WO2013153688A1 - 太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法 - Google Patents

太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法 Download PDF

Info

Publication number
WO2013153688A1
WO2013153688A1 PCT/JP2012/072702 JP2012072702W WO2013153688A1 WO 2013153688 A1 WO2013153688 A1 WO 2013153688A1 JP 2012072702 W JP2012072702 W JP 2012072702W WO 2013153688 A1 WO2013153688 A1 WO 2013153688A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
concentration
ppmw
solar cells
solar cell
Prior art date
Application number
PCT/JP2012/072702
Other languages
English (en)
French (fr)
Inventor
大石 隆一
和也 上野
梶本 公彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013153688A1 publication Critical patent/WO2013153688A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Definitions

  • the present invention relates to silicon for solar cells, polycrystalline silicon materials, polycrystalline silicon solar cells, and a method for producing silicon for solar cells.
  • Solar cells using compound semiconductors such as cadmium tellurium have also been put into practical use.
  • solar cells using crystalline silicon substrates are the most popular from the standpoints of the safety of the materials themselves, past achievements, and cost performance.
  • Solar cells using a polycrystalline silicon substrate (polycrystalline silicon solar cells) occupy a large share.
  • a polycrystalline silicon wafer which is widely used as a substrate for polycrystalline silicon solar cells, is manufactured as follows.
  • a polycrystalline silicon ingot is obtained by a casting method in which a silicon melt obtained by melting silicon for solar cells is unidirectionally solidified from below in a crucible or an electromagnetic casting method in which a silicon-free melt is continuously grown in a bottomless crucible. Is made.
  • the polycrystalline silicon ingot obtained as described above is processed into a prismatic polycrystalline silicon block. Thereafter, the polycrystalline silicon wafer is obtained by slicing the polycrystalline silicon block with a wire saw or the like.
  • the polycrystalline silicon solar battery cell can be obtained by putting the polycrystalline silicon wafer obtained as described above into the solar battery cell manufacturing process.
  • a polycrystalline silicon solar cell module can be obtained by connecting and laminating a plurality of polycrystalline silicon solar cells.
  • Patent Documents 1 to 3 It is known that the impurity concentration in the silicon for solar cells has a great influence on the efficiency of the polycrystalline silicon solar cell which is the final product (for example, Patent Documents 1 to 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-251010 discloses a total of impurity concentrations of iron, aluminum, titanium, and calcium, boron, and silicon for solar cells containing at least boron and carbon and / or oxygen, Considering the interaction between phosphorus, carbon and oxygen, conditions for silicon for solar cells having excellent conversion efficiency are shown.
  • Patent Document 2 Japanese Patent No. 4580939 contains 0.3 to 5.0 ppma of boron, 0.5 to 3.0 ppma of phosphorus, less than 50 ppma of a metal element, and less than 100 ppma of carbon.
  • a silicon feedstock characterized by is disclosed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-1003009 describes at least one selected from the group consisting of a dopant that determines the conductivity type of a semiconductor and an impurity other than the dopant, such as aluminum, calcium, strontium, copper, and nickel. Polycrystalline silicon containing a variety of elements is disclosed. Moreover, the Example of patent document 3 discloses p-type polycrystalline silicon containing boron as a dopant and at least one element included in the above group.
  • de-P process means a process of mainly removing phosphorus using a vacuum method
  • de-B process means a process of mainly removing boron, for example, using a slag method or the like.
  • Patent Document 1 discloses a process of performing a de-P process, a unidirectional solidification (metal impurity removal), a de-B process, and a unidirectional solidification (metal impurity removal) in this order. Patent Document 1 also describes that the final unidirectional solidified product is cut into a wafer or remelted and solidified as necessary to form a wafer.
  • Patent Document 2 discloses a silicon feedstock manufacturing method in which a de-B process, solidification, at least one leaching process with an acid leaching solution, and directional solidification are performed in this order.
  • Patent Document 4 Japanese Patent Laid-Open No. 2010-173911 discloses a silicon purification method in which, for example, a de-B process, a leaching process, a de-P process, and a solidification segregation process are performed in this order.
  • the “leaching step” means a step of leaching impurities from a raw material silicon into an acid or alkali solution by crushing the raw material silicon and immersing it in an acid or alkali solution.
  • JP-A-10-251010 Japanese Patent No. 4580939 JP 2006-1003009 A JP 2010-173911 A
  • silicon for solar cells is “raw silicon for a polycrystalline silicon ingot for cutting a wafer used as a substrate for a polycrystalline silicon solar cell”.
  • the oxygen concentration in the polycrystalline silicon ingot obtained by melting and unidirectionally solidifying solar cell silicon was not correlated with the oxygen concentration in the solar cell silicon used as a raw material. It seems that it is determined by the oxygen concentration in the atmosphere during unidirectional solidification, elution from silica normally used as a crucible, silicon oxide contained in the mold release material, and the like.
  • the carbon concentration in the polycrystalline silicon ingot obtained by melting and unidirectionally solidifying the silicon for solar cells is not correlated with the carbon concentration in the silicon for solar cells as a raw material.
  • the carbon in the polycrystalline silicon ingot is caused by the fact that the SiO gas evaporated from the silicon melt in the crucible reacts with a carbon member such as a graphite heater in the apparatus to become CO gas and is taken into the silicon melt again. Usually. This is because the probability that the CO gas is taken into the silicon melt can be appropriately changed depending on the gas flow in the apparatus, the degree of vacuum, the structure of the furnace, and the like.
  • Patent Document 1 it is suggested that Fe, Al, Ti, and Ca similarly affect the conversion efficiency of the solar cell.
  • Fe and Al the influence on the conversion efficiency of the solar cell is completely different, and as described above, [Mi] is a good parameter correlated with the conversion efficiency of the solar cell. Is unthinkable.
  • the silicon feedstock of Patent Document 2 is unlikely to correlate with the conversion efficiency of the solar cell, at least for the metal element concentration and the carbon concentration, as in Patent Document 1 described above.
  • a metal removal process such as a leaching process, a directional solidification process, a leaching process or a solidification segregation process is performed twice or more, and a high-cost process is performed. It has become.
  • Patent Document 1 also discloses a process in which the metal removal process is performed only once (de-P process, unidirectional solidification (metal impurity removal), de-B process).
  • de-P process unidirectional solidification (metal impurity removal)
  • de-B process after removing the metal impurities in the unidirectional solidification (metal impurity removal) process of the second process, the metal impurities, boron, phosphorus, etc.
  • impurities such as dopant elements.
  • Examples of impurities that are likely to be mixed include a crucible material or a device forming material.
  • an object of the present invention is to provide a solar cell silicon, a polycrystalline silicon material, and a polycrystalline silicon solar cell that can produce a solar cell that includes both boron and phosphorus and has good conversion efficiency. And it is providing the manufacturing method of the silicon for solar cells.
  • the present invention includes boron, phosphorus, and aluminum, the boron concentration is 0.04 ppmw to 0.32 ppmw, the phosphorus concentration is 0.06 ppmw to 0.4 ppmw, and the aluminum concentration is It is silicon for solar cells which is 1.2 ppmw or more and 4.5 ppmw or less.
  • the concentration of aluminum is preferably 2 ppmw or more and 3.5 ppmw or less.
  • the iron concentration is preferably 1 ppmw or less.
  • the ratio of the phosphorus concentration to the boron concentration is preferably 1.33 or less.
  • the present invention is a polycrystalline silicon material produced by melting and then solidifying the above-mentioned silicon for solar cells.
  • the present invention is a polycrystalline silicon solar cell made from the above polycrystalline silicon material.
  • the present invention is also a method for producing the above silicon for solar cells, comprising a step of preparing raw silicon containing boron, phosphorus and aluminum, and a step of removing impurities from the raw silicon.
  • a process of removing impurities from the silicon for solar cells only the three processes of removing boron, removing phosphorus, and solidification segregation process are performed, and the last of the three processes is a solidification segregation process. It is a manufacturing method.
  • the solidification segregation step is preferably a step by a rotational segregation method.
  • the present invention is a method for producing the above silicon for solar cells, comprising a step of preparing raw silicon containing boron, phosphorus and aluminum, and a step of removing impurities from the raw silicon, As the process of removing impurities from the process, only the three processes of removing boron, removing phosphorus, and solidification segregation process are performed, and the last of the three processes is the solidification segregation process. It is a manufacturing method of the silicon for solar cells further including the process of mixing the silicon obtained at the process to perform, and the silicon obtained at another process.
  • the solidification segregation step is preferably a step by a rotational segregation method.
  • silicon for solar cells polycrystalline silicon material, polycrystalline silicon solar cells, and production of silicon for solar cells capable of producing a solar cell having both boron and phosphorus and good conversion efficiency
  • a method can be provided.
  • (A)-(c) is typical sectional drawing illustrated about an example of the manufacturing method of the silicon for solar cells of this invention. It is a typical block diagram of an example of the manufacturing apparatus of the polycrystalline-silicon material of this invention. It is a graph which shows the relationship between Al concentration and the high rank rate in Experimental example 1. It is a graph which shows the relationship between the Fe density
  • the silicon for solar cells of the present invention contains boron (B), phosphorus (P), and aluminum (Al), the B concentration is 0.04 ppmw or more and 0.32 ppmw or less, and the P concentration is 0.00. It is 06 ppmw or more and 0.4 ppmw or less, and Al concentration is 1.2 ppmw or more and 4.5 ppmw or less.
  • the high concentration side is limited from the viewpoint of suppressing the photodegradation of the solar cell and the reverse leakage current at the time of non-irradiation, and the low concentration side is limited from the viewpoint of improving the conversion efficiency of the solar cell. That is, when the B concentration of the silicon for solar cells is too low, the open voltage of the solar cells does not increase and good characteristics cannot be obtained.
  • the B concentration is set to 0.04 ppmw or more and 0.32 ppmw or less from the viewpoint of suppressing the photodegradation of the solar cell and the reverse leakage current at the time of non-irradiation and improving the conversion efficiency of the solar cell, preferably 0. It is set to 1 ppmw or more and 0.2 ppmw or less.
  • the Al concentration is 1.2 ppmw to 4.5 ppmw.
  • the conversion efficiency of the solar cell becomes good, and particularly when the Al concentration is 2 ppmw or more and 3.5 ppmw or less, the conversion efficiency of the solar cell becomes even better.
  • iron (Fe) becomes a recombination center of minority carriers even when P is contained, and therefore the Fe concentration may be 1 ppmw or less. It turned out to be preferable.
  • ppmw means the weight percent (Parts Per Million Weight) with respect to the weight of the whole silicon
  • a method for producing solar cell silicon according to the present invention is a method for producing any one of the above solar cell silicon, the step of preparing raw silicon containing B, P and Al, and impurities from the raw silicon.
  • a step of removing impurities from the raw material silicon, and performing only three steps of removing B, removing P, and solidification segregation step, and the last of the three steps Is a solidification segregation process.
  • the B concentration, the P concentration, and the Al concentration in the raw material silicon are not particularly limited, respectively, but the B concentration, the P concentration, and the Al in the solar cell silicon manufactured by the method for manufacturing a solar cell silicon of the present invention are not limited. It is preferable that the concentration is within the above range. However, depending on the ratio of the B concentration and the P concentration, the conductivity type of the semiconductor changes from p-type to n-type as it solidifies in the region that can be used as silicon for solar cells.
  • the ratio of the P concentration to the B concentration of solar cell silicon is 1.33 or less ((P concentration / B concentration) ⁇ 1.33) seems to be preferred.
  • chemical industrial grade metal silicon can be used as raw material silicon.
  • the chemical industrial grade metal silicon for example, silica silicon produced by a method of reducing silica sand with carbon in an electric furnace and having a purity of about 98 to 99.5% can be used.
  • Chemical industrial grade metal silicon contains impurities such as B and P at a concentration of about 5 ppmw to 30 ppmw, respectively, and metal impurities such as Fe, Al and calcium (Ca) of about 1000 ppmw to 5000 ppmw. Often included in the concentration of.
  • the step of removing B is not particularly limited as long as it is a method capable of removing B from raw silicon, but it is preferable to use a slag method.
  • the addition of the flux to the molten silicon obtained by melting the raw material silicon and the removal of the noro generated by the flux incorporating B in the molten silicon are each performed at least once. This is a method of removing B contained in.
  • the raw material silicon prepared as described above is accommodated in a crucible 3 in an open processing chamber 1 under atmospheric pressure.
  • the raw silicon is heated and melted by the heating device 2 to produce the molten silicon 4.
  • a molten slag 5 is generated by adding a flux of silicon oxide and / or alkali metal carbonate to the molten silicon 4, and the molten silicon 4 and the molten slag 5 are reacted.
  • boron oxide (B oxide) is generated and taken into the molten slag 5, and B can be removed from the molten silicon 4.
  • the molten slag 5 incorporating B oxide or the like is called Noro and floats on the surface of the molten silicon 4.
  • the reaction efficiency between the molten slag 5 and B decreases. Therefore, scrapes are scraped out from the crucible provided on the upper part of the crucible 3, and new flux is added to the crucible 3 again.
  • the B concentration in the raw material silicon can be reduced by performing such flux addition and scraping at least once.
  • the B concentration in the molten silicon 4 becomes 0.04 ppmw or more and 0.32 ppmw or less, preferably 0.1 ppmw or more and 0.2 ppmw or less
  • the crucible 3 is tilted and the molten silicon 4 is used as a mold. Take out the hot water and let it cool under atmospheric pressure to obtain a silicon lump.
  • the B concentration in the solar cell silicon finally obtained can be within the above range.
  • the step of removing P is not particularly limited as long as it is a method capable of removing P from raw silicon, but it is preferable to use a vacuum method.
  • the vacuum method is a method of removing an impurity element having a vapor pressure higher than that of silicon while holding molten silicon obtained by melting raw material silicon in a reduced pressure atmosphere.
  • impurity elements include arsenic (As), antimony (Sb), and sodium (Na) in addition to P.
  • raw silicon after the step of removing B is accommodated in a crucible 8 in a closed processing chamber 6 and heated by a heating device 7.
  • the raw silicon is heated and melted to produce the molten silicon 4.
  • the inside of the closed processing chamber 6 is made into a reduced pressure atmosphere, and the molten silicon 4 in the crucible 8 is held in the reduced pressure atmosphere.
  • P can be removed from the molten silicon 4.
  • the crucible 8 is tilted. Then, the molten silicon 4 is poured out into a mold and allowed to cool in a vacuum atmosphere to obtain a silicon lump.
  • silicon held in a reaction vessel such as a water-cooled copper crucible is irradiated with an electron beam under vacuum to form a high-temperature molten region, thereby removing impurities from silicon.
  • a vacuum refining method that evaporates from the gas can also be used.
  • the solidification segregation step is a method of segregating impurities by utilizing the difference in solubility between the liquid phase and the solid phase of the impurity element contained in the raw material silicon.
  • impurities are discharged (segregated) from the solid phase to the liquid phase due to the segregation effect.
  • the degree of segregation is indicated by the equilibrium segregation coefficient K 0 , and Fe and Al have a small equilibrium segregation coefficient K 0 , which are about 6.4 ⁇ 10 ⁇ 6 (Fe) and 2.8 ⁇ 10 ⁇ 3 (Al), respectively. Therefore, it is known that the removal efficiency by solidification segregation is large.
  • a method performed by a unidirectional solidification method or a method performed by a rotation segregation method can be exemplified, and among them, a method performed by a rotation segregation method is preferable.
  • the rotational segregation method is advantageous for cost reduction because it can increase the segregation efficiency, the solidification rate and the raw material utilization efficiency as compared with the unidirectional solidification method usually used for removing metal impurities.
  • the rotational segregation method can avoid such a situation by actively stirring the liquid phase, and can expect a good segregation effect even if the solidification rate is high.
  • the step of cutting the impurity-containing region as in the unidirectional solidification method can be omitted.
  • the raw silicon after the process of removing P is accommodated in the crucible 14 in the closed processing chamber 9, and the heating apparatus 10 is used.
  • the raw silicon is heated and melted to produce the molten silicon 4.
  • the stirring rod 13 made of carbon provided with a cooling mechanism inside is immersed in the molten silicon 4 and rotated by the rotating device 12 attached to the upper portion of the processing chamber 9 via the connecting portion 11 for rotating device, The molten silicon 4 is stirred. Then, the surface temperature of the stirring bar 13 is lowered by the cooling mechanism of the stirring bar 13 to solidify and segregate silicon on the surface of the stirring bar 13.
  • the silicon concentration for solar cell of the present invention can be segregated on the surface of the stirring bar 13 by reducing the Al concentration and the Fe concentration.
  • the solidification segregation step is performed so that the Al concentration in the solar cell silicon of the present invention segregated on the surface of the stirring bar 13 is 1.2 ppmw to 4.5 ppmw, preferably 2 ppmw to 3.5 ppmw.
  • the solidification segregation step is performed so that the Fe concentration in the silicon for solar cells of the present invention segregated on the surface of the stirring bar 13 is 1 ppmw or less.
  • the process of removing impurities from the raw material silicon has been described in the order of the process of removing B, the process of removing P, and the solidification segregation process.
  • the process of removing P and B is removed. It is also possible to perform in order of the process and the solidification segregation process.
  • the steps of removing impurities from the raw material silicon containing B, P and Al include a de-B step, a de-P step, and a solidification segregation step (metal impurity removal). Only the process is performed, and the last of the three processes is a solidification segregation process.
  • the metal impurity removal step can be performed only once and the number of steps can be made the same as the method of Patent Document 1, and the last step is a solidification segregation step which is a metal impurity removal step. The risk of contamination by impurities in the process can be avoided.
  • the method described in Patent Document 4 includes a leaching step in addition to the above three steps. Since the leaching process is effective not only for reducing the Fe concentration but also for reducing the Al concentration, the present inventor recognizes that the lower the Al concentration, the better the conversion efficiency of the solar cell. The leaching process was performed in order to suppress the above.
  • the silicon obtained in the separate process is not particularly limited.
  • the polysilicon obtained by the Siemens method the polysilicon obtained by the fluidized bed method, the end material of the single crystal silicon ingot, the single crystal silicon.
  • examples thereof include a block, a single crystal silicon wafer, a mill end of a polycrystalline silicon ingot, a polycrystalline silicon block, a polycrystalline silicon wafer, or a purified product thereof.
  • a step of mixing silicon having different qualities may be further included. In this case, for example, by mixing different lots of silicon with different impurity concentrations, even if the quality of silicon in at least one lot is poor, the quality of the impurity concentration will be good as a whole. Battery silicon can be obtained.
  • the polycrystalline silicon material of the present invention is produced by melting and solidifying the above silicon for solar cells.
  • FIG. 2 shows a schematic configuration diagram of an example of the polycrystalline silicon material manufacturing apparatus of the present invention.
  • the polycrystalline silicon material manufacturing apparatus of the present invention shown in FIG. 2 surrounds the crucible 21, the outer crucible 22 that accommodates the crucible 21, and the outer crucible 22 inside a chamber 27 that has a heat insulating material 213 on the inner wall.
  • a resistance heating body 28 made of a graphite heater.
  • the outer crucible 22 is supported by a crucible base 23.
  • the crucible base 23 is provided with a cooling tank 211 for flowing a coolant for cooling the crucible 21 and the outer crucible 22, and for raising and lowering the crucible 21 and the outer crucible 22.
  • An elevating drive mechanism 212 is attached.
  • a crucible lower thermocouple 25 and an outer crucible lower thermocouple 26 are respectively attached to the lower part of the crucible 21 and the outer crucible 22, and the lower crucible thermocouple 25 and the outer crucible lower thermocouple 26 are connected to the controller 29. It is connected. Further, the control device 29 can control the heating temperature of the resistance heating body 28 based on the respective temperature information of the crucible 21 and the outer crucible 22 transmitted from the crucible lower thermocouple 25 and the outer crucible lower thermocouple 26. Connected to resistance heater 28 so that it can.
  • the polycrystalline silicon material of the present invention can be manufactured, for example, as follows. First, the silicon for solar cells of the present invention produced as described above is accommodated in the crucible 21 and heated by the resistance heater 28. Thereby, the silicon for solar cells of the present invention inside the crucible 21 is melted to produce a molten silicon 24.
  • the molten silicon 24 is sequentially solidified by causing the coolant to flow from the cooling tank 211 and moving the crucible 21 downward by the elevating drive mechanism 212 while cooling the molten silicon 24 inside the crucible 21. Go.
  • the polycrystalline silicon ingot which is an example of the polycrystalline silicon material of this invention can be obtained.
  • a polycrystalline silicon block can be obtained by cutting the polycrystalline silicon ingot obtained as described above into a desired shape and size such as a prismatic shape using a known apparatus such as a band saw.
  • a polycrystalline silicon wafer can be obtained by slicing the polycrystalline silicon block obtained as described above using a known apparatus such as a multi-wire saw.
  • polycrystalline silicon material is a concept including a polycrystalline silicon ingot, a polycrystalline silicon block, and a polycrystalline silicon wafer.
  • the polycrystalline silicon solar cell of the present invention is a solar cell produced from the polycrystalline silicon material (polycrystalline silicon wafer) of the present invention.
  • solar battery is a concept including a solar battery cell and a solar battery module
  • polycrystalline silicon solar battery means a polycrystalline silicon solar battery cell and a polycrystalline silicon solar battery. It is a concept that includes modules.
  • the polycrystalline silicon solar battery cell of the present invention can be manufactured, for example, by a known solar cell process using a polycrystalline silicon wafer that is the polycrystalline silicon material of the present invention.
  • a pn junction is formed by doping an n-type impurity to form an n-type layer using a known material and a known method. Then, a polycrystalline silicon solar battery cell can be manufactured by forming a front electrode and a back electrode.
  • a pn junction is formed by forming p-type layers by doping p-type impurities using known materials and known methods. Then, a polycrystalline silicon solar battery cell can be manufactured by forming a front electrode and a back electrode.
  • the polycrystalline silicon solar cell of the present invention is not limited to the one using the pn junction inside the polycrystalline silicon wafer as described above, for example, by depositing a metal with a thin insulating layer interposed therebetween.
  • MIS type solar cells solar cells using p-type and n-type silicon heterojunctions having different structures by forming an amorphous silicon thin film having a conductivity type opposite to that of a polycrystalline silicon wafer.
  • a polycrystalline silicon solar cell module can be manufactured by electrically connecting the plurality.
  • a polycrystalline silicon wafer is prepared from each of 1 to 11 polycrystalline silicon ingots, and each of these polycrystalline silicon wafers is put into a normal solar cell process. 1 to 11 solar cells were produced. In addition, about 15,000 polycrystalline silicon wafers were obtained from one 400 kg polycrystalline silicon ingot, and solar cells were respectively produced from all these polycrystalline silicon wafers.
  • the high rank ratio (%) in Table 1 is the ratio of solar cells having a higher conversion efficiency than the threshold, with a predetermined conversion efficiency of the solar cells as a threshold. Moreover, the notation of “0.0 ppmw” of the Al concentration in Table 1 means that it is below the detection limit (0.04 ppmw) in the ICP emission analysis method.
  • FIG. 3 shows a graph with the Al concentration shown in Table 1 as the horizontal axis and the high rank ratio as the vertical axis.
  • sample no When the Al concentration of the polycrystalline silicon ingots 1 to 11 was in the range of 2 ppmw to 3.5 ppmw, the high rank ratio was 80% or more, and thus a further favorable value was obtained.
  • this experimental data is the whole data which produced the photovoltaic cell from the whole ingot in which the abundance and abundance ratio of various impurity elements are changing in the height direction of the polycrystalline silicon ingot due to the segregation effect. It's not trivial data.
  • Example 2 a sample was obtained in the same manner as in Experimental Example 1 except that a plurality of silicon for solar cells containing B, P, Fe, and 2.5 ppmw of Al and having different Fe concentrations were used. No. 12 to 15 polycrystalline silicon ingots were manufactured and sample Nos. The average impurity concentration of 12 to 15 polycrystalline silicon ingots was measured by ICP emission spectrometry.
  • the high rank rate (%) in Table 2 is a ratio of solar cells having higher conversion efficiency than the threshold, with a predetermined conversion efficiency of the solar cells as a threshold value.
  • the notation of “0.0 ppmw” of the Fe concentration in Table 2 means that it is below the detection limit (0.04 ppmw) in the ICP emission analysis method.
  • FIG. 4 shows a graph with the Fe concentration shown in Table 2 on the horizontal axis and the high rank ratio on the vertical axis. As shown in FIG. It was found that when the Fe concentration of the 12-15 polycrystalline silicon ingot was 1 ppmw or less, the high rank ratio was 80% or more, which was a favorable value.
  • This experimental data is also the entire data for producing solar cells from the entire ingot in which the abundances and abundance ratios of various impurity elements change in the height direction of the polycrystalline silicon ingot due to the segregation effect. It's not trivial data.
  • Example 3 In Experimental Example 3, a slag method is used as a process for removing B, a vacuum method is used as a process for removing P, and a rotary segregation method is used as a solidification segregation process for removing metal impurities. A method for producing silicon for a battery will be described.
  • the raw silicon contained B and P as impurities at a concentration of about 5 ppmw to 30 ppmw, respectively, and metal impurities such as Fe, Al, and Ca were contained at a concentration of about 1000 ppmw to 5000 ppmw. .
  • the raw material silicon is accommodated in a crucible 3 in an open processing chamber 1 under atmospheric pressure, and the raw material silicon is heated and melted by a heating device 2.
  • molten silicon 4 was produced.
  • a molten slag 5 was generated by adding a flux such as silicon oxide and / or alkali metal carbonate to the molten silicon 4, and the molten silicon 4 and the molten slag 5 were reacted.
  • a flux such as silicon oxide and / or alkali metal carbonate
  • noro which is the molten slag 5 incorporating B oxide, was scraped out from the bowl provided on the top of the crucible 3, and new flux was added to the crucible 3 again.
  • the B concentration in the raw material silicon was reduced by repeating the addition of the flux and scraping the slot 20 times.
  • the melting furnace was tilted to pour molten silicon into a mold and allowed to cool under atmospheric pressure to obtain a silicon lump.
  • B was removed from the raw silicon, and the B concentration in the raw silicon was lowered to 0.1 ppmw to 0.2 ppmw.
  • the raw material silicon after the step of removing B is accommodated in a crucible 8 in a closed processing chamber 6, and the raw material silicon is heated and melted by a heating device 7.
  • molten silicon 4 was produced.
  • the pressure in the closed processing chamber 6 was set to about 1 Pa or less, and the temperature of the molten silicon 4 was maintained at 1650 ° C.
  • the melting furnace was tilted to pour molten silicon into a mold and allowed to cool under atmospheric pressure to obtain a silicon lump.
  • the pressure in the processing chamber 6 is not limited to 1 Pa or less, but a lower pressure is preferable because a P removal rate is faster.
  • the temperature of the molten silicon 4 is not limited to 1650 ° C., and may be any temperature not lower than the melting point of silicon. Further, the higher the temperature of the molten silicon 4 is, the faster the removal rate of P is. However, since there are heat-resistant temperatures of members such as an apparatus and a heat insulating material, and elution of crucible material from the crucible (for example, when using a graphite crucible) From the viewpoint of stable operation, the temperature of the molten silicon 4 is most preferably 1600 ° C. to 1700 ° C.
  • the raw material silicon after the process of removing P is placed in a crucible 14 in a closed processing chamber 9, and the raw material silicon is heated and melted by the heating device 10.
  • molten silicon 4 was produced.
  • the stirring rod 13 made of carbon provided with a cooling mechanism inside is immersed in the molten silicon 4 and rotated by the rotating device 12 attached to the upper portion of the processing chamber 9 via the connecting portion 11 for rotating device, Molten silicon 4 was stirred. Then, the surface temperature of the stirring bar 13 was lowered by the cooling mechanism of the stirring bar 13 to solidify and segregate silicon on the surface of the stirring bar 13.
  • the impurity concentration of the silicon for solar cells of Experimental Example 3 obtained through only the above three steps was analyzed by ICP emission analysis, the B concentration was 0.4 ppmw or less, the P concentration was 0.5 ppmw or less, and the Fe concentration was 1 ppmw or less, Al concentration was 1.2 ppmw or more and 4.5 ppmw or less, and the impurity concentration was within the range of the silicon for solar cells of the present invention.
  • the B concentration, the P concentration, the Al concentration, and the Fe concentration are converted into solar cells with good conversion efficiency by only the three steps of the step of removing B, the step of removing P, and the solidification segregation step. Since it can be within the concentration range of the silicon for solar cells of the present invention capable of producing a battery, it was confirmed that the leaching step can be omitted and the cost can be reduced as compared with the conventional case.
  • the present invention can be used in solar cell silicon, polycrystalline silicon materials, polycrystalline silicon solar cells, and methods for producing solar cell silicon.

Abstract

 ボロン濃度が0.04ppmw以上0.32ppmw以下であり、リン濃度が0.06ppmw以上0.4ppmw以下であって、アルミニウム濃度が1.2ppmw以上4.5ppmw以下である太陽電池用シリコン、ならびにそれを用いて製造された多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法である。

Description

太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法
 本発明は、太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法に関する。
 地球環境に様々な問題を引き起こしている石油などの代替として自然エネルギーの利用が注目されている。その中でも太陽電池は大きな設備を必要とせず、稼働時に騒音などを発生しないことから、日本や欧州などで特に積極的に導入されてきている。
 カドミウムテルルなどの化合物半導体を用いた太陽電池も一部で実用化されているが、物質自体の安全性やこれまでの実績、またコストパフォーマンスの面から、結晶シリコン基板を用いた太陽電池が最も大きなシェアを占めており、その中でも多結晶シリコン基板を用いた太陽電池(多結晶シリコン太陽電池)が大きなシェアを占めている。
 多結晶シリコン太陽電池の基板として広く一般的に用いられている多結晶シリコンウエハは、以下のようにして製造されている。
 まず、太陽電池用シリコンを融解して得られたシリコン融液を、坩堝内で下方から一方向凝固させるキャスト法、または無底坩堝で連続的に成長させる電磁キャスト法などによって、多結晶シリコンインゴットを作製する。
 次に、上記のようにして得られた多結晶シリコンインゴットを角柱形状の多結晶シリコンブロックに加工する。その後、多結晶シリコンブロックをワイヤーソーなどによりスライスすることによって多結晶シリコンウエハが得られる。
 また、多結晶シリコン太陽電池セルは、上記のようにして得られた多結晶シリコンウエハを太陽電池セル作製プロセスに投入することによって得ることができる。また、多結晶シリコン太陽電池モジュールは、多結晶シリコン太陽電池セルを複数接続し、ラミネートすることなどによって得ることができる。
 太陽電池用シリコン中の不純物濃度は、最終製品である多結晶シリコン太陽電池の効率に大きな影響を与えることが知られている(たとえば特許文献1~3)。
 たとえば、特許文献1(特開平10-251010号公報)には、少なくともボロンと、炭素および/または酸素を含む太陽電池用シリコンについて、鉄、アルミニウム、チタン、カルシウムの不純物濃度の総和と、ボロン、リン、炭素と酸素、との相互作用を考慮し、優れた変換効率を有する太陽電池用シリコンに関しての条件が示されている。
 また、特許文献2(特許第4580939号公報)には、0.3~5.0ppmaのボロンと0.5~3.0ppmaのリンと50ppma未満の金属元素と100ppma未満の炭素とを含有することを特徴とするシリコン供給原料が開示されている。
 さらに、特許文献3(特開2006-100339号公報)には、半導体の導電型を決定するドーパントと、当該ドーパント以外の不純物としてアルミニウム、カルシウム、ストロンチウム、銅およびニッケルからなる群から選ばれる少なくとも一種類の元素とを含有する多結晶シリコンが開示されている。また、特許文献3の実施例には、ドーパントであるボロンと、上記の群に含まれる少なくとも一種類の元素とを含有するp型多結晶シリコンが開示されている。
 また、金属シリコンから冶金法を用いて太陽電池用シリコンを製造する方法としては、たとえば特許文献1、2および4に記載の方法が提案されている。以下において、「脱P工程」はたとえば真空法などを用いて主にリンを除去する工程を意味し、「脱B工程」はたとえばスラグ法などを用いて主にボロンを除去する工程を意味するものとする。
 特許文献1では、脱P工程、一方向凝固(金属不純物除去)、脱B工程、および一方向凝固(金属不純物除去)をこの順に行なうプロセスが開示されている。また、特許文献1には、最終の一方向凝固物を切断してウエハとするか、必要に応じて再溶解後凝固させ、ウエハ化するとの記述もある。
 また、特許文献2には、脱B工程、凝固、酸浸出液による少なくとも1回の浸出工程、および方向性凝固をこの順に行なうシリコン供給原料の製造方法が開示されている。
 さらに、特許文献4(特開2010-173911号公報)には、たとえば脱B工程、リーチング工程、脱P工程、および凝固偏析工程をこの順に行なうシリコンの精製方法が開示されている。なお、「リーチング工程」は、原料シリコンを破砕後、酸またはアルカリ等の溶液に浸漬させることにより、原料シリコンから不純物を酸またはアルカリ等の溶液に溶出させる工程を意味する。
特開平10-251010号公報 特許第4580939号公報 特開2006-100339号公報 特開2010-173911号公報
 特許文献1の方法では、少なくともボロンと、炭素および/または酸素を含む太陽電池用シリコンについて、検討が行われている。ここでは、鉄、アルミニウム、チタンおよびカルシウム不純物が太陽電池の特性に与える影響は全て、[Mi]/[C+O]の形で現れ、これら金属不純物と、炭素および/または酸素との間に相互作用が働いていることを示唆している。ここで、[Mi]はシリコン中のFe+Al+Ti+Caの濃度であり、[C+O]はシリコン中の、C+Oの濃度である。
 特許文献1に開示されている太陽電池用シリコン中の不純物濃度範囲が、どの部分に対するものかは不明確であるが、従来要求されている不純物濃度がC、Oを除き6N以上との記載(特許文献1の段落[0002])から、「太陽電池用シリコン」とは、「多結晶シリコン太陽電池に基板として用いるウエハを切り出す多結晶シリコンインゴット用原料シリコン」と解することができる。
 しかしながら、我々の実験結果によれば、太陽電池用シリコンを融解し、一方向凝固させた多結晶シリコンインゴット中の酸素濃度は、原料とした太陽電池用シリコン中の酸素濃度と相関は見られず、一方向凝固中の雰囲気の酸素濃度や、坩堝として通常用いられるシリカ、および離型材に含まれるシリコン酸化物などからの溶出によって決まっているようである。
 また、上記と同様に、太陽電池用シリコンを融解し、一方向凝固させた多結晶シリコンインゴット中の炭素濃度は、原料とした太陽電池用シリコン中の炭素濃度と相関は見られない。多結晶シリコンインゴット中の炭素は、坩堝内のシリコン融液から蒸発するSiOガスが、装置内の黒鉛ヒータなどの炭素部材と反応してCOガスとなり、再度シリコン融液に取り込まれることによるものが大部分である。COガスがシリコン融液に取り込まれる確率は、装置内のガスの流れ、真空度、および炉の構造などにより、適宜変更可能であるためである。
 これらの酸素および炭素に関する我々の実験結果から、太陽電池用シリコン中の[C+O]が太陽電池の変換効率と直接相関があるとは考えにくい。
 また、特許文献1では、Fe、Al、TiおよびCaが太陽電池の変換効率に同じように影響することが示唆されている。しかしながら、我々の実験結果によれば、少なくともFeとAlに関しては、太陽電池の変換効率に対する影響は全く異なっており、上記のように[Mi]が太陽電池の変換効率と相関を有する良いパラメータとは考えられない。
 また、特許文献2のシリコン供給原料についても、上記の特許文献1と同様に、少なくとも金属元素濃度および炭素濃度に関しては、太陽電池の変換効率と相関があるとは考えにくい。
 また、特許文献2のシリコン供給原料のボロン濃度およびリン濃度に関しても問題が生じる。特許文献2のシリコン供給原料のボロン濃度およびリン濃度をそれぞれppmw単位に換算すると、ボロン濃度が0.115≦[B]≦1.92ppmwとなり、リン濃度が0.55≦[P]≦3.86ppmwとなる。
 我々の実験結果によれば、[P]≧0.55ppmwという比較的高いリン濃度の領域では、リン自体が少数キャリアトラップとなってしまい、太陽電池特性を低下させるという問題がある。それに加えて、[B]>0.32ppmwの濃度範囲では、作製した太陽電池に光照射を行うと、ボロンおよび酸素が少数キャリアトラップとなる複合センターを形成し、大きな光劣化を起こすという問題も生じる。
 また、特許文献3の実施例では、ボロンをドープしたp型多結晶シリコンにおいて、Al、Ca、Sr、CuおよびNiのそれぞれの濃度変化により、太陽電池の変換効率がどのように変化するかを調べている。しかしながら、特に冶金法で精製したシリコン原料を用いて多結晶シリコンインゴットを作製する場合には、ボロンだけでなくリンも少なからず含まれるため、ボロンおよびリンをどちらも含むシリコン原料に対して、各不純物が太陽電池の変換効率にどのような影響があるかは自明ではない。
 また、特許文献2および特許文献4に記載の太陽電池用シリコンの製造方法では、浸出工程、方向性凝固、リーチング工程または凝固偏析工程などの金属除去工程を2回以上行なっており、高コストプロセスとなっている。
 特許文献1では、金属除去工程が1回のみのプロセス(脱P工程、一方向凝固(金属不純物除去)、脱B工程)も開示されている。しかしながら、この場合にはプロセス数が少なくなるものの、第2工程の一方向凝固(金属不純物除去)工程で金属不純物を除去した後の脱B工程で、再度、金属不純物、ならびにボロンおよびリンなどのドーパント元素などの不純物が混入する危険性を常に抱えている。混入する可能性が高い不純物としては、坩堝材料または装置形成材料などがある。
 上記の事情に鑑みて、本発明の目的は、ボロンおよびリンのいずれをも含み、変換効率が良好な太陽電池を作製することができる太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法を提供することにある。
 本発明は、ボロンと、リンと、アルミニウムとを含み、ボロンの濃度が0.04ppmw以上0.32ppmw以下であり、リンの濃度が0.06ppmw以上0.4ppmw以下であって、アルミニウムの濃度が1.2ppmw以上4.5ppmw以下である太陽電池用シリコンである。
 ここで、本発明の太陽電池用シリコンにおいては、アルミニウムの濃度が2ppmw以上3.5ppmw以下であることが好ましい。
 また、本発明の太陽電池用シリコンにおいては、鉄の濃度が1ppmw以下であることが好ましい。
 また、本発明の太陽電池用シリコンにおいては、ボロンの濃度に対するリンの濃度の比が1.33以下であることが好ましい。
 また、本発明は、上記の太陽電池用シリコンを融解した後、凝固することによって作製された多結晶シリコン材料である。
 また、本発明は、上記の多結晶シリコン材料から作製された多結晶シリコン太陽電池である。
 また、本発明は、上記の太陽電池用シリコンを製造する方法であって、ボロンとリンとアルミニウムとを含む原料シリコンを準備する工程と、原料シリコンから不純物を除去する工程とを含み、原料シリコンから不純物を除去する工程として、ボロンを除去する工程、リンを除去する工程、および凝固偏析工程の3工程のみを行ない、かつ3工程のうちの最後の工程が凝固偏析工程である太陽電池用シリコンの製造方法である。
 また、本発明の太陽電池用シリコンの製造方法において、凝固偏析工程は回転偏析法による工程であることが好ましい。
 さらに、本発明は、上記の太陽電池用シリコンを製造する方法であって、ボロンとリンとアルミニウムとを含む原料シリコンを準備する工程と、原料シリコンから不純物を除去する工程とを含み、原料シリコンから不純物を除去する工程として、ボロンを除去する工程、リンを除去する工程、および凝固偏析工程の3工程のみを行ない、かつ3工程のうちの最後の工程が凝固偏析工程であり、不純物を除去する工程で得られたシリコンと、別工程で得られたシリコンとを混合する工程をさらに含む、太陽電池用シリコンの製造方法である。
 ここで、本発明の太陽電池用シリコンの製造方法において、凝固偏析工程は回転偏析法による工程であることが好ましい。
 本発明によれば、ボロンおよびリンのいずれをも含み、変換効率が良好な太陽電池を作製することができる太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法を提供することができる。
(a)~(c)は、本発明の太陽電池用シリコンの製造方法の一例について図解する模式的な断面図である。 本発明の多結晶シリコン材料の製造装置の一例の模式的な構成図である。 実験例1におけるAl濃度と高ランク率との関係を示すグラフである。 実験例2におけるFe濃度と高ランク率との関係を示すグラフである。
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 <太陽電池用シリコン>
 本発明者らは、鋭意研究を重ねた結果、上記の課題が解決可能であることを見出し、本発明を完成するに至った。すなわち、本発明の太陽電池用シリコンは、ボロン(B)と、リン(P)と、アルミニウム(Al)とを含み、B濃度が0.04ppmw以上0.32ppmw以下であり、P濃度が0.06ppmw以上0.4ppmw以下であって、Al濃度が1.2ppmw以上4.5ppmw以下であることを特徴とする。
 B濃度については、太陽電池の光劣化および光非照射時の逆方向漏れ電流を抑える観点から高濃度側が制限され、低濃度側は太陽電池の変換効率を向上させる観点から制限される。すなわち、太陽電池用シリコンのB濃度が低すぎると、太陽電池の開放電圧が上がらず、良好な特性が得られない。
 したがって、太陽電池の光劣化および光非照射時の逆方向漏れ電流を抑えるとともに、太陽電池の変換効率を向上させる観点から、B濃度は0.04ppmw以上0.32ppmw以下とされ、好ましくは0.1ppmw以上0.2ppmw以下とされる。
 同様に、Al濃度について検討したところ、太陽電池用シリコン中にPが存在している場合には、PとAlとの相互作用が見られ、特許文献3と比較して、太陽電池の変換効率が良好なAl濃度範囲が高濃度側に大きくずれることが判明した。
 具体的には、P濃度が0.06ppmw以上0.4ppmw以下の範囲内、好ましくは0.06ppmw以上0.25ppmw以下の範囲内にあるとき、Al濃度が1.2ppmw以上4.5ppmw以下である場合に太陽電池の変換効率が良好となり、特にAl濃度が2ppmw以上3.5ppmw以下である場合に太陽電池の変換効率がさらに良好となる。
 さらに、B、PおよびAlを含む太陽電池用シリコンについて検討した結果、Pを含む場合にも鉄(Fe)は、少数キャリアの再結合中心となることから、Fe濃度は1ppmw以下であることが好ましいことが判明した。
 なお、本明細書において、「ppmw」は、太陽電池用シリコン全体の重量に対する重量パーセント(Parts Per Million Weight)を意味する。
 <太陽電池用シリコンの製造方法>
 本発明の太陽電池用シリコンの製造方法は、上記のいずれかの太陽電池用シリコンを製造する方法であって、BとPとAlとを含む原料シリコンを準備する工程と、原料シリコンから不純物を除去する工程とを含み、原料シリコンから不純物を除去する工程として、Bを除去する工程、Pを除去する工程、および凝固偏析工程の3工程のみを行ない、かつ当該3工程のうちの最後の工程が凝固偏析工程であることを特徴としている。
 以下、本発明の太陽電池用シリコンの製造方法の一例について説明する。まず、BとPとAlを含む原料シリコンを準備する工程を行なう。ここで、原料シリコン中のB濃度、P濃度、およびAl濃度はそれぞれ特に限定されないが、本発明の太陽電池用シリコンの製造方法による製造後の太陽電池用シリコン中のB濃度、P濃度およびAl濃度がそれぞれ上記の範囲内とされることが好ましい。ただし、B濃度とP濃度の比によっては、本来なら太陽電池用シリコンとして利用可能な領域の中で、凝固とともにp型からn型へと半導体の導電型が変化してしまい、結果的に、太陽電池用シリコンの歩留まりの低下につながることがあるため、このような歩留まりの低下を抑制する観点からは、太陽電池用シリコンのB濃度に対するP濃度の比は1.33以下((P濃度/B濃度)≦1.33)であることが好ましいようである。
 原料シリコンとしては、たとえば、化学工業用グレードの金属シリコンを用いることができる。化学工業用グレードの金属シリコンとしては、たとえば、ケイ砂を電気炉中で炭素で還元する方法で製造され、純度は98~99.5%程度のものを用いることができる。化学工業用グレードの金属シリコンには、不純物として、たとえば、BおよびPがそれぞれ5ppmw~30ppmw程度の濃度で含まれているとともに、Fe、Alおよびカルシウム(Ca)などの金属不純物が1000ppmw~5000ppmw程度の濃度で含まれていることが多い。
 次に、原料シリコンからBを除去する工程を行なう。Bを除去する工程は、原料シリコンからBを除去することができる方法であれば特に限定されないが、スラグ法を用いることが好ましい。
 スラグ法は、原料シリコンを溶融することによって得た溶融シリコンへのフラックスの添加と、フラックスが溶融シリコン中のBを取り込むことによって生成されたノロの除去とをそれぞれ少なくとも1回行なうことにより原料シリコンに含まれるBを除去する方法である。
 具体的には、まず、たとえば図1(a)の模式的断面図に示すように、大気圧下において、上記のようにして準備した原料シリコンを開放系の処理室1内の坩堝3に収容し、加熱装置2で原料シリコンを加熱して溶融することによって溶融シリコン4を作製する。
 次に、溶融シリコン4に、酸化ケイ素および/またはアルカリ金属炭酸塩などのフラックスを添加することによって溶融スラグ5を生成し、溶融シリコン4と溶融スラグ5とを反応させる。この反応により、ボロン酸化物(B酸化物)が生成して、溶融スラグ5中に取り込まれ、溶融シリコン4からBを除去することができる。
 B酸化物などを取り込んだ溶融スラグ5はノロと呼ばれ、溶融シリコン4の溶湯表面に浮遊する。この浮遊したノロにおいてB濃度が高くなると、溶融スラグ5とBとの反応効率が低下する。そのため、坩堝3の上部に設けた樋などからノロを掻き出し、再度、新たなフラックスを坩堝3に添加する。
 このようなフラックスの添加とノロの掻き出しとをそれぞれ少なくとも1回行なうことによって、原料シリコンにおけるB濃度を低減することができる。このようにして、溶融シリコン4中のB濃度が0.04ppmw以上0.32ppmw以下、好ましくは0.1ppmw以上0.2ppmw以下となった時点で、坩堝3を傾けて、溶融シリコン4を鋳型に出湯し、大気圧下で放冷してシリコン塊を得る。Bを除去する工程後の原料シリコン中のB濃度を上記の含有量とすることによって、最終的に得られる太陽電池用シリコン中のB濃度を上記の範囲内のものとすることができる。
 次に、原料シリコンからPを除去する工程を行なう。Pを除去する工程は、原料シリコンからPを除去することができる方法であれば特に限定されないが、真空法を用いることが好ましい。
 真空法は、原料シリコンを溶融することによって得た溶融シリコンを減圧雰囲気下に保持して、シリコンよりも蒸気圧の高い不純物元素を除去する方法である。このような不純物元素としては、P以外にも、ヒ素(As)、アンチモン(Sb)およびナトリウム(Na)などがある。
 具体的には、まず、たとえば図1(b)の模式的断面図に示すように、Bを除去する工程後の原料シリコンを密閉系の処理室6内の坩堝8に収容し、加熱装置7で原料シリコンを加熱して溶融することによって溶融シリコン4を作製する。
 次に、密閉系の処理室6内を減圧雰囲気にし、減圧雰囲気の状態で坩堝8中の溶融シリコン4を保持する。これにより、溶融シリコン4中からPを除去することができる。このようにして、溶融シリコン4中のPの含有量が0.06ppmw以上0.4ppmw以下の範囲内、好ましくは0.06ppmw以上0.25ppmw以下の範囲内となった時点で、坩堝8を傾けて、溶融シリコン4を鋳型に出湯し、真空雰囲気下で放冷してシリコン塊を得る。
 なお、真空法以外のリンを除去する工程としては、たとえば、水冷銅坩堝などの反応容器に保持したシリコンに真空下で電子ビームを照射し、高温の溶融領域を形成することにより、不純物をシリコンから蒸発させる真空精錬法なども利用可能である。
 次に、凝固偏析工程を行なう。凝固偏析工程は、原料シリコンに含まれる不純物元素の液相と固相とに対する溶解度の差を利用して不純物を偏析させる方法である。原料シリコンを凝固させた際に、偏析効果により固相から液相に不純物が排出(偏析)されることになる。偏析の程度は、平衡偏析係数K0で示され、FeおよびAlは平衡偏析係数K0が小さく、それぞれ、6.4×10-6(Fe)および2.8×10-3(Al)程度であるため凝固偏析による除去効率が大きいことが知られている。
 このような凝固偏析工程としては、たとえば、一方向凝固法により行なう方法または回転偏析法により行なう方法を例示することができるが、なかでも回転偏析法により行なう方法で行なうことが好ましい。回転偏析法は、金属不純物除去に通常用いられている一方向凝固法と比較して、偏析効率、凝固速度および原料利用効率を高めることができることから、低コスト化に有利となる。
 上述のように、凝固偏析時には、固相から液相側に不純物の排出が起こるため、液相側の攪拌が十分でないと、固液界面液相側の不純物濃度が局所的に高くなり、実質的な偏析係数が大きくなってしまうという問題がある。回転偏析法は、液相を積極的に攪拌することによって、このような状況を回避することができ、凝固速度が速くとも、良好な偏析効果を期待することができる。また、回転偏析法においては、不純物元素は溶融シリコン中に残留することになるため、一方向凝固法のような不純物含有領域を切除する工程を省略することができる。
 具体的には、まず、たとえば図1(c)の模式的断面図に示すように、Pを除去する工程後の原料シリコンを密閉系の処理室9内の坩堝14に収容し、加熱装置10で原料シリコンを加熱して溶融することによって溶融シリコン4を作製する。
 次に、内部に冷却機構を備えたカーボンからなる攪拌棒13を溶融シリコン4中に浸漬させ、処理室9の上部に回転装置用接続部11を介して取り付けられた回転装置12によって回転させ、溶融シリコン4を攪拌する。そして、攪拌棒13の冷却機構により、攪拌棒13の表面温度を低下させることによって、攪拌棒13の表面にシリコンを凝固偏析させる。
 このように、Al濃度およびFe濃度を低減して、攪拌棒13の表面に、本発明の太陽電池用シリコンを偏析することができる。なお、凝固偏析工程は、攪拌棒13の表面に偏析した本発明の太陽電池用シリコン中のAl濃度が1.2ppmw以上4.5ppmw以下、好ましくは2ppmw以上3.5ppmw以下となるように行なわれる。また、凝固偏析工程は、攪拌棒13の表面に偏析した本発明の太陽電池用シリコン中のFe濃度が1ppmw以下となるように行なわれる。
 なお、上記においては、原料シリコンから不純物を除去する工程として、Bを除去する工程、Pを除去する工程および凝固偏析工程の順に行なう場合について説明したが、Pを除去する工程、Bを除去する工程および凝固偏析工程の順に行なうことも可能である。
 本発明の太陽電池用シリコンの製造方法においては、BとPとAlとを含む原料シリコンから不純物を除去する工程として、脱B工程、脱P工程、および凝固偏析工程(金属不純物除去)の3工程のみを行ない、かつ当該3工程のうちの最後の工程を凝固偏析工程としている。
 これにより、金属不純物除去工程を1回のみ行ない、工程数を特許文献1の方法と同一にすることができるだけでなく、最後の工程が金属不純物除去工程である凝固偏析工程であるため、最後の工程での不純物混入の危険性を回避することができる。
 また、特許文献4に記載の方法では、上記の3つの工程に加えてリーチング工程が含まれている。リーチング工程は、Fe濃度だけでなく、Al濃度の低減にも有効であるため、本発明者は、Al濃度が低いほど太陽電池の変換効率が良好であるという認識の下、Al濃度を1ppmw以下に抑えるためにリーチング工程を行なっていた。
 しかしながら、本発明者らのその後の鋭意検討の結果、Al濃度に最適値があることがわかり、Al濃度を高くするためにリーチング工程を省略したところ、工程省略によるコスト低減と同時に、Al濃度を本発明の太陽電池用シリコンの濃度範囲にすることが可能であることが判明した。
 さらに、上記の3工程のみからなる不純物を除去する工程で得られたシリコンと、別工程で得られたシリコンとを混合する工程をさらに含んでいてもよい。ここで、別工程で得られたシリコンとしては、特に限定されず、たとえば、シーメンス法で得られたポリシリコン、流動床法で得られたポリシリコン、単結晶シリコンインゴットの端材、単結晶シリコンブロック、単結晶シリコンウエハ、多結晶シリコンインゴットの端材、多結晶シリコンブロック、多結晶シリコンウエハ、またはこれらの精製物などを挙げることができる。
 また、上記の3工程のみからなる不純物を除去する工程で得られたシリコンと、当該工程とは異なるタイミングで行なわれた上記の3工程のみからなる不純物を除去する工程で得られた別ロットで品質が異なるシリコンとを混合する工程をさらに含んでいてもよい。この場合には、たとえば、不純物濃度が異なる別ロットのシリコンを混合するようにして、少なくとも1つのロットでのシリコンが不良となる品質であっても、全体として良品となる不純物濃度の品質の太陽電池用シリコンを得ることができる。
 <多結晶シリコン材料>
 本発明の多結晶シリコン材料は、上記の太陽電池用シリコンを融解した後、凝固することによって作製されたものである。
 図2に、本発明の多結晶シリコン材料の製造装置の一例の模式的な構成図を示す。図2に示す本発明の多結晶シリコン材料の製造装置は、内壁に断熱材213を備えたチャンバ27の内部に、坩堝21と、坩堝21を収容する外坩堝22と、外坩堝22を取り囲むようにして設置された黒鉛ヒータからなる抵抗加熱体28とを備えている。
 また、外坩堝22は坩堝台23によって支持されており、坩堝台23には坩堝21および外坩堝22を冷却する冷媒を流すための冷却槽211と、坩堝21および外坩堝22を昇降させるための昇降駆動機構212が取り付けられている。
 坩堝21の下部および外坩堝22の下部には、それぞれ、坩堝下熱電対25および外坩堝下熱電対26が取り付けられており、坩堝下熱電対25および外坩堝下熱電対26は制御装置29に接続されている。また、制御装置29は、坩堝下熱電対25および外坩堝下熱電対26から送信されてきた坩堝21および外坩堝22のそれぞれの温度情報に基づいて抵抗加熱体28の加熱温度を制御することができるように、抵抗加熱体28に接続される。
 本発明の多結晶シリコン材料は、たとえば以下のようにして製造することができる。まず、上記のようにして作製した本発明の太陽電池用シリコンを坩堝21の内部に収容し、抵抗加熱体28によって加熱する。これにより、坩堝21の内部の本発明の太陽電池用シリコンが溶融して溶融シリコン24が作製される。
 次に、冷却槽211から冷媒を流して、坩堝21の内部の溶融シリコン24を冷却しながら、昇降駆動機構212で坩堝21を下方に移動させていくことによって、溶融シリコン24を順次凝固していく。これにより、本発明の多結晶シリコン材料の一例である多結晶シリコンインゴットを得ることができる。
 また、上記のようにして得られた多結晶シリコンインゴットを、たとえばバンドソーなどの公知の装置を用いて角柱状などの所望の形状およびサイズに切り出すことによって、多結晶シリコンブロックを得ることができる。
 また、上記のようにして得られた多結晶シリコンブロックをたとえばマルチワイヤーソーなどの公知の装置を用いてスライスすることによって、多結晶シリコンウエハを得ることができる。
 なお、本明細書において、「多結晶シリコン材料」は、多結晶シリコンインゴットと、多結晶シリコンブロックと、多結晶シリコンウエハとを含む概念である。
 <多結晶シリコン太陽電池>
 本発明の多結晶シリコン太陽電池は、本発明の多結晶シリコン材料(多結晶シリコンウエハ)から作製された太陽電池である。なお、本明細書において、「太陽電池」は、太陽電池セルと、太陽電池モジュールとを含む概念であり、「多結晶シリコン太陽電池」は、多結晶シリコン太陽電池セルと、多結晶シリコン太陽電池モジュールとを含む概念である。
 本発明の多結晶シリコン太陽電池セルは、たとえば、本発明の多結晶シリコン材料である多結晶シリコンウエハを用いて、公知の太陽電池セルプロセスにより製造することができる。
 たとえば、p型の不純物がドープされた多結晶シリコンウエハの場合には、公知の材料および公知の方法を用いて、n型の不純物をドープしてn型層を形成することによりpn接合を形成し、その後、表面電極および裏面電極を形成して、多結晶シリコン太陽電池セルを製造することができる。
 また、n型の不純物がドープされた多結晶シリコンウエハの場合には、公知の材料および公知の方法を用いて、p型の不純物をドープしてp型層を形成することによりpn接合を形成し、その後、表面電極および裏面電極を形成して、多結晶シリコン太陽電池セルを製造することができる。
 また、本発明の多結晶シリコン太陽電池セルは、上記のように、多結晶シリコンウエハの内部のpn接合を利用したものの他にも、たとえば、薄い絶縁層を挟んで金属を蒸着することなどにより形成したMIS型太陽電池、または多結晶シリコンウエハと反対の導電型を有するアモルファスなどのシリコン薄膜を製膜して異なる構造のp型およびn型シリコンヘテロ接合を利用した太陽電池などがある。また、その複数個を電気的に接続することによって、多結晶シリコン太陽電池モジュールを製造することができる。
 <実験例1>
 図2に示す製造装置を用いて、B濃度、P濃度およびAl濃度が異なる複数の太陽電池用シリコンから、それぞれ、サンプルNo.1~11の多結晶シリコンインゴットを製造した。そして、上記のようにして製造したサンプルNo.1~11の多結晶シリコンインゴットの平均不純物濃度をそれぞれICP(Inductively Coupled Plasma)発光分析法により測定した。
 次に、上記のようにして製造したサンプルNo.1~11多結晶シリコンインゴットからそれぞれ多結晶シリコンウエハを作製し、これらの多結晶シリコンウエハをそれぞれ通常の太陽電池プロセスに投入して、サンプルNo.1~11の太陽電池セルを作製した。なお、400kgの多結晶シリコンインゴット1個からは約15000枚の多結晶シリコンウエハが得られ、これらのすべての多結晶シリコンウエハからそれぞれ太陽電池セルを作製した。
 そして、上記のようにして作製したサンプルNo.1~11の太陽電池セルのそれぞれの変換効率を測定して、多結晶シリコンインゴットのAl濃度と、太陽電池セルの変換効率との相関関係を調べた。その結果を表1に示す。
 なお、表1の高ランク率(%)は、太陽電池セルの所定の変換効率を閾値として、閾値よりも変換効率が高い太陽電池セルの割合とした。また、表1のAl濃度の「0.0ppmw」の表記は、ICP発光分析法での検出限界(0.04ppmw)以下であることを意味している。
Figure JPOXMLDOC01-appb-T000001
 また、図3に、表1に示すAl濃度を横軸とし、高ランク率を縦軸としたグラフを示す。
 図3に示すように、サンプルNo.1~11の多結晶シリコンインゴットのAl濃度が1.2ppmw以上4.5ppmw以下の範囲内である場合には、高ランク率が良好な値となった。
 特に、サンプルNo.1~11の多結晶シリコンインゴットのAl濃度が2ppmw以上3.5ppmw以下の範囲内である場合には、高ランク率が80%以上となるため、さらに良好な値となった。
 したがって、図3に示すように、高ランク率は、Al濃度と相関関係があることが確認された。
 なお、本実験データは、偏析効果により多結晶シリコンインゴットの高さ方向に、種々の不純物元素の存在量および存在比が変化しているインゴット全体から、太陽電池セルを作製した全体のデータであり、自明なデータではない。
 <実験例2>
 実験例2においては、Bと、Pと、Feと、2.5ppmwのAlとを含み、Fe濃度が異なる複数の太陽電池用シリコンを用いたこと以外は、実験例1と同様にして、サンプルNo.12~15の多結晶シリコンインゴットを製造し、サンプルNo.12~15の多結晶シリコンインゴットの平均不純物濃度をそれぞれICP発光分析法により測定した。
 その後は、実験例1と同様にして、サンプルNo.12~15の多結晶シリコンインゴットからそれぞれ多結晶シリコンウエハを作製し、これらの多結晶シリコンウエハをそれぞれ通常の太陽電池プロセスに投入して、サンプルNo.12~15の太陽電池セルを作製した。
 そして、実験例1と同様の方法で、サンプルNo.12~15の太陽電池セルのそれぞれの変換効率を測定して、多結晶シリコンインゴットのFe濃度と、太陽電池セルの変換効率との相関関係を調べた。その結果を表2に示す。
 なお、表2の高ランク率(%)は、太陽電池セルの所定の変換効率を閾値として、閾値よりも変換効率が高い太陽電池セルの割合とした。また、表2のFe濃度の「0.0ppmw」の表記は、ICP発光分析法での検出限界(0.04ppmw)以下であることを意味している。
Figure JPOXMLDOC01-appb-T000002
 図4に、表2に示すFe濃度を横軸とし、高ランク率を縦軸としたグラフを示す。
 図4に示すように、サンプルNo.12~15の多結晶シリコンインゴットのFe濃度が1ppmw以下であれば、高ランク率が80%以上となって、良好な値となることがわかった。
 したがって、図4に示すように、高ランク率は、Fe濃度と相関関係があることが確認された。
 なお、本実験データも、偏析効果により多結晶シリコンインゴットの高さ方向に、種々の不純物元素の存在量および存在比が変化しているインゴット全体から、太陽電池セルを作製した全体のデータであり、自明なデータではない。
 <実験例3>
 実験例3では、Bを除去する工程としてスラグ法を用い、Pを除去する工程として真空法を用い、金属不純物を除去する凝固偏析工程として回転偏析法を用い、これらの3工程のみからなる太陽電池用シリコンの製造方法について説明する。
 まず、原料シリコンとしては、いわゆる金属シリコン程度の純度のものを準備した。ここで、原料シリコンには、不純物として、BおよびPがそれぞれ5ppmw~30ppmw程度の濃度で含まれているとともに、Fe、AlおよびCaなどの金属不純物が1000ppmw~5000ppmw程度の濃度で含まれていた。
 次に、図1(a)に示すように、大気圧下において、上記の原料シリコンを開放系の処理室1内の坩堝3に収容し、加熱装置2で原料シリコンを加熱して溶融することによって溶融シリコン4を作製した。
 次に、溶融シリコン4に、酸化ケイ素および/またはアルカリ金属炭酸塩などのフラックスを添加することによって溶融スラグ5を生成し、溶融シリコン4と溶融スラグ5とを反応させた。この反応により、B酸化物が生成して、溶融スラグ5中に取り込まれ、溶融シリコン4からBを除去した。
 次に、坩堝3の上部に設けた樋などから、B酸化物を取り込んだ溶融スラグ5であるノロを掻き出し、再度、新たなフラックスを坩堝3に添加した。
 このようなフラックスの添加とノロの掻き出しとを繰り返してそれぞれ20回行なうことによって、原料シリコンにおけるB濃度を低減していった。そして、所望のB濃度を達成したところで、溶融炉を傾けて、溶融シリコンを鋳型に出湯し、大気圧下で放冷してシリコン塊を得た。
 上記のようにして、原料シリコンからBを除去し、原料シリコン中のB濃度を0.1ppmw~0.2ppmwまで低下させた。
 次に、図1(b)に示すように、Bを除去する工程後の原料シリコンを密閉系の処理室6内の坩堝8に収容し、加熱装置7で原料シリコンを加熱して溶融することによって溶融シリコン4を作製した。
 次に、密閉系の処理室6内の圧力を1Pa以下程度とし、溶融シリコン4の温度を1650℃に保持した。そして、所望のB濃度を達成したところで、溶融炉を傾けて、溶融シリコンを鋳型に出湯し、大気圧下で放冷してシリコン塊を得た。
 なお、処理室6内の圧力は、1Pa以下に限定されないが、圧力が低いほどPの除去速度が速いため好ましい。また、溶融シリコン4の温度も1650℃に限定されず、シリコンの融点以上の温度であればよい。また、溶融シリコン4の温度が高いほどPの除去速度が速くなるが、装置および断熱材等の部材の耐熱温度、ならびに坩堝からの坩堝材料の溶出などもあるため(たとえば黒鉛坩堝を用いた場合の炭素汚染)、安定して操業する観点からは、溶融シリコン4の温度を1600℃~1700℃とすることが最も好ましい。
 上記のようにして、原料シリコンからPを除去し、原料シリコン中のP濃度を0.25ppmw以下に低下させた。
 次に、図1(c)に示すように、Pを除去する工程後の原料シリコンを密閉系の処理室9内の坩堝14に収容し、加熱装置10で原料シリコンを加熱して溶融することによって溶融シリコン4を作製した。
 次に、内部に冷却機構を備えたカーボンからなる攪拌棒13を溶融シリコン4中に浸漬させ、処理室9の上部に回転装置用接続部11を介して取り付けられた回転装置12によって回転させ、溶融シリコン4を攪拌した。そして、攪拌棒13の冷却機構により、攪拌棒13の表面温度を低下させることによって、攪拌棒13の表面にシリコンを凝固偏析させた。
 このように、Al濃度およびFe濃度を低下させて、攪拌棒13の表面に、太陽電池用シリコンを偏析させた。
 上記の3工程のみを経て得られた実験例3の太陽電池用シリコンの不純物濃度をICP発光分析法により分析したところ、B濃度が0.4ppmw以下、P濃度が0.5ppmw以下、Fe濃度が1ppmw以下、Al濃度が1.2ppmw以上4.5ppmw以下であって、本発明の太陽電池用シリコンの範囲内に含まれる不純物濃度となっていた。
 したがって、実験例3においては、Bを除去する工程、Pを除去する工程、および凝固偏析工程の3工程のみで、B濃度、P濃度、Al濃度およびFe濃度をそれぞれ、変換効率が良好な太陽電池を作製することが可能な本発明の太陽電池用シリコンの濃度範囲内とすることができるため、リーチング工程を省略することが可能であり、従来よりもコストを低減できることが確認された。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法に利用することができる。
 1 処理室、2 加熱装置、3 坩堝、4 溶融シリコン、5 溶融スラグ、6 処理室、7 加熱装置、8 坩堝、9 処理室、10 加熱装置、11 回転装置用接続部、12 回転装置、13 攪拌棒、21 坩堝、22 外坩堝、23 坩堝台、24 溶融シリコン、25 坩堝下熱電対、26 外坩堝下熱電対、27 チャンバ、28 抵抗加熱体、29 制御装置、211 冷却槽、212 昇降駆動機構、213 断熱材。

Claims (10)

  1.  ボロンと、リンと、アルミニウムとを含み、
     前記ボロンの濃度が、0.04ppmw以上0.32ppmw以下であり、
     前記リンの濃度が、0.06ppmw以上0.4ppmw以下であって、
     前記アルミニウムの濃度が、1.2ppmw以上4.5ppmw以下である、太陽電池用シリコン。
  2.  前記アルミニウムの濃度が、2ppmw以上3.5ppmw以下である、請求項1に記載の太陽電池用シリコン。
  3.  鉄の濃度が、1ppmw以下である、請求項1または2に記載の太陽電池用シリコン。
  4.  前記ボロンの濃度に対する前記リンの濃度の比が、1.33以下である、請求項1から3のいずれか1項に記載の太陽電池用シリコン。
  5.  請求項1から4のいずれか1項に記載の太陽電池用シリコンを融解した後、凝固することによって作製された、多結晶シリコン材料。
  6.  請求項5に記載の多結晶シリコン材料から作製された、多結晶シリコン太陽電池。
  7.  請求項1から4のいずれか1項に記載の太陽電池用シリコンを製造する方法であって、
     ボロンとリンとアルミニウムとを含む原料シリコンを準備する工程と、
     前記原料シリコンから不純物を除去する工程とを含み、
     前記原料シリコンから不純物を除去する工程として、ボロンを除去する工程、リンを除去する工程、および凝固偏析工程の3工程のみを行ない、かつ前記3工程のうちの最後の工程が前記凝固偏析工程である、太陽電池用シリコンの製造方法。
  8.  前記凝固偏析工程が回転偏析法による工程である、請求項7に記載の太陽電池用シリコンの製造方法。
  9.  請求項1から4のいずれか1項に記載の太陽電池用シリコンを製造する方法であって、
     ボロンとリンとアルミニウムとを含む原料シリコンを準備する工程と、
     前記原料シリコンから不純物を除去する工程とを含み、
     前記原料シリコンから不純物を除去する工程として、ボロンを除去する工程、リンを除去する工程、および凝固偏析工程の3工程のみを行ない、かつ前記3工程のうちの最後の工程が前記凝固偏析工程であり、
     前記不純物を除去する工程で得られたシリコンと、別工程で得られたシリコンとを混合する工程をさらに含む、太陽電池用シリコンの製造方法。
  10.  前記凝固偏析工程が回転偏析法による工程である、請求項9に記載の太陽電池用シリコンの製造方法。
PCT/JP2012/072702 2012-04-13 2012-09-06 太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法 WO2013153688A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012091905A JP5220935B1 (ja) 2012-04-13 2012-04-13 太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法
JP2012-091905 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013153688A1 true WO2013153688A1 (ja) 2013-10-17

Family

ID=48778742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072702 WO2013153688A1 (ja) 2012-04-13 2012-09-06 太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法

Country Status (2)

Country Link
JP (1) JP5220935B1 (ja)
WO (1) WO2013153688A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128591A (ja) * 2000-10-24 2002-05-09 Shin Etsu Handotai Co Ltd シリコン結晶及びシリコン結晶ウエーハ並びにその製造方法
WO2007127126A2 (en) * 2006-04-25 2007-11-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Silicon refining process
JP2010208862A (ja) * 2009-03-06 2010-09-24 Sharp Corp シリコン精製方法
WO2010127184A1 (en) * 2009-04-29 2010-11-04 Calisolar, Inc. Quality control process for umg-si feedstock
JP2011046565A (ja) * 2009-08-27 2011-03-10 Sharp Corp 単結晶シリコンインゴット、単結晶シリコンウェハ、単結晶シリコン太陽電池セル、および単結晶シリコンインゴットの製造方法
JP2011251853A (ja) * 2008-08-29 2011-12-15 Shin-Etsu Chemical Co Ltd 珪素の精製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128591A (ja) * 2000-10-24 2002-05-09 Shin Etsu Handotai Co Ltd シリコン結晶及びシリコン結晶ウエーハ並びにその製造方法
WO2007127126A2 (en) * 2006-04-25 2007-11-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Silicon refining process
JP2011251853A (ja) * 2008-08-29 2011-12-15 Shin-Etsu Chemical Co Ltd 珪素の精製方法
JP2010208862A (ja) * 2009-03-06 2010-09-24 Sharp Corp シリコン精製方法
WO2010127184A1 (en) * 2009-04-29 2010-11-04 Calisolar, Inc. Quality control process for umg-si feedstock
JP2011046565A (ja) * 2009-08-27 2011-03-10 Sharp Corp 単結晶シリコンインゴット、単結晶シリコンウェハ、単結晶シリコン太陽電池セル、および単結晶シリコンインゴットの製造方法

Also Published As

Publication number Publication date
JP5220935B1 (ja) 2013-06-26
JP2013220957A (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5903474B2 (ja) カスケードプロセスを利用してシリコンを精製する方法
JP4580939B2 (ja) 太陽電池用のシリコン供給原料
JP5564418B2 (ja) ポリクリスタルシリコンまたはマルチクリスタルシリコンの製造装置および方法、それらによって製造されるポリクリスタルシリコンまたはマルチクリスタルシリコンのインゴットおよびウエハ、ならびにそれらの太陽電池製造のための使用
US20090314198A1 (en) Device and method for production of semiconductor grade silicon
Heuer Metallurgical grade and metallurgically refined silicon for photovoltaics
CN102312291A (zh) 一种掺杂的铸造单晶硅及制备方法
WO2003078319A1 (fr) Procede pour purifier du silicium, silicium ainsi produit et cellule solaire
WO2013145558A1 (ja) 多結晶シリコンおよびその鋳造方法
EP2551238A1 (en) Method for purifying silicon
US20130341234A1 (en) Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
JP5220935B1 (ja) 太陽電池用シリコン、多結晶シリコン材料、多結晶シリコン太陽電池および太陽電池用シリコンの製造方法
TW201326475A (zh) 多晶矽錠與其製造方法及其用途
CN102312290A (zh) 一种掺杂的铸造多晶硅及制备方法
CN101928983B (zh) 触媒法生产多晶硅和多晶硅薄膜的方法
JP2013522160A (ja) シリコンの純化方法
JP2010173911A (ja) シリコンの精製方法
JP5173014B1 (ja) シリコンの精製方法、結晶シリコン材料の製造方法、および、太陽電池の製造方法
CN102703985A (zh) 一种电场与熔盐作用下制备高纯多晶硅的方法
KR20120016591A (ko) 다결정 실리콘 웨이퍼 및 다결정 실리콘의 주조방법
JP2010208862A (ja) シリコン精製方法
JP2013121895A (ja) シリコンの精製方法、結晶シリコン材料の製造方法、および、太陽電池の製造方法
WO2013088784A1 (ja) 金属の精製方法、金属、シリコンの精製方法、シリコン、結晶シリコン材料および太陽電池
JP5118268B1 (ja) 高純度シリコンの製造方法および高純度シリコン
WO2013080575A1 (ja) 高純度シリコンの製造方法および高純度シリコン
Page et al. COMPENSATED SILICON CRYSTALS BY METALLURGY ROUTE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874199

Country of ref document: EP

Kind code of ref document: A1