JP2019537915A - 歯車モータ、関連するワイパーシステム、及び関連する制御方法 - Google Patents

歯車モータ、関連するワイパーシステム、及び関連する制御方法 Download PDF

Info

Publication number
JP2019537915A
JP2019537915A JP2019515581A JP2019515581A JP2019537915A JP 2019537915 A JP2019537915 A JP 2019537915A JP 2019515581 A JP2019515581 A JP 2019515581A JP 2019515581 A JP2019515581 A JP 2019515581A JP 2019537915 A JP2019537915 A JP 2019537915A
Authority
JP
Japan
Prior art keywords
rotor
angular position
signal
hall effect
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019515581A
Other languages
English (en)
Other versions
JP7210435B2 (ja
Inventor
フレデリック、フロケ
ジョゼ−ルイ、エラーダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes dEssuyage SAS
Original Assignee
Valeo Systemes dEssuyage SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes dEssuyage SAS filed Critical Valeo Systemes dEssuyage SAS
Publication of JP2019537915A publication Critical patent/JP2019537915A/ja
Application granted granted Critical
Publication of JP7210435B2 publication Critical patent/JP7210435B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/166Means for transmitting drive characterised by the combination of a motor-reduction unit and a mechanism for converting rotary into oscillatory movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本発明は特にワイパーシステム用の歯車モータ(101)であって、−ブラシレス直流電気モータ(103)を備え、当該ブラシレス直流電気モータは:−ロータと、−ロータを電磁的に励起するためのコイルを有するステータと、−ロータの角度位置を検出するための装置と、−ステータの電磁励起コイルに電力を供給するための制御信号を生成するように構成される制御ユニットと、−一方側で電気モータ(103)のロータに連結され、他方側で出力シャフト(109)に連結される減速機構(104)であって、所定の減速比を有する減速機構(104)と、−出力シャフト(109)の角度位置を測定するように構成される出力角度位置センサ(110)と、を含み、出力シャフト(109)の角度位置を測定するように構成される出力角度位置センサ(110)は、出力シャフト(109)の測定される角度位置に対応する信号をロータの角度位置を検出するための装置に送信するように構成され、前記装置(25)は、減速機構(104)の所定の減速比を考慮に入れることによって送信される信号に基づいてロータの位置を検出するように構成される歯車モータ(101)に関する。また発明は、ワイパーシステム及び電気モータ(103)を制御する方法に関する。

Description

本発明は歯車モータに関し、特に動力車両ワイパーシステム用の歯車モータに関する。
歯車モータは、本質的に、高回転伝達トルクを得るためにその速度を減速する役割を果たす減速機構に連結された電気モータからなる。
長寿命、小体積及び低消費量並びに低騒音レベルのような多数の利点を提供する歯車モータにおいて、特にブラシレス直流電気モータにおいて、様々な種類の電気モータを使用することができる。
しかしながら、良好な動作を可能にするために、ブラシレス直流電気モータのロータの角度位置を正確に知る必要があるので、その電気モータを制御することは、ブラシ付き電気モータに比べ、より複雑である。
実際には、そのような電気モータは、ステータに配置され、インバータを介して交流によって電力が供給されて、ロータに配置された永久磁石が駆動されることができるようにする電磁励起コイルを備える。
ここで、インバータのスイッチを切り換えることができようにするために、したがって最適な瞬間に電磁コイルに電力を供給してロータの所望の駆動を得ることを可能にするために、少なくとも状態の切り替えに関するいくつかの正確なポイントを有するセグメントで、ロータの位置を知る必要がある。(一般的に、台形励起に関し、ロータの各回転で6つのスイッチ)。
図1aは、最新技術による3つのホールエフェクトセンサを備える電気モータのロータ用の角度検知装置の図を示す。この図に見られるように、H1、H2及びH3で示される3つのホールエフェクトセンサは、軸Xのみが図1aにおいて見ることができる直流電気モータのロータに固定される制御磁石ACの周りの、例えば環状磁石の周りの、ステータST上に配置される。制御磁石ACは、S極についてはSで示され、N極についてはNで示される2つの極を含む。
3つのホールエフェクトセンサH1、H2、H3は、ロータの60°の回転角度に対応する1サイクルあたりのステータの電磁励起コイルの6つの切り替えの瞬間を得るように、互いに対して120°で角度的に分布されている。
図1bは、その上部において、3つのホールエフェクトセンサH1、H2、H3からの信号を表し、その下部において、ロータの360°サイクルの間に電磁励起コイルに電力を供給する信号を表す。周期は、垂直の点線で区切られる60°の6つのステップに分けられる。
センサH3からの高信号及びセンサH1及びH2からの低信号に対応する0〜60°の範囲の1で示される第1のステップでは、電流は相Aから相Bに切り替わる(相Aに対応する信号は1であり、相Bに対応する信号は−1であり、相Cに対応する信号は0である)。
センサH2及びH3からの高信号及びセンサH1からの低信号に対応する60〜120°の範囲の2で示される第2のステップでは、電流は相Aから相Cに切り替わる(相Aに対応する信号は1であり、相Bに対応する信号は0、相Cに対応する信号は−1である)。
センサH2からの高信号及びセンサH1及びH3からの低信号に対応する120〜180°の範囲の3で示される第3のステップでは、電流は相Bから相Cに切り替わる(相Bに対応する信号は1であり、相Aに対応する信号は0であり、相Cに対応する信号は−1である)。
センサH1及びH2からの高信号及びセンサH3からの低信号に対応する180〜240°の範囲の4で示される第4のステップでは、電流は相Bから相Aに切り替わる(相Bに対応する信号は1であり、相Cに対応する信号は0であり、相Aに対応する信号は−1である)。
センサH1からの高信号及びセンサH2及びH3からの低信号に対応する240〜300°の範囲の5で示される第5のステップでは、電流は相Cから相Aに切り替わる(相Cに対応する信号は1であり、相Bに対応する信号は0であり、相Aに対応する信号は−1である)。
センサH1及びH3からの高信号及びセンサH2からの低信号に対応する300〜360°の範囲の6で示される第6のステップでは、電流は相Cから相Bに切り替わる(相Cに対応する信号は1であり、相Aに対応する信号は0であり、相Bに対応する信号は−1である)。
したがって、3つのホールエフェクトセンサH1、H2、H3の使用は、電磁励起コイルの切り替えの変化の6つの瞬間に対応するロータの6つの位置を正確に検出することが可能になる。
しかしながら、そのような解決策は、必要とされる多数のホールエフェクトセンサのために費用がかかる。
さらに、ステータの励磁コイルの逆起電力の測定に基づくセンサなしの方法を使用することも既知のプラクティスである。
しかしながら、そのような解決策は、ロータの回転速度が、したがって逆起電力が、測定されるのに、及び切り替えの瞬間を制御するために使用されることができるのに、十分になるまで、同期モードでブラシレス直流電気モータの始動を必要とする。
そして、そのような同期モードでの始動は、始動時に負荷が小さく比較的知られているアプリケーションに関して(例えばファンの制御に関して)のみ可能である。したがって、この解決策は、始動時に高い負荷及び力トルクを必要とし且つ(濡れている窓の場合のように)ほぼゼロの負荷で又は(氷や雪のために固着したブラシの場合のように)高い負荷で始動できる動力車両ワイパーシステム用の歯車モータには適用できないものと理解される。
したがって本発明は、3つのホールエフェクトセンサを備える最新技術の解決策よりもコストが低いワイパーシステム用の歯車モータの効果的な制御を可能にする解決策を提供することを目的とする。
この目的のために、本発明は、特にワイパーシステム用の、歯車モータに関し、以下を備える:
− 以下を具備するブラシレス直流電気モータ
− ロータ、
− ロータ用の電磁励起コイルを有するステータ、
− ステータに対するロータの角度位置を検出するための装置、
− ロータの角度位置を検出するための装置によって検出されるロータの角度位置に応じて、ステータの電磁励起コイルに電力を供給するための制御信号を生成するように構成される制御ユニット、
− 一方側で電気モータのロータに連結され、他方側で外部機構、特にワイパーシステムに、連結されることが意図される出力シャフトに連結される減速機構であって、所定の減速比を有する減速機構、及び
− 出力シャフトの角度位置を測定するように構成される出力角度位置センサ、
それにおいて出力シャフトの角度位置を測定するように構成される出力角度位置センサは、ロータの角度位置を検出するための装置に接続され、出力シャフトの測定された角度位置に対応する信号を送信するように構成され、ロータの角度位置を検出するための前記装置は、減速機構の所定の減速比を考慮に入れることによって、送信される信号に基づいてステータに対するロータの位置を検出するように構成される。
歯車モータの出力シャフトの角度位置を測定してロータの位置を検出するように構成される出力角度位置センサの使用は、ワイパー装置の歯車モータの場合のように、始動時の強い負荷に関してもブラシレス直流電気モータを制御することを可能にする。
本発明の一態様によれば、ロータの角度位置を検出するための装置は、
− 所定の閾値を下回るロータの回転速度に関し、出力角度位置センサからの信号に基づいて、ロータの角度位置を検出し、
− 所定の閾値以上のロータの回転速度に関し、ステータの電磁励起コイルからの逆起電力信号に基づいてロータの角度位置を検出する
ように構成される。
本発明の他の態様によれば、少なくとも1つの電力の供給されていない電磁励起コイルの逆起電力が測定され、ロータの角度位置を検出するための装置に送信され、ロータの角度位置を検出するための前記装置は、逆起電力の値を、ロータの所定位置に関連付けられる所定の閾値と比較するように、構成される。
本発明の更なる態様によれば、ロータの角度位置を検出するための装置は、ステータの電磁励起コイルの逆起電力を測定する信号に基づいて、出力角度位置センサからの角度測定結果を補正するように構成される。
角度位置センサからの角度測定結果を補正するための逆起電力の使用は、いかなる追加のセンサを必要とすることなく、ロータの角度測定結果の精度を改善することを可能にする。
本発明の補足的な態様によれば、ブラシレス直流電気モータは、回転するようにロータに固定される制御磁石に関連付けられる単一のホールエフェクトセンサを含み、前記ホールエフェクトセンサは、ロータの角度位置を検出するための装置に接続され、ロータの角度位置を検出するための前記装置は、ホールエフェクトセンサからの信号に基づいて、出力角度位置センサからの角度測定結果を補正するように構成される。
ホールエフェクトセンサの使用は、出力角度位置センサからの測定結果を補正することによってロータの角度測定の精度を改善することを可能にする。
本発明の他の態様によれば、ロータの角度位置を検出するための装置は、ホールエフェクトセンサからの信号の状態の変化を検知するように、且つ、状態の変化の前記検知に基づいて出力角度位置センサからの測定結果を補正するように、構成され、状態の前記変化はロータの所定位置に関連付けられる。
本発明の更なる態様によれば、
− ロータは所定数の磁極を含み、
− 制御磁石は、ロータの磁極の数以上の数の磁極を備え、
− ステータの電磁励起コイルに電力を供給する制御信号の送信がホールエフェクトセンサからの信号の状態変化の検出と同期するように、制御磁石の磁極はロータの磁極と同相である。
その極がロータの磁極と同相である制御磁石に関連付けられるホールエフェクトセンサの使用は、ロータを駆動することを可能にする電磁励起コイルの切り替えの制御の瞬間を、確実に検出することを可能にする。
本発明の補足的な態様によれば、電気モータは、回転するようにロータに固定される制御磁石と関連付けられる2つのホールエフェクトセンサを含み、前記ホールエフェクトセンサは互いに対して角度的にずれておりロータの角度位置を検出するための装置に接続され、ロータの角度位置を検出するための前記装置は、2つのホールエフェクトセンサからの信号に基づいて、出力角度位置センサからの角度測定信号を補正するように構成される。
2つのホールエフェクトセンサの使用は、ロータの角度測定の精度をさらに向上させること及び/又は電磁励起コイルの切り替えの信頼できる制御を可能にするために出力角度位置センサに要求される精度を下げることを可能にする。
本発明の更なる態様によれば、ロータの角度位置を検出するための装置は、
− 一方では1又は複数のホールエフェクトセンサからの信号に基づき、他方では所定の閾値を下回るロータの回転速度に関する出力角度位置センサからの信号に基づき、ロータの角度位置を検出し、
− 所定の閾値以上のロータの回転速度に関し、ステータの電磁励起コイルからの逆起電力信号に基づいてロータの角度位置を検出し、
ロータの角度位置を検出するための装置は、ステータの電磁励起コイルの逆起電力を測定する信号に基づいて、1又は複数のホールエフェクトセンサからの及び/又は出力角度位置センサからの角度測定結果を補正するように構成される。
1又は複数のホールエフェクトセンサからの及び/又は角度位置センサからの角度測定結果を補正するための逆起電力の使用は、いかなる追加のセンサを必要とすることなく、ロータの角度測定結果の精度を改善することを可能にする。
本発明はまた、特に前述のような歯車モータを備える動力車両用の、ワイパーシステムに関する。
本発明はまた、特にワイパーシステム用の、歯車モータの電気モータを制御する方法に関し、歯車モータは以下を備え:
− 以下を具備するブラシレス直流電気モータ:
− ロータ、
− ロータ用の電磁励起コイルを有するステータ、
− 一方側で電気モータのロータに連結され、他方側で外部機構、特にワイパーシステムに、連結されることが意図される出力シャフトに連結される減速機構であって、所定の減速比を有する減速機構、及び
− 出力シャフトの角度位置を測定するように構成される出力角度位置センサ、
前記方法は以下のステップを含む:
所定の閾値を下回るロータの回転速度に関し:
− ロータの角度位置は、減速機構の減速比を考慮することによって、出力シャフトの角度位置センサに基づいて検出され、
所定の閾値以上のロータの回転速度に関し、
− ロータの角度位置は、ステータの電磁励起コイルからの逆起電力信号に基づいて検出され、
− 先行するステップで検出されるロータの角度位置に応じて、ステータの電磁励起コイルに電力を供給するための制御信号が生成される。
本発明の他の態様によれば、出力角度位置センサの測定結果は、逆起電力信号に基づいて補正される。
本発明の他の態様によれば、電気モータはまた、回転するようにロータに固定される制御磁石と関連付けられる1つ又は2つのホールエフェクトセンサを含み、出力角度位置センサからの角度測定結果は、1又は複数のホールエフェクトセンサからの信号に基づいて補正される。
本発明はまた、特にワイパーシステム用の、歯車モータの電気モータを制御する方法に関し、歯車モータは:
− 以下を具備するブラシレス直流電気モータと:
− ロータ、
− ロータ用の電磁励起コイルを有するステータ、
− 一方側で電気モータのロータに連結され、他方側で外部機構、特にワイパーシステムに、連結されることが意図される出力シャフトに連結される減速機構であって、所定の減速比を有する減速機構、及び
− 出力シャフトの角度位置を測定するように構成される出力角度位置センサ、
− 回転するようにロータに固定される制御磁石に関連付けられる1つ又は2つのホールエフェクトセンサと、
を備え、
前記方法は以下のステップを含む:
(a)所定の閾値を下回るロータの回転速度に関し:
− 減速機構の減速比を考慮して出力シャフトの角度位置センサに基づいてロータの角度位置が検出され、出力角度位置センサからの角度測定結果が1又は複数のホールエフェクトセンサからの信号に基づいて補正され、
(b)所定の閾値以上のロータの回転速度に関し、
ロータの角度位置は、ステータの電磁励起コイルからの逆起電力信号に基づいて検出され、
− 先行するステップで検出されるロータの角度位置に応じて、ステータの電磁励起コイルに電力を供給するための制御信号が生成される。
本発明の補足的な態様によれば、出力角度位置センサからの及び1又は複数のホールエフェクトセンサからの角度測定結果は、逆起電力信号に基づいて補正される。
本発明の他の特徴及び利点は、添付の図面に照らして、例として且つ非限定的に与えられる以下の説明から明らかになり、添付の図面において:
図1aは、最新技術による3つのホールエフェクトセンサを備える電気モータのロータのための角度検出装置の図を示す。 図1bは、図1aのセンサによって供給される信号の及び電気モータの電磁励起コイルの制御信号のチャートを示す。 図2は、歯車モータの図を示す。 図3a、3b及び3cは、電気モータの機能図を示す。 図3a、3b及び3cは、電気モータの機能図を示す。 図3a、3b及び3cは、電気モータの機能図を示す。 図4は、第1実施形態による制御磁石に関連付けられるホールエフェクトセンサの図を示す。 図5は、歯車モータの出力シャフトの角度位置センサによって供給される信号及び電磁励起コイルの制御信号に関するロータの角度位置のグラフを示す。 図6は、歯車モータの出力シャフトの角度位置センサによって供給される信号、並びに、ホールエフェクトセンサによって供給される信号及び電磁励起コイルの制御信号に関するロータの角度位置のグラフを示す。 図7は、第2実施形態による制御磁石に関連付けられるホールエフェクトセンサを示す。 図8は、図7のホールエフェクトセンサ及び歯車モータの出力シャフトの角度位置センサによって供給される信号、並びに、電磁励起コイルの制御信号のグラフを示す。 図9は、第3実施形態による制御磁石に関連付けられる2つのホールエフェクトセンサを示す。 図10は、図9のホールエフェクトセンサ及び歯車モータの出力シャフトの角度位置センサによって供給される信号、並びに、電磁励起コイルの制御信号のグラフを示す。 図11は、第4実施形態による制御磁石に関連付けられる2つのホールエフェクトセンサを示す。 図12は、図11のホールエフェクトセンサ及び歯車モータの出力シャフトの角度位置センサによって供給される信号、並びに、電磁励起コイルの制御信号のグラフを示す。 図13は、第5実施形態による制御磁石に関連付けられる2つのホールエフェクトセンサを示す。 図14は、図13のホールエフェクトセンサ及び歯車モータの出力シャフトの角度位置センサによって供給される信号、並びに、電磁励起コイルの制御信号のグラフを示す。
全ての図において、同じ要素には同じ参照番号が付されている。
以下の実施形態は例である。説明は1又は複数の実施形態に言及しているが、これは、各参照が同じ実施形態に関連すること又は特徴が単一の実施形態にのみ適用されることを必ずしも意味するわけではない。また異なる実施形態の一つ一つの特徴は、他の実施形態を提供するために組み合わせられ又は交換されうる。
図2は、動力車両ワイパーシステムのための歯車モータ101の一例を示す。
歯車モータ101はケーシング102を備え、ケーシング102には電気モータ103が取り付けられ、当該電気モータ103は、所定の減速比、例えば典型的には1/69の減速比を有する減速機構104に連結される。
減速機構104は、電気モータ103によって回転駆動されるウォームねじ107と、ウォームねじ107の回転軸に対して実質的に直角の軸上で回転移動可能に取り付けられる出力シャフト109に固定される歯ホイール108と、を含む。
減速機構104は、ウォームねじ107が歯ホイール108と噛み合うことによって協働するように配置され、それによって出力シャフト109は電気モータ103によって間接的に回転駆動されることができる。
出力シャフト109は、概して、直接的に又は制御ギアを介し、ワイパーアームに連結され、当該ワイパーアームにはワイパーが固定されている。
ワイパーシステムを、特にワイパーの速度を、制御するために、出力角度位置センサ110(図2に概略的に表されている)が出力シャフト109の位置に配置されている。出力角度位置センサ110は、例えば、0.1°の精度で出力シャフト109の角度位置を知ることを可能にするアナログ角度センサである。
本発明の関連において、電気モータ103はブラシレス直流電気モータである。
横断面の概略図を示す図3aに表されるように、電気モータ103は、中心にロータ15が収容されている円筒形のステータ13を含む。
ロータ15は、電気モータ103の中心軸Xを中心に回転移動可能に取り付けられており、永久磁石16を備え、当該永久磁石16の磁極がN極に関してはNで、S極に関してはSで表されている。しかしながら、本発明は、2つの極を含むロータ15の永久磁石16に限定されず、より多数の磁極を含む永久磁石にも等しく及ぶ。
ステータ13は、ロータ15の周囲に配置されたロータ15用の電磁励起コイル17を備える。電磁励起コイル17は、ステータ13の周にわたって均等に分布している。電気モータ103は、ここでは、相がA、B及びCで示される三相モータである。6つの電磁励起コイル17(2つのコイルが1つの相を形成するように関連付けられている)があり、それらは星型構成又はY型構成に従って連結されている。
明らかに、異なる数の電磁励起コイル17及び異なる構成、例えばデルタ構成もまた使用可能である。
図3bに表されるように、電磁励起コイル17は、制御ユニット21によって管理されるインバータ19により電力が供給される。
インバータ19は、ステータ13のそれぞれの相A、B及びCに電力を供給するように意図されるB1、B2及びB3で示される3つのブランチを含む。
各ブランチB1、B2又はB3は2つのスイッチ23を含み、当該スイッチ23の切り替えは、関連する相A、B又はCの電磁励起コイル17の給電又は非給電をもたらす。
インバータ19のスイッチ23は、制御ユニット21によって駆動され、図3cにおいて1〜6で番号付けされた矢印によって表される一連の6つの切り替えステップを得る。
第1のステップ1は相Aから相Bへの電流の切り替えに対応し、第2のステップ2は相Cから相Bへの電流の切り替えに対応し、第3のステップ3は相Cから相Aへの電流の切り替えに対応し、第4のステップ4は相Bから相Aへの電流の切り替えに対応し、第5のステップ5は相Bから相Cへの電流の切り替えに対応し、第6のステップ6は相Aから相Cへの電流の切り替えに対応する。
6つの切り替えステップは、360°の電気的回転に、すなわち永久磁石がたった1つのペアの極を含む場合にはロータの360°の全回転に、対応する。2つのペアの極を含む磁石の場合、電気的に360°に対応する6つの切り替えステップは、ロータの180°の回転に対応し、3つのペアの極を含む磁石の場合、電気的に360°に対応する6つの切り替えステップは、ロータの120°の回転に対応する。したがって、1つの切り替えから別の切り替えへの移行は、ロータの60°の電気角による回転ごとに行われる。
各ステップで、電流は2つの相を通過するが、3つ目は浮遊電位を有する。6つの切り替えステップのシーケンスは、ステータ13上に回転磁界を発生させることを可能にし、それによってロータ15を回転駆動することが可能になる。
この6ステップ切り替えのスキームは、120°の相の導通及び60°の非励起で最もよく知られているが、本発明はこの単一の切り替えスキームに限定されず、他のタイプの切り替えにも及び、例えば、導通が正弦波の進行に至るまで及ぶ可能性がある間の、180°の相の導通又は中間角度又は異なる励起の混合のタイプの切り替えに及ぶ。
また、制御ユニット21が異なる切り替え瞬間を検出して、その結果、インバータ19のスイッチ23を制御することを可能にするように、電気モータ103は、制御ユニット21に接続されるロータ25の角度位置を検出するための装置(図3b参照)を備える。
ロータ25の角度位置を検出するための装置は、出力シャフト109の出力角度位置センサ110に接続されており、角度位置センサ110から供給される出力シャフト109の角度位置及び減速機構104の減速比から、ステータ13に対するロータ15の位置を検出するように構成されている。
したがって、出力シャフト109の出力角度位置センサ110によって提供される測定結果は、ロータ15の位置を検出するように、ロータ25の角度位置を検出するための装置によって用いられる。
そして、このようにして検出されるロータ15の角度位置は、ロータ25の角度位置を検出するための装置により制御ユニット21に送信され、インバータ19の切り替え瞬間を検出することを可能にする。
A)第1実施形態:出力シャフト109の出力角度位置センサ110だけ
図2及び図3bを参照すると、第1実施形態によれば、出力シャフト109の出力角度位置センサ110のみが、ロータ15の角度位置を検出するための装置25によって、特に低回転速度に関し、すなわち所定の閾値よりも下の、例えばモータの最大速度の10%よりも低い速度に関し、ロータ15の位置を検出するために、使用される。ここで、これはブラシレス直流電気モータ3の始動フェーズに関するものである。
所定の閾値以上の回転速度に関し、すなわち始動フェーズの後に、ロータ15の角度位置を検出するための装置25は、電磁励起コイル17において測定される逆起電力からロータ15の角度位置を検出することができる。
逆起電力は、電力が供給されていないコイルにおいて測定される。例えば、図3cのステップ1の場合、相Cに関連付けられる電磁励起コイル17において逆起電力が測定されるように、電流が相Aから相Bに伝えられる。そして逆起電力の測定結果は、ロータ15の角度位置を検出するための装置25に伝えられる。
そして、ロータ15の角度位置を検出するための装置25は、逆起電力の測定結果を、ロータ15の所定の位置に関連付けられる所定の閾値と比較する。例えば、対称電力供給の場合には、切り替え瞬間は、電力が供給されていない電磁励起コイル17の端子における逆起電力の電圧値のゼロ交差(正レベルから負レベルへの遷移又はその逆)に対応する。
さらに、測定される逆起電力は、出力角度位置センサ110を補正するために、さらには較正するために、すなわち必要に応じて、そのドリフトの場合に出力角度位置センサ110によって供給される角度の値を適合させるために、使用される。
したがって出力シャフト109の角度位置センサ110によって提供される精度は向上され、したがって低回転速度に関してロータ15の角度位置を検出するのに十分でありうるものであり、それによって電気モータ103は、ロータ15の角度測定専用のセンサを必要としない。
一変形形態によれば、所定の閾値以上の回転速度に関してでさえも、出力角度位置センサ110によって送信される測定信号に基づいて検出されるロータ15の位置を利用し続けることが可能である。
B)第2実施形態:第1の構成による単一のホールエフェクトセンサ27と組み合わされる出力シャフト109の出力角度位置センサ110
第2実施形態によれば、電気モータ103はまた、ステータ13上に配置され且つ図4に示すように回転するようにロータ15に固定される制御磁石29に関連付けられる単一のホールエフェクトセンサ27を備える。
制御磁石29は、ロータ15と同数の磁極を、すなわち本ケースでは2つの磁極、Nで示されるN磁極及びSで示されるS磁極、を具備する。さらに、ホールエフェクトセンサ27からの信号が電磁励起コイル17の切り替えの変化のうちの1つに対応するように、制御磁石29の磁極はロータ15の磁極と同期している。
ロータ15の角度位置を検出するための装置25は、ホールエフェクトセンサ27に接続されている。ホールエフェクトセンサ27から受信される信号は、ロータ15の角度位置を検出するための装置25が180°毎にロータ15の位置を正確に検知することを可能にする。
したがって、ロータ15の角度位置を検出するための装置25は、出力角度位置センサ110からの信号とホールエフェクトセンサ27からの信号とを組み合わせて、ロータ15の角度位置を検出することができる。
この場合、ホールエフェクトセンサ27からの信号は、出力角度位置センサ110からの角度測定結果を補正するため、さらには較正するため、特に使用されるが、そのドリフトの場合においてである。
図5は、出力角度位置センサ110からの出力信号sの信号の関数として、ロータ15の角度位置αを表す曲線fのグラフである。曲線fは概して鋸歯状の形状を有し、最小値0°と最大値360°との間で変化する。図5はまた、その右側部分において、時計回りの方向への90°の回転に基づいて、ロータ15の位置に応じた相A、B及びCの6つのステップの切り替えを表す。ステップの順序は、図3cのサイクルと比較して逆であり、ステップの順序は、ロータ15に関して望まれる回転の方向に依存することに留意されるべきである。
したがって、出力角度位置センサ110からの出力信号sの測定誤差Δsは、ロータ15の角度位置の推定において、したがって関連付けられる切り替え瞬間(60°の倍数に対応する)において、誤差Δαを生成する。
ホールエフェクトセンサ27の使用は、ある所定の角度に関し、ここでは角度0°(又は360°)及び180°に関し、基準信号を得ることを可能にし、それは、出力角度位置センサ110から得られるロータ15の角度位置を補正することを可能にする。したがって、ホールエフェクトセンサ27は、出力シャフト109の角度位置センサ110を補正又は較正することを可能にする。
図6は、図5のグラフを繰り返し、右側部分にホールエフェクトセンサ27からの信号hが表されている。ホールエフェクトセンサ27の状態の変化は、出力シャフト109の角度位置センサ110からの信号sの曲線fの部分において報告される。これらの状態の変化は、電磁励起コイル17の切り替えの変化に対応する0°、180°及び360°の角度に対応し、信号s上においてポイントH1によって表される。
したがって、ホールエフェクトセンサ27は、これらの角度に関してロータ15の角度位置を補正することを可能にする。
さらに、第1実施形態に関するのと同じように、所定の閾値を超える回転速度については、電磁励起コイル17で測定される逆起電力は、ロータ15の角度位置を検出するための装置25によってその位置を検出するために使用できる。また測定された逆起電力は、角度位置センサ110から及びホールエフェクトセンサ27から得られる信号を補正するために、或いは出力角度位置センサ110及び/又はホールエフェクトセンサ27を補正又は較正するために、使用されうる。
ロータ15の角度位置を検出するための装置25によって検出されるロータ15の位置は、制御ユニット21に送信される。制御ユニット21は、ロータ15の検出された位置に基づいて、インバータ19を介した電磁励起コイル17の電力供給を制御するように構成されている。
実際には、ロータ15の角度位置を検出するための装置25及び制御ユニット21は、単一のユニットにおいて、例えばマイクロプロセッサ、マイクロコントローラ、ASIC(特定用途向け集積回路)又は当業者に知られている任意の他の適切な処理手段において、組み合わせられることができる。
したがって、単一のホールエフェクトセンサ27の使用は、状態の変化がロータ15の正確かつ所定の位置に対応する信号を得ることを可能にし、これらの所定の位置は、切り替えを電磁励起コイル17の電力供給において行われる必要がある角度のいくつかに対応するように、構成される。
さらに、ホールエフェクトセンサ27からの信号hは、出力シャフト109の出力角度位置センサ110からの信号sに基づいて推定されるロータ15の位置の値を補正することを可能にする。
代替として、ホールエフェクトセンサ27は、出力角度位置センサ110を較正するためだけに使用されうる(この場合、制御磁石29の磁極は、ロータ15の磁極と同期する必要はないが、ホールエフェクトセンサ27の状態の変化に対応する角度を知ることだけが必要である)。
また測定される逆起電力は、ロータ15の位置を検出し、出力角度位置センサ110及び/又はホールエフェクトセンサ27を補正及び/又は較正するために、使用されうる。
さらに、異なる実施形態について表される例は、2つの極及び単一の減速比を有するモータに対応するが、本発明はそのような例に限定されず、異なる極数及び異なる減速比を有する他の構成にも及ぶことに留意されるべきである。
C)第3実施形態:第2の構成による単一のホールエフェクトセンサ27と組み合わされる出力シャフト109の出力角度位置センサ110
図7及び図8に示す第3実施形態によれば、電気モータ103は、第2実施形態と同様に単一のホールエフェクトセンサ27を備えるが、関連付けられる制御磁石29’は、例えばロータ15の磁極の数の3倍に等しい数の磁極を有する。したがって本ケースにおいて、制御磁石29’の極数は、図7に示されるように、N極に関してN1、N2及びN3で示され、S極に関してS1、S2及びS3で示される6つの磁極を備える。制御磁石29’の各磁極は60°の角度セグメントを占める。
さらに、電気モータ3は、第2実施形態と同様であり、ここでは動作の違いのみが説明される。
制御磁石29’の6つの磁極によって、ホールエフェクトセンサ27は60°毎にロータの正確な角度位置を検知することができる。したがって、電気モータ103は、ホールエフェクトセンサ27によって供給される信号の状態の変化が、図8のグラフに表されているようにインバータ19の切り替えの変化に対応するように、構成される。
実際には、図8は、その頂部において、出力角度位置センサ110からの信号に基づいて計算されたロータ15の位置sとロータ15の角度位置とに応じたホールエフェクトセンサ27からの信号hを表す。
ホールエフェクトセンサ27の状態の4つの連続する変化が、出力角度位置センサ110からの信号sにおいて報告され、したがって60°(60°、120°、180°及び240°位置)離れているポイントh1a、h1b、h2a及びh2bによって表される。
また電磁励起コイル17の切り替えサイクルに対応する6つのステップが図8の底部に示されている。
したがって、ホールエフェクトセンサ27からの信号の状態の変化は、一方では、インバータ19の切り替えの変化が適用されなければならない瞬間を検出し、他方では、出力角度位置センサ110を用いて検出される角度位置を較正又は補正することを可能にする。
この実施形態は、出力シャフト109の角度位置センサ110の測定に基づいて検出されるロータ15の位置の推定が最大で+/−60°までの範囲の誤差を有する場合に電気モータ3を制御することを可能にする。実際には、((120及び240°で)低レベルから高レベルへの又は(60°及び180°で)高レベルから低レベルへの)状態の変化が120°毎に生じる(それは、角度位置センサ110の±120°よりも小さい誤差が状態の2つの変化を区別することを可能にすることを意味する)。しかしながら、始動時には、信号hの状態の変化の前の位置を知る必要があり(図8の場合、低レベルであれば、位置がポイントh1a、h1b間に、すなわち60°と120°との間にあるかを、又は、位置がポイントh2a、h2b間に、すなわち180°と240°との間にあるかを知る必要があり)、そのため出力センサがこの検出を行うことができるように±60°よりも小さい誤差を有する必要がある。
代替として、ホールエフェクトセンサ27は、出力角度位置センサ110を較正するためだけに使用されうる(この場合、制御磁石29’の磁極は、ロータ15の磁極と同期する必要はないが、ホールエフェクトセンサ27の状態の変化に対応する角度を知ることだけが必要である)。
また測定される逆起電力は、ロータ15の位置を検出するために、及び、出力角度位置センサ110及び/又はホールエフェクトセンサ27を補正及び/又は較正するために、使用されうる。
D)第4実施形態:第1の構成による2つのホールエフェクトセンサ27a及び27bと組み合わされる出力シャフト109の出力角度位置センサ110
図9及び図10に示す第4実施形態によれば、電気モータ103は、制御磁石29’に関連付けられる2つのホールエフェクトセンサ27a及び27bを含み、制御磁石29’の磁極の数は、ロータ15の磁極の数の3倍に等しく、第3実施形態の制御磁石29’と同様である。
したがって、本ケースにおいて、制御磁石29’の極数は、図9に示すように6つの磁極を含む。2つのホールエフェクトセンサ27a及び27bは、例えば、ロータ15の周りに配置され、2つのホールエフェクトセンサ27a及び27bからの信号が4分の1周期だけオフセットされるような角度位置だけオフセットされ、当方のケースではホールエフェクトセンサ27a及び27bが30°、90°又は150°だけオフセットされうる。また明らかに、(60°の倍数だけ異なる)他の角度も、本発明の範囲から逸脱することなく使用されうる。
また、電気モータ103は、第2実施形態と同様であり、ここでは動作の相違についてのみ説明される。
2つのホールエフェクトセンサのうちの1つ27a又は27b、例えばセンサ27bによって、供給される信号の状態の変化が、図10のグラフに表されるようにインバータ19の切り替えの変化に対応するように、電気モータ103は構成される。
ホールエフェクトセンサ27bの各々の状態の2つの変化は、出力シャフト109の角度位置センサ110からの信号sにおいて報告され、60°、120°、180°及び240°に位置するポイントh1a、h1b、h2a及びh2bによって表される。したがって、90°に配置される2つのホールエフェクトセンサ27a及び27bは、30°毎にロータ15の位置の検出を得ることを可能にする。4つの可能な状態がある:両方の信号がローレベル、両方の信号が高レベル、信号h_aが低レベル且つ信号h_bが高レベル、最後に信号h_aが高レベル且つ信号h_bがローレベル。2つの信号間の30°のオフセットのために、2つの連続した同一状態間で90°の偏差がある。
また電磁励起コイル17の切り替え周期に対応する6つのステップは、図10の底部に示されている。
したがって、ホールエフェクトセンサのうちの1つ、例えばセンサ27bは、第3実施形態のようにインバータ19の切り替えの変化の瞬間を提供することを可能にし、他のホールエフェクトセンサ、例えばセンサ27aは、ロータ15の回転の方向を得ることを可能にする。
さらに、ロータ15の位置が検出される精度を高めることができる。実際、第3実施形態の場合と同様に、ホールエフェクトセンサ27a及び27bからの信号は、出力角度位置センサ110を補正及び/又は較正するのに使用されることができる。
また測定される逆起電力は、ロータ15の位置を検出するために、及び、出力角度位置センサ110及び/又はホールエフェクトセンサ27a及び27bを補正及び/又は較正するために、使用されうる。
この実施形態は、出力シャフト109の角度位置センサ110からの測定に基づいて検出されるロータ15の位置の推定が+/−90°までの範囲の誤差に達したときに、電気モータ103を制御することを可能にする。
実際には、ホールエフェクトセンサ27a又は27bの2つの同一の状態変化(高レベルから低レベルへの遷移又は低レベルから高レベルへの遷移)が、例えばポイントh1aとポイントh2aとの間で或いはポイントh1bとポイントh2bとの間で120°毎に生じる(それは、角度位置センサ110の±120°未満の誤差が2つの状態変化を区別することを可能にすることを意味する)。
しかしながら、始動時には、状態の変化の前の位置を知る必要があり(図10のケースにおいて、2つの信号h_a及びh_bについて低レベルにある場合、位置がポイントh1aとポイントh1bとの間、すなわち90°と120°との間、にあるか、又は、位置がポイントh2aとポイントh2bとの間、すなわち210°と240°との間、にあるかを知ることが必要であり)、そのために出力センサが、この検出を行うことができるように±90°未満の誤差を有する必要がある。
代替として、ホールエフェクトセンサ27a及び27bは、出力角度位置センサ110を較正するためだけに使用されうる(この場合、制御磁石29’の磁極は、ロータ15の磁極と同期する必要はないが、ホールエフェクトセンサ27a及び27bの状態の変化に対応する角度を知ることだけが必要である)。
E)第5実施形態:第2の構成による2つのホールエフェクトセンサ27a及び27bと組み合わされる出力シャフト109の出力角度位置センサ110
図11及び図12に示す第5実施形態によれば、電気モータ103は、モータの極のペアの数の4倍に対応する4つの磁極を含む制御磁石29’’に関連付けられる2つのホールエフェクトセンサ27a及び27bを備える。
さらに、制御磁石29’’において磁極は非対称の角度分布を有する。例えば、第1のN極N1及び第1のS極S1は各々120°の角度セグメントにわたって広がり、第2のN極N2及び第2のS極S2は各々60°の角度セグメントにわたって広がる。
ホールエフェクトセンサ27a及び27bは、例えばロータ15の軸の周りに互いから180°に配置されている(60°のような他の角度も使用可能であるが、60°毎の切り替えを有する必要がある)。
電気モータ103は、その他の点では第2実施形態と同様であり、ここでは動作の相違のみが説明される。
電気モータ103は、ホールエフェクトセンサ27a及び27bによって供給される信号の状態の変化が、図12のグラフに表されるようにインバータ19の切り替えの変化に対応するように構成される。
ホールエフェクトセンサ27a及び27bの各々の2つの状態変化は、出力シャフト109の出力角度位置センサ110からの信号sにおいて報告され、60°、120°、240°及び300°に位置するポイントh1a、h1b、h2a及びh2bによって表される。したがって180°に配置される2つのホールエフェクトセンサ27a及び27bは、60°毎にロータ15の位置の検知を得ることを可能にする。
また電磁励起コイル17の切り替え周期に対応する6つのステップが、図12の底部に示されている。
第4実施形態と同様に、ホールエフェクトセンサ27a及び27bからの信号は、出力角度位置センサ110を補正及び/又は較正するために使用される。また測定される逆起電力は、ロータ15の位置を検出するために、及び、出力角度位置センサ110及び/又はホールエフェクトセンサ27a及び27bを補正及び/又は較正するために、使用されうる。
この実施形態は、出力シャフト109の角度位置センサ110からの測定に基づいて検出されるロータ15の位置の推定が+/−120°までの範囲の誤差に達する場合に、電気モータ103を制御することを可能にする。実際には、センサ27a及び27bからの信号h_a及び信号h_bの2つの同一位置は120°離れている。例えば、2つの信号h_a及びh_bは、ポイントh1aとポイントh1bとの間、すなわち60°と120°との間、次にポイントh2aとポイントh2bとの間、すなわち240°と300°との間で、高レベルにある。したがって、始動時にその位置が60°と120°との間であるか240°と300°との間であるかを検出するために、誤差が120°未満である角度位置センサ110を使用することで十分である。したがって、そのような構成は、低精度のしたがって低コストの角度位置センサ110を使用することを可能にする。
代替として、ホールエフェクトセンサ27a及び27bは、出力角度位置センサ110を較正するためだけに使用されうる(この場合、制御磁石29’’の磁極は、ロータ15の磁極と同期する必要はないが、ホールエフェクトセンサ27a及び27bの状態の変化に対応する角度を知ることだけが必要である)。
F)第6実施形態:第3の構成による2つのホールエフェクトセンサ27a及び27bと組み合わされる出力シャフト109の出力角度位置センサ110
図13及び図14に示す第6実施形態によれば、電気モータ103は、ロータ15の極ペアの数の4倍に対応する図13に示すような4つの磁極を含む制御磁石29’’’に関連付けられる2つのホールエフェクトセンサ27a及び27bを備える。
制御磁石29’’’の磁極は交互の分布を有するが、N磁極N1及びN2の各々が120°の角度セグメントにわたって広がる一方で、S磁極S1及びS2は60°の角度セグメントにわたって広がる。
ホールエフェクトセンサ27a及び27bは、例えば、ロータ15の軸の周りに互いから60°で配置されている(他の角度も使用可能である)。
電気モータ103は、その他の点では第2実施形態と同様であり、ここでは動作の違いのみが説明される。
電気モータ103は、ホールエフェクトセンサ27a及び27bによって供給される信号の状態の変化が、図14のグラフに表されるようにインバータ19の切り替えの変化に対応するように構成される。
ホールエフェクトセンサ27a及び27bの各々の2つの状態変化は、出力シャフト9の角度位置センサ110からの信号sにおいて報告され、0°、60°、180°及び240°に位置するポイントh1a、h1b、h2a及びh2bによって表される。したがって、60°に配置される2つのホールエフェクトセンサ27a及び27bは、60°毎にロータ15の位置の検知を得ることを可能にする。さらに、センサ27a及び27bからの信号h_a及び信号h_bの2つの同じ位置は120°離れている。例えば、信号h_a及び信号h_bは両方とも、ポイントh1aとポイントh1bとの間、すなわち0°と60°との間、次いでポイントh2aとポイントh2bとの間、すなわち180°と240°との間で、低レベルにある。したがって、始動時に位置が0°と60°との間であるか180°と240°との間であるかを検出するために、誤差が120°未満である角度位置センサ110を使用することで十分である。したがって、そのような構成は、低精度したがって低コストの角度位置センサ110を使用することを可能にする。
また電磁励起コイル17の切り替えサイクルに対応する6つのステップが図14の底部に示されている。
第4実施形態と同じように、ホールエフェクトセンサ27a及び27bからの信号は、出力角度位置センサ110を較正するために使用される。また測定される逆起電力は、ロータ15の位置を検出するために、及び、出力角度位置センサ110及び/又はホールエフェクトセンサ27a及び27bを補正及び/又は較正するために、使用されうる。
この実施形態は、出力シャフト109の角度位置センサ110からの測定に基づいて検出されるロータ15の位置の推定が+/−120°までの範囲の誤差に達する場合に電気モータ103を制御することを可能にする。
あるいは、ホールエフェクトセンサ27a及び27bは、出力角度位置センサ110を較正するためだけに使用されうる(この場合、制御磁石29’’’の磁極はロータ15の磁極と同期する必要はないが、ホールエフェクトセンサ27a及び27bの状態の変化に対応する角度を知る必要だけはある)。
またより多い数の又はより少ない数の磁極を具備する制御磁石29、29’、29’’、29’’’に関連付けられる1つ又は2つのホールエフェクトセンサ27、27a、27bを含む他の実施形態が、本発明に関して想定されうる。ホールエフェクトセンサ27、27a、27bは、インバータ19の切り替えの瞬間を検出すること及び/又は出力シャフト109の出力角度位置センサ110を較正することを可能にする。
したがって、歯車モータ101の電気モータ103の電磁励起コイル17の電力供給を制御するためにロータ15の位置を推定するための歯車モータ101の出力シャフト109の角度位置センサ110によって供給される信号の使用は、ロータ15の角度位置の検出に必要な専用センサの数を減らし、したがって電気モータ103のコストを削減することを、可能にする。さらに、出力シャフト109の角度位置センサ110の使用は、低い回転速度に関してロータ15の位置を推定することを可能にし、したがって電磁励起コイル17における逆起電力の測定結果に基づくセンサレス技術と組み合わせられて、例えば動力車両ワイパー装置用の歯車モータ101のような全負荷始動を必要とする用途に使用されることができる安価な電気モータ103を提供することができる。
さらに、ロータ15の位置の検出において要求される精度に応じて、1つ又は2つのホールエフェクトセンサ27、27a、27bを必要とする様々な構成が使用され、最新技術の実施形態の場合のような3つのホールエフェクトセンサよりは少ない数を必要とすることによって、ロータ15の位置の信頼できる推定を得ることができる。
また、そして、起電力信号は、後者が使用される場合にはホールエフェクトセンサ27、27a及び27bによって及び/又は出力シャフト109の角度位置センサ110によって、実行される測定を補正又は較正するために使用されうる。

Claims (14)

  1. 特にワイパーシステム用の、歯車モータ(101)であって、
    − ブラシレス直流電気モータ(103)を備え、当該ブラシレス直流電気モータは:
    − ロータ(15)と、
    − 前記ロータのための電磁励起コイルを有するステータ(13)と、
    − 前記ステータ(13)に対する前記ロータ(15)の角度位置を検出するための装置(25)と、
    − 前記ロータ(15)の角度位置を検出するための装置(25)によって検出される前記ロータ(15)の角度位置に応じて、前記ステータ(13)の前記電磁励起コイル(17)に電力を供給するための制御信号を生成するように構成される制御ユニット(21)と、
    − 一方側で前記電気モータ(103)の前記ロータに連結され、他方側で外部機構、特にワイパーシステムに、連結されることが意図されている出力シャフト(109)に連結される減速機構(104)であって、所定の減速比を有する減速機構(104)と、
    − 前記出力シャフト(109)の角度位置を測定するように構成される出力角度位置センサ(110)と、を含み、
    前記出力シャフト(109)の角度位置を測定するように構成される前記出力角度位置センサ(110)は、前記ロータ(15)の角度位置を検出するための装置(25)に接続され且つ前記出力シャフト(109)の測定される角度位置に対応する信号を送信するように構成され、前記ロータ(15)の角度位置を検出するための装置(25)は、前記減速機構(104)の所定の減速比を考慮に入れることによって送信される信号に基づいて、前記ステータ(13)に対する前記ロータ(15)の位置を検出するように、構成されることを特徴とする歯車モータ(101)。
  2. 前記ロータ(15)の角度位置を検出するための装置(25)は、
    − 所定の閾値を下回る前記ロータの回転速度に関し、前記出力角度位置センサ(110)からの信号に基づいて前記ロータ(15)の角度位置を検出し、
    − 前記所定の閾値以上の前記ロータの回転速度に関し、前記ステータ(13)の前記電磁励起コイル(17)からの逆起電力信号に基づいて前記ロータ(15)の角度位置を検出する、
    ように構成される請求項1に記載の歯車モータ(101)。
  3. 電力が供給されていない少なくとも1つの電磁励起コイル(17)の逆起電力が測定されて前記ロータ(15)の角度位置を検出するための装置(25)に伝えられ、前記ロータ(15)の角度位置を検出するための装置(25)は、前記逆起電力の値を、前記ロータ(15)の所定の位置に関連付けられる所定の閾値と比較するように構成される請求項2に記載の歯車モータ(101)。
  4. 前記ロータ(15)の角度位置を検出するための装置(25)は、前記ステータ(13)の前記電磁励起コイル(17)の逆起電力を測定する前記信号から、前記出力角度位置センサ(110)からの角度測定結果を補正するように、構成される請求項3に記載の歯車モータ(101)。
  5. 前記ブラシレス直流電気モータ(103)は、回転するように前記ロータ(15)に対して固定される制御磁石(29、29’、29’’、29’’’)に関連付けられる単一のホールエフェクトセンサ(27)を備え、前記ホールエフェクトセンサ(27)は前記ロータ(15)の角度位置を検出するための装置(25)に接続され、前記ロータ(15)の角度位置を検出するための装置(25)は、前記ホールエフェクトセンサ(27)からの信号に基づいて、前記出力角度位置センサ(110)からの角度測定結果を補正するように構成される、請求項1〜4のいずれか一項に記載の歯車モータ(101)。
  6. 前記ロータ(15)の角度位置を検出するための装置(25)は、前記ホールエフェクトセンサ(27)からの信号の状態の変化であって、前記ロータ(15)の所定の位置と関連付けられる前記状態の変化を検知するように、及び、前記状態の変化の検知に基づいて前記出力角度位置センサ(110)からの測定結果を補正するように、構成される請求項5に記載の歯車モータ(101)。
  7. − 前記ロータ(15)は、所定数の磁極を含み、
    − 前記制御磁石(29、29’)は、前記ロータ(15)の磁極の数以上の数の磁極を含み、
    − 前記ステータ(13)の前記電磁励起コイル(17)に電力を供給する制御信号の送信が、前記ホールエフェクトセンサ(27)からの信号の状態の変化の検知と同期するように、前記制御磁石(29)の磁極は前記ロータ(15)の磁極と同相である、
    請求項5又は6に記載の歯車モータ(101)。
  8. 前記電気モータ(103)は、回転するように前記ロータ(15)に対して固定される制御磁石(29’、29’’、29’’’)に関連付けられる2つのホールエフェクトセンサ(27a、27b)を備え、前記ホールエフェクトセンサ(27a、27b)は、互いに対して角度的にオフセットされ且つ前記ロータ(15)の角度位置を検出するための装置(25)に接続され、前記ロータ(15)の角度位置を検出するための装置(25)は、前記2つのホールエフェクトセンサ(27a、27b)からの信号に基づいて、前記出力角度位置センサ(110)からの角度測定信号を補正するように構成される請求項1〜4のいずれか一項に記載の歯車モータ(101)。
  9. 前記ロータ(15)の角度位置を検出するための装置(25)は、
    − 所定の閾値を下回る前記ロータの回転速度に関し、一方では1又は複数のホールエフェクトセンサからの信号に基づいて、他方では前記出力角度位置センサ(110)からの信号に基づいて、前記ロータ(15)の角度位置を検出し、
    − 前記所定の閾値以上の前記ロータの回転速度に関し、前記ステータ(13)の前記電磁励起コイル(17)からの逆起電力信号に基づいて、前記ロータ(15)の角度位置を検出する、
    ように構成され、
    前記ロータ(15)の角度位置を検出するための装置(25)は、前記ステータ(13)の前記電磁励起コイル(17)の逆起電力を測定する信号に基づいて、1又は複数のホールエフェクトセンサからの及び/又は前記出力角度位置センサ(110)からの角度測定結果を補正するように構成される、請求項1と組み合わせられる請求項5〜8のいずれか一項に記載の歯車モータ(101)。
  10. 請求項1〜9のいずれか一項に記載の歯車モータ(1)を備える、特に動力車両用の、ワイパーシステム。
  11. 特にワイパーシステム用の、歯車モータ(101)の電気モータ(103)を制御する方法であって、前記歯車モータ(101)は、
    − ブラシレス直流電気モータ(103)を備え、当該ブラシレス直流電気モータは:
    − ロータ(15)と、
    − 前記ロータ(15)のための電磁励起コイル(17)を有するステータ(13)と、
    − 一方側で前記電気モータ(103)の前記ロータに連結され、他方側で外部機構、特にワイパーシステムに、連結されることが意図される出力シャフト(109)に連結される減速機構(104)であって、所定の減速比を有する減速機構(104)と、
    − 前記出力シャフト(109)の角度位置を測定するように構成される出力角度位置センサ(110)と、を含み、
    (a) 所定の閾値を下回る前記ロータの回転速度に関し、
    − 前記ロータ(15)の角度位置は、前記減速機構(104)の減速比を考慮することによって、前記出力シャフト(109)の角度位置センサから検出され、
    (b) 前記所定の閾値以上の前記ロータの回転速度に関し、
    − 前記ロータ(15)の角度位置は、前記ステータ(13)の前記電磁励起コイル(17)からの逆起電力信号に基づいて検出され、
    − 先行するステップにおいて検出される前記ロータ(15)の角度位置に応じて、前記ステータ(13)の前記電磁励起コイル(17)に電力を供給するための制御信号が生成される、
    ことを含む方法。
  12. 前記出力角度位置センサ(110)の測定結果は、前記逆起電力信号に基づいて補正される、請求項11に記載の歯車モータ(101)の電気モータ(103)を制御する方法。
  13. 特にワイパーシステム用の、歯車モータ(101)の電気モータ(103)を制御する方法であって、前記歯車モータ(101)は、
    − ブラシレス直流電気モータ(103)であって:
    − ロータ(15)と、
    − 前記ロータ(15)のための電磁励起コイル(17)を有するステータ(13)と、
    − 一方側で前記電気モータ(103)の前記ロータに連結され、他方側で外部機構、特にワイパーシステムに、連結されることが意図されている出力シャフト(109)に連結される減速機構(104)であって、所定の減速比を有する減速機構(104)と、
    − 前記出力シャフト(109)の角度位置を測定するように構成される出力角度位置センサ(110)と、を含むブラシレス直流電気モータと、
    − 回転するように前記ロータ(15)に対して固定される制御磁石(29、29’、29’’、29’’’)と関連付けられる1つ又は2つのホールエフェクトセンサ(27、27a、27b)と、を備え、
    (a)所定の閾値を下回る前記ロータの回転速度に関し:
    − 前記ロータ(15)の角度位置は、前記減速機構(104)の減速比を考慮することによって、前記出力シャフト(109)の前記角度位置センサに基づいて検出され、前記出力角度位置センサ(110)からの角度測定結果は、1又は複数のホールエフェクトセンサ(27、27a、27b)からの信号に基づいて補正され、
    (b)前記所定の閾値以上の前記ロータの回転速度に関し:
    前記ロータ(15)の角度位置は、前記ステータ(13)の前記電磁励起コイル(17)からの逆起電力信号に基づいて検出され、
    − 先行するステップにおいて検出される前記ロータ(15)の角度位置に応じて、前記ステータ(13)の前記電磁励起コイル(17)に電力を供給するために制御信号が生成される、
    ことを含む方法。
  14. 前記出力角度位置センサ(110)からの及び前記1又は複数のホールエフェクトセンサ(27、27a、27b)からの角度測定結果は、前記逆起電力信号に基づいて補正される請求項13に記載の歯車モータ(101)の電気モータ(103)を制御する方法。
JP2019515581A 2016-09-22 2017-07-26 歯車モータ、関連するワイパーシステム、及び関連する制御方法 Active JP7210435B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1658926A FR3056360B1 (fr) 2016-09-22 2016-09-22 Moto-reducteur, systeme d'essuyage et procede de commande associes
FR1658926 2016-09-22
PCT/EP2017/068822 WO2018054581A1 (fr) 2016-09-22 2017-07-26 Moto-reducteur, systeme d'essuyage et procede de commande associes

Publications (2)

Publication Number Publication Date
JP2019537915A true JP2019537915A (ja) 2019-12-26
JP7210435B2 JP7210435B2 (ja) 2023-01-23

Family

ID=57539423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019515581A Active JP7210435B2 (ja) 2016-09-22 2017-07-26 歯車モータ、関連するワイパーシステム、及び関連する制御方法

Country Status (5)

Country Link
US (1) US11498525B2 (ja)
EP (1) EP3516764B1 (ja)
JP (1) JP7210435B2 (ja)
FR (1) FR3056360B1 (ja)
WO (1) WO2018054581A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083402B1 (fr) * 2018-06-29 2020-06-19 Valeo Systemes D'essuyage Moteur electrique a courant continu sans balai et procede de commande associe
FR3083403B1 (fr) * 2018-06-29 2021-01-29 Valeo Systemes Dessuyage Moteur electrique a courant continu sans balai et procede de commande associe
FR3084790B1 (fr) * 2018-08-01 2022-05-27 Valeo Systemes Dessuyage Moteur electrique a courant continu, moto-reducteur et systeme d'essuyage
FR3104857B1 (fr) * 2019-12-13 2021-12-10 Valeo Systemes Dessuyage Procédé de commande d’un moteur électrique à courant continu sans balai
CN112953319B (zh) * 2021-03-26 2023-03-24 深圳和而泰智能控制股份有限公司 一种电机驱动方法与角磨机
CN113340332B (zh) * 2021-05-27 2022-07-12 西安交通大学 一种光电传感器标定装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255493A (ja) * 1988-04-01 1989-10-12 Victor Co Of Japan Ltd ブラシレスモータ
JP2006050721A (ja) * 2004-08-02 2006-02-16 Hitachi Ltd ブラシレスモータ
JP2007143213A (ja) * 2005-11-15 2007-06-07 Shimadzu Corp Dcブラシレスモータ装置および回転真空ポンプ
JP2011007658A (ja) * 2009-06-26 2011-01-13 Nikon Corp エンコーダおよび信号処理方法
JP2013198188A (ja) * 2012-03-16 2013-09-30 Mitsuba Corp ブラシレスモータ及びワイパ装置
WO2013157558A1 (ja) * 2012-04-16 2013-10-24 株式会社ミツバ ブラシレスモータ及びワイパ装置
JP2014180081A (ja) * 2013-03-13 2014-09-25 Shimadzu Corp 真空ポンプ
JP2014207779A (ja) * 2013-04-12 2014-10-30 村田機械株式会社 ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108789A1 (en) * 2002-12-09 2004-06-10 Marshall Eric Giles High torque brushless DC motors and generators
US8185342B2 (en) 2009-08-14 2012-05-22 GM Global Technology Operations LLC Estimating rotor angular position and velocity and verifying accuracy of position sensor outputs
US20140097777A1 (en) * 2012-10-04 2014-04-10 Marvell World Trade Ltd. Driving a rotating device based on a combination of speed detection by a sensor and sensor-less speed detection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255493A (ja) * 1988-04-01 1989-10-12 Victor Co Of Japan Ltd ブラシレスモータ
JP2006050721A (ja) * 2004-08-02 2006-02-16 Hitachi Ltd ブラシレスモータ
JP2007143213A (ja) * 2005-11-15 2007-06-07 Shimadzu Corp Dcブラシレスモータ装置および回転真空ポンプ
JP2011007658A (ja) * 2009-06-26 2011-01-13 Nikon Corp エンコーダおよび信号処理方法
JP2013198188A (ja) * 2012-03-16 2013-09-30 Mitsuba Corp ブラシレスモータ及びワイパ装置
WO2013157558A1 (ja) * 2012-04-16 2013-10-24 株式会社ミツバ ブラシレスモータ及びワイパ装置
JP2014180081A (ja) * 2013-03-13 2014-09-25 Shimadzu Corp 真空ポンプ
JP2014207779A (ja) * 2013-04-12 2014-10-30 村田機械株式会社 ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体

Also Published As

Publication number Publication date
EP3516764B1 (fr) 2021-07-14
US20190263360A1 (en) 2019-08-29
FR3056360B1 (fr) 2019-07-12
EP3516764A1 (fr) 2019-07-31
JP7210435B2 (ja) 2023-01-23
WO2018054581A1 (fr) 2018-03-29
US11498525B2 (en) 2022-11-15
FR3056360A1 (fr) 2018-03-23

Similar Documents

Publication Publication Date Title
JP7210435B2 (ja) 歯車モータ、関連するワイパーシステム、及び関連する制御方法
JP6949958B2 (ja) ギアモータ、対応するワイパーシステム及び対応する制御方法
US11018606B2 (en) Linear hall effect sensors for multi-phase permanent magnet motors with PWM drive
EP3540933B1 (en) Method for driving sensorless motor
KR101661057B1 (ko) Eps 모터 위치 센서의 오프셋 측정장치 및 측정방법
US20060279242A1 (en) Method for effecting the power-optimal control of bldc motors
US20080303516A1 (en) Method and Circuit Arrangement for Determining the Rotor Position of an Ec Motor in the Standstill State
KR100713776B1 (ko) 검출 전류의 비교를 통한 에스알엠의 여자 위치 검출 방법및 장치
JP2018531570A6 (ja) Pwm駆動を伴う多相永久磁石モータのための線形ホール効果センサ
US6850022B2 (en) Method and system for determining electronic commutation in brushless DC machines irrespective of the placement of rotor position sensors
JP7168363B2 (ja) モーター制御方法
CN108667254B (zh) 电马达,齿轮马达,擦拭系统及相关控制方法
KR20110072885A (ko) Bldc 모터 제어 시스템
US20140184119A1 (en) Brushless direct contact motor driving device and method of controlling the same
EP1416623B1 (en) Method and system for determining electronic commutation in brushless DC machines irrespective of the placement of rotor position sensors
JPH09215382A (ja) 永久磁石同期モータの駆動方法
KR20150031356A (ko) Bldc 모터 제어 시스템에서 역기전력의 제로 크로싱 지점 판단 기준전압 보상 장치 및 방법
JP2015177697A (ja) ブラシレスモータの駆動装置、駆動方法
JP2022002423A (ja) モータ装置
KR102331849B1 (ko) Bldc 모터 제어장치 및 방법
CN112313861B (zh) 无刷直流电马达及相关的控制方法
KR102542785B1 (ko) 모터의 회전자 위치 보정 장치 및 회전자 위치 보정 방법
JP2011055586A (ja) モータ駆動制御回路
US20240097586A1 (en) Motor control device and motor driver circuit
JP2007252136A (ja) ブラシレスモータの駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211020

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220318

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220506

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221122

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221216

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230111

R150 Certificate of patent or registration of utility model

Ref document number: 7210435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150