CN111455351A - 一种氮化铝-氧化铝薄膜及其制备方法和应用 - Google Patents

一种氮化铝-氧化铝薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN111455351A
CN111455351A CN202010277909.7A CN202010277909A CN111455351A CN 111455351 A CN111455351 A CN 111455351A CN 202010277909 A CN202010277909 A CN 202010277909A CN 111455351 A CN111455351 A CN 111455351A
Authority
CN
China
Prior art keywords
airflow
trimethylaluminum
deposition chamber
aluminum nitride
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010277909.7A
Other languages
English (en)
Inventor
蒋书森
吕文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202010277909.7A priority Critical patent/CN111455351A/zh
Publication of CN111455351A publication Critical patent/CN111455351A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供了一种氮化铝‑氧化铝薄膜及其制备方法和应用,属于电子器件技术领域。本发明提供的氮化铝‑氧化铝薄膜的制备方法先将衬底升温至150~350℃,得到待沉积硅衬底;在真空条件下,向原子层沉积室通入三甲基铝气流,得到第一原子沉积层;通过氮气流吹扫对原子层沉积室进行净化,然后向原子层沉积室通入氨水气流,得到第一氮化铝‑氧化铝沉积层;通过氮气流吹扫对原子层沉积室进行净化;重复通入三甲基铝气流‑净化‑通入氨水气流‑净化的步骤,在待沉积硅衬底上得到氮化铝‑氧化铝薄膜。本发明得到的氮化铝‑氧化铝薄膜具有较低的漏电流密度,介电性能优异。

Description

一种氮化铝-氧化铝薄膜及其制备方法和应用
技术领域
本发明涉及电子器件技术领域,尤其涉及一种氮化铝-氧化铝薄膜及其制备方法和应用。
背景技术
原子层沉积技术具有大面积、均匀、可低温沉积制备等优点,其制备的氧化物目前被广泛的应用于太阳能电池的钝化、柔性有机发光二极管的封装、显示数据随机存储器和薄膜晶体管等领域。原子层沉积技术制备氧化铝薄膜是将三甲基铝(TMA)和去离子水交替通入到沉积室实现薄膜的沉积,从而得到氧化铝薄膜。原子层沉积技术所制备的氧化铝薄膜因具有良好的平整度和较高的介电常数而广泛应用于薄膜晶体管的绝缘层。随着电子器件的不断发展,对高介电性能的薄膜要求越来越高,即期望能够进一步提高介电性能,即降低漏电流密度,从而能够减小高介电性能的薄膜的厚度,以实现低成本、高效率的电子器件制造。
发明内容
本发明的目的在于提供一种氮化铝-氧化铝薄膜及其制备方法和应用,本发明提供的氮化铝-氧化铝薄膜具有更低的漏电流密度,介电性能优异。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种氮化铝-氧化铝薄膜的制备方法,包括如下步骤:
(1)在原子层沉积室内放置硅衬底,将所述硅衬底升温至150~350℃,得到待沉积硅衬底;
(2)在真空条件下,向原子层沉积室通入三甲基铝气流,在待沉积硅衬底上得到第一原子沉积层;
(3)通过氮气流吹扫对原子层沉积室进行净化,然后向原子层沉积室通入氨水气流,在待沉积硅衬底上得到第一氮化铝-氧化铝沉积层;所述氨水气流为氨和水蒸气的混合气流;
(4)通过氮气流吹扫对原子层沉积室进行净化;
(5)重复通入三甲基铝气流-净化-通入氨水气流-净化的步骤,在待沉积硅衬底上得到氮化铝-氧化铝薄膜,所述重复的次数为0次以上。
优选地,所述三甲基铝气流由三甲基铝在环境温度下自然挥发得到。
优选地,所述三甲基铝气流的通入时间为50~300ms。
优选地,所述氨水气流由氨水在环境温度下自然挥发得到,所述氨水的质量浓度为23~27%。
优选地,所述氨水气流的通入时间为50~300ms。
优选地,所述真空条件为绝对压力≤10mbar的条件。
优选地,所述氮气流的流量为900~1100sccm;所述净化的时间为3~10s。
优选地,通入三甲基铝气流、氨水气流和氮气流的管路均与混合装置连通,所述混合装置的气体排出口与原子层沉积室连通,且通入三甲基铝气流和氨水气流时,均维持所述氮气流为通入状态。
本发明还提供了上述技术方案所述的制备方法得到的氮化铝-氧化铝薄膜。
本发明还提供了上述技术方案所述的氮化铝-氧化铝薄膜在电子器件中的应用。
本发明提供了一种氮化铝-氧化铝薄膜的制备方法,将三甲基铝通入原子层沉积室,在硅衬底表面进行饱和化学吸附反应,生成第一原子沉积层,经对原子层沉积室净化后通入氨水气流,与第一原子沉积层发生反应,生成第一氮化铝-氧化铝沉积层(即氮化铝-氧化铝复合薄膜),再次净化原子层沉积室后,重复上述操作0次以上,即可得到氮化铝-氧化铝薄膜。由于氮原子与铝原子结合能力更强,可以有效的填充薄膜中的氧空位,减少了氧空位,从而降低了薄膜的漏电流密度。
附图说明
图1实施例1所得氮化铝-氧化铝薄膜和对比例1所得氧化铝薄膜的漏电流密度-电压曲线图。
具体实施方式
本发明提供了一种氮化铝-氧化铝薄膜的制备方法,包括如下步骤:
(1)在原子层沉积室内放置硅衬底,将所述硅衬底升温至150~350℃,得到待沉积硅衬底;
(2)在真空条件下,向原子层沉积室通入三甲基铝气流,在待沉积硅衬底上得到第一原子沉积层;
(3)通过氮气流吹扫对原子层沉积室进行净化,然后向原子层沉积室通入氨水气流,在待沉积硅衬底上得到第一氮化铝-氧化铝沉积层;所述氨水气流为氨和水蒸气的混合气流;
(4)通过氮气流吹扫对原子层沉积室进行净化;
(5)重复通入三甲基铝气流-净化-通入氨水气流-净化的步骤,在待沉积硅衬底上得到氮化铝-氧化铝薄膜,所述重复的次数为0次以上。
本发明首先在原子层沉积室内放置硅衬底,将所述硅衬底升温至150~350℃,得到待沉积硅衬底。在本发明中,上述温度能够提高硅衬底的活化能,以促进三甲基铝和氨水的化学反应速率。
本发明对所述硅衬底的具体种类没有特殊限定,本领域技术人员可以根据微电子领域的应用场景的不同选择不同的硅衬底。在本发明实施例中,以P型硅衬底为例进行说明。
得到待沉积硅衬底后,本发明在真空条件下,向原子层沉积室通入三甲基铝气流,在待沉积硅衬底上得到第一原子沉积层。在本发明中,所述真空条件优选为绝对压力≤10mbar的条件,更优选为绝对压力为3~15mbar的条件,最优选为绝对压力为7mbar的条件。本发明对所述真空条件的获取方式没有特殊限定,在本发明实施例中,所述真空条件优选通过持续对所述原子层沉积室进行抽真空得到,并在整个制备方法中,持续抽真空,以维持真空条件,保持原子层沉积室的洁净状态。
在本发明中,所述三甲基铝气流优选由三甲基铝在环境温度下自然挥发得到;所述三甲基铝气流的通入时间优选为50~300ms。在本发明中,所述三甲基铝气流的通入量通过通入时间控制,而通入的时间通过电磁阀的打开时间控制,这种通入方式也称为脉冲的方式,一次通入可称为一个脉冲。本领域技术人员可以根据所需制备的薄膜的大小确定通入的时间,如需要制备的薄膜的面积较大,可选择通入较长的时间。
本发明对三甲基铝气流和氨水气流的通入方式没有特殊限定,能够将两者通入原子层沉积室即可,可以直接通入原子层沉积室,也可通过载气(如氮气)代入;当采用通过载气代入的方式时,可以为任意的代入方式,如可以使用载气从三甲基铝或氨水的液面上面通过,从而将三甲基铝和氨水以气态的方式代入,也可将载气和三甲基铝气流或氨水气流均通入混合装置,再将混合气体通入原子层沉积室。在本发明实施例中,通入三甲基铝气流、氨水气流和氮气流的管路优选均与混合装置连通,所述混合装置的气体排出口与原子层沉积室连通,且通入三甲基铝气流和氨水气流时,均维持所述氮气流为通入状态(即氮气流在整个制备过程中维持通入状态,三甲基铝气流和氨水气流通过氮气流代入原子层沉积室);在本发明实施例中,所述混合装置优选为气体分配单元。在本发明中,上述优选的过程中,氮气流能够将三甲基铝气流和氨水气流快速代入,同时在得到一个沉积层后,氮气流还可作为净化用气体,净化原子层沉积室,当作为净化用气体使用时,停止通入三甲基铝气流或氨水气流即可,操作更加简单。
得到第一原子沉积层后,本发明通过氮气流吹扫对原子层沉积室进行净化,然后向原子层沉积室通入氨水气流,在待沉积硅衬底上得到第一氮化铝-氧化铝沉积层;所述氨水气流为氨和水蒸气的混合气流。在该过程中,三甲基铝和NH3及H2O发生取代反应,形成第一氮化铝-氧化铝沉积层。
在本发明中,所述氮气流的流量优选为900~1100sccm,更优选为1000sccm;所述净化的时间优选为3~10s,更优选为5s。在本发明中,所述氮气流吹扫是指停止前驱体气源(即三甲基铝气流或氨水气流)的通入后,维持氮气流继续通入;所述氮气流吹扫能够将未沉积的三甲基铝气流或氨水气流以及副产物去除,达到净化原子层沉积室的目的。
本发明对所述氨水气流的来源没有特殊限定,可以为将氨气和水蒸气混合得到,也可由氨水挥发得到。在本发明实施例中,所述氨水气流优选由氨水在环境温度下自然挥发得到,所述氨水的质量浓度优选为23~27%,更优选为25%;所述氨水气流的通入时间优选为50~300ms。在本发明中,所述氨水气流的通入方式和三甲基铝气流的通入方式相同,在此不再赘述。与所述三甲基铝气流相同,所述氨水气流的通入量通过通入时间控制,而通入的时间通过电磁阀的打开时间控制,这种通入方式也称为脉冲的方式,一次通入可称为一个脉冲。
得到第一氮化铝-氧化铝沉积层后,本发明通过氮气流吹扫对原子层沉积室进行净化。得到第一氮化铝-氧化铝沉积层后的净化操作与通入氨水气流前的净化操作相同,在此不再赘述。
重复通入三甲基铝气流-净化-通入氨水气流-净化的步骤,在待沉积硅衬底上得到氮化铝-氧化铝薄膜,所述重复的次数为0次以上。在本发明中,本领域技术人员可以根据所需制备的薄膜的厚度,选择重复的次数,这里所述的“重复”是指得到第一氮化铝-氧化铝沉积层之后重复的次数。在本发明实施例中,以重复1000次为例进行说明,所得氮化铝-氧化铝薄膜的厚度为100nm。
本发明还提供了上述技术方案所述的制备方法得到的氮化铝-氧化铝薄膜。
本发明还提供了上述技术方案所述的氮化铝-氧化铝薄膜在电子器件中的应用;在本发明实施例中,所述氮化铝-氧化铝薄膜优选作为电子器件中的绝缘层使用。
下面结合实施例对本发明提供的一种氮化铝-氧化铝薄膜及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
在原子层沉积室内放置P型硅衬底,将P型硅衬底升温至250℃,得到待沉积硅衬底;
将原子层沉积室抽真空至绝对压力为7mbar;通入三甲基铝气流、氨水气流和氮气流的管道均与气体分配单元连通,且气体分配单元的气体排出口与原子层沉积室连通,通过气体分配单元向原子层沉积室通入流量为1000sccm的氮气流,同时维持抽真空,保持原子层沉积室的绝对压力为7mbar;
将三甲基铝气流脉冲入气体分配单元,与氮气流一起通入原子层沉积室,在待沉积硅衬底上得到第一原子沉积层;三甲基铝气流由三甲基铝在环境温度下自然挥发得到;三甲基铝气流的脉冲的时间为200ms;
三甲基铝气流脉冲完成后,通过氮气流吹扫原子层沉积室5s,然后将氨水气流脉冲入气体分配单元,在待沉积硅衬底上得到第一氮化铝-氧化铝沉积层;氨水气流的脉冲时间为200ms;氨水气流通过质量浓度为25%的氨水在环境温度下自然挥发得到;
氨水气流脉冲完成后,通过氮气流吹扫原子层沉积室5s,然后重复上述三甲基铝气流脉冲-氮气流吹扫-氨水气流脉冲-氮气流吹扫的步骤1000次,然后自然降温至室温,在硅衬底上得到厚度为100nm的氮化铝-氧化铝薄膜,记为AlOxNy
对比例1
按照实施例1的方法,将氨水替换为去离子水,制备氧化铝薄膜,记为Al2O3,所得氧化铝薄膜的厚度为100nm。
在氮化铝-氧化铝薄膜和氧化铝薄膜上蒸镀铝电极,然后测试两者的漏电流密度,结果如图1所示。由图1可知,在电压为0~40V的范围内,氧化铝薄膜的漏电流密度均高于氮化铝-氧化铝薄膜,说明氮化铝-氧化铝薄膜具有更高的介电性能,在制备相同的介电性能的绝缘层时,氮化铝-氧化铝薄膜的厚度更小。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种氮化铝-氧化铝薄膜的制备方法,其特征在于,包括如下步骤:
(1)在原子层沉积室内放置硅衬底,将所述硅衬底升温至150~350℃,得到待沉积硅衬底;
(2)在真空条件下,向原子层沉积室通入三甲基铝气流,在待沉积硅衬底上得到第一原子沉积层;
(3)通过氮气流吹扫对原子层沉积室进行净化,然后向原子层沉积室通入氨水气流,在待沉积硅衬底上得到第一氮化铝-氧化铝沉积层;所述氨水气流为氨和水蒸气的混合气流;
(4)通过氮气流吹扫对原子层沉积室进行净化;
(5)重复通入三甲基铝气流-净化-通入氨水气流-净化的步骤,在待沉积硅衬底上得到氮化铝-氧化铝薄膜,所述重复的次数为0次以上。
2.根据权利要求1所述的制备方法,其特征在于,所述三甲基铝气流由三甲基铝在环境温度下自然挥发得到。
3.根据权利要求2所述的制备方法,其特征在于,所述三甲基铝气流的通入时间为50~300ms。
4.根据权利要求1所述的制备方法,其特征在于,所述氨水气流由氨水在环境温度下自然挥发得到,所述氨水的质量浓度为23~27%。
5.根据权利要求4所述的制备方法,其特征在于,所述氨水气流的通入时间为50~300ms。
6.根据权利要求1~5任一项所述的制备方法,其特征在于,所述真空条件为绝对压力≤10mbar的条件。
7.根据权利要求1~5任一项所述的制备方法,其特征在于,所述氮气流的流量为900~1100sccm;所述净化的时间为3~10s。
8.根据权利要求7所述的制备方法,其特征在于,通入三甲基铝气流、氨水气流和氮气流的管路均与混合装置连通,所述混合装置的气体排出口与原子层沉积室连通,且通入三甲基铝气流和氨水气流时,均维持所述氮气流为通入状态。
9.权利要求1~8任一项所述的制备方法得到的氮化铝-氧化铝薄膜。
10.权利要求9所述的氮化铝-氧化铝薄膜在电子器件中的应用。
CN202010277909.7A 2020-04-10 2020-04-10 一种氮化铝-氧化铝薄膜及其制备方法和应用 Pending CN111455351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010277909.7A CN111455351A (zh) 2020-04-10 2020-04-10 一种氮化铝-氧化铝薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010277909.7A CN111455351A (zh) 2020-04-10 2020-04-10 一种氮化铝-氧化铝薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111455351A true CN111455351A (zh) 2020-07-28

Family

ID=71679369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010277909.7A Pending CN111455351A (zh) 2020-04-10 2020-04-10 一种氮化铝-氧化铝薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111455351A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838143A (zh) * 2020-12-31 2021-05-25 横店集团东磁股份有限公司 一种perc电池中氧化铝膜的沉积方法
CN115181923A (zh) * 2022-06-16 2022-10-14 浙江兴昌风机有限公司 一种铝材基底离子氮化制备氮化铝薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097528A (zh) * 2009-11-04 2011-06-15 三星电子株式会社 太阳能电池及其制造方法
CN102834938A (zh) * 2010-02-26 2012-12-19 美光科技公司 具有n极性的发光二极管及相关联制造方法
CN106504980A (zh) * 2016-11-16 2017-03-15 复旦大学 一种氮化铝单晶薄膜的制备方法
CN108603288A (zh) * 2015-11-16 2018-09-28 库伯斯股份有限公司 生产氧化铝和/或氮化铝的方法
CN110093624A (zh) * 2018-01-30 2019-08-06 天津大学 一种可控助剂和界面修复的铜铟镓硒电极及其制备方法和在光催化中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097528A (zh) * 2009-11-04 2011-06-15 三星电子株式会社 太阳能电池及其制造方法
CN102834938A (zh) * 2010-02-26 2012-12-19 美光科技公司 具有n极性的发光二极管及相关联制造方法
CN108603288A (zh) * 2015-11-16 2018-09-28 库伯斯股份有限公司 生产氧化铝和/或氮化铝的方法
CN106504980A (zh) * 2016-11-16 2017-03-15 复旦大学 一种氮化铝单晶薄膜的制备方法
CN110093624A (zh) * 2018-01-30 2019-08-06 天津大学 一种可控助剂和界面修复的铜铟镓硒电极及其制备方法和在光催化中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘宇: "原子层沉积氮氧化铝薄膜及其阻变特性研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838143A (zh) * 2020-12-31 2021-05-25 横店集团东磁股份有限公司 一种perc电池中氧化铝膜的沉积方法
CN115181923A (zh) * 2022-06-16 2022-10-14 浙江兴昌风机有限公司 一种铝材基底离子氮化制备氮化铝薄膜的方法

Similar Documents

Publication Publication Date Title
TWI740848B (zh) 實施原子層沉積以得閘極介電質
CN102625861B (zh) 利用受激氮-氧类进行的金属氧化物薄膜沉积的系统和方法
US10804098B2 (en) Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
TW201903190A (zh) 使用反應物氣體之緩慢下降流量之電漿輔助循環沉積方法
US20170114465A1 (en) Methods Of Depositing Flowable Films Comprising SiO and SiN
JP3627106B2 (ja) 原子層吸着堆積法によるハフニウムシリケート薄膜の製造方法
US20080032514A1 (en) Method For Manufacturing Semiconductor Device, And Substrate Processing Apparatus
KR20020002579A (ko) 원자층 증착법을 이용한 지르코늄산화막 형성방법
US20130069207A1 (en) Method for producing a deposit and a deposit on a surface of a silicon substrate
KR20120139562A (ko) 성막 방법 및 성막 장치
CN111455351A (zh) 一种氮化铝-氧化铝薄膜及其制备方法和应用
JP2002026005A (ja) 半導体素子のアルミニウム酸化膜形成方法
EP2514720B1 (en) Preparation method of high density zinc oxide nanometer granules
TWI251620B (en) Process for CVD of Hf and Zr containing oxynitride films
CN103866277A (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
US20230167548A1 (en) Thermal atomic layer deposition of ternary gallium oxide thin films
KR20100055655A (ko) n-타입 ZnO 반도체 박막의 제조 방법 및 박막 트랜지스터
CN112877674A (zh) 一种含量可精确调控的Sn掺杂氧化镓膜材料的生长方法
CN110808282A (zh) 一种制备碳化硅mosfet栅介质层的方法
CN104152865A (zh) 一种氮化硅薄膜制备方法
KR20020003003A (ko) 원자층 증착법을 이용한 하프니움산화막 형성방법
CN113088926B (zh) 一种通过磁场控制α-Ga2O3掺杂浓度的薄膜沉积系统及方法
CN110192290A (zh) 用于防止水气渗透的薄膜及其制造方法
KR100433622B1 (ko) 원자층 에피택시법을 이용한 실리콘 박막, 저매니움 박막 및 실리콘-저매니움 박막 형성 방법
KR101452976B1 (ko) 원자층증착법을 이용한 갈륨 산화물 나노선을 형성하는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200728