WO2010007981A1 - 成膜装置及び粉体気化装置 - Google Patents
成膜装置及び粉体気化装置 Download PDFInfo
- Publication number
- WO2010007981A1 WO2010007981A1 PCT/JP2009/062717 JP2009062717W WO2010007981A1 WO 2010007981 A1 WO2010007981 A1 WO 2010007981A1 JP 2009062717 W JP2009062717 W JP 2009062717W WO 2010007981 A1 WO2010007981 A1 WO 2010007981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- powder
- gas
- material powder
- supply path
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/452—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
Definitions
- the present invention relates to a technique for processing an object to be processed in a processing container using a gas obtained from raw material powder, and a technique for obtaining gas from raw material powder.
- the organic complex liquid raw material is vaporized by being heated to a predetermined temperature in a tank containing the liquid raw material, and supplied to a CVD apparatus via a pipe.
- the organic complex liquid raw material is likely to be decomposed (modified) in the tank.
- organic substances in the raw material are taken into the thin film, which becomes a factor that deteriorates the characteristics required for the thin film.
- organic complex vapor is liquefied by a valve provided in the pipe or a flow rate regulator and the liquid (mist) is conveyed into the processing container, thereby causing particle contamination on the semiconductor wafer.
- organic complex liquid raw materials are expensive.
- Japanese Laid-Open Patent Publication No. 5-97409 discloses a method for vaporizing a raw material powder that is difficult to vaporize during the formation of an oxide superconductor. It describes that mixed powder added with a bidentate solid at normal temperature such as carboxylic acid is sent to a vaporizer and heated. When heated, a bidentate ligand is bonded to the raw material powder, and a coordination compound that is easily vaporized is formed. As a result, the raw material powder is easily vaporized. However, even in this method, there is a concern that the organic material is mixed in the obtained raw material gas, so that the properties of the thin film are adversely affected.
- a bidentate solid at normal temperature such as carboxylic acid
- Japanese Patent Application Laid-Open No. 6-346243 (see FIG. 2) describes an apparatus for supplying raw material powder to a heating dish by a vibration feeder and vaporizing the raw material powder on the heating dish.
- this apparatus only sublimable powder materials can be vaporized.
- the raw material passage after vaporization must be heated to a high temperature.
- the present invention provides a technique capable of reliably vaporizing a raw material powder that is difficult to vaporize while suppressing the mixing of impurities.
- the present invention also provides a film forming apparatus using the vaporization technique.
- the present invention provides a film forming apparatus capable of performing a film forming process by vaporizing a raw material powder while suppressing contamination of impurities in a film forming apparatus for forming an organic luminescence thin film. To do.
- a raw material storage part for storing raw material powder, a raw material supply path connected to the raw material storage part, and a raw material powder in the raw material storage part are sent out to the raw material supply path.
- the powder vaporization unit having means for supplying energy and the raw material supply path are connected, and a film obtained by ionizing the raw material powder is used to form a film on the object to be processed.
- a film forming apparatus including a processing container for performing and an exhausting means for exhausting the inside of the processing container.
- the delivery means may be a carrier gas supply means for supplying a carrier gas into the raw material reservoir and feeding the raw material powder.
- the carrier gas may also serve as a plasma generating gas, that is, the carrier gas supply means may also serve as a means for supplying the plasma generating gas.
- the film forming apparatus includes a powder removing unit that is provided on the downstream side of the powder vaporization unit in the raw material supply path and for removing the raw material powder that has not been ionized in the powder vaporization unit. Is preferred.
- a film forming apparatus for forming an organic electroluminescence thin film on an object to be processed in a processing container with a gas obtained by vaporizing a raw material powder
- a raw material storage part for storing raw material powder containing an organic electroluminescence component, a raw material supply path provided between the raw material storage part and the processing container, and a raw material powder in the raw material storage part
- Feeding means for feeding to the raw material supply path, a heating chamber provided in the middle of the raw material supply path, in which the whole is heated to vaporize the raw material powder by heating to obtain a gas, and the raw material in the heating chamber
- a powder vaporization section formed on a surface other than the surface facing the powder introduction port and configured to supply the gas to the processing container; and an exhaust means for exhausting the processing container.
- a powder vaporizing apparatus including a supply port for supplying a processing container for processing an object to be processed with the gas.
- FIG. 1 is an overall schematic configuration diagram showing a first embodiment of a film forming apparatus according to the present invention. It is a schematic diagram which shows an example of the method of measuring the density
- the film forming apparatus includes a raw material storage unit 11 for storing solid raw material powder that is a raw material of plasma, and a raw material for a substrate that is an object to be processed, such as a semiconductor wafer (hereinafter referred to as “wafer”) W.
- a raw material storage unit 11 for storing solid raw material powder that is a raw material of plasma
- a raw material for a substrate that is an object to be processed such as a semiconductor wafer (hereinafter referred to as “wafer”) W.
- a processing vessel 51 that performs a film forming process using a gas (ion) obtained by converting powder into plasma, a raw material supply path 19 for supplying a raw material from the raw material reservoir 11 to the processing container 51, and a raw material supply path 19
- a powder vaporization unit 31 that is a powder vaporizer for plasmaizing (ionizing) the raw material powder that is interposed and flows through the raw material supply path 19.
- the raw material storage part 11 is comprised from the powder container 11a by which raw material powder is stored inside, and the bottom part of the powder container 11a is formed in the cone shape diameter-reduced toward the downward direction.
- One end of a carrier gas supply path 12 is connected to the side wall of the powder container 11a.
- a carrier gas supply source 15 is connected to the other end of the carrier gas supply path 12.
- a valve 13 and a flow rate adjusting unit 14 that are means (feeding means) for supplying gas into the raw material supply path 19 are interposed.
- the carrier gas supply source 15 stores a carrier gas for discharging (pressure feeding) the raw material powder in the raw material storage unit 11 toward the processing container 51.
- the carrier gas is used as a gas (plasma generating gas) for generating a plasma for obtaining a gas by plasmalizing (ionizing) the raw material powder.
- plasma generating gas a gas for generating a plasma for obtaining a gas by plasmalizing (ionizing) the raw material powder.
- argon (Ar) gas, helium (He) gas, or neon (Ne) gas can be used as the carrier gas that also serves as a plasma generating gas.
- the raw material powder in order to form a copper (Cu) film, which is a high melting point material, on the wafer W, solid (particle) copper oxide (CuO) is used as the raw material powder. 11 is housed.
- the raw material powder has a particle size of, for example, about 100 nm so as to be uniformly dispersed in the raw material reservoir 11.
- a powder stirring path 16 for sucking the powder and carrier gas from the side wall and returning it to the bottom is connected to the powder container 11a.
- a pump 17 serving as a circulation means is provided in the middle of the powder stirring path 16.
- the raw material powder is stirred by putting a stirrer made of, for example, a rod-shaped magnet in the raw material storage unit 11 and rotating the stirrer with a magnet provided on the lower side of the raw material storage unit 11. You can also.
- the raw material powder may be stirred by continuously applying a physical impact such as ultrasonic vibration to the raw material reservoir 11. Moreover, you may use together said several stirring method.
- a powder take-out pipe 191 is plunged into the raw material storage section 11 through an opening 18 in the upper center, and the upper end side of the powder take-out pipe 191 is in a powder introduction pipe 192 arranged in the vertical direction. It is inserted in the lift up and down freely.
- Bellows-shaped bellows 22 and 22 are provided between the powder take-out pipe 191 and the upper surface of the raw material reservoir 11 and between the powder take-out pipe 191 and the lower end of the powder introduction pipe 192, respectively.
- the bellows 22 hermetically seals the atmosphere in the raw material reservoir 11 and the atmosphere in the powder introduction pipe 192 (raw material supply path 19) to the outside even when the powder take-out pipe 191 described above is moved up and down. It is like that.
- the concentration of the raw material powder increases from the upper position to the lower position due to the above-mentioned circulation action and gravity, so that the rush position of the powder take-out pipe 191, that is, the lower end
- the powder take-out pipe 191 is provided with an elevating mechanism 21 via a support shaft 21a, and the elevating mechanism 21 controls the entry position of the powder take-out pipe 191.
- a concentration detection unit 23 for measuring the concentration (amount) of the raw material powder flowing through the raw material supply path 19 is provided downstream of the powder introduction pipe 192 in the raw material supply path 19 (on the processing container 51 side). It is installed.
- the concentration detector 23 includes, for example, a box-shaped housing 23 a in which the raw material supply path 19 is connected to both side surfaces.
- Transparent windows 23c and 23c are airtightly provided on the upper and lower surfaces of the casing 23a so as to face each other, and the upper and lower positions of the windows 23c and 23c are opposed to each other across the casing 23a.
- a laser light emitting part 23d and a light receiving part 23e are provided.
- Reference numeral 7 in FIG. 1 indicates a control unit, and this control unit 7 is set in advance according to a density detection signal (a signal corresponding to the received light intensity of the laser beam) from the density detection unit 23 and, for example, a process recipe.
- a function of outputting to the lifting mechanism 21 is provided.
- the raw material powder in the raw material supply path 19 is converted into plasma (ionized) through the first switching valve 24 in the raw material supply path 19 on the downstream side (processing vessel 51 side) of the concentration detector 23 to generate gas.
- the aforementioned powder vaporizing section 31 for obtaining is interposed.
- the powder vaporization unit 31 includes, for example, a cylindrical flow portion 32 extending along the flow direction of the raw material powder, and the length direction of the flow portion 32. And an induction coil 33 wound around the outer peripheral surface of the flow passage portion 32.
- the induction coil 33 is connected to a high frequency power supply 34 which is a means for supplying energy having a frequency of 13.56 MHz and a power of 0.2 kW to 8.0 kW, that is, means for generating plasma.
- the flow passage 32 is made of a dielectric material such as quartz, and an introduction port 35 for introducing the raw material powder into the flow passage 32 is formed on the upstream end face of the flow passage 32.
- a supply port 36 for supplying a gas obtained by converting the raw material powder into plasma is supplied to the end face on the downstream side of the flow passage 32.
- the upstream part and the downstream part of the powder vaporization section 31 in the raw material supply path 19 are referred to as a powder introduction path 37 and a gas supply path 38
- the powder introduction path 37 is connected to the introduction port 35.
- the gas supply path 38 is connected to the supply port 36.
- the argon gas flowing through the inside is turned into plasma, and by the plasma or by the electric field formed by the plasma and the induction coil 33, The raw material powder is turned into plasma and ionized, that is, vaporized.
- a powder removing unit 41 is provided on the downstream side of the powder vaporizing unit 31. As shown in FIG. 4, the powder removing means 41 bends the pipes constituting the gas supply path 38 and forms a magnetic field in which the magnetic lines run in the left-right direction as viewed from the upstream pipe line at the bent portion 42.
- the magnetic field forming means 43 is provided.
- the magnetic field forming unit 43 is configured by arranging magnets, for example, permanent magnets, opposite to each other on both sides of the bent portion 42 of the pipe.
- the bent portion 42 is O ⁇ ( Oxygen ions), Cu 2+ (copper ions), Ar + (argon ions) are subjected to a magnetic field in the horizontal direction (perpendicular to the plane of the paper in FIG. 4 (b)) to where they are going forward, so The motion trajectory is bent downward.
- the raw material powder that has not been ionized does not have a downward force even in the magnetic field, the raw material powder advances forward and collides with and adheres to the tube wall at the bent portion 42. For this reason, the raw material powder is separated and removed from the plasma.
- FIG. 4 (b) schematically shows the powder vaporization section 31.
- the non-ionized raw material powder is a large circle with dots written therein, oxygen ions are small white circles, and copper ions are Black circles and argon ions are shown as open triangles.
- FIG. 4B the drawing of the magnetic field forming means 43 is omitted.
- the gas supply path 38 is connected to a raw material introduction port 52 formed on the side wall of the processing vessel 51, and plasma obtained by the powder vaporization unit 31 described above is supplied to the processing vessel via the raw material introduction port 52. 51.
- a stage 53 is provided which serves as a mounting table for mounting the wafer W.
- the height position of the mounting surface on the surface of the stage 53 is the same as the raw material described above. For example, it is set to be lower than the height position of the inlet 52.
- the stage 53 is provided with e.g. elevating pins 54 for raising and lowering the wafer W from the back side through through holes (not shown) formed in the stage 53, and the elevating pins 54 are supported by a support shaft. It is configured to move up and down by an elevating mechanism 54b provided outside the processing container 51 through 54a.
- a transfer port 55 that is opened and closed by a gate valve 55a for carrying in and out the wafer W is formed at a position facing the raw material introduction port 52 on the side wall of the processing vessel 51, for example. Then, an external transfer means (not shown) enters the processing container 51 through the transfer port 55, and the wafer W is transferred to and from the lift pins 54.
- the processing vessel 51 is provided with a pressure gauge 50 for measuring the pressure in the processing vessel 51.
- An exhaust port 56 is formed on the lower surface of the processing container 51.
- a pressure adjusting means 57 a such as a butterfly valve is connected to an exhaust path 57 extending from the exhaust port 56 to the outside of the processing container 51.
- a vacuum exhaust means 59 such as a vacuum pump is provided via a main valve 60a for opening and closing the flow path in 57 and a powder recovery means 58 such as a trap for removing (reducing) solids such as raw material powder. It is connected.
- the powder recovery means 58 is for removing or reducing solid substances such as solid particles generated by solidifying the unreacted gaseous raw material discharged from the processing vessel 51, for example.
- a branch path branched from the raw material supply path 19 (powder introduction path 37) between the concentration detector 23 and the first switching valve 24 is provided as a bypass path 25 that bypasses the processing container 51.
- the passage 25 joins the exhaust passage 57 on the upstream side of the powder recovery means 58.
- a second switching valve 26 for example, a pressure adjusting means 57b such as a butterfly valve, and a main valve 60b for opening and closing the flow path in the bypass path 25 are arranged in this order from the upstream side. It is installed in.
- a pressure gauge 27 for measuring the pressure in the bypass passage 25 is provided in the bypass passage 25 between the second switching valve 26 and the pressure adjusting means 57b.
- the supply of the raw material into the processing container 51 can be turned on and off by switching the opening and closing of the valves 24 and 26 described above.
- the valves 24 and 26 serve as switching means.
- the control unit 7 is configured as a computer including a CPU, a memory, a program, and the like (not shown).
- the memory for example, the concentration of the raw material powder, the time for performing the film forming process, the flow rate of the carrier gas supplied from the carrier gas supply source 15, or the pressure in the processing container 51 or the high-frequency power source 34 is supplied to the powder vaporization unit 31.
- An area is provided in which a set value such as a high-frequency power value to be supplied is stored for each recipe.
- the program incorporates a command to output a control signal to each part of the film forming apparatus so that a recipe is read from the memory and a film forming process described later is performed.
- the program is stored in a storage medium 8 that is a storage unit such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and is installed in the computer from the storage medium 8.
- the operation of the above-described embodiment will be described with reference to FIGS.
- the first switching valve 24 and the main valve 60a are closed, the second switching valve 26 and the main valve 60b are opened, the raw material supply path 19 is shut off, and the bypass path 25 is opened. Is released.
- the pressure adjusting means 57b provided in the bypass passage 25 makes the pressure in the bypass passage 25 (measured value of the pressure gauge 27) equal to or almost the same as the process pressure of the process to be performed. You may adjust so that it may become.
- argon gas is supplied from the carrier gas supply path 12 through the valve 13 and the flow rate adjusting unit 14 into the raw material storage unit 11, and the atmosphere in the raw material storage unit 11 is stirred by the pump 17.
- the raw material powder accumulated in the lower part in the raw material reservoir 11 is dispersed by this stirring, and the concentration gradually increases from the upper side to the lower part in the raw material reservoir 11 as shown in FIG. As a result, a concentration gradient is formed. Therefore, the raw material powder having a concentration corresponding to the height position of the opening 19a of the powder take-out pipe 191 is taken into the powder take-out pipe 191 (raw material supply path 19) together with the argon gas.
- the powder is indicated by dots.
- the first switching valve 24 and the main valve 60a are opened.
- the second switching valve 26 and the main valve 60b are closed.
- the bypass path 25 is closed and the raw material supply path 19 is opened, so that the raw material powder flows into the powder vaporization section 31.
- those indicated by white are in an “open” state, and those indicated by black are in a “closed” state.
- an electric field is formed in the flow passage 32 by the induction coil 33, so that the argon gas flowing through the raw material supply path 19 together with the raw material powder is turned into plasma by the energy of this electric field.
- the raw material powder is brought into contact with the plasma, or electric field energy is further applied to the raw material powder.
- a large amount of energy is instantaneously applied to the raw material powder.
- the raw material powder is instantly converted into plasma and ionized through processes of softening, melting, and evaporation. Therefore, as the raw material powder progresses in the flow-through portion 32, as shown in FIG.
- the ratio of the ionized (vaporized) portion increases, while the non-ionized portion (solid raw material) The ratio of the portion that remains as a powder is reduced.
- the raw material (raw material gas) ionized in the powder vaporizing section 31 moves along the bent portion 42 by the magnetic field in the powder removing means 41 as already described in detail. While the direction is bent, the raw material powder that has not been ionized collides with the pipe as it is and adheres to the pipe wall, and thus the raw material powder that is not ionized is separated and removed.
- the raw material gas from which the solid component has been removed flows into the processing vessel 51 through the gas supply path 38 and the raw material introduction port 52, and adheres to the surface of the wafer W to deposit solid copper, For example, a film for wiring of an integrated circuit is formed.
- the first switching valve 24 is closed and the second switching valve 26 and the main valve 60b are opened, so that the raw material powder bypasses the processing vessel 51 and flows to the powder recovery means 58.
- the body flow path is switched, the supply of the source gas is stopped, and the film forming process is terminated.
- FIGS. 7 and 8 the raw material powder in which white circles are not ionized and the raw material powder in which dots are ionized are shown.
- the solid state raw material is converted into plasma in the powder vaporization unit 31 to obtain the gaseous raw material. Therefore, even if it is a high melting point material such as copper, a gaseous raw material can be easily obtained. For this reason, for example, it is not necessary to use a material having a low melting point or vaporization temperature, for example, a complex in which an organic substance is bonded, in forming a copper film, so that the organic substance contained in the raw material powder is not taken into the copper film. Accordingly, it is possible to form a high-purity film while suppressing the mixing of impurities.
- valves 24 and 26 for supplying / disconnecting the raw material to the processing container 51 and the concentration detecting unit 23 for measuring the concentration of the raw material are upstream of the powder vaporizing unit 31 which is a gas generating unit for obtaining gas from the solid raw material. It is provided on the side (raw material storage unit 11 side). Therefore, since the gaseous raw material does not contact these valves 24 and 26 and the concentration detector 23, it is not necessary to heat these members so that the gas does not condense. Therefore, expensive members that can withstand high temperatures are not necessary, and the cost of the film forming apparatus can be reduced. Further, since gas does not adhere to these members and solidify, the life of these members can be extended. it can. Furthermore, since members (valves 24 and 26 and concentration detector 23) that have been conventionally used for room temperature can be used, it is possible to easily supply and cut off the supply of raw materials and to measure the concentration with high accuracy. it can.
- the raw material powder is passed through the bypass passage 25 by bypassing the processing vessel 51 and the concentration is stabilized. Since the film processing is performed, the film can be formed with high film thickness accuracy. Furthermore, since the powder removing unit 41 separates the gas and the solid and performs the film forming process with the gas, the generation of particles can be suppressed.
- the configuration of the powder vaporizer 31 is not limited to that shown in FIG.
- the outlet end (left side in FIG. 9) of the flow passage 32 and the opening end (right side in FIG. 9) of the raw material supply path 19 on the downstream side (processing vessel 51 side) are provided.
- a cylindrical plasma generation chamber 68 that extends long along the length direction of the flow passage 32 is airtightly provided so as to cover the separation region and the flow passage 32 (powder vaporization portion 31). Also good.
- a pair of parallel plate electrodes 69, 69 facing up and down are arranged in the plasma generation chamber 68, and a high frequency power source 34 is connected to one or both of the electrodes 69,
- the powder vaporization unit 31 may be configured so that the argon gas or the raw material powder is converted into plasma between the electrodes 69 and 69.
- reference numeral 70 indicates an insulator, which prevents the raw material powder from passing between the electrode 69 and the inner wall of the plasma generation chamber 68.
- means for supplying energy for converting plasma generation gas (argon gas in this example) into plasma means for supplying microwaves may be used, for example, light energy supply other than electrical energy. It may be a means.
- the powder vaporization section 31 is not limited to one as described above. For example, two or more stages (two pieces) may be provided along the raw material supply path 19, and in this way, the raw material powder is further plasmatized. It can be done reliably.
- the carrier gas for sending out the raw material powder also serves as the plasma generating gas.
- different gases may be used as the carrier gas and the plasma generating gas.
- hydrogen (H 2 ) gas may be used as the carrier gas
- a plasma generation gas may be introduced from the branch path branched from the raw material supply path 19 into the raw material supply path 19.
- plasma is generated in a part different from the raw material supply path 19, for example, in a space in a branch path branched from the raw material supply path 19, for example, a remote plasma chamber, and the plasma is introduced into the raw material supply path 19 to form the raw material powder.
- the body may be ionized.
- copper oxide is used as the raw material powder.
- oxygen (O) contained in the copper oxide is taken into the copper film, for example, hydrogen (H 2 ) is used together with the argon gas.
- a reducing gas such as a gas may be supplied.
- copper oxide is used as a raw material powder for forming a copper film.
- copper (Cu) may also be used.
- the film to be formed is not limited to a copper film, but a high melting point material such as aluminum (Al), silver (Ag), strontium (Sr), ruthenium (Ru), hafnium (Hf), zirconium (Zr) Alternatively, tungsten (W) or the like may be used.
- the film to be formed is not limited to a film made of one element, and is a film of a compound such as STO (SrTiO 3 ), ITO (In 2 O 3 + SnO 2 ), TiO 2 (titanium oxide), or the like. Also good. When a film of such a compound is formed, a mixed powder obtained by mixing particles of the compound or powders of respective elements constituting the compound at a predetermined mixing ratio is used as the raw material powder. Become.
- the gas supply path 38 may be directly connected to the processing container 51 without providing the powder removing means 41.
- the powder removing unit 41 may structurally separate a solid and a gas, such as a mesh or a trap.
- an organic EL (Electro Luminescence) material is formed for the second embodiment of the present invention.
- organic EL materials include AlQ3 (alaminato-tris-8-hydroxyquinolate) and NPB (N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidene).
- the raw material powder is supplied in the form of particles (solid) containing organic EL components.
- a powder separator 100 such as a cyclone separator and a powder vaporization unit 80 serving as a heating chamber are provided on the downstream side of the first switching valve 24 (processing vessel 51 side). 1 are provided in this order from the switching valve 24 side.
- this powder separator 100 is provided on the upstream side of the powder vaporization unit 80 so as to reduce the amount of the carrier gas supplied to the processing vessel 51, that is, the concentration of the raw material powder contained in the carrier gas is reduced. I try to increase it.
- the powder vaporizing unit 80 includes, for example, a cylindrical casing 81 extending in the length direction of the raw material supply path 19.
- An introduction port 81a to which the raw material supply path 19 is hermetically connected is provided on one side of the side wall in the length direction of the case 81, and the length of the case 81 is provided at a position facing the introduction port 81a.
- a hot plate 82 is installed so as to be perpendicular to the direction.
- a heater 82a which is a heating means, is embedded in the hot plate 82, and a power source 83 is connected to the heater 82a.
- the heater 82a heats the surface of the hot plate 82 to a temperature equal to or higher than the vaporization temperature of the organic EL material described above, for example, about 280 ° C.
- a heater 84 is provided in the wall portion of the casing 81 so that the atmosphere in the casing 81 can be heated to the above temperature.
- the heater 84 is connected to a power source 83. Therefore, the entire atmosphere in the housing 81 is heated by these heaters 82a and 84. It should be noted that different power sources may be connected to the heaters 82a and 84, respectively, and controlled separately.
- the gas obtained from the raw material powder is taken out at a position closer to the raw material supply path 19 than the hot plate 82 on the surface of the casing 81 other than the surface facing the introduction port 81a, for example, the peripheral surface of the casing 81.
- a supply port 81b for supplying the processing container 51 is provided.
- One end side of a gas supply path 85 forming a part of the raw material supply path 19 is connected to the supply port 81b, and the other end side of the gas supply path 85 is formed on the side surface of the processing container 51.
- the raw material introduction port 52 is connected.
- a heater 85a connected to a power source (not shown) is provided in order to suppress condensation or solidification of vapor (gas) flowing through the gas supply path 85.
- the atmosphere in the gas supply path 85 is heated to, for example, about 300 ° C. by the heater 85a.
- the gas supply path 85 is not provided with a valve.
- a heater 86 connected to a power source (not shown) is also provided around the processing container 51 in order to suppress the condensation and solidification of gas in the processing container 51 or on the wall surface, ceiling surface, or floor surface of the processing container 51.
- the wall surface of the processing vessel 51 can be heated to about 300 ° C., for example.
- the first switching valve 24 and the main valve 60a are closed, the second switching valve 26 and the main valve 60b are opened, After the detected concentration is stabilized at a predetermined concentration, the first switching valve 24 and the main valve 60a are opened, the second switching valve 26 and the main valve 60b are closed, and the raw material powder is supplied toward the processing container 51. To do.
- the concentration of the raw material powder contained in the carrier gas is increased by a predetermined amount or a predetermined ratio in the powder separator 100 described above.
- the raw material powder introduced from the raw material supply path 19 into the powder vaporization unit 80 collides with the hot plate 82 and is heated to a temperature equal to or higher than the vaporization temperature. Further, the raw material powder that has not been vaporized by the heat of the hot plate 82 is also heated and vaporized by the heat of the powder vaporization unit 80 (heater 84). Thus, the raw material powder introduced into the powder vaporization unit 80 is almost vaporized. Then, as shown in FIG. 13, the vaporized raw material flows into the processing container 51 through the gas supply path 85 and the raw material introduction port 52, and is adsorbed (attached) to the surface of the wafer W. Will be deposited.
- the first switching valve 24 is closed and the second switching is performed as in the above example.
- the film forming process is completed by opening the valve 26 and the main valve 60b.
- the powder vaporization unit 80 when the gas obtained by vaporizing the raw material powder is supplied to the wafer W to form the organic EL film, the powder vaporization unit 80 is heated entirely in the raw material supply path 19.
- the raw material powder is vaporized by heating to obtain gas.
- it is not necessary to add energy to the entire raw material storage unit 11, for example, because the raw material powder for the amount supplied to the processing container 51 can be vaporized. Therefore, the energy consumption required for vaporizing the raw material powder can be suppressed, and the progress of thermal decomposition of the raw material powder in the raw material reservoir 11 can be suppressed.
- the concentration detection unit 23 and valves 24 and 26 are provided upstream of the powder vaporization unit 80 for heating the raw material powder (on the raw material storage unit 11 side), in order to suppress gas condensation and coagulation. There is no need to heat these members. Therefore, the lifetime of these members is prolonged, and the cost of the film forming apparatus can be similarly reduced, and the supply / disconnection of the raw material and the measurement of the concentration can be easily performed with high accuracy. Therefore, it is possible to form a film with high film thickness accuracy.
- the carrier gas may be a rare gas other than argon gas, such as neon (Ne), krypton (Kr), or xenon (Xe), or nitrogen (N 2 ) gas.
- An inert gas such as may be used.
- air may be used as the carrier gas, or a mixture of these gases may be used.
- the raw material vapor is supplied from the side surface of the processing vessel 51 to the lateral position of the wafer W.
- the stage 53 is arranged so that the wafer W is located in the vicinity of the raw material introduction port (gasification raw material introduction port) 52, and an electrostatic chuck 90, for example, is placed on the mounting surface of the stage 53. You may make it provide.
- the stage 53 may be provided with an elevating mechanism 91 so as to be movable up and down, and the vapor supplied into the processing container 51 from the raw material introduction port 52 may scan the surface of the wafer W in the vertical direction.
- a travel mechanism (not shown) for moving the stage 53 in the horizontal direction is provided along the side wall of the processing container 51 where the raw material inlet 52 is formed (in the direction perpendicular to the paper surface in FIG. 14).
- the vapor supplied into the container 51 may scan the surface of the wafer W vertically and horizontally.
- the carrier gas is used together with the above-described method (adjustment of the height position of the suction port of the powder take-out pipe 191: refer to the first embodiment) or instead of the above-described method.
- the flow rate may be adjusted.
- the configuration of the concentration detection unit 23 is not limited to the above-described one.
- the raw material powder flowing through the raw material supply path 19 is charged by an electrode outside the raw material supply path 19 to thereby supply the raw material supply path.
- the charged material powder may collide with the electrode provided in 19 to measure the concentration of the material powder through the amount of charge of the electrode.
- the film forming process is performed in a vacuum atmosphere in the processing vessel 51.
- the film forming process may be performed in a substantially atmospheric pressure state.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
固体状の原料粉体を貯留する原料貯留部からキャリアガスと共に原料粉体を粉体気化部に供給し、粉体気化部において原料粉体をプラズマ化して気体状の原料とし、これを処理容器へと供給する。
Description
本発明は、原料粉体から得たガスを用いて処理容器内で被処理体に対して処理を行う技術、及び原料粉体からガスを得る技術に関する。
半導体製造プロセスにおいて、沸点が高くて気化しにくい材料をCVD(Chemical Vapor Deposition)により成膜する場合には、沸点の低い液体原料例えば有機錯体を用い、この有機錯体を熱分解させることで成膜が行われる。このような方法で成膜可能な材料としては、配線材料として代表的な銅(Cu)をはじめ、ゲート絶縁膜などの適用が検討されているルテニウム(Ru)、ハフニウム(Hf)、ジルコニウム(Zr)、ストロンチウム(Sr)などの金属材料を挙げることができる。
有機錯体液体原料は、当該液体原料を収容するタンク内で所定の温度に加熱されることにより気化され、配管を介してCVD装置に供給される。しかしながら、有機錯体液体原料はタンク内で分解(変質)が生じやすい。また、原料中の有機物が薄膜中に取り込まれ、その薄膜に要求される特性を劣化させる要因になる。また、有機錯体蒸気が配管に設けられたバルブあるいは流量調整器にて液化して液体(ミスト)が処理容器内に搬送されることにより、半導体ウェハにパーティクル汚染を引き起こす懸念がある。その上、有機錯体液体原料は高価である。また、配管途中での気体の凝縮(液化)を抑えるために、配管やバルブ、流量調整器等の部材が加熱される。これらの部材に耐熱性を持たせる必要があるために高価な部材が必要になり、更に加熱によりこれらの部材の寿命が短くなるので、装置のコストアップに繋がっている。なお、タンク内での液体原料の分解を避けるために、原料を液体の状態で気化器まで送り出し、気化器にてキャリアガスを用いてミスト化する手法も知られている。しかし、この手法によっても他の問題は解決できない。
そこで、液体原料に代えて固体原料を用いることが検討されている。例えば、原料タンク内に原料粉体を貯留し、このタンクを加熱して原料粉体を気化(昇華)させて処理ガスを得る方法がある。しかし、この場合には得られる処理ガスの流量が少ないし、また原料タンク全体を加熱しなければならないので、大きな消費エネルギーが必要となる。
特開平5-97409号公報(特に段落0015及び図3を参照)には、酸化物超伝導体の成膜の際に気化が困難な原料粉体を気化させる方法として、当該原料粉体にオキシカルボン酸などの常温で固体の二座配位子を添加した混合粉末を気化器に送り加熱することが記載されている。加熱された際、原料粉体に二座配位子が結合し、気化し易い配位化合物が形成され、その結果、原料粉体の気化が容易となる。しかしこの方法でも、得られた原料気体中に有機物が混入するため薄膜の特性に悪影響を与えるという懸念がある。
特開平6-346243号公報(図2を参照)には、振動フィーダにより加熱皿に原料粉体を供給して、加熱皿上で原料粉体を気化する装置が記載されている。しかしこの装置では、昇華性の粉体材料しか気化させることはできない。また、気化させた後の原料通路を高温に加熱しておかなければならないという問題は同様にある。また、得られる原料ガスの流量の調整が困難であるという問題もある。
本発明は、気化し難い原料粉末を、不純物の混入を抑制しつつ確実に気化することができる技術を提供する。また、本発明は、上記気化技術を利用した成膜装置を提供する。
本発明は更に、別の観点において、有機ルミネッセンス薄膜を成膜対象とした成膜装置において、不純物の混入を抑制しつつ原料粉末を気化して成膜処理を行うことができる成膜装置を提供する。
本発明は更に、別の観点において、有機ルミネッセンス薄膜を成膜対象とした成膜装置において、不純物の混入を抑制しつつ原料粉末を気化して成膜処理を行うことができる成膜装置を提供する。
本発明の第1の観点によれば、原料粉体を貯留する原料貯留部と、前記原料貯留部に接続された原料供給路と、前記原料貯留部内の原料粉体を前記原料供給路に送り出すための送り出し手段と、前記原料供給路中にプラズマ生成用のガスを供給する手段と、前記原料供給路中の原料粉体をイオン化するためのプラズマを得るために、プラズマ生成用のガスに対してエネルギーを供給する手段を有する粉体気化部と、前記原料供給路が接続され、原料粉体がイオン化されて得られたガスにより、内部に配置された被処理体に対して成膜処理を行うための処理容器と、前記処理容器内を排気するための排気手段と、を備えた成膜装置が提供される。
前記送り出し手段は、前記原料貯留部内にキャリアガスを供給して原料粉体を圧送するためのキャリアガス供給手段であっても良い。
前記キャリアガスは、プラズマ生成用のガスを兼ねていてもよく、すなわち、前記キャリアガス供給手段は、前記プラズマ生成用のガスを供給する手段を兼ねていてもよい。
前記成膜装置は、前記原料供給路における前記粉体気化部の下流側に設けられ、前記粉体気化部においてイオン化されなかった原料粉体を除去するための粉体除去手段を備えていることが好ましい。
また、本発明の別の観点によれば、原料粉体を気化して得られたガスにより処理容器内にて被処理体に対して有機エレクトロルミネッセンス薄膜を成膜する成膜装置であって、有機エレクトロルミネッセンスの成分を含む原料粉体を貯留する原料貯留部と、前記原料貯留部と前記処理容器との間に介在して設けられた原料供給路と、前記原料貯留部内の原料粉体を前記原料供給路に送り出すための送り出し手段と、前記原料供給路の途中に設けられ、原料粉体を加熱により気化してガスを得るために全体が加熱される加熱室と、前記加熱室において原料粉体の導入ポートに対向する面以外の面に形成され、前記ガスを処理容器に供給するための供給ポートと、を有する粉体気化部と、前記処理容器内を排気するために排気手段と、を備えた成膜装置が提供される。
更に、本発明の別の観点によれば、原料貯留部から送られる原料粉体を導入する導入ポートと、前記導入ポートから導入された原料粉体と共にプラズマ生成用のガスが通流する通流部と、前記通流部を通流するプラズマ生成用のガスにエネルギーを供給してプラズマを発生させる手段と、前記通流部にて前記プラズマにより原料粉体がイオン化されて得られたガスを、当該ガスにより被処理体に対して処理する処理容器に供給するための供給ポートと、を備えた粉体気化装置が提供される。
本発明による気化装置および当該気化装置を備えた成膜装置の第1実施形態について、図1~図4を参照して説明する。この成膜装置は、プラズマの原料である固体状の原料粉体を貯留するための原料貯留部11と、被処理体である基板例えば半導体ウェハ(以下、「ウェハ」という)Wに対して原料粉体をプラズマ化して得られる気体(イオン)により成膜処理を行う処理容器51と、原料貯留部11から処理容器51に原料を供給するための原料供給路19と、この原料供給路19に介設され、当該原料供給路19内を通流する原料粉体をプラズマ化(イオン化)するための粉体気化装置である粉体気化部31と、を備えている。
原料貯留部11は、内部に原料粉体が貯留される粉体容器11aから構成されており、粉体容器11aの底部は下方に向けて縮径する円錐形に形成されている。粉体容器11aの側壁には、キャリアガス供給路12の一端が接続されている。キャリアガス供給路12の他端には、キャリアガス供給源15が接続されている。キャリアガス供給路12の両端の間には、原料供給路19中にガスを供給する手段(送り出し手段)であるバルブ13及び流量調整部14が介設されている。
キャリアガス供給源15には、処理容器51に向けて原料貯留部11内の原料粉体を吐出(圧送)するためのキャリアガスが貯留されている。例示された実施形態においては、後述するように、キャリアガスは、上記の原料粉体をプラズマ化(イオン化)して気体を得るためのプラズマを生成するためのガス(プラズマ生成用のガス)としての役割も果たす。このようなプラズマ生成用のガスを兼ねるキャリアガスとして、例えばアルゴン(Ar)ガス、ヘリウム(He)ガス、あるいはネオン(Ne)ガスなどを用いることができる。
例示された実施形態においては、ウェハWに高融点材料である銅(Cu)膜を成膜するために、上記の原料粉体として固体(粒子)状の酸化銅(CuO)が、原料貯留部11内に収納されている。また、この原料粉体は、原料貯留部11内において均一に分散するように、粒径が例えば100nm程度に揃えられている。
また、粉体容器11aには、原料粉体を撹拌するために、粉体及びキャリアガスを側壁から吸い込んで底部に戻すための粉体撹拌路16が接続されている。粉体撹拌路16の途中には循環手段であるポンプ17が設けられている。なお、原料貯留部11内に例えば棒状の磁石などからなるスターラー(stirrer)を入れて、原料貯留部11の下方側に設けた磁石によりこのスターラーを回転させることにより、原料粉体の撹拌を行うこともできる。或いは、原料貯留部11に例えば超音波振動などの物理的な衝撃を連続的に与えることにより原料粉体の撹拌を行っても良い。また、上記の複数の撹拌方法を併用しても良い。
この原料貯留部11内には、上部中央の開口部18を介して粉体取り出し管191が突入され、この粉体取り出し管191の上端側は、鉛直方向に配置された粉体導入管192内に昇降自在に挿入されている。粉体取り出し管191と原料貯留部11の上面との間及び粉体取り出し管191と粉体導入管192の下端部との間には、各々蛇腹状のベローズ22、22が設けられており、このベローズ22により、既述の粉体取り出し管191が昇降しても原料貯留部11内の雰囲気及び粉体導入管192(原料供給路19)内の雰囲気が外部に対して気密にシールされるようになっている。
原料貯留部11内においては、既述の循環作用と重力との兼ね合いで上位置から下位置に向かうにつれて原料粉体の濃度が濃くなっているので、この粉体取り出し管191の突入位置即ち下端の開口部(取り込み口)19aの高さ位置を変えることにより、原料供給路19内に流入する原料粉体の濃度を調整できることとなる。粉体取り出し管191には支持軸21aを介して昇降機構21が設けられ、この昇降機構21により粉体取り出し管191の突入位置が制御される。
原料供給路19における粉体導入管192の下流側(処理容器51側)には、当該原料供給路19内を通流する原料粉体の濃度(量)を測定するための濃度検出部23が介設されている。この濃度検出部23は、図2に示すように、両側面に原料供給路19が接続された例えば箱型の筐体23aを備えている。この筐体23aの上下面には、相対向するように透明な窓23c、23cが気密に設けられ、これら窓23c、23cの上下位置には、夫々当該筐体23aを挟んで相対向するように、例えばレーザー光の発光部23d及び受光部23eが設けられている。筐体23a内を原料粉体が通流していると、レーザー光が当該粉体に散乱されて受光部23eにて受光するレーザー光の強度が減少する。従って、受光部23eで検出されたレーザー光強度に基づいて筐体23a内を通流する原料粉体の濃度を検出できる。図1中の参照符号7は制御部を示し、この制御部7は濃度検出部23からの濃度検出信号(レーザー光の受光強度に対応する信号)と、例えばプロセスレシピに応じて予め設定された原料粉体の濃度に対応する濃度設定信号と、の偏差に応じて、原料貯留部11内における粉体取り出し管191の吸い込み口(開口部19a)の高さ位置を制御するための制御信号を昇降機構21に出力する機能を備えている。
濃度検出部23の下流側(処理容器51側)における原料供給路19には、第1の切り替えバルブ24を介して当該原料供給路19内の原料粉体をプラズマ化(イオン化)して気体を得るための既述の粉体気化部31が介設されている。この粉体気化部31は、図3にも示すように、例えば原料粉体の通流方向に沿って伸びる円筒状の通流部32と、この通流部32の長さ方向に沿って当該通流部32の外周面に巻回された誘導コイル33と、を備えている。この誘導コイル33には、例えば周波数が13.56MHz、電力が0.2kW~8.0kWのエネルギーを供給する手段すなわちプラズマを発生させる手段である高周波電源34が接続されている。通流部32は、例えば石英などの誘電体により構成されており、通流部32の上流側の端面には当該通流部32内に原料粉体を導入するための導入ポート35が形成され、通流部32の下流側の端面には原料粉体をプラズマ化して得られたガスを処理容器51に供給するための供給ポート36が形成されている。ここで原料供給路19における粉体気化部31の上流側部位および下流側部位を夫々粉体導入路37および気体供給路38と呼ぶとすると、導入ポート35には粉体導入路37が接続され、供給ポート36には気体供給路38が接続されていることになる。誘導コイル33により形成される電界を通流部32内に供給することによって、内部を通流するアルゴンガスをプラズマ化し、そのプラズマによって、あるいはこのプラズマと誘導コイル33により形成される電界とによって、原料粉体がプラズマ化されてイオン化すなわち気化されることとなる。
粉体気化部31の下流側には、粉体除去手段41が設けられている。この粉体除去手段41は、図4に示すように、気体供給路38を構成する管路を屈曲させ、その屈曲部分42において上流側の管路から見て左右方向に磁力線が走る磁場が形成されるように磁場形成手段43を設けて構成される。例示された実施形態においては、磁場形成手段43は、管路の屈曲部分42の前記左右方向両側に磁石例えば永久磁石を対向配置して構成される。このような粉体除去手段41においては、粉体除去手段41の上流側の管路から流れてきたプラズマが屈曲部分42に差し掛かると、この屈曲部分42ではプラズマ中のイオンであるO-(酸素イオン)、Cu2+(銅イオン)、Ar+(アルゴンイオン)が前方に進もうとしているところへ左右方向(図4(b)における紙面と直交方向)の磁場を受けるため、これらのイオンの運動軌跡が下方側に曲げられる。一方、イオン化されなかった原料粉体は、前記磁場内においても下方側に向かう力が作用しないので、そのまま前方へ進み、屈曲部分42における管壁に衝突して付着する。このためプラズマ中から原料粉体が分離除去される。尚、図4(b)は粉体気化部31を模式的に示しており、イオン化されていない原料粉末がドットが書き込まれた大きな丸で、酸素イオンが白抜きの小さな丸で、銅イオンが黒塗りの丸で、そしてアルゴンイオンが白抜きの三角でそれぞれ示されている。また、図4(b)では磁場形成手段43の描画を省略してある。
気体供給路38は、処理容器51の側壁に形成された原料導入口52に接続されており、この原料導入口52を介して既述の粉体気化部31により得られたプラズマが当該処理容器51内に導入される。処理容器51の内部の底面中央には、ウェハWを載置するための載置台をなすステージ53が設けられており、このステージ53の表面の載置面の高さ位置は、既述の原料導入口52の高さ位置よりも例えば低くなるように設定されている。このステージ53には、当該ステージ53に形成された図示しない貫通孔を介してウェハWを裏面側から突き上げて昇降させるための例えば昇降ピン54が設けられており、この昇降ピン54は、支持軸54aを介して処理容器51の外部に設けられた昇降機構54bにより昇降するように構成されている。
処理容器51の側壁における原料導入口52に例えば対向する位置には、ウェハWの搬入出を行うためにゲートバルブ55aにより開閉される搬送口55が形成されている。そして、この搬送口55を介して図示しない外部の搬送手段が処理容器51内に進入し、昇降ピン54との間でウェハWの受け渡しが行われる。処理容器51には、当該処理容器51内の圧力を測定するための圧力計50が設けられている。また、処理容器51の下面には、排気口56が形成されており、この排気口56から処理容器51の外部に伸びる排気路57には、例えばバタフライバルブなどの圧力調整手段57a、当該排気路57内の流路の開閉を行うためのメインバルブ60a及び固体例えば原料粉体を除去(低減)するための例えばトラップなどの粉体回収手段58を介して、真空ポンプなどの真空排気手段59が接続されている。粉体回収手段58は、例えば処理容器51内から排出された未反応の気体状の原料が固化して生成する固体状の粒子などの固形物を除去あるいは低減するためのものである。
濃度検出部23と第1の切り替えバルブ24との間において原料供給路19(粉体導入路37)から分岐した分岐路が、処理容器51を迂回するバイパス路25として設けられており、このバイパス路25は、粉体回収手段58の上流側において排気路57に合流している。このバイパス路25には、第2の切り替えバルブ26、例えばバタフライバルブなどの圧力調整手段57bと、当該バイパス路25内の流路の開閉を行うためのメインバルブ60bとが、上流側からこの順番で介設されている。また、第2の切り替えバルブ26と圧力調整手段57bとの間において、バイパス路25には、当該バイパス路25内の圧力を測定するための圧力計27が設けられている。後述するように、上記のバルブ24、26の開閉を切り替えることにより、処理容器51内への原料の供給の給断を行うことができる。バルブ24、26は、切り替え手段をなす。
制御部7は例えば図示しないCPU、メモリ及びプログラムなどを備えたコンピュータとして構成されている。前記メモリには、例えば原料粉体の濃度、成膜処理を行う時間やキャリアガス供給源15から供給するキャリアガスの流量、あるいは処理容器51内の圧力や高周波電源34から粉体気化部31に供給する高周波の電力値などの設定値がレシピ毎に格納される領域が設けられている。前記プログラムには、前記メモリからレシピを読み出して後述の成膜処理を行うように成膜装置の各部に制御信号を出力するように命令が組み込まれている。前記プログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶部である記憶媒体8に格納され、この記憶媒体8からコンピュータにインストールされる。
次に、上述の実施形態の作用について図5~図8を参照して説明する。先ず、図5(a)に示すように、第1の切り替えバルブ24及びメインバルブ60aを閉じて第2の切り替えバルブ26及びメインバルブ60bを開放し、原料供給路19を遮断するとともにバイパス路25を開放する。この時、バイパス路25に介設された圧力調整手段57bにより、当該バイパス路25内の圧力(圧力計27の測定値)がこれから行われるプロセスのプロセス圧力と等しくなるように、あるいはほぼ同程度となるように調整しても良い。
そして、バルブ13及び流量調整部14を介してキャリアガス供給路12から所定量のアルゴンガスを原料貯留部11内に供給すると共に、ポンプ17により当該原料貯留部11内の雰囲気を撹拌する。これにより原料貯留部11内の下方に積もっていた原料粉体は、この撹拌により分散して、図6(a)に示すように、原料貯留部11内において上方から下方に向かって徐々に濃度が高くなる濃度勾配が形成される。このため、粉体取り出し管191の開口部19aの高さ位置に応じた濃度の原料粉体がアルゴンガスと一緒に粉体取り出し管191(原料供給路19)に取り込まれていく。なお、図6においては、粉体がドット(dot)で示されている。また、濃度検出部23において、既述のように発光部23dから受光部23eに向けてレーザー光を照射して、レーザー光の散乱により当該原料供給路19内を通流する原料粉体の濃度を測定し、原料粉体の濃度がレシピに応じて予め定められた設定値となるように昇降機構21を駆動する。具体的には、原料供給路19内の原料粉体の濃度が例えば設定値よりも高い場合には、開口部19aの高さ位置を上昇させ、原料粉体の濃度が設定値よりも低い場合には、例えば図6(b)のように開口部19aの高さ位置を下降させる。こうして開口部19aの高さ位置を調整することにより、原料貯留部11を出る原料粉体の濃度が設定値に安定していくことになる。この間、原料粉体は処理容器51を迂回して排気される。
次いで、原料供給路19内を通流する原料粉体の濃度がレシピの設定値に安定した後、図5(b)に示すように、第1の切り替えバルブ24及びメインバルブ60aを開放して第2の切り替えバルブ26及びメインバルブ60bを閉じる。これによりバイパス路25が閉じて原料供給路19が開き、原料粉体が粉体気化部31に流入する。尚、図5において、バルブ24、26及びバルブ60a、60bについては、白抜きで表示されているものが「開」状態、黒塗りで表示されているものが「閉」状態を示している。
粉体気化部31では、通流部32内に誘導コイル33により電界が形成されているので、原料粉体と共に原料供給路19内を通流してきたアルゴンガスがこの電界のエネルギーによりプラズマ化される。そして、原料粉体はこのプラズマと接触することにより、あるいは更に原料粉体にも電界のエネルギーが印加されることも加わって、結果として原料粉体に大きなエネルギーが瞬時に加えられる。このエネルギーにより、原料粉体は軟化、溶融、蒸発という過程を瞬時に経てプラズマ化してイオン化していく。そのため、原料粉体は、通流部32内を進行するに従って、図7に示すように、イオン化(気化)された部分の比率が高くなり、一方で、イオン化されていない部分(固体状の原料粉体のままの部分)の比率が低くなる。そして、図8に示すように、この粉体気化部31においてイオン化された原料(原料ガス)は、既に詳述したように、粉体除去手段41にて磁場により屈曲部分42に沿ってその運動方向が曲げられる一方、イオン化されなかった原料粉体は、そのまま管路に衝突して管壁に付着し、こうしてイオン化されない原料粉体が分離除去される。
その後、固体成分が取り除かれた原料ガスは、気体供給路38及び原料導入口52を介して処理容器51内に通流していき、ウェハWの表面に付着して固体状の銅が析出し、例えば集積回路の配線用の膜が成膜される。その後、第1の切り替えバルブ24を閉じると共に、第2の切り替えバルブ26及びメインバルブ60bを開放し、原料粉体が処理容器51を迂回して粉体回収手段58に通流するように原料粉体の流路を切り替えて、原料ガスの供給を停止して成膜処理を終了する。なお、図7および図8においては、白抜きの丸がイオン化されていない原料粉体を、ドット(dot)がイオン化された原料粉体をそれぞれ示している。
上述の実施形態によれば、固体状の原料を加熱して得られる気体をウェハWに供給して処理を行うにあたり、粉体気化部31において固体状の原料をプラズマ化して気体状の原料を得るようにしているので、例えば高融点材料例えば銅などであっても簡便に気体状の原料を得ることができる。このため、例えば銅膜を成膜するにあたって融点若しくは気化温度の低い材料例えば有機物が結合した錯体などを用いる必要が無いので、銅膜中には、原料粉体に含まれる有機物が取り込まれない。従って、不純物の混入を抑えて高い純度の膜を成膜することができる。また、安価な材料例えば酸化銅を用いることができるので、安価に成膜処理を行うことができる。更に、プラズマを用いることにより、加熱するよりも短時間で大量の原料ガスを得ることができ、従って効率良く原料粉体を気化することができる。また、処理容器51に供給する分だけの原料粉体を気化しており、原料貯留部11の全体にエネルギーを加えるようなことはしていないため、原料粉体の気化に要する消費エネルギーを抑えることができるし、例えば熱分解しやすい原料粉体を用いた場合でも、原料貯留部11における熱分解の進行を抑えることができる。
また、処理容器51への原料の給断を行うバルブ24、26及び原料の濃度を測定する濃度検出部23を、固体の原料から気体を得る気体生成部である粉体気化部31よりも上流側(原料貯留部11側)に設けている。そのために、これらのバルブ24、26及び濃度検出部23には気体状の原料が接触しないので、この気体が凝縮しないようにこれらの部材を加熱する必要がない。従って、高温に耐える高価な部材などが不要になり、成膜装置のコストを下げることができるし、またこれらの部材に気体が付着して凝固しないことから、これらの部材の寿命を延ばすことができる。更に、従来から常温用として用いられている部材(バルブ24、26及び濃度検出部23)を用いることができるので、原料の供給の給断や濃度の測定を高い精度で且つ簡便に行うことができる。
また、原料供給路19内を通流する固体の原料粉体の濃度が安定するまでは、処理容器51を迂回してバイパス路25に原料粉体を通流させ、濃度が安定してから成膜処理を行うようにしているので、高い膜厚精度で成膜できる。更に、粉体除去手段41において気体と固体とを分離して気体により成膜処理を行っているので、パーティクルの発生を抑えることができる。
粉体気化部31の構成は図3に示したものに限定されるものではない。例えば図9に示すように、例えば通流部32の出口側の開口端(図9において左側)と下流側(処理容器51側)の原料供給路19の開口端(図9において右側)とを離間させて、この離間領域及び通流部32(粉体気化部31)を覆うように、例えば通流部32の長さ方向に沿って長く伸びる円筒形状のプラズマ生成室68を気密に設けても良い。
また、図10に示すように、例えばプラズマ生成室68内に上下に対向する1対の平行平板電極69、69を配置すると共に、この電極69の一方あるいは両方に高周波電源34を接続して、この電極69、69間においてアルゴンガスや原料粉体がプラズマ化されるように粉体気化部31を構成してもよい。尚、図10において参照符号70は絶縁物を示しており、原料粉体が電極69とプラズマ生成室68の内壁との間を通り抜けるのを阻止している。
更にまた、プラズマ生成用のガス(この例ではアルゴンガス)をプラズマ化するためのエネルギーを供給する手段としては、マイクロ波を供給する手段であっても良いし、電気エネルギー以外の例えば光エネルギー供給手段などであっても良い。粉体気化部31は上述のように1個に限らず、例えば原料供給路19に沿って2段(2個)以上設けても良く、このようにすれば原料粉体のプラズマ化をより一層確実に行うことができる。
そしてまた、上述の実施形態では原料粉体を送り出すためのキャリアガスがプラズマ生成用のガスを兼ねているが、キャリアガスおよびプラズマ生成用のガスとしてそれぞれ別のガスを用いても良い。この場合は例えばキャリアガスとして水素(H2)ガスをキャリアガスとして用いると共に、原料供給路19から分岐した分岐路から原料供給路19にプラズマ生成用のガスを導入する構成とすることができる。更にプラズマの生成を原料供給路19とは別の部位、例えば原料供給路19から分岐した分岐路内の空間例えばリモートプラズマチャンバにて行い、そのプラズマを原料供給路19内に導入して原料粉体をイオン化するようにしても良い。
また、上述の実施形態では原料粉体として酸化銅を用いているが、例えば酸化銅中に含まれる酸素(O)が例えば銅膜中に取り込まれる場合などには、アルゴンガスと共に水素(H2)ガスなどの還元性ガスを供給するようにしても良い。また、上述の実施形態では銅膜を成膜するための原料粉体として酸化銅を用いたが、これ以外にも例えば銅(Cu)を用いても良い。
また、成膜される膜は、銅膜には限定されず、高融点材料例えばアルミニウム(Al)、銀(Ag)、ストロンチウム(Sr)やルテニウム(Ru)、ハフニウム(Hf)、ジルコニウム(Zr)あるいはタングステン(W)などであってもよい。また、成膜される膜は、一つの元素からなる膜に限定されず、化合物例えばSTO(SrTiO3)、ITO(In2O3+SnO2)、TiO2(酸化チタン)などの膜であっても良い。このような化合物の膜を成膜する場合には、原料粉体としてはこの化合物の粒子あるいは化合物を構成する各々の元素の粉体を所定の混合比で混合した混合粉体が用いられることになる。
尚、粉体気化部31において原料粉体のほぼ全量をプラズマ化できる場合には、粉体除去手段41を設けずに、気体供給路38を処理容器51に直接接続するようにしても良い。また、粉体除去手段41は、例えばメッシュやトラップ等の構造的に固体と気体とを分離するものであってもよい。
次に、本発明の第2実施形態について、有機EL(Electro Luminescence)材料を成膜する例を説明する。
このような有機EL材料としては、例えばAlQ3(alaminato-tris-8-hydroxyquinolate)やNPB(N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidene)などが例示され、前述の第1実施形態と同様に、有機ELの成分を含む粒子(固体)状の原料粉体として供給されることになる。ところで、このような有機EL材料は、上記の高融点材料よりも低い温度で気化しやすい。そこで、この第2実施形態に係る成膜装置における粉体気化部31としては、前述のプラズマを用いた気化方法に代えて、加熱を用いた気化方法が利用される。この成膜装置について、図11及び図12を参照して説明するが、既述の図1と同じ構成部分については同じ符号を付して説明を省略する。
このような有機EL材料としては、例えばAlQ3(alaminato-tris-8-hydroxyquinolate)やNPB(N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidene)などが例示され、前述の第1実施形態と同様に、有機ELの成分を含む粒子(固体)状の原料粉体として供給されることになる。ところで、このような有機EL材料は、上記の高融点材料よりも低い温度で気化しやすい。そこで、この第2実施形態に係る成膜装置における粉体気化部31としては、前述のプラズマを用いた気化方法に代えて、加熱を用いた気化方法が利用される。この成膜装置について、図11及び図12を参照して説明するが、既述の図1と同じ構成部分については同じ符号を付して説明を省略する。
この図11に示すように、第1の切り替えバルブ24の下流側(処理容器51側)には、例えばサイクロン分離器などの粉体分離器100と加熱室である粉体気化部80とが第1の切り替えバルブ24側からこの順番で設けられている。この実施の形態のように加熱により原料粉体を気化させる場合には、原料粉体を輸送するためには大流量のキャリアガスが必要となるが、処理容器51にそのまま原料粉体とキャリアガスとが流れてしまうと、処理容器51内の圧力が高くなりすぎてしまう。そこで、粉体気化部80の上流側にこの粉体分離器100を設けて、処理容器51に供給されるキャリアガスの量を減らすように、つまりキャリアガス中に含まれる原料粉体の濃度を増やすようにしている。
粉体気化部80は、図12に示すように、原料供給路19の長さ方向に伸びる例えば円筒状の筐体81を備えている。この筐体81の長さ方向における側壁の一面側には、原料供給路19が気密に接続される導入ポート81aが設けられ、この導入ポート81aに対向する位置には、筐体81の長さ方向に対して垂直となるように配置された熱板82が設置されている。この熱板82の内部には、加熱手段であるヒーター82aが埋設されており、このヒーター82aには電源83が接続されている。そして、このヒーター82aにより熱板82の表面が既述の有機EL材料の気化温度以上の温度例えば280℃程度に加熱される。また、この筐体81の壁部内には、当該筐体81内の雰囲気を上記の温度に加熱できるように、ヒーター84が設けられており、ヒーター84は電源83に接続されている。従って、これらのヒーター82a、84により、筐体81内の雰囲気の全体が加熱される。尚、これらのヒーター82a及び84に夫々別の電源を接続し、夫々別に制御するようにしても良い。
導入ポート81aに対向する面以外の筐体81の面、例えば筐体81の周面における熱板82よりも原料供給路19側に寄った位置には、原料粉体から得られたガスを取り出して処理容器51に供給するための供給ポート81bが設けられている。この供給ポート81bには、原料供給路19の一部をなすガス供給路85の一端側が接続されており、このガス供給路85の他端側は、処理容器51の側面に形成された既述の原料導入口52に接続されている。ガス供給路85の周囲には、当該ガス供給路85内を通流する蒸気(気体)の凝縮あるいは凝固を抑えるために、図示しない電源に接続されたヒーター85aが設けられている。このヒーター85aにより、ガス供給路85内の雰囲気が例えば300℃程度に加熱されている。尚、ガス供給路85にはバルブを設けていない。また、処理容器51の周囲には、同様に処理容器51内あるいは処理容器51の壁面や天井面あるいは床面などにおけるガスの凝縮や凝固を抑えるために、図示しない電源に接続されたヒーター86が設けられており、処理容器51の壁面などを例えば300℃程度に加熱できるようになっている。
第2実施形態に係る成膜装置においても第1実施形態と同様に、第1の切り替えバルブ24及びメインバルブ60aを閉じて第2の切り替えバルブ26及びメインバルブ60bを開放し、原料粉体の検出濃度が所定の濃度に安定した後、第1の切り替えバルブ24及びメインバルブ60aを開放して第2の切り替えバルブ26及びメインバルブ60bを閉じて、原料粉体を処理容器51に向かって供給する。そして、キャリアガス中に含まれる原料粉体の濃度は、既述の粉体分離器100において所定の量あるいは所定の割合だけ高められる。
原料供給路19から粉体気化部80内に導入された原料粉体は、熱板82に衝突して気化温度以上の温度に加熱される。また、この熱板82の熱により気化しなかった原料粉体についても、粉体気化部80内の熱(ヒーター84)の熱により加熱されて気化する。こうして粉体気化部80内に導入された原料粉体はほとんど気化することになる。そして、図13に示すように、気化した原料がガス供給路85及び原料導入口52を介して処理容器51内に通流していき、ウェハWの表面に吸着(付着)することによって有機EL膜が成膜されることになる。この時、ヒーター85a、86により原料のガスが通流するガス供給路85及び処理容器51内が加熱されているので、これらのガス供給路85の内壁及び処理容器51の内壁などにおける凝縮や凝固が抑えられることになる。
そして、所定の時間が経過するまで成膜処理を行って例えば膜厚が100nm程度の有機EL膜を成膜した後、上記の例と同様に第1の切り替えバルブ24を閉じて第2の切り替えバルブ26及びメインバルブ60bを開放することによって、成膜処理を終了する。
本実施形態によれば、原料粉体を気化させて得られる気体をウェハWに供給して有機EL膜を成膜するにあたって、原料供給路19の途中に全体が加熱される粉体気化部80を設けて、原料粉体を加熱により気化してガスを得るようにしている。このため上記の銅などよりも気化(昇華)しやすい有機ELの成分を含む原料粉体を用いても、ウェハWに成膜される薄膜に対しては不純物とならないので、加熱により原料粉体を気化する構成をとりながらも、処理容器51に供給する分だけの原料粉体を気化することができるので、例えば原料貯留部11の全体にエネルギーを加える必要がない。従って、原料粉体の気化に要する消費エネルギーを抑えることができるし、原料貯留部11におけるこの原料粉体の熱分解の進行を抑えることができる。
また、原料粉体を加熱する粉体気化部80よりも上流側(原料貯留部11側)に、濃度検出部23やバルブ24、26を設けているので、ガスの凝縮や凝固を抑えるためにこれらの部材を加熱する必要がない。そのためこれら部材の寿命が長くなり、同様に成膜装置のコストを下げることができるし、また原料の供給の給断や濃度の測定を高い精度で且つ簡便に行うことができる。従って、同様に高い膜厚精度で成膜を行うことができる。
上記のキャリアガスとしては、既述のようにアルゴンガス以外の他の希ガス例えばネオン(Ne)やクリプトン(Kr)あるいはキセノン(Xe)などであっても良いし、あるいは窒素(N2)ガスなどの不活性ガスでも良い。また、このキャリアガスとして空気を用いてもよいし、あるいはこれらのガスを混合して用いても良い。
上記の実施形態では、処理容器51の側面からウェハWの側方位置に対して原料の蒸気を供給したが、例えば図14に示すように、ステージ53の載置面が垂直になるように、かつウェハWが原料導入口(ガス化された原料の導入口)52に近接した位置に位置するように、当該ステージ53を配置すると共に、このステージ53の載置面に例えば静電チャック90を設けるようにしても良い。そして、ステージ53に昇降機構91を設けて昇降自在に構成し、原料導入口52から処理容器51内に供給される蒸気がウェハWの表面を上下方向に亘って走査するようにしても良い。また、更に処理容器51の原料導入口52が形成された側壁に沿って(図14において紙面垂直方向)、ステージ53を水平方向に移動させる図示しない走行機構を設けて、原料導入口52から処理容器51内に供給される蒸気がウェハWの表面を上下方向及び水平方向に走査するようにしても良い。
また、原料粉体の濃度を調整するにあたって、前述の手法(粉体取り出し管191の吸い込み口の高さ位置の調整:第1実施形態を参照)と共に、あるいは前述の手法に代えて、キャリアガスの流量を調整するようにしても良い。
更に、濃度検出部23の構成は上記のものに限定されるものではなく、例えば原料供給路19の外部の電極により当該原料供給路19を通流する原料粉体を帯電させて、原料供給路19内に設けられた電極にこの帯電した原料粉体を衝突させることにより、当該電極の帯電量を介して原料粉体の濃度を測定してもよい。
また、上記の例では処理容器51内を真空雰囲気で成膜処理を行っているが、概略大気圧の状態で成膜処理を行うようにしても良い。
Claims (6)
- 原料粉体を貯留する原料貯留部と、
前記原料貯留部に接続された原料供給路と、
前記原料貯留部内の原料粉体を前記原料供給路に送り出すための送り出し手段と、
前記原料供給路中にプラズマ生成用のガスを供給する手段と、
前記原料供給路中の原料粉体をイオン化するためのプラズマを得るために、プラズマ生成用のガスに対してエネルギーを供給する手段を有する粉体気化部と、
前記原料供給路が接続され、原料粉体がイオン化されて得られたガスにより、内部に配置された被処理体に対して成膜処理を行うための処理容器と、
前記処理容器内を排気するための排気手段と、
を備えたことを特徴とする成膜装置。 - 前記送り出し手段は、前記原料貯留部内にキャリアガスを供給して原料粉体を圧送するためのキャリアガス供給手段であることを特徴とする請求項1記載の成膜装置。
- 前記キャリアガスは、前記プラズマ生成用のガスを兼ねており、前記キャリアガス供給手段は、前記プラズマ生成用のガスを供給する手段を兼ねていることを特徴とする請求項2記載の成膜装置。
- 前記原料供給路における前記粉体気化部の下流側に設けられ、前記粉体気化部においてイオン化されなかった原料粉体を除去するための粉体除去手段を備えたことを特徴とする請求項1から3のうちのいずれか一つに記載の成膜装置。
- 原料粉体を気化して得られたガスにより処理容器内にて被処理体に対して有機エレクトロルミネッセンス薄膜を成膜する成膜装置において、
有機エレクトロルミネッセンスの成分を含む原料粉体を貯留する原料貯留部と、
前記原料貯留部と前記処理容器との間に介在して設けられた原料供給路と、
前記原料貯留部内の原料粉体を前記原料供給路に送り出すための送り出し手段と、
前記原料供給路の途中に設けられ、原料粉体を加熱により気化してガスを得るために全体が加熱される加熱室と、この加熱室において原料粉体の導入ポートに対向する面以外の面に形成され、前記ガスを処理容器に供給するための供給ポートと、を有する粉体気化部と、
前記処理容器内を排気するために排気手段と、
を備えたことを特徴とする成膜装置。 - 原料貯留部から送られる原料粉体を導入する導入ポートと、
前記導入ポートから導入された原料粉体と共にプラズマ生成用のガスが通流する通流部と、
前記通流部を通流するプラズマ生成用のガスにエネルギーを供給してプラズマを発生させる手段と、
前記通流部にて前記プラズマにより原料粉体がイオン化されて得られたガスを、当該ガスにより被処理体に対して処理する処理容器に供給するための供給ポートと、
を備えたことを特徴とする粉体気化装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-187686 | 2008-07-18 | ||
JP2008187686A JP2010024498A (ja) | 2008-07-18 | 2008-07-18 | 成膜装置及び粉体気化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010007981A1 true WO2010007981A1 (ja) | 2010-01-21 |
Family
ID=41550384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062717 WO2010007981A1 (ja) | 2008-07-18 | 2009-07-14 | 成膜装置及び粉体気化装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010024498A (ja) |
WO (1) | WO2010007981A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071030A1 (ja) * | 2020-09-29 | 2022-04-07 | 東京エレクトロン株式会社 | 粉体搬送装置、ガス供給装置及び粉体除去方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129316A (ja) * | 2012-04-20 | 2015-07-16 | 東京エレクトロン株式会社 | ガスフロー蒸着装置、及びガスフロー蒸着方法 |
JP2016134569A (ja) * | 2015-01-21 | 2016-07-25 | 株式会社東芝 | 半導体製造装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02240265A (ja) * | 1989-03-14 | 1990-09-25 | Mitsubishi Heavy Ind Ltd | 立方晶窒化ほう素の製造方法 |
JPH03287768A (ja) * | 1990-04-03 | 1991-12-18 | Fujikura Ltd | 酸化物超電導導体製造用cvd原料の気化装置 |
JPH07223899A (ja) * | 1993-08-30 | 1995-08-22 | Tonen Corp | シリコン積層体の製造方法 |
JP2001523768A (ja) * | 1997-11-17 | 2001-11-27 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 有機薄膜の低圧蒸着 |
JP2002004054A (ja) * | 2000-04-14 | 2002-01-09 | Asm Microchemistry Oy | 基板上に薄膜を成長させる方法 |
-
2008
- 2008-07-18 JP JP2008187686A patent/JP2010024498A/ja active Pending
-
2009
- 2009-07-14 WO PCT/JP2009/062717 patent/WO2010007981A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02240265A (ja) * | 1989-03-14 | 1990-09-25 | Mitsubishi Heavy Ind Ltd | 立方晶窒化ほう素の製造方法 |
JPH03287768A (ja) * | 1990-04-03 | 1991-12-18 | Fujikura Ltd | 酸化物超電導導体製造用cvd原料の気化装置 |
JPH07223899A (ja) * | 1993-08-30 | 1995-08-22 | Tonen Corp | シリコン積層体の製造方法 |
JP2001523768A (ja) * | 1997-11-17 | 2001-11-27 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 有機薄膜の低圧蒸着 |
JP2002004054A (ja) * | 2000-04-14 | 2002-01-09 | Asm Microchemistry Oy | 基板上に薄膜を成長させる方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071030A1 (ja) * | 2020-09-29 | 2022-04-07 | 東京エレクトロン株式会社 | 粉体搬送装置、ガス供給装置及び粉体除去方法 |
JP7515359B2 (ja) | 2020-09-29 | 2024-07-12 | 東京エレクトロン株式会社 | 粉体搬送装置、ガス供給装置及び粉体除去方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2010024498A (ja) | 2010-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9882124B2 (en) | Etching method and substrate processing apparatus | |
TWI440090B (zh) | 半導體裝置製造方法、基板處理設備及半導體裝置 | |
TWI597785B (zh) | 電漿處理方法及電漿處理裝置 | |
KR100830911B1 (ko) | 마이크로파 플라즈마에 의한 처리 방법 | |
CN106469678A (zh) | 钨和其他金属的原子层蚀刻 | |
JP4914902B2 (ja) | シリサイド形成方法とその装置 | |
KR101035906B1 (ko) | 기판 처리 장치 및 그 코팅 방법 | |
KR101846049B1 (ko) | Cu 배선의 제조 방법 및 기억 매체 | |
TW201418509A (zh) | 成膜方法及成膜裝置 | |
JPH11200035A (ja) | スパッタ化学蒸着複合装置 | |
KR101113128B1 (ko) | 성막 장치의 제어 방법, 성막 방법, 성막 장치, 유기 el 전자 디바이스 및 그 제어 프로그램을 격납한 기억 매체 | |
WO2010007981A1 (ja) | 成膜装置及び粉体気化装置 | |
TWI407509B (zh) | 垂直電漿加工裝置及使用其之方法 | |
JP2012144792A (ja) | 合金微粒子の製造方法及び製造装置 | |
US8944003B2 (en) | Remote plasma system and method | |
KR101800487B1 (ko) | 동(Cu) 배선의 형성 방법 및 기억매체 | |
KR20150069537A (ko) | 반도체 장치의 제조 방법 | |
WO2014010333A1 (ja) | Cu配線の形成方法およびコンピュータ読み取り可能な記憶媒体 | |
JP2007221171A (ja) | 異種薄膜作成装置 | |
US20110031107A1 (en) | Method of burying metal and apparatus of depositing metal in concave portion | |
JP3987617B2 (ja) | コンタクト膜バリア膜連続作成装置及び異種薄膜連続作成装置 | |
KR101237634B1 (ko) | 성막 방법 및 성막 장치 | |
JP6883274B2 (ja) | 金属酸化物薄膜の製造方法及び薄膜製造装置 | |
JP2008140880A (ja) | 薄膜の形成方法、成膜装置及び記憶媒体 | |
CN108511389A (zh) | 半导体制造方法和等离子体处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09797906 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09797906 Country of ref document: EP Kind code of ref document: A1 |