WO2013157558A1 - ブラシレスモータ及びワイパ装置 - Google Patents

ブラシレスモータ及びワイパ装置 Download PDF

Info

Publication number
WO2013157558A1
WO2013157558A1 PCT/JP2013/061336 JP2013061336W WO2013157558A1 WO 2013157558 A1 WO2013157558 A1 WO 2013157558A1 JP 2013061336 W JP2013061336 W JP 2013061336W WO 2013157558 A1 WO2013157558 A1 WO 2013157558A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
brushless motor
speed
control
energization
Prior art date
Application number
PCT/JP2013/061336
Other languages
English (en)
French (fr)
Inventor
正秋 木村
裕人 田中
岩崎 保
智彦 安中
直希 小島
純也 北澤
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to US14/394,628 priority Critical patent/US9660559B2/en
Priority to EP13778736.2A priority patent/EP2840700B1/en
Priority to JP2014511225A priority patent/JP6100759B2/ja
Priority to CN201380020371.XA priority patent/CN104272579B/zh
Priority to RU2014145833/07A priority patent/RU2587457C1/ru
Priority to BR112014025606-3A priority patent/BR112014025606B1/pt
Priority to MX2014012557A priority patent/MX357242B/es
Publication of WO2013157558A1 publication Critical patent/WO2013157558A1/ja
Priority to US15/490,966 priority patent/US9735717B1/en
Priority to US15/657,564 priority patent/US9923494B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/166Means for transmitting drive characterised by the combination of a motor-reduction unit and a mechanism for converting rotary into oscillatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/18Means for transmitting drive mechanically
    • B60S1/26Means for transmitting drive mechanically by toothed gearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0086Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
    • H02P23/009Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0896Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to a vehicle driving condition, e.g. speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a brushless motor and a wiper device having a rotor with a permanent magnet attached and a stator provided with an armature coil.
  • Patent Documents 1, 2, and 3 examples of motors capable of switching the rotational speed of a rotor are described in Patent Documents 1, 2, and 3.
  • the motors described in Patent Documents 1 and 2 are a case, a magnet accommodated in the case, an armature that is rotatably provided in the case and wound with a coil, and rotates together with the armature. And a commutator provided on the shaft, and a high-speed operation brush and a low-speed operation brush that are in contact with the commutator.
  • a current flows through the low speed operation brush and the shaft rotates at a low rotation speed.
  • the driver operates the switch and selects high-speed operation current flows through the high-speed operation brush and the shaft rotates at a high rotational speed.
  • the motor described in Patent Document 3 is fixed to the inner surface of the yoke housing, and is arranged in an annular stator around which a plurality of armature coils are wound, and is rotatably disposed inside the stator, and is rotated.
  • excitation currents having different phases are supplied to a plurality of armature coils, a rotating magnetic field is generated, and the rotor rotates.
  • the motor described in Patent Document 3 does not include the brush described in Patent Documents 1 and 2.
  • the motors described in Patent Documents 1 to 3 are not limited to having a brush and without a brush, and have a switching element for controlling the timing of supplying current to the armature coil. Then, the rotational speed of the rotor is controlled by changing the duty ratio for controlling on / off of the switching element. For this reason, the physique of the motor is designed so that the rotor can be rotated at high speed, and the duty ratio when the rotor is rotated at a low rotational speed is reduced relative to the duty ratio when the rotor is rotated at a high rotational speed. Had gone. Therefore, the physique of the motor is designed on the basis of the case where the rotor is rotated at a high rotation speed, and there is a problem that the physique of the motor becomes large.
  • An object of the present invention is to provide a brushless motor and a wiper device that can be reduced in size as much as possible.
  • the brushless motor of the present invention includes a stator having an armature coil to which an electric current is supplied, a rotor that is rotated by a rotating magnetic field formed by the armature coil and connected to an operating member, and the armature coil.
  • a brushless motor provided with a switching element provided in a path for supplying current, and having a rotation speed control unit that controls the rotation speed of the rotor in at least two control modes in which the rotation speed of the rotor is different.
  • the rotation speed controller supplies a current to the armature coil at a predetermined energization timing, and controls a duty ratio that is an ON ratio of the switching element.
  • the second control mode is selected, the speed when the first control mode is selected is controlled.
  • Field-weakening control that weakens the rotating magnetic field formed by the armature coil more than when the first control mode is selected by supplying a current to the armature coil at an energization timing advanced from the timing. To control the rotational speed of the rotor.
  • the brushless motor of the present invention includes a speed reduction mechanism provided in a power transmission path from the rotor to the operating member, and the speed reduction mechanism has a configuration in which an output speed is lower than an input speed.
  • the brushless motor of the present invention includes a rotation direction control unit that rotates the rotor forward and backward by switching the direction of current supplied to the armature coil.
  • the brushless motor of the present invention is provided with a control board having the rotation speed control unit, and the speed reduction mechanism and the control board are housed in a common housing.
  • a wiper device of the present invention is a wiper device including a wiper arm that is an operation member for wiping a glass of a vehicle, and the wiper arm is connected to the rotor of the brushless motor according to any one of the present invention described above. It is characterized by being.
  • the wiper device of the present invention is provided with a sensor magnet that rotates integrally with the rotor, and a rotation speed sensor that outputs a signal according to a change in the magnetic pole of the sensor magnet when the rotor rotates.
  • the number control unit detects the rotational speed of the rotor based on the signal of the rotational speed sensor, and advances the energization timing of the armature coil by 30 degrees in electrical angle. Thus, the number of rotations of the rotor is controlled.
  • the rating of the brushless motor is determined based on the rotational speed of the rotor in the first control mode, and the rotational speed of the rotor in the second control mode can be obtained by field-weakening control. it can. Therefore, the physique of the brushless motor can be made as small as possible.
  • the speed reduction mechanism in addition to controlling the rotational speed of the rotor, can amplify the output torque with respect to the input torque.
  • the rotor can be rotated forward and backward by switching the direction of the current flowing through the armature coil.
  • the brushless motor can be reduced in size, and the layout property when the brushless motor is attached to an object. Will improve.
  • the power of the rotor of the brushless motor is transmitted to the wiper arm, and the wiper arm is operated to wipe the glass of the vehicle.
  • the rotational speed of the rotor is detected based on the signal of the rotational speed sensor, and the energization timing to the armature coil is advanced by 30 degrees in electrical angle. By doing so, the rotational speed of the rotor can be controlled.
  • (A)-(C) are figures which show an example of the 1st control and 2nd control which are performed with the brushless motor of this invention. It is a figure which shows the characteristic of the brushless motor of this invention. It is a diagram which shows the relationship between the characteristic of the brushless motor of this invention, and an electrical angle. It is a figure which shows the example which controls the brushless motor of this invention based on an operating angle. It is a figure which shows the example which controls the brushless motor of this invention based on rotation speed. It is a figure which shows the example which controls the brushless motor of this invention based on time. (A), (B) is a chart which shows an example of the 1st control and the 2nd control which are performed with the brushless motor of the present invention.
  • (A), (B) is sectional drawing which shows the structural example of the rotor used for the brushless motor of this invention.
  • the brushless motor of this invention it is a schematic diagram which shows the relationship between a rotor and a stator.
  • the brushless motor of this invention it is a schematic diagram which shows the relationship between a rotor and a stator. It is a diagram which shows the characteristic of the brushless motor of this invention.
  • the vehicle 10 shown in FIG. 1 has a windshield 11.
  • the vehicle 10 also has a wiper device 12 that wipes the windshield 11.
  • the wiper device 12 includes a wiper arm 14 that swings about a pivot shaft 13 and a wiper arm 16 that swings about a pivot shaft 15.
  • a wiper blade 17 is attached to the free end of the wiper arm 14, and a wiper blade 18 is attached to the free end of the wiper arm 16.
  • the wiper device 12 has a brushless motor 19 as a power source for driving the wiper arms 14 and 16.
  • the power of the brushless motor 19 is individually transmitted to the wiper arms 14 and 16 via a power transmission mechanism 20 configured by levers, links and the like.
  • the brushless motor 19 is configured as shown in FIG. 2, FIG. 3, and FIG. As an example of the brushless motor 19 in this embodiment, a three-phase four-pole motor is used.
  • the brushless motor 19 has a stator 21 and a rotor 22.
  • the brushless motor 19 has a bottomed cylindrical case 23, and a stator 21 is fixedly provided on the inner periphery of the case 23.
  • the stator 21 has armature coils 21 a, 21 b, and 21 c of three phases, specifically, U phase, V phase, and W phase.
  • the rotor 22 is provided inside the stator 21, and the rotor 22 includes a rotating shaft 22a and a four-pole permanent magnet 22b attached to the rotating shaft 22a.
  • a plurality of bearings (not shown) are provided in the case 23, and the rotating shaft 22a is rotatably supported by the plurality of bearings.
  • the brushless motor 19 has a hollow frame 24, and the frame 24 and the case 23 are fixed by a fastening member (not shown).
  • the rotation shaft 22 a has a half in the length direction arranged inside the case 23 and the other half in the frame 24.
  • a worm 22c is formed on the outer periphery of a portion of the rotating shaft 22a disposed in the frame 24.
  • a worm wheel 25 is provided in the frame 24.
  • a gear 25a is formed on the outer periphery of the worm wheel 25, and the gear 25a and the worm 22c are engaged with each other.
  • a sensor magnet 38 is attached to a portion of the rotating shaft 22a disposed in the frame 24. The sensor magnet 38 rotates integrally with the rotation shaft 22a.
  • the sensor magnet 38 is magnetized so that N poles and S poles are alternately arranged along the circumferential direction of the rotating shaft 22a.
  • the worm wheel 25 is configured to rotate integrally with the output shaft 26.
  • the worm 22c and the gear 25a constitute the speed reduction mechanism 27 in the present embodiment.
  • the speed reduction mechanism 27 is a mechanism that lowers the rotation speed (output rotation speed) of the output shaft 26 than the rotation speed (input rotation speed) of the rotor 22 when the power of the rotor 22 is transmitted to the output shaft 26.
  • a shaft hole (not shown) is provided in the upper part of the frame 24. The end of the output shaft 26 opposite to the end to which the worm wheel 25 is fixed is exposed to the outside via the shaft hole of the frame 24.
  • a power transmission mechanism 20 is connected to a portion of the output shaft 26 exposed to the outside of the frame 24 as shown in FIG.
  • An opening 24a is provided in a portion of the frame 24 opposite to the shaft hole.
  • the opening 24 a is formed for attaching the worm wheel 25 and the like inside the frame 24.
  • An under cover 28 is provided to close the opening 24a.
  • the under cover 28 has a tray shape, and a control board 29 is provided in a space surrounded by the under cover 28 and the frame 24.
  • FIG. 2 shows an example in which the control board 29 is attached to the under cover 28.
  • the control board 29 is provided with a drive device 33 for controlling the brushless motor 19 as shown in FIG.
  • the drive device 33 includes an inverter circuit 30 that controls energization of the armature coils 21a, 21b, and 21c.
  • the inverter circuit 30 is connected to a terminal (not shown).
  • the frame 24 is provided with a connector (not shown). By attaching a socket (not shown) of an electric wire connected to the external power supply 31 to the connector, the external power supply 31 and the inverter circuit 30 are connected. Connected.
  • the external power supply 31 is a battery or a capacitor mounted on the vehicle 10.
  • the inverter circuit 30 includes a switching element 30a that connects and disconnects the external power source 31 and the armature coils 21a, 21b, and 21c.
  • the switching element 30a is configured by a semiconductor element such as an FET, for example. More specifically, three positive-side switching elements connected to the positive electrode of the external power supply 31 corresponding to the U phase, V phase, and W phase, and corresponding to the U phase, V phase, and W phase, the external power supply 3 negative electrode side switching elements connected to the negative electrode side of 31. When the switching element 30a is connected (turned on), current is supplied from the external power supply 31 to the armature coils 21a, 21b, and 21c.
  • the control circuit 32 is a known microcomputer including a CPU, RAM, ROM, and the like.
  • the driving device 33 includes a PWM signal generation circuit 34, and the signal of the PWM signal generation circuit 34 is configured to be input to the control circuit 32.
  • the control circuit 32 outputs a drive signal for controlling the three negative-side switching elements, and a PWM signal is superimposed on the drive signal. That is, the three negative-side switching elements are driven by PWM control and are intermittently turned on in each conduction section.
  • the current values supplied to the armature coils 21a, 21b, and 21c are controlled by controlling the rate at which the three negative-side switching elements are individually turned on, that is, the duty ratio. .
  • the energization period for supplying power to the armature coils 21a, 21b, and 21c can be increased or decreased between 0% and 100% with respect to the entire energization period.
  • the control circuit 32 stores data, a program, and the like for control executed when the brushless motor 19 is started.
  • the time when the brushless motor 19 is started is an initial stage when the brushless motor 19 is stopped.
  • an induced voltage detector 35 is connected to the unconnected end of each armature coil 21a, 21b, 21c.
  • the induced voltage detector 35 is a sensor that detects an induced voltage generated in each armature coil 21 a, 21 b, 21 c as the rotor 22 rotates, and a detection signal of the induced voltage detector 35 is input to the control circuit 32.
  • the control circuit 32 performs processing for estimating the rotation position (phase in the rotation direction) of the rotor 22 based on the detection signal input from the induced voltage detection unit 35.
  • the brushless motor 19 controls the switching of the switching element 30a to be turned on and off, and reverses the direction of energization to the armature coils 21a, 21b, and 21c, thereby rotating the rotor 22 forward and backward. It is possible.
  • an output shaft sensor 36 that detects at least one of the rotational speed and the absolute position of the output shaft 26 is provided inside the frame 24.
  • the absolute position means the rotation angle of the output shaft 26 with respect to the reference position.
  • the reference position may be set at an arbitrary position within the range of 360 degrees.
  • the detection signal of the output shaft sensor 36 is input to the control circuit 32.
  • a Hall IC 39 is attached to the control board 29.
  • the Hall IC 39 is fixed facing the sensor magnet 38 in a non-contact manner.
  • the Hall IC 39 performs a switching operation by a change in the magnetic pole of the sensor magnet 38 as the rotor 22 rotates, and generates a switching signal (ON / OFF signal).
  • the control circuit 32 can detect the rotational speed (rotational speed) of the rotor 22 based on the switching signal of the Hall IC 39. Further, a wiper switch 37 is provided in the interior of the vehicle 10, and an operation signal of the wiper switch 37 is input to the control circuit 32.
  • the wiper device 12 can switch the wiping speed of the wiper arms 14 and 16 by operating the wiper switch 37 with the driver's intention based on conditions such as rainfall and snowfall.
  • the driver can select the low-speed wiping mode in which the wiper arms 14 and 16 are operated at a predetermined low speed by operating the wiper switch 37 when the amount of rainfall and snowfall is small.
  • the driver can select the high-speed wiping mode in which the wiper arms 14 and 16 are operated at a higher speed than the low speed by operating the wiper switch 37 when the amount of rainfall and the amount of snowfall is large.
  • the driver judges whether the amount of rainfall and the amount of snowfall are large or small based on his / her own subjectivity, and there is no standard for distinguishing between large and small amounts.
  • the control circuit 32 stores in advance patterns, data, arithmetic expressions, and the like for controlling the switching element 30a for the low speed wiping mode and the high speed wiping mode.
  • the control of the brushless motor 19 in this embodiment will be described.
  • the detection signal of the induced voltage detection unit 35 is input to the control circuit 32.
  • the control circuit 32 estimates the rotational position (angle in the rotational direction) of the rotor 22 based on the detection signal of the induced voltage detector 35 and performs energization control based on the rotational position of the rotor 22. That is, the positive-side switching elements of each phase are sequentially turned on by 120 degrees in electrical angle, and the negative-side switching elements of phases different from the positive-side switching elements are sequentially turned on by 120 degrees in electrical angle.
  • the energization of the child coils 21a, 21b, and 21c is switched to commutate the phase current.
  • the brushless motor 19 has a characteristic that the rotational speed increases as the current value increases. Furthermore, the brushless motor 19 has a characteristic that the torque decreases as the rotational speed increases.
  • the low-speed wiping mode the actual rotational speed of the rotor 22 can be brought close to the required rotational speed by controlling the duty ratio without performing the field weakening control.
  • a predetermined fixed value is used as the energization timing to the armature coils 21a, 21b, and 21c.
  • the field weakening control is control for weakening the magnetic field formed by supplying current to the armature coils 21a, 21b, and 21c as much as possible. More specifically, the field weakening control is a control in which the energization timing to the armature coils 21a, 21b, and 21c is set to an advance angle (advance phase) of 30 degrees as compared with the case where the low speed wiping mode is selected.
  • the rotating magnetic field formed by the armature coils 21a, 21b, and 21c when the high speed wiping mode is selected is the rotating magnetic field formed by the armature coils 21a, 21b, and 21c when the low speed wiping mode is selected. It becomes weaker than.
  • this field weakening control is performed, the counter electromotive force generated in the armature coils 21a, 21b, and 21c is reduced, and the rotational speed of the rotor 22 is increased.
  • the advance angle represents the relative positional relationship between the armature coil and the permanent magnet in the rotation direction of the rotor 22 in electrical angle.
  • FIG. 5 is a diagram showing the characteristics of the brushless motor 19.
  • the rotation speed of the brushless motor 19 is shown on the vertical axis
  • the torque of the brushless motor 19 is shown on the horizontal axis.
  • the broken line shown in FIG. 5 is an example of the low speed characteristic corresponding to the low speed wiping mode
  • the solid line shown in FIG. 5 is an example of the high speed characteristic corresponding to the high speed wiping mode.
  • the brushless motor 19 of the present embodiment has a setting characteristic at a position indicated by a solid line, for example, so that the rotation speed and torque corresponding to the low speed characteristic of FIG. 5 can be obtained when setting the rating. . For this reason, when the low-speed wiping mode is selected by operating the wiper switch 37, the required rotation speed and torque can be obtained within the range of the set characteristics or less.
  • the control circuit 32 executes the field weakening control to thereby set the setting characteristics.
  • a range of rotational speed and torque exceeding can be obtained.
  • the characteristics of the brushless motor 19 are apparently equivalent to being at a position indicated by a two-dot chain line in FIG. That is, the design of the brushless motor 19 can be determined based on the low-speed wiping mode, and the physique of the brushless motor 19 can be made as small as possible.
  • the fact that the torque can be increased by increasing the rotational speed of the brushless motor 19 without changing the current value means that the torque constant becomes relatively large. In other words, the brushless motor 19 of this embodiment can generate as high torque as possible with less power consumption, and the motor efficiency is improved.
  • FIG. 6 is a diagram showing the relationship between the advance angle as the energization timing and the rotation speed of the brushless motor 19.
  • the horizontal axis represents current
  • the vertical axis represents rotation speed.
  • the rotational speed when the advance angle is 30 degrees is higher than the rotational speed when the advance angle is 0 degrees.
  • the advance angle of 0 degrees is a fixed value of the energization timing described in the low speed wiping mode.
  • FIG. 7 is a diagram showing the relationship between the advance angle as the energization timing and the efficiency of the brushless motor 19.
  • current is shown on the horizontal axis and efficiency is shown on the vertical axis.
  • the efficiency when the advance angle is 30 degrees is higher than the efficiency when the advance angle is 0 degrees.
  • the wiper device for a vehicle is used more frequently in the low-speed wiping mode than in the high-speed wiping mode. For this reason, when the brushless motor 19 of this embodiment is used for the wiper apparatus 12, the effect of reducing power consumption is large when the low-speed wiping mode is selected.
  • the brushless motor 19 of the present embodiment can estimate the rotational position of the rotor 22 based on the detection signal of the induced voltage detection unit 35 when performing field weakening control. Furthermore, the rotational position of the rotor 22 can be estimated based on the detection signal of the output shaft sensor 36 and the reduction ratio of the speed reduction mechanism 27 instead of the detection signal of the induced voltage detection unit 35. Thus, the brushless motor 19 of this embodiment can estimate the rotational position of the rotor 22 using the induced voltage detection unit 35 and the output shaft sensor 36 that are provided in advance.
  • the brushless motor 19 of the present embodiment can obtain the rotation speed and torque corresponding to the characteristics for high speed by performing field weakening control, and is provided with a speed reduction mechanism 27. Therefore, the brushless motor 19 can set the reduction ratio of the reduction mechanism 27 so as to have characteristics suitable for the operating conditions of the wiper arms 14 and 16 of the wiper device 12, that is, the rotation speed and torque.
  • the reduction ratio of the speed reduction mechanism 27 is a value obtained by dividing the rotation speed of the output shaft 26 by the rotation speed of the rotor 22, and the rotation speed of the output shaft 26 decreases as the speed reduction ratio of the speed reduction mechanism 27 increases. That is, by providing the speed reduction mechanism 27, the torque of the output shaft 26 can be amplified with respect to the torque of the rotor 22.
  • the brushless motor 19 of the present embodiment can optimize the advance angle control when the brushless motor 19 is rotating forward and backward based on the estimation result of the rotational position of the rotor 22. Furthermore, since the brushless motor 19 of the present embodiment is not provided with a brush, a commutator (commutator), etc., there is no generation of friction torque due to sliding between the brush and the commutator, the motor efficiency decreases, and the brush temperature. It is possible to prevent the rise and limit the motor output. Furthermore, the brushless motor 19 of the present embodiment can prevent the generation of noise due to the presence of the brush and the generation of operating noise, and can ensure quietness.
  • the brushless motor 19 of the present embodiment has a structure in which the control board 29 and the speed reduction mechanism 27 are both disposed in a space surrounded by the frame 24 and the under cover 28, that is, an electromechanical integrated structure. Therefore, the entire brushless motor 19 can be configured in a compact manner, and the layout when the brushless motor 19 is attached to the vehicle body is improved.
  • the control circuit 32 when the high speed mode is selected and field weakening control is performed, the control circuit 32 performs control to detect the rotational speed of the rotor 22 based on the on / off signal of the Hall IC 39.
  • the rotation speed of the rotor 22 can be controlled by advancing the energization timing of the armature coils 21a, 21b, and 21c by 30 degrees in terms of electrical angle.
  • the time required from when the wiper arms 14, 16 start to operate from the initial position to return to the initial position via the reverse position is preferably kept constant.
  • the actual wiping speed of the wiper arms 14 and 16 may change depending on conditions such as wind resistance due to vehicle speed and wiping resistance of the wiper blades 17 and 18, and the required time may change. Therefore, it is possible to perform control to change the duty ratio in parallel with field weakening control. More specifically, the control circuit 32 indirectly determines the actual wiping speed of the wiper arms 14 and 16 based on the signal from the Hall IC 39. Then, the control circuit 32 controls the duty ratio when performing feedback control so that the actual wiping speed of the wiper arms 14 and 16 approaches the target wiping speed. In this manner, the wiping speed of the wiper arms 14 and 16 can be finely controlled by controlling the duty ratio from the previous energization timing control to the next energization timing control.
  • the drive device 33 having the control circuit 32 corresponds to the rotation speed control unit and the rotation direction control unit of the present invention.
  • the frame 24 and the under cover 28 correspond to the housing of the present invention
  • the windshield 11 corresponds to the glass of the present invention
  • the wiper arms 14 and 16 correspond to the operating members of the present invention
  • the switching element 30a The Hall IC 39 corresponds to the switch of the invention
  • the Hall IC 39 corresponds to the rotational speed sensor of the invention.
  • the low-speed wiping mode corresponds to the first control mode of the present invention
  • the high-speed wiping mode corresponds to the second control mode of the present invention.
  • the wiper switch is not limited to a switch operated by a driver, and may be a detection switch having a function of detecting a rainfall amount, a snowfall amount, and the like. If comprised in this way, based on the amount of rainfall, the amount of snowfall, etc., a rotation speed control part will start a wiper apparatus automatically, and will perform control which switches a low speed mode and a high speed mode automatically. In this case, the rotational speed control unit stores in advance data such as the amount of rainfall and the amount of snowfall, which serve as a reference for switching between the low speed mode and the high speed mode. Furthermore, the number of armature coils and the number of permanent magnets can be arbitrarily changed.
  • the wiper device is not limited to the windshield but may wipe the rear glass.
  • the wiper device may have a structure in which the wiper arm swings around the output shaft.
  • the wiper device may be configured to drive the two wiper arms by separate brushless motors.
  • the brushless motor according to the present embodiment may be an IPM (Interior / Permanent / Magnet /) motor having a structure in which a permanent magnet is embedded in an iron core.
  • the mode selected by the wiper switch is not limited to the two types of the low-speed wiping mode and the high-speed wiping mode, and there may be three or more types.
  • the rotational speed of the rotor in the medium-speed wiping mode is higher than the rotational speed of the rotor in the low-speed wiping mode and lower than the rotational speed of the rotor in the high-speed wiping mode.
  • the rotation speed control unit supplies current to the armature coil at a predetermined energization timing when the low-speed wiping mode is selected from among the three types of wiping modes, and the ON ratio of the switching element. While controlling the rotational speed of the rotor by controlling a certain duty ratio, when the medium-speed wiping control mode is selected, the armature is advanced at an energization timing that is advanced from the energization timing when the low-speed wiping control mode is selected. By supplying a current to the coil, the rotational speed of the rotor can be controlled by performing field-weakening control that makes the rotating magnetic field formed by the armature coil weaker than when the low-speed wiping control mode is selected.
  • the low speed wiping mode corresponds to the first control mode in the present invention
  • the medium speed wiping mode is the present invention. This corresponds to the second control mode.
  • the rotation speed control unit supplies current to the armature coil at a predetermined energization timing, and the ON ratio of the switching element
  • the duty ratio is controlled to control the rotation speed of the rotor.
  • the medium speed wiping mode corresponds to the first control mode in the present invention
  • the high speed wiping mode is the present invention. This corresponds to the second control mode.
  • the brushless motor of the present invention can be applied to either an inner rotor type brushless motor in which a rotor is arranged inside a stator or an outer rotor type brushless motor in which a rotor is arranged outside a stator.
  • the brushless motor of the present embodiment is used as a power source for operating doors, roofs, glass and other operating members in a convenient comfort system device provided in a vehicle, for example, a power slide door device, a sunroof device, a power window device, etc. It can also be used.
  • the vehicle 110 shown in FIG. 8 has a windshield 111.
  • the vehicle 110 has a wiper device 112 that wipes the windshield 111.
  • the wiper device 112 includes a wiper arm 114 that swings about a pivot shaft 113 and a wiper arm 116 that swings about a pivot shaft 115.
  • a wiper blade 117 is attached to the free end of the wiper arm 114, and a wiper blade 118 is attached to the free end of the wiper arm 116.
  • the wiper device 112 includes a brushless motor 119 as a power source for driving the wiper arms 114 and 116.
  • the power of the brushless motor 119 is configured to be individually transmitted to the wiper arms 114 and 116 via a power transmission mechanism 120 configured by levers, links, and the like.
  • the brushless motor 119 is configured as shown in FIG. 9, FIG. 10, and FIG.
  • the brushless motor 119 in the present embodiment is a three-phase four-pole type.
  • the brushless motor 119 has a stator 121 and a rotor 122.
  • the brushless motor 119 has a bottomed cylindrical case 123, and a stator 121 is fixedly provided on the inner periphery of the case 123.
  • the stator 121 has three-phase, specifically, U-phase, V-phase, and W-phase armature coils 121a, 121b, and 121c.
  • the rotor 122 is provided inside the stator 121.
  • the rotor 122 has a rotating shaft 122a and a four-pole permanent magnet 122b attached to the rotating shaft 122a.
  • the rotating shaft 122a is omitted in FIG.
  • a plurality of bearings (not shown) are provided in the case 123, and the rotating shaft 122a is rotatably supported by the plurality of bearings.
  • the brushless motor 119 has a hollow frame 124, and the frame 124 and the case 123 are fixed by a fastening member (not shown).
  • the rotation shaft 122 a has a half in the length direction arranged inside the case 123 and the other half in the frame 124.
  • a worm 122c is formed on the outer periphery of a portion of the rotating shaft 122a disposed in the frame 124.
  • a worm wheel 125 is provided in the frame 124.
  • a gear 125a is formed on the outer periphery of the worm wheel 125, and the gear 125a and the worm 122c are engaged with each other.
  • a sensor magnet 138 is attached to a portion of the rotating shaft 122a disposed in the frame 124.
  • the sensor magnet 138 rotates integrally with the rotating shaft 122a.
  • the sensor magnet 138 is magnetized so that N poles and S poles are alternately arranged along the circumferential direction of the rotating shaft 122a.
  • the worm wheel 125 is configured to rotate integrally with the output shaft 126.
  • the worm 122c and the gear 125a constitute a speed reduction mechanism 127 in the present embodiment.
  • the reduction ratio of the reduction mechanism 127 is such that the rotational speed of the output shaft 126 is lower than the rotational speed of the rotor 122 when the power of the rotor 122 is transmitted to the output shaft 126.
  • a shaft hole (not shown) is provided in the upper part of the frame 124.
  • the end of the output shaft 126 opposite to the end to which the worm wheel 125 is fixed is exposed to the outside through the shaft hole of the frame 124.
  • a power transmission mechanism 120 is connected to a portion of the output shaft 126 exposed to the outside of the frame 124 as shown in FIG.
  • An opening 124a is provided in a portion of the frame 124 opposite to the shaft hole.
  • the opening 124 a is formed for attaching the worm wheel 125 and the like inside the frame 124.
  • An under cover 128 that closes the opening 124a is provided.
  • the under cover 128 has a tray shape, and a control board 129 is provided in a space surrounded by the under cover 128 and the frame 124.
  • FIG. 9 shows an example in which the control board 129 is attached to the under cover 128.
  • the control board 129 is provided with a drive device 133 for controlling the brushless motor 119 as shown in FIG.
  • the drive device 133 includes an inverter circuit 130 that controls energization of the armature coils 121a, 121b, and 121c.
  • the inverter circuit 130 is connected to a terminal (not shown).
  • the frame 124 is provided with a connector (not shown). By attaching a socket (not shown) of an electric wire connected to the external power supply 131 to the connector, the external power supply 131 and the inverter circuit 130 are connected. Connected.
  • the external power supply 131 is a battery or a capacitor mounted on the vehicle 110.
  • the inverter circuit 130 includes a switching element 130a that connects and disconnects the external power supply 131 and the armature coils 121a, 121b, and 121c.
  • the switching element 130a is composed of a semiconductor element such as an FET, for example. More specifically, three positive-side switching elements connected to the positive electrode of the external power supply 131 corresponding to the U phase, V phase, and W phase, and corresponding to the U phase, V phase, and W phase, the external power supply 131 and three switching elements connected to the negative electrode side.
  • a control circuit (controller) 132 having a function of switching on and off of the switching element 130a is connected to the inverter circuit 130.
  • the control circuit 132 is a known microcomputer provided with a CPU, RAM, ROM and the like. Further, the driving device 133 has a PWM signal generation circuit 134, and a signal of the PWM signal generation circuit 134 is configured to be input to the control circuit 132.
  • the control circuit 132 outputs a drive signal for controlling the three negative-side switching elements, and a PWM signal is superimposed on the drive signal. That is, the three negative-side switching elements are driven by PWM control and are intermittently turned on in each conduction section.
  • the current value supplied to each armature coil 121a, 121b, 121c is controlled by controlling the rate at which the three negative-side switching elements are individually turned on, that is, the duty ratio.
  • the control circuit 132 stores control data, a program, and the like executed when the brushless motor 119 is started.
  • the startup time of the brushless motor 119 is an initial stage of rotating the stopped brushless motor 119.
  • an induced voltage detector 135 is connected to the unconnected end of each armature coil 121a, 121b, 121c.
  • the induced voltage detection unit 135 is a sensor that detects the induced voltage generated in each armature coil 121 a, 121 b, 121 c as the rotor 122 rotates, and the detection signal of the induced voltage detection unit 135 is input to the control circuit 132. .
  • the control circuit 132 performs processing for estimating the rotational position (phase in the rotational direction) of the rotor 122 based on the detection signal input from the induced voltage detector 135.
  • the brushless motor 119 in the present embodiment controls the switching of the switching element 130a to turn on and off, and reverses the direction of energization to the armature coils 121a, 121b, 121c, thereby rotating the rotor 122 forward and backward. It is possible.
  • the switching element 130a is turned on, the external power supply 131 and each armature coil 121a, 121b, 121c are connected, and when the switching element 130a is turned off, the external power supply 131 and each armature coil 121a, 121b, 121c Is cut off.
  • an output shaft sensor 136 that detects at least one of the rotational speed and absolute position of the output shaft 126 is provided inside the frame 124.
  • the absolute position means the rotation angle of the output shaft 126 with respect to the reference position.
  • the reference position may be set at an arbitrary position within the range of 360 degrees.
  • the detection signal of the output shaft sensor 136 is input to the control circuit 132.
  • a Hall IC 139 is attached to the control board 129.
  • the Hall IC 139 is fixed facing the sensor magnet 138 in a non-contact manner.
  • the Hall IC 139 performs a switching operation by a change in the magnetic pole of the sensor magnet 138 as the rotor 122 rotates, and generates a switching signal (ON / OFF signal).
  • the control circuit 132 can detect the rotational speed (rotational speed) of the rotor 122 based on the switching signal of the Hall IC 139. Further, a wiper switch 137 is provided in the vehicle 110 and an operation signal of the wiper switch 137 is input to the control circuit 132.
  • the wiping speed of the wiper arms 114 and 116 can be switched based on conditions such as rainfall and snowfall. For example, when the amount of rainfall and the amount of snowfall are small, the driver can select the low-speed wiping mode in which the wiper arms 114 and 116 are operated at a predetermined low speed by operating the wiper switch 137. On the other hand, when the amount of rainfall and snowfall is large, the driver can operate the wiper switch 137 to select the high speed wiping mode in which the wiper arms 114 and 116 are operated at a speed higher than the low speed. For this reason, the control circuit 132 stores in advance patterns, data, arithmetic expressions, and the like for controlling the switching element 130a for the low-speed wiping mode and the high-speed wiping mode.
  • the control of the brushless motor 119 in this embodiment will be described.
  • the detection signal of the induced voltage detector 135 is input to the control circuit 132.
  • the control circuit 132 estimates the rotational position (angle in the rotational direction) of the rotor 122 based on the detection signal of the induced voltage detector 135 and performs energization control based on the rotational position of the rotor 122. That is, the positive-side switching elements of each phase are sequentially turned on by 120 degrees in electrical angle, and the negative-side switching elements of phases different from the positive-side switching elements are sequentially turned on by 120 degrees in electrical angle.
  • the energization of the child coils 121a, 121b, 121c is switched to commutate the phase current.
  • the brushless motor 119 has a characteristic that the rotation speed increases as the current value increases. Further, the brushless motor 119 has a characteristic that the torque decreases as the rotational speed increases.
  • the actual rotational speed of the rotor 122 can be brought close to the required rotational speed by controlling the duty ratio without performing the field weakening control.
  • the low speed wiping mode is selected for the energization timing of the armature coils 121a, 121b, 121c without changing the current value supplied to the armature coils 121a, 121b, 121c.
  • Field-weakening control with a leading phase as compared with In the field weakening control the energization timing to the armature coils 121a, 121b, and 121c is advanced by 30 degrees in electrical angle compared to when the low speed wiping mode is selected.
  • the field weakening control is control for weakening the magnetic field formed by supplying current to the armature coils 121a, 121b, and 121c as much as possible. When this field weakening control is performed, the counter electromotive force generated in the armature coils 121a, 121b, and 121c decreases, and the rotational speed of the rotor 122 increases.
  • FIG. 12 is a diagram showing the characteristics of the brushless motor 119.
  • the rotation speed of the brushless motor 119 is shown on the vertical axis
  • the torque of the brushless motor 119 is shown on the horizontal axis.
  • the broken line shown in FIG. 12 is an example of the low speed characteristic corresponding to the low speed wiping mode
  • the solid line shown in FIG. 12 is an example of the high speed characteristic corresponding to the high speed wiping mode.
  • the brushless motor 119 of the present embodiment has a setting characteristic at a position indicated by a solid line, for example, so that the rotation speed and torque corresponding to the low speed characteristic shown in FIG. 12 can be obtained when setting the rating. . For this reason, when the low-speed wiping mode is selected by operating the wiper switch 137, the required rotation speed and torque can be obtained within the range of the set characteristics or less.
  • the control circuit 132 executes the field weakening control, thereby setting the setting characteristics.
  • a range of rotational speed and torque exceeding can be obtained.
  • the characteristics of the brushless motor 119 are apparently equivalent to being at the position indicated by the two-dot chain line.
  • the fact that the torque can be increased by increasing the rotational speed of the brushless motor 119 without changing the current value means that the torque constant becomes relatively large. In other words, the brushless motor 119 of this embodiment can generate as much torque as possible with less power consumption, and the motor efficiency is improved.
  • a wiper device for a vehicle is used more frequently in the low-speed wiping mode than in the high-speed wiping mode. For this reason, when the brushless motor 119 of this embodiment is used for the wiper device 112, the effect of reducing the power consumption is great when the low-speed wiping mode is selected. Further, the brushless motor 119 of the present embodiment does not need to be rated based on the high-speed wiping mode in design, and the physique of the brushless motor 119 can be made as small as possible.
  • the brushless motor 119 of the present embodiment can estimate the rotational position of the rotor 122 based on the detection signal of the induced voltage detector 135 when performing field weakening control. Further, the rotational position of the rotor 122 can be estimated based on the detection signal of the output shaft sensor 136 and the reduction ratio of the reduction mechanism 127 instead of the detection signal of the induced voltage detection unit 135. As described above, the brushless motor 119 of the present embodiment can estimate the rotational position of the rotor 122 using the induced voltage detector 135 and the output shaft sensor 136 that are provided in advance. That is, the brushless motor 119 of this embodiment has a sensorless structure that does not require a dedicated sensor for detecting the rotational position of the rotor 122. Therefore, the number of parts and the manufacturing cost of the brushless motor 119 can be reduced.
  • the brushless motor 119 of the present embodiment can obtain the rotation speed and torque corresponding to the characteristics for high speed by performing field weakening control, and is provided with a speed reduction mechanism 127. Therefore, the brushless motor 119 can set the reduction ratio of the reduction mechanism 127 so as to have characteristics suitable for the operating conditions of the wiper arms 114 and 116 of the wiper device 112, that is, the rotation speed and torque.
  • the reduction ratio of the speed reduction mechanism 127 is a value obtained by dividing the rotation speed of the output shaft 126 by the rotation speed of the rotor 122, and the rotation speed of the output shaft 126 decreases as the speed reduction ratio of the speed reduction mechanism 127 increases.
  • the brushless motor 119 of the present embodiment can optimize the advance angle control when the brushless motor 119 is rotating forward and backward based on the estimation result of the rotational position of the rotor 122. Furthermore, since the brushless motor 119 of this embodiment is not provided with a brush, a commutator (commutator) or the like, friction torque is not generated due to sliding between the brush and the commutator, and a reduction in motor efficiency can be prevented. Furthermore, the brushless motor 119 of the present embodiment can also prevent the occurrence of noise due to the presence of the brush.
  • the brushless motor 119 of the present embodiment has a structure in which the control board 129 and the speed reduction mechanism 127 are both disposed in a space surrounded by the frame 124 and the under cover 128, that is, an electromechanical integrated structure. Therefore, the entire brushless motor 119 can be configured in a compact manner, and the layout when the brushless motor 119 is attached to the vehicle body is improved.
  • the control circuit 132 performs control to detect the rotation speed of the rotor 122 based on the on / off signal of the Hall IC 139 and the armature coil. It has a function of controlling the rotational speed of the rotor 122 by advancing the energization timing to the 121a, 121b, 121c by 30 electrical degrees.
  • the driving device 133 having the control circuit 132 includes the first rotation speed control unit and the second rotation speed control unit of the present invention.
  • the frame 124 and the under cover 128 correspond to the housing of the present invention
  • the windshield 111 corresponds to the glass of the present invention
  • the wiper arms 114 and 116 correspond to the main body.
  • the Hall IC 139 corresponds to the operation member of the invention and the switching element of the invention.
  • the characteristics represented by the rotation speed and torque in FIG. 12 correspond to the characteristics of the brushless motor in the present invention.
  • the wiper device 112 may wipe not only the windshield 111 but also the rear glass. 8 has the wiper arms 114 and 116 connected to the output shaft 126 via the power transmission mechanism 120, but may have a structure in which the wiper arm is directly connected to the output shaft. Further, the wiper device 112 shown in FIG. 8 has a configuration in which the two wiper arms 114 and 116 are driven by a single brushless motor 119, but the two wiper arms are each driven by a separate brushless motor. Also good.
  • the brushless motor according to the present embodiment may be an IPM (Interior / Permanent / Magnet /) motor having a structure in which a permanent magnet is embedded in an iron core.
  • IPM Interior / Permanent / Magnet /
  • the mode selected by the wiper switch is not limited to the two types of the low-speed wiping mode and the high-speed wiping mode, and there may be three or more types.
  • the number of armature coils and the number of permanent magnets can be arbitrarily changed.
  • the brushless motor of the present invention can be applied to either an inner rotor type brushless motor in which a rotor is arranged inside a stator or an outer rotor type brushless motor in which a rotor is arranged outside a stator.
  • the brushless motor of the present embodiment is used as a power source for operating doors, roofs, glass and other operating members in a convenient comfort system device provided in a vehicle, for example, a power slide door device, a sunroof device, a power window device, etc. It can also be used.
  • a vehicle 210 shown in FIG. 13 has a windshield 211.
  • the vehicle 210 also has a wiper device 212 that wipes the windshield 211.
  • the wiper device 212 includes a wiper arm 214 that swings about a pivot shaft 213 and a wiper arm 216 that swings about a pivot shaft 215.
  • a wiper blade 217 is attached to the free end of the wiper arm 214, and a wiper blade 218 is attached to the free end of the wiper arm 216.
  • the wiper device 212 has a brushless motor 219 as a power source for driving the wiper arms 214 and 216.
  • the power of the brushless motor 219 is individually transmitted to the wiper arms 214 and 216 via a power transmission mechanism 220 configured by levers, links, and the like.
  • the brushless motor 219 has the configuration shown in FIGS. 14, 15, and 16.
  • the brushless motor 219 in the present embodiment is a three-phase DC type motor, and an example is a three-phase six-pole type.
  • the brushless motor 219 includes a stator 221 and a rotor 222.
  • the brushless motor 219 has a bottomed cylindrical case 223, and a stator 221 is fixed to the inner periphery of the case 223.
  • the stator 221 has windings corresponding to three phases, specifically, U-phase, V-phase, and W-phase, that is, armature coils 221a, 221b, and 221c.
  • the brushless motor 219 is a bipolar drive type motor in which each armature coil functions as both a positive electrode and a negative electrode.
  • the rotor 222 is provided inside the stator 221.
  • the rotor 222 includes a rotor shaft 222a and a four-pole permanent magnet 222b attached to the rotor shaft 222a.
  • a plurality of bearings are provided in the case 223, and the rotor shaft 222a is rotatably supported by the plurality of bearings. The bearing is not shown.
  • the brushless motor 219 has a hollow frame 224, and the frame 224 and the case 223 are fixed by a fastening member (not shown).
  • the rotor shaft 222 a has a half in the length direction arranged inside the case 223, and the other half in the frame 224.
  • a worm 222c is formed on the outer periphery of a portion of the rotor shaft 222a disposed in the frame 224.
  • a worm wheel 225 is provided in the frame 224.
  • a gear 225a is formed on the outer periphery of the worm wheel 225, and the gear 225a and the worm 222c are engaged with each other.
  • a sensor magnet 238 is attached to a portion of the rotor shaft 222a disposed in the frame 224.
  • the sensor magnet 238 rotates integrally with the rotor shaft 222a.
  • the sensor magnet 238 is magnetized so that N poles and S poles are alternately arranged along the circumferential direction of the rotor shaft 222a.
  • the worm wheel 225 is configured to rotate integrally with the output shaft 226.
  • the worm 222c and the gear 225a constitute a speed reduction mechanism 227 in the present embodiment.
  • the speed reduction mechanism 227 is a mechanism that lowers the rotational speed of the output shaft 226 than the rotational speed of the rotor 222 when the power of the rotor 222 is transmitted to the output shaft 226.
  • the rotational speed of the rotor 222 is the input rotational speed
  • the rotational speed of the output shaft 226 is the output rotational speed.
  • a shaft hole (not shown) is provided in the upper part of the frame 224, and the output shaft 226 is inserted into the shaft hole.
  • the end of the output shaft 226 opposite to the end where the worm wheel 225 is fixed is exposed to the outside of the frame 224.
  • the power transmission mechanism 220 is connected to a portion of the output shaft 226 exposed to the outside of the frame 224.
  • An opening 224a is provided in a portion of the frame 224 opposite to the shaft hole.
  • the opening 224a is formed for attaching the worm wheel 225 and the like inside the frame 224.
  • an under cover 228 that closes the opening 224a is provided.
  • the under cover 228 has a tray shape, and a control board 229 is provided in a space surrounded by the under cover 228 and the frame 224.
  • FIG. 14 shows an example in which the control board 229 is attached to the under cover 228.
  • the control board 229 is provided with a controller for controlling the brushless motor 219, that is, a drive device 233 as a controller as shown in FIG.
  • the drive device 233 includes an inverter circuit 230 that controls energization of the armature coils 221a, 221b, and 221c.
  • the inverter circuit 230 is connected to a terminal (not shown).
  • the frame 224 is provided with a connector, and the external power source 231 and the inverter circuit 230 are connected by attaching a socket of an electric wire connected to the external power source 231 to the connector.
  • the external power source 231 is a battery or a capacitor mounted on the vehicle 210. The connector and socket are not shown.
  • the inverter circuit 230 includes a switching element 230a that connects and disconnects the external power source 231 and the armature coils 221a, 221b, and 221c.
  • the switching element 230a is configured by a semiconductor element such as an FET, for example. More specifically, three positive-side switching elements connected to the positive electrode of the external power supply 231 corresponding to the U phase, V phase, and W phase, and corresponding to the U phase, V phase, and W phase, the external power supply Three negative-side switching elements connected to the negative-electrode side of H.231. That is, a total of six switching elements are provided.
  • the switching element 230a When the switching element 230a is connected, that is, turned on, current is supplied from the external power source 231 to the armature coils 221a, 221b, and 221c. On the other hand, when the switching element 230a is cut off, that is, turned off, no current is supplied from the external power source 231 to the armature coils 221a, 221b, and 221c. Further, a control circuit 232 for switching on and off of the switching element 230a is connected to the inverter circuit 230.
  • the control circuit 232 is a known microcomputer provided with a CPU, RAM, ROM and the like. Further, the driving device 233 includes a PWM signal generation circuit 234, and the signal of the PWM signal generation circuit 234 is configured to be input to the control circuit 232.
  • the control circuit 232 outputs a drive signal for controlling the three negative-side switching elements, and a PWM signal is superimposed on the drive signal. That is, the three negative-side switching elements are driven by PWM control and are intermittently turned on in each conduction section.
  • the current value supplied to each armature coil 221a, 221b, 221c is controlled by controlling the rate at which the three negative side switching elements are turned on separately, that is, the duty ratio. .
  • the energization period for supplying power to the armature coils 221a, 221b, and 221c can be increased or decreased between 0% and 100% with respect to the entire energization period.
  • the control circuit 232 stores data, a program, and the like of control executed when the brushless motor 219 is activated.
  • the startup time of the brushless motor 219 is an initial stage of rotating the stopped brushless motor 219.
  • an induced voltage detector 235 is connected to the unconnected end of each armature coil 221a, 221b, 221c.
  • the induced voltage detection unit 235 is a sensor that detects an induced voltage generated in each armature coil 221 a, 221 b, 221 c as the rotor 222 rotates, and a detection signal of the induced voltage detection unit 235 is input to the control circuit 232.
  • the control circuit 232 performs processing for estimating the rotational position of the rotor 222, that is, the phase in the rotational direction, based on the detection signal input from the induced voltage detection unit 235.
  • a Hall IC 239 is attached to the control board 229.
  • the Hall IC 239 is fixed facing the sensor magnet 238 in a non-contact manner.
  • the Hall IC 239 performs a switching operation by a change in the magnetic pole of the sensor magnet 238 as the rotor shaft 222a rotates, and generates a switching signal, that is, an on / off signal.
  • a plurality of, for example, three Hall ICs 239 can be provided along the rotation direction of the rotor shaft 222a.
  • the control circuit 232 detects the rotation speed and rotation angle of the rotor shaft 222a based on the switching signal of the Hall IC 239. Further, an output shaft sensor 236 that detects the rotation angle and the rotation speed of the output shaft 226 is provided.
  • the detection signal of the output shaft sensor 236 is input to the control circuit 232.
  • a wiper switch 237 is provided in the interior of the vehicle 210, and an operation signal of the wiper switch 237 is configured to be input to the control circuit 232.
  • a vehicle speed sensor 240 is provided, and a signal from the vehicle speed sensor 240 is input to the control circuit 232.
  • the vehicle speed sensor 240 is a sensor that detects the traveling speed of the vehicle 210.
  • the control of the brushless motor 219 in this embodiment will be described.
  • the control circuit 232 estimates the rotational direction and rotational position of the rotor shaft 222a, that is, the angle in the rotational direction, based on the detection signal of the induced voltage detector 235, and performs energization control based on the rotational position of the rotor shaft 222a. That is, the positive side switching elements of each phase are sequentially turned on and off by a predetermined angle in electrical angle, and the negative side switching elements of phases different from the positive side switching element are sequentially turned on and off by a predetermined angle by electrical angle.
  • the phase current is commutated by switching energization to the armature coils 221a, 221b, and 221c of each phase.
  • a rotating magnetic field is formed by the stator 221 and the rotor shaft 222a rotates.
  • the brushless motor 219 switches the on / off of the switching element 230a and reverses the direction of energization to the armature coils 221a, 221b, 221c, thereby rotating the rotor shaft 222a in a normal direction. ⁇ Can be rotated in reverse.
  • the wiper arms 214 and 216 reciprocate within a predetermined angle range by the power of the rotor shaft 222a, and the windshield 211 is wiped by the wiper blades 217 and 218.
  • the brushless motor 219 in the present embodiment can perform field-weakening control when controlling the rotational speed of the rotor shaft 222a.
  • the field weakening control is control for weakening the magnetic field formed by supplying current to the armature coils 221a, 221b, and 221c as much as possible. More specifically, the field weakening control is a control in which the energization timing to the armature coils 221a, 221b, and 221c is advanced by 30 degrees in electrical angle compared to the normal energization timing, that is, a lead phase.
  • the field weakening control is performed, the counter electromotive force generated in the armature coils 221a, 221b, and 221c decreases, and the rotational speed of the rotor shaft 222a increases.
  • the brushless motor 219 of the present embodiment can switch between the first control and the second control in controlling the output of the rotor shaft 222a, that is, the rotation speed and torque.
  • the traveling speed of the vehicle 210 can be cited.
  • a reference vehicle speed serving as a threshold value for switching between the first control and the second control is stored in advance. Then, the first control is performed when the actual vehicle speed detected by the signal of the vehicle speed sensor 240 is equal to or lower than the reference vehicle speed. When the actual vehicle speed detected by the signal from the vehicle speed sensor 240 exceeds the reference vehicle speed, the second control is performed.
  • the angle of 0 ° to 360 ° shown in FIG. 17 is an electrical angle representing an energization period within one cycle of the electrical signal. Positive represents energization from the positive electrode, and negative represents energization from the negative electrode.
  • FIG. 17A is an example of the first control. In the U phase, energization is started from the positive electrode at 30 ° with 0 ° as a reference position, and energization from the positive electrode is terminated after the energization is maintained in the range of 120 ° in electrical angle.
  • energization from the positive electrode is completed, a predetermined electrical angle is left, energization from the negative electrode is started, and energization is completed after the energization is maintained in the range of 120 ° in electrical angle.
  • the energization from the positive electrode is started after the energization from the positive electrode of the U phase is completed, and the energization is terminated after the energization is maintained in the electric angle range of 120 °.
  • the energization from the negative electrode is started after the energization from the negative electrode of the U phase is completed, and the energization from the negative electrode is maintained within the electric angle range of 120 °, and then the energization from the negative electrode is completed. To do.
  • the energization from the positive electrode is started from the time when the energization from the V phase positive electrode is completed, and the energization from the positive electrode is maintained within the electric angle range of 120 °, and then the energization from the positive electrode is completed.
  • energization from the negative electrode is started after the energization from the V phase negative electrode is completed, and after the energization from the negative electrode is maintained in the electric angle range of 120 °, the energization from the negative electrode is completed.
  • the range in which the energization from the positive electrode and the energization from the negative electrode are maintained, that is, the energization angle is 120 °.
  • FIG. 17B showing an example of the second control.
  • energization from the positive electrode is started at 0 °, and the energization from the positive electrode is maintained in the range of 120 ° + ⁇ in electrical angle, and then the energization from the positive electrode is finished.
  • the energization from the positive electrode is completed, the energization from the negative electrode is started, and after the energization from the negative electrode is maintained in the electric angle range of 120 ° + ⁇ , the energization from the negative electrode is terminated.
  • energization from the positive electrode is started while the U phase is energized from the positive electrode. Further, energization from the positive electrode is terminated after the electric current from the positive electrode is maintained in the range of 120 ° + ⁇ in electrical angle. Furthermore, energization from the negative electrode is started after energization from the positive electrode is completed and at the time when energization from the negative electrode of the U phase is maintained. The energization from the negative electrode is maintained in the range of 120 ° + ⁇ in electrical angle, and then the energization from the negative electrode is completed.
  • energization from the positive electrode is started while the U phase negative electrode is energized and the V phase positive electrode is energized. Further, energization from the positive electrode is terminated after the electric current from the positive electrode is maintained in the range of 120 ° + ⁇ in electrical angle. Further, after the energization from the positive electrode is completed, the energization from the negative electrode is started while the energization from the U-phase positive electrode is maintained and the energization from the V-phase negative electrode is maintained. . The energization from the negative electrode is maintained in the range of 120 ° + ⁇ in electrical angle, and then the energization from the negative electrode is completed. In FIG. 17B, the portions where the positive electrode energies overlap each other in the U phase and the V phase, the V phase and the W phase, and the W phase and the V phase are in the range ⁇ , and the same applies to the negative electrode energization.
  • energization from the positive electrode is started from an electrical angle exceeding 0 ° and less than 30 °, and the energization from the positive electrode is maintained in the range of 120 ° + ⁇ in electrical angle, and then the energization from the positive electrode is performed. finish.
  • the energization control at the U-phase negative electrode, the energization control at the V-phase positive electrode and the negative electrode, and the energization control at the W-phase positive electrode and the negative electrode are the same as in FIG.
  • the conduction angle of 120 ° + ⁇ means that the conduction angle exceeds 120 °.
  • the energization angle of the brushless motor 219 is controlled within a range of 120 ° or more and 180 ° or less.
  • the energization angle in the second control example is wider than the energization angle in the first control example. That is, the first control and the second control have different energization angles.
  • the portion where the energization of the positive electrode overlaps in the U phase and the V phase, the V phase and the W phase, and the W phase and the V phase is in the range ⁇ , and the same applies to the energization of the negative electrode.
  • FIG. 18 is a diagram showing the characteristics of the brushless motor 219, and the single characteristics of the brushless motor 219 are shown by solid lines. Then, by controlling the energization angle of the brushless motor 219, the apparent characteristic can be set to a position indicated by a one-dot chain line.
  • the single unit characteristic is a characteristic that satisfies a target output when the actual vehicle speed of the vehicle 210 is equal to or lower than the reference vehicle speed, that is, a low-speed characteristic.
  • the apparent characteristic is a characteristic that satisfies the target output when the actual vehicle speed of the vehicle 210 exceeds the reference vehicle speed, that is, the high-speed characteristic.
  • the target output is represented by the rotational speed and torque of the rotor shaft 222a.
  • the conditions for determining the target output include the operation signal of the wiper switch 237, the traveling speed of the vehicle 210, the operating positions of the wiper arms 214 and 216, and the like.
  • the first control is executed and the duty ratio is controlled to reduce the rotational speed of the rotor shaft 222a, thereby reducing the speed. Characteristics can be obtained.
  • the second control is executed to increase the rotational speed of the rotor shaft 222a, and the duty ratio is controlled, so that the high speed characteristic is obtained. Obtainable. For this reason, in designing the brushless motor 219, the rating can be determined based on the single characteristic, and the physique of the brushless motor 219 can be made as small as possible.
  • the rotational speed of the rotor shaft 222a can be increased to increase the torque, which means that the torque constant becomes relatively large. means.
  • the brushless motor 219 of the present embodiment can generate as much torque as possible with less power consumption, and the motor efficiency is improved. Furthermore, assuming that the output of the brushless motor 219 is constant, the power consumption can be set low.
  • the fact that the rating of the brushless motor 219 can be made as small as possible means that the armature coils 221a, 221b, and 221c are made as thin as possible.
  • the number of turns of the armature coils 221a, 221b, 221c wound around the stator 221 increases, and the electrical resistance as the brushless motor 219 becomes relatively large.
  • the current flowing through the switching element 230a when the driving device 233 fails that is, the allowable current can be relatively reduced. That the allowable current in the switching element 230a becomes relatively small contributes to downsizing of the driving device 233. Therefore, the brushless motor 219 contributes to downsizing, and there is an advantage that layout is improved when the brushless motor 219 is arranged in the engine room of the vehicle 210.
  • the characteristics of the brushless motor 219 are represented by the number of rotations and torque.
  • 120 °, 135 °, 150 °, and 165 ° are shown as energization angles.
  • the brushless motor 219 has a characteristic that the rotation speed increases as the energization angle increases.
  • the first control and the second control can be executed based on the operating angle of the rotor shaft 222a obtained from the detection signal of the Hall IC 239.
  • the vertical axis represents the rotational speed of the rotor shaft 222a
  • the horizontal axis represents the operating angle.
  • the rotational speed of the rotor shaft 222a is indicated by a solid line.
  • the operating angle includes the operating angle of the rotor shaft 222a corresponding to the operating position of the wiper arms 214 and 216.
  • the operating angle of the rotor shaft 222a is the rotation angle when the wiper arms 214 and 216 shown in FIG. 13 are operated from the initial position closest to the brushless motor 219, that is, from a predetermined position.
  • the maximum value of the operating angle of the rotor shaft 222a corresponds to the position where the wiper arms 214 and 216 are reversed. That is, as the operation position of the wiper arms 214 and 216 is farther from the brushless motor 219, the operating angle of the rotor shaft 222a increases.
  • the rotational speed of the rotor shaft 222a increases between the maximum value and the operating angle ⁇ . Further, the rotational speed of the rotor shaft 222a is substantially constant between the operating angle ⁇ 2 and the operating angle ⁇ 1. Then, during the period from the operating angle ⁇ 1 to the initial position, the rotational speed of the rotor shaft 222a gradually decreases.
  • the first control can be executed at the operating angle ⁇ 1
  • the second control can be executed at the operating angle ⁇ 2.
  • the operating angle ⁇ 2 is larger than the operating angle ⁇ 1. Note that, when the first control and the second control are executed based on the operation angle of the wiper arms 214 and 216, the operation angle of the wiper arms 214 and 216 can be obtained based on the detection signal of the output shaft sensor 236. It is.
  • the first control and the second control can be executed based on the rotational speed of the rotor shaft 222a obtained from the detection signal of the Hall IC 239.
  • the rotation speed is shown on the vertical axis
  • the time is shown on the horizontal axis.
  • the number of revolutions is indicated by a solid line.
  • the time shown in FIG. 21 means the elapsed time until the wiper arms 214 and 216 operate from the initial position and reach the reverse position.
  • the first control is executed when the actual rotational speed of the rotor shaft 222a is the rotational speed N1
  • the second control is executed when the actual rotational speed of the rotor shaft 222a is the rotational speed N2.
  • the rotational speed N2 is higher than the rotational speed N1.
  • the first control and the second control can be executed by obtaining the rotational speed of the output shaft 226 from the signal of the output shaft sensor 236.
  • the first control and the second control are switched based on the operation speed of the wiper arms 214 and 216.
  • the first control and the second control are executed based on the rotational speed of the rotor shaft 222a detected by the Hall IC 239.
  • the vertical axis represents the rotational speed of the rotor shaft 222a
  • the horizontal axis represents time.
  • the meaning of time shown in FIG. 22 is the same as the meaning of time shown in FIG.
  • the first control is executed at a time t1 when a predetermined time has elapsed from the time when the wiper arms 214 and 216 started to operate from the initial positions.
  • the second control is executed at time t2 when a predetermined time has elapsed from time t1.
  • the rotation speed of the output shaft 226 detected by the output shaft sensor 236 can be used as the rotation speed in FIG. That is, the first control and the second control can be switched based on the operation speed of the wiper arms 214 and 216.
  • FIG. 23A shows the second control corresponding to high-speed wiping
  • FIG. 23B shows the first control corresponding to low-speed wiping.
  • FIGS. 23A and 23B show control for changing the advance angle and the energization angle when the operating angle ⁇ changes at any vehicle speed.
  • the advance amount and the change amount of the energization angle with respect to the change amount of the operating angle ⁇ may be the same at all vehicle speeds or may be changed for each vehicle speed.
  • the structure of the rotor 222 of the brushless motor 219 includes an IPM (Interior Permanent Magnet) structure and an SPM (Surface Permanent Magnet) structure.
  • IPM Interior Permanent Magnet
  • SPM Surface Permanent Magnet
  • the IPM structure is a structure of the rotor 222 in which the permanent magnet 222b is embedded in the rotor core 222d.
  • the SPM structure is a structure of the rotor 222 that fixes the permanent magnet 222b to the surface of the rotor core 222d.
  • the rotor core 222d formed of an iron-based magnetic material is disposed on the surface of the rotor 222.
  • the permanent magnet 222b is disposed on the surface of the rotor 222.
  • the magnetic permeability of the iron-based magnetic material is as large as 10 3 order with respect to air, whereas the permeability of the permanent magnet is close to the value of air. Therefore, the inductance of the rotor 222 having the SPM structure is smaller than that of the rotor 222 having the IPM structure.
  • the energization angle is expanded from the general 120 °, so the non-energization section of each phase is narrowed. Therefore, in order to speed up the switching of the current, it is desired to reduce the current delay section when the switching element is turned off due to the inductance. Therefore, the structure of the rotor 222 is preferably the SPM structure rather than the IPM structure.
  • the axial length of the formed magnetic circuit increases.
  • the inductance in the armature coil is proportional to the axial length of the magnetic circuit
  • the rotor 222 having an SPM structure using a rare earth sintered magnet is used as the permanent magnet 222b, the axial length of the formed magnetic circuit can be reduced and the inductance in the armature coil can be reduced.
  • the rare earth sintered magnet contains expensive heavy rare earth elements (Dy, Tb), the brushless motor 219 becomes expensive.
  • the permanent magnet 222b it is preferable to use a ring magnet of a rare earth bonded magnet that can reduce the axial length of the magnetic circuit to be formed and does not contain a heavy rare earth element, thereby forming the rotor 222 having an SPM structure.
  • the rare earth bonded magnet includes a neodymium bond and an SmFeN bond. Both neodymium bonds and SmFeN bonds include isotropic and anisotropy.
  • n is an integer of 1 or more.
  • FIG. 25 is a schematic diagram illustrating an example of a rotor and a stator corresponding to 6 poles and 9 slots
  • FIG. 26 is a schematic diagram illustrating an example of a rotor and a stator corresponding to 8 poles and 9 slots. That is, FIG. 25 is an example in which 2n: 3n and n is 3. 25 and 26, V represents the V phase, U represents the U phase, and W represents the W phase. In addition, the sign “ ⁇ ” in each phase indicates that the armature coil is wound in the opposite direction.
  • FIG. 26 shows an example in which 8n: 9n and n is 1. In FIG.
  • a brushless motor having a 2n: 3n or 4n: 3n structure in which the positional relationship between the armature coil of the same phase and the permanent magnet is equal is desirable.
  • the driving device 233 and the stator 221 may have an integral structure or a separate structure. However, it is desirable that the driving device 233 and the stator 221 have an integral structure so that the wiring from the driving device 233 to the armature coil is short and the wiring resistance can be reduced.
  • the motor efficiency which is an example of the motor characteristics
  • FIG. 27 An example of the relationship between the duty ratio and the motor characteristics is shown in FIG.
  • the vertical axis represents the rotational speed of the rotor shaft and the motor efficiency
  • the horizontal axis represents the torque of the rotor shaft.
  • Duty represents a duty ratio.
  • the solid line indicates the relationship between the torque and the rotational speed
  • the broken line indicates the relationship between the torque and the efficiency.
  • the operation of the wiper switch 237 can be used as a condition for switching between the first control and the second control.
  • the driver can select the low-speed wiping mode in which the wiper arms 214 and 216 are operated at a predetermined low speed by operating the wiper switch 237 when the amount of rainfall or snowfall is small.
  • the driver can select the high-speed wiping mode in which the wiper arms 214 and 216 are operated at a higher speed than the low speed by operating the wiper switch 237 when the amount of rainfall or snowfall is large.
  • the driver judges whether the amount of rainfall or the amount of snowfall is large or small by his / her own subjectivity, and there is no objective standard for distinguishing between the amount of rainfall or the amount of snowfall that is large or small.
  • the first control is executed when the low-speed wiping mode is selected on the premise that the high-speed wiping mode and the low-speed wiping mode can be switched by the wiper switch 237, and the second control when the high-speed wiping mode is selected. It is possible to execute control.
  • the brushless motor 219 of this embodiment is not provided with a brush, a commutator (commutator), etc., there is no generation of friction torque due to sliding between the brush and the commutator, the motor efficiency decreases, and the brush temperature. It is possible to prevent the rise and limit the motor output. Further, the brushless motor 219 of the present embodiment can prevent noise and operation noise due to the presence of the brush, and can ensure quietness.
  • the first control and the second control are switched based on the rotational speed, torque, and operating angle of the rotor shaft 222 a.
  • the rotor shaft 222 a is a part of the rotor 222. Therefore, even if the rotor shaft 222a described in the above embodiment is replaced with the rotor 222, the technical meaning is the same.
  • the wiper device includes a configuration in which the rotor shaft of the brushless motor rotates only in one direction and the wiper arm swings about the pivot shaft.
  • the wiper switch is not limited to one operated by the driver's operation, and may be a detection switch having a function of detecting a rainfall amount, a snowfall amount, and the like. If comprised in this way, based on the amount of rainfall, the amount of snowfall, etc., a rotation speed control part will start a wiper apparatus automatically, and will perform control which switches a low-speed wiping mode and a high-speed mode automatically .
  • the rotational speed control unit stores in advance data such as the amount of rainfall and the amount of snowfall, which serve as a reference for switching between the low speed mode and the high speed mode.
  • the vehicle speed sensor that detects the traveling speed of the vehicle does not directly detect the traveling speed of the vehicle, but indirectly transmits information transmitted from the wiper blade to the wiper device, such as the resistance and the state of the wiping surface, or indirectly to the brushless motor. You may make it detect with the transmitted information.
  • the resistance is a resistance received by the wiper blade by the traveling wind or a resistance when wiping the wiping surface
  • the wiper device detects the resistance or the state of the wiping surface from the wiper blade via the output shaft.
  • the information indirectly transmitted to the brushless motor is for recognizing information obtained from the resistance, the state of the wiping surface, and the like as the traveling speed of the vehicle. It is detected by being converted to be detected as speed. Furthermore, the number of armature coils and the number of permanent magnets can be arbitrarily changed.
  • the wiper device of the present invention includes a wiper blade that wipes the rear glass. That is, the window glass in the wiper device of the present invention includes a windshield and a rear glass.
  • the wiper device of the present invention includes a configuration in which an output shaft provided coaxially with the worm wheel also serves as a pivot shaft.
  • the wiper device of the present invention includes a configuration in which two wiper arms are independently driven by separate brushless motors.
  • the brushless motor of the present invention includes an inner rotor type brushless motor in which the rotor is arranged inside the stator, or an outer rotor type brushless motor in which the rotor is arranged outside the stator.
  • the brushless motor according to the present embodiment includes a wiper motor that operates the wiper device, and a convenient and comfortable system device provided in the vehicle, such as a power slide door device, a sunroof device, a power window device, and the like.
  • a brushless motor provided to operate the operation member of the first embodiment.
  • the brushless motor is used as a drive source for a wiper device or the like mounted on a vehicle such as an automobile.
  • the wiper blade By rotating the brushless motor, the wiper blade performs a reciprocating wiping operation on the glass surface, thereby reducing the visibility of the driver and the like. Keeps good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 電機子コイル21a,21b,21cを有するステータ21と、回転磁界により回転するロータ22と、スイッチング素子30aとを備えたブラシレスモータであって、低速モードと高速モードとを切り替える回転数制御部33を有し、回転数制御部33は、低速モードのときに、電機子コイル21a,21b,21cへ予め定められた通電タイミングで電流を供給し、かつ、デューティ比を制御してロータ22の回転数を制御する一方、高速モードのときに、低速モードでの通電タイミングよりも進角させた通電タイミングで電機子コイル21a,21b,21cに電流を供給することにより、回転磁界を低速モードのときよりも弱くする弱め界磁制御を行ってロータ22の回転数を制御することを特徴とする。

Description

ブラシレスモータ及びワイパ装置
 本発明は、永久磁石を取り付けたロータと、電機子コイルが設けられたステータとを有するブラシレスモータ及びワイパ装置に関する。
 従来、ロータの回転数を切り替え可能なモータの一例が、特許文献1、2、3に記載されている。特許文献1、2に記載されたモータは、ケースと、ケース内に収容されたマグネットと、ケースの内部に回転自在に設けられ、かつ、コイルが巻き付けられた電機子と、電機子とともに一体回転するシャフトと、シャフトに設けられた整流子と、整流子に接触する高速運転用ブラシ及び低速運転用ブラシとを有している。そして、運転者がスイッチを操作して低速運転を選択した場合は、低速運転用ブラシに電流が流れてシャフトが低回転数で回転する。一方、運転者がスイッチを操作して高速運転を選択した場合は、高速運転用ブラシに電流が流れてシャフトが高回転数で回転する。
 一方、特許文献3に記載されたモータは、ヨークハウジングの内面に固定され、かつ、複数の電機子コイルが巻かれた円環状のステータと、ステータの内側に回転可能に配置され、かつ、回転軸を有するロータと、回転軸に設けられた磁石とを有する。この特許文献3に記載されたモータにおいては、複数の電機子コイルに位相の異なる励磁電流が供給されて回転磁界が発生し、ロータが回転する。なお、特許文献3に記載されたモータは、特許文献1、2に記載されたブラシを備えていない。
特開2007-202391号公報 特開2007-143278号公報 特開2010-93977号公報
 前記特許文献1~3に記載されているようなモータにおいては、ブラシ付き、ブラシ無しに限らず、電機子コイルに電流を供給するタイミングを制御するスイッチング素子を有している。そして、スイッチング素子をオン・オフ制御するデューティ比を変えることで、ロータの回転速度を制御していた。このため、モータの体格は、ロータを高速回転できるように設計し、ロータを高回転数で回転させるときのデューティ比に対して、ロータを低回転数で回転させるときのデューティ比を少なくする制御を行っていた。したがって、モータの体格は、ロータを高回転数で回転させるときを基準として設計することとなり、モータの体格が大きくなるという問題があった。
 本発明の目的は、体格をなるべく小さくすることのできるブラシレスモータ及びワイパ装置を提供することにある。
 本発明のブラシレスモータは、電流が供給される電機子コイルを有するステータと、前記電機子コイルにより形成される回転磁界で回転し、かつ、動作部材に接続されたロータと、前記電機子コイルに電流を供給する経路に設けられたスイッチング素子とを備えたブラシレスモータであって、前記ロータの回転数が異なる少なくとも2つの制御モードで前記ロータの回転数を制御する回転数制御部を有し、前記回転数制御部は、第1の制御モードが選択されたときには、前記電機子コイルへ予め定められた通電タイミングで電流を供給し、かつ、前記スイッチング素子のオン割合であるデューティ比を制御して前記ロータの回転数を制御する一方、前記第2の制御モードが選択されたときには、前記第1の制御モードが選択されたときの通電タイミングよりも進角させた通電タイミングで前記電機子コイルに電流を供給することにより、前記電機子コイルにより形成される回転磁界を前記第1の制御モードが選択されたときよりも弱くする弱め界磁制御を行って前記ロータの回転数を制御することを特徴とする。
 本発明のブラシレスモータは、前記ロータから前記動作部材に至る動力の伝達経路に設けられた減速機構を備え、前記減速機構は、入力回転数に対して出力回転数を低くする構成を有することを特徴とする。
 本発明のブラシレスモータは、前記電機子コイルに供給する電流の向きを切り替えることにより、前記ロータを正逆に回転させる回転方向制御部を備えていることを特徴とする。
 本発明のブラシレスモータは、前記回転数制御部を有する制御基板が設けられており、前記減速機構及び前記制御基板は、共通のハウジング内に収容されていることを特徴とする。
 本発明のワイパ装置は、車両のガラスを払拭する動作部材であるワイパアームを備えたワイパ装置であって、前記ワイパアームは、上記した本発明のいずれかに記載のブラシレスモータの前記ロータと接続されていることを特徴とする。
 本発明のワイパ装置は、前記ロータと一体回転するセンサマグネットと、前記ロータが回転したときに前記センサマグネットの磁極の変化に応じて信号を出力する回転数センサとが設けられており、前記回転数制御部は、前記弱め界磁制御を行うときに、前記回転数センサの信号に基づいて前記ロータの回転数を検出するとともに、前記電機子コイルへの通電タイミングを電気角で30度進角させることにより、前記ロータの回転数を制御することを特徴とする。
 本発明(請求項1)によれば、第1の制御モードにおけるロータの回転数を基準としてブラシレスモータの定格を決定し、第2の制御モードにおけるロータの回転数は、弱め界磁制御により得ることができる。したがって、ブラシレスモータの体格をなるべく小さくすることができる。
 本発明(請求項2)によれば、ロータの回転数を制御することに加えて、減速機構は、入力トルクに対して出力トルクを増幅することができる。
 本発明(請求項3)によれば、電機子コイルに流れる電流の向きを切り替えることにより、ロータを正逆回転させることができる。
 本発明(請求項4)によれば、減速機構及び制御基板は、共通のハウジング内に収容されているため、ブラシレスモータを小型化することができ、対象物にブラシレスモータを取り付ける際のレイアウト性が向上する。
 本発明(請求項5)によれば、ブラシレスモータのロータの動力をワイパアームに伝達して、ワイパアームを動作させることにより、車両のガラスを払拭することができる。
 本発明(請求項6)によれば、弱め界磁制御を行うときに、回転数センサの信号に基づいてロータの回転数を検出するとともに、電機子コイルへの通電タイミングを電気角で30度進角させることにより、ロータの回転数を制御することができる。
本発明のブラシレスモータを、車両のワイパ装置に適用した例を示す概略図である。 本発明のブラシレスモータを示す外観図である。 本発明のブラシレスモータであり、アンダーカバーを取り外した状態の底面図である。 本発明のブラシレスモータの制御系統を示すブロック図である。 ブラシレスモータの回転数とトルクとの関係を示す線図である。 ブラシレスモータの回転数と進角との関係を示す線図である。 ブラシレスモータの効率と進角との関係を示す線図である。 本発明のブラシレスモータを、車両のワイパ装置に適用した例を示す概略図である。 本発明のブラシレスモータを示す外観図である。 本発明のブラシレスモータであり、アンダーカバーを取り外した状態の底面図である。 本発明のブラシレスモータの制御系統を示す模式図である。 本発明のブラシレスモータの特性の一例を示す線図である。 本発明のブラシレスモータを、車両のワイパ装置に適用した例を示す概略図である。 本発明のブラシレスモータを示す外観図である。 本発明のブラシレスモータであり、アンダーカバーを取り外した状態の底面図である。 本発明のブラシレスモータの制御系統を示すブロック図である。 (A)~(C)は、本発明のブラシレスモータで実行される第1の制御及び第2の制御の一例を示す図である。 本発明のブラシレスモータの特性を示す図である。 本発明のブラシレスモータの特性と電気角との関係を示す線図である。 本発明のブラシレスモータを作動角に基づいて制御する例を示す図である。 本発明のブラシレスモータを回転数に基づいて制御する例を示す図である。 本発明のブラシレスモータを時間に基づいて制御する例を示す図である。 (A)、(B)は、本発明のブラシレスモータで実行される第1の制御及び第2の制御の一例を示す図表である。 (A)、(B)は、本発明のブラシレスモータに用いるロータの構造例を示す断面図である。 本発明のブラシレスモータにおいて、ロータとステータとの関係を示す模式図である。 本発明のブラシレスモータにおいて、ロータとステータとの関係を示す模式図である。 本発明のブラシレスモータの特性を示す線図である。
 以下、本発明の一実施の形態について、図面を用いて詳細に説明する。図1に示された車両10はフロントガラス11を有している。また、車両10は、フロントガラス11を払拭するワイパ装置12を有している。ワイパ装置12は、ピボット軸13を中心として揺動するワイパアーム14と、ピボット軸15を中心として揺動するワイパアーム16とを有する。ワイパアーム14の自由端にはワイパブレード17が取り付けられており、ワイパアーム16の自由端にはワイパブレード18が取り付けられている。また、ワイパ装置12は、ワイパアーム14,16を駆動する動力源としてブラシレスモータ19を有している。ブラシレスモータ19の動力は、レバー、リンク等により構成された動力伝達機構20を経由して、ワイパアーム14,16に個別に伝達されるように構成されている。
 ブラシレスモータ19は、図2、図3、図4に示すように構成されている。本実施形態におけるブラシレスモータ19は、一例として3相4極形のものが挙げられている。ブラシレスモータ19は、ステータ21及びロータ22を有する。また、ブラシレスモータ19は、有底円筒形状のケース23を有しており、ケース23の内周にステータ21が固定して設けられている。ステータ21は、図4に示すように、3相、具体的には、U相、V相、W相の電機子コイル21a,21b,21cを有する。ロータ22は、ステータ21の内側に設けられており、ロータ22は、回転軸22aと、回転軸22aに取り付けた4極の永久磁石22bとを有する。ケース23内には複数の軸受(図示せず)が設けられており、回転軸22aは、複数の軸受により回転可能に支持されている。
 また、ブラシレスモータ19は、中空のフレーム24を有しており、フレーム24及びケース23は、図示しない締結部材により固定されている。回転軸22aは、長さ方向の略半分はケース23の内部に配置されており、残りの略半分はフレーム24内に配置されている。回転軸22aのうちフレーム24内に配置された部分の外周には、ウォーム22cが形成されている。フレーム24内にはウォームホイール25が設けられている。このウォームホイール25の外周にはギヤ25aが形成されており、ギヤ25aとウォーム22cとが噛合されている。さらに、回転軸22aのうちフレーム24内に配置された箇所には、センサマグネット38が取り付けられている。センサマグネット38は、回転軸22aと一体回転する。センサマグネット38は、回転軸22aの円周方向に沿って、N極とS極とが交互に並ぶように着磁されている。
 また、ウォームホイール25は、出力軸26と一体回転するように構成されている。ウォーム22c及びギヤ25aは、本実施形態における減速機構27を構成している。この減速機構27は、ロータ22の動力を出力軸26に伝達する際に、ロータ22の回転数(入力回転数)よりも出力軸26の回転数(出力回転数)を低くする機構である。さらに、図2において、フレーム24の上部には、図示しない軸孔が設けられている。出力軸26におけるウォームホイール25が固定された端部とは反対側の端部は、フレーム24の軸孔を経由して外部に露出している。出力軸26におけるフレーム24の外部に露出した部分には、図1のように動力伝達機構20が連結されている。
 フレーム24における軸孔とは反対側の部分には開口部24aが設けられている。この開口部24aは、フレーム24の内部にウォームホイール25等を取り付けるために形成されたものである。また、開口部24aを塞ぐアンダーカバー28が設けられている。アンダーカバー28はトレイ形状を有しており、そのアンダーカバー28とフレーム24とにより取り囲まれた空間に、制御基板29が設けられている。図2においては、制御基板29がアンダーカバー28に取り付けられた例が示されている。
 この制御基板29には、ブラシレスモータ19を制御する駆動装置33が、図4のように設けられている。駆動装置33は、各電機子コイル21a,21b,21cに対する通電を制御するインバータ回路30を有する。インバータ回路30は、図示しない端子に接続されている。また、フレーム24にはコネクタ(図示せず)が設けられており、外部電源31に接続された電線のソケット(図示せず)をコネクタに装着することにより、外部電源31とインバータ回路30とが接続される。外部電源31は、車両10に搭載されたバッテリまたはキャパシタ等である。
 また、インバータ回路30は、外部電源31と電機子コイル21a,21b,21cとを接続及び遮断するスイッチング素子30aを備えている。このスイッチング素子30aは、例えば、FET等の半導体素子により構成されている。より具体的には、U相、V相、W相に対応し、外部電源31の正極に接続される3つの正極側のスイッチング素子と、U相、V相、W相に対応し、外部電源31の負極側に接続される3つの負極側のスイッチング素子とを含む。スイッチング素子30aが接続(オン)されると、外部電源31から各電機子コイル21a,21b,21cに電流が供給される。これに対して、スイッチング素子30aが遮断(オフ)されると、外部電源31から各電機子コイル21a,21b,21cに電流は供給されない。さらに、インバータ回路30には、スイッチング素子30aのオン及びオフを切り替え制御する機能を有する制御回路(コンロトーラ)32が接続されている。
 この制御回路32は、CPU、RAM、ROM等を備えた公知のマイクロコンピュータである。また、駆動装置33は、PWM信号発生回路34を有しており、PWM信号発生回路34の信号は、制御回路32に入力されるように構成されている。この制御回路32は、3つの負極側スイッチング素子を制御する駆動信号を出力し、その駆動信号にPWM信号が重畳される。つまり、3つの負極側スイッチング素子は、PWM制御により駆動されて各電通区間において断続的にオンされる。そして、3つの負極側スイッチング素子が別個にオンされる割合、すなわち、デューティ比を制御することにより、各電機子コイル21a,21b,21cに供給する電流値が制御されるように構成されている。つまり、電機子コイル21a,21b,21cに給電される通電期間を、通電可能な全期間に対して0%~100%の間で増減することができる。さらに、制御回路32は、ブラシレスモータ19の起動時に実行する制御のデータ、プログラム等を記憶している。ブラシレスモータ19の起動時とは、停止しているブラシレスモータ19を回転させる初期のことである。
 さらにまた、各電機子コイル21a,21b,21cの非結線端には、誘起電圧検出部35が接続されている。誘起電圧検出部35は、ロータ22の回転に伴い各電機子コイル21a,21b,21cに生じる誘起電圧を検出するセンサであり、誘起電圧検出部35の検出信号は、制御回路32に入力される。制御回路32は、誘起電圧検出部35から入力される検出信号に基づいて、ロータ22の回転位置(回転方向の位相)を推定する処理を行う。
 さらに、本実施形態におけるブラシレスモータ19は、スイッチング素子30aのオン及びオフを切り替え制御して、電機子コイル21a,21b,21cに対する通電の向きを反転させることにより、ロータ22を正逆に回転させることが可能である。
 さらに、フレーム24の内部には、出力軸26の回転数または絶対位置の少なくとも一方を検出する出力軸センサ36が設けられている。絶対位置とは、基準位置に対する出力軸26の回転角度を意味する。基準位置は、360度の範囲内のうち、任意の位置に定めればよい。この出力軸センサ36の検出信号は、制御回路32に入力されるようになっている。さらに、制御基板29にはホールIC39が取り付けられている。ホールIC39は、センサマグネット38と非接触で対向して固定されている。ホールIC39は、ロータ22の回転に伴い、センサマグネット38の磁極の変化によりスイッチング動作し、スイッチング信号(オン・オフ信号)を発生する。制御回路32は、ホールIC39のスイッチング信号に基づいて、ロータ22の回転数(回転速度)を検出することができる。さらに、車両10の室内にはワイパスイッチ37が設けられており、ワイパスイッチ37の操作信号が、制御回路32に入力されるように構成されている。
 ワイパ装置12においては、降雨量、降雪量等の条件に基づいて、運転者の意思でワイパスイッチ37を操作し、ワイパアーム14,16の払拭速度を切り替えることができる。運転者は、降雨量、降雪量が少ないとき、ワイパスイッチ37を操作して、ワイパアーム14,16を予め定められた低速で動作させる低速払拭モードを選択することができる。これに対して、運転者は、降雨量、降雪量が多いとき、ワイパスイッチ37を操作して、ワイパアーム14,16を、前記低速よりも高速で動作させる高速払拭モードを選択することができる。運転者は、降雨量、降雪量が多い、少ないを自分の主観で判断するのであり、多い、少ないを区別する基準があるわけではない。そして、制御回路32には、低速払拭モード及び高速払拭モードについて、スイッチング素子30aを制御するパターン、データ、演算式等が予め記憶されている。
 本実施形態におけるブラシレスモータ19の制御を説明する。ワイパスイッチ37が操作されて低速モードが選択されているとき、誘起電圧検出部35の検出信号は、制御回路32に入力される。制御回路32は、誘起電圧検出部35の検出信号に基づいて、ロータ22の回転位置(回転方向の角度)を推定し、ロータ22の回転位置に基づいた通電制御を行う。つまり、各相の正極側スイッチング素子を電気角で120度ずつ順次オンするとともに、正極側スイッチング素子とは異なる相の負極側スイッチング素子を電気角で120度ずつ順次オンして、各相の電機子コイル21a,21b,21cに対する通電を切り替えて相電流を転流させる。
 上記の制御が繰り返されるとステータ21により回転磁界が形成され、ロータ22が回転する。また、ブラシレスモータ19は、電流値が高くなることに伴い回転数が上昇する特性を有する。さらに、ブラシレスモータ19は、回転数が上昇することに伴いトルクが低下する特性を有する。低速払拭モードが選択されているときは、弱め界磁制御を行うことなく、デューティ比の制御を行うことにより、ロータ22の実回転数を要求されている回転数に近づけることができる。また、低速払拭モードが選択されているときは、電機子コイル21a,21b,21cへの通電タイミングは、予め定められた固定値が用いられる。
 一方、高速払拭モードが選択されたときは、電機子コイル21a,21b,21cに供給する電流値を変えず、弱め界磁制御を行う。弱め界磁制御は、電機子コイル21a,21b,21cに電流を供給することにより形成される磁界を、なるべく弱くする制御である。弱め界磁制御を具体的に説明すると、電機子コイル21a,21b,21cへの通電タイミングを、低速払拭モードが選択されているときに比べて、30度進角(進み位相)とする制御である。すなわち、高速払拭モードが選択されたときに電機子コイル21a,21b,21cで形成される回転磁界は、低速払拭モードが選択されたときに電機子コイル21a,21b,21cで形成される回転磁界よりも弱くなる。この弱め界磁制御を行うと、電機子コイル21a,21b,21cに生じる逆起電力が減少し、ロータ22の回転数が上昇する。前記進角は、ロータ22の回転方向における電機子コイルと永久磁石との相対的な位置関係を電気角で表したものである。
 図5は、ブラシレスモータ19の特性を示す線図である。図5においては、縦軸にブラシレスモータ19の回転数が示され、横軸にブラシレスモータ19のトルクが示されている。また、図5に示された破線は、低速払拭モードに対応する低速用特性の一例であり、図5に示された実線は、高速払拭モードに対応する高速用特性の一例である。
 本実施形態のブラシレスモータ19は、その定格を設定するにあたり、図5の低速用特性に対応する回転数及びトルクを得ることができるように、例えば実線で示す位置に設定特性が存在している。このため、ワイパスイッチ37の操作により低速払拭モードが選択されているときは、設定特性以下の範囲内で、要求されている回転数及びトルクを得ることができる。
 これに対して、ワイパスイッチ37の操作により高速払拭モードが選択されて、要求されるトルク及び回転数が設定特性を超えたときは、制御回路32が弱め界磁制御を実行することにより、設定特性を超える回転数及びトルクの範囲を得ることができる。これにより、ブラシレスモータ19の特性は、見かけ上、図5に二点鎖線で示す位置にあることと同等となる。すなわち、ブラシレスモータ19は、設計上、低速払拭モードを基準として定格を決定することができ、ブラシレスモータ19の体格をなるべく小さくすることができる。そして、電流値を変えずにブラシレスモータ19の回転数を上昇させて、トルクを上昇させることができるということは、トルク定数が相対的に大きくなることを意味する。言い換えれば、本実施形態のブラシレスモータ19は、より少ない消費電力でなるべく高トルクを発生することができ、モータ効率が向上する。
 図6は、通電タイミングとしての進角と、ブラシレスモータ19の回転数との関係を示す線図である。図6では、横軸に電流が示され、縦軸に回転数が示されている。図6のように、進角30度であるときの回転数の方が、進角0度であるときの回転数よりも高い。進角0度は、低速払拭モードで説明した通電タイミングの固定値である。また、図7は、通電タイミングとしての進角と、ブラシレスモータ19の効率との関係を示す線図である。図7では、横軸に電流が示され、縦軸に効率が示されている。図7のように、進角30度であるときの効率の方が、進角0度であるときの効率よりも高い。
 また、一般的に、車両用のワイパ装置は、低速払拭モードの方が高速払拭モードよりも、使用頻度が高い。このため、本実施形態のブラシレスモータ19をワイパ装置12に用いると、低速払拭モードが選択されたときに、消費電力を低減する効果が大きい。
 また、本実施形態のブラシレスモータ19は、弱め界磁制御を行うときに、誘起電圧検出部35の検出信号に基づいて、ロータ22の回転位置を推定することができる。さらに、誘起電圧検出部35の検出信号に代えて、出力軸センサ36の検出信号、及び減速機構27の減速比に基づいて、ロータ22の回転位置を推定することもできる。このように、本実施形態のブラシレスモータ19は、予め設けられている誘起電圧検出部35、出力軸センサ36を利用して、ロータ22の回転位置を推定することができる。
 さらに、本実施形態のブラシレスモータ19は、弱め界磁制御を行うことにより、高速用特性に対応する回転数及びトルクを得ることができるとともに、減速機構27が設けられている。したがって、ブラシレスモータ19は、ワイパ装置12のワイパアーム14,16の作動条件に適した特性、つまり、回転数、トルクとなるように、減速機構27の減速比を設定することができる。減速機構27の減速比は、出力軸26の回転数をロータ22の回転数で除算した値であり、減速機構27の減速比を大きくするほど、出力軸26の回転数が低下する。すなわち、減速機構27が設けられていることにより、ロータ22のトルクに対して、出力軸26のトルクを増幅することができる。
 さらにまた、本実施形態のブラシレスモータ19は、ロータ22の回転位置の推定結果に基づいて、ブラシレスモータ19の正逆転時における進角制御を最適化することができる。さらにまた、本実施形態のブラシレスモータ19は、ブラシ、コミュテータ(整流子)等が設けられていないため、ブラシとコミュテータとの摺動によるフリクショントルクの発生もなく、モータの効率低下、ブラシの温度上昇を防止し、モータ出力が制限されることを回避できる。さらに、本実施形態のブラシレスモータ19は、ブラシがあることに起因するノイズの発生、作動音の発生を防止でき、静粛性を確保できる。
 さらにまた、本実施形態のブラシレスモータ19は、制御基板29及び減速機構27が、共にフレーム24及びアンダーカバー28により取り囲まれた空間内に配置された構造、つまり、機電一体の構造である。したがって、ブラシレスモータ19全体をコンパクトに構成することができ、車体へブラシレスモータ19を取り付ける際のレイアウト性が向上する。
 さらにまた、本実施形態のブラシレスモータ19は、高速モードが選択されて弱め界磁制御を行うときに、制御回路32は、ホールIC39のオン・オフ信号に基づいてロータ22の回転数を検出する制御を行うとともに、電機子コイル21a,21b,21cへの通電タイミングを電気角で30度進角させることにより、ロータ22の回転数を制御することができる。
 特に、ワイパ装置12においては、ワイパアーム14,16が初期位置から動作を開始した時点から、反転位置を経由して初期位置に戻るまでの所要時間は、一定に保たれることが望ましい。これに対して、車速による風の抵抗、ワイパブレード17,18の払拭抵抗等の条件により、ワイパアーム14,16の実際の払拭速度が変化して、所要時間が変化する可能性がある。そこで、弱め界磁制御と並行して、デューティ比を変化させる制御を行うこともできる。具体的に説明すると、制御回路32は、ホールIC39の信号に基づいて、ワイパアーム14,16の実際の払拭速度を間接的に求める。そして、制御回路32は、ワイパアーム14,16の実際の払拭速度を目標払拭速度に近づけるように、フィードバック制御を行うにあたり、デューティ比を制御する。このようにすると、前回の通電タイミング制御を行ってから次回の通電タイミング制御を行うまでの間、デューティ比の制御を行うことにより、ワイパアーム14,16の払拭速度をきめ細かく制御することができる。
 ここで、本実施形態において説明した構成と、本発明の構成との対応関係を説明すると、制御回路32を有する駆動装置33が、本発明の回転数制御部及び回転方向制御部に相当し、フレーム24及びアンダーカバー28が、本発明のハウジングに相当し、フロントガラス11が、本発明のガラスに相当し、ワイパアーム14,16が、本発明の動作部材に相当し、スイッチング素子30aが、本発明のスイッチに相当し、ホールIC39が、本発明の回転数センサに相当する。また、低速払拭モードが、本発明の第1の制御モードに相当し、高速払拭モードが、本発明の第2の制御モードに相当する。
 本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、ワイパスイッチは運転者の操作により操作されるものに限らず、降雨量、降雪量等を検出する機能を有する検出スイッチであってもよい。このように構成されていれば、降雨量、降雪量等に基づいて、回転数制御部がワイパ装置を自動的に起動させ、かつ、低速モード、高速モードを自動的に切り替える制御を実行する。この場合、回転数制御部には、低速モード、高速モードを切り替える基準となる降雨量、降雪量等のデータが予め記憶されている。さらにまた、電機子コイルの数、永久磁石の数は任意に変更可能である。
 また、ワイパ装置は、フロントガラスに限らずリヤガラスを払拭するものであってもよい。また、ワイパ装置は、出力軸を支点としてワイパアームが揺動する構造でもよい。さらに、ワイパ装置は、2本のワイパアームを、それぞれ別個のブラシレスモータにより駆動する構成であってもよい。また、本実施形態のブラシレスモータは、永久磁石を鉄心に埋め込んだ構造のIPM(Interior Permanent Magnet )型モータであってもよい。
 さらに、ワイパスイッチにより選択されるモードは、低速払拭モード及び高速払拭モードの2種類に限らず、3種類以上あってもよい。例えば、ロータの回転数を制御するモードは、低速払拭モード、中速払拭モード、高速払拭モードの3種類あってもよい。ここで、中速払拭モードにおけるロータの回転数は、低速払拭モードにおけるロータの回転数よりも高く、高速払拭モードにおけるロータの回転数よりも低い。
 そして、回転数制御部は、3種類の払拭モードのうち、低速払拭モードが選択されたときに、電機子コイルへ予め定められた通電タイミングで電流を供給し、かつ、スイッチング素子のオン割合であるデューティ比を制御してロータの回転数を制御する一方、中速払拭制御モードが選択されたときには、低速払拭制御モードが選択されたときの通電タイミングよりも進角させた通電タイミングで電機子コイルに電流を供給することにより、電機子コイルにより形成される回転磁界を、低速払拭制御モードが選択されたときよりも弱くする弱め界磁制御を行ってロータの回転数を制御することができる。このように、低速払拭モードと中速払拭モードとで、ロータの回転数を異ならせる場合は、低速払拭モードが、本発明における第1の制御モードに相当し、中速払拭モードが、本発明における第2の制御モードに相当する。
 一方、回転数制御部は、3種類の払拭モードのうち、中速払拭モードが選択されたときに、電機子コイルへ予め定められた通電タイミングで電流を供給し、かつ、スイッチング素子のオン割合であるデューティ比を制御してロータの回転数を制御する一方、高速払拭制御モードが選択されたときには、中速払拭制御モードが選択されたときの通電タイミングよりも進角させた通電タイミングで電機子コイルに電流を供給することにより、電機子コイルにより形成される回転磁界を、中速払拭制御モードが選択されたときよりも弱くする弱め界磁制御を行ってロータの回転数を制御することもできる。このように、中速払拭モードと高速払拭モードとで、ロータの回転数を異ならせる場合は、中速払拭モードが、本発明における第1の制御モードに相当し、高速払拭モードが、本発明における第2の制御モードに相当する。
 さらにまた、本発明のブラシレスモータは、ステータの内側にロータが配置されたインナロータ形のブラシレスモータ、またはステータの外側にロータが配置されたアウタロータ形のブラシレスモータのいずれにも適用可能である。さらに、本実施形態のブラシレスモータは、車両に設けられる利便快適系装置、例えば、パワースライドドア装置、サンルーフ装置、パワーウィンド装置等において、ドア、ルーフ、ガラス等の動作部材を動作させる動力源として用いることもできる。
 以下、本発明の他の実施の形態について、図面を用いて詳細に説明する。図8に示された車両110はフロントガラス111を有している。また、車両110は、フロントガラス111を払拭するワイパ装置112を有している。ワイパ装置112は、ピボット軸113を中心として揺動するワイパアーム114と、ピボット軸115を中心として揺動するワイパアーム116とを有する。ワイパアーム114の自由端にはワイパブレード117が取り付けられており、ワイパアーム116の自由端にはワイパブレード118が取り付けられている。また、ワイパ装置112は、ワイパアーム114,116を駆動する動力源としてブラシレスモータ119を有している。ブラシレスモータ119の動力は、レバー、リンク等により構成された動力伝達機構120を経由して、ワイパアーム114,116に個別に伝達されるように構成されている。
 ブラシレスモータ119は、図9、図10、図11に示すように構成されている。本実施形態におけるブラシレスモータ119は、一例として3相4極形のものが挙げられている。ブラシレスモータ119は、ステータ121及びロータ122を有する。また、ブラシレスモータ119は、有底円筒形状のケース123を有しており、ケース123の内周にステータ121が固定して設けられている。ステータ121は、図11に示すように、3相、具体的には、U相、V相、W相の電機子コイル121a,121b,121cを有する。図10のように、ロータ122はステータ121の内側に設けられている。ロータ122は、回転軸122aと、回転軸122aに取り付けた4極の永久磁石122bとを有する。なお、便宜上、図4では回転軸122aを省略している。ケース123内には複数の軸受(図示せず)が設けられており、回転軸122aは、複数の軸受により回転可能に支持されている。
 また、ブラシレスモータ119は、中空のフレーム124を有しており、フレーム124及びケース123は、図示しない締結部材により固定されている。回転軸122aは、長さ方向の略半分はケース123の内部に配置されており、残りの略半分はフレーム124内に配置されている。回転軸122aのうちフレーム124内に配置された部分の外周には、ウォーム122cが形成されている。フレーム124内にはウォームホイール125が設けられている。このウォームホイール125の外周にはギヤ125aが形成されており、ギヤ125aとウォーム122cとが噛合されている。さらに、回転軸122aのうちフレーム124内に配置された箇所には、センサマグネット138が取り付けられている。センサマグネット138は、回転軸122aと一体回転する。センサマグネット138は、回転軸122aの円周方向に沿って、N極とS極とが交互に並ぶように着磁されている。
 また、ウォームホイール125は、出力軸126と一体回転するように構成されている。ウォーム122c及びギヤ125aは、本実施形態における減速機構127を構成している。この減速機構127の減速比は、ロータ122の動力を出力軸126に伝達する際に、ロータ122の回転速度よりも出力軸126の回転速度を低速とするものである。さらに、図9において、フレーム124の上部には、図示しない軸孔が設けられている。出力軸126におけるウォームホイール125が固定された端部とは反対側の端部は、フレーム124の軸孔を経由して外部に露出している。出力軸126におけるフレーム124の外部に露出した部分には、図8のように動力伝達機構120が連結されている。
 フレーム124における軸孔とは反対側の部分には開口部124aが設けられている。この開口部124aは、フレーム124の内部にウォームホイール125等を取り付けるために形成されたものである。また、開口部124aを塞ぐアンダーカバー128が設けられている。アンダーカバー128はトレイ形状を有しており、そのアンダーカバー128とフレーム124とにより取り囲まれた空間に、制御基板129が設けられている。図9においては、制御基板129がアンダーカバー128に取り付けられた例が示されている。
 この制御基板129には、ブラシレスモータ119を制御する駆動装置133が、図11のように設けられている。駆動装置133は、各電機子コイル121a,121b,121cに対する通電を制御するインバータ回路130を有する。インバータ回路130は、図示しない端子に接続されている。また、フレーム124にはコネクタ(図示せず)が設けられており、外部電源131に接続された電線のソケット(図示せず)をコネクタに装着することにより、外部電源131とインバータ回路130とが接続される。外部電源131は、車両110に搭載されたバッテリまたはキャパシタ等である。
 また、インバータ回路130は、外部電源131と電機子コイル121a,121b,121cとを接続及び遮断するスイッチング素子130aを備えている。このスイッチング素子130aは、例えば、FET等の半導体素子により構成されている。より具体的には、U相、V相、W相に対応し、外部電源131の正極に接続される3つの正極側のスイッチング素子と、U相、V相、W相に対応し、外部電源131の負極側に接続される3つのスイッチング素子とを含む。さらに、インバータ回路130には、スイッチング素子130aのオン及びオフを切り替え制御する機能を有する制御回路(コンロトーラ)132が接続されている。
 この制御回路132は、CPU、RAM、ROM等を備えた公知のマイクロコンピュータである。また、駆動装置133は、PWM信号発生回路134を有しており、PWM信号発生回路134の信号は、制御回路132に入力されるように構成されている。この制御回路132は、3つの負極側スイッチング素子を制御する駆動信号を出力し、その駆動信号にPWM信号が重畳される。つまり、3つの負極側スイッチング素子は、PWM制御により駆動されて各電通区間において断続的にオンされる。そして、3つの負極側スイッチング素子が別個にオンされる割合、すなわち、デューティ比を制御することにより、各電機子コイル121a,121b,121cに供給する電流値が制御されるように構成されている。さらに、制御回路132は、ブラシレスモータ119の起動時に実行する制御のデータ、プログラム等を記憶している。ブラシレスモータ119の起動時とは、停止しているブラシレスモータ119を回転させる初期のことである。
 さらにまた、各電機子コイル121a,121b,121cの非結線端には、誘起電圧検出部135が接続されている。誘起電圧検出部135は、ロータ122の回転に伴い各電機子コイル121a,121b,121cに生じる誘起電圧を検出するセンサであり、誘起電圧検出部135の検出信号は、制御回路132に入力される。制御回路132は、誘起電圧検出部135から入力される検出信号に基づいて、ロータ122の回転位置(回転方向の位相)を推定する処理を行う。
 さらに、本実施形態におけるブラシレスモータ119は、スイッチング素子130aのオン及びオフを切り替え制御して、電機子コイル121a,121b,121cに対する通電の向きを反転させることにより、ロータ122を正逆に回転させることが可能である。スイッチング素子130aがオンされると、外部電源131と各電機子コイル121a,121b,121cとが接続され、スイッチング素子130aがオフされると、外部電源131と各電機子コイル121a,121b,121cとが遮断される。
 さらに、フレーム124の内部には、出力軸126の回転数または絶対位置の少なくとも一方を検出する出力軸センサ136が設けられている。絶対位置とは、基準位置に対する出力軸126の回転角度を意味する。基準位置は、360度の範囲内のうち、任意の位置に定めればよい。この出力軸センサ136の検出信号は、制御回路132に入力されるようになっている。さらに、制御基板129にはホールIC139が取り付けられている。ホールIC139は、センサマグネット138と非接触で対向して固定されている。ホールIC139は、ロータ122の回転に伴い、センサマグネット138の磁極の変化によりスイッチング動作し、スイッチング信号(オン・オフ信号)を発生する。制御回路132は、ホールIC139のスイッチング信号に基づいて、ロータ122の回転数(回転速度)を検出することができる。さらに、車両110の室内にはワイパスイッチ137が設けられており、ワイパスイッチ137の操作信号が、制御回路132に入力されるように構成されている。
 ワイパ装置112においては、降雨量、降雪量等の条件に基づいて、ワイパアーム114,116の払拭速度を切り替えることができる。例えば、降雨量、降雪量が少ないときは、運転者がワイパスイッチ137を操作して、ワイパアーム114,116を予め定められた低速で動作させる低速払拭モードを選択することができる。これに対して、降雨量、降雪量が多いときには、運転者がワイパスイッチ137を操作して、ワイパアーム114,116を、前記低速よりも高速で動作させる高速払拭モードを選択することができる。このため、制御回路132には、低速払拭モード及び高速払拭モードについて、スイッチング素子130aを制御するパターン、データ、演算式等が予め記憶されている。
 本実施形態におけるブラシレスモータ119の制御を説明する。ワイパスイッチ137が操作されて低速モードが選択されているとき、誘起電圧検出部135の検出信号は、制御回路132に入力される。制御回路132は、誘起電圧検出部135の検出信号に基づいて、ロータ122の回転位置(回転方向の角度)を推定し、ロータ122の回転位置に基づいた通電制御を行う。つまり、各相の正極側スイッチング素子を電気角で120度ずつ順次オンするとともに、正極側スイッチング素子とは異なる相の負極側スイッチング素子を電気角で120度ずつ順次オンして、各相の電機子コイル121a,121b,121cに対する通電を切り替えて相電流を転流させる。
 上記の制御が繰り返されるとステータ121により回転磁界が形成され、ロータ122が回転する。また、ブラシレスモータ119は、電流値が高くなることに伴い回転数が上昇する特性を有する。さらに、ブラシレスモータ119は、回転数が上昇することに伴いトルクが低下する特性を有する。低速払拭モードが選択されているときは、弱め界磁制御を行うことなく、デューティ比の制御を行うことにより、ロータ122の実回転数を要求されている回転数に近づけることができる。
 一方、高速払拭モードが選択されたときは、電機子コイル121a,121b,121cに供給する電流値を変えることなく、電機子コイル121a,121b,121cへの通電タイミングを、低速払拭モードが選択されているときに比べて進み位相とする弱め界磁制御を行う。弱め界磁制御では、低速払拭モードが選択されているときに比べて、電機子コイル121a,121b,121cへの通電タイミングが電気角で30度進角される。弱め界磁制御は、電機子コイル121a,121b,121cに電流を供給することにより形成される磁界を、なるべく弱くする制御である。この弱め界磁制御を行うと、電機子コイル121a,121b,121cに生じる逆起電力が減少し、ロータ122の回転数が上昇する。
 図12は、ブラシレスモータ119の特性を示す線図である。図12においては、縦軸にブラシレスモータ119の回転数が示され、横軸にブラシレスモータ119のトルクが示されている。また、図12に示された破線は、低速払拭モードに対応する低速用特性の一例であり、図12に示された実線は、高速払拭モードに対応する高速用特性の一例である。
 本実施形態のブラシレスモータ119は、その定格を設定するにあたり、図12の低速用特性に対応する回転数及びトルクを得ることができるように、例えば実線で示す位置に設定特性が存在している。このため、ワイパスイッチ137の操作により低速払拭モードが選択されているときは、設定特性以下の範囲内で、要求されている回転数及びトルクを得ることができる。
 これに対して、ワイパスイッチ137の操作により高速払拭モードが選択されて、要求されるトルク及び回転数が設定特性を超えたときは、制御回路132が弱め界磁制御を実行することにより、設定特性を超える回転数及びトルクの範囲を得ることができる。これにより、ブラシレスモータ119の特性は、見かけ上、二点鎖線で示す位置にあることと同等となる。そして、電流値を変えずにブラシレスモータ119の回転数を上昇させて、トルクを上昇させることができるということは、トルク定数が相対的に大きくなることを意味する。言い換えれば、本実施形態のブラシレスモータ119は、より少ない消費電力でなるべく高トルクを発生することができ、モータ効率が向上する。
 一般的に、車両用のワイパ装置は、低速払拭モードの方が高速払拭モードよりも、使用頻度が高い。このため、本実施形態のブラシレスモータ119をワイパ装置112に用いると、低速払拭モードが選択されたときに、消費電力を低減する効果が大きい。また、本実施形態のブラシレスモータ119は、設計上、高速払拭モードを基準として定格を決定する必要がなくなり、ブラシレスモータ119の体格をなるべく小さくすることができる。
 また、本実施形態のブラシレスモータ119は、弱め界磁制御を行うときに、誘起電圧検出部135の検出信号に基づいて、ロータ122の回転位置を推定することができる。さらに、誘起電圧検出部135の検出信号に代えて、出力軸センサ136の検出信号、及び減速機構127の減速比に基づいて、ロータ122の回転位置を推定することもできる。このように、本実施形態のブラシレスモータ119は、予め設けられている誘起電圧検出部135、出力軸センサ136を利用して、ロータ122の回転位置を推定することができる。つまり、本実施形態のブラシレスモータ119は、ロータ122の回転位置を検出するセンサを専用で設ける必要がない、センサレス構造である。したがって、ブラシレスモータ119の部品点数及び製造コストを低減することができる。
 さらに、本実施形態のブラシレスモータ119は、弱め界磁制御を行うことにより、高速用特性に対応する回転数及びトルクを得ることができるとともに、減速機構127が設けられている。したがって、ブラシレスモータ119は、ワイパ装置112のワイパアーム114,116の作動条件に適した特性、つまり、回転数、トルクとなるように、減速機構127の減速比を設定することができる。減速機構127の減速比は、出力軸126の回転数をロータ122の回転数で除算した値であり、減速機構127の減速比を大きくするほど、出力軸126の回転数が低下する。
 さらにまた、本実施形態のブラシレスモータ119は、ロータ122の回転位置の推定結果に基づいて、ブラシレスモータ119の正逆転時における進角制御を最適化することができる。さらにまた、本実施形態のブラシレスモータ119は、ブラシ、コミュテータ(整流子)等が設けられていないため、ブラシとコミュテータとの摺動によるフリクショントルクの発生もなく、モータの効率低下を防止できる。さらに、本実施形態のブラシレスモータ119は、ブラシがあることに起因するノイズの発生をも防止できる。
 さらにまた、本実施形態のブラシレスモータ119は、制御基板129及び減速機構127が、共にフレーム124及びアンダーカバー128により取り囲まれた空間内に配置された構造、つまり、機電一体の構造である。したがって、ブラシレスモータ119全体をコンパクトに構成することができ、車体へブラシレスモータ119を取り付ける際のレイアウト性が向上する。
 さらにまた、本実施形態のブラシレスモータ119は、弱め界磁制御を行うときに、制御回路132は、ホールIC139のオン・オフ信号に基づいてロータ122の回転数を検出する制御を行うとともに、電機子コイル121a,121b,121cへの通電タイミングを電気角で30度進角させることにより、ロータ122の回転数を制御する機能を有する。
 ここで、本実施形態において説明した構成と、本発明の構成との対応関係を説明すると、制御回路132を有する駆動装置133が、本発明の第1回転数制御部及び第2回転数制御部及び回転位置推定部及び回転方向制御部に相当し、フレーム124及びアンダーカバー128が、本発明のハウジングに相当し、フロントガラス111が、本発明のガラスに相当し、ワイパアーム114,116が、本発明の動作部材に相当し、ホールIC139が、本発明のスイッチング素子に相当する。さらに、図12において回転数及びトルクで表された特性が、本発明におけるブラシレスモータの特性に相当する。
 本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、ワイパ装置112は、フロントガラス111に限らずリヤガラスを払拭するものであってもよい。また、図8に示すワイパ装置112は、出力軸126に動力伝達機構120を介してワイパアーム114,116が連結されているが、出力軸に直接ワイパアームが連結されている構造であってもよい。また、図8に示すワイパ装置112は、2本のワイパアーム114,116を単独のブラシレスモータ119により駆動する構成であるが、2本のワイパアームを、それぞれ別個のブラシレスモータにより駆動する構成であってもよい。また、本実施形態のブラシレスモータは、永久磁石を鉄心に埋め込んだ構造のIPM(Interior Permanent Magnet )型モータであってもよい。さらに、ワイパスイッチにより選択されるモードは、低速払拭モード及び高速払拭モードの2種類に限らず、3種類以上あってもよい。さらにまた、電機子コイルの数、永久磁石の数は任意に変更可能である。
 さらにまた、本発明のブラシレスモータは、ステータの内側にロータが配置されたインナロータ形のブラシレスモータ、またはステータの外側にロータが配置されたアウタロータ形のブラシレスモータのいずれにも適用可能である。さらに、本実施形態のブラシレスモータは、車両に設けられる利便快適系装置、例えば、パワースライドドア装置、サンルーフ装置、パワーウィンド装置等において、ドア、ルーフ、ガラス等の動作部材を動作させる動力源として用いることもできる。
 以下、本発明の他の実施形態について、図面を用いて詳細に説明する。図13に示された車両210はフロントガラス211を有している。また、車両210は、フロントガラス211を払拭するワイパ装置212を有する。ワイパ装置212は、ピボット軸213を中心として揺動するワイパアーム214と、ピボット軸215を中心として揺動するワイパアーム216とを有する。ワイパアーム214の自由端にはワイパブレード217が取り付けられており、ワイパアーム216の自由端にはワイパブレード218が取り付けられている。また、ワイパ装置212は、ワイパアーム214,216を駆動する動力源としてブラシレスモータ219を有している。ブラシレスモータ219の動力は、レバー、リンク等により構成された動力伝達機構220を経由して、ワイパアーム214,216に個別に伝達される。
 ブラシレスモータ219は、図14、図15、図16に示す構成を備えている。本実施形態におけるブラシレスモータ219は3相直流形のモータであり、一例として3相6極形のものが挙げられている。ブラシレスモータ219は、ステータ221及びロータ222を有する。また、ブラシレスモータ219は、有底円筒形状のケース223を有しており、ケース223の内周にステータ221が固定して設けられている。ステータ221は、図16に示すように、3相、具体的には、U相、V相、W相の各相に対応する巻線、すなわち、電機子コイル221a,221b,221cを有する。具体的には、3相の電機子コイルが、Y結線、つまり、三相の電機子コイルを一端の中性点で接続する結線方法により接続してある。また、ブラシレスモータ219は、各電機子コイルが、正極及び負極の両方として機能するバイポーラ駆動型のモータである。ロータ222は、ステータ221の内側に設けられており、ロータ222は、ロータ軸222aと、ロータ軸222aに取り付けた4極の永久磁石222bとを有する。ケース223内には複数の軸受が設けられており、ロータ軸222aは、複数の軸受により回転可能に支持されている。前記軸受は図示されていない。
 また、ブラシレスモータ219は、中空のフレーム224を有しており、フレーム224及びケース223は、図示しない締結部材により固定されている。ロータ軸222aは、長さ方向の略半分はケース223の内部に配置されており、残りの略半分はフレーム224内に配置されている。ロータ軸222aのうちフレーム224内に配置された部分の外周には、ウォーム222cが形成されている。フレーム224内にはウォームホイール225が設けられている。このウォームホイール225の外周にはギヤ225aが形成されており、ギヤ225aとウォーム222cとが噛み合わされている。さらに、ロータ軸222aのうちフレーム224内に配置された箇所には、センサマグネット238が取り付けられている。センサマグネット238は、ロータ軸222aと一体回転する。センサマグネット238は、ロータ軸222aの円周方向に沿って、N極とS極とが交互に並ぶように着磁されている。
 また、ウォームホイール225は、出力軸226と一体回転するように構成されている。ウォーム222c及びギヤ225aは、本実施形態における減速機構227を構成している。この減速機構227は、ロータ222の動力を出力軸226に伝達する際に、ロータ222の回転数よりも出力軸226の回転数を低くする機構である。ロータ222の回転数は入力回転数であり、出力軸226の回転数は出力回転数である。さらに、図14において、フレーム224の上部には、図示しない軸孔が設けられており、出力軸226は軸孔に挿入されている。出力軸226におけるウォームホイール225が固定された端部とは反対側の端部は、フレーム224の外部に露出している。動力伝達機構220は、出力軸226におけるフレーム224の外部に露出した部分に連結されている。
 フレーム224における軸孔とは反対側の部分に開口部224aが設けられている。この開口部224aは、フレーム224の内部にウォームホイール225等を取り付けるために形成されたものである。また、開口部224aを塞ぐアンダーカバー228が設けられている。アンダーカバー228はトレイ形状を有しており、そのアンダーカバー228とフレーム224とにより取り囲まれた空間に、制御基板229が設けられている。図14においては、制御基板229がアンダーカバー228に取り付けられた例が示されている。
 この制御基板229には、ブラシレスモータ219を制御する制御部、つまり、コントローラとしての駆動装置233が、図16のように設けられている。駆動装置233は、電機子コイル221a,221b,221cに対する通電を制御するインバータ回路230を有する。インバータ回路230は、図示しない端子に接続されている。また、フレーム224にはコネクタが設けられており、外部電源231に接続された電線のソケットをコネクタに装着することにより、外部電源231とインバータ回路230とが接続される。外部電源231は、車両210に搭載されたバッテリまたはキャパシタ等である。なお、コネクタ及びソケットは図示されていない。
 また、インバータ回路230は、外部電源231と電機子コイル221a,221b,221cとを接続及び遮断するスイッチング素子230aを備えている。このスイッチング素子230aは、例えば、FET等の半導体素子により構成されている。より具体的には、U相、V相、W相に対応し、外部電源231の正極に接続される3つの正極側のスイッチング素子と、U相、V相、W相に対応し、外部電源231の負極側に接続される3つの負極側のスイッチング素子とを含む。すなわち、スイッチング素子は、合計で6個設けられている。スイッチング素子230aが接続、つまりオンされると、外部電源231から各電機子コイル221a,221b,221cに電流が供給される。これに対して、スイッチング素子230aが遮断、つまりオフされると、外部電源231から各電機子コイル221a,221b,221cに電流は供給されない。さらに、インバータ回路230に、スイッチング素子230aのオン及びオフを切り替える制御回路232が接続されている。
 この制御回路232は、CPU、RAM、ROM等を備えた公知のマイクロコンピュータである。また、駆動装置233は、PWM信号発生回路234を有しており、PWM信号発生回路234の信号は、制御回路232に入力されるように構成されている。この制御回路232は、3つの負極側スイッチング素子を制御する駆動信号を出力し、その駆動信号にPWM信号が重畳される。つまり、3つの負極側スイッチング素子は、PWM制御により駆動されて各電通区間において断続的にオンされる。そして、3つの負極側スイッチング素子が別個にオンされる割合、すなわち、デューティ比を制御することにより、各電機子コイル221a,221b,221cに供給する電流値が制御されるように構成されている。つまり、電機子コイル221a,221b,221cに給電される通電期間を、通電可能な全期間に対して0%~100%の間で増減することができる。さらに、制御回路232は、ブラシレスモータ219の起動時に実行する制御のデータ、プログラム等を記憶している。ブラシレスモータ219の起動時とは、停止しているブラシレスモータ219を回転させる初期のことである。
 さらにまた、各電機子コイル221a,221b,221cの非結線端には、誘起電圧検出部235が接続されている。誘起電圧検出部235は、ロータ222の回転に伴い各電機子コイル221a,221b,221cに生じる誘起電圧を検出するセンサであり、誘起電圧検出部235の検出信号は、制御回路232に入力される。制御回路232は、誘起電圧検出部235から入力される検出信号に基づいて、ロータ222の回転位置、つまり回転方向の位相を推定する処理を行う。
 また、制御基板229にホールIC239が取り付けられている。ホールIC239は、センサマグネット238と非接触で対向して固定されている。ホールIC239は、ロータ軸222aの回転に伴い、センサマグネット238の磁極の変化によりスイッチング動作し、スイッチング信号、つまり、オン・オフ信号を発生する。なお、ホールIC239は、ロータ軸222aの回転方向に沿って複数個、例えば3個設けることができる。制御回路232は、ホールIC239のスイッチング信号に基づいて、ロータ軸222aの回転数及び回転角度を検知する。また、出力軸226の回転角度及び回転数を検知する出力軸センサ236が設けられている。出力軸センサ236の検知信号は、制御回路232へ入力される。さらに、車両210の室内にはワイパスイッチ237が設けられており、ワイパスイッチ237の操作信号が、制御回路232に入力されるように構成されている。さらにまた、車速センサ240が設けられており、車速センサ240の信号が制御回路232に入力される。車速センサ240は、車両210の走行速度を検知するセンサである。
 本実施形態におけるブラシレスモータ219の制御を説明する。制御回路232は、誘起電圧検出部235の検出信号に基づいて、ロータ軸222aの回転方向及び回転位置、つまり回転方向の角度を推定し、ロータ軸222aの回転位置に基づいた通電制御を行う。つまり、各相の正極側スイッチング素子を電気角で所定の角度ずつ順次オン・オフするとともに、正極側スイッチング素子とは異なる相の負極側スイッチング素子を電気角で所定の角度ずつ順次オン・オフして、各相の電機子コイル221a,221b,221cに対する通電を切り替えて相電流を転流させる。上記の制御が繰り返されるとステータ221により回転磁界が形成され、ロータ軸222aが回転する。
 また、本実施形態におけるブラシレスモータ219は、スイッチング素子230aのオン及びオフを切り替え制御して、電機子コイル221a,221b,221cに対する通電の向きを反転させることにより、ロータ軸222aを正回転・停止・逆回転させることができる。ワイパアーム214,216は、ロータ軸222aの動力で所定角度の範囲内で往復動作し、ワイパブレード217,218によりフロントガラス211が払拭される。
 さらに、本実施形態におけるブラシレスモータ219は、ロータ軸222aの回転数を制御するにあたり、弱め界磁制御を行うことができる。弱め界磁制御は、電機子コイル221a,221b,221cに電流を供給することにより形成される磁界を、なるべく弱くする制御である。弱め界磁制御を具体的に説明すると、電機子コイル221a,221b,221cへの通電タイミングを、通常の通電タイミングと比べて、電気角で30°進角する、つまり、進み位相とする制御である。弱め界磁制御を行うと、電機子コイル221a,221b,221cに生じる逆起電力が減少し、ロータ軸222aの回転数が上昇する。
 さらに、本実施形態のブラシレスモータ219は、ロータ軸222aの出力、すなわち、回転数及びトルクを制御するにあたり、第1の制御と第2の制御とを切り替えることができる。第1の制御と第2の制御とを切り替える条件としては、例えば、車両210の走行速度を挙げることができる。制御回路232には、第1の制御と第2の制御とを切り替えるしきい値となる基準車速が、予め記憶されている。そして、車速センサ240の信号により検知される実車速が、基準車速以下であると第1の制御が行われる。車速センサ240の信号により検知される実車速が、基準車速を超えると第2の制御が行われる。
 第1の制御及び第2の制御の例を図17により説明する。図17に示された0°~360°の角度は、電気信号の1周期内における通電期間を表す電気角である。正は正極からの通電を表し、負は負極からの通電を表す。図17(A)は、第1の制御の一例である。U相では、0°を基準位置として、30°で正極から通電が開始され、電気角で120°の範囲で通電が維持された後に正極からの通電が終了する。また、正極からの通電が終了してから所定の電気角を空けて、負極からの通電が開始され、電気角で120°の範囲で通電が維持された後に通電が終了する。
 一方、V相では、U相の正極からの通電が終了した時点から、正極からの通電が開始され、電気角120°の範囲で通電が維持された後に、通電が終了する。また、V相では、U相の負極からの通電が終了した時点から、負極からの通電が開始され、電気角120°の範囲で負極からの通電が維持された後、負極からの通電が終了する。さらに、W相では、V相の正極からの通電が終了した時点から、正極からの通電が開始され、電気角120°の範囲で正極からの通電が維持された後に、正極からの通電が終了する。また、W相では、V相の負極からの通電が終了した時点から、負極からの通電が開始され、電気角120°の範囲で負極からの通電が維持された後に、負極からの通電が終了する。このように、第1の制御では、正極からの通電及び負極からの通電が維持される範囲、つまり、通電角は、いずれも120°である。
 つぎに、第2の制御の一例を示す図17(B)に基づいて説明する。U相では、0°で正極からの通電が開始され、正極からの通電は電気角で120°+αの範囲で維持された後、正極からの通電が終了する。また、正極からの通電が終了した後、負極からの通電が開始され、負極からの通電が電気角で120°+αの範囲で維持された後、負極からの通電が終了する。
 V相では、U相の正極から通電されている間に、正極からの通電が開始される。また、正極からの通電は電気角で120°+αの範囲で維持された後、正極からの通電が終了する。さらに、正極からの通電が終了した後、かつ、U相の負極からの通電が維持されている時点で、負極からの通電が開始されている。負極からの通電は、電気角で120°+αの範囲で維持された後、負極からの通電が終了する。
 W相では、U相の負極から通電され、かつ、V相の正極から通電されている間に、正極からの通電が開始される。また、正極からの通電は電気角で120°+αの範囲で維持された後、正極からの通電が終了する。さらに、正極からの通電が終了した後、かつ、U相の正極からの通電が維持され、かつ、V相の負極からの通電が維持されている間に、負極からの通電が開始されている。負極からの通電は、電気角で120°+αの範囲で維持された後、負極からの通電が終了する。図17(B)では、U相とV相、V相とW相、W相とV相とで、正極の通電のそれぞれが重なる部分はαの範囲となり、負極の通電についても同様である。
 さらに、第2の制御の他の例を、図17(C)に基づいて説明する。U相では、0°を超え、かつ、30°未満の電気角から正極からの通電が開始され、正極からの通電は電気角で120°+αの範囲で維持された後、正極からの通電が終了する。なお、U相の負極における通電制御、V相の正極及び負極における通電制御、W相の正極及び負極における通電制御は、図17(B)と同じである。また、通電角120°+αは、通電角が120°を超える値であることを意味する。本実施形態では、ブラシレスモータ219の通電角を、120°以上であり、かつ、180°以下の範囲で制御する。
 このように、第2の制御例における通電角は、第1の制御例における通電角よりも広い。すなわち、第1の制御と第2の制御とは、互いに通電角が異なる。図17(C)では、U相とV相、V相とW相、W相とV相とで、正極の通電のそれぞれが重なる部分はαの範囲となり、負極の通電についても同様である。
 そして、第1の制御または第2の制御と併せて、前述したデューティ比の制御が行われて、ロータ軸222aの回転数が制御される。図18は、ブラシレスモータ219の特性を示す線図であり、ブラシレスモータ219の単体特性は実線で示されている。そして、ブラシレスモータ219の通電角を制御することで、見掛け上の特性を一点鎖線で示す位置とすることができる。単体特性は、車両210の実車速が基準車速以下であるときの目標出力、つまり、低速用特性を満足する特性である。見掛け上の特性は、車両210の実車速が基準車速を超えたときの目標出力、つまり、高速用特性を満足する特性である。目標出力は、ロータ軸222aの回転数及びトルクで表される。目標出力を決定する条件は、ワイパスイッチ237の操作信号、車両210の走行速度、ワイパアーム214,216の動作位置等を含む。
 本実施形態のブラシレスモータ219では、目標出力が単体特性以下の特性である場合は、第1の制御を実行し、かつ、デューティ比を制御することによりロータ軸222aの回転数を低下させ、低速用特性を得ることができる。これに対して、目標出力が単体特性を超える特性である場合は、第2の制御を実行してロータ軸222aの回転数を上昇させ、かつ、デューティ比を制御することにより、高速用特性を得ることができる。このため、ブラシレスモータ219を設計上、単体特性を基準として定格を決定することができ、ブラシレスモータ219の体格をなるべく小さくすることができる。ブラシレスモータ219の電流値を変えずに通電角を広くすることで、ロータ軸222aの回転数を上昇させて、トルクを上昇させることができるということは、トルク定数が相対的に大きくなることを意味する。言い換えれば、本実施形態のブラシレスモータ219は、より少ない消費電力でなるべく高トルクを発生することができ、モータ効率が向上する。さらに、ブラシレスモータ219の出力が一定であると仮定すれば、消費電力を低く設定できる。
 また、ブラシレスモータ219の定格をなるべく小さくすることができるということは、電機子コイル221a,221b,221cの太さをなるべく細くすることを意味する。その結果、ステータ221に巻き掛けられる電機子コイル221a,221b,221cのターン数が増え、ブラシレスモータ219としての電気抵抗が相対的に大きくなる。このため、例えば、駆動装置233が故障したときにスイッチング素子230aに流れる電流、即ち、許容電流を、相対的に小さくすることができる。スイッチング素子230aにおける許容電流が相対的に小さくなるということは、駆動装置233の小型化に寄与する。よって、ブラシレスモータ219の小型化に寄与し、車両210のエンジンルーム内にブラシレスモータ219を配置するにあたり、レイアウト性が向上するメリットがある。
 ここで、ブラシレスモータ219の特性と通電角との関係の一例を、図19に基づいて説明する。ブラシレスモータ219の特性は回転数及びトルクで表されている。図19では、通電角として120°、135°、150°、165°が示されている。図19に示すように、ブラシレスモータ219は、トルクが同じであるとすれば、通電角が大きいほど、回転数が高くなる特性を有する。
 次に、第1の制御及び第2の制御を実行する条件の他の例を順次説明する。例えば、図20に示すように、ホールIC239の検知信号から求めたロータ軸222aの作動角に基づいて、第1の制御及び第2の制御を実行することも可能である。図20では、縦軸にロータ軸222aの回転数が示され、横軸に作動角が示されている。ロータ軸222aの回転数は実線で示されている。作動角は、ワイパアーム214,216の動作位置に対応するロータ軸222aの作動角を含む。
 具体的に説明すると、ロータ軸222aの作動角は、図13に示すワイパアーム214,216が、ブラシレスモータ219に最も近い初期位置、つまり、所定位置から動作したときの回転角度である。ロータ軸222aの作動角の最大値は、ワイパアーム214,216が反転する位置に対応する。つまり、ワイパアーム214,216の動作位置がブラシレスモータ219から遠いほど、ロータ軸222aの作動角が大きくなる。ここで、ワイパアーム214,216が初期位置から動作を開始すると、ロータ軸222aの作動角が増加することに伴い回転数が上昇し、作動角θ1から作動角θ2の間では、ロータ軸222aの回転数がほぼ一定となっている。そして、作動角θ2から最大値となる間では、ロータ軸222aの回転数は徐々に低下する。
 これとは逆に、ワイパアーム214,216が反転するときは、最大値から作動角θの間でロータ軸222aの回転数が上昇する。また、作動角θ2から作動角θ1の間では、ロータ軸222aの回転数がほぼ一定となっている。そして、作動角θ1から初期位置となる間では、ロータ軸222aの回転数は徐々に低下する。そして、第1の制御は、作動角θ1で実行することができ、第2の制御は、作動角θ2で実行することができる。ここで、作動角θ2は作動角θ1よりも大きい。なお、ワイパアーム214,216の動作角度に基づいて、第1の制御及び第2の制御を実行するにあたり、ワイパアーム214,216の動作角度を、出力軸センサ236の検知信号に基づいて求めることも可能である。
 さらに、第1の制御及び第2の制御を実行する条件の他の例を、図21に基づいて説明する。ここでは、ホールIC239の検知信号から求めたロータ軸222aの回転数に基づいて、第1の制御及び第2の制御を実行することができる。図21では、縦軸に回転数が示され、横軸に時間が示されている。回転数は実線で示されている。図21に示す時間は、ワイパアーム214,216が、初期位置から動作して反転位置に到達するまでの経過時間を意味する。そして、ロータ軸222aの実回転数が回転数N1であると第1の制御を実行し、ロータ軸222aの実回転数が回転数N2であると第2の制御を実行する。ここで、回転数N2は回転数N1よりも高い。
 図21に示す回転数として、出力軸226の回転数を用いることもできる。すなわち、出力軸センサ236の信号から出力軸226の回転数を求めて、第1の制御及び第2の制御を実行することができる。この制御を行うと、ワイパアーム214,216の動作速度に基づいて、第1の制御と第2の制御とを切り替えることになる。
 なお、ワイパアーム214,216の初期位置に対応する位置からロータ軸222aが回転を開始すると、時間の経過に伴いロータ軸222aの回転数は上昇する。その後、ロータ軸222aの回転数が所定時間の間一定に維持され、ロータ軸222aの回転数が徐々に低下している。ワイパアーム214,216が反転位置から戻るときは、上記とは逆の回転数の変化特性となる。
 さらに、第1の制御及び第2の制御を実行する条件の他の例を、図22に基づいて説明する。ここでは、ホールIC239で検知したロータ軸222aの回転数に基づいて、第1の制御及び第2の制御を実行する。図22では、縦軸にロータ軸222aの回転数が示され、横軸に時間が示されている。図22に示す時間の意味は、図21に示す時間の意味と同じである。そして、ワイパアーム214,216が初期位置から動作を開始した時点から、所定時間が経過した時刻t1で、第1の制御が実行される。また、時刻t1からさらに所定時間が経過した時刻t2で、第2の制御が実行される。なお、図22の回転数として、出力軸センサ236で検知した出力軸226の回転数を用いることも可能である。つまり、ワイパアーム214,216の動作速度に基づいて、第1の制御と第2の制御とを切り替えることができる。
 さらに、第1の制御及び第2の制御を実行する条件の他の例を、図23に基づいて説明する。図23(A)は、高速払拭に対応する第2の制御を示し、図23(B)は、低速払拭に対応する第1の制御を示す。ここで、図23(A)、(B)には、いずれの車速においても、作動角θが変わると、進角及び通電角を変更する制御が示されている。また、作動角θの変化量に対する進角、通電角の変化量は、全ての車速で同一にしてもよいし、車速毎に変えてもよい。
 次に、ブラシレスモータ219に用いるロータ222の構造例を、図24に基づいて説明する。ブラシレスモータ219のロータ222の構造にはIPM(Interior Permanent Magnet)構造と、SPM(Surface Permanent Magnet)構造とがある。IPM構造は、図24(A)のように、ロータコア222dの内部に永久磁石222bを埋め込んだロータ222の構造である。SPM構造は、図24(B)のように、ロータコア222dの表面に永久磁石222bを固定するロータ222の構造である。つまり、IPM構造のロータ222は、ロータ222の表面には鉄系の磁性材料で成形されたロータコア222dが配置される。これに対して、SPM構造のロータ222は、ロータ222の表面には永久磁石222bが配置される。そして、鉄系の磁性材料の透磁率は、空気に対して103 オーダーで大きいのに対して、永久磁石の透磁率は空気の値に近い。したがって、SPM構造のロータ222の方が、IPM構造のロータ222よりもインダクタンスが小さくなる。
 本実施形態のブラシレスモータ219の制御では、通電角を一般の120°よりも拡大するので、各相の無通電区間が狭くなる。そのため電流の切替えを早くするために、インダクタンスによるスイッチング素子オフ時の電流の遅れ区間を小さくしたい。よって、ロータ222の構造としては、IPM構造よりもSPM構造の方が好ましい。
 また、ロータ222がSPM構造であっても、永久磁石222bとしてフェライト磁石を使うと、形成される磁気回路の軸長が大きくなる。一般に、電機子コイルにおけるインダクタンスは磁気回路の軸長に比例するので、永久磁石222bとしてフェライト磁石を使うと、電機子コイル221a,221b,221cにおけるインダクタンスが大きくなる。これに対して、永久磁石222bとして希土類焼結磁石を使ったSPM構造のロータ222とすれば、形成される磁気回路の軸長が小さくなり、かつ、電機子コイルにおけるインダクタンスを低減できる。しかしながら、希土類焼結磁石には高価な重希土類元素(Dy、Tb)が含まれるため、ブラシレスモータ219が高価なものになってしまう。
 そこで、永久磁石222bとして、形成される磁気回路の軸長を小さくでき、かつ、重希土類元素を含まない希土類ボンド磁石のリングマグネットを使用し、SPM構造のロータ222とすることが好ましい。ここで、希土類ボンド磁石は、ネオジムボンド、SmFeNボンドを含む。また、ネオジムボンド、SmFeNボンドは、両方とも等方性、異方性を含む。
 次に、ロータに取り付けられる永久磁石の数、つまり極数、及び電機子コイルを巻くステータのスロット数について説明する。極数とスロット数との比を極数:スロット数で表すと、大きく分類して、2n:3n、4n:3n、8n:9n、10n:9n、10n:12n、14n:12nの関係のものがある。ここで、nは1以上の整数である。8n:9n、10n:9n、10n:12n、14n:12nの構成は、同じ相における電機子コイルと永久磁石との位置関係が異なるため、通電タイミングに進角を付けたり、通電角を拡大することにより、ベースの値に対してより通電の位相が進んでしまう。そのため、永久磁石が減磁しやすくなる。
 図25は、6極9スロットに対応するロータ及びステータの一例を示す模式図、図26は、8極9スロットに対応するロータ及びステータの一例を示す模式図である。つまり、図25は、前記2n:3nであり、かつ、nが3である場合の例である。図25、図26において、VはV相、UはU相、WはW相を表す。また、各相における「-」の符号は、電機子コイルが逆向きに巻かれていることを表す。また、図26は、前記8n:9nであり、かつ、nが1である場合の例である。図25では、円周方向で、同じ相の電機子コイルU1,U2,U3と、永久磁石222bとの位置関係が等しい。このため、通電タイミングの進角設定値を電気角θ1とすると、各電機子コイルの進角は、
 U1:θ1=U2:θ1=U3:θ1
で表される。
 一方、図26では、円周方向で、同じ相の電機子コイルU1,U2,U3と永久磁石222bとの位置関係が異なる。このため、通電タイミングの進角設定値を電気角θ1とすると、各電機子コイルの進角は、
 U1:θ1-20°=U2:θ1=U3:θ1+20°
で表される。なお、ロータ222の回転方向は、ウォームホイール225側の軸端から見て時計方向、つまり、CWであるものとする。このように、U3に対向した永久磁石222bは進角大のため減磁しやすくなる。
 よって、第1の制御及び第2の制御を行なうには、同じ相の電機子コイルと永久磁石との位置関係が等しい2n:3nまたは4n:3nの構造を有するブラシレスモータが望ましい。さらに永久磁石の数が多くなると、機械的な回転角に対する電気角の影響が大きくなる、つまり、電流の遅れの影響が大となる。このため、同じスロット数であれば、永久磁石の数を少なくできる2n:3nの構成が好ましい。なお、駆動装置233とステータ221とは一体構造でも別体構造でもよい。しかしながら、駆動装置233から電機子コイルへの配線が短かく、配線抵抗が小さくすることができるように、駆動装置233とステータ221とが一体構造である方が望ましい。
 さらに、ブラシレスモータ219のデューティ比を制御すると、モータ特性の一例であるモータ効率は、デューティ比が高いほど、駆動装置233も含めたモータ効率が高くなる。これは、デューティ比が低くなるほど、駆動装置233による損失が大きくなるためである。デューティ比と、モータ特性との関係の一例を図27に示す。図27においては、縦軸にロータ軸の回転数、モータ効率が示され、横軸にロータ軸のトルクが示されている。また、図27において、Dutyはデューティ比を表す。なお、図27において、実線はトルクと回転数との関係を示し、破線はトルクと効率との関係を示す。
 本実施形態のブラシレスモータ219において、第1の制御と第2の制御とを切り替える条件として、ワイパスイッチ237の操作を用いることができる。運転者は、降雨量または降雪量が少ないとき、ワイパスイッチ237を操作して、ワイパアーム214,216を予め定められた低速で動作させる低速払拭モードを選択することができる。
 これに対して、運転者は、降雨量また降雪量が多いとき、ワイパスイッチ237を操作して、ワイパアーム214,216を、前記低速よりも高速で動作させる高速払拭モードを選択することができる。運転者は、降雨量または降雪量が多い、少ないを自分の主観で判断するのであり、降雨量または降雪量が多い、少ないを区別する客観的な基準があるわけではない。ワイパスイッチ237により、高速払拭モードと低速払拭モードとの切り替えができることを前提として、低速払拭モードが選択された場合に第1の制御を実行し、高速払拭モードが選択された場合に第2の制御を実行することが可能である。
 さらにまた、本実施形態のブラシレスモータ219は、ブラシ、コミュテータ(整流子)等が設けられていないため、ブラシとコミュテータとの摺動によるフリクショントルクの発生もなく、モータの効率低下、ブラシの温度上昇を防止し、モータ出力が制限されることを回避できる。さらに、本実施形態のブラシレスモータ219は、ブラシがあることに起因するノイズの発生、作動音の発生を防止でき、静粛性を確保できる。なお、上記の実施形態では、ロータ軸222aの回転数、トルク、作動角に基づいて、第1の制御と第2の制御とを切り替える説明となっているが、ロータ軸222aはロータ222の一部を構成する要素であるから、上記実施形態で記載されているロータ軸222aを、ロータ222と置き換えても、技術的意味は同じである。
 本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、ワイパ装置は、ブラシレスモータのロータ軸が一方向にのみ回転して、ワイパアームがピボット軸を中心として揺動する構成を含む。また、ワイパスイッチは運転者の操作により操作されるものに限らず、降雨量、降雪量等を検出する機能を有する検出スイッチであってもよい。このように構成されていれば、降雨量、降雪量等に基づいて、回転数制御部がワイパ装置を自動的に起動させ、かつ、低速払拭モード、高速モードを自動的に切り替える制御を実行する。この場合、回転数制御部には、低速モード、高速モードを切り替える基準となる降雨量、降雪量等のデータが予め記憶されている。
 さらにまた、車両の走行速度を検知する車速センサは、車両の走行速度を直接検知せずに、抵抗や払拭面の状態など、ワイパブレードからワイパ装置に伝えられる情報や、ブラシレスモータに間接的に伝えられる情報により検知するようにしてもよい。ここで、抵抗とは走行風によりワイパブレードが受ける抵抗や払拭面を払拭する際の抵抗であり、ワイパ装置は、抵抗や払拭面の状態等を、ワイパブレードから出力軸を介して検知する。また、ブラシレスモータに間接的に伝えられる情報は、抵抗や払拭面の状態等により得られた情報を車両の走行速度として認識するためのものであり、またその情報は駆動装置にて車両の走行速度として検出されるよう変換されることで検知される。さらにまた、電機子コイルの数、永久磁石の数は任意に変更可能である。
 また、本発明のワイパ装置は、ワイパブレードがリヤガラスを払拭するものを含む。即ち、本発明のワイパ装置におけるウィンドガラスは、フロントガラス及びリヤガラスを含む。また、本発明のワイパ装置は、ウォームホイールと同軸に設けられた出力軸が、ピボット軸を兼ねている構成を含む。さらに、本発明のワイパ装置は、2本のワイパアームを、それぞれ別個のブラシレスモータにより単独で駆動する構成を含む。
 さらにまた、本発明のブラシレスモータは、ステータの内側にロータが配置されたインナロータ形のブラシレスモータ、またはステータの外側にロータが配置されたアウタロータ形のブラシレスモータを含む。さらに、本実施形態のブラシレスモータは、ワイパ装置を動作させるワイパモータの他、車両に設けられる利便快適系装置、例えば、パワースライドドア装置、サンルーフ装置、パワーウィンド装置等において、ドア、ルーフ、ガラス等の動作部材を動作させるために設けられるブラシレスモータを含む。
 ブラシレスモータは、自動車等の車両に搭載されるワイパ装置等の駆動源として用いられ、ブラシレスモータを回転駆動させることでワイパブレードがガラス面上を往復払拭動作し、これにより運転者等の視界が良好に保たれる。

Claims (6)

  1.  電流が供給される電機子コイルを有するステータと、前記電機子コイルにより形成される回転磁界で回転し、かつ、動作部材に接続されたロータと、前記電機子コイルに電流を供給する経路に設けられたスイッチング素子とを備えたブラシレスモータであって、
     前記ロータの回転数が異なる少なくとも2つの制御モードで前記ロータの回転数を制御する回転数制御部を有し、
     前記回転数制御部は、第1の制御モードが選択されたときには、前記電機子コイルへ予め定められた通電タイミングで電流を供給し、かつ、前記スイッチング素子のオン割合であるデューティ比を制御して前記ロータの回転数を制御する一方、前記第2の制御モードが選択されたときには、前記第1の制御モードが選択されたときの通電タイミングよりも進角させた通電タイミングで前記電機子コイルに電流を供給することにより、前記電機子コイルにより形成される回転磁界を前記第1の制御モードが選択されたときよりも弱くする弱め界磁制御を行って前記ロータの回転数を制御することを特徴とするブラシレスモータ。
  2.  請求項1に記載のブラシレスモータにおいて、前記ロータから前記動作部材に至る動力の伝達経路に設けられた減速機構を備え、前記減速機構は、入力回転数に対して出力回転数を低くする構成を有することを特徴とするブラシレスモータ。
  3.  請求項1に記載のブラシレスモータにおいて、前記電機子コイルに供給する電流の向きを切り替えることにより、前記ロータを正逆に回転させる回転方向制御部を備えていることを特徴とするブラシレスモータ。
  4.  請求項2に記載のブラシレスモータにおいて、前記回転数制御部を有する制御基板が設けられており、前記減速機構及び前記制御基板は、共通のハウジング内に収容されていることを特徴とするブラシレスモータ。
  5.  車両のガラスを払拭する動作部材であるワイパアームを備えたワイパ装置であって、
     前記ワイパアームは、請求項1ないし4のいずれかに記載のブラシレスモータの前記ロータと接続されていることを特徴とするワイパ装置。
  6.  請求項5に記載のワイパ装置において、前記ロータと一体回転するセンサマグネットと、前記ロータが回転したときに前記センサマグネットの磁極の変化に応じて信号を出力する回転数センサとが設けられており、
     前記回転数制御部は、前記弱め界磁制御を行うときに、前記回転数センサの信号に基づいて前記ロータの回転数を検出するとともに、前記電機子コイルへの通電タイミングを電気角で30度進角させることにより、前記ロータの回転数を制御することを特徴とするワイパ装置。
PCT/JP2013/061336 2012-04-16 2013-04-16 ブラシレスモータ及びワイパ装置 WO2013157558A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/394,628 US9660559B2 (en) 2012-04-16 2013-04-16 Brushless motor and wiper apparatus
EP13778736.2A EP2840700B1 (en) 2012-04-16 2013-04-16 Wiper apparatus
JP2014511225A JP6100759B2 (ja) 2012-04-16 2013-04-16 ワイパ装置
CN201380020371.XA CN104272579B (zh) 2012-04-16 2013-04-16 无刷电动机及雨刮装置
RU2014145833/07A RU2587457C1 (ru) 2012-04-16 2013-04-16 Бесщеточный электродвигатель и стеклоочиститель
BR112014025606-3A BR112014025606B1 (pt) 2012-04-16 2013-04-16 “ Aparelho Limpador ”
MX2014012557A MX357242B (es) 2012-04-16 2013-04-16 Motor sin escobillas y aparato limpiaparabrisas.
US15/490,966 US9735717B1 (en) 2012-04-16 2017-04-19 Brushless motor and wiper apparatus
US15/657,564 US9923494B2 (en) 2012-04-16 2017-07-24 Brushless motor and wiper apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012092882 2012-04-16
JP2012-092882 2012-04-16
JP2013-036019 2013-02-26
JP2013036019 2013-02-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/394,628 A-371-Of-International US9660559B2 (en) 2012-04-16 2013-04-16 Brushless motor and wiper apparatus
US15/490,966 Continuation US9735717B1 (en) 2012-04-16 2017-04-19 Brushless motor and wiper apparatus

Publications (1)

Publication Number Publication Date
WO2013157558A1 true WO2013157558A1 (ja) 2013-10-24

Family

ID=49383514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061336 WO2013157558A1 (ja) 2012-04-16 2013-04-16 ブラシレスモータ及びワイパ装置

Country Status (8)

Country Link
US (3) US9660559B2 (ja)
EP (1) EP2840700B1 (ja)
JP (2) JP6100759B2 (ja)
CN (1) CN104272579B (ja)
BR (1) BR112014025606B1 (ja)
MX (1) MX357242B (ja)
RU (1) RU2587457C1 (ja)
WO (1) WO2013157558A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098789A1 (ja) * 2013-12-25 2015-07-02 株式会社ミツバ ブラシレスモータ及びワイパ装置、モータ装置及びモータ装置の制御方法
JP2015126547A (ja) * 2013-12-25 2015-07-06 株式会社ミツバ ブラシレスモータ及びワイパ装置
JP2015126548A (ja) * 2013-12-25 2015-07-06 株式会社ミツバ モータ装置及びモータ装置の制御方法
CN106143415A (zh) * 2016-07-20 2016-11-23 刘洪仁 一种机车用电动刮雨系统
JP2017143595A (ja) * 2016-02-08 2017-08-17 株式会社ミツバ ブラシレスモータ
WO2018135218A1 (ja) * 2017-01-20 2018-07-26 株式会社デンソー ワイパ装置
JP2018114954A (ja) * 2017-01-20 2018-07-26 株式会社デンソー ワイパ装置
JP2018118661A (ja) * 2017-01-26 2018-08-02 株式会社デンソー ワイパ装置
US10071710B2 (en) 2013-12-25 2018-09-11 Mitsuba Corporation Wiper apparatus
JP2019537915A (ja) * 2016-09-22 2019-12-26 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage 歯車モータ、関連するワイパーシステム、及び関連する制御方法
JP2022533230A (ja) * 2019-05-21 2022-07-21 ヴァレオ システム デシュヤージュ ワイパーモータの回転部品の回転角度位置を検出するための方法、およびワイパーモータ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170207684A1 (en) * 2014-07-15 2017-07-20 Mitsuba Corporation Brushless wiper motor
DE112017006199T5 (de) * 2016-12-09 2019-08-29 Denso Corporation Fahrzeugwischervorrichtung
US10044302B2 (en) * 2017-01-06 2018-08-07 Honeywell International Inc. Methods and apparatus for multi-mode motor speed calculation using digital hall effect sensors
FR3064427B1 (fr) * 2017-03-27 2021-10-22 Valeo Systemes Dessuyage Moteur electrique, moto-reducteur, systeme d'essuyage et procede de commande associe
EP3382888B1 (en) 2017-03-31 2020-06-17 Grundfos Holding A/S Pump assembly and controlling method
JP6717259B2 (ja) * 2017-05-22 2020-07-01 株式会社デンソー ワイパ駆動装置
US11420594B2 (en) 2017-08-28 2022-08-23 Rosemount Aerospace Inc. Configurable variable sweep variable speed wiper system
JP6921687B2 (ja) * 2017-08-31 2021-08-18 株式会社ミツバ ワイパ装置
KR102319867B1 (ko) * 2018-03-07 2021-10-29 광동 메이디 컨슈머 일렉트릭스 매뉴팩쳐링 컴퍼니 리미티드 식품 가공기 및 식품 가공기의 회전 속도를 증가하기 위한 제어 방법, 장치
DE102018204454A1 (de) * 2018-03-22 2019-09-26 Volkswagen Aktiengesellschaft Antriebseinheit für ein Scheibenwischersystem
WO2020021994A1 (ja) * 2018-07-24 2020-01-30 株式会社ミツバ 車両用ワイパ制御装置及び車両用ワイパ制御方法
JP6681490B2 (ja) * 2019-03-06 2020-04-15 株式会社ミツバ ブラシレスワイパモータおよびワイパ装置
EP3952101A4 (en) * 2019-03-26 2022-04-20 Mitsuba Corporation MOTOR CONTROL DEVICE, MOTOR CONTROL METHOD, AND MOTOR UNIT
KR20210062410A (ko) * 2019-11-21 2021-05-31 엘지이노텍 주식회사 펌프

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143278A (ja) 2005-11-17 2007-06-07 Mitsuba Corp ワイパモータ
JP2007202391A (ja) 2005-12-28 2007-08-09 Mitsuba Corp 速度切り替え式モータ
JP2008174177A (ja) * 2007-01-22 2008-07-31 Mitsuba Corp ワイパ装置
JP2010017055A (ja) * 2008-07-07 2010-01-21 Hitachi Industrial Equipment Systems Co Ltd モータ駆動装置
JP2010093977A (ja) 2008-10-09 2010-04-22 Asmo Co Ltd 減速機構付きモータ
WO2011121792A1 (ja) * 2010-03-29 2011-10-06 トヨタ自動車株式会社 電動パワーステアリング装置
JP2011230670A (ja) * 2010-04-28 2011-11-17 Honda Motor Co Ltd 電動車両

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628497A1 (de) * 1986-08-22 1988-03-03 Bayerische Motoren Werke Ag Schaltungsanordnung fuer eine reinigungsvorrichtung von kraftfahrzeugen
EP0492693B1 (en) * 1990-12-20 1993-08-25 General Motors Corporation Apparatus for controlling a vehicle window wiper system
US5355061A (en) * 1992-01-24 1994-10-11 Grimes Aerospace Company Windshield wiper system
BR9504893A (pt) * 1995-10-27 1997-12-23 Wapsa Auto Pecas Ltda Processo e sistema para acionamento de limpador de para-brisa
WO1998029285A1 (en) * 1997-01-03 1998-07-09 Mccord Winn Textron, Inc. Windshield wiper system
US5982123A (en) * 1997-09-15 1999-11-09 Sidler, Inc. Interval control system for intermittent windshield wiper
RU9605U1 (ru) * 1998-09-10 1999-04-16 Открытое акционерное общество Калужский завод электронных изделий "Автоэлектроника" Устройство управления двигателем стеклоочистителя
AU7738700A (en) * 1999-10-01 2001-05-10 Mccord Winn Textron Inc. Wiper motor system
JP3922147B2 (ja) * 2002-09-24 2007-05-30 株式会社デンソー 車両用ワイパ駆動装置
JP2004180399A (ja) * 2002-11-26 2004-06-24 Murata Mach Ltd 糸条巻取機におけるモータ駆動方法
EP1577182B1 (en) * 2002-12-13 2013-06-05 Mitsuba Corporation Wiper device
JP2004243937A (ja) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd 車両用ワイパ制御装置および車両用ワイパ制御方法
US6791219B1 (en) * 2003-06-18 2004-09-14 Bvr Technologies Company Contactless electro-mechanical actuator with coupled electronic motor commutation and output position sensors
JP4193125B2 (ja) * 2003-06-23 2008-12-10 株式会社デンソー 多相モータ制御装置
US7940839B2 (en) * 2004-01-26 2011-05-10 Diablo Technologies Inc. Fully adaptive equalization for high loss communications channels
DE102004027635A1 (de) * 2004-06-05 2006-06-08 Robert Bosch Gmbh Handgeführtes oder stationäres Elektrowerkzeug mit einer Antriebseinheit
FR2880212B1 (fr) * 2004-12-29 2007-03-30 Renault Sas Essuie-vitre comportant un dispositif de protection de son moteur electrique d'entrainement et procede associe
US7482717B2 (en) * 2006-06-15 2009-01-27 Hochhalter Keith W Servo actuator with self positioning rotor and method
JP5125091B2 (ja) * 2006-12-19 2013-01-23 パナソニック株式会社 モータ駆動装置
RU2331963C1 (ru) * 2006-12-25 2008-08-20 Общество с ограниченной ответственностью "Научно-исследовательский институт механотронных технологий - Альфа-Научный Центр" (ООО "НИИ МЕХАНОТРОНИКИ - АЛЬФА-НЦ") Бесконтактный электропривод постоянного тока
JP2011125079A (ja) * 2009-12-08 2011-06-23 Mitsuba Corp ブラシレスモータの駆動装置、及びブラシレスモータの始動方法
DE102009055399A1 (de) * 2009-12-30 2011-07-07 Robert Bosch GmbH, 70469 Scheibenwischvorrichtung
JP5452332B2 (ja) * 2010-04-12 2014-03-26 株式会社ミツバ 減速機構付モータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143278A (ja) 2005-11-17 2007-06-07 Mitsuba Corp ワイパモータ
JP2007202391A (ja) 2005-12-28 2007-08-09 Mitsuba Corp 速度切り替え式モータ
JP2008174177A (ja) * 2007-01-22 2008-07-31 Mitsuba Corp ワイパ装置
JP2010017055A (ja) * 2008-07-07 2010-01-21 Hitachi Industrial Equipment Systems Co Ltd モータ駆動装置
JP2010093977A (ja) 2008-10-09 2010-04-22 Asmo Co Ltd 減速機構付きモータ
WO2011121792A1 (ja) * 2010-03-29 2011-10-06 トヨタ自動車株式会社 電動パワーステアリング装置
JP2011230670A (ja) * 2010-04-28 2011-11-17 Honda Motor Co Ltd 電動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840700A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071710B2 (en) 2013-12-25 2018-09-11 Mitsuba Corporation Wiper apparatus
JP2015126547A (ja) * 2013-12-25 2015-07-06 株式会社ミツバ ブラシレスモータ及びワイパ装置
JP2015126548A (ja) * 2013-12-25 2015-07-06 株式会社ミツバ モータ装置及びモータ装置の制御方法
CN105850027A (zh) * 2013-12-25 2016-08-10 株式会社美姿把 无刷电机及刮水器装置、电机装置及电机装置的控制方法
WO2015098789A1 (ja) * 2013-12-25 2015-07-02 株式会社ミツバ ブラシレスモータ及びワイパ装置、モータ装置及びモータ装置の制御方法
EP3089350A4 (en) * 2013-12-25 2017-11-22 Mitsuba Corporation Brushless motor and wiper device, motor device and motor device control method
US10594233B2 (en) 2013-12-25 2020-03-17 Mitsuba Corporation Brushless motor, wiper apparatus, motor apparatus and control method for motor apparatus
JP2017143595A (ja) * 2016-02-08 2017-08-17 株式会社ミツバ ブラシレスモータ
CN106143415A (zh) * 2016-07-20 2016-11-23 刘洪仁 一种机车用电动刮雨系统
JP2019537915A (ja) * 2016-09-22 2019-12-26 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage 歯車モータ、関連するワイパーシステム、及び関連する制御方法
US11498525B2 (en) 2016-09-22 2022-11-15 Valeo Systèmes d'Essuyage Gear motor, associated wiper system and associated control method
JP7210435B2 (ja) 2016-09-22 2023-01-23 ヴァレオ システム デシュヤージュ 歯車モータ、関連するワイパーシステム、及び関連する制御方法
JP2018114954A (ja) * 2017-01-20 2018-07-26 株式会社デンソー ワイパ装置
WO2018135218A1 (ja) * 2017-01-20 2018-07-26 株式会社デンソー ワイパ装置
US10864894B2 (en) 2017-01-20 2020-12-15 Denso Corporation Wiper device
JP2018118661A (ja) * 2017-01-26 2018-08-02 株式会社デンソー ワイパ装置
JP2022533230A (ja) * 2019-05-21 2022-07-21 ヴァレオ システム デシュヤージュ ワイパーモータの回転部品の回転角度位置を検出するための方法、およびワイパーモータ
US11962260B2 (en) 2019-05-21 2024-04-16 Valeo Systemes D'essuyage Method for detecting the rotary angle positions of rotating parts of a wiper motor, and wiper motor

Also Published As

Publication number Publication date
US9923494B2 (en) 2018-03-20
JP6100759B2 (ja) 2017-03-22
BR112014025606B1 (pt) 2018-03-13
CN104272579A (zh) 2015-01-07
US20170324357A1 (en) 2017-11-09
EP2840700A1 (en) 2015-02-25
RU2587457C1 (ru) 2016-06-20
JP6316467B2 (ja) 2018-04-25
US20150082575A1 (en) 2015-03-26
EP2840700B1 (en) 2023-06-14
MX357242B (es) 2018-07-02
US20170222581A1 (en) 2017-08-03
EP2840700A4 (en) 2016-04-13
US9660559B2 (en) 2017-05-23
US9735717B1 (en) 2017-08-15
MX2014012557A (es) 2015-04-14
JP2017108629A (ja) 2017-06-15
CN104272579B (zh) 2018-01-12
JPWO2013157558A1 (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6316467B2 (ja) ワイパ装置
JP6302638B2 (ja) ワイパ装置
US6700268B2 (en) Rotational electric machine and a vehicle loaded therewith
JP5979924B2 (ja) ワイパ装置
CN105556812A (zh) 无刷雨刮器电机
US20190047517A1 (en) Motor control apparatus and motor unit
EP1981162A3 (en) Controller of electric motor
JP4754901B2 (ja) 電動圧縮機の制御装置
JP6239377B2 (ja) ブラシレスモータ及びワイパ装置
WO2015098789A1 (ja) ブラシレスモータ及びワイパ装置、モータ装置及びモータ装置の制御方法
CN108667254B (zh) 电马达,齿轮马达,擦拭系统及相关控制方法
JP4351792B2 (ja) スタータを兼用したオルタネータ
JP6640586B2 (ja) ブラシレスモータ
JP6976203B2 (ja) ブラシレスモータ
JP2007110781A (ja) モータ制御装置
JP4595372B2 (ja) 圧縮機、圧縮機駆動制御装置および圧縮機の駆動制御方法
EP3531553B1 (en) Switched reluctance motor control system and switched reluctance motor control method
JP2001016900A (ja) 始動発電機
JP5384908B2 (ja) ブラシレスモータ起動方法及び制御装置
WO2013038612A1 (ja) インバータ装置、電動圧縮機及び車両
Kim et al. Design of Neighborhood Electric Vehicle
JP2006006080A (ja) 車両用回転電機
KR20060115121A (ko) 저전압 센서레스 모터의 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511225

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14394628

Country of ref document: US

Ref document number: 2013778736

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/012557

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014145833

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025606

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014025606

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141014