WO2013157115A1 - 回転電機の固定子巻線 - Google Patents

回転電機の固定子巻線 Download PDF

Info

Publication number
WO2013157115A1
WO2013157115A1 PCT/JP2012/060569 JP2012060569W WO2013157115A1 WO 2013157115 A1 WO2013157115 A1 WO 2013157115A1 JP 2012060569 W JP2012060569 W JP 2012060569W WO 2013157115 A1 WO2013157115 A1 WO 2013157115A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
coil
phase
circuit
winding circuit
Prior art date
Application number
PCT/JP2012/060569
Other languages
English (en)
French (fr)
Inventor
陽一 舟崎
清訓 古賀
前田 進
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/060569 priority Critical patent/WO2013157115A1/ja
Priority to JP2014511038A priority patent/JP5777806B2/ja
Priority to EP12874692.2A priority patent/EP2840683B1/en
Priority to US14/372,226 priority patent/US9444296B2/en
Priority to CN201280072477.XA priority patent/CN104247223B/zh
Publication of WO2013157115A1 publication Critical patent/WO2013157115A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a stator winding of a rotating electric machine having a three-phase four-pole four-parallel circuit applied to a rotating electric machine such as a generator.
  • the other winding circuit is arranged as close as possible to one winding circuit in a parallel circuit of the same phase, and the winding A configuration is adopted in which the voltage phase difference between the circuits is reduced.
  • the winding circuits are brought close to each other, a shift corresponding to at least one stator slot width is generated, so there is not a little voltage phase difference between the winding circuits, thereby circulating between the winding circuits.
  • one pole is one.
  • a lap winding for a multi-phase electrical machine having two or more circuits per phase, the circuit order of the coil sides in the top layer of a phase band and the circuit order of the coil sides in the bottom layer of the same phase band
  • the present invention is intended for a winding pattern of a two-layer lap winding that is changed by changing the pitch of each other coil in one circuit. This exchanges the circuit order of all coil sides in a layer (top layer or bottom layer) in a phase band for each phase band layer (bottom layer or top layer).
  • the phase and magnitude imbalance of the composite voltage occurring in each of the parallel circuits is substantially eliminated.
  • an armature core having 72 slots and an armature winding having a three-phase two-pole four-parallel circuit housed in the slot are in one phase of the phase band.
  • the upper coil piece and the lower coil piece of the first and third parallel circuits are The first, fourth, sixth, seventh, tenth and twelfth positions from the pole center, and the upper and lower coil pieces of the second and fourth parallel circuits are 2, 3, 5, 8 from the pole center.
  • the unbalanced voltage between the parallel circuits is reduced by reducing the circulating current loss between the parallel circuits by connecting the 9th and 11th positions. Reduces workability of jumper wire connection, insulation, fixed strength One in which was easy to secure.
  • each phase band of the winding has two parallel circuits, and is housed in a slot 13 provided in the laminated core, each parallel circuit having a series coil,
  • the series coil has two coil pieces, an upper coil piece 15 and a lower coil piece 16, which are connected to each other at the connection side coil end 19a and the non-connection side coil end 19b, respectively.
  • each parallel circuit When the position is represented by the position counted from the pole center, half of each parallel circuit is connected so that the positions of the upper and lower coil pieces are the first, fourth, sixth, seventh, ninth, twelfth and fourteenth positions from the pole center.
  • the other half of each parallel circuit By connecting the lug pieces so that they are the second, third, fifth, eighth, tenth, eleventh and thirteenth positions from the pole center, the unbalanced voltage between the parallel circuits is reduced and the circulation between the parallel circuits is reduced. The current loss is reduced.
  • the present invention has been made to solve the above-described problems.
  • a stator winding of a rotating electrical machine having a three-phase four-pole four-parallel circuit the winding method is complicated and the end of the winding is used.
  • An object of the present invention is to provide a stator winding of a rotating electrical machine that can realize a voltage vector phase difference between winding circuits constituting a parallel circuit and a winding arrangement that eliminates the voltage difference without providing a jumper wire.
  • the stator winding of the rotating electrical machine of the present invention is arranged such that each phase of the stator winding of the rotating electrical machine having a three-phase four-pole four-parallel circuit is arranged on the circumference, It is composed of two sets of parallel circuits in which two winding circuits composed of winding groups having the same pitch are connected in parallel, and the central axis of the winding group of the two winding circuits in the same set of the parallel circuits The positions are arranged such that the electrical angles are 180 ° or 360 ° apart.
  • the coil phase band is arranged so as to eliminate the voltage vector phase difference and the voltage difference between the winding circuits constituting the parallel circuit.
  • FIG. 4 is a diagram showing a U-phase winding pattern of the stator winding of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is a diagram showing a U-phase equivalent circuit and voltage vectors in the first embodiment.
  • FIG. 3 is a schematic diagram showing a circumferential arrangement of a U-phase coil phase band in the first embodiment.
  • FIG. 6 is a diagram showing a U-phase winding pattern of a stator winding of a rotating electrical machine according to a second embodiment.
  • FIG. 10 is a diagram showing a U-phase winding pattern of a stator winding of a rotating electrical machine according to a third embodiment.
  • FIG. 10 is a diagram illustrating a U-phase equivalent circuit and voltage vectors in the third embodiment.
  • FIG. 10 is a schematic diagram showing a circumferential arrangement of a U-phase coil phase band in the third embodiment.
  • the stator winding of the rotating field type rotating electric machine having a three-phase four-pole four-parallel circuit has two winding circuits composed of winding groups having the same pitch. It is constituted by two parallel circuits of each phase connected in parallel, and the position of the central axis of the winding group of two winding circuits in the same set of parallel circuits is 180 ° or 360 ° in electrical angle,
  • the coil phase band of the winding circuit By arranging the coil phase band of the winding circuit, the voltage vector phase difference between the winding circuits is eliminated and the voltage magnitude difference is eliminated, thereby eliminating the circulating current flowing between the winding circuits. It is possible to avoid a decrease in efficiency due to an increase in the temperature of the wire and generation loss.
  • FIG. 1 is a diagram showing a U-phase winding pattern of a stator winding of a rotating electrical machine according to Embodiment 1.
  • FIG. 2 is a diagram showing an equivalent circuit diagram of U phase and a voltage vector in the first embodiment.
  • FIG. 3 is a schematic diagram showing a circumferential arrangement of coil phase bands in the first embodiment.
  • two sets of output terminals U1, U2 are two sets of parallel circuits each having windings having the same pitch (the first winding circuit 1 and the second winding circuit 2 in one set and the third winding circuit 3 in the other set).
  • the fourth winding circuit 4 and each winding circuit has two coil phase bands connected in series (in the first winding circuit 1, coil phase bands a and b,
  • the second winding circuit 2 includes coil phase bands c and d
  • the third winding circuit 3 includes coil phase bands e and f
  • the fourth winding circuit 4 includes coil phase bands g and h).
  • the coil phase band means a coil group in a plurality of adjacent grooves through which the same current flows.
  • the coil pitches of the coil phase bands a to h constituting the winding are all the same, and the coil phase bands a and b, the coil phase bands c and d, and the coil phase bands e and f
  • the coil phase bands g and h have opposite coil winding directions.
  • FIGS. 1 and 2 only the U phase of the three-phase winding is shown, but the same applies to the V phase and the W phase, and a description thereof will be omitted.
  • a stator winding 11 is disposed around a rotor 10 having a four-pole magnetic field.
  • the stator winding 11 is divided into 24 columns along the circumference, and coil sides are accommodated in the inner and outer columns.
  • the column on the circumference one occupies a mechanical angle of 15 °, and a slot group existing within the 15 ° indicates that the coil side of the coil phase band described in the column is accommodated. Yes.
  • the coil phase band a of the first winding circuit 1 connected to the output terminal U1 has coil sides arranged in the column 1 and outside the column 6, and the coil phase band b
  • the coil sides are arranged in the column 8 and outside the column 13, and similarly, the coil phase band c of the second winding circuit 2 has the coil sides arranged in the column 13 and outside the column 18, and the coil In the phase band d, the coil sides are arranged inside the column 20 and outside the column 1.
  • the coil phase band e of the third winding circuit 3 connected to the output terminal U2 has coil sides arranged in the column 2 and outside the column 7, and the coil phase band f is in the column 7 and the column 12
  • the coil side is arranged outside, and similarly, the coil phase band g of the fourth winding circuit 4 is arranged inside the column 14 and outside the column 19, and the coil phase band h is inside the column 19.
  • the coil sides are arranged outside the column 24.
  • FIG. 3B shows a layout diagram of coil phase bands for the entire three phases.
  • the coil phase bands a and b constituting the first winding circuit 1 and the coil phase band e constituting the third winding circuit 3 are arranged by the arrangement of these coil phase bands.
  • the voltage vector of the coil phase band a has a phase shift of one column (15 ° mechanical angle and 30 ° electrical angle) with respect to the voltage vector of the coil phase band e.
  • the voltage vector of the coil phase band b has the same phase shift (mechanical angle of ⁇ 15 ° and electrical angle of ⁇ 30 ° phase shift) in the opposite direction to the voltage vector of the coil phase band f.
  • the voltage vector of the first winding circuit 1 and the voltage vector of the third winding circuit 3 obtained by synthesizing these voltage vectors have the same phase.
  • the combined voltage vector is 1v and 3v.
  • the position of 1v to 4v when the voltage vector generated in the coil for one turn is displayed at the center position of the coil is the position of the winding circuit. It is equal to the position of the central axis of the winding group that constitutes.
  • the coil phase band is arranged as shown in FIG. 3A
  • the coil phase band a and the coil phase band b of the first winding circuit 1 are the winding group of the first winding circuit 1. Is in a mirror-symmetrical position with respect to the central axis 1c.
  • the coil phase band e and the coil phase band f of the third winding circuit 3 are in a mirror-symmetrical position with respect to the central axis 3 c of the winding group of the third winding circuit 3.
  • the coil phase band a and the coil phase band b are disposed outside the coil phase band e and the coil phase band f.
  • the coil phase band c and the coil phase band d of the second winding circuit 2 are in a mirror-symmetrical position with respect to the central axis 2 c of the winding group of the second winding circuit 2.
  • the coil phase band g and the coil phase band h of the fourth winding circuit 4 are in a mirror-symmetrical position with respect to the central axis 4 c of the winding group of the fourth winding circuit 4.
  • the coil phase band c and the coil phase band d are arranged outside the coil phase band g and the coil phase band h.
  • the combined voltage vector 1v or 3v and the combined voltage vector 2v or 4v that is, the central axes 1c and 3c of the winding group of the first winding circuit 1 or the third winding circuit 3 and the second winding circuit 2 or
  • the electrical axis is 360 ° apart from the central axes 2c and 4c of the winding group of the fourth winding circuit 4, and the phase difference of each composite voltage vector is 0 °.
  • the voltage vector phase difference between the first winding circuit 1 and the third winding circuit 3 and the second winding is eliminated, and the first winding circuit 1 (third winding circuit 3) and the second winding circuit 2 (fourth winding circuit).
  • the voltage vector phase difference from 4) can be set to 0 °, and the voltage magnitude can be matched. The same applies to the other V and W phases.
  • the interval between the positions of the central axes of the winding group constituting the winding circuit is set to a predetermined value so that the voltage difference is eliminated.
  • FIG. FIG. 4 is a diagram showing a U-phase winding pattern of the stator winding of the rotating electrical machine according to the second embodiment.
  • FIG. 5 is a diagram showing an equivalent circuit diagram of U phase and a voltage vector in the first embodiment.
  • FIG. 6 is a schematic diagram showing a circumferential arrangement of coil phase bands in the first embodiment.
  • two sets of output terminals U1, U2 Are two sets of parallel circuits each having windings having the same pitch (the first winding circuit 1 and the second winding circuit 2 in one set and the third winding circuit 3 in the other set).
  • the fourth winding circuit 4 and each winding circuit has one coil phase band (in the first winding circuit 1, the coil phase band p, the second winding circuit). 2 includes the coil phase band q, the third winding circuit 3 includes the coil phase band r, and the fourth winding circuit 4 includes the coil phase band s).
  • the winding pitches of the coil phase bands p to s are all the same, and the coil phase bands p and q and the coil phase bands r and s are opposite in the coil winding direction. It is. 4 and 5 show only the U-phase of the three-phase winding, but the same applies to the V-phase and the W-phase, and a description thereof will be omitted.
  • a stator winding 11 is arranged around a rotor 10 having a four-pole magnetic field.
  • the stator winding 11 is divided into 24 columns along the circumference, and coil sides are accommodated in the inner and outer columns.
  • the column on the circumference one occupies a mechanical angle of 15 °, and a slot group existing within the 15 ° indicates that the coil side of the coil phase band described in the column is accommodated. Yes.
  • the coil phase band p of the first winding circuit 1 connected to the output terminal U1 has coil edges in the column 1 and outside the column 6, and in the column 2 and outside the column 7.
  • coil sides are arranged inside the column 7 and outside the column 12, and inside the column 8 and outside the column 13.
  • the coil phase band r of the third winding circuit 3 connected to the output terminal U2 has coil sides arranged outside the column 13 and outside the column 18, outside the column 14 and outside the column 19, and similarly,
  • the coil sides are arranged inside the column 19 and outside the column 24, and inside the column 20 and outside the column 1.
  • FIG. 6B shows a layout diagram of the coil phase bands of the entire three phases.
  • the coil phase band p of the first winding circuit 1 and the coil phase band q of the second winding circuit 2 are mechanically arranged by the arrangement of these coil phase bands.
  • the angle is 90 °, that is, the electrical angle is 180 °. That is, the central axis 1c of the winding group of the first winding circuit 1 and the central axis 2c of the winding group of the second winding circuit 2 are spaced apart by 90 ° in mechanical angle, that is, 180 ° in electrical angle.
  • the phase difference between the voltage vector 1v of the first winding circuit 1 and the voltage vector 2v of the second winding circuit 2 is 0 °.
  • the coil phase band q of the second winding circuit 2 and the coil phase band r of the third winding circuit 3 are located at positions where the mechanical angle is 90 °, that is, the electrical angle is 180 °. That is, the central axis 2c of the winding group of the second winding circuit 2 and the central axis 3c of the winding group of the third winding circuit 3 are spaced apart by 90 ° in mechanical angle, that is, 180 ° in electrical angle. As a result, the phase difference between the voltage vector 2v of the second winding circuit 2 and the voltage vector 3v of the third winding circuit 3 becomes 0 °.
  • the coil phase band r of the third winding circuit 3 and the coil phase band s of the fourth winding circuit 4 are located at a position where the mechanical angle is 90 °, that is, the electrical angle is 180 °. That is, the central axis 3c of the winding group of the third winding circuit 3 and the central axis 4c of the winding group of the fourth winding circuit 4 are spaced at a mechanical angle of 90 °, that is, an electrical angle of 180 °. As a result, the phase difference between the voltage vector 3v of the third winding circuit 3 and the voltage vector 4v of the fourth winding circuit 4 becomes 0 °.
  • the voltage vector phase difference between the winding circuits can be set to 0 °, and the voltage magnitudes should be matched. Is possible. The same applies to the other V and W phases.
  • the interval between the positions of the central axes of the winding group constituting the winding circuit is set to a predetermined value,
  • the coil phase band so as to eliminate the voltage difference, there is no circulating current flowing between the winding circuits, and it is possible to avoid the deterioration of efficiency due to the temperature rise of the windings and the generated loss.
  • the winding pitch of the coil phase band is not changed, it is not necessary to provide a jumper wire at the end of the coil phase band, the complexity of the end structure can be avoided, and workability can be improved. There is also an effect that it is possible.
  • FIG. 7 is a diagram showing a U-phase winding pattern of the stator winding of the rotating electrical machine according to the third embodiment.
  • FIG. 8 is a diagram showing a U-phase equivalent circuit diagram and voltage vectors in the third embodiment.
  • FIG. 9 is a schematic diagram showing a circumferential arrangement of coil phase bands in the third embodiment.
  • the U-phase winding pattern of the stator winding of the rotating electrical machine according to the third embodiment is similar to that of the second embodiment.
  • the output terminals U1 and U2 of the set include two sets of parallel circuits each having windings having the same pitch (one set includes the first winding circuit 1 and the second winding circuit 2 and the other set includes The third winding circuit 3 and the fourth winding circuit 4), and each winding circuit has one coil phase band (in the first winding circuit 1, the coil phase band).
  • the second winding circuit 2 includes a coil phase band q
  • the third winding circuit 3 includes a coil phase band r
  • the fourth winding circuit 4 includes a coil phase band s).
  • the winding pitches of coil phase bands p to s are all the same, and coil phase band p and coil phase band q, and coil phase band r and coil phase band s are coil windings.
  • the line direction is the same. 7 and 8, only the U phase of the three-phase winding is shown, but the same applies to the V phase and the W phase, and the description thereof is omitted.
  • the difference between the third embodiment and the second embodiment is that the arrangement position on the circumference of the coil phase band of the winding circuit is different as shown in FIG.
  • a stator winding 11 is arranged around a rotor 10 having a four-pole magnetic field.
  • the stator winding 11 is divided into 24 columns along the circumference, and coil sides are accommodated in the inner and outer columns.
  • the column on the circumference one occupies a mechanical angle of 15 °, and a slot group existing within the 15 ° indicates that the coil side of the coil phase band described in the column is accommodated. Yes.
  • the coil phase band p of the first winding circuit 1 connected to the output terminal U1 has coil edges in the column 1 and outside the column 6, and in the column 2 and outside the column 7.
  • coil sides are arranged inside the column 13 and outside the column 18, and inside the column 14 and outside the column 19.
  • the coil phase band r of the third winding circuit 3 connected to the output terminal U2 has coil sides arranged in the columns 7 and 12 and outside the columns 8 and 13 in the same manner.
  • the coil sides are arranged inside the column 19 and outside the column 24, and inside the column 20 and outside the column 1.
  • FIG. 9B shows a layout diagram of coil phase bands for the entire three phases.
  • the coil phase band p of the first winding circuit 1 and the coil phase band q of the second winding circuit 2 are machined by the arrangement of these coil phase bands.
  • the angle is 180 °, that is, the electrical angle is 360 °. That is, the central axis 1c of the winding group of the first winding circuit 1 and the central axis 2c of the winding group of the second winding circuit 2 are spaced apart by a mechanical angle of 180 °, that is, an electrical angle of 360 °.
  • the phase difference between the voltage vector 1v of the first winding circuit 1 and the voltage vector 2v of the second winding circuit 2 is 0 ° in electrical angle.
  • the coil phase band q of the second winding circuit 2 and the coil phase band r of the third winding circuit 3 are located at positions where the mechanical angle is 90 °, that is, the electrical angle is 180 °. That is, the central axis 2c of the winding group of the second winding circuit 2 and the central axis 3c of the winding group of the third winding circuit 3 are spaced apart by 90 ° in mechanical angle, that is, 180 ° in electrical angle. As a result, the phase difference between the voltage vector 2v of the second winding circuit 2 and the voltage vector 3v of the third winding circuit 3 becomes 0 ° in electrical angle.
  • the coil phase band r of the third winding circuit 3 and the coil phase band s of the fourth winding circuit 4 are located at a position where the mechanical angle is 180 °, that is, the electrical angle is 360 °. That is, the central axis 3c of the winding group of the third winding circuit 3 and the winding central axis 4c of the fourth winding circuit 4 have a mechanical angle of 180 °, that is, an electrical angle of 360 °, As a result, the phase difference between the voltage vector 3v of the third winding circuit 3 and the voltage vector 4v of the fourth winding circuit 4 is 0 °.
  • the voltage vector phase difference between the winding circuits can be made 0 °, and the voltage magnitudes should be matched. Is possible. The same applies to the other V and W phases.
  • the interval between the positions of the central axes of the winding groups constituting the winding circuit is set.
  • the present invention can be freely combined with each other, or can be appropriately modified or omitted.
  • Rotor 11 Stator winding 1v, 2v, 3v, 4v voltage vector 1c, 2c, 3c, 4c Central axis of winding group

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 3相4極4並列回路を有する回転電機の固定子巻線において、例えば、U相の2組の出力端子U1,U2は、それぞれ同じピッチを有する巻線からなる2組の並列回路(一方の組には第1の巻線回路1と第2の巻線回路2および他方の組には第3の巻線回路3と第4の巻線回路4)から構成されており、各巻線回路の巻線は、直列に接続された2つのコイル相帯(第1の巻線回路1では、コイル相帯aとb、第2の巻線回路2では、コイル相帯cとd、第3の巻線回路3では、コイル相帯eとf、第4の巻線回路4では、コイル相帯gとh)からなる。これにより、巻線端部にジャンパ線を設けることなく、巻線回路間の電圧ベクトル位相差と電圧差をなくすことができる。

Description

回転電機の固定子巻線
 本発明は、発電機等の回転電機に適用される3相4極4並列回路を有する回転電機の固定子巻線に関するものである。
 回転界磁形の回転電機における従来の一般的な固定子コイルの巻線方法では、同相の並列回路において一方の巻線回路になるべく近接させるように他方の巻線回路を配置して、巻線回路間の電圧位相差を小さくするような構成が採られている。しかしながら、巻線回路同士を近接させても最低でも1固定子スロット幅分のずれが生じてしまうため、少なからず巻線回路間には電圧位相差が存在し、それによって巻線回路間に循環電流が流れ、循環電流損発生による固定子コイルの温度上昇や回転電機の効率悪化を生じるという問題があった。
 このような並列回路を構成する巻線回路間の電圧位相および大きさの不均衡を除く方法の例として、特許文献1に示される多相発電機の電機子巻線パターンにおいては、1極1相毎に2以上の回路を持つ多相電機機械用の重ね巻において、或る位相帯の頂部層中のコイル辺の回路順序と同一位相帯の底部層中のコイル辺の回路順序とを、一回路内の各別のコイルのピッチを変えることにより変更した二層重ね巻の巻線パターンを対象とするものである。これにより或る位相帯の或る層(頂部層または底部層)中の全部のコイル辺の回路順序はその位相帯の層(底部層または頂部層)に対して交換され、各々の相巻線の各並列回路に生じる合成電圧の位相および大きさの不均衡が実質的に除かれるというものである。
 また、特許文献2に示される電機子においては、72スロットを有する電機子鉄心と、スロットに収納される3相2極4並列回路を有する電機子巻線は、相帯のうちの一つの相帯中の前記上コイル片及び前記下コイル片の相対位置を極中心から遠ざかる方向に数えた位置で表した場合に、第1及び第3の並列回路の前記上コイル片及び前記下コイル片が極中心から1、4、6、7、10、12番目の位置であり、前記第2及び第4の並列回路の前記上コイル片及び前記下コイル片が極中心から2、3、5、8、9、11番目の位置となるように接続することにより、該各並列回路間の不平衡電圧を低減して該並列回路間の循環電流損失を低減しつつ、電機子巻線を構成するにあたってジャンパ線接続部の作業性を軽減し、絶縁性、固定強度を確保しやすくしたものである。
 また、特許文献3に示される回転電機の電機子巻線においては、3相2極84スロットを有する回転電機に適用される4並列回路を有する毎極毎相あたりのコイル数が14の2層巻き電機子巻線であって、当該巻線の各相帯が2つの並列回路を有し、積層鉄心に設けられたスロット13に納められており、各並列回路は直列コイルを有し、各直列コイルは接続側コイルエンド19a及び反接続側コイルエンド19bでそれぞれ互いに接続される上コイル片15と下コイル片16の2つのコイル片を有し、一つの相帯中の上下コイル片の相対位置を極中心から数えた位置で表した場合に、各並列回路の半分は上下コイル片の位置が極中心から1,4,6,7,9,12,14番目の位置となるように接続し、各並列回路の残りの半分は上下コイル片の位置が極中心から2,3,5,8,10,11,13番目の位置となるように接続することにより、各並列回路間の不平衡電圧を低減して並列回路間の循環電流損失を低減したものである。

特公昭54-6683号公報 特開2009-100549号公報 特開2009-183102号公報
 しかしながら、従来の特許文献1、2あるいは3においては、並列回路を構成する巻線回路内において巻線ピッチを変更することで、巻線回路間の発生電圧差を低減しているが、巻線方法の複雑化や巻線端部にジャンパ線を設ける必要があり端部構造が複雑化するなどの問題があった。また、各相2組の出力端子を具備する3相4極4並列回路を有する回転界磁形の回転電機の固定子巻線においては、解決案は提示されていないという問題があった。
 本発明は、上記のような問題を解決するためになされたものであり、3相4極4並列回路を有する回転電機の固定子巻線において、巻線方法の複雑化や巻線端部にジャンパ線を設けることなく、並列回路を構成する巻線回路間の電圧ベクトル位相差と電圧差をなくす巻線の配置が実現できる回転電機の固定子巻線を提供することを目的としている。
 上記課題を解決するために、本発明の回転電機の固定子巻線は、3相4極4並列回路を有する回転電機の固定子巻線の各相が、円周上に配置されるとともに、同じピッチを有する巻線群からなる巻線回路を2つ並列に接続した2組の並列回路により構成され、前記並列回路の同じ組内の前記2つの巻線回路の巻線群の中心軸の位置が、電気角で180°または360°の間隔となるように配置されていることを特徴とするものである。
 本発明の回転電機の固定子巻線によれば、並列回路を構成する巻線回路間の電圧ベクトルの位相差と電圧差がなくなるようにコイル相帯が配置されることにより、巻線回路間に流れる循環電流がなくなり、巻線の温度上昇および発生損失による効率の悪化を回避することができるという効果がある。また、コイル相帯の巻線ピッチを変化させていないため、コイル相帯端部にジャンパ線を設ける必要がなく、端部構造の複雑化を回避することができ、作業性の向上も実現することができるという効果もある。
実施の形態1に係る回転電機の固定子巻線のU相の巻線パターンを示す図である。 実施の形態1におけるU相の等価回路と電圧ベクトル示す図である。 実施の形態1におけるU相のコイル相帯の円周上の配置を示す模式図である。 実施の形態2に係る回転電機の固定子巻線のU相の巻線パターンを示す図である。 実施の形態2におけるU相の等価回路と電圧ベクトル示す図である。 実施の形態2におけるU相のコイル相帯の円周上の配置を示す模式図である。 実施の形態3に係る回転電機の固定子巻線のU相の巻線パターンを示す図である。 実施の形態3におけるU相の等価回路と電圧ベクトル示す図である。 実施の形態3におけるU相のコイル相帯の円周上の配置を示す模式図である。

 本発明の回転電機の固定子巻線では、3相4極4並列回路を有する回転界磁形の回転電機の固定子巻線は、同じピッチを有する巻線群からなる巻線回路を2つ並列に接続した各相2組の並列回路により構成され、並列回路の同じ組内の2つの巻線回路の巻線群の中心軸の位置が電気角で180°または360°となるように、巻線回路のコイル相帯を配置することにより、巻線回路間の電圧ベクトル位相差をなくし、かつ電圧の大きさの差をなくし、これにより、巻線回路間に流れる循環電流がなくなり、巻線の温度上昇および発生損失による効率の低下を回避することができるものである。以下、本発明の実施の形態に係る回転電機の固定子巻線について、図1から図9を参照して説明する。
実施の形態1.
 図1は、実施の形態1に係る回転電機の固定子巻線のU相の巻線パターンを示す図である。図2は、実施の形態1におけるU相の等価回路図と電圧ベクトルを示す図である。図3は、実施の形態1におけるコイル相帯の円周上の配置を示す模式図である。
 図1の巻線パターンおよび図2(a)の等価回路に示すように、実施の形態1に係る回転電機の固定子巻線のU相の巻線パターンでは、2組の出力端子U1,U2は、それぞれ同じピッチを有する巻線からなる2組の並列回路(一方の組には第1の巻線回路1と第2の巻線回路2および他方の組には第3の巻線回路3と第4の巻線回路4)から構成されており、各巻線回路の巻線は、直列に接続された2つのコイル相帯(第1の巻線回路1では、コイル相帯aとb、第2の巻線回路2では、コイル相帯cとd、第3の巻線回路3では、コイル相帯eとf、第4の巻線回路4では、コイル相帯gとh)からなる。ここで、コイル相帯とは、同じ電流が流れる互いに隣接した複数の溝中のコイル群を意味する。なお、実施の形態1では、巻線を構成するコイル相帯aからhの巻線ピッチは、すべて同一であり、コイル相帯aとb、コイル相帯cとd、コイル相帯eとf、コイル相帯gとhは、互いにコイルの巻線の方向が逆である。また、図1および図2では、3相巻線のU相についてのみ示しているが、V相、W相についても同様であるので説明を省略する。
 次に、実施の形態1に係る回転電機の固定子巻線の動作について、図1から図3を参照して説明する。図3に示すように、4極の磁界を持つ回転子10の周囲に固定子巻線11が配置されている。固定子巻線11は、円周に沿って、24の欄に分けられ、その内側および外側の欄にコイル辺が収容されている。この図の例では、巻線ピッチが、0.833(=5/6)の場合を示している。円周上の欄は、1つで機械角15°を占めており、その15°内に存在するスロット群には欄内に記載のコイル相帯のコイル辺が収められていることを示している。例えば、スロット数72の場合は、72×15°/360°=3スロット/15°、スロット数48の場合は、48×15°/360°=2スロット/15°となる。
 図3(a)に示すように、出力端子U1に接続される第1の巻線回路1のコイル相帯aは、欄1内と欄6外とでコイル辺が配置され、コイル相帯bは、欄8内と欄13外とでコイル辺が配置され、同様に、第2の巻線回路2のコイル相帯cは、欄13内と欄18外とでコイル辺が配置され、コイル相帯dは、欄20内と欄1外とでコイル辺が配置されている。また、出力端子U2に接続される第3の巻線回路3のコイル相帯eは、欄2内と欄7外とでコイル辺が配置され、コイル相帯fは、欄7内と欄12外とでコイル辺が配置され、同様に、第4の巻線回路4のコイル相帯gは、欄14内と欄19外とでコイル辺が配置され、コイル相帯hは、欄19内と欄24外とでコイル辺が配置されている。他のV相およびW相も同じ基準で配置され、U相コイルの配置を回転子10の回転方向に電気角で120°(=機械角60°)の間隔でずらした位置にV相およびW相が配置されている。3相全体のコイル相帯の配置図を図3(b)に示す。
 図3(a)に示すように、これらのコイル相帯の配置により、第1の巻線回路1を構成するコイル相帯a,bおよび第3の巻線回路3を構成するコイル相帯e,fにおいて、コイル相帯aの電圧ベクトルは、コイル相帯eの電圧ベクトルに対して、欄1つ分の位相ずれ(機械角で15°、電気角で30°の位相ずれ)が生じるが、コイル相帯bの電圧ベクトルは、コイル相帯fの電圧ベクトルに対して、逆方向に同じだけ位相ずれ(機械角で-15°、電気角で-30°の位相ずれ)が生じるので、これらの電圧ベクトルを合成した第1の巻線回路1の電圧ベクトルと第3の巻線回路3の電圧ベクトルは同位相となる。この合成された電圧ベクトルは1vおよび3vとなる。同様に、他の巻線回路2および4においても、同様であり、それぞれの合成電圧ベクトルは、2vおよび4vとなる。ここで、巻線パターンを示す図1上おいて、1ターン分のコイルに発生する電圧ベクトルを、そのコイルの中心位置に表示するものとした場合の1vから4vの位置は、巻線回路を構成する巻線群の中心軸の位置に等しい。
 また、図3(a)ようにコイル相帯が配置されているので、第1の巻線回路1のコイル相帯aとコイル相帯bとは、第1の巻線回路1の巻線群の中心軸1cに対して鏡面対称の位置にある。また、第3の巻線回路3のコイル相帯eとコイル相帯fとは、第3の巻線回路3の巻線群の中心軸3cに対して鏡面対称の位置にある。コイル相帯aとコイル相帯bは、コイル相帯eとコイル相帯fの外側に配置されている。同様に、第2の巻線回路2のコイル相帯cとコイル相帯dとは、第2の巻線回路2の巻線群の中心軸2cに対して鏡面対称の位置にある。また、第4の巻線回路4のコイル相帯gとコイル相帯hとは、第4の巻線回路4の巻線群の中心軸4cに対して鏡面対称の位置にある。コイル相帯cとコイル相帯dは、コイル相帯gとコイル相帯hの外側に配置されている。合成電圧ベクトル1vあるいは3vと合成電圧ベクトル2vあるいは4v、すなわち、第1の巻線回路1あるいは第3の巻線回路3の巻線群の中心軸1c,3cと第2の巻線回路2あるいは第4の巻線回路4の巻線群の中心軸2c,4cとは、電気角で360°の間隔となり、各合成電圧ベクトルの位相差は0°となる。図3に示す規則に従って、同一の巻線ピッチを持つコイル相帯を配置することにより、第1の巻線回路1と第3の巻線回路3との電圧ベクトル位相差と第2の巻線回路2と第4の巻線回路4との電圧ベクトル位相差を無くし、第1の巻線回路1(第3の巻線回路3)と第2の巻線回路2(第4の巻線回路4)との電圧ベクトル位相差を0°とすることができ、さらに電圧の大きさを一致させることが可能となる。他のV相およびW相についても同様である。
 このように、実施の形態1に係る回転電機の固定子巻線によれば、巻線回路を構成する巻線群の中心軸の位置の間隔を所定の値とし、電圧差がなくなるようにコイル相帯が配置されることにより、巻線回路間に流れる循環電流がなくなり、巻線の温度上昇および発生損失による効率の悪化を回避することができるという効果がある。また、コイル相帯の巻線ピッチを変化させていないため、コイル相帯端部にジャンパ線を設ける必要がなく、端部構造の複雑化を回避することができ、作業性の向上も実現することができるという効果もある。
実施の形態2.
 図4は、実施の形態2に係る回転電機の固定子巻線のU相の巻線パターンを示す図である。図5は、実施の形態1におけるU相の等価回路図と電圧ベクトルを示す図である。図6は、実施の形態1におけるコイル相帯の円周上の配置を示す模式図である。
 図4の巻線パターンおよび図5(a)の等価回路に示すように、実施の形態2に係る回転電機の固定子巻線のU相の巻線パターンでは、2組の出力端子U1,U2は、それぞれ同じピッチを有する巻線からなる2組の並列回路(一方の組には第1の巻線回路1と第2の巻線回路2および他方の組には第3の巻線回路3と第4の巻線回路4)から構成されており、各巻線回路の巻線は、それぞれ1つのコイル相帯(第1の巻線回路1では、コイル相帯p、第2の巻線回路2では、コイル相帯q、第3の巻線回路3では、コイル相帯r、第4の巻線回路4では、コイル相帯s)からなる。なお、実施の形態2では、コイル相帯pからsの巻線ピッチは、すべて同一であり、コイル相帯pとq、コイル相帯rとsは、互いに、コイルの巻線の方向が逆である。また、図4および図5では、3相巻線のU相についてのみ示しているが、V相、W相についても同様であるので説明を省略する。
 次に、実施の形態2に係る回転電機の固定子巻線の動作について、図4から図6を参照して説明する。図6に示すように、実施の形態1と同様、4極の磁界を持つ回転子10の周囲に固定子巻線11が配置されている。固定子巻線11は、円周に沿って、24の欄に分けられ、その内側および外側の欄にコイル辺が収容されている。この図の例では、巻線ピッチが、0.833(=5/6)の場合を示している。円周上の欄は、1つで機械角15°を占めており、その15°内に存在するスロット群には欄内に記載のコイル相帯のコイル辺が収められていることを示している。例えば、スロット数72の場合は、72×15°/360°=3スロット/15°、スロット数48の場合は、48×15°/360°=2スロット/15°となる。
 図6(a)に示すように、出力端子U1に接続される第1の巻線回路1のコイル相帯pは、欄1内と欄6外、欄2内と欄7外とにコイル辺が配置され、同様に、第2の巻線回路2のコイル相帯qは、欄7内と欄12外、欄8内と欄13外とにコイル辺が配置されている。また、出力端子U2に接続される第3の巻線回路3のコイル相帯rは、欄13内と欄18外、欄14内と欄19外とにコイル辺が配置され、同様に、第4の巻線回路4のコイル相帯sは、欄19内と欄24外、欄20内と欄1外とにコイル辺が配置されている。他のV相およびW相も同じ基準で配置され、U相コイルの配置を回転子10の回転方向に電気角で120°(=機械角60°)の間隔でずらした位置にV相およびW相が配置されている。3相全体のコイル相帯の配置図を図6(b)に示す。
 また、図6(a)に示すように、これらのコイル相帯の配置により、第1の巻線回路1のコイル相帯pと第2の巻線回路2のコイル相帯qとは、機械角で90°すなわち電気角で180°の間隔となる位置にある。つまり、第1の巻線回路1の巻線群の中心軸1cと第2の巻線回路2の巻線群の中心軸2cとは、機械角で90°すなわち電気角で180°の間隔をもち、その結果、第1の巻線回路1の電圧ベクトル1vと第2の巻線回路2の電圧ベクトル2vとの位相差は0°となる。同様に、第2の巻線回路2のコイル相帯qと第3の巻線回路3のコイル相帯rとは、機械角で90°すなわち電気角で180°の間隔となる位置にある。つまり、第2の巻線回路2の巻線群の中心軸2cと第3の巻線回路3の巻線群の中心軸3cとは、機械角で90°すなわち電気角で180°の間隔をもち、その結果、第2の巻線回路2の電圧ベクトル2vと第3の巻線回路3の電圧ベクトル3vとの位相差は0°となる。また、第3の巻線回路3のコイル相帯rと第4の巻線回路4のコイル相帯sとは、機械角で90°すなわち電気角で180°の間隔となる位置にある。つまり、第3の巻線回路3の巻線群の中心軸3cと第4の巻線回路4の巻線群の中心軸4cとは、機械角で90°すなわち電気角で180°の間隔をもち、その結果、第3の巻線回路3の電圧ベクトル3vと第4の巻線回路4の電圧ベクトル4vとの位相差は0°となる。図6に示す規則に従って、同一の巻線ピッチを持つコイル相帯を配置することにより、巻線回路間の電圧ベクトル位相差を0°とすることができ、さらに電圧の大きさを一致させることが可能となる。他のV相およびW相についても同様である。
 このように、実施の形態2に係る回転電機の固定子巻線によれば、実施の形態1と同様、巻線回路を構成する巻線群の中心軸の位置の間隔を所定の値とし、電圧差がなくなるようにコイル相帯が配置されることにより、巻線回路間に流れる循環電流がなくなり、巻線の温度上昇および発生損失による効率の悪化を回避することができるという効果がある。また、コイル相帯の巻線ピッチを変化させていないため、コイル相帯端部にジャンパ線を設ける必要がなく、端部構造の複雑化を回避することができ、作業性の向上も実現することができるという効果もある。
実施の形態3.
 図7は、実施の形態3に係る回転電機の固定子巻線のU相の巻線パターンを示す図である。図8は、実施の形態3におけるU相の等価回路図と電圧ベクトルを示す図である。図9は、実施の形態3におけるコイル相帯の円周上の配置を示す模式図である。
 図7の巻線パターンおよび図8(a)の等価回路に示すように、実施の形態3に係る回転電機の固定子巻線のU相の巻線パターンでは、実施の形態2と同様、2組の出力端子U1,U2は、それぞれ同じピッチを有する巻線からなる2組の並列回路(一方の組には第1の巻線回路1と第2の巻線回路2および他方の組には第3の巻線回路3と第4の巻線回路4)から構成されており、各巻線回路の巻線は、それぞれ、1つのコイル相帯(第1の巻線回路1では、コイル相帯p、第2の巻線回路2では、コイル相帯q、第3の巻線回路3では、コイル相帯r、第4の巻線回路4では、コイル相帯s)からなる。なお、実施の形態3では、コイル相帯pからsの巻線ピッチは、すべて同一であり、コイル相帯pとコイル相帯q、コイル相帯rとコイル相帯sは、それぞれコイルの巻線の方向が同一になっている。また、図7および図8では、3相巻線のU相についてのみ示しているが、V相、W相についても同様であるので説明を省略する。実施の形態3と実施の形態2との違いは、図9に示すように、巻線回路のコイル相帯の円周上での配置位置が異なる点である。
 次に、実施の形態3に係る回転電機の固定子巻線の動作について、図7から図9を参照して説明する。図9に示すように、実施の形態1および実施の形態2と同様、4極の磁界を持つ回転子10の周囲に固定子巻線11が配置されている。固定子巻線11は、円周に沿って、24の欄に分けられ、その内側および外側の欄にコイル辺が収容されている。この図の例では、巻線ピッチが、0.833(=5/6)の場合を示している。円周上の欄は、1つで機械角15°を占めており、その15°内に存在するスロット群には欄内に記載のコイル相帯のコイル辺が収められていることを示している。例えば、スロット数72の場合は、72×15°/360°=3スロット/15°、スロット数48の場合は、48×15°/360°=2スロット/15°となる。
 図9(a)に示すように、出力端子U1に接続される第1の巻線回路1のコイル相帯pは、欄1内と欄6外、欄2内と欄7外とにコイル辺が配置され、同様に、第2の巻線回路2のコイル相帯qは、欄13内と欄18外、欄14内と欄19外とにコイル辺が配置されている。また、出力端子U2に接続される第3の巻線回路3のコイル相帯rは、欄7内と欄12外、欄8内と欄13外とにコイル辺が配置され、同様に、第4の巻線回路4のコイル相帯sは、欄19内と欄24外、欄20内と欄1外とにコイル辺が配置されている。他のV相およびW相も同じ基準で配置され、U相コイルの配置を回転子10の回転方向に電気角で120°(=機械角60°)の間隔でずらした位置にV相およびW相が配置されている。3相全体のコイル相帯の配置図を図9(b)に示す。
また、図9(a)に示すように、これらのコイル相帯の配置により、第1の巻線回路1のコイル相帯pと第2の巻線回路2のコイル相帯qとは、機械角で180°すなわち電気角で360°の間隔となる位置にある。つまり、第1の巻線回路1の巻線群の中心軸1cと第2の巻線回路2の巻線群の中心軸2cとは、機械角で180°すなわち電気角で360°の間隔をもち、その結果、第1の巻線回路1の電圧ベクトル1vと第2の巻線回路2の電圧ベクトル2vとの位相差は電気角で0°となる。同様に、第2の巻線回路2のコイル相帯qと第3の巻線回路3のコイル相帯rとは、機械角で90°すなわち電気角で180°の間隔となる位置にある。つまり、第2の巻線回路2の巻線群の中心軸2cと第3の巻線回路3の巻線群の中心軸3cとは、機械角で90°すなわち電気角で180°の間隔をもち、その結果、第2の巻線回路2の電圧ベクトル2vと第3の巻線回路3の電圧ベクトル3vとの位相差は電気角で0°となる。また、第3の巻線回路3のコイル相帯rと第4の巻線回路4のコイル相帯sとは、機械角で180°すなわち電気角で360°の間隔となる位置にある。つまり、第3の巻線回路3の巻線群の中心軸3cと第4の巻線回路4の巻線中心軸4cとは、機械角で180°すなわち電気角で360°の間隔をもち、その結果、第3の巻線回路3の電圧ベクトル3vと第4の巻線回路4の電圧ベクトル4vとの位相差は0°となる。図9に示す規則に従って、同一の巻線ピッチを持つコイル相帯を配置することにより、巻線回路間の電圧ベクトル位相差を0°とすることができ、さらに電圧の大きさを一致させることが可能となる。他のV相およびW相についても同様である。
 このように、実施の形態3に係る回転電機の固定子巻線によれば、実施の形態1および実施の形態2と同様、巻線回路を構成する巻線群の中心軸の位置の間隔を所定の値とし、電圧差がなくなるようにコイル相帯が配置されることにより、巻線回路間に流れる循環電流がなくなり、巻線の温度上昇および発生損失による効率の悪化を回避することができるという効果がある。また、コイル相帯の巻線ピッチを変化させていないため、コイル相帯端部にジャンパ線を設ける必要がなく、端部構造の複雑化を回避することができ、作業性の向上も実現することができるという効果もある。
 なお、実施の形態では、各相の2つの出力端子にそれぞれ2つの巻線回路を持つ2組の並列回路を接続する場合について述べたが、1つの出力端子に4つの巻線回路を並列に接続し、上述したコイル相帯の配置関係を満たしていればよく、同様の効果を奏する。
 また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 また、図において、同一符号は、同一または相当部分を示す。
  1,2,3,4 巻線回路
  a,b,c,d,e,f,g,h,p,q,r,s コイル相帯
  10 回転子
  11 固定子巻線
  1v,2v,3v,4v 電圧ベクトル
  1c,2c,3c,4c 巻線群の中心軸

Claims (4)

  1.  3相4極4並列回路を有する回転電機の固定子巻線の各相が、円周上に配置されるとともに、同じピッチを有する巻線群からなる巻線回路を2つ並列に接続した2組の並列回路により構成され、
     前記並列回路の同じ組内の前記2つの巻線回路の巻線群の中心軸の位置が、電気角で180°または360°の間隔となるように配置されていることを特徴とする回転電機の固定子巻線。
  2.  前記各巻線回路の巻線群は、直列に接続された互いに巻線の方向が異なる2つのコイル相帯からなり、前記2つのコイル相帯は、該巻線回路の巻線群の中心軸に対して鏡面対称となる位置に配置されていることを特徴とする請求項1に記載の回転電機の固定子巻線。
  3.  前記各巻線回路の巻線群は、1つのコイル相帯からなり、前記並列回路の同じ組内の前記2つの巻線回路の前記コイル相帯の巻線の方向が異なることを特徴とする請求項1に記載の回転電機の固定子巻線。
  4.  前記各巻線回路の巻線群は、1つのコイル相帯からなり、前記並列回路の同じ組内の前記2つの巻線回路の前記コイル相帯の巻線の方向が同じであることを特徴とする請求項1に記載の回転電機の固定子巻線。
PCT/JP2012/060569 2012-04-19 2012-04-19 回転電機の固定子巻線 WO2013157115A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/060569 WO2013157115A1 (ja) 2012-04-19 2012-04-19 回転電機の固定子巻線
JP2014511038A JP5777806B2 (ja) 2012-04-19 2012-04-19 回転電機の固定子巻線
EP12874692.2A EP2840683B1 (en) 2012-04-19 2012-04-19 Stator winding for electrical rotating machine
US14/372,226 US9444296B2 (en) 2012-04-19 2012-04-19 Stator winding of electrical rotating machine
CN201280072477.XA CN104247223B (zh) 2012-04-19 2012-04-19 旋转电机的定子绕组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060569 WO2013157115A1 (ja) 2012-04-19 2012-04-19 回転電機の固定子巻線

Publications (1)

Publication Number Publication Date
WO2013157115A1 true WO2013157115A1 (ja) 2013-10-24

Family

ID=49383097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060569 WO2013157115A1 (ja) 2012-04-19 2012-04-19 回転電機の固定子巻線

Country Status (5)

Country Link
US (1) US9444296B2 (ja)
EP (1) EP2840683B1 (ja)
JP (1) JP5777806B2 (ja)
CN (1) CN104247223B (ja)
WO (1) WO2013157115A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153001A1 (ja) * 2015-03-24 2016-09-29 アイシン・エィ・ダブリュ株式会社 回転電機
KR20180003604A (ko) * 2015-07-23 2018-01-09 아이신에이더블류 가부시키가이샤 스테이터 및 스테이터의 제조 방법
KR20190028640A (ko) * 2017-08-01 2019-03-19 상하이 문스 일렉트릭 컴퍼니 리미티드 슬롯리스 모터용 네스트 권선

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014224432A1 (de) * 2014-11-28 2016-06-02 Continental Teves Ag & Co. Ohg Permanenterregte Synchronmaschine und Kraftfahrzeugsystem
JP6599713B2 (ja) * 2015-09-30 2019-10-30 株式会社東芝 回転電機
CN105606952A (zh) * 2016-03-30 2016-05-25 哈尔滨理工大学 一种发电机内部短路故障点位置的分析方法
DE102017201533B4 (de) * 2017-01-31 2023-05-25 Zf Friedrichshafen Ag Stator für eine elektrische Maschine
JP7002546B2 (ja) * 2017-07-27 2022-01-20 三菱電機株式会社 回転電機
CN108110932B (zh) * 2018-01-31 2023-09-08 杭州富生电器有限公司 一种新型绕线方式的直绕电机定子
CN111463927B (zh) * 2019-01-22 2021-08-17 上海汽车集团股份有限公司 定子组件及电机
WO2021117765A1 (ja) * 2019-12-09 2021-06-17 株式会社 東芝 回転電機の電機子巻線および回転電機
CN112928836B (zh) * 2021-01-25 2022-06-21 中国第一汽车股份有限公司 一种插针绕组式定子及电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546683B1 (ja) 1966-02-23 1979-03-30
JPS59222066A (ja) * 1983-05-31 1984-12-13 Toshiba Corp 三相電機子巻線
JPS6152450U (ja) * 1985-08-23 1986-04-09
JP2000350396A (ja) * 1999-06-04 2000-12-15 Hitachi Ltd 回転電機の巻線方法および回転電機
JP2002272074A (ja) * 2001-03-15 2002-09-20 Moric Co Ltd 永久磁石式3相交流回転電気機器
JP2009100549A (ja) 2007-10-16 2009-05-07 Toshiba Corp 電機子
JP2009183102A (ja) 2008-01-31 2009-08-13 Toshiba Corp 回転電機の電機子巻線

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2046992A (en) * 1929-11-27 1936-07-07 Gen Electric Dynamo-electric machine
US1970914A (en) * 1933-11-18 1934-08-21 Gen Electric Starting system for alternating current motors
DE1961660A1 (de) * 1969-12-09 1971-06-09 Aeg Elotherm Gmbh Mehrphasige Zweischicht-Stab-Wellenwicklung fuer einen insbesondere als Ruehrspule fuer Metallschmelzen geeigneten Wanderfeldinduktor
CH572289A5 (ja) 1974-05-20 1976-01-30 Bbc Brown Boveri & Cie
GB1470937A (en) 1975-04-17 1977-04-21 Khutoretsky G Electrical machine stator windings
AT340523B (de) 1976-04-27 1977-12-27 Hitzinger & Co Dipl Ing Burstenloser synchrongenerator
CH613571A5 (en) 1977-01-20 1979-09-28 Bbc Brown Boveri & Cie Delta-connected two-layer three-phase winding for an electrical machine, especially a superconducting machine
DE2741403C2 (de) 1977-09-14 1983-04-07 Siemens AG, 1000 Berlin und 8000 München Zweischichtwicklung mit ungerader Leiterzahl je Nut
KR940001176B1 (ko) * 1990-07-19 1994-02-16 가부시끼가이샤 도시바 3상 전기자 권선
JP3791471B2 (ja) 2002-07-12 2006-06-28 株式会社デンソー セグメント順次接合ステータコイル型回転電機
EP1653587B1 (en) * 2004-10-29 2013-06-26 Hitachi, Ltd. Rotating electrical machine and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546683B1 (ja) 1966-02-23 1979-03-30
JPS59222066A (ja) * 1983-05-31 1984-12-13 Toshiba Corp 三相電機子巻線
JPS6152450U (ja) * 1985-08-23 1986-04-09
JP2000350396A (ja) * 1999-06-04 2000-12-15 Hitachi Ltd 回転電機の巻線方法および回転電機
JP2002272074A (ja) * 2001-03-15 2002-09-20 Moric Co Ltd 永久磁石式3相交流回転電気機器
JP2009100549A (ja) 2007-10-16 2009-05-07 Toshiba Corp 電機子
JP2009183102A (ja) 2008-01-31 2009-08-13 Toshiba Corp 回転電機の電機子巻線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840683A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827235B1 (ko) 2015-03-24 2018-02-07 아이신에이더블류 가부시키가이샤 회전 전기 기기
WO2016153001A1 (ja) * 2015-03-24 2016-09-29 アイシン・エィ・ダブリュ株式会社 回転電機
JPWO2016153001A1 (ja) * 2015-03-24 2017-09-14 アイシン・エィ・ダブリュ株式会社 回転電機
JPWO2016153002A1 (ja) * 2015-03-24 2017-09-21 アイシン・エィ・ダブリュ株式会社 回転電機
CN107408855A (zh) * 2015-03-24 2017-11-28 爱信艾达株式会社 旋转电机
US10666104B2 (en) 2015-03-24 2020-05-26 Aisin Aw Co., Ltd. Rotating electrical machine
WO2016153002A1 (ja) * 2015-03-24 2016-09-29 アイシン・エィ・ダブリュ株式会社 回転電機
KR101827690B1 (ko) 2015-03-24 2018-02-08 아이신에이더블류 가부시키가이샤 회전 전기 기기
US10651700B2 (en) 2015-03-24 2020-05-12 Aisin Aw & Co., Ltd. Rotating electrical machine
CN107408855B (zh) * 2015-03-24 2019-09-10 爱信艾达株式会社 旋转电机
KR20180003604A (ko) * 2015-07-23 2018-01-09 아이신에이더블류 가부시키가이샤 스테이터 및 스테이터의 제조 방법
KR20190028640A (ko) * 2017-08-01 2019-03-19 상하이 문스 일렉트릭 컴퍼니 리미티드 슬롯리스 모터용 네스트 권선
JP2019526215A (ja) * 2017-08-01 2019-09-12 上海鳴志電器股▲ふん▼有限公司Shanghai Moons’Electric Co.,LTD. ギヤレスモータ用嵌合巻線
KR102164353B1 (ko) * 2017-08-01 2020-10-12 상하이 문스 일렉트릭 컴퍼니 리미티드 슬롯리스 모터용 네스트 권선

Also Published As

Publication number Publication date
US20140346914A1 (en) 2014-11-27
EP2840683A4 (en) 2015-11-25
CN104247223B (zh) 2017-05-03
JP5777806B2 (ja) 2015-09-09
EP2840683A1 (en) 2015-02-25
JPWO2013157115A1 (ja) 2015-12-21
US9444296B2 (en) 2016-09-13
CN104247223A (zh) 2014-12-24
EP2840683B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5777806B2 (ja) 回転電機の固定子巻線
US9847686B2 (en) Stator for rotating electric machine
CN109565190B (zh) 包括具有均匀槽分布的定子的电机
US9866083B2 (en) Stator for rotating electric machine
JP6623961B2 (ja) 回転電機の固定子
EP3217516B1 (en) Rotating electrical machine
JP5858145B2 (ja) コイル
JP5060325B2 (ja) 回転電機の電機子巻線
JP5193557B2 (ja) 電機子
US20150028714A1 (en) Rotating electric machine
JP6239090B2 (ja) 回転電機
CN106849435B (zh) 旋转电机
JP2016127639A (ja) 回転電機の固定子
JP4914169B2 (ja) 回転電機
JP5457869B2 (ja) 回転電機の固定子及び回転電機
US20190013710A1 (en) Rotary Electric Machine
JP6267933B2 (ja) 回転電機
JP3578939B2 (ja) 回転電機の巻線方法および回転電機
JP6529876B2 (ja) 回転電機の電機子巻線
JP2013027266A (ja) 回転電機
JP5172439B2 (ja) 回転電機の固定子および回転電機
JP2013121224A (ja) 回転電機
JP5991702B2 (ja) 交流発電機
WO2021117765A1 (ja) 回転電機の電機子巻線および回転電機
WO2019064373A1 (ja) 電動機及び電動機の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511038

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14372226

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012874692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE