WO2013153667A1 - 放熱構造 - Google Patents

放熱構造 Download PDF

Info

Publication number
WO2013153667A1
WO2013153667A1 PCT/JP2012/060149 JP2012060149W WO2013153667A1 WO 2013153667 A1 WO2013153667 A1 WO 2013153667A1 JP 2012060149 W JP2012060149 W JP 2012060149W WO 2013153667 A1 WO2013153667 A1 WO 2013153667A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
substrate
cooling element
heat dissipation
pedestal
Prior art date
Application number
PCT/JP2012/060149
Other languages
English (en)
French (fr)
Inventor
ベジ 佐々木
Original Assignee
フリージア・マクロス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フリージア・マクロス株式会社 filed Critical フリージア・マクロス株式会社
Priority to PCT/JP2012/060149 priority Critical patent/WO2013153667A1/ja
Publication of WO2013153667A1 publication Critical patent/WO2013153667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat dissipation structure that efficiently dissipates heat of an electronic element such as a CPU mounted on a substrate such as a printed circuit board.
  • Patent Document 1 describes a cooling structure using a Peltier element as a cooling element.
  • a Peltier element is a semiconductor component that has the property that heat is transferred from one surface to the other when an electric current is applied, and one surface functions as a heat absorbing surface and the other surface functions as a heat radiating surface.
  • the cooling structure described in Patent Document 1 is assembled so that the heat absorption surface of the Peltier element is brought into contact with the electronic element and the heat radiation surface is brought into contact with the high heat radiation body, and in this state, the heat generated from the electronic element is absorbed.
  • the current to the Peltier element is controlled so as to correspond to the power consumption of the Peltier element.
  • the area on the heat dissipation surface side of the Peltier element is the same as the area on the heat absorption surface side, and even if the amount of heat absorbed on the heat absorption surface side increases, the heat dissipation efficiency is poor, and from the heat dissipation surface side. There is a problem that heat can not be dissipated smoothly.
  • An object of the present invention is to provide a heat dissipation structure capable of improving heat dissipation efficiency by improving heat dissipation on the heat dissipation surface side.
  • An aspect of the present invention is a heat dissipation structure that dissipates heat from an electronic element on a substrate, and is connected to a cooling element in which an endothermic surface is bonded to the surface of the electronic element, and to the heat dissipation surface side of the cooling element.
  • a pedestal from which heat from the electronic element is dissipated the pedestal having a surface that is larger than the area of the heat dissipation surface of the cooling element and less than the surface area of the substrate, and the cooling element
  • a heat conductive sheet having a surface larger than the surface area of the substrate and having a surface area less than or equal to the surface area of the substrate, wherein one surface is bonded to the plate and the other surface is bonded to the heat dissipation surface of the cooling element;
  • a heat dissipation structure including
  • the plate material of the pedestal may include a support pedestal that supports the substrate and a heat radiating pedestal that covers the substrate supported by the support pedestal and has the heat conductive sheet bonded to the inner surface side.
  • the heat dissipation structure may include a support member that connects the base and the substrate with a space therebetween, and a microfan that releases heat in the space between the base and the substrate to the outside. .
  • the heat conductive sheet may include a graphite sheet and a pair of heat conductive metal plates that are bonded to both surfaces of the graphite sheet and sandwich the graphite sheet.
  • cooling element may be a Peltier element.
  • micro droplets may be sprayed on the pedestal or the heat conductive sheet.
  • the heat from the electronic element on the substrate is absorbed from the heat absorbing surface side of the cooling element and transmitted from the heat radiating surface to the heat conductive sheet of the base.
  • the heat conductive sheet is formed larger than the area on the heat radiating surface side of the cooling element and smaller than the surface area of the substrate, the heat radiated from the heat radiating surface side of the cooling element is diffused throughout the heat conductive sheet. Then, it is transmitted to the metal plate and dissipated into the atmosphere. According to such a configuration, the combination of the cooling element and the heat conductive sheet can enhance heat dissipation and efficiently dissipate the heat of the electronic elements on the substrate.
  • the heat conductive sheet is set to be approximately the same size as the substrate by setting the heat conductive sheet to an area larger than the area on the heat radiation surface side of the cooling element and not more than the surface area of the substrate. Because the heat generated from the board can be dissipated from the metal plate through the heat conductive sheet, not only the local heat from the electronic elements on the board but also the heat generated from the entire board can be efficiently It can dissipate heat.
  • the heat between the substrate and the pedestal can be dissipated rapidly.
  • the heat of the substrate, the pedestal, and the heat conductive sheet can be rapidly dissipated.
  • FIG. 1 is a cross-sectional view showing a heat dissipation structure according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the heat transfer sheet.
  • FIG. 3 is a sectional view showing a heat dissipation structure according to the second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a heat dissipation structure according to the third embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the heat dissipation structure 1 according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the heat conductive sheet 15.
  • the heat dissipation structure 1 of the present embodiment includes a substrate 2 on which the electronic element 3 is mounted on the mounting surface 2a, a cooling element 5 bonded to the electronic element 3, and a pedestal 11 to which the cooling element 5 is bonded. Yes.
  • a heat generating electronic component such as a CPU, a light emitting diode, a laser diode, a capacitor, an organic EL, or an LED is used.
  • the electronic element 3 is mounted in a state where it is electrically connected to an electrode (not shown) formed on the mounting surface 2 a of the substrate 2. Electrical connection between the electronic element 3 and the electrode of the substrate 2 is performed by wire wiring, a conductive adhesive, or the like.
  • one electronic element 3 is mounted on the mounting surface 2a of the substrate 2, there are usually a plurality of electronic elements 3 and the number thereof is not particularly limited.
  • a printed wiring board in which a wiring pattern is formed on a glass epoxy board or a ceramic board by printing or the like is used.
  • the cooling element 5 has a heat absorbing surface 6 on one surface and a heat radiating surface 7 on the other surface, the heat absorbing surface 6 is bonded to the surface 3 a of the electronic element 3, and the heat radiating surface 7 is bonded to the pedestal 11. That is, the cooling element 5 is sandwiched between the electronic element 3 and the pedestal 11 and joined thereto.
  • the joining means adhesion using an adhesive, soldering, or the like can be used.
  • the cooling element 5 having an area substantially the same as the surface area of the electronic element 3 is used. Thereby, the heat of the entire surface area of the surface 3a of the electronic element 3 can be absorbed by the entire endothermic surface 6 of the cooling element 5, and it is easy to align the cooling element 5 with the electronic element 3, The element 5 can be joined to the electronic element 3 with high accuracy.
  • the Peltier element is a semiconductor component made of a PN semiconductor having a characteristic that heat is transferred from the heat absorbing surface 6 to the heat radiating surface 7 by passing an electric current.
  • the power supply to the Peltier element can be performed, for example, by connecting a power supply electrode (not shown) formed on the substrate 2 and an electrode (not shown) of the Peltier element by wire wiring.
  • the heat dissipation surface 7 side of the cooling element 5 is joined to the base 11.
  • the heat radiating surface 7 of the cooling element 5 By joining the heat radiating surface 7 of the cooling element 5 to the pedestal 11, the heat transferred from the heat absorbing surface 6 to the heat radiating surface 7 is transferred from the cooling element 5 to the pedestal 11.
  • the base 11 what joined the metal board
  • the metal plate 13 in the pedestal 11 is formed in a flat plate shape having a size larger than the area of the heat radiating surface 7 of the cooling element 5 and having a surface area equal to or smaller than the surface area of the substrate 2. By using such a plate 13, the heat dissipation efficiency can be improved.
  • a heat conductive metal such as aluminum or copper is selected.
  • the heat conductive sheet 15 on the pedestal 11 is formed in a sheet shape having a size larger than the area of the heat radiating surface 7 of the cooling element 5 and having a surface equal to or less than the surface area of the substrate 2, similarly to the plate material 13.
  • FIG. 2 shows an example of the heat conductive sheet 15 used in the present embodiment.
  • the heat conductive sheet 15 shown in FIG. 2 is formed by joining a graphite sheet 16 and a pair of heat conductive metal plates 17 sandwiching the graphite sheet 16 from both sides.
  • the graphite sheet 16 is formed by forming graphite (graphite) obtained by graphitizing amorphous carbon into a sheet shape, and has good heat conductivity unique to graphite.
  • the graphite sheet 16 has a thickness of about 0.1 to 10 mm, but is not limited to this.
  • the heat conductive metal plate 17 is made of a metal having good heat conductivity such as copper or aluminum.
  • the heat conductive metal plate 17 has a thickness of about 0.5 to 20 mm, but is not limited to this.
  • the heat diffusion effect of diffusing heat is increased by sandwiching the graphite sheet 16 between the heat conductive metal plates 17.
  • the heat of the heat radiating surface 7 of the cooling element 5 diffuses into the heat conductive sheet 15, and the heat conductive sheet 15 is transferred from the heat conductive sheet 15. The heat is transferred to the outside and radiated from the heat conductive metal plate 17 to the outside.
  • the pedestal 11 composed of the metal plate 13 and the heat conductive sheet 15 is larger than the area of the heat radiating surface 7 of the cooling element 5 and smaller than the surface area of the substrate 2.
  • the heat dissipation area is larger than that of the heat dissipation surface 7 of the element 5.
  • the heat radiated from the heat radiating surface 7 of the cooling element 5 is diffused throughout the heat conductive sheet 15 constituting the pedestal 11.
  • the heat conductive sheet 15 has a large heat radiating area, the heat of the heat radiating surface 7 is reduced. Heat is quickly and satisfactorily transferred to the heat conductive sheet 15 and then radiated from the metal plate 13 to the outside.
  • the mounting surface 2 a of the substrate 2 and the pedestal 11 face each other, and these are connected via a support member 9.
  • the support member 9 connects the substrate 2 and the outer peripheral portion of the base 11 so as to exclude the mounting portion of the electronic element 3 on the substrate 2.
  • an interval is provided between the substrate 2 and the pedestal 11, and air can flow between the substrate 2 and the pedestal 11.
  • the heat dissipation structure 1 is provided with a microfan 19.
  • the microfan 19 of the present embodiment is electrically connected to the substrate 2 in a state of being attached to the support member 9 and operates when supplied with electric power. By this operation, an air flow is circulated between the substrate 2 and the base 11. Therefore, the heat between the substrate 2 and the base 11 can be rapidly dissipated.
  • the microfan 19 may be provided on the substrate 2, may be provided on both the substrate 2 and the support member 9, or may be omitted if unnecessary.
  • heat from the electronic element 3 is absorbed from the heat absorbing surface 6 side of the cooling element 5 and transmitted from the heat radiating surface 7 side of the cooling element 5 to the heat conductive sheet 15 of the base 11.
  • the heat conductive sheet 15 has a heat radiation area larger than the area on the heat radiation surface 7 side of the cooling element 5. Therefore, since the heat radiated from the heat radiating surface 7 of the cooling element 5 is diffused throughout the heat conductive sheet 15 having a large heat radiating area, the heat of the heat radiating surface 7 is quickly and satisfactorily transferred to the heat conductive sheet 15. Thereafter, heat is radiated from the metal plate 13 to the outside.
  • the combination of the cooling element 5 and the heat conductive sheet 15 can enhance heat dissipation and efficiently dissipate the heat of the electronic element 3.
  • the heat conductive sheet 15 is larger than the area on the heat radiating surface 7 side of the cooling element 5 and less than the surface area of the substrate 2. Thereby, the heat conductive sheet 15 can be set to substantially the same size as the substrate 2, and the heat generated from the substrate 2 can be radiated from the metal plate 13 through the heat conductive sheet 15. For this reason, not only the local heat from the electronic element 3 on the substrate 2 but also the heat generated from the entire substrate 2 can be efficiently radiated.
  • the component is only the pedestal 11 provided with the cooling element 5 and the heat conductive sheet 15, the heat generated from the substrate can be efficiently radiated with a simple structure.
  • the microfan 19 Since the microfan 19 is provided, the heat between the substrate 2 and the base 11 can be rapidly dissipated.
  • FIG. 3 shows a heat dissipation structure 21 according to the second embodiment of the present invention.
  • the electronic element 3 is mounted on the mounting surface 2 a of the substrate 2, and the heat absorbing surface 6 is bonded to the surface of the electronic element 3 and the cooling element 5 is attached.
  • the heat dissipating surface 7 of the cooling element 5 is joined to a heat conductive sheet 15 that forms a base 11.
  • a heat-generating electronic component such as a CPU, a light emitting diode, a laser diode, a capacitor, an organic EL, or an LED is used.
  • a Peltier element is used as the cooling element 5.
  • the plate member 13 of the pedestal 11 in this embodiment is formed by a support pedestal 31 and a heat dissipation pedestal 33.
  • the support pedestal 31 is formed in a flat plate shape from a heat conductive metal such as copper or aluminum.
  • the support pedestal 31 is formed to have a size that is substantially the same as the substrate 2 on which the electronic element 3 is mounted or a size that is somewhat larger than the substrate 2.
  • the substrate 2 is supported on the support base 31 via the support member 9. Due to the support through the support member 9, a space through which air can flow is formed between the substrate 2 and the support base 31.
  • the heat dissipation pedestal 33 is provided on the side of the substrate 2 where the electronic element 3 and the cooling element 5 are arranged.
  • the heat dissipation pedestal 33 is formed in a lid shape surrounding the periphery of the substrate 2, and covers the substrate 2 by being covered with the substrate 2.
  • the heat dissipation pedestal 33 includes a flat plate-like main body portion 33a facing the substrate 2 and a bent wall portion 33b bent from the outer peripheral portion of the main body portion 33a.
  • the bent wall portion 33b is in contact with the peripheral surface portion of the support pedestal 31, and the heat dissipation pedestal 33 covers the substrate 2 by this contact.
  • the heat radiating base 33 is also formed of a heat conductive metal such as aluminum or copper.
  • the heat radiation base 33 and the support base 31 are formed into a box shape, and the substrate 2 is accommodated in the box shape.
  • the heat conductive sheet 15 is joined to the inner surface of the heat dissipation pedestal 33 (the inner surface of the main body portion 33a).
  • the heat conductive sheet 15 is joined to substantially the entire inner surface (main body portion 33 a) of the heat dissipation pedestal 33.
  • the heat conductive sheet 15 has a structure in which both sides of the graphite sheet 16 are sandwiched between a pair of heat conductive metal plates 17 such as copper and aluminum. Therefore, the heat conductive sheet 15 has a large thermal diffusion effect for diffusing heat.
  • the heat radiating base 33 and the heat conductive sheet 15 are formed to have a size larger than the area of the heat radiating surface 7 of the cooling element 5 and less than the surface area of the substrate 2.
  • the heat radiating of the cooling element 5 is formed.
  • the area is larger than the area of the surface 7 and substantially the same as the surface area of the substrate 2.
  • the heat conductive sheet 15 is joined to the heat radiating surface 7 side of the cooling element 5 in which the heat absorbing surface 6 is joined to the electronic element 3.
  • the microfan 19 is provided.
  • the microfan 19 is provided on the bent wall portion 33b of the heat dissipation pedestal 33.
  • the microfan 19 may be provided on the substrate 2 or may be provided on both the heat dissipation pedestal 33 and the substrate 2, and is omitted when unnecessary. be able to.
  • an air flow is circulated between the substrate 2 and the heat dissipation pedestal 33 and an air flow is circulated between the substrate 2 and the support pedestal 31.
  • An air flow circulates inside the box shape formed by the above. For this reason, the heat between the board
  • the heat from the electronic element 3 is absorbed from the heat absorbing surface 6 side of the cooling element 5 and transmitted from the heat radiating surface 7 side of the cooling element 5 to the heat conductive sheet 15 of the heat radiating base 33 in the base 11.
  • the heat conduction sheet 15 has a heat radiation area larger than the area on the heat radiation surface 7 side of the cooling element 5, and the heat radiated from the heat radiation surface 7 of the cooling element 5 is diffused throughout the heat conduction sheet 15 having a large heat radiation area. Therefore, the heat of the heat radiating surface 7 is transferred to the heat conductive sheet 15 quickly and satisfactorily. Thereafter, heat is radiated from the heat radiating base 33 to the outside.
  • the combination of the cooling element 5 and the heat conductive sheet 15 can enhance heat dissipation and efficiently dissipate the heat of the electronic element 3.
  • the heat conductive sheet 15 is larger than the area on the heat radiating surface 7 side of the cooling element 5 and less than the surface area of the substrate 2.
  • the heat conductive sheet 15 can be set to approximately the same size as the substrate 2, and the heat generated from the substrate 2 can be radiated from the heat radiating base 33 via the heat conductive sheet 15. For this reason, not only the local heat from the electronic element 3 on the substrate 2 but also the heat generated from the entire substrate 2 can be efficiently radiated.
  • the components are only the heat dissipating pedestal 33 and the support pedestal 31 provided with the cooling element 5 and the heat conductive sheet 15, the heat generated from the substrate can be efficiently dissipated with a simple structure.
  • the support base 31 may be omitted when the heat dissipation efficiency is good.
  • a fan 36 is provided on the wall of the electrical connection box 35 to take outside air into the electrical connection box 35 and dissipate the taken outside air.
  • the surface of the base 33 may be sprayed as indicated by an arrow A to improve the heat dissipation from the surface of the base 33.
  • FIG. 4 shows a heat dissipation structure 31 according to the third embodiment of the present invention.
  • the surface of the heat radiating pedestal 33 is cooled by reducing the temperature on the surface side of the heat radiating pedestal 33 by spraying fine droplets (mist) on the surface side of the heat radiating pedestal 33.
  • the heat dissipating structure 31 according to the present embodiment is different from the heat dissipating structure 21 according to the second embodiment in that a nozzle 37, a conduit 39, and a mist generating device 41, which will be described later, are provided instead of the fan 36.
  • nozzles 37 for ejecting fine droplets are arranged on the wall portions on both sides of the electrical junction box 35. These nozzles 37, 37 are connected to the mist generating device 41 via a conduit 39.
  • the mist (mist) ejected from the nozzles 37 and 37 is a droplet of 30 ⁇ m or less, and is vaporized immediately after ejecting from the nozzles 37 and 37. At this time, the surface of the heat radiating pedestal 33 is cooled by removing heat from the surface of the heat radiating pedestal 33.
  • the mist ejected from the nozzles 37, 37 falls on the substrate 2, but since it is a micro droplet of 30 ⁇ m or less, it does not affect the conduction of the substrate 2.
  • the heat radiating pedestal 33 by cooling the surface of the heat radiating pedestal 33 with mist made of fine droplets, the heat radiating pedestal 33 can be efficiently cooled, and the heat of the heat conductive sheet 15 attached to the heat radiating pedestal 33 can be reduced. It can be efficiently transmitted to the heat dissipation pedestal 33. As a result, heat from the heat radiating surface of the cooling element 5 is efficiently released through the heat conductive sheet 15 and the heat radiating pedestal 33, so that the cooling capacity of the cooling element 5 can be used efficiently.
  • the micro droplet is a droplet of 30 ⁇ m or less, and is a droplet that does not impair the conductivity even if it touches the substrate 2. Even if it touches the substrate 2, it vaporizes immediately. A mist composed of minute droplets is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 基板(2)上の電子素子(3)からの熱を放熱する放熱構造(1、21、31)が、電子素子(3)の表面に吸熱面(6)が接合された冷却素子(5)と、冷却素子(5)の放熱面(7)の側に接続されて電子素子(3)からの熱が放熱される台座(11)とを備える。台座(11)は、冷却素子(5)の放熱面(7)の面積よりも大きく基板(2)の表面積以下の面を有する金属製の板材(13)と、冷却素子(5)の放熱面(7)の面積よりも大きく基板(2)の表面積以下の面を有する熱伝導シート(15)とを含む。熱伝導シート(15)は、一方の面が板材(13)に接合され他方の面が冷却素子(5)の放熱面(7)に接合される。

Description

放熱構造
 本発明は、プリント基板等の基板上に実装されたCPU等の電子素子の熱を効率的に放熱する放熱構造に関する。
 コンピュータ、携帯電話機等の電子機器においては、基板に対するCPU、コンデンサ、有機EL、LED等の電子素子の実装密度が高密度となっており、これに伴って電子素子からの熱を放熱する必要性が高まっている。特許文献1には、冷却素子としてペルチェ素子を用いた冷却構造が記載されている。ペルチェ素子は、電流を流すことにより一方の面から他方の面に熱が移動する特性を有しており、一方の面が吸熱面、他方の面が放熱面として機能する半導体部品である。
 特許文献1に記載された冷却構造は、ペルチェ素子の吸熱面を電子素子に接触させ、放熱面を高放熱体に接触させるように組み付け、この状態で電子素子から発生した熱量を吸収するためのペルチェ素子の消費電力量に対応するようにペルチェ素子への電流を制御するものである。
特開平4-72746号公報
 しかしながら、関連する冷却構造においては、ペルチェ素子の放熱面側における面積が吸熱面側における面積と同じとなっており、吸熱面側で吸熱する熱量が増えても放熱効率が悪く、放熱面側から円滑に放熱できない問題を有している。
 本発明は、放熱面側における放熱性を高めて放熱効率を向上させることが可能な放熱構造を提供することを目的とする。
 本発明のアスペクトは、基板上の電子素子からの熱を放熱する放熱構造であって、前記電子素子の表面に吸熱面が接合された冷却素子と、前記冷却素子の放熱面の側に接続されて前記電子素子からの熱が放熱される台座と、を備え、前記台座は、前記冷却素子の放熱面の面積よりも大きく前記基板の表面積以下の面を有する金属製の板材と、前記冷却素子の放熱面の面積より大きく前記基板の表面積以下の面を有する熱伝導シートであって、一方の面が前記板材に接合され他方の面が前記冷却素子の放熱面に接合される熱伝導シートと、を含む放熱構造であることを要旨とする。
 また、前記台座の板材は、前記基板を支持する支持台座と、前記支持台座に支持された前記基板を覆うと共に内面側に前記熱伝導シートが接合された放熱台座とを含んでもよい。
 また、前記放熱構造は、前記台座と前記基板とを空間を隔てて連結する支持部材と、前記台座と前記基板との間の空間内の熱を外部に放出するマイクロファンとを備えてもよい。
 また、前記熱伝導シートは、グラファイトシートと、前記グラファイトシートの両面に接合されて前記グラファイトシートを挟み込む一対の伝熱性金属板とを含んでもよい。
 また、前記冷却素子は、ペルチェ素子であってもよい。
 また、前記台座又は前記熱伝導シートには、微小液滴が吹き付けられてもよい。
 本発明の実施形態においては、基板上の電子素子からの熱は冷却素子の吸熱面側から吸収され放熱面から台座の熱伝導シートに伝達される。この場合、熱伝導シートが冷却素子の放熱面側の面積より大きく基板の表面積以下の大きさに形成されているため、冷却素子の放熱面側から放熱された熱は熱伝導シートの全体に拡散して金属製の板材に伝わり、大気中へ放熱される。このような構成によれば、冷却素子と熱伝導シートとの組み合わせにより、放熱性を高めて基板上の電子素子の熱を効率的に放熱することができる。
 また、本発明の実施形態によれば、熱伝導シートを冷却素子の放熱面側の面積より大きく基板の表面積以下の面積とすることで、熱伝導シートを基板と略同じ大きさに設定することができ、基板から発生した熱を熱伝導シートを介して金属製の板材から放熱することができるため、基板上の電子素子からの局部的な熱だけでなく基板全体から発した熱を効率良く放熱することができる。
 さらに、冷却素子及び熱伝導シートを備えた台座のみの構成部品のため、簡単な構造で効率良く基板から発した熱を放熱することができる。
 さらに、マイクロファンを設ける場合には、基板と台座と間の熱を急速に放熱することができる。
 また、台座又は熱伝導シートに微小液滴を吹き付けることで、基板、台座、熱伝導シートの熱を急速に放熱することができる。
図1は、本発明の第1実施形態に係る放熱構造を示す断面図である。 図2は、伝熱シートの構造を示す断面図である。 図3は、本発明の第2実施形態に係る放熱構造を示す断面図である。 図4は、本発明の第3実施形態に係る放熱構造を示す断面図である。
 以下、本発明を図示する実施形態により具体的に説明する。なお、各実施形態において、同一の部材には同一の符号を付して対応させてある。
 (第1実施形態)
 図1は本発明の第1実施形態に係る放熱構造1の断面図、図2は熱伝導シート15の断面図である。
 本実施形態の放熱構造1においては、電子素子3が実装面2aに実装された基板2と、電子素子3に接合された冷却素子5と、冷却素子5が接合される台座11とを備えている。
 電子素子3としては、CPU、発光ダイオード、レーザダイオード、コンデンサ、有機EL、LED等の発熱性の電子部品が用いられる。電子素子3は、基板2の実装面2aに形成された電極(図示省略)に電気的に接続された状態で実装される。電子素子3と基板2の電極との電気的な接続は、ワイヤ配線や導電性接着剤等により行われる。電子素子3は基板2の実装面2aに1個が実装されているが、通常は複数であり、その数は特に限定されない。
 基板2としては、ガラスエポキシ板、セラミック板に配線パターンが印刷等により形成されたプリント配線基板が用いられる。
 冷却素子5は、一方の面が吸熱面6、他方の面が放熱面7となっており、吸熱面6が電子素子3の表面3aに接合され、放熱面7が台座11に接合される。すなわち、冷却素子5は電子素子3と台座11との間に挟まれた状態となってこれらに接合される。接合手段としては、接着剤による接着、半田付け等を用いることができる。
 本実施形態において、冷却素子5は、電子素子3の表面積と略同じ大きさの面積を有したものが用いられる。これにより、電子素子3の表面3aの表面積全体の熱を冷却素子5の吸熱面6の全体で吸熱することができると共に、冷却素子5を電子素子3に位置合わせすることが容易であり、冷却素子5を電子素子3に精度良く接合できる。
 冷却素子5としては、ペルチェ素子が用いられる。ペルチェ素子は、電流を流すことにより吸熱面6から放熱面7に熱が移動する特性を有したPN半導体からなる半導体部品である。このようなペルチェ素子の吸熱面6を電子素子3の表面に接合することにより、電子素子3の熱を吸熱すると共に吸熱した熱を吸熱面6から放熱面7に移動させ、放熱面7に接合した台座11に伝熱させることができる。ペルチェ素子への電力供給は、例えば、基板2に形成した電源電極(図示省略)とペルチェ素子の電極(図示省略)とをワイヤ配線によって接続することにより行うことができる。
 台座11には、冷却素子5の放熱面7側が接合される。台座11に冷却素子5の放熱面7が接合されることにより、吸熱面6から放熱面7に移動した熱が冷却素子5から台座11に伝熱される。台座11としては、金属製の板材13と、熱伝導シート15とを接合したものが用いられる。
 台座11における金属製の板材13は、冷却素子5の放熱面7の面積より大きく、基板2の表面積以下の面を有するサイズの平板状に形成されている。このような板材13を用いることにより、放熱効率を向上させることができる。板材に用いる金属としては、アルミニウム、銅等の熱伝導性金属が選択される。
 台座11における熱伝導シート15は、板材13と同様に、冷却素子5の放熱面7の面積より大きく、基板2の表面積以下の面を有するサイズのシート状に形成されている。図2は、本実施形態に用いられる熱伝導シート15の一例を示す。図2に示す熱伝導シート15は、グラファイトシート16と、グラファイトシート16を両側から挟み込む一対の伝熱性金属板17とが接合されることにより形成されている。
 グラファイトシート16は、無定形炭素を黒鉛化したグラファイト(石墨)をシート状に形成したものであり、グラファイト独特の良好な熱伝導性を有している。グラファイトシート16としては、0.1~10mm程度の厚さのものが使用されるが、これに限定されるものではない。伝熱性金属板17は、銅、アルミニウム等の良好な伝熱性を有した金属が使用される。伝熱性金属板17は、0.5~20mm程度の厚さのものが使用されるが、これに限定されるものではない。伝熱性金属板17をグラファイトシート16に接合することにより、良好な伝熱性を有した熱伝導シート15とすることができる。又、伝熱性金属板17によってグラファイトシート16を両側から挟み込むことにより、熱伝導シート15の表裏が無関係となり、熱伝導シート15の使用が簡単となる。
 以上の熱伝導シート15においては、グラファイトシート16を伝熱性金属板17によって挟み込むことにより、熱を拡散させる熱拡散効果が大きくなる。このような熱伝導シート15を冷却素子5の放熱面7側に接合することにより、冷却素子5の放熱面7の熱が熱伝導シート15に拡散し、熱伝導シート15から伝熱性金属板17に伝熱され、伝熱性金属板17から外部に放熱される。
 本実施形態において、金属製の板材13及び熱伝導シート15からなる台座11は、冷却素子5の放熱面7の面積より大きく基板2の表面積以下の大きさのものとなっていることから、冷却素子5の放熱面7よりも大きな放熱面積となっている。冷却素子5の放熱面7から放熱された熱は、台座11を構成する熱伝導シート15の全体に拡散するが、熱伝導シート15が大きな放熱面積となっているため、放熱面7の熱が迅速且つ良好に熱伝導シート15に伝熱され、その後、金属製の板材13から外部に放熱される。
 図1に示すように、本実施形態の放熱構造1においては、基板2の実装面2aと台座11とが対向しており、これらが支持部材9を介して連結されている。支持部材9は基板2における電子素子3の実装部位を除くように基板2及び台座11の外周部分を連結している。支持部材9によって連結されることにより、基板2と台座11との間に間隔が設けられており、基板2と台座11との間を空気が流通可能となっている。
 さらに放熱構造1には、マイクロファン19が設けられている。本実施形態のマイクロファン19は、支持部材9に取り付けられた状態で基板2に電気的に接続されており、電力が供給されることにより作動する。この作動によって基板2と台座11との間に空気流が流通する。従って、基板2と台座11の間の熱を急速に放熱することができる。マイクロファン19は、基板2に設けても良く、基板2及び支持部材9の双方に設けても良く、必要がない場合には省略しても良い。
 以上の第1実施形態によれば、電子素子3からの熱が冷却素子5の吸熱面6側から吸収され冷却素子5の放熱面7側から台座11の熱伝導シート15に伝達される。熱伝導シート15は冷却素子5の放熱面7側の面積より大きな放熱面積となっている。したがって、冷却素子5の放熱面7から放熱された熱が大きな放熱面積の熱伝導シート15の全体に拡散するため、放熱面7の熱が迅速且つ良好に熱伝導シート15に伝熱される。その後、金属製の板材13から外部に放熱される。このような構造では、冷却素子5と熱伝導シート15との組み合わせにより、放熱性を高めて電子素子3の熱を効率的に放熱することができる。
 熱伝導シート15は、冷却素子5の放熱面7側の面積より大きく基板2の表面積以下の面積となっている。これにより、熱伝導シート15を基板2と略同じ大きさに設定することができ、基板2から発生した熱を熱伝導シート15を介して金属製の板材13から放熱することができる。このため、基板2上の電子素子3からの局部的な熱だけでなく基板2全体から発した熱を効率良く放熱することができる。
 冷却素子5及び熱伝導シート15を備えた台座11のみの構成部品のため、簡単な構造で効率良く基板から発した熱を放熱することができる。
 マイクロファン19を設けているため、基板2と台座11と間の熱を急速に放熱することができる。
 (第2実施形態)
 図3は、本発明の第2実施形態に係る放熱構造21を示す。
 第2実施形態の放熱構造21においても、基板2の実装面2aに電子素子3が実装され、この電子素子3の表面に吸熱面6が接合されて冷却素子5が取り付けられている。冷却素子5の放熱面7は台座11を形成する熱伝導シート15に接合されている。電子素子3としては、CPU、発光ダイオード、レーザダイオード、コンデンサ、有機EL、LED等の発熱性の電子部品が用いられ、冷却素子5としては、ペルチェ素子が用いられる。
 本実施形態における台座11の板材13は、支持台座31と放熱台座33とによって形成されている。
 支持台座31は、銅、アルミニウム等の熱伝導性金属により平板状に形成されている。支持台座31は、電子素子3が実装された基板2と略同じ大きさのサイズか、基板2よりも幾分大きなサイズに形成されている。基板2は、支持台座31に支持部材9を介して支持されている。支持部材9を介した支持により、基板2と支持台座31との間には、空気が流通可能な間隔が形成されている。
 放熱台座33は、基板2における電子素子3及び冷却素子5の配置側に設けられている。放熱台座33は、基板2の周囲を囲む蓋形状に形成されており、基板2に被せられることにより基板2を覆うようになっている。本実施形態において、放熱台座33は、基板2と対向する平板状の本体部33aと、本体部33aの外周部分から屈曲された屈曲壁部33bとからなる。屈曲壁部33bが支持台座31の周面部分に当接し、この当接により放熱台座33が基板2を覆う構造となっている。このように屈曲壁部33bが支持台座31に当接することにより、本体部33aと基板2との間には、空気が流通可能な間隔が形成される。かかる放熱台座33もアルミニウム、銅等の熱伝導性金属によって形成されるものである。
 本実施形態において、以上の放熱台座33及び支持台座31によって箱形状に形成され、基板2はこの箱形状の内部に収容される。
 放熱台座33の内面(本体部33aの内面)には、熱伝導シート15が接合されている。熱伝導シート15は、放熱台座33の内面(本体部33a)の略全体に対して接合されている。熱伝導シート15は、図2に示すと同様に、グラファイトシート16の両側を銅やアルミニウム等の一対の伝熱性金属板17で挟み込んだ構造となっている。したがって、熱伝導シート15は、熱を拡散させる熱拡散効果を大きく有している。
 このような放熱台座33及び熱伝導シート15は、冷却素子5の放熱面7の面積より大きく、基板2の表面積以下のサイズに形成されるものであり、本実施形態では、冷却素子5の放熱面7の面積より大きく、且つ基板2の表面積とほぼ同等の大きさとなっている。この場合、熱伝導シート15は、電子素子3に吸熱面6が接合された冷却素子5の放熱面7側に接合される。
 このような第2実施形態においても、マイクロファン19が設けられる。マイクロファン19は、放熱台座33における屈曲壁部33bに設けられているが、基板2に設けても良く、放熱台座33及び基板2の双方に設けても良く、必要がない場合には省略することができる。このようなマイクロファン19が作動することにより基板2と放熱台座33との間に空気流が流通すると共に基板2と支持台座31との間に空気流が流通し、支持台座31及び放熱台座33によって形成される箱形状の内部を空気流が流通する。このため、基板2と支持台座31及び放熱台座33との間の熱を急速に放熱することができる。
 このような第2実施形態においても、電子素子3からの熱が冷却素子5の吸熱面6側から吸収され冷却素子5の放熱面7側から台座11における放熱台座33の熱伝導シート15に伝達される。熱伝導シート15は、冷却素子5の放熱面7側の面積より大きな放熱面積となっており、冷却素子5の放熱面7から放熱された熱が大きな放熱面積の熱伝導シート15の全体に拡散するため、放熱面7の熱が迅速且つ良好に熱伝導シート15に伝熱される。その後、放熱台座33から外部に放熱される。このような構造では、冷却素子5と熱伝導シート15との組み合わせにより、放熱性を高めて電子素子3の熱を効率的に放熱することができる。
 熱伝導シート15は、冷却素子5の放熱面7側の面積より大きく基板2の表面積以下の面積となっている。熱伝導シート15を基板2と略同じ大きさに設定することができ、基板2から発生した熱を熱伝導シート15を介して放熱台座33から放熱することができる。このため、基板2上の電子素子3からの局部的な熱だけでなく基板2全体から発した熱を効率良く放熱することができる。
 冷却素子5及び熱伝導シート15を備えた放熱台座33及び支持台座31のみの構成部品のため、簡単な構造で効率良く基板から発した熱を放熱することができる。
 本実施形態においては、放熱効率が良好な場合には支持台座31を省略しても良い。
 台座11を樹脂等で形成された電気接続箱35内に収納する場合には、電気接続箱35の壁部に、ファン36を設けて電気接続箱35内に外気を取り入れ、取り入れた外気を放熱台座33の表面に矢印Aで示すように吹き付けて放熱台座33の表面からの放熱性を向上させても良い。
 (第3実施形態)
 図4は、本発明の第3実施形態に係る放熱構造31を示す。
 本実施形態では、放熱台座33の表面側に微小液滴(霧)を吹き付けることで放熱台座33の表面側の温度をさげて冷却する。本実施形態に係る放熱構造31は、ファン36の代わりに後述のノズル37、管路39、ミスト発生装置41を備えている点が第2実施形態に係る放熱構造21と異なる。
 図4に示すように、電気接続箱35の両側の壁部には、微細な液滴を噴出するノズル37がそれぞれ配置されている。これらのノズル37、37は、ミスト発生装置41と管路39を介してそれぞれ連結されている。ノズル37、37から噴出するミスト(霧)は、30μ以下の液滴であり、ノズル37、37から噴出後に直ぐに気化する。このとき放熱台座33の表面の熱を奪うことによって放熱台座33の表面を冷却する。
 この場合、ノズル37、37から噴出するミストは基板2にも降りかかるが、30μ以下の微小液滴なので、基板2の導通に影響を与えることはない。
 本実施形態では、放熱台座33の表面を微小液滴からなるミストによって冷却することによって、放熱台座33を効率良く冷却することができ、放熱台座33に貼着された熱伝導シート15の熱を効率良く放熱台座33に伝えることができる。この結果、冷却素子5の放熱面からの熱が、熱伝導シート15、放熱台座33を介して効率良く放出され、ひいては冷却素子5の冷却能力を効率良く利用することができる。
 本実施形態では、上記微小液滴(霧)は30μ以下の液滴であって、基板2に触れても導電性を損なうことのない液滴であり、仮に基板2に触れたとしても直ぐに気化する程度の微小液滴からなるミストを用いている。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。

Claims (6)

  1.  基板上の電子素子からの熱を放熱する放熱構造であって、
     前記電子素子の表面に吸熱面が接合された冷却素子と、
     前記冷却素子の放熱面の側に接続されて前記電子素子からの熱が放熱される台座と、を備え、
      前記台座は、
       前記冷却素子の放熱面の面積よりも大きく前記基板の表面積以下の面を有する金属製の板材と、
       前記冷却素子の放熱面の面積よりも大きく前記基板の表面積以下の面を有する熱伝導シートであって、一方の面が前記板材に接合され他方の面が前記冷却素子の放熱面に接合される熱伝導シートと、を含む
    放熱構造。
  2.  前記台座の板材は、
      前記基板を支持する支持台座と、
      前記支持台座に支持された前記基板を覆うと共に内面側に前記熱伝導シートが接合された放熱台座と、を含む
    請求項1記載の放熱構造。
  3.  前記台座と前記基板とを空間を隔てて連結する支持部材と、
     前記台座と前記基板との間の空間内の熱を外部に放出するマイクロファンと、
    を備えた請求項1又は2記載の放熱構造。
  4.  前記熱伝導シートは、
      グラファイトシートと、
      前記グラファイトシートの両面に接合されて前記グラファイトシートを挟み込む一対の伝熱性金属板と、を含む
    請求項1~3のいずれかに記載の放熱構造。
  5.  前記冷却素子は、ペルチェ素子である
    請求項1~4のいずれかに記載の放熱構造。
  6.  前記台座又は前記熱伝導シートには、微小液滴が吹き付けられる
    請求項1~5のいずれかに記載の放熱構造。
PCT/JP2012/060149 2012-04-13 2012-04-13 放熱構造 WO2013153667A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060149 WO2013153667A1 (ja) 2012-04-13 2012-04-13 放熱構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060149 WO2013153667A1 (ja) 2012-04-13 2012-04-13 放熱構造

Publications (1)

Publication Number Publication Date
WO2013153667A1 true WO2013153667A1 (ja) 2013-10-17

Family

ID=49327273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060149 WO2013153667A1 (ja) 2012-04-13 2012-04-13 放熱構造

Country Status (1)

Country Link
WO (1) WO2013153667A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032028A1 (ja) * 2018-08-08 2020-02-13 ソニーセミコンダクタソリューションズ株式会社 計測装置および計測システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229446A (ja) * 1990-02-05 1991-10-11 Fujitsu Ltd 冷却装置
JPH0870068A (ja) * 1994-08-16 1996-03-12 Internatl Business Mach Corp <Ibm> 電子チップ温度制御装置及び方法
JPH08274480A (ja) * 1995-03-31 1996-10-18 Matsushita Electric Ind Co Ltd ヒートシンク装置およびそれに用いられる送風装置ならびにそれを用いた電子機器
JP2002280621A (ja) * 2001-01-15 2002-09-27 Furukawa Electric Co Ltd:The レーザーモジュール、ペルチェモジュールおよびペルチェモジュール一体型ヒートスプレッダー
JP2005197668A (ja) * 2003-12-11 2005-07-21 Matsushita Electric Ind Co Ltd 電子機器の放熱構造体
JP2009182922A (ja) * 2008-02-01 2009-08-13 Nikon Corp 撮像装置
JP2012104554A (ja) * 2010-11-08 2012-05-31 Freesia Makurosu Kk 放熱構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229446A (ja) * 1990-02-05 1991-10-11 Fujitsu Ltd 冷却装置
JPH0870068A (ja) * 1994-08-16 1996-03-12 Internatl Business Mach Corp <Ibm> 電子チップ温度制御装置及び方法
JPH08274480A (ja) * 1995-03-31 1996-10-18 Matsushita Electric Ind Co Ltd ヒートシンク装置およびそれに用いられる送風装置ならびにそれを用いた電子機器
JP2002280621A (ja) * 2001-01-15 2002-09-27 Furukawa Electric Co Ltd:The レーザーモジュール、ペルチェモジュールおよびペルチェモジュール一体型ヒートスプレッダー
JP2005197668A (ja) * 2003-12-11 2005-07-21 Matsushita Electric Ind Co Ltd 電子機器の放熱構造体
JP2009182922A (ja) * 2008-02-01 2009-08-13 Nikon Corp 撮像装置
JP2012104554A (ja) * 2010-11-08 2012-05-31 Freesia Makurosu Kk 放熱構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032028A1 (ja) * 2018-08-08 2020-02-13 ソニーセミコンダクタソリューションズ株式会社 計測装置および計測システム

Similar Documents

Publication Publication Date Title
JP5404261B2 (ja) 冷却装置、電子基板、電子機器
US20150201530A1 (en) Heat Spreading Packaging Apparatus
JP2011009522A (ja) 電子ユニット
JP4438526B2 (ja) パワー部品冷却装置
TWI522032B (zh) 散熱模組
WO2013153667A1 (ja) 放熱構造
JP5295202B2 (ja) 放熱構造
JP2009059760A (ja) 電子回路基板の放熱構造体
TW201343061A (zh) 散熱構造
JP6511914B2 (ja) Led実装モジュール及びled表示装置
KR101281043B1 (ko) 히트 싱크
JP6025614B2 (ja) 発熱部品の放熱構造およびこれを用いたオーディオ装置
KR200263467Y1 (ko) 써멀 베이스를 이용한 통신장비용 방열장치
WO2015129599A1 (ja) 電子機器モジュールおよび電源モジュール
JP2007102533A (ja) 情報処理装置の放熱装置
JP2012004162A (ja) 表面実装部品放熱装置
JP2009295626A (ja) 電子機器の放熱構造
JPH11237193A (ja) 板型ヒートパイプとそれを用いた実装構造
CN217406795U (zh) 用于支撑印制电路板的覆铜箔
JP5735594B2 (ja) 冷却装置
TWI413889B (zh) 散熱裝置
KR20120090915A (ko) 방열판 구조
JP2003017634A (ja) 半導体モジュール
JP2008288379A (ja) 半導体パッケージ
US20130201630A1 (en) Electronic deviec having heat dissipation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP