、及び配管L16を通流するガスを加熱する。
 このように、一実施形態の熱交換器300は、複数の細管320によりガス流路が形成されているので、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が生じる。例えば、一実施形態の熱交換器300は、細管320の径φを1.0mm、細管320の本数を4本とすることができる。なお、細管320の径及び本数については、これに限られない。
 また、一実施形態のガスフロー蒸着装置20は、図4,5に示した熱交換器300とは異なる他の熱交換器を用いることもできる。図6は、一実施形態に係る熱交換器の他の一例の概略構成図である。図6においては、配管を通流するガスを加熱するヒータについては図示を省略し、ガスが通流する配管形状のみを示している。
 図6に示すように、熱交換器300は、例えばニードル型の熱交換器であっても良い。すなわち、熱交換器300は、配管L14と配管L16との間に、配管の径方向に進退可能なニードル370が設けられ、このニードル370の位置を調整することによってガスが通流する流路の径を調整可能な熱交換器である。このような熱交換器300であっても、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が生じる点については同様である。また、これらの熱交換器に関わらず、例えば圧力(差圧)調整可能な熱交換器のように、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が生じる熱交換器であれば、適宜使用することができる。
 ところで、有機材料は通常、大気中にて保管されているので、大気中に放置されている際に有機材料には水分が付着する。そして、有機材料に付着した水分が材料容器200で加熱されることにより蒸発して、キャリアガスとともに蒸着ヘッド100に搬送され、基板に成膜された有機材料の成膜性能に劣化が生じるおそれがある。そこで、一実施形態のガスフロー蒸着装置20は、ガスフロー蒸着処理を行う前に水分枯らし処理を実行する。以下、水分枯らし処理について説明する。
 まず、ガスフロー蒸着装置20は、バルブV30を閉じ、バルブV40を開いた状態で、熱交換器300より1次側のヒータを加熱させながらキャリアガスを通流させる。これにより、熱交換器300、及び熱交換器300とMFC400との間の配管L13,L14などに予め付着している水分を、配管L15を介してベント(排気)する(第1の水分枯らし処理)。
 続いて、ガスフロー蒸着装置20は、バルブV30を開き、バルブV40を閉じ、バルブV10を閉じ、バルブV20を開いた状態で、熱交換器300のヒータを加熱させながらキャリアガスを通流させる。これにより、材料容器200に収容された有機材料に付着した水分を、配管L19を介してベント(排気)する(第2の水分枯らし処理)。
 ここで、一実施形態の熱交換器300によれば、第2の水分枯らし処理の際に、材料容器200で蒸発した水分が、熱交換器300、又は熱交換器300とMFC400との間の配管L13,L14などに逆拡散するのを抑制することができる。
 すなわち、一実施形態の熱交換器300は、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が生じるように形成されている。例えば、一実施形態の熱交換器300は、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が250Pa以上になるよう形成されている。
 これにより、水分の逆拡散率を約1%以下にすることができる。ここで、水分の逆拡散率は、熱交換器300の上流側から下流側へ単位時間あたりに通流させたキャリアガスの量に対する、熱交換器300の下流側から上流側へ単位時間あたりに拡散した水分の量である。つまり、水分の逆拡散率=(熱交換器300の下流側から上流側へ単位時間あたりに拡散した水分の量/熱交換器300の上流側から下流側へ単位時間あたりに通流させたキャリアガスの量)となる。
 この点について、ペクレ数(Pe)を用いて説明する。ペクレ数は逆拡散係数ともいい、移流によるキャリアガスの輸送量に対する拡散輸送量の比率を表す無次元数である。ペクレ数(Pe)=uL/Dで表される。ここで、u:速度、L:細管320の長さ、D:拡散係数である。より具体的には、速度uはガス分子量M1、分子直径σ1、温度T、粘性係数η、流量Qの使用ガス条件、孔径、及び孔数等から導かれる。速度u=質量流量Q/(圧力P×孔開口面積A)となる。
 なお、2成分系気体の拡散係数Dは、以下の数1式で表される。ここで、M,Mは第1成分及び第2成分の分子量、nは混合物中の分子数、kはボルツマン定数、Tは絶対温度である。Ωは拡散における衝突積分であり衝突分子間の分子間力の法則により決まり、温度の関数である。σ12は分子間力の法則から決定される分子の直径である。fは補正項であり、ほぼ1である。
Figure JPOXMLDOC01-appb-M000001
 一実施形態の熱交換器300は、細管320の径φが比較的小さい(=熱交換器300の入口側と出口側の差圧が大きい)。これはつまり、上記速度uの式における孔開口面積Aが小さくなるので、速度uは大きくなる。速度uが大きくなると、ペクレ数は大きくなる。ペクレ数は、大きいほど、水分の逆拡散量が少なくなる。したがって、一実施形態の熱交換器300のように細管320の径φを小さくして熱交換器300の入口側と出口側の差圧を大きくするほど、水分の逆拡散量が少なくなる。
 なお、参考までに、ガスの流れ方向の混合拡散の影響X方向1次元管内の定常濃度分布の基礎方程式(数2式)と、数2式の定常解(数3式)を開示する。ここで、u:速度、D:拡散係数、C:濃度である。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 次に、一実施形態のガスフロー蒸着装置の熱交換器による逆流水分の比率について説明する。図7は、一実施形態に係る熱交換器による逆流水分の比率を示す図である。図7において、横軸は細管320の距離(長さ)であり、縦軸は、水分の逆拡散率を示す。
 図7において、グラフ502,504,506,508は、例えば細管320の径φが2.0mm、細管320の本数が90本の熱交換器(比較例)の水分の逆拡散率を示している。また、グラフ502,504,506,508はそれぞれ、キャリアガスの流量が5sccm,10sccm,15sccm,20sccmの際の水分の逆拡散率を示している。
 これに対して、グラフ512,514,516,518は、本実施形態のように細管320の径φが1.0mm、細管320の本数が4本の熱交換器の水分の逆拡散率を示している。また、グラフ512,514,516,518はそれぞれ、キャリアガスの流量が5sccm,10sccm,15sccm,20sccmの際の水分の逆拡散率を示している。
 図7に示すように、比較例においては、細管の長さが長くなるにつれて、水分の逆拡散率は小さくなってはいるが、いずれも水分の逆拡散率は1.0%(1.E-02)より大きくなっている。これに対して、本実施形態の熱交換器300では、キャリアガスの流量が5sccmである場合、細管320が約10mm以上の長さであれば、水分の逆拡散率は1%以下になり、細管320が長くなるにつれて水分の逆拡散率は小さくなる。例えば、細管320の長さが約30mmの場合、水分の逆拡散率は0.001%程度にまで小さくなる。また、本実施形態の熱交換器300では、キャリアガスの流量が10,15,20sccmの場合は、細管320が10mmに満たないような比較的短い長さであっても、水分の逆拡散率が1%以下になり、細管320が長くなるにつれて水分の逆拡散率は小さくなる。例えば、キャリアガスの流量が15sccmの場合、細管320の長さが約10mmの状態で、水分の逆拡散率は0.001%程度にまで小さくなる。
 次に、本実施形態の熱交換器を設けたことによるキャリアガスの温度変化について説明する。図8は、一実施形態に係る熱交換器によるキャリアガスの温度変化を示す図である。図8において、横軸は細管320の距離(長さ)であり、縦軸は、キャリアガスの温度を示す。
 図8に示すように、本実施形態の熱交換器300では、細管320の長さが約3mm程度以上あれば、キャリアガスの温度を約25℃から所望の約450℃まで加熱することができる。このように、本実施形態の熱交換器300では、細管320の径を比較的小さくするとともに、本数を比較的少なくしているが、細管320の長さを極端に長くすることなく、一般的な距離を持たせれば、十分に熱交換器としての機能(加熱)を果たすことができる。
 また、細管320の径を比較的小さくするとともに、本数を比較的少なくすることによって、キャリアガスの流量制御時の応答性も考慮したほうが好ましい。すなわち、熱交換器での差圧が大きければ、キャリアガスの流量をある流量から所望の他の流量へ変化させた際に、所望の他の流量になるまでの時間が多くかかるからである。
 この点、本実施形態の熱交換器300では、20sccmのキャリアガス流量から、1sccmのキャリアガス流量へ流量を変えた場合に、流量の変更指令が発生してからキャリアガスの流量が1sccmになるまでの時間が5.0secであった。
 また、本実施形態の熱交換器300では、20sccmのキャリアガス流量から、15sccmのキャリアガス流量へ流量を変えた場合に、流量の変更指令が発生してからキャリアガスの流量が15sccmになるまでの時間が2.2secであった。
 このように、本実施形態の熱交換器300によれば、細管320の径を比較的小さくするとともに本数を比較的少なくすることによって、熱交換器での差圧を生じさせているが、上記実施例はMFC400と熱交換器300が比較的長いモデルであるため、輸送路長短縮にて大幅に応答性は短縮可能となる(例えば1sec以下)。また、上記例は20sccm→1sccmと大きくキャリアガスの流量を変化させているが実際の蒸発量制御は少量変化の制御となる。よってキャリアガスの流量を変化させた場合の応答性は許容できる範囲内といえる。
 大気中に有機材料を保管した場合に、有機材料に水分が付着することがある。従来のガスフロー蒸着装置では、水分が付着した有機材料を用いてガスフロー蒸着をした場合、水分がキャリアガスとともに搬送され、基板に成膜された有機材料に水分が含まれるおそれがある。基板に成膜された有機材料に水分が含まれると、有機材料の成膜性能の劣化が問題となることがある。
 ここで、基板に対するガスフロー蒸着処理を行う前に、有機材料に付着した水分を予め除去する処理(水枯らし処理)を行うことが考えられる。例えば、材料容器と蒸着ヘッドとの間の輸送管にバルブを設けるとともに、材料容器とバルブとの間の輸送管から分岐するベント配管を設ける。そして、このバルブを閉じた状態で、材料容器、輸送管、及びバルブを加熱して水分を蒸発させながらキャリアガスを流し、ベント配管から水分の排気処理を行うことが考えられる。この水枯らし処理を行うことによって、有機材料に付着した水分をベント配管からある程度排気することができると考えられる。
 ところで、材料容器や材料容器以降のバルブを含む輸送管は、種々の有機材料の蒸発温度に対応するため、450℃程度までは加熱可能な仕様となるが、MFCを含む1次側輸送管はMFCが精密制御機器であるため多くのものは耐熱温度がその温度まで届かない。したがって、1次側輸送管のほうが2次側輸送管より低温の仕様となる。そこで、キャリアガスを予め材料蒸発温度と同等に昇温させるために、MFCと材料容器との間に熱交換器を設置して、熱交換器でキャリアガスを加熱する場合がある。
 ここで、水枯らし処理の際に水分が材料容器側から熱交換器側の1次輸送管に逆拡散した場合、1次側輸送管のほうが温度が低いため、水分が付着するおそれがある。1次側の輸送管に水分が付着した場合、この付着した水分がガスフロー蒸着処理の際に、更に高い温度設定で加熱されて再蒸発して基板まで搬送される結果、有機材料の成膜性能の劣化を招くおそれがある。
 これに対して、上述した本実施形態のガスフロー蒸着装置20によれば、基板に成膜される有機材料中に含まれる水分量を低減することができる。すなわち、本実施形態のガスフロー蒸着装置20では、キャリアガスの流入側の圧力とキャリアガスの流出側の圧力との差圧が生じる熱交換器300を用いてキャリアガスを加熱して材料容器200へ輸送する。したがって、水分枯らし処理において、材料容器200で蒸発した水分が熱交換器300及び熱交換器300の上流側へ逆拡散するのを抑制することができる。その結果、水分枯らし処理により、キャリアガスの通流経路にのこる水分量を抑制することができるので、ガスフロー蒸着処理において、基板に成膜される有機材料中に含まれる水分量を低減することができる。
 また、本実施形態のガスフロー蒸着方法では、まず、熱交換器300と材料容器200との間のバルブV30を閉じ、MFC400と熱交換器300との間の配管L14から分岐するベント配管L15のバルブV40を開いて、ベント配管L15から第1の排気処理を行う。その後、本実施形態のガスフロー蒸着方法では、バルブV30を開くとともにバルブV40を閉じ、更に、材料容器200と蒸着ヘッド100との間のバルブV10を閉じるとともに、材料容器200とバルブV10との間の配管から分岐するベント配管L19のバルブV20を開いて、ベント配管L19から第2の排気処理を行う。このように、第2の排気処理を行うに先立って、第1の排気処理を行うことによって、熱交換器300及び熱交換器300の上流側に予め付着している水分を枯らすことができるので、より一層、基板に成膜される有機材料中に含まれる水分量を低減することができる。
(フィルタ)
 上述した実施形態では、熱交換器300を有する場合を例に示したが、これに限定されるものではない。例えば、熱交換器300が、フィルタとしての機能を有しても良く、熱交換器300の代わりにフィルタを設けても良い。以下では、流量制御部400によって流量を制御されたキャリアガスの不純物を除去するためのフィルタ500を有する場合を例に説明する。ここで、フィルタ500は、上述の熱交換器300にフィルタ機能を付加することで実現しても良く、熱交換器としての機能を有さないフィルタとして実現しても良い。以下では、熱交換器300を有する場合と同様の点については、説明を適宜省略する。
 すなわち、ガスフロー蒸着装置20aは、キャリアガスの流量を制御する流量制御部400を有する。また、ガスフロー蒸着装置20aは、流量制御部400によって流量を制御されたキャリアガスの不純物を除去するためのフィルタ500を有する。また、ガスフロー蒸着装置20aは、蒸着材料を内部に収容し、フィルタ500を通過したキャリアガスとともに蒸着材料の蒸気を流出する材料容器200を有する。また、ガスフロー蒸着装置20aは、材料容器200から流出された蒸着材料の蒸気及びキャリアガスを含むガスを噴射する蒸着ヘッド100を有する。
 図9は、フィルタを有する場合におけるガスフロー蒸着装置の一例を示す概略構成図である。図9に示すように、ガスフロー蒸着装置20aは、流量制御部400によって流量を制御されたキャリアガスの不純物を除去するためのフィルタ500を有し、材料容器200が、フィルタ500を通過したキャリアガスとともに蒸着材料の蒸気を流出する。
 また、図9に示すように、ガスフロー蒸着装置20aは、フィルタ500から排気するための排気ポンプ600を有し、フィルタ500と排気ポンプ600との間の配管にバルブV70を有する。なお、図9に示す例では、バルブV50とフィルタ500との間の配管を「L21」と記載し、フィルタ500とバルブV30との間の配管を「L22」と記載し、フィルタ500とバルブV70との間の配管を「L23」と記載し、バルブV70と排気ポンプ600との間の配管を「L24」と記載する。
 なお、図9に示す例では、ガスフロー蒸着装置20aの排気ポンプ600とフィルタ500とを接続する配管が、フィルタ500と材料容器200とを結ぶ配管とは別の配管となる場合を例に示した。これに限定されるものではない。図10は、フィルタを有する場合におけるガスフロー蒸着装置の一例を示す概略構成図である。例えば、図10に示すように、ガスフロー蒸着装置20aの排気ポンプ600とフィルタ500とを接続する配管が、フィルタ500と材料容器200とを結ぶ配管から枝分かれする配管となっても良い。
 図11は、フィルタを有する場合におけるガスフロー蒸着装置の構成の一例を示す図である。図11に示すように、ガスフロー蒸着装置20aは、フィルタ500や材料容器200、蒸着ヘッド100、フィルタ500と材料容器200と蒸着ヘッド100との間の配管などを加熱するためのヒータ800と、各部位の温度を測定するための熱電対700とを有する。なお、図11に示す例では、ガスフロー蒸着装置20aの排気ポンプ600とフィルタ500とを接続する配管が、フィルタ500と材料容器200とを結ぶ配管とは別の配管となる場合を例に示した。
 ここで、フィルタ500について更に説明する。フィルタ500は、例えば、金属ゲッタ510を内部に有する。金属ゲッタ510としては、公知のものを用いて良い。例えば、フィルタ500は、単一又は複数種類のフィルタ構造などの組み合わせから形成される。フィルタ500は、キャリアガス以外の不純物を捕捉して除去する。例えば、フィルタ500は、有機成膜材料や薄膜に悪影響を及ぼす物質を捕捉して除去する。
 なお、キャリアガスは、例えば、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンなどから選択される。また、フィルタ500により捕捉される物質とは、例えば、水、水素、酸素、二酸化炭素、炭化水素類及び各種パーティクルなどを示す。なお、キャリアガスとして窒素が用いられない場合には、窒素を除去しても良い。なお、炭化水素とは、例えば、メタンをはじめとする、C-H結合部位を持つ有機ガス類である。各種パーティクルとは、例えば、ちりである。有機成膜材料とは、例えば、有機EL材料として用いられる有機化合物や有機錯体を示す。
 ここで、フィルタ500のフィルタ機構として用いられる材料としては、例えば、金属、合金、化合物からなるフィルタ剤及びフィルタ機能・捕捉機能を有する粉、断片、板、小球、多孔質材、メッシュ材などである。金属や合金、化合物は、例えば、炭素、アンモニウム、ケイ素、チタン、バナジウム、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム、モリブデン、パラジウム、銀、タンタル、白金、金、ビスマスのうち、少なくとも1つを含む。また、フィルタとして用いられる材料は、任意の部材に塗布したり蒸着したりすることでコーティングして用いても良い。
 排気ポンプ600は、例えば、ターボ分子ポンプ、クライオポンプ、ドライポンプ、イオンポンプのうち、少なくとも1つ以上を用いる。ただし、これに限定されるものではない。また、排気ポンプ600は、好ましくは、コールドトラップ、ヒータ設備を有する。
 図12-1~図12-9は、フィルタの外観の一例を示す図である。フィルタ500は、図12-1に示すように、円柱状であっても良い。また、フィルタ500は、図12-2に示すように、入口側が円柱状であって、出口側が円錐状であっても良い。また、フィルタ500は、図12-3に示すように、入口側を底面とする円錐状であっても良い。また、フィルタ500は、図12-4に示すように、中央部が円柱状であって、入口側と出口側とが、中央側を底面とする円錐状であっても良い。また、フィルタ500は、図12-5に示すように、出口側が丸みを帯びた形状となっても良い。また、フィルタ500は、図12-6に示すように、入口側と出口側とが丸みを帯びた形状であっても良い。また、フィルタ500は、図12-7に示すように、2つの円錐を連結した形状であっても良い。また、フィルタ500は、図12-8に示すように、直方体であっても良い。また、フィルタ500は、図12-9に示すように、配管がフィルタの中央付近に接続されるのではなく、端部に設けられた上で、直方体の角が丸みを帯びた形状であっても良い。なお、図12-1~図12-9に示すフィルタ500の外観は一例であり、これに限定されるものではなく、図12-1~図12-9に示す形状を適宜組み合わせても良く、他の形状を用いても良い。
 次に、フィルタ500の内部構造の一例について説明する。以下では、フィルタ500において、配管L21から配管L22を結ぶ奥行き方向をz軸とした上で、水平方向をz軸、垂直方向をy軸として説明する。
 図13-1~図13-3は、垂直に配置した場合におけるフィルタ500の内部の構造の一例を示す図である。図13-1は、フィルタ500のyz平面における断面図の一例を示し、図13-2及び図13-3は、z軸上における任意の箇所におけるxy平面における断面図を示す。言い換えると、z軸上における任意の箇所においてフィルタ500を切断して配管L21側を除去した上で、断面から配管L22側を見た場合における図を示す。なお、図13-2は、フィルタ500が円柱状である場合を示し、図13-3は、フィルタ500が直方体である場合を示す。
 図13-1~図13-3に示す例では、複数の金属ゲッタ510a~510gが、フィルタの内部に、一部開口部をのこすように垂直に固定される。言い換えると、フィルタ500は、図13-1~図13-3に示す例では、金属ゲッタ510が設けられたz軸の位置において、金属ゲッタ510によりふさがれていない箇所を有する。また、図13-1~図13-3に示す例では、金属ゲッタによりふさがれていない箇所が、らせんを描くように、金属ゲッタ510が固定される。
 図14-1~図14-3は、傾けて配置した場合におけるフィルタの内部の構造の一例を示す図である。図14-1~図14-3に示す例では、図13-1~図13-3とは異なり、金属ゲッタ510h~510kが、垂直方向ではなく、垂直方向から配管L21側に傾いて固定される場合を例に示した。
 図15-1~図15-3、及び、図16-1~図16-3は、一枚の金属ゲッタでらせんを形成した場合におけるフィルタの内部の構造の一例を示す図である。図15-1及び図16-1は、フィルタ500のyz平面における断面図の一例を示し、図15-2及び図16-2は、z軸上における任意の箇所におけるxy平面における断面図を示す。言い換えると、z軸上における任意の箇所においてフィルタ500を切断して配管L21側を除去した上で、断面から配管L22側を見た場合における図を示す。図15-3及び図16-3は、フィルタ500の内部に設けられた金属ゲッタ510の一例を示す。
 図15-1~図15-3、及び図16-1~図16-3に示すように、図13-1~図14-3に示す例とは異なり、一枚の金属ゲッタ510m、nをらせんを描くように形成した上で、フィルタ500の内部に設けても良い。なお、図15-1~図15-3では、フィルタ500が円柱状である場合を示し、図16-1~図16-3は、フィルタ500が直方体である場合を示す。
 図17-1及び図17-2は、多孔質材を用いた場合におけるフィルタの内部の構造の一例を示す図である。図17-1及び図17-2に示すように、フィルタ500は、多孔質材で形成された金属ゲッタ510pや金属ゲッタ510qを、フィルタ内部に有しても良い。図17-1は、フィルタ500が円柱状である場合を示し、図17-2は、フィルタ500が直方体である場合を例に示した。この場合、キャリアガスは、多孔質材で形成された金属ゲッタ510をp、q通過する。
 図18-1及び図18-2は、小球又は断片を用いた場合におけるフィルタの内部の構造の一例を示す図である。図18-1及び図18-2に示すように、フィルタ500は、小球又は断片となる金属ゲッタ510rを内部に敷き詰めても良い。図18-1は、フィルタ500が円柱状である場合を示し、図18-2は、フィルタ500が直方体である場合を例に示した。この場合、キャリアガスは、金属ゲッタ510rで形成された小球又は断片の隙間を通過する。
 図19-1~図19-3は、メッシュ材を用いた場合におけるフィルタの内部の構造の一例を示す図である。図19-1に示すように、フィルタ500の内部にメッシュ材で形成された金属ゲッタ510sを設け、配管L21の出口をメッシュ材で形成された金属ゲッタ510sの内部に設けても良い。この場合、配管L21から流出したキャリアガスが、メッシュ材を拡散した後、配管L22へと移動する。なお、図19-2は、図19-1とは逆に、配管L22の入口がメッシュ材で形成された金属ゲッタ510sの内部に設けられる場合を示す。すなわち、金属ゲッタ510sにキャリアガスが収束された後、配管L22へと移動する。また、図19-3は、複数のメッシュ材で形成された金属ゲッタ510sをフィルタ500の中央部に設けた上で、配管L21の出口及び、配管L22の入口のいずれについても、メッシュ材で形成された金属ゲッタ510sの内部に設けない場合を示す。なお、図19-1~図19-3に示す例では、メッシュ材は、1つのメッシュ材を用いても良く、複数の異なる空隙率のメッシュ材を併せて用いて良い。
 また、フィルタ500では、金属ゲッタ510sを動作させる活性化温度が、フィルタ500にて除去する不純物の蒸発温度より少なくとも50℃高い。例えば、フィルタ500にて除去する水や有機溶媒の蒸発温度は、320℃~330℃までであることを踏まえ、フィルタ500を被覆しているヒータ800により370℃以上にフィルタ500を加熱された上で用いられる。この結果、キャリアガスは、フィルタ500にて加熱されることにもなる。
 また、フィルタ500は、概ね25℃から800℃まで利用可能なことが好ましい。また、フィルタ500は、真空中、減圧環境下において利用可能であり、使用圧力範囲は、例えば、1.0×10-6Paから10Paであるが、これに限定されるものではない。フィルタ500では、出口側の圧力が、入口側の圧力と比較して低くなる。例えば、出口側の圧力が30Paとなる。この結果、キャリアガスの逆流を防止可能であり、フィルタ500内部をキャリアガスが適切に通過可能となる。
 ここで、ガスフロー蒸着装置20aは、フィルタ500の温度と、フィルタ500と材料容器200との間の配管の温度と、材料容器200と蒸着ヘッド100との間の配管の温度とが同一の温度又は所定の温度差内になるように制御する温度制御部を有する。具体的には、熱電対700により測定される温度に基づいてヒータ800による加熱温度を制御することで、各部位の温度が同一の温度又は所定の温度差内になるように制御する。例えば、ガスフロー蒸着装置20aは、同一の温度、又は20℃以内になるように制御する。この結果、フィルタ500にて加熱されたことで蒸発した物質が、低い温度にさらされることで他の部位に付着することを防止可能となる。温度制御部は、例えば、ガスフロー蒸着装置20aに搭載されたCPUなどの処理回路によって実現される。
 ここで、フィルタ500を有するガスフロー蒸着装置20aにおける動作について簡単に説明する。ガスフロー蒸着装置20aでは、成膜時には、フィルタ500をヒータ800により加熱し、金属ゲッタ510の活性化温度にまで一度上げた後、フィルタ500が最も効率良く機能する温度に保温する。フィルタ500が最も効率良く機能する温度とは、捕捉する物質、金属ゲッタ510によって異なる。フィルタ500が最も効率良く機能する温度とは、例えば、25℃~350℃である。
 その後、ガスフロー蒸着装置20aに導入されると、キャリアガスの流量を流量制御部400がキャリアガスの流量を調整し、流量調整されたキャリアガスがフィルタ500に送られる。フィルタ500では、不純物を除去することで高純度化する。そして、高純度化されたキャリアガスが、材料容器200側に設けられたバルブV30を開けることで、材料容器200に送られる。なお、この際には、バルブV70を閉じておくことで、高純度化されたキャリアガスが排気されるのを防ぐ。
 ガスフロー蒸着装置20aは、フィルタ500と材料容器200との間の配管を閉じた上で、フィルタ500を所定の温度に加熱することで、フィルタ500に蓄積された不純物を除去する制御部を有する。このため、以下では、フラッシング時における動作について説明する。言い換えると、フィルタ500をクリーニングする場合における動作について説明する。この場合、ガスフロー蒸着装置20aでは、フィルタ500をヒータ800により加熱し、フラッシングに適した温度まで上げる。例えば、少なくとも一度活性化温度にまであげた上で、300℃から800℃にまで上げる。その上で、温度を保持した上で、30分以上加熱する。なお、加熱時間は任意の時間であって良く、30分未満であっても良く、30分以上であっても良い。この結果フィルタ500からの脱ガス及びフィルタ500の再活性化を行う。
 そして、バルブV30を閉じ、バルブV70を開けることで、フィルタ500から発生した脱ガスを排気する。また、この際、例えば、バルブV50を一度あけてキャリアガスをフィルタ500に一度ためた後、加熱して排気しても良く、バルブV50をあけたまま、キャリアガスを流しながら、加熱して排気しても良い。
 すなわち、ガスフロー蒸着装置20aは、フィルタ500から排気するための配管を更に有し、フィルタ500と材料容器200との間の配管を閉じ、フィルタ500から排気するための配管を開けた上で、流量制御部400からキャリアガスをフィルタ500に流出させながらフィルタ500を所定の温度に加熱することで、フィルタ500に除去されて蓄積された不純物を除去しても良い。
 このように、ガスフロー蒸着装置20aは、キャリアガスの流量を制御する流量制御部400と、流量制御部400によって流量を制御されたキャリアガスの不純物を除去するためのフィルタ500と、蒸着材料を内部に収容し、フィルタ500を通過したキャリアガスとともに蒸着材料の蒸気を流出する材料容器200と、材料容器200から流出された蒸着材料の蒸気及びキャリアガスを含むガスを噴射する蒸着ヘッド100とを有する。
 また、キャリアガスの流量を制御する流量制御部400から流出したキャリアガスの不純物をフィルタ500で除去し、不純物が除去されて第1のバルブ、例えば、配管L22を介して材料容器に流入したキャリアガスとともに材料容器200の内部に収容した蒸着材料の蒸気を流出し、第2のバルブ、例えば、配管L18を介して流出した蒸着材料の蒸気及びキャリアガスを含むガスを蒸着ヘッド100から噴射する。
 この結果、キャリアガスを高純度化でき、例えば、基板に成膜される有機材料中に含まれる水分量を低減することができる。
 また、ガスフロー蒸着装置20aでは、フィルタ500の温度と、フィルタ500と材料容器200との間の配管の温度と、材料容器200と蒸着ヘッド100との間の配管の温度とが同一の温度又は所定の温度差内になるように制御する。この結果、一度蒸発したものが付着することを防止可能となる。
 また、ガスフロー蒸着装置20aでは、フィルタ500は、金属ゲッタ510を有し、金属ゲッタ510を動作させる活性化温度が、フィルタ500にて除去する不純物の蒸発温度より少なくとも50℃高い。この結果、効率良く不純物を除去可能となる。
 また、ガスフロー蒸着装置20aでは、フィルタ500は、出口側の圧力が、入口側の圧力と比較して低くなる。この結果、逆流を防止することが可能となる。
 また、ガスフロー蒸着装置20aでは、フィルタ500と材料容器200との間の配管を閉じた上で、フィルタ500を所定の温度に加熱することで、フィルタ500に除去されて蓄積された不純物を除去する制御部を有する。この結果、フィルタ500を恒久的に使用可能となる。
 また、ガスフロー蒸着装置20aでは、フィルタ500から排気するための配管を更に有し、フィルタ500と材料容器200との間の配管を閉じ、フィルタ500から排気するための配管を開けた上で、流量制御部400からキャリアガスをフィルタ500に流出させながらフィルタ500を所定の温度に加熱することで、フィルタ500に除去されて蓄積された不純物を除去する制御部を有する。この結果、効率良く不純物を除去可能となる。
10 基板処理システム
20 ガスフロー蒸着装置
100 蒸着ヘッド
200 材料容器
300 熱交換器
320 細管
350 ヒータ
370 ニードル
400 流量制御部
500 フィルタ
V10,V20,V30,V40,V50,V60 バルブ

Claims (13)

  1.  キャリアガスの流量を制御する流量制御部と、
     前記流量制御部によって流量を制御されたキャリアガスを加熱する熱交換器と、
     蒸着材料を内部に収容し、前記熱交換器によって加熱されたキャリアガスとともに前記蒸着材料の蒸気を流出する材料容器と、
     前記材料容器から流出された前記蒸着材料の蒸気及び前記キャリアガスを含むガスを噴射する蒸着ヘッドと、を備え、
     前記熱交換器は、前記キャリアガスの流入側の圧力と前記キャリアガスの流出側の圧力との差圧が生じる熱交換器である
     ことを特徴とするガスフロー蒸着装置。
  2.  前記熱交換器は、前記差圧が250Pa以上になるよう形成された熱交換器である
     ことを特徴とする請求項1に記載のガスフロー蒸着装置。
  3.  前記熱交換器は、前記キャリアガスの流入側から前記キャリアガスの流出側へ通流したキャリアガスの量に対する、前記キャリアガスの流出側から前記キャリアガスの流入側へ通流した水の量の割合が、1パーセント以下になるよう形成された熱交換器である
     ことを特徴とする請求項1又は2に記載のガスフロー蒸着装置。
  4.  前記熱交換器は、ペクレ数が5以上になるよう形成された熱交換器である
     ことを特徴とする請求項1乃至3のいずれか1項に記載のガスフロー蒸着装置。
  5.  前記流量制御部によって前記キャリアガスの流量を第1の流量から第2の流量へ変えた場合において、前記流量の変更指令が発生してから前記キャリアガスの流量が前記第2の流量になるまでの時間が5sec以下である
     ことを特徴とする請求項1乃至4のいずれか1項に記載のガスフロー蒸着装置。
  6.  キャリアガスの流量を制御する流量制御部から流出したキャリアガスを熱交換器で加熱する第1の工程と、
     前記第1の工程で加熱され第1のバルブを介して材料容器に流入したキャリアガスとともに前記材料容器の内部に収容した蒸着材料の蒸気を流出する第2の工程と、
     前記第2の工程の後第2のバルブを介して流出した前記蒸着材料の蒸気及び前記キャリアガスを含むガスを蒸着ヘッドから噴射する第3の工程と、を備えたガスフロー蒸着方法であって、
     前記第1のバルブを閉じた状態で前記流量制御部と前記熱交換器との間の配管から分岐する第1のベント配管から第1の排気処理を行い、
     前記第1の排気処理の後、前記第1のバルブを開くとともに前記第2のバルブを閉じ、前記材料容器と前記第2のバルブの間の配管から分岐する第2のベント配管から第2の排気処理を行い、
     前記第2の排気処理の後、前記蒸着材料の蒸気及び前記キャリアガスを含むガスを前記蒸着ヘッドから噴射する
     ことを特徴とするガスフロー蒸着方法。
  7.  キャリアガスの流量を制御する流量制御部と、
     前記流量制御部によって流量を制御されたキャリアガスの不純物を除去するためのフィルタと、
     蒸着材料を内部に収容し、前記フィルタを通過したキャリアガスとともに前記蒸着材料の蒸気を流出する材料容器と、
     前記材料容器から流出された前記蒸着材料の蒸気及び前記キャリアガスを含むガスを噴射する蒸着ヘッドと
     を備えることを特徴とするガスフロー蒸着装置。
  8.  前記フィルタの温度と、前記フィルタと前記材料容器との間の配管の温度と、前記材料容器と蒸着ヘッドとの間の配管の温度とが同一の温度又は所定の温度差内になるように制御する温度制御部を更に有することを特徴とする請求項7に記載のガスフロー蒸着装置。
  9.  前記フィルタは、金属ゲッタを有し、前記金属ゲッタを動作させる活性化温度が、前記フィルタにて除去する不純物の蒸発温度より少なくとも50℃高いことを特徴とする請求項7に記載のガスフロー蒸着装置。
  10.  前記フィルタは、出口側の圧力が、入口側の圧力と比較して低いことを特徴とする請求項7に記載のガスフロー蒸着装置。
  11.  前記フィルタと前記材料容器との間の配管を閉じた上で、前記フィルタを所定の温度に加熱することで、前記フィルタに除去されて蓄積された不純物を除去する制御部を有することを特徴とする請求項7に記載のガスフロー蒸着装置。
  12.  前記フィルタから排気するための配管を更に有し、
     前記フィルタと前記材料容器との間の配管を閉じ、前記フィルタから排気するための配管を開けた上で、前記流量制御部から前記キャリアガスを前記フィルタに流出させながら前記フィルタを所定の温度に加熱することで、前記フィルタに除去されて蓄積された不純物を除去する制御部を有することを特徴とする請求項7に記載のガスフロー蒸着装置。
  13.  キャリアガスの流量を制御する流量制御部から流出したキャリアガスの不純物をフィルタで除去し、
     不純物が除去されて第1のバルブを介して材料容器に流入したキャリアガスとともに前記材料容器の内部に収容した蒸着材料の蒸気を流出し、
     第2のバルブを介して流出した前記蒸着材料の蒸気及び前記キャリアガスを含むガスを蒸着ヘッドから噴射する
     ことを特徴とするガスフロー蒸着方法。
PCT/JP2013/061645 2012-04-20 2013-04-19 ガスフロー蒸着装置、及びガスフロー蒸着方法 WO2013157635A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012097033A JP2015129316A (ja) 2012-04-20 2012-04-20 ガスフロー蒸着装置、及びガスフロー蒸着方法
JP2012-097033 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157635A1 true WO2013157635A1 (ja) 2013-10-24

Family

ID=49383583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061645 WO2013157635A1 (ja) 2012-04-20 2013-04-19 ガスフロー蒸着装置、及びガスフロー蒸着方法

Country Status (3)

Country Link
JP (1) JP2015129316A (ja)
TW (1) TW201404908A (ja)
WO (1) WO2013157635A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980777A (ja) * 1982-10-29 1984-05-10 Hitachi Ltd ガス制御装置
JPH09269100A (ja) * 1996-03-31 1997-10-14 Furontetsuku:Kk 混合ガス供給配管系
JP2001073116A (ja) * 1999-09-01 2001-03-21 Mitsubishi Heavy Ind Ltd 薄膜の製造方法
WO2009034939A1 (ja) * 2007-09-10 2009-03-19 Ulvac, Inc. 有機薄膜製造方法
JP2010024498A (ja) * 2008-07-18 2010-02-04 Tokyo Electron Ltd 成膜装置及び粉体気化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980777A (ja) * 1982-10-29 1984-05-10 Hitachi Ltd ガス制御装置
JPH09269100A (ja) * 1996-03-31 1997-10-14 Furontetsuku:Kk 混合ガス供給配管系
JP2001073116A (ja) * 1999-09-01 2001-03-21 Mitsubishi Heavy Ind Ltd 薄膜の製造方法
WO2009034939A1 (ja) * 2007-09-10 2009-03-19 Ulvac, Inc. 有機薄膜製造方法
JP2010024498A (ja) * 2008-07-18 2010-02-04 Tokyo Electron Ltd 成膜装置及び粉体気化装置

Also Published As

Publication number Publication date
TW201404908A (zh) 2014-02-01
JP2015129316A (ja) 2015-07-16

Similar Documents

Publication Publication Date Title
CN108735675A (zh) 氧化硅的选择性沉积
JP5837829B2 (ja) 基板処理方法および基板処理装置
US9781838B2 (en) Gas sensor and method of manufacturing the same
KR20220033549A (ko) 일산화탄소를 이용한 금속 박막 제조 방법 및 제조 장치
JP7473591B2 (ja) 成膜装置及び成膜方法
KR101113128B1 (ko) 성막 장치의 제어 방법, 성막 방법, 성막 장치, 유기 el 전자 디바이스 및 그 제어 프로그램을 격납한 기억 매체
JP5527933B2 (ja) 成膜装置の制御方法、成膜方法、成膜装置、有機el電子デバイスおよびその制御プログラムを格納した記憶媒体
Dhakal et al. Surface chemistry of a Cu (I) beta-diketonate precursor and the atomic layer deposition of Cu2O on SiO2 studied by x-ray photoelectron spectroscopy
WO2013157635A1 (ja) ガスフロー蒸着装置、及びガスフロー蒸着方法
TW201734248A (zh) 用於磁性穿隧接面之氧化鎂沉積期間的介面工程
JP4759916B2 (ja) 処理装置
JP5866815B2 (ja) 成膜方法
WO2007029684A1 (ja) フラーレン類又はナノチューブ、及び、フラーレン類又はナノチューブの製造方法
US10276393B2 (en) Method of manufacturing semiconductor device
CN111455351A (zh) 一种氮化铝-氧化铝薄膜及其制备方法和应用
Hung et al. Fabrication of SnO 2 Nanowire Networks on a Spherical Sn Surface by Thermal Oxidation
JPS61229319A (ja) 薄膜形成方法
KR20230076804A (ko) 세라믹에 임베딩된 히터를 위한 코팅된 컨덕터
WO2010007981A1 (ja) 成膜装置及び粉体気化装置
JP6145032B2 (ja) 有機単分子膜の形成方法および形成装置
CN208173561U (zh) 基板处理装置
KR101237634B1 (ko) 성막 방법 및 성막 장치
CN102201318A (zh) 用于场发射显示器的非蒸发性吸气体
US20140338600A1 (en) Exhausting apparatuses and film deposition facilities including the same
JP3836326B2 (ja) 高純度標準粒子作製装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13779051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP