JP2014207779A - ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体 - Google Patents

ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体 Download PDF

Info

Publication number
JP2014207779A
JP2014207779A JP2013083896A JP2013083896A JP2014207779A JP 2014207779 A JP2014207779 A JP 2014207779A JP 2013083896 A JP2013083896 A JP 2013083896A JP 2013083896 A JP2013083896 A JP 2013083896A JP 2014207779 A JP2014207779 A JP 2014207779A
Authority
JP
Japan
Prior art keywords
rotor
electrical angle
brushless motor
angle
hall sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013083896A
Other languages
English (en)
Other versions
JP6186824B2 (ja
Inventor
雄一朗 湊
Yuichiro Minato
雄一朗 湊
弘明 大松
Hiroaki Omatsu
弘明 大松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2013083896A priority Critical patent/JP6186824B2/ja
Publication of JP2014207779A publication Critical patent/JP2014207779A/ja
Application granted granted Critical
Publication of JP6186824B2 publication Critical patent/JP6186824B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】熟練した技術や工具を必要とすることなく、ブラシレスモータのロータの磁極のステータに対する相対的な位置を精度よく推定する。
【解決手段】ブラシレスモータの制御装置100は、磁極通過検出部と、基準電気角推定部と、ロータ回転位置推定部と、を備える。磁極通過検出部は、ホールセンサ11a、11b、11cの位置検出信号の立ち上がり、又は、立ち下がりを検出する。基準電気角推定部は、位置検出信号の立ち上がり、又は、立ち下がりを基準とする基準位相角から、ホールセンサ11a、11b、11cの位置とロータの位置に基づいて決定される所定の角度ずらした位相角を、電気角の基準電気角と推定する。ロータ回転位置推定部は、基準電気角と、インクリメンタル型のエンコーダ13からの出力とに基づいて、ブラシレスモータ1のロータの回転位置を推定する。
【選択図】図1

Description

本発明は、ホールセンサを用いたブラシレスモータの制御装置、及び、ブラシレスモータの電気角推定方法に関する。
ブラシレスモータ(同期モータ)を制御するに際し、ステータのコイルに印加する電圧(誘起電圧)の位相と、ロータの磁極の当該ステータに対する相対的な位置との関係は、ブラシレスモータを効率よく回転させるために制御されることが重要である。なぜなら、この位置関係にずれが生じた場合、ロータの回転トルクが低下したり、最悪の場合、ロータの回転が停止したりするからである。
従来、ロータの磁極のステータに対する相対的な位置は、ブラシレスモータに取り付けられたエンコーダによりモニターされていた。この場合、ブラシレスモータにエンコーダを取り付けるに際し、ステータのコイルに印加する電圧(誘起電圧)の位相が0となるタイミング(ゼロクロスタイミング)と、ロータが1回転するごとに発生するエンコーダのZ相の立ち上がりのタイミングとが同じになるように、エンコーダの取り付け位置を厳密に調整していた。
このようなエンコーダの取り付け位置の調整について、例えば、特許文献1には、サーボモータの回転子磁極位置を、制御装置で直流励磁により所定の位置において固定し、サーボモータに取り付けられた、基準位置信号を原点とするインクリメンタルエンコーダから得られる位置との角度差を検出し、制御装置内のEEPROMに記憶するまでの所定の動作を自動で行う方法が開示されている。
また、特許文献2には、ロータリエンコーダの入力軸に溝部を形成し、サーボモータの出力軸にサーボモータの磁極位置を示し、溝部に遊嵌可能なピンを設け、ピンを溝部に遊嵌し、溝部に遊嵌された連結ビスによって入力軸と出力軸とを連結するようにして、ロータリエンコーダの入力軸とサーボモータの出力軸との位置合わせを行う方法が開示されている。
特開2001−103784号公報 特開平07−170696号公報
上記方法によりエンコーダをブラシレスモータに取り付ける場合には、エンコーダの取り付け位置調整のための特別の工具が必要であったり、エンコーダやブラシレスモータに加工を加える必要があったりする場合がある。また、これらの作業には熟練した技術が必要となる。よって、これらの方法を用いることは、ブラシレスモータのコストをアップさせる要因となる。
本発明の課題は、熟練した調整技術や特別の工具などを必要とすることなく、ブラシレスモータのロータの磁極のステータに対する相対的な位置を精度よく推定することにある。
以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
本発明の一見地に係るブラシレスモータの制御装置は、ロータと、ステータと、少なくとも1つのホールセンサと、インクリメンタル型のエンコーダと、駆動装置と、を備えるブラシレスモータの制御装置である。ロータは、永久磁石により形成される複数の磁極を有する。ステータは、複数のコイルを有している。コイルは、コイルへの駆動電圧の印加により励磁される。ホールセンサは、ロータのステータに対する相対的な位置を検出する。インクリメンタル型のエンコーダは、ロータに固定される。駆動装置は、コイルに駆動電圧を印加する。
ブラシレスモータの制御装置は、磁極通過検出部と、基準電気角推定部と、ロータ回転位置推定部と、を備える。磁極通過検出部は、ロータの磁極がホールセンサを通過する際に発生する、ホールセンサから出力される位置検出信号の立ち上がり、又は、立ち下がりのいずれかを検出する。基準電気角推定部は、位置検出信号の立ち上がり、又は、立ち下がりのいずれかを基準とする基準位相角から、ホールセンサの位置とロータの位置との関係に基づいて決定される所定の電気角ずらした角度を、電気角の基準角度である基準電気角と推定する。ロータ回転位置推定部は、基準電気角と、インクリメンタル型のエンコーダからの出力とに基づいて、ブラシレスモータのロータの回転位置を推定する。
このブラシレスモータの制御装置では、まず、磁極通過検出部が、位置検出信号の立ち上がり、又は、立ち下がりのいずれかを検出する。次に、基準電気角推定部が、位置検出信号の立ち上がり、又は、立ち下がりを基準とする基準位相角から、ホールセンサの位置とステータの位置との関係に基づいて決定される所定の角度ずらした位相角を、基準電気角と推定する。
そして、ロータ回転位置推定部は、上記により推定された基準電気角とインクリメンタル型のエンコーダからの出力とに基づいて、ブラシレスモータのロータの回転位置を推定する。
このようなブラシレスモータの制御装置においては、インクリメンタル型のエンコーダなどのエンコーダをブラシレスモータに取り付ける際に、エンコーダの取り付け位置を厳密に調整する必要がなくなる。なぜなら、ステータのコイルの印加電圧のゼロクロスタイミングと、エンコーダのZ相の立ち上がりを同期させる必要がないからである。従って、エンコーダの取り付け位置調整のための特別の工具や、エンコーダやブラシレスモータへの加工の必要がなくなる。その結果、ブラシレスモータの制御装置が安価になる。
また、エンコーダの取り付け位置を厳密に調整することなく、効率よくブラシレスモータのロータを回転させることが可能となる。
さらに、このブラシレスモータの制御装置では、基準電気角とインクリメンタル型のエンコーダからの出力とに基づいて、ロータの回転位置を推定する。そのため、インクリメンタル型のエンコーダのZ相の位置などを厳密に決定することなく、ロータの回転位置を精度良く推定できる。
ブラシレスモータの制御装置では、基準電気角推定部は、ブラシレスモータの駆動開始時に、コイルに駆動電圧を印加してロータを回転させて基準電気角を推定してもよい。これにより、基準電気角推定部は、以降のブラシレスモータの制御時に、改めて基準電気角を推定する必要がなくなる。そのため、ブラシレスモータの制御装置の計算負荷を減少できる。
ブラシレスモータの制御装置では、ロータがCCW回転又はCW回転のいずれか一方をしている場合に基準位相角からずらす第2の所定の電気角は、ロータが他方の回転をしている場合に基準位相角からずらす第1の所定の電気角に、πラジアンを加算又は減算して推定してもよい。これにより、電気角の基準電気角の推定時間を短縮でき、かつ、簡単な計算により基準電気角を推定できる。
なお、CCW(Counter Clock Wise)回転とは、ロータから伸びるブラシレスモータの回転出力軸から見て反時計回りの回転を意味している。一方、CW(Clock Wise)回転とは、回転出力軸から見て時計回りの回転を意味している。
ブラシレスモータの制御装置では、ロータが電気角換算にて1回転以上回転しても、磁極通過検出部が位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合、ホールセンサ断線エラーと判断してもよい。
これにより、ホールセンサの異常をいち早く発見し、ホールセンサの交換等を行える。
ブラシレスモータの制御装置では、ブラシレスモータの駆動開始後、所定の時間内に、磁極通過検出部が位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合、ホールセンサ未検出エラーと判断してもよい。
これにより、ブラシレスモータの異常をいち早く発見できる。
ブラシレスモータの制御装置では、ホールセンサ断線エラー、又は、ホールセンサ未検出エラーと判断された場合、ブラシレスモータへの駆動電圧の印加を停止してもよい。
これにより、より安全にブラシレスモータの制御を行える。
本発明の他の見地に係るブラシレスモータの電気角推定方法は、ロータと、ステータと、少なくとも1つのホールセンサと、インクリメンタル型のエンコーダと、駆動装置と、を備えるブラシレスモータの電気角推定方法である。ロータは、永久磁石により形成される複数の磁極を有する。ステータは、複数のコイルを有している。コイルは、コイルへの駆動電圧の印加により励磁される。ホールセンサは、ロータのステータに対する相対的な位置を検出する。インクリメンタル型のエンコーダは、ロータに固定される。駆動装置は、コイルに駆動電圧を印加する。
ブラシレスモータの電気角推定方法は、以下のステップを備えている。
◎ロータの磁極がホールセンサを通過する際に発生する、ホールセンサから出力される位置検出信号の立ち上がり、又は、立ち下がりのいずれかを検出する磁極通過検出ステップ。
◎位置検出信号の立ち上がり、又は、立ち下がりのいずれかを基準とする基準位相角から、ホールセンサの位置と前記ステータの位置との関係に基づいて決定される所定の電気角ずらした角度を、電気角の基準角度である基準電気角と推定する、基準電気角推定ステップ。
このようなブラシレスモータの電気角推定方法を用いることにより、インクリメンタル型のエンコーダのようなエンコーダの取り付け位置を厳密に調整することなく、ブラシレスモータの電気角を推定できる。また、エンコーダの取り付け位置を厳密に調整することなく、効率よくブラシレスモータのロータを回転させることが可能となる。
本発明のさらに他の見地に係る記憶媒体は、上記のブラシレスモータの電気角推定方法をコンピュータにより実行させるためのプログラムを格納した記憶媒体である。
熟練した技術や特別の工具などを必要とすることなく、ブラシレスモータのロータの磁極のステータに対する相対的な位置を精度よく推定できる。
本実施形態のブラシレスモータの制御装置の全体構造を示す図 本実施形態のブラシレスモータの構造を示す図 スター結線されたステータのコイルと駆動装置との電気的な接続関係を示す図 デルタ結線されたステータのコイルと駆動装置との電気的な接続関係を示す図 制御装置の制御部の構成を示す図 ブラシレスモータの制御装置の基本的な動作を示すフローチャート モータ駆動開始後に原点復帰要求を行う場合のブラシレスモータの制御装置の動作を示すフローチャート ロータ回転位置の推定を行う場合のブラシレスモータの制御装置の動作を示すフローチャート ブラシレスモータのロータがCCW回転にて半回転する際の、ロータの磁極の回転状態を模式的に示す図 ブラシレスモータのロータがCCW回転にて1回転するときの、ロータの回転位置、ホールセンサの位置検出信号、ステータのコイルに印加する電圧、及び電気角カウンタが示す電気角の値の関係を経時的に示す図 ブラシレスモータのロータがCW回転にて半回転する際の、ロータの磁極の回転状態を模式的に示す図 ブラシレスモータのロータがCW回転にて1回転するときの、ロータの回転位置、ホールセンサの位置検出信号、ステータのコイルに印加する電圧、及び電気角カウンタが示す電気角の値の関係を経時的に示す図 磁極通過検出ステップの基本的な動作を示すフローチャート ロータの磁極の通過が、ロータが電気角換算にて1回転以上回転する間に検出できたかどうかを判定するステップを含む、磁極通過検出ステップの動作を示すフローチャート ロータの磁極の通過が、所定の時間内に検出できたかどうかを判定するステップをさらに含む、磁極通過検出ステップの動作を示すフローチャート
(1)第1実施形態
1−1.ブラシレスモータの制御装置の全体構造
ブラシレスモータの制御装置100の全体構造を、図1を用いて説明する。図1は、ブラシレスモータの制御装置100の全体構造を示す図である。
ブラシレスモータの制御装置100は、ブラシレスモータ1と、制御装置3と、上位装置5と、を備える。
ブラシレスモータ1は、ホールセンサ11a、11b、11cと、インクリメンタル型のエンコーダ13と、を有する。ホールセンサ11a、11b、11cは、ブラシレスモータ1のロータ17(図2)の磁極から発生する磁界を検出する。このとき、ホールセンサ11a、11b、11cは、ホールセンサ11a、11b、11cの検出面に入射する磁界の方向(すなわち、当該検出面にロータ17のN極が対向するか、S極が対向するか)に基づいて、正の電圧又は負の電圧を発生する。その結果、ホールセンサ11a、11b、11cは、ロータ17のブラシレスモータ1のステータ15a、15b、15c(図2)に対する相対的な位置を検出する。
インクリメンタル型のエンコーダ13は、ロータ17に固定される。インクリメンタル型のエンコーダ13は、ロータ17の回転に伴い、少なくとも2つのパルス信号を出力する。ブラシレスモータの制御装置100は、インクリメンタル型のエンコーダ13から出力される2つのパルス信号の位相関係に基づいて、ロータ17の回転方向を判定できる。
なお、ブラシレスモータ1の詳細な構造については、後ほど説明する。
制御装置3は、ブラシレスモータ1に接続され、ブラシレスモータ1の制御を行う。制御装置3は、駆動装置31と、制御部33と、を有する。
駆動装置31は、ブラシレスモータ1のステータ15a、15b、15c(図2)のコイルに電気的に接続されている。駆動装置31は、ブラシレスモータ1のステータ15a、15b、15cのコイルに電圧(駆動電圧)を印加する。ブラシレスモータ1のステータ15a、15b、15cのコイルに電圧を印加することにより、ステータ15a、15b、15cが励磁される。
駆動装置31として、例えば、インバータなどの電力発生装置が用いられる。
制御部33は、ホールセンサ11a、11b、11cと、インクリメンタル型のエンコーダ13に接続されている。制御部33は、ホールセンサ11a、11b、11c及びインクリメンタル型のエンコーダ13から出力される信号などに基づいて、駆動装置31を制御する。制御部33としては、例えば、駆動装置31及びブラシレスモータ1との信号のやりとりが可能なインターフェースを備えたマイコンボードなどを用いることができる。
なお、制御部33の構造の詳細については、後述する。
上位装置5は、制御装置3の制御部33に接続されている。また、上位装置5は、制御部33を介して、ブラシレスモータ1のホールセンサ11a、11b、11c及びインクリメンタル型のエンコーダ13から出力される信号を入力可能となっていてもよい。上位装置5は、ブラシレスモータ1のホールセンサ11a、11b、11c及びインクリメンタル型のエンコーダ13から出力される信号などに基づいて、制御部33に、ブラシレスモータ1の制御を行うための指令を出力する。
上位装置5としては、例えば、シーケンサ(プログラマブルロジックコントローラ(PLC))などを用いることができる。
1−2.ブラシレスモータの構造
次に、本実施形態におけるブラシレスモータ1の構造を、図2を参照しながら説明する。図2は、本実施形態におけるブラシレスモータ1の構造を示した図である。図2に示すブラシレスモータ1は、2極3スロットの三相ブラシレスモータである。
ブラシレスモータ1は、ホールセンサ11a、11b、11cと、ステータ15a、15b、15cと、ロータ17と、筐体19と、を有する。
ロータ17は、筐体19内部に、ロータ17に取り付けられた回転軸(図示せず)を中心に回転可能に設けられている。なお、上述のインクリメンタル型のエンコーダ13は、具体的には、ロータ17の回転軸に取り付けられている。図2に示すロータ17は、2極(極対数は1)の永久磁石により形成されている。これにより、ロータ17は、ステータ15a、15b、15cの磁極の変化に基づいて、回転する。
ここで、ロータ17の回転軸の、ブラシレスモータ1にて動作する装置などを接続する出力回転軸となる側は、図2の紙面から上(手前)方向に伸びている(図2において、白円の中心に黒点を付した印により、出力回転軸の伸びる方向を示している)。そして、この場合において、図2の紙面から見て時計回りのロータ17(の回転軸)の回転を、CW(Clock Wise)回転とし、反時計回りの回転をCCW(Counter Clock Wise)回転と定義する。
ステータ15a、15b、15cは、筐体19の側壁内部に、お互いに角度γ(機械角(後述))をなして配置されている。図2に示すブラシレスモータ1は、ステータを3つ有しており、角度γは120°である。ステータ15a、15b、15cのそれぞれは、心(鉄心など)に導線がコイル状に巻かれた構造(すなわち、コイル)を有している。
従って、ステータ15a、15b、15cのコイルに電圧を印加すると、ステータ15a、15b、15cは励磁される。また、ステータ15a、15b、15cのロータ17に面する方向(筐体19の内部に向かう方向)の励磁極は、コイルの巻き方向及びコイルへの電圧の印加方向(コイルの導線に流れる電流の方向)に基づいて決定される。
すなわち、電圧の極が時間的に変化する電圧(例えば、正弦波交流電圧など)をコイルに印加することにより、ステータ15a、15b、15cの励磁極は、電圧の極の時間変化に基づいて、N極及びS極に時間的に変化する。そして、3つのステータ15a、15b、15cのコイルに印加する電圧の位相を適切に異ならせることにより、筐体19内に回転磁界が発生する。そして、この回転磁界により、ロータ17は回転する。
なお、駆動装置31が三相の交流電圧を出力するもので、3つの出力端子R、S、及びTを有する場合、ステータ15a、15b、15cのコイルと駆動装置31との電気的な接続関係は、例えば、図3A及び図3Bに示す2種類ある。
1つ目は、スター結線(又はY結線)と呼ばれるものである。スター結線は、図3Aに示すように、ステータ15a(U相ステータ15aと呼ぶこともある)のコイルの一端、ステータ15b(V相ステータ15bと呼ぶこともある)のコイルの一端、及びステータ15c(W相ステータ15cと呼ぶこともある)のコイルの一端が、共通に1つの接点にて接続され、U相ステータ15aのコイルの他端、V相ステータ15bの他端、W相ステータ15cの他端が、それぞれ、駆動装置31の出力端子R、T、Sと接続される結線である。
2つ目は、デルタ結線(又は三角結線)と呼ばれるものである。デルタ結線は、図3Bに示すように、U相ステータ15aのコイルの一端とV相ステータ15bのコイルの一端が共通に接点tにて接続され、U相ステータ15aのコイルの他端とW相ステータ15cのコイルの一端が共通に接点rにて接続され、W相ステータ15cのコイルの他端とV相ステータ15bのコイルの他端が共通に接点sにて接続され、駆動装置の出力端子Rと接点rとが接続され、出力端子Sと接点sとが接続され、出力端子Tと接点tとが接続される結線である。
ホールセンサ11a、11b、11cは、筐体19の内部に設けられている。ホールセンサ11aは、ステータ15aの中心軸から図2の紙面から見て反時計回りに、角度βの角度をなして設置されている。そして、図2に示すブラシレスモータ1では、その他のホールセンサ11b及び11cも、それぞれ、ステータ15b及び15cに対して、反時計回りに角度βをなして設置されている。
このホールセンサ11a、11b、11cとステータ15a、15b、15cとのなす角度βは、ブラシレスモータ1の仕様書などに示されていることが多い。
ホールセンサ11a、11b、11cは、ホールセンサの検出面に面している磁極に応じて、正の電圧信号、又は、負の電圧信号(位置検出信号)を発生する。従って、ホールセンサ11a、11b、11cは、ホールセンサの取り付け位置において、ロータ17のどの磁極が、ホールセンサの検出面(ホールセンサの取り付け位置)を通過しているかについての情報を取得できる。
そして、上述のように、ホールセンサ11a、11b、11cは、それぞれ、ステータ15a、15b、15cと、ある所定の角度βをなして配置されているため、ホールセンサ11a、11b、11cは、それぞれ、ロータ17のステータ15a、15b、15cに対する相対的な位置を検出できる。
なお、本実施形態のホールセンサ11a、11b、11cにおいては、ホールセンサの検出面にロータ17のN極が面したときに正の電圧信号を発生し、ロータ17のS極が面したときに負の電圧信号を発生する。
なお、図2に示すブラシレスモータ1において、ホールセンサ11a、11b、11cが、それぞれ、ステータ15a、15b、15cとなす角度βは60°(機械角)である。しかし、角度βは60°に限られず、ブラシレスモータ1の種類などにより、所定の角度となる。
ここで、ホールセンサ11a、11b、11c(の位置検出信号)と、U相ステータ15a、V相ステータ15b、W相ステータ15cとの対応関係を明確にするため、ホールセンサ11a、11b、11cの位置検出信号を、それぞれ、U相の位置検出信号(H)、V相の位置検出信号(H)、W相の位置検出信号(H)と呼ぶこともある。
1−3.制御部の構成
次に、制御装置3の制御部33の構成について、図4を用いて説明する。図4は、制御部33の構成を示す図である。
なお、制御部33は、CPU(Central Processing Unit)と、記憶部と、その他インターフェース(いずれも図示せず)などを有するマイコンボードなどとして実現されている。下記に示す制御部33の各機能の一部又は全部は、マイコンボードなどに組み込まれた専用チップにより実現されていてもよい。また、制御部33の各機能の一部又は全部は、ファームウェアなどのプログラムにより実現されていてもよい。制御部33の各機能の一部又は全部をプログラムにより実現する場合、当該プログラムは、制御部33の記憶部に格納されていてもよい。
制御部33は、駆動装置制御部331と、磁極通過検出部333と、基準電気角推定部335と、ロータ回転位置推定部337と、電気角カウンタ339と、を有する。
駆動装置制御部331は、上位装置5及び制御部33の他の各構成からの指令や信号などに基づいて、制御装置3の駆動装置31にブラシレスモータ1の制御信号を送信する。また、ブラシレスモータ1のホールセンサ11a、11b、11c及びインクリメント型のエンコーダ13の信号を受信し、必要に応じて、制御部33の他の各構成及び上位装置5へ送信する。
磁極通過検出部333は、駆動装置制御部331を介して、ホールセンサ11a、11b、11cから出力される位置検出信号(H、H、又は/及び、H)を入力し、当該位置検出信号(H、H、又は/及び、H)の立ち上がり、又は、立ち下がりのいずれかを検出する。なお、本実施形態における磁極通過検出部333においては、位置検出信号の立ち上がりを検出する。この場合、磁極通過検出部333は、ホールセンサ11a、11b、11cの検出面に面するロータ17の磁極が、S極からN極に変化したことを検出する。
基準電気角推定部335は、磁極通過検出部333により検知した、ホールセンサ15a、15b、15cの位置検出信号の立ち上がり、又は、立ち下がりを基準とする基準位相角から、ホールセンサ11a、11b、11cの位置とステータ15a、15b、15cの位置との関係に基づいて決定される所定の角度ずらした位相角を、電気角の基準角度である基準電気角と推定する。
ここで、本実施形態における電気角について説明する。一般的に、モータの制御における電気角は、モータのロータの磁極数に依存する角度である。すなわち、電気角は、ロータが1回転したときに、360×極対数(磁極数÷2)(°)だけ増加する角度のことである。逆に、電気角が360°増加したとき、ロータは1/極対数(磁極数÷2)回転したことになる。本実施形態においては、磁極数は2(極対数:1)であるので、ロータ17が1回転する間に、電気角は360°増加する。すなわち、一般的に、電気角θは、機械角をθ、極対数をPとした場合、θ=θ×Pと表現できる。
一方、電気角に対して、機械角という用語がある。機械角とは、ロータの回転角度やホールセンサとステータのなす角度など、機械構造における角度を表現するための角度である。一般的に、機械角θは、θ=θ÷Pと表現できる。
また、角度の単位として、「°(度)」又は「ラジアン(rad.)」を用いる。「°」を単位とする角度Xと、「ラジアン」を単位とする角度Yとは、Y(rad.)=X(°)/180×πという公知の式により、相互に変換可能である。
電気角は、ステータのコイルに印加される電圧の位相と関連する角度でもある。従って、以下においては、電気角は、原則として、正弦波の位相を表すときによく使われるラジアンを単位とする角度で主に表現することにする。
なお、基準電気角推定部335における、基準電気角の推定動作(方法)については、後ほど詳しく説明する。
ロータ回転位置推定部337は、基準電気角と、インクリメンタル型のエンコーダ13からの出力とに基づいて、ブラシレスモータのロータ17の回転位置を推定する。すなわち、ロータ回転位置推定部337は、ロータ17の回転にともなって発生する、インクリメンタル型のエンコーダ13から出力されたパルス数と、基準電気角とに基づいて、ブラシレスモータのロータ17の回転位置を推定する。ここで、ロータ17の回転位置とは、ロータ17の基準位置からの回転角度である。
また、ロータ回転位置推定部337は、基準電気角を基準として、ロータ17の回転位置を推定する。上記のように、基準電気角は、基準電気角推定部335にて推定可能な、制御部33の内部パラメータとみなすことができる。よって、基準電気角をインクリメンタル型のエンコーダ13の出力パルスのカウントの基準とすることにより、インクリメンタル型のエンコーダ13の取り付け位置を厳密に調整して、インクリメンタル型のエンコーダ13のZ相のパルス発生タイミングを厳密に決定することなく、ロータ17の回転位置を精度良く推定できる。
なお、ロータ回転位置推定部337による、ロータ17の回転位置の推定方法については後述する。
電気角カウンタ339は、基準電気角と、インクリメンタル型のエンコーダ13からの出力に基づいて、電気角のカウントを行う。電気角カウンタ339は、電気角が基準電気角となるタイミングにおいて、インクリメンタル型のエンコーダ13からの出力パルス数のカウントを開始し、基準電気角となるタイミングからのロータ17の回転量に基づいて発生したインクリメンタル型のエンコーダ13からの出力パルス数に基づいて、電気角をカウントする。
なお、本実施形態では、電気角カウンタ339は、以下のようにして、インクリメンタル型のエンコーダ13からの出力に基づいて、電気角のカウントを行う。また、インクリメンタル型のエンコーダ13から出力されるパルス数は、ロータ17がCW回転するときに増加し、正の値のみを示すものとする。そして、ロータ17が電気角にて1回転(機械角にて、1/(極対数)回転)したときに出力されるパルス数をNMAXとし、電気角が基準電気角となったときのパルス数がNであるとする。なお、以下の式において、Nは、電気角が基準電気角となる毎に更新されるとする。
この時、インクリメンタル型のエンコーダ13からのパルス数がNとなったときの電気角カウンタ339の電気角のカウント(電気角カウント)は、
CCW回転時:φCCW=2π×(N−N)/NMAX(rad.)
CW回転時:φCW=2π×(NMAX+N−N)/NMAX(rad.)
となる。
上記の式から分かるように、本実施形態において、ロータ17がCCW回転するとき電気角は増加する。なぜなら、ロータ17がCCW回転する回転量に従い、インクリメンタル型のエンコーダ13のパルス数Nは減少するからである。そして、電気角が基準電気角となったときのパルス数Nは電気角が基準電気角となる毎に更新されるため、電気角のカウントは2πラジアンになった時点にて0ラジアンにリセットされる。
一方、ロータ17がCW回転するとき電気角は減少する。そして、電気角のカウントは、0ラジアンになった時点にて2πラジアンにリセットされる。
(2)ブラシレスモータの制御装置の動作
2−1.ブラシレスモータの制御装置の動作
次に、本実施形態に係るブラシレスモータの制御装置100の動作について、図5A〜図5Cを用いて説明する。図5Aは、ブラシレスモータの制御装置100の基本的な動作を示すフローチャートである。
まず、ブラシレスモータの制御装置100の始動後、制御装置3及び上位装置5は、ブラシレスモータ1の制御のための各種初期設定を行う(ステップS1)。次に、制御装置3は、上位装置5からブラシレスモータ1の制御指令を受信する(ステップS2)。
制御装置3が、ブラシレスモータ1の駆動開始の制御指令を、上位装置5から受信した場合(ステップS3にて「Yes」の場合)、制御装置3は、ブラシレスモータ1の駆動を開始する(ステップS4)。制御装置がブラシレスモータ1の駆動開始の制御指令を受信しない場合(ステップS3にて「No」の場合)、次のステップに進む。
また、制御装置3が、制御装置3においてブラシレスモータ1の原点復帰を行うよう要求する制御指令を、上位装置5から受信した場合(ステップS5にて「Yes」の場合)、制御装置3は、原点復帰処理を行う(ステップS6)。ここで、原点復帰処理とは、ブラシレスモータ1の基準電気角を推定するための処理のことである。原点復帰処理のステップS6における、ブラシレスモータ1の基準電気角の推定方法については、後述する。
そして、制御装置3が、原点復帰の制御指令を上位装置5から受信しない場合(ステップS5にて「No」の場合)、制御装置3は、その他、上位装置5から受信したブラシレスモータ1の各種制御指令に基づいて、ブラシレスモータ1の各種制御処理を行う(ステップS7)。
その後、制御装置3は、上位装置5からブラシレスモータ1の制御を停止する制御指令を受信しない場合(ステップS8にて「No」の場合)、前述のステップS2に戻る。一方、制御装置3が、上位装置5からブラシレスモータ1の制御を停止する制御指令を受信した場合(ステップS8にて「Yes」の場合)、制御装置3は、ブラシレスモータ1の制御を停止する。
すなわち、上位装置5からブラシレスモータ1の制御を停止する制御指令を受信しない限り、制御装置3は、上位装置5からの制御指令を受信し続け、受信した制御指令に基づいた各種処理を実行する。
なお、制御装置3は、ブラシレスモータの駆動開始時にステータ15a、15b、15cのコイルに駆動電圧を印加してロータ17を回転させて基準電気角を推定するため、ブラシレスモータ1の駆動開始の指令を受信し(ステップS3)、ブラシレスモータ1の駆動を開始した(ステップS4)後に、原点復帰を行うよう要求する制御指令を送信してもよい(図5BのステップS41)。
この場合、制御装置3が、原点復帰を行うよう要求する制御指令を送信するよう、上位装置5に要求してもよいし、制御装置3が、制御装置3自身に原点復帰を行うよう指令してもよい。
これにより、基準電気角推定部335は、以降のブラシレスモータ1の制御時に、改めて基準電気角を推定する必要がなくなる。そのため、ブラシレスモータの制御装置100の計算負荷を減少できる。
また、制御装置3によるブラシレスモータ1の制御において、ブラシレスモータ1のロータ17の回転位置を推定するロータ回転位置推定ステップS71をさらに有していてもよい(図5C)。
ロータ回転位置推定ステップS71においては、制御装置3が、上位装置5からロータ回転位置を推定するよう要求する指令を受信した場合(ステップS711にて「Yes」の場合)、制御装置3の制御部33のロータ回転位置推定部337が、基準電気角と、インクリメンタル型のエンコーダ13からの出力とに基づいて、ブラシレスモータ1のロータ17の回転位置を推定する。具体的には、以下のようにして、ロータ17の回転位置を推定する(ステップS712)。
今、ロータ17が回転することにより、電気角が基準電気角となったタイミングからのインクリメンタル型のエンコーダ13の出力パルスのカウント数がNとなったとする。そして、ロータ17が1回転したときにインクリメンタル型のエンコーダ13から出力されるパルス数をMMAXとする。
この時、電気角が基準電気角となったタイミングからのロータ17の回転量θ(°)(機械角)は、θ=360×(N%MMAX)/MMAX(°)の式から推定できる。この式において、記号「%」は除算の余りを算出する演算子である。
そして、任意の基準位置からのロータ17の回転位置は、電気角が基準電気角となるタイミングにおけるロータ17の回転位置から、当該任意の基準位置までのなす角度が分かっていれば、上記回転量θと当該角度とを加算、又は、上記回転量θから当該角度を減算することにより、推定できる。なお、当該加算を選択するか減算を選択するかは、ロータ17の回転方向と、当該角度が、基準電気角に対応する回転位置から(ロータ17に備えられている回転軸の出力回転軸が伸びる方向から見て)時計回りの方向になす角度であるか、反時計周りの方向になす角度であるか、等に基づいて判断すればよい。
電気角が基準電気角となるタイミングにおけるロータ17の回転位置から、任意の基準位置までのなす角度は、例えば、当該任意の基準位置からロータ17が回転を開始してから、ホールセンサ11a、11b、11cの位置検出信号の立ち上がり、又は、立ち下がりまでの、インクリメンタル型のエンコーダ13の出力パルスのパルス数を計数することにより算出できる。
このように、基準電気角と、インクリメンタル型のエンコーダ13からの出力に基づいて、ロータ17の回転位置を推定することにより、インクリメンタル型のエンコーダ13をブラシレスモータ1に取り付ける際に、インクリメンタル型のエンコーダ13の取り付け位置を厳密に調整してインクリメンタル型のエンコーダ13のZ相の位置を厳密に決定することなく、ロータ17の回転位置を精度良く推定できる。
また、ロータ17の回転位置を推定するための基準位置は、インクリメンタル型のエンコーダ13のZ相の位置によらず、任意に決定できる。すなわち、ブラシレスモータ1の出力回転軸にインクリメンタル型のエンコーダ13を取り付け、Z相の位置を決定し、制御対象負荷を取り付けた後であっても、当該基準位置を任意に決定できる。
2−2.基準電気角推定方法
次に、原点復帰処理(ステップS6)における、基準電気角の推定方法について説明する。ここでは、まず、ブラシレスモータ1のロータ17の回転中における、ロータ17の回転位置(機械角)、ホールセンサ11a、11b、11cの位置検出信号、ステータ15a、15b、15cのコイルに印加する電圧、及び電気角カウンタ339が示す電気角の値の関係について説明する。そして、基準電気角の推定方法について説明する。その後、本実施形態における原点復帰処理(ステップS6)における具体的な処理の流れを説明する。
2−2−1.ロータ回転中の、位置検出信号、ステータのコイルに印加する電圧、及び電気角カウンタの変化
まず、ロータ17回転中の、位置検出信号、ステータのコイルに印加する電圧、及び電気角カウンタの変化を、図6A〜図7Bを用いて説明する。図6A〜図7Bを用いた以後の説明においては、ホールセンサ11aから出力されるU相の位置検出信号(H)の変化、U相ステータ15aへの印加電圧の変化、及びU相ステータ15aのための電気角カウンタの変化を示すこととする。図6A及び図7Aにおいて、図中右下の白丸の中心に黒点を付した印は、ロータ17の出力回転軸が紙面から手前に向かう方向に延びていることを示している。
そして、U相ステータ15aのコイルには、正弦波電圧が印加されるものとし、U相ステータ15aのコイルに正の電圧が印加されたときに、U相ステータ15aのロータ17に面した側がN極に励磁されるものとする。また、U相ステータ15aのコイルに印加される正弦波電圧の位相が2π×n(n:整数)となるときに、電気角が基準電気角になるものとする。
また、ロータ17の円周上の三角印は、ロータ17の磁極の境界線上にあり、ロータ17の中心から当該三角印に向かう方向を12時方向とした場合、当該磁極の境界線から反時計回り側のロータ17の磁極がS極、時計回り側のロータ17の磁極がN極となっているものとする。さらに、図6A及び図7Aにおいて、ロータ17の中心から、磁極の境界線に沿って、U相ステータ15aに向かう方向を12時方向としたときに、ロータ17の円周上に付された当該三角印の先端が、9時方向(反時計回りに90°)を向いている時を、ロータ17の回転位置の0°とする。
また、ロータ17の回転位置が0°の時に、インクリメンタル型のエンコーダ13のパルス数がNになったとする。さらに、ロータ17が1回転したとき、インクリメンタル型のエンコーダ13から出力されるパルス数はNMAXであるとする。
上記の仮定は、以下の説明を明確に分かり易くするために設けた仮定であり、上記の仮定以外の任意の仮定を設定してもよい。特に、ホールセンサ11aは、他のホールセンサ11b又は11cに、U相ステータ15aは、V相ステータ15b又はW相ステータ15cに置き換わっていてもよい。
以下、ロータ17がCCW回転した場合、及び、CW回転した場合に分けて、ロータ17回転中の、U相の位置検出信号H、U相ステータ15aのコイルに印加する電圧(U相ステータ15aの印加電圧とも言う)、及び電気角カウンタ339の電気角カウントの変化について説明する。
(i)ロータがCCW回転するとき
まず、図2に示す構造を有するブラシレスモータ1のロータ17がCCW回転にて1回転するときの、ロータ17の回転位置(機械角)、U相の位置検出信号H、U相ステータ15aのコイルに印加する電圧、及び電気角カウントの関係を、図6A及び図6Bを用いて説明する。図6Aは、ブラシレスモータ1のロータ17が、CCW回転にて1回転する際の、ロータ17の磁極の位置の状態を模式的に示す図である。図6Bは、ロータ17がCCW回転にて1回転するときの、ロータ17の回転位置(機械角)、U相の位置検出信号H、U相ステータ15aの印加電圧、及び電気角カウントの関係を経時的に示した図である。
ロータ17の回転位置が0°(図6Aの(0))のとき、ホールセンサ11aの検出面は、ロータ17のN極に面している。そのため、図6Bに示すように、ロータ17の回転位置が0°のとき、ホールセンサ11aの位置検出信号(U相の位置検出信号H)は、正の電圧となる。一方、ロータ17のN極とU相ステータ15aとが正対している。この時、U相ステータ15aの印加電圧は0(V)となる。
なお、後述するように、ロータ17の回転位置が0°の時、U相ステータ15aの印加電圧の位相は0ラジアンとなる。従って、ロータ17の回転位置が0°の時の電気角が基準電気角となる。そして、上述のCCW回転時の電気カウントを表す式φCCW=2π×(N−N)/NMAXにおいて、N=Nとなる。なぜなら、Nは、電気角が基準電気角となるときのインクリメンタル型のエンコーダ13から出力されたパルス数であるからである。
また、ロータ17の回転位置が0°の時、インクリメンタル型のエンコーダ13から出力されたパルス数はNである。従って、上記のCCW回転時の電気カウントを表す式において、N=Nとなっている。よって、電気角カウントφCCWは0ラジアンとなる。
ロータ17の回転位置が−90°(図6Aの(1))になったとき、U相ステータ15aとロータ17の磁極の境界線とが正対する。そして、ロータ17の中心から、磁極の境界線に沿って、U相ステータ15aへ向かう方向を12時方向とした場合、反時計回り側にロータ17のN極が、時計回り側にロータ17のS極が存在する。この状態において、ロータ17をCCW回転させるためには、U相ステータ15aのロータ17に面する側にN極を発生させる。なぜなら、U相ステータ15aのロータ17に面する側にN極を発生させると、U相ステータ15aとロータ17のN極側との間には斥力が働き、U相ステータ15aとロータ17のS極側との間には引力が働くからである。そして、ロータ17はCCW回転しようとする力を受けるからである。従って、このとき、U相ステータ15aには正の最大印加電圧Vが印加される(図6B)。
図6Bにも示すとおり、CCW回転時において、ロータ17の回転位置が0°から−90°に変化したとき、U相ステータ15aのコイルに印加される電圧は、0(V)から最大値(V(V))へ増加している。この場合、U相ステータ15aの印加電圧の位相は0ラジアンからπ/2へと変化する。よって、ロータ17の回転位置が0°の時、U相ステータ15aの印加電圧の位相は0ラジアンである。そして、ロータ17の回転位置が−90°のとき、U相ステータ15aの印加電圧の位相はπ/2ラジアンである。
また、ロータ17の回転位置が−90°のとき、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N−(90°/360°)×NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、ロータ17の回転位置が−90°のときの電気角カウントφCCWは、π/2ラジアンとなる。
なお、図6Aの(1)〜(6)において、回転位置が負値となっているのは、ロータ17がCCW回転(反時計回り)していることを示している。すなわち、CW回転が正方向の回転である。しかし、これに限られず、図6Aの(1)〜(6)において、回転位置を正値として表現してもよい。この場合、CCW回転が正方向の回転とする。
ロータ17の回転位置が−150°(図6Aの(2))のとき、ホールセンサ11aの検出面と、ロータ17の磁極の境界線が正対する。このとき、ロータ17の中心から、磁極の境界線に沿って、ホールセンサ11aの検出面へ向かう方向から見て、磁極の境界線から反時計回り側にN極が存在し、時計回り側にS極が存在する。従って、磁極の境界線がホールセンサ11aの検出面をCCW回転にて通過すると、図6Bに示すように、U相の位置検出信号Hが正の電圧から負の電圧へと変化する。すなわち、U相の位置検出信号Hの立ち下がりが発生する。
このとき、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N−(150°/360°)×NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、ロータ17の回転位置が−150°のときの電気角カウントφCCWは、5π/6ラジアンとなる。
ロータ17の回転位置が−180°(図6Aの(3))のとき、U相ステータ15aとロータ17のS極が正対している。この時、U相ステータ15aの印加電圧は0(V)となる。そして、ロータ17の回転位置が−90°から−180°に変化するときに、U相ステータ15aのコイルに印加される電圧は、最大値(V(V))から0(V)へと変化している。従って、ロータ17の回転位置が−180°のとき、U相ステータ15aの印加電圧の位相はπラジアンとなる。
また、このとき、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N−(180°/360°)×NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、ロータ17の回転位置が−180°のときの電気角カウントφCCWは、πラジアンとなる。
ロータ17の回転位置が−270°(図6Aの(4))のとき、U相ステータ15aとロータ17の磁極の境界線とが正対する。この時、ロータ17の中心から、磁極の境界線に沿って、U相ステータ15aへ向かう方向を12時方向とした場合、反時計回り側にロータ17のS極が、時計回り側にロータ17のN極が存在する。この状態において、ロータ17をCCW回転させるためには、U相ステータ15aのロータ17に面する側にS極を発生させる。なぜなら、U相ステータ15aのロータ17に面する側にS極を発生させると、U相ステータ15aとロータ17のS極側との間には斥力が働き、U相ステータ15aとロータ17のN極側との間には引力が働くからである。そして、ロータ17はCCW回転しようとする力を受けるからである。従って、このとき、U相ステータ15aには負の最小印加電圧−Vが印加される(図6B)。
このとき、U相ステータ15aの印加電圧の位相は3π/2ラジアンである。また、このとき、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N−(270°/360°)×NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、ロータ17の回転位置が−270°のときの電気角カウントφCCWは、3π/2ラジアンとなる。
ロータ17の回転位置が−330°(図6Aの(5))のとき、ホールセンサ11aの検出面と、ロータ17の磁極の境界線が正対する。このとき、ロータ17の中心から、磁極の境界線に沿って、ホールセンサ11aの検出面へ向かう方向から見て、磁極の境界線から反時計回り側にS極が存在し、時計回り側にN極が存在する。従って、磁極の境界線がホールセンサ11aの検出面をCCW回転にて通過すると、図6Bに示すように、U相の位置検出信号Hが負の電圧から正の電圧へと変化する。すなわち、U相の位置検出信号Hの立ち上がりが発生する。
この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N−(330°/360°)×NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、ロータ17の回転位置が−330°のときの電気角カウントφCCWは、11π/6ラジアンとなる。
ロータ17の回転位置が−360°(図6Aの(6))のとき、ロータ17の磁極の位置関係は、回転位置が0°の時と同じになる。この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N−(360°/360°)×NMAX=N−NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、ロータ17の回転位置が−360°のときの電気角カウントφCCWは、2πラジアンとなる。
そして、この時、電気カウントが2πラジアンとなっているので、電気カウンタ339は、φCCW=2π×(N−N)/NMAXの式のNを、NからN−NMAXに更新する。これにより、電気カウントφCCWは0ラジアンとなる。
(ii)ロータがCW回転するとき
次に、ブラシレスモータ1のロータ17が、CW(時計回り)回転にて1回転するときの、ロータ17の回転位置(機械角)、U相の位置検出信号H、U相ステータ15aの印加電圧、及び(U相ステータ15aの)電気角カウンタ339が示す電気角の値の関係を、図7A及び図7Bを用いて説明する。図7Aは、ブラシレスモータ1のロータ17が、CW回転にて1回転する際の、ロータ17の磁極の位置の状態を模式的に示す図である。図7Bは、CW回転にて1回転するときの、ロータ17の回転位置(機械角)、U相の位置検出信号H、U相ステータ15aの印加電圧、及び電気角カウンタ339の電気角カウントの関係を経時的に示した図である。
ロータ17の回転位置が0°(図7Aの(0))のとき、上述のCCW回転のときと同様、U相の位置検出信号Hは正の電圧となっており、U相ステータ15aの印加電圧は0(V)となる。なお、後述するように、このときのU相ステータ15aの印加電圧の位相は0ラジアンとなる。従って、ロータ17の回転位置が0°のときの電気角が基準電気角となる。そして、上述のCW回転時の電気カウントを表す式φCW=2π×(NMAX+N−N)/NMAXにおいて、N=Nとなる。
この時、φCW=2π×(NMAX+N−N)/NMAXの式、及びN=Nであることから、ロータ17の回転位置が0°の時の電気角カウントφCWは2πラジアンとなる。
ロータ17の回転位置が30°(図7Aの(1))のとき、ホールセンサ11aの検出面と、ロータ17の磁極の境界線が正対する。このとき、ロータ17の中心から、磁極の境界線に沿って、ホールセンサ11aの検出面に向かう方向を12時方向とした場合、磁極の境界線から反時計回り側にS極が存在し、時計回りにN極が存在する。従って、ロータ17の磁極の境界線が、ホールセンサ11aの検出面をCW回転にて通過すると、図7Bに示すように、U相の位置検出信号Hが正の電圧から負の電圧へと変化する。すなわち、U相の位置検出信号Hの立ち下がりが発生する。
この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N+(30°/360°)×NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、ロータ17の回転位置が30°のときの電気角カウントφCWは、11π/6ラジアンとなる。
なお、図7Aの(1)〜(6)において、回転位置が正値となっているのは、ロータ17がCW回転(時計回り)していることを示している。すなわち、CW回転が正方向の回転である。一方、CCW回転を正方向の回転とした場合は、図7Aの(1)〜(6)の回転位置は負値として表現される。
ロータ17の回転位置が90°(図7Aの(2))のとき、U相ステータ15aとロータ17の磁極の境界線とが正対する。この時、ロータ17の中心から、磁極の境界線に沿って、U相ステータ15aに向かう方向を12時方向とした場合、反時計回り側にロータ17のS極が、時計回り側にロータ17のN極が存在する。この状態において、ロータ17をCW回転させるためには、U相ステータ15aのロータ17に面する側にN極を発生させる。なぜなら、U相ステータ15aのロータ17に面する側にN極を発生させると、U相ステータ15aとロータ17のS極側との間には引力が働き、U相ステータ15aとロータ17のN極側との間には斥力が働くからである。そして、ロータ17はCW回転しようとする力を受けるからである。従って、このとき、U相ステータ15aには最大印加電圧Vが印加される(図7B)。
ここで、ロータ17の回転位置が0°から90°へCW回転したときに、U相ステータ15aの印加電圧は、0(V)からV(V)(最大値)に変化している。従って、U相ステータ15aの印加電圧の位相は、0ラジアンからπ/2ラジアンへ変化している。よって、CW回転時、ロータ17の回転位置が0°のときにU相ステータ15aの印加電圧の位相は0ラジアンとなり、ロータ17の回転位置が90°の時にU相ステータ15aの印加電圧の位相がπ/2ラジアンとなる。
この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N+(90°/360°)×NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、ロータ17の回転位置が90°のときの電気角カウントφCWは、3π/2ラジアンとなる。
ロータ17の回転位置が180°(図7Aの(3))のとき、U相ステータ15aとロータ17のS極とが正対する。この時、U相ステータ15aの印加電圧は0(V)である(図7B)。また、このときのU相ステータ15aの印加電圧の位相はπラジアンである。
この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N+(180°/360°)×NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、ロータ17の回転位置が180°のときの電気角カウントφCWは、πラジアンとなる。
ロータ17の回転位置が210°(図7Aの(4))のとき、ホールセンサ11aの検出面と、ロータ17の磁極の境界線が正対する。このとき、ロータ17の中心から、磁極の境界線に沿って、ホールセンサ11aの検出面に向かう方向を12時方向とした場合、磁極の境界線から反時計回り側にN極が存在し、時計回りにS極が存在する。従って、ロータ17の磁極の境界線が、ホールセンサ11aの検出面をCW回転にて通過すると、図7Bに示すように、U相の位置検出信号Hが負の電圧から正の電圧へと変化する。すなわち、U相の位置検出信号Hの立ち上がりが発生する。
この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N+(210°/360°)×NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、ロータ17の回転位置が210°のときの電気角カウントφCWは、5π/6ラジアンとなる。
ロータ17の回転位置が270°(図7Aの(5))のとき、U相ステータ15aとロータ17の磁極の境界線とが正対する。この時、ロータ17の中心から、磁極の境界線に沿って、U相ステータ15aに向かう方向を12時方向とした場合、反時計回り側にロータ17のN極が、時計回り側にロータ17のS極が存在する。この状態において、ロータ17をCW回転させるためには、U相ステータ15aのロータ17に面する側にS極を発生させる。なぜなら、U相ステータ15aのロータ17に面する側にS極を発生させると、U相ステータ15aとロータ17のS極側との間には斥力が働き、U相ステータ15aとロータ17のN極側との間には引力が働くからである。そして、ロータ17はCW回転しようとする力を受けるからである。従って、このとき、U相ステータ15aには負の最小印加電圧−Vが印加される(図7B)。
よって、このときのU相ステータ15aの印加電圧の位相は3π/2ラジアンとなる。
この時、インクリメンタル型のエンコーダ13が出力するパルス数は、N+(270°/360°)×NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、ロータ17の回転位置が270°のときの電気角カウントφCWは、π/2ラジアンとなる。
ロータ17の回転位置が360°(図7Aの(6))のとき、ロータ17の磁極の位置関係は、回転位置が0°の時と同じになる。この時、インクリメンタル型のエンコーダ13が出力するパルス数Nは、N=N+(360°/360°)×NMAX=N+NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、ロータ17の回転位置が360°のときの電気角カウントφCWは、0ラジアンとなる。
そして、この時、電気カウントが0ラジアンとなっているので、電気カウンタ339は、φCW=2π×(NMAX+N−N)/NMAXの式のNを、NからN+NMAXに更新する。これにより、電気カウントφCWは2πラジアンとなる。
図6A〜図7Bに示したロータ17の回転状態やU相ステータ15aの印加電圧波形などは、継続的なロータ17の回転のうちの1周期におけるものを示したものである。従って、継続的なロータ17の回転において、上記の電気角が基準電気角となるタイミングとU相の位置検出信号Hが立ち上がるタイミングなどは、ブラシレスモータ1に固有の不変値となっている。
さらに、ブラシレスモータ1の制御装置100において、U相の位置検出信号Hが立ち上がるタイミングは電気角カウンタ339の電気角カウントとして数値化されていることは、上記の説明から分かる。従って、継続的なロータ17の回転において、U相の位置検出信号Hが立ち上がるタイミングに基づいて、基準電気角を推定することが可能となる。以下に、具体的な基準電気角の推定方法について説明する。
2−2−2.基準電気角推定方法
次に、上記2−2−1.節において図6A〜図7Bを用いて説明した内容に基づいて、基準電気角の推定方法について説明する。上記2−2−1.節にて図6A〜図7Bを用いて説明したように、CCW回転においては、ロータ17の回転位置が−330°の時にU相の位置検出信号Hが立ち上がり、ロータ17の回転位置が0°の時に電気角が基準電気角となる。一方、CW回転においては、ロータ17の回転位置が210°の時にU相の位置検出信号が立ち上がり、ロータの回転位置が0°の時に電気角が基準電気角となる。
また、CCW回転において、ロータ17の回転位置が−330°の時の電気角カウントφCCWは11π/6ラジアンである。一方、CW回転において、ロータ17の回転位置が210°の時の電気角カウントφCWは5π/6ラジアンである。
図6B及び図7Bから分かるように、電気角カウントはロータ17の1回転において時間に対してリニアに増加又は減少している。すなわち、ロータ17の1回転の周期をTとすると、CCW回転においては、時間に対して、2π/Tの割合で電気角カウントは増加し、CW回転においては、時間に対して、2π/Tの割合で減少している。
ここで、U相の位置検出信号Hの立ち上がりを基準(基準位相角)とした場合、CCW回転においては、U相の位置検出信号Hの立ち上がりタイミングから、11π/6/(2π/T)=11T/12前(又は、T/12後)に、電気角カウントが基準電気角となっていたと推定できる。これは、基準位相角から11π/6ラジアン分負側にずれた(又は、π/6ラジアン分正側にずれた)位置に基準電気角が存在すると推定することに相当する。
または、電気角カウンタ339の電気角カウントを、U相の位置検出信号Hの立ち上がりタイミングにおいて、上記のようにして求められたU相の位置検出信号Hの立ち上がりタイミングにおける電気角カウントの値に補正することによって行ってもよい。この場合、上記の例においては、U相の位置検出信号Hの立ち上がりタイミングにおいて、電気角カウンタ339の電気角カウントは11π/6ラジアン(または、−π/6ラジアン)と補正される。これにより、ロータ17の回転速度が変化しても、確実、かつ、正確に基準電気角を推定できる。
一方、CW回転においては、図7Bから分かるように、U相の位置検出信号Hの立ち上がりタイミングから、5π/6/(2π/T)=5T/12後に、電気角カウントが基準電気角となっていたと推定できる。これは、基準位相角から5π/6ラジアン分正側にずれた位置に基準電気角が存在すると推定することに相当する。
または、CCW回転時と同様、基準電気角の推定を、電気角カウンタ339の電気角カウントをU相の位置検出信号Hの立ち上がりタイミングにおいて、5π/6ラジアンと補正することによって行ってもよい。これにより、ロータ17の回転速度が変化しても、確実、かつ、正確に基準電気角を推定できる。
図2において示した、ホールセンサ11aとU相ステータ15aとがなす角度をβ(機械角)として、より一般的に電気角カウンタ339の電気角カウントについて説明すると、本実施形態において、ロータ17がCCW回転している場合には、ロータ17が、回転位置0°(基準電気角)から270°+β(機械角)回転した後、U相の位置検出信号Hの立ち上がりが発生する。この時、インクリメンタル型のエンコーダ13のパルス数Nは、N=N−((270°+β)/360°)×NMAXとなっている。したがって、φCCW=2π×(N−N)/NMAXの式から、U相の位置検出信号Hの立ち上がりが発生する時の電気角カウントαCCWは、(3/2+β/180)×πラジアンとなる。
一方、ロータ17がCW回転している場合には、ロータ17が、回転位置0°(基準電気角)から180°+(90°−β)=270°−β(機械角)回転した後、U相の位置検出信号Hの立ち上がりが発生する。この時、インクリメンタル型のエンコーダ13のパルス数は、N+((270°−β)/360°)×NMAXとなっている。したがって、φCW=2π×(NMAX+N−N)/NMAXの式から、U相の位置検出信号Hの立ち上がりが発生する時の電気角カウントαCWは、(1/2+β/180)×πラジアンとなる。
このように、基準電気角を推定するために基準位相角からずらす角度である、U相の位置検出信号Hの立ち上がりが発生する時の電気角カウントαCCW、αCWは、U相ステータ15aとホールセンサ11aとのなす角度βにより決定されている。従って、言い換えると、基準電気角は、基準位相角から、ホールセンサ11aの位置とステータ15aの位置との関係(なす角度)に基づいて決定される角度(U相の位置検出信号Hの立ち上がりが発生する時の電気角カウント)ずらすことにより、推定できる。
上記のCCW回転時のU相の位置検出信号Hの立ち上がりが発生する時の電気角カウントαCCWと、CW回転時のU相の位置検出信号Hの立ち上がりが発生する時の電気角カウントαCWの式から分かることは、これら2つの電気角カウントの差を計算すると、αCCW−αCW=πラジアンとなることである。すなわち、これら2つの電気角カウントの差は、ブラシレスモータ1の構造によらず、常にπラジアン(電気角)である。
従って、CCW回転時又はCW回転時のU相の位置検出信号Hの立ち上がりが発生する時の電気角カウント(第1の所定の電気角)を推定できれば、もう一方のU相の位置検出信号Hの立ち上がりが発生する時の電気角カウント(第2の所定の電気角)は、第1の所定の電気角にπラジアンを加算するか、又は、減算することにより簡単に推定できる。これにより、電気角の基準電気角の推定時間を短縮でき、かつ、簡単な計算により基準電気角w推定できる。
2−2−3.原点復帰処理における動作
次に、本実施形態に係るブラシレスモータの制御装置100における、原点復帰処理(ステップS6)における具体的な動作を、図8Aを用いて説明する。図8Aは、原点復帰処理の基本的な動作を示すフローチャートである。
原点復帰処理は、磁極通過検出ステップS61と、基準電気角推定ステップS62とを含む。磁極通過検出ステップS61においては、ロータ17の磁極がホールセンサ11a、11b、及び/又は11cを通過する際に発生する、ホールセンサ11a、11b、及び/又は11cから出力される位置検出信号(H、H、及び/又はH)の立ち上がりを検出する。なお、磁極検出ステップS61における、さらに詳細な動作は後述する。
なお、磁極通過検出ステップS61において、ホールセンサ11a、11b、及び/又は11cから出力される位置検出信号(H、H、及び/又はH)の立ち下がりを検出してもよい。なぜなら、後述の基準電気角推定ステップS62において、ホールセンサ11a、11b、及び/又は11cから出力される位置検出信号(H、H、及び/又はH)の立ち下がりを基準位相角の基準としても、上記2−2−1.節及び2−2−2.節における説明をすることが可能だからである。
基準電気角推定ステップS62においては、基準電気角推定部335が、基準位相角から、ホールセンサ11a、11b、及び/又は11cの位置とステータ15a、15b、及び/又は15cの位置との関係に基づいて決定される所定の角度ずらした位相角を、基準電気角と推定する。このとき、基準電気角推定部335は、上記2−2−2.節において説明した方法により、基準電気角を推定できる。
このような原点復帰処理を行うことにより(ブラシレスモータ1の電気角推定方法を用いることにより)、インクリメンタル型のエンコーダ13の取り付け位置を厳密に調整することなく、ブラシレスモータ1の電気角を推定できる。また、インクリメンタル型のエンコーダ13の取り付け位置を厳密に調整することなく、効率よくブラシレスモータ1のロータ17を回転させることが可能となる。
ここで、磁極通過検出ステップS61の動作の詳細について図8A〜図8Cを用いて説明する。図8Aに示した磁極通過検出ステップS61は、基本的な磁極通過検出ステップS61の動作を示したものである。
まず、原点復帰処理を開始すると、ブラシレスモータ1が駆動中であるかどうかを確認する(ステップS611)。ブラシレスモータ1が駆動中でない場合(ステップS611にて「No」の場合)、駆動装置制御部331は、制御装置3の駆動装置31に対してブラシレスモータ1の駆動を開始するように指令する(ステップS612)。なぜなら、上記2−2−1.節及び2−2−2.節に示したように、ホールセンサ11a、11b、11cの位置検出信号の立ち上がり(又は立ち下がり)を検出するためには、ブラシレスモータ1のロータ17を回転させる必要があるからである。
ブラシレスモータ1が駆動中である場合(ステップS611にて「Yes」の場合)、次のステップに進む。
次に、磁極通過検出部333が、ホールセンサ11a、11b、11cの位置検出信号の立ち上がり、又は、立ち下がりを検出する(ステップS613)。磁極通過検出部333が、位置検出信号の立ち上がり(又は、立ち下がり)を検出しない場合(ステップS613にて「No」の場合)、当該ステップS613を継続する。
磁極通過検出部333が、位置検出信号の立ち上がり(又は、立ち下がり)を検出した場合(ステップS613にて「Yes」の場合)、次のステップである基準電気角推定ステップS62に進む。
なお、磁極通過検出部333が、ホールセンサ11a、11b、11cの位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合として、立ち上がり、又は、立ち下がりを検出している対象のホールセンサの異常が考えられる。そして、上記にて説明した図6A〜図7Bに示したように、ホールセンサ11a、11b、又は11cが正常動作している場合、ブラシレスモータ1のロータ17が1回転する間に、磁極通過検出部333は、少なくとも1回(本実施形態のように、ロータ17の磁極数が2(極対数:1)の場合は1回)、位置検出信号の立ち上がり、又は、立ち下がりを検出する。
従って、図8Bに示すように、磁極通過検出ステップS61において、ステップS613にて磁極の通過を検出しなかった場合(ステップS613にて「No」の場合)、すぐにステップS613に戻るのではなく、ロータ17が電気角換算にて1回転以上する間に磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出したかどうかを判定するステップS614を含んでいてもよい。
そして、ロータ17が電気角換算にて1回転以上回転しても、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合(ステップS614にて「Yes」の場合)、ブラシレスモータの制御装置100は、ホールセンサ断線エラーが発生したと判断してもよい(ステップS615)。これにより、ホールセンサ11a、11b、11cの異常をいち早く発見し、ホールセンサ11a、11b、11cの交換等を行える。さらに、ホールセンサ断線エラーと判断された場合、制御装置3の駆動装置31は、ブラシレスモータ1への駆動電圧の印加を停止してもよい(ステップS616)。これにより、ブラシレスモータの制御装置100は、より安全にブラシレスモータ1の制御を行える。
なお、ロータ17が電気角換算にて1回転以上回転したかどうかは、ロータ17の回転を開始してからのインクリメンタル型のエンコーダ13のパルス数を計数することにより、知ることができる。
磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合(ステップS613にて「No」の場合)、かつ、ロータ17が1回転以上していない場合(ステップS614にて「No」の場合)、ステップS613に戻り、ロータ17の磁極の通過の検出を継続する。
さらに、磁極通過検出部333が、ホールセンサ11a、11b、11cの位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合として、ブラシレスモータ1に異常が生じている、又は、ブラシレスモータ1の回転出力軸に接続された装置に過剰の負荷が生じているなどして、ロータ17がほとんど回転しない場合が考えられる。
従って、ブラシレスモータの制御装置100は、ブラシレスモータ1の駆動開始後、所定の時間内に、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出したがどうかの判定を行ってもよい(ステップS617)。
本実施形態においては、図8Cに示すように、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合で、ロータ17が1回転以上していない場合(ステップS614にて「No」の場合)、ステップS617においてブラシレスモータ1の駆動開始後、所定の時間内に、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出したかどうか判定している。
そして、ブラシレスモータ1の駆動開始後、所定の時間内に、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出しなかった場合(ステップS617にて「Yes」の場合)、ブラシレスモータの制御装置100は、ホールセンサ未検出エラーを発生してもよい(ステップS618)。これにより、ブラシレスモータ1の異常をいち早く発見できる。
さらに、ホールセンサ未検出エラーを発生した後、ブラシレスモータの制御装置100の駆動装置31は、ブラシレスモータ1への駆動電圧の印加を停止してもよい(ステップS616)。これにより、ブラシレスモータの制御装置100は、より安全にブラシレスモータ1の制御を行える。
そして、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出しておらず(ステップS613にて「No」)、ロータ17が1回転以上しておらず(ステップS614にて「No」)、かつ、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出していない時間が、ブラシレスモータ1の駆動開始後の所定の時間内である場合(ステップS617にて「No」の場合)、上記のステップS613に戻り、ロータ17の磁極の通過の検出を継続する。
(3)本実施形態の効果
次に、上述の本実施形態に係るブラシレスモータの制御装置100の効果について説明する。
ブラシレスモータの制御装置100(ブラシレスモータの制御装置の一例)は、ロータ17(ロータの一例)と、ステータ15a、15b、15c(ステータの一例)と、少なくとも1つのホールセンサ11a、11b、11c(ホールセンサの一例)と、インクリメンタル型のエンコーダ13(インクリメンタル型のエンコーダの一例)と、駆動装置31(駆動装置の一例)と、を備える。ロータ17は、永久磁石により形成される複数の磁極(磁極の一例)を有する。ステータ15a、15b、15cは、複数のコイル(コイルの一例)を有している。コイルは、コイルへの駆動電圧の印加により励磁される。ホールセンサ11a、11b、11cは、ロータ17のステータ15a、15b、15cに対する相対的な位置を検出する。インクリメンタル型のエンコーダ13は、ロータ17に固定される。駆動装置31は、コイルに駆動電圧を印加する。
ブラシレスモータの制御装置100は、磁極通過検出部333(磁極通過検出部の一例)と、基準電気角推定部335(基準電気角推定部の一例)と、ロータ回転位置推定部337(ロータ回転位置推定部の一例)と、を備える。磁極通過検出部333は、ロータ17の磁極がホールセンサ11aを通過する際に発生する、ホールセンサ11aから出力されるU相の位置検出信号H(位置検出信号の一例)の立ち上がり(立ち上がり、又は、立ち下がりのいずれかの一例)を検出する。基準電気角推定部335は、U相の位置検出信号Hの立ち上がりを基準とする基準位相角(位置検出信号の立ち上がり、又は、立ち下がりのいずれかを基準とする基準位相角の一例)から、U相の位置検出信号Hの立ち上がりが発生する時の電気角カウント(ホールセンサの位置とロータの位置との関係に基づいて決定される所定の角度の一例)ずらした角度を、電気角の基準角度である基準電気角(基準電気角の一例)と推定する。ロータ回転位置推定部337は、基準電気角と、インクリメンタル型のエンコーダ13からの出力とに基づいて、ブラシレスモータ1のロータ17の回転位置を推定する。
このブラシレスモータの制御装置100では、まず、磁極通過検出部333が、U相の位置検出信号Hの立ち上がりを検出する。次に、基準電気角推定部335が、基準位相角から、U相の位置検出信号Hの立ち上がり又は立ち下がりが発生する時の電気角カウントだけずらした電気角を、基準電気角と推定する。そして、ロータ回転位置推定部337は、上記により推定された基準電気角とインクリメンタル型のエンコーダ13からの出力とに基づいて、ブラシレスモータ1のロータ17の回転位置を推定する。
このようなブラシレスモータの制御装置100においては、インクリメンタル型のエンコーダ13などのエンコーダをブラシレスモータ1に取り付ける際に、エンコーダの取り付け位置を厳密に調整する必要がなくなる。なぜなら、ステータ15a、15b、15cのコイルの印加電圧のゼロクロスタイミングと、インクリメンタル型のエンコーダ13のZ相の立ち上がりを同期させる必要がないからである。従って、インクリメンタル型のエンコーダ13の取り付け位置調整のための工具や、インクリメンタル型のエンコーダ13やブラシレスモータ1への加工の必要がなくなる。その結果、ブラシレスモータの制御装置100が安価になる。
また、インクリメンタル型のエンコーダ13の取り付け位置を厳密に調整することなく、効率よくブラシレスモータ1のロータ17を回転させることが可能となる。
さらに、このブラシレスモータの制御装置100では、基準電気角とインクリメンタル型のエンコーダ13からの出力とに基づいて、ロータ17の回転位置を推定する。そのため、インクリメンタル型のエンコーダ13のZ相の位置などを厳密に決定することなく、ロータ17の回転位置を精度良く推定できる。
ブラシレスモータの制御装置100では、基準電気角推定部335は、ブラシレスモータ1の駆動開始時に、コイルに駆動電圧を印加してロータ17を回転させて基準電気角を推定している。これにより、基準電気角推定部335は、以降のブラシレスモータ1の制御時に、改めて基準電気角を推定する必要がなくなる。そのため、ブラシレスモータの制御装置100の計算負荷を減少できる。
ブラシレスモータの制御装置100では、第2の所定の角度(ロータがCCW回転又はCW回転のいずれか一方をしている場合に基準位相角からずらす第2の所定の電気角の一例)は、第1の所定の角度(ロータが他方の回転をしている場合に基準位相角からずらす第1の所定の電気角の一例)に、πラジアンを加算又は減算して推定する。これにより、電気角の基準電気角の推定時間を短縮でき、かつ、簡単な計算により基準電気角を推定できる。
ブラシレスモータの制御装置100では、ロータ17が電気角換算にて1回転以上回転しても、磁極通過検出部333がU相の位置検出信号Hの立ち上がり、又は、立ち下がりを検出しない場合、ホールセンサ断線エラーと判断している。これにより、ホールセンサ11aの異常をいち早く発見し、ホールセンサ11aの交換等を行える。
ブラシレスモータの制御装置100では、ブラシレスモータ1の駆動開始後、所定の時間(所定の時間の一例)内に、磁極通過検出部333がU相の位置検出信号Hの立ち上がり、又は、立ち下がりを検出しない場合、ホールセンサ未検出エラーと判断している。これにより、ブラシレスモータ1の異常をいち早く発見できる。
ブラシレスモータの制御装置100では、ホールセンサ断線エラー、又は、ホールセンサ未検出エラーと判断された場合、ブラシレスモータ1への駆動電圧の印加を停止している。これにより、より安全にブラシレスモータ1の制御を行える。
(4)他の実施形態
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
(a)ブラシレスモータの構造について
上記の実施形態においては、ステータ15a、15b、15cの数が3、ロータ17の磁極の数が2(極対数は1つ)であるブラシレスモータ1を用いていたが、これに限られない。ブラシレスモータの用途等に応じて、これ以外のステータ数及びロータの磁極数を有するブラシレスモータを用いることができる。
(b)ホールセンサ断線エラーの判定について
上記の実施形態においては、ロータ17が電気角換算にて1回転以上回転しても、磁極通過検出部333がU相の位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合(ステップS614にて「Yes」の場合)、ブラシレスモータの制御装置100は、ホールセンサ断線エラーが発生したと判断していた(ステップS615)。しかし、これに限られない。
ブラシレスモータ1の制御装置3は、ロータ17が電気角換算にて1回転以上回転しても、磁極通過検出部333がU相の位置検出信号の立ち上がり、又は、立ち下がりを検出しない場合(ステップS614にて「Yes」の場合)、ブラシレスモータの制御装置100は、異常が見つかったホールセンサ11a以外のホールセンサ11b又は11cを用いて、磁極の通過の検出、及び、基準電気角の推定を行うようにしてもよい。そして、全てのホールセンサ11a、11b、11cにおいて異常が見つかった場合に初めて、ホールセンサ断線エラーと判定してもよい。これにより、1つのホールセンサが異常となっても、ブラシレスモータ1の駆動を停止する必要がなくなる。
なお、基準電気角推定に用いていたホールセンサの故障後、他の正常なホールセンサを用いて磁極の通過の検出及び基準電気角の推定を行う場合、故障前まで用いていたホールセンサの設置位置と、選択したホールセンサの設置位置との間の関係に基づいて、基準位相角から基準電気角を推定するための新たなオフセット値を設定する。
(c)ホールセンサ未検出エラーの判定について
上記の実施形態においては、図8Cに示したように、磁極通過検出ステップS61において、ロータ17が電気角換算にて1回転以上回転したかどうか判定(ステップS614)した後、ステップS614にて「No」と判断された場合に、ブラシレスモータ1の駆動開始後、所定の時間内に、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出したかどうか判定(ステップS617)している。しかし、これに限られない。
磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出していない時間が、ブラシレスモータ1の駆動開始後の所定の時間内であるかどうかを判定した後に、ロータ17が電気角換算にて1回転以上回転したかどうか判定してもよい。
又は、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出していない時間が、ブラシレスモータ1の駆動開始後の所定の時間内であるかどうかを判定することと、ロータ17が電気角換算にて1回転以上回転したかどうかを判定することを、1つのステップにて判定してもよい。この場合、磁極通過検出部333が位置検出信号の立ち上がり、又は、立ち下がりを検出していない時間が、ブラシレスモータ1の駆動開始後の所定の時間内であり、かつ、ロータ17が電気角換算にて1回転以上回転していない場合に、磁極通過の検知を行うステップS613を継続する。それ以外の場合には、ブラシレスモータ1の制御装置100は、エラーを発生し、ブラシレスモータ1の駆動を停止する。
(d)インクリメンタル型のエンコーダのカウント増減について
上記の実施形態において、インクリメンタル型のエンコーダ13のパルス数は、ロータがCW回転のときに増加していた。しかし、これに限られない。インクリメンタル型のエンコーダ13のパルス数は、ロータ17がCCW回転するときに増加するとしてもよい。
(e)電気角カウントの算出について
上記の実施形態の電気角カウンタ339において、電気角が基準電気角となるパルス数であるNは、電気角が基準電気角となる毎に更新されていた。しかし、これに限られない。電気角が基準電気角となるパルス数Nは、電気角が基準電気角となるパルス数が一旦決まれば、更新されなくてもよい。
この時、インクリメンタル型のエンコーダ13からのパルス数がNとなったときの電気角カウンタ339の電気角カウントは、以下のような式により表現される。以下の式において、記号「%」は除算の余り(剰余)を算出する演算子である。また、インクリメンタル型のエンコーダ13のパルス数は、ロータ17がCCW回転したときに増加するものとする。
CCW回転時:φCCW=2π×{(N−N)%NMAX}/NMAX(rad.)
CW回転時:φCW=2π−2π×{(N−N)%NMAX}/NMAX(rad.)
上記の式により、電気角カウンタ339は、インクリメンタル型のエンコーダ13のパルス数Nをロータ17が1回転する毎に更新することなく、そして、電気角が基準電気角となる毎にNを更新することなく、電気角カウントを算出できる。これにより、電気角カウンタ339の計算負荷が減少する。
本発明は、ホールセンサを用いたブラシレスモータの制御装置、及び、ブラシレスモータの制御方法に広く適用できる。
100 ブラシレスモータの制御装置
1 ブラシレスモータ
11a、11b、11c ホールセンサ
13 インクリメンタル型のエンコーダ
15a、15b、15c ステータ
17 ロータ
19 筐体
3 制御装置
31 駆動装置
33 制御部
331 駆動装置制御部
333 磁極通過検出部
335 基準電気角推定部
337 ロータ回転位置推定部
339 電気角カウンタ
5 上位装置
αCW、αCCW 位置検出信号の立ち上がりが発生するときの電気角カウント
β ホールセンサとステータとがなす角度
γ それぞれのステータがなす角度
θ 回転量
θ 電気角
θ 機械角
φCW CW回転時の電気角カウント
φCCW CCW回転時の電気角カウント
N インクリメンタル型のエンコーダからのパルス数
MAX ロータが電気角にて1回転したときのパルス数
電気角が基準電気角となるときのパルス数
ロータ17の回転位置0°のときのパルス数
MAX ロータが1回転したときのパルス数
、H、H ホールセンサの位置検出信号
R、S、T 駆動装置の出力端子
極対数
r、s、t コイルの接点

Claims (8)

  1. 永久磁石により形成される複数の磁極を有するロータと、駆動電圧の印加により励磁される複数のコイルを有するステータと、前記ロータの前記ステータに対する相対的な位置を検出する少なくとも1つのホールセンサと、前記ロータに固定されるインクリメンタル型のエンコーダと、前記コイルに前記駆動電圧を印加する駆動装置と、を備えるブラシレスモータの制御装置であって、
    前記ロータの前記磁極が前記ホールセンサを通過する際に発生する、前記ホールセンサから出力される位置検出信号の立ち上がり、又は、立ち下がりのいずれかを検出する磁極通過検出部と、
    前記位置検出信号の立ち上がり、又は、立ち下がりのいずれかを基準とする基準位相角から、前記ホールセンサの位置と前記ステータの位置との関係に基づいて決定される所定の電気角ずらした角度を、電気角の基準角度である基準電気角と推定する基準電気角推定部と、
    前記基準電気角と、前記インクリメンタル型のエンコーダからの出力とに基づいて、前記ブラシレスモータの前記ロータの回転位置を推定するロータ回転位置推定部と、
    を有する制御装置。
  2. 前記基準電気角推定部は、前記ブラシレスモータの駆動開始時に前記コイルに前記駆動電圧を印加して前記ロータを回転させて前記基準電気角を推定する、請求項1に記載の制御装置。
  3. 前記ロータがCCW回転又はCW回転のいずれか一方をしている場合に前記基準位相角からずらす第2の所定の電気角は、前記ロータが他方の回転をしている場合に前記基準位相角からずらす第1の所定の電気角に、πラジアンを加算又は減算して推定する、請求項1又は2に記載の制御装置。
  4. 前記ロータが電気角換算にて1回転以上回転しても、前記磁極通過検出部が前記位置検出信号の前記立ち上がり、又は、前記立ち下がりを検出しない場合、ホールセンサ断線エラーと判断する、請求項1から3のいずれかに記載のブラシレスモータの制御装置。
  5. 前記ブラシレスモータの駆動開始後、所定の時間内に、前記磁極通過検出部が前記位置検出信号の前記立ち上がり、又は、前記立ち下がりを検出しない場合、ホールセンサ未検出エラーと判断する、請求項1から4のいずれかに記載の制御装置。
  6. 前記ホールセンサ断線エラー、又は、前記ホールセンサ未検出エラーと判断された場合、前記ブラシレスモータへの前記駆動電圧の印加を停止する、請求項4又は5に記載の制御装置。
  7. 永久磁石により形成される複数の磁極を有するロータと、駆動電圧の印加により励磁される複数のコイルを有するステータと、前記ロータの前記ステータに対する相対的な位置を検出するホールセンサと、前記ロータに固定されるインクリメンタル型のエンコーダと、前記コイルに前記駆動電圧を印加する駆動装置と、を備えるブラシレスモータの制御方法であって、
    前記ロータの前記磁極が前記ホールセンサを通過する際に発生する、前記ホールセンサから出力される位置検出信号の立ち上がり、又は、立ち下がりのいずれかを検出する磁極通過検出ステップと、
    前記位置検出信号の前記立ち上がり、又は、前記立ち下がりのいずれかを基準とする基準位相角から、前記ホールセンサの位置と前記ステータの位置との関係に基づいて決定される所定の電気角ずらした角度を、電気角の基準角度である基準電気角と推定する基準電気角推定ステップと、
    を含む制御方法。
  8. 請求項7に記載の制御方法をコンピュータにより実行させるためのプログラムを格納した記憶媒体。
JP2013083896A 2013-04-12 2013-04-12 ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体 Active JP6186824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083896A JP6186824B2 (ja) 2013-04-12 2013-04-12 ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083896A JP6186824B2 (ja) 2013-04-12 2013-04-12 ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体

Publications (2)

Publication Number Publication Date
JP2014207779A true JP2014207779A (ja) 2014-10-30
JP6186824B2 JP6186824B2 (ja) 2017-08-30

Family

ID=52120928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083896A Active JP6186824B2 (ja) 2013-04-12 2013-04-12 ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体

Country Status (1)

Country Link
JP (1) JP6186824B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811105A (zh) * 2015-05-08 2015-07-29 江苏工程职业技术学院 高速工业缝纫机用单霍尔三相直流无刷电机及控制方法
CN106787483A (zh) * 2017-02-12 2017-05-31 湖南天富机电科技有限公司 一种直流无刷电机霍尔角度调试系统及调试方法
KR20180013774A (ko) * 2016-07-29 2018-02-07 주식회사 지니틱스 정현파 전류구동 드라이브 ic로 단일 홀-센서를 갖는 bldc 모터를 구동하는 방법 및 이를 위한 장치
JP6438176B1 (ja) * 2018-02-16 2018-12-12 株式会社 五十嵐電機製作所 Dcモータの制御装置
JP2019537915A (ja) * 2016-09-22 2019-12-26 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage 歯車モータ、関連するワイパーシステム、及び関連する制御方法
CN111211729A (zh) * 2018-11-22 2020-05-29 现代自动车株式会社 用于检测bldc电机过载的装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075597A (ja) * 1996-08-30 1998-03-17 Toshiba Corp ブラシレスdcファンモータの駆動装置
US20030076060A1 (en) * 2001-10-01 2003-04-24 Colosky Mark P. Method and apparatus for calibrating and initializing an electronically commutated motor
JP2005012955A (ja) * 2003-06-20 2005-01-13 Mitsuba Corp ブラシレスモータおよびその製造方法
JP2006027090A (ja) * 2004-07-16 2006-02-02 Nidec-Shimpo Corp 陶芸用電動ろくろ装置
JP2011045217A (ja) * 2009-08-24 2011-03-03 Ricoh Co Ltd ブラシレスモータ駆動装置
JP2012170689A (ja) * 2011-02-23 2012-09-10 Panasonic Corp 洗濯機
JP2012185106A (ja) * 2011-03-08 2012-09-27 Ricoh Co Ltd 位置検出装置およびモータ駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075597A (ja) * 1996-08-30 1998-03-17 Toshiba Corp ブラシレスdcファンモータの駆動装置
US20030076060A1 (en) * 2001-10-01 2003-04-24 Colosky Mark P. Method and apparatus for calibrating and initializing an electronically commutated motor
JP2005012955A (ja) * 2003-06-20 2005-01-13 Mitsuba Corp ブラシレスモータおよびその製造方法
JP2006027090A (ja) * 2004-07-16 2006-02-02 Nidec-Shimpo Corp 陶芸用電動ろくろ装置
JP2011045217A (ja) * 2009-08-24 2011-03-03 Ricoh Co Ltd ブラシレスモータ駆動装置
JP2012170689A (ja) * 2011-02-23 2012-09-10 Panasonic Corp 洗濯機
JP2012185106A (ja) * 2011-03-08 2012-09-27 Ricoh Co Ltd 位置検出装置およびモータ駆動装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811105A (zh) * 2015-05-08 2015-07-29 江苏工程职业技术学院 高速工业缝纫机用单霍尔三相直流无刷电机及控制方法
KR20180013774A (ko) * 2016-07-29 2018-02-07 주식회사 지니틱스 정현파 전류구동 드라이브 ic로 단일 홀-센서를 갖는 bldc 모터를 구동하는 방법 및 이를 위한 장치
JP2019537915A (ja) * 2016-09-22 2019-12-26 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage 歯車モータ、関連するワイパーシステム、及び関連する制御方法
US11498525B2 (en) 2016-09-22 2022-11-15 Valeo Systèmes d'Essuyage Gear motor, associated wiper system and associated control method
JP7210435B2 (ja) 2016-09-22 2023-01-23 ヴァレオ システム デシュヤージュ 歯車モータ、関連するワイパーシステム、及び関連する制御方法
CN106787483A (zh) * 2017-02-12 2017-05-31 湖南天富机电科技有限公司 一种直流无刷电机霍尔角度调试系统及调试方法
CN106787483B (zh) * 2017-02-12 2023-05-16 湖南天富机电科技有限公司 一种直流无刷电机霍尔角度调试系统的调试方法
JP6438176B1 (ja) * 2018-02-16 2018-12-12 株式会社 五十嵐電機製作所 Dcモータの制御装置
WO2019159311A1 (ja) * 2018-02-16 2019-08-22 株式会社五十嵐電機製作所 Dcモータの制御装置
CN111211729A (zh) * 2018-11-22 2020-05-29 现代自动车株式会社 用于检测bldc电机过载的装置和方法

Also Published As

Publication number Publication date
JP6186824B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6186824B2 (ja) ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体
JP5413424B2 (ja) モータ駆動装置およびブラシレスモータ
KR102588927B1 (ko) 모터 제어방법
EP2689527B1 (en) A method and apparatus for control of electrical machines
KR100713776B1 (ko) 검출 전류의 비교를 통한 에스알엠의 여자 위치 검출 방법및 장치
KR20140001826A (ko) 동기식 기계의 회전자 위치를 체크하기 위한 방법 및 회로 장치
JP2010178586A (ja) モータ制御装置及びモータ制御方法
CN109863683B (zh) 电动机驱动装置以及电动机驱动装置的控制方法
KR20120137897A (ko) Bldc 모터제어 시스템의 홀소자 이상판정 방법
JP2017192298A (ja) ブラシレス直流モータ、および、ブラシレス直流モータのロータの位置を制御する方法
US20170163185A1 (en) Method for sensorless commutation of a brushless direct current motor
JP5727532B2 (ja) ステッピングモータの電流ベクトル制御装置
US10224842B2 (en) Control device and brushless motor
US20150069944A1 (en) Motor driving control apparatus, motor driving control method and motor system using the same
US20150102758A1 (en) Motor drive controller, motor drive control method and motor system using the same
CN109075727B (zh) 马达模块以及马达步进动作控制系统
TWI581559B (zh) 具有一個霍爾感測器運轉的系統及其方法
KR20150057017A (ko) 모터 위치 센서 오차 보상 장치 및 방법
JP5418769B2 (ja) ブラシレスモータの電気角推定方法およびブラシレスモータ
US20150069943A1 (en) Motor driving control apparatus, motor driving control method, and motor system using the same
JP2007312535A (ja) 同期型電動機の駆動装置及び同期型電動機の駆動装置の製造装置
JP5582442B2 (ja) モータ駆動制御装置、モータ駆動制御方法及びこれを利用したモータ
JP7518818B2 (ja) d軸の推定位置と実位置との間の角度差を表す補正値を決定する方法、制御装置、及びインバータ
JP5363158B2 (ja) センサレスブラシレスモータ用制御装置
JP4196660B2 (ja) 電動機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6186824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250