WO2013149560A1 - 一种多晶硅锭及其制备方法和多晶硅片 - Google Patents

一种多晶硅锭及其制备方法和多晶硅片 Download PDF

Info

Publication number
WO2013149560A1
WO2013149560A1 PCT/CN2013/073364 CN2013073364W WO2013149560A1 WO 2013149560 A1 WO2013149560 A1 WO 2013149560A1 CN 2013073364 W CN2013073364 W CN 2013073364W WO 2013149560 A1 WO2013149560 A1 WO 2013149560A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
crucible
polycrystalline silicon
layer
nucleation
Prior art date
Application number
PCT/CN2013/073364
Other languages
English (en)
French (fr)
Inventor
胡动力
何亮
万跃鹏
雷琦
陈红荣
张涛
钟德京
Original Assignee
江西赛维Ldk太阳能高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210096291.XA external-priority patent/CN102776561B/zh
Priority claimed from CN201210096232.2A external-priority patent/CN102776555B/zh
Priority claimed from CN201210096188.5A external-priority patent/CN102776560B/zh
Priority claimed from CN201310033073.6A external-priority patent/CN103074669B/zh
Application filed by 江西赛维Ldk太阳能高科技有限公司 filed Critical 江西赛维Ldk太阳能高科技有限公司
Priority to US14/389,452 priority Critical patent/US9562304B2/en
Priority to KR1020147030926A priority patent/KR101656596B1/ko
Publication of WO2013149560A1 publication Critical patent/WO2013149560A1/zh
Priority to US15/357,707 priority patent/US10227711B2/en
Priority to US15/360,472 priority patent/US10253430B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of semiconductor fabrication, and more particularly to a polycrystalline silicon ingot, a method of fabricating the same, and a polycrystalline silicon wafer.
  • the preparation method of the polycrystalline silicon ingot mainly adopts the directional solidification system method (DSS) furnace crystal growth technology provided by GT Solar, and the method generally includes steps of heating, melting, solidification, annealing, and cooling.
  • DSS solidification system method
  • the molten silicon material spontaneously forms a random nucleation and a random nucleation gradually grows along with the continuous cooling of the crucible bottom.
  • the initial nucleation is not controlled, In the nucleation process, dislocations are easily generated, resulting in disordered crystal orientation and uneven grain entanglement. Therefore, the quality of the polycrystalline silicon ingot prepared by the method is low.
  • the solar cell produced by using the polycrystalline silicon ingot has low photoelectric conversion efficiency. Therefore, in order to obtain a high quality polycrystalline silicon ingot having a low dislocation density and few defects, a polycrystalline silicon ingot casting method capable of effectively obtaining a good initial nucleation becomes important.
  • the present invention aims to provide a method for preparing a polycrystalline silicon ingot, which can obtain a good initial nucleation of a polycrystalline silicon ingot, reduce dislocation propagation of a polycrystalline silicon ingot during growth, and obtain a high quality polycrystalline silicon ingot. .
  • the present invention also provides a high quality polycrystalline silicon ingot obtained by the preparation method, and a polycrystalline silicon wafer obtained by using the polycrystalline silicon ingot as a raw material.
  • the present invention provides a method for preparing a polycrystalline silicon ingot, comprising:
  • the growth of the nuclear source layer begins on the basis of crystal growth;
  • the polycrystalline silicon ingot is obtained by annealing.
  • the siliceous nucleation source layer refers to a nucleation source layer formed of a silicon material.
  • the silicon material is a conventional ingot raw material in the industry.
  • the nucleation of the silicon melt on the silicon solid level belongs to the homogenous nucleation mode, and the driving force required for the homogenous nucleation mode is much smaller than that of the quartz or ceramic material.
  • the heterogeneous nucleation method can form a plurality of uniformly distributed nucleation sources on the silicon solid level, so that the polycrystalline silicon ingot obtains a good initial nucleation, thereby growing a crystal having a dominant crystal orientation.
  • solid silicon has excellent thermal conductivity, which allows a greater driving force for crystallization of the silicon melt, thereby promoting the control of the initial nucleation and growing crystal grains having a dominant crystal orientation.
  • the method for preparing the polycrystalline silicon ingot includes: After the inner wall of the crucible is coated with a silicon nitride layer, the silicon material is filled from bottom to top in the crucible; heating causes the crucible silicon material to melt to form a silicon melt, when the silicon melt is unmelted When the solid-liquid interface formed by the silicon material is close to the bottom surface of the crucible, the thermal field is adjusted to form a supercooled state, so that the silicon melt starts to grow on the basis of the silicon material which is not completely melted;
  • the incompletely melted silicon material is the siliceous nucleation source layer.
  • the arrangement of the silicon nitride layer on the inner wall of the crucible can effectively prevent impurities in the inner wall of the crucible from entering the crystal, and prevent the polycrystalline silicon ingot from sticking to the pan, thereby improving the quality of the polycrystalline ingot and reducing the operation difficulty of the ingot casting process.
  • the thermal field is adjusted to form a supercooled state, and the silicon melt starts to grow on the basis of the silicon material which is not completely melted.
  • a layer of thermally conductive material is laid between the silicon material and the bottom of the crucible.
  • the thermally conductive block is a silicon block or a graphite block.
  • the silicon block is one or more of a single crystal silicon block, a polycrystalline silicon block, and an amorphous silicon block.
  • the heat conducting block is laid to a thickness of from 1 cm to 2 cm.
  • Both the silicon block and the graphite block have excellent thermal conductivity, and when the silicon melt is nucleated, the nucleation will obtain a larger driving force, thereby promoting the generation of crystal grains having a dominant crystal orientation in the nucleation process.
  • the position of the solid-liquid interface formed by the silicon melt and the unmelted silicon material is detected every 0.2 to 1 h during the melting phase of the silicon material.
  • the position of the solid-liquid interface formed by the silicon melt and the unmelted silicon material is detected using a quartz rod.
  • the position of the solid-liquid interface formed by the silicon melt and the unmelted silicon material is detected every 0.5 to 1 h in the early stage of the melting stage of the silicon material.
  • the position of the solid-liquid interface formed by the silicon melt and the unmelted silicon material is detected every 0.2 to 0.5 h later in the melting stage of the silicon material.
  • the thermal field is adjusted to a supercooled state, and the silicon melt starts to grow on the basis of the silicon material which is not completely melted.
  • the operation of adjusting the thermal field is to adjust the heating power to cool down, and the temperature of the cooling is 2 ⁇ 500K/min.
  • the heating power of the heating device is lowered or the heating device is directly turned off, or the heat dissipating device is turned on, so that the thermal field of the ingot growth reaches a supercooled state, and the crystal growth is nucleated in the supercooled state.
  • the method for preparing the polycrystalline silicon ingot includes:
  • the silicon material is filled from bottom to top in the crucible; when the silicon material is filled, a layer of silicon scrap is first laid on the bottom of the crucible, the silicon scrap One or more of single crystal silicon scrap, polycrystalline silicon scrap and amorphous silicon scrap;
  • Heating causes the silicon material in the crucible to melt to form a silicon melt, and the solid-liquid interface formed by the silicon melt and the unmelted silicon material is just adjusted in the silicon particle layer or deep into the silicon particle layer.
  • the thermal field forms a supercooled state, causing the silicon melt to begin to grow on the basis of the incompletely melted silicon material;
  • the silicon particle layer is the silicon-shaped nucleation source layer.
  • the silicon material paving is disorderly arranged at the bottom of the crucible.
  • the scrap layer forms a scaffold structure.
  • the scaffold structure has numerous holes. During the melting stage of the silicon material, the silicon melt formed by melting the silicon material will be filled in the holes. In the nucleation stage, a plurality of uniformly distributed nucleation sources are formed on the silicon particle level in the supercooled state, so that the polycrystalline silicon ingot obtains a good initial nucleation, thereby growing a crystal having a dominant crystal orientation.
  • the temperature is controlled such that the silicon melt at the solid-liquid interface formed by the silicon melt and the unmelted silicon material and the silicon melt filled in the pores are first subcooled, preferentially nucleated, and then the silicon melt The interface moves away from the bottom of the crucible, and the silicon melt crystallizes and solidifies.
  • the initial nucleation of the polycrystalline silicon ingot is well controlled, thereby growing crystals that are dominant in the crystal orientation. This can prevent a large proliferation of dislocations and obtain a high quality polycrystalline silicon ingot.
  • the size of the silicon scrap is from 0.1 m to 10 cm; more preferably, the size of the silicon scrap is from 0.1 cm to 10 cm.
  • the silicon scrap having a size of 0.1 ⁇ m to 10 ⁇ m is a fine powder.
  • the silicon scrap is laid to a thickness of 0.5 cm to 5 cm.
  • the thickness of the silicon scrap is too thin, it is not easy to carry out the laying operation, and it is difficult to control.
  • the thickness of the silicon scrap is too thin, which is disadvantageous for forming a complete stent structure, which is disadvantageous for the subsequent nucleation crystallization process.
  • a silicon nitride layer is previously disposed on the inner wall of the crucible.
  • the arrangement of the silicon nitride layer on the inner wall of the crucible can effectively prevent the impurities in the inner wall of the crucible from entering the crystal, and prevent the polycrystalline silicon ingot from sticking to the pan, thereby improving the quality of the polycrystalline ingot and reducing the operation difficulty of the ingot casting process.
  • the position of the solid-liquid interface formed by melting of the silicon material is detected every 0.2 to 1 hour.
  • a quartz rod is used to detect the position of the solid-liquid interface formed by melting of the silicon material.
  • the position of the solid-liquid interface formed by melting of the silicon material is detected every 0.5 to lh in the early stage of the melting stage of the silicon material.
  • the position of the solid-liquid interface formed by melting of the silicon material is detected every 0.2 to 0.5 h later in the melting stage of the silicon material.
  • the heat field is adjusted to a supercooled state, and the silicon melt starts to grow on the basis of the silicon particle layer.
  • the operation of adjusting the thermal field is to adjust the heating power to cool down, and the temperature of the cooling is 2 ⁇ 500K/min.
  • the heating power of the heating device is lowered or the heating device is directly turned off, or the heat dissipating device is turned on, so that the thermal field of the ingot growth reaches a supercooled state, and the crystal growth is nucleated in the supercooled state.
  • the method for preparing the polycrystalline silicon ingot includes: (1) arranging a nucleation source at the bottom of the crucible to form a nucleation source layer; the nucleation source is silicon powder;
  • the silicon powder may be disposed on the bottom of the crucible by coating, or the silicon powder may be directly laid on the bottom of the crucible.
  • the powder has a particle size of 0.1 um to 1 cm.
  • the heat field in the crucible is controlled to cool the silicon material in a molten state, and after it has reached a supercooled state, nucleation crystallization is performed. At this time, the presence of a large amount of silicon powder nucleation source facilitates the rapid nucleation of the molten silicon material.
  • the degree of subcooling is controlled to be -1K to -30K during nucleation crystallization.
  • the degree of subcooling is low, the heat dissipation is slow, and the (111) plane can be fully developed.
  • the degree of supercooling is high, the direction of (110X112) grows fast and the heat dissipation is good.
  • a high degree of subcooling is advantageous for forming a crystal orientation which is dominant at (110X112), and since the grain boundaries are atomic staggered regions, dislocation slips to the grain boundary to be absorbed. Appropriate grain boundaries can prevent the proliferation and propagation of dislocations, which reduces the overall dislocation of the silicon ingot, thereby improving the conversion efficiency of crystalline silicon.
  • the method for preparing the polycrystalline silicon ingot includes:
  • microcrystalline nucleation layer being microcrystalline silicon and/or amorphous silicon;
  • the thickness of the microcrystalline nucleation layer is a first height value;
  • the microcrystalline nucleation layer is a silicon nucleation source layer;
  • Step (1) A siliceous nucleation source layer is disposed at the bottom of the crucible.
  • the material of the siliceous nucleation source layer that is, the material for providing the microcrystalline core of the silicon ingot growth is microcrystalline silicon and/or amorphous silicon.
  • microcrystalline silicon and the amorphous silicon are laid in a random manner, and the arrangement is not required, and the size of the microcrystalline silicon and the amorphous silicon is not limited.
  • source and shape of microcrystalline silicon and amorphous silicon are not limited.
  • the microcrystalline silicon and the amorphous silicon have a purity of 3N or more.
  • the microcrystalline silicon and/or amorphous silicon is in the form of a rod, a block, a sheet, a strip or a pellet.
  • the amorphous silicon is prepared by the Siemens method, the modified Siemens method or the fluidized bed method.
  • the thickness of the silicon-shaped nucleation source layer, that is, the first height value is not limited, and may be determined according to actual conditions.
  • the first height value is from l to 150 mm. More preferably, the first height value is 5 to 150 mm. Further preferably, the first height value is 5 to 30 mm.
  • the finger refers to a container that accommodates the growth of the polycrystalline silicon ingot, and its shape and type are not limited.
  • Step (2) filling a silicon material above the siliceous nucleation source layer, heating to melt the silicon material to form a silicon melt, and the solid-liquid interface formed after the silicon material is completely melted is just in or deep into the silicon
  • the thermal field is adjusted to form a supercooled state, and the silicon melt starts to grow on the basis of the siliceous nucleation source layer.
  • the siliceous nucleation source layer is microcrystalline silicon or amorphous silicon or a mixture of the two
  • the solid-liquid interface formed by the complete melting of the silicon material penetrates into the silicon nucleation source layer and is away from the crucible
  • the thermal field is adjusted to form a supercooled state, and the silicon melt starts to grow on the basis of microcrystalline silicon and/or amorphous silicon.
  • the siliceous nucleation source layer is microcrystalline silicon or amorphous silicon or a mixture of the two
  • the solid-liquid interface formed by the complete melting of the silicon material penetrates into the silicon nucleation source layer and
  • the thermal field is adjusted to form a supercooled state, and the silicon melt starts to grow on the basis of microcrystalline silicon and/or amorphous silicon.
  • the silicon material is melted at a temperature of 1500 to 1560 °C. Therefore, if the silicon nucleation source layer is microcrystalline silicon or amorphous silicon, it will also melt during the ingot process, so it is necessary to detect the position of the solid solution interface of the silicon melt to allow it to nucleate the crystal.
  • the position of the solid solution interface where the silicon melt melts is detected every 0.2 to 1 h during the melting phase of the silicon material.
  • the position of the solid-liquid interface in which the silicon melt is melted is detected using a quartz rod.
  • the position of the solid-liquid interface in which the silicon melt melts is detected once every 0.5 to 1 h in the early stage of the melting phase of the silicon material.
  • the position of the solid-liquid interface where the silicon melt melts is detected every 0.2 to 0.5 h later in the melting stage of the silicon material.
  • the operation of adjusting the thermal field is to adjust the heating power to cool down, and the temperature drop is 2 ⁇ 30K/min.
  • the heating power of the heating device is lowered or the heating device is directly turned off, or the heat dissipating device is turned on, so that the thermal field of the silicon ingot growth reaches a supercooled state, and in the supercooled state, crystal growth is based on the microcrystalline core, and the crystal growth is performed.
  • the temperature inside the control crucible gradually rises in a direction perpendicular to the bottom of the crucible to form a temperature gradient.
  • the range of each short-range order It is equivalent to a small crystallite, which can be used as a crystallite of a long crystal.
  • the silicon melt contacts the microcrystalline material or the amorphous material of the siliceous nucleation source layer; when the temperature is further lowered, the silicon melt grows on the microcrystalline material or the amorphous material. Due to the presence of microcrystals or a large number of microcrystalline nuclei close to the crystallites in the microcrystalline material or the amorphous material, the silicon melt grows a large number of fine crystal grains under the action of these microcrystalline nuclei. After subsequent optimization and elimination of growth, crystals with fine, uniform, and low dislocation density are obtained.
  • Step (3) After all the silicon melt is crystallized, it is annealed and cooled to obtain a polycrystalline silicon ingot.
  • the polycrystalline silicon ingot grows a large number of fine crystal grains by using the microcrystalline core, these fine crystal grains have a similar "necking" effect, and dislocations are eliminated through the grain boundaries. At the same time, it has a dominant crystal orientation. On the basis of this, it can be selected and crystallized to form crystals with favorable crystal orientation. Therefore, it can prevent the proliferation of dislocations and obtain high-quality polycrystalline silicon ingots.
  • the method for preparing the polycrystalline silicon ingot includes:
  • the seed layer is the siliceous nuclear source layer
  • the laying method of the seed crystal in the step (1) is freely laid, and the arrangement of the seed crystal is not required, and the crystal orientation of the seed crystal is not limited.
  • the source, type, shape, maximum side length and dislocation density of the seed crystal are not Limit.
  • the seed crystal is a tail and tailstock, a side skin, a residual silicon material, a single crystal chip or a finely divided silicon material.
  • Head and tailstocks and side skins are common waste materials produced in the preparation of silicon ingot crystals.
  • the residual silicon material and the single crystal chip are the defects and fragments generated during the cutting process of the silicon ingot crystal.
  • the finely divided silicon material is obtained by crushing the silicon ingot crystal waste.
  • the seed crystal may be single crystal or polycrystalline.
  • the molten silicon material will continue to grow in a structure that inherits the lattice on the seed crystal.
  • the seed crystal may be in the form of a sheet, a block, a strip or a pellet.
  • the seed crystals have an irregular shape, the crystal orientations of the seed crystals are randomly distributed, and the grain boundaries are atomic staggered regions.
  • the seed crystal is in a regular shape formed by cutting, since the crystal has a polyhedral structure, the crystal orientation of each seed crystal is disordered after random laying, and the grain boundary is also an atomic misalignment region.
  • the maximum side length of the seed crystal is from l to 100 mm.
  • the dislocation density of the seed crystal is 10 3 /cm 2 .
  • the thickness of the seed layer is 0.5 cm to 5 cm.
  • the seed layer has a thickness of 5 to 50 mm.
  • the seed crystal is used as the nucleation source layer, the seed crystal source is very wide, the material is convenient, and the price is superior to that of the continuous large-sized seed crystal used in the prior art, and the production of the polycrystalline silicon ingot is greatly reduced. cost.
  • the seed crystals are randomly laid on the bottom of the crucible without the need for artificial arrangement, so it is easy to operate.
  • the manner of providing the silicon material in a molten state above the seed layer is not limited.
  • the silicon material in a molten state above the seed layer may be: loading a solid silicon material above the seed layer to heat the crucible The silicon material is melted, and at this time, the molten silicon material is disposed on the surface of the seed layer. Further preferably, the silicon material in a molten state is disposed above the seed layer: heating the solid silicon material in another crucible to obtain a silicon material in a molten state, and casting the molten silicon material into a seed layer In the crucible, at this time, the molten silicon material is disposed on the surface of the seed layer.
  • the purity and source of the solid silicon material are not limited.
  • the unmelted seed layer comprises from 5% to 95% of the seed layer laid in step (1).
  • the temperature at which the silicon material is melted is 1500 to 1560 °C.
  • the temperature of the seed layer laid on the bottom of the crucible is lower than the melting point of the seed crystal.
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • the seed crystal is randomly laid at the bottom of the crucible in the present invention and the crystal orientation of the seed crystal is not limited, a high quality polycrystalline silicon ingot can be obtained.
  • the seed crystal randomly laid provides an appropriate amount of grain boundaries, which are atomic staggered regions, and the dislocation slips to the grain boundary to be absorbed, thereby preventing the proliferation and propagation of dislocations, so that the entire polycrystalline silicon ingot
  • the reduction of dislocations improves the conversion efficiency of the polycrystalline silicon ingot, thereby improving the quality of the polycrystalline silicon ingot.
  • the present invention provides a polycrystalline silicon ingot which is produced in accordance with the aforementioned method for producing a polycrystalline silicon ingot.
  • the polycrystalline silicon ingot has a low dislocation density and few defects.
  • the present invention provides a polycrystalline silicon wafer obtained by subjecting the polycrystalline silicon ingot to a raw material by chip-slice-cleaning.
  • Figure 1 is a schematic view showing the charging of Embodiment 1 of the present invention.
  • Figure 2 is a diagram showing the life of a silicon ingot minority in the first embodiment of the present invention.
  • Figure 3 is a diagram showing the result of detecting the bottom dislocation of the silicon ingot according to the first embodiment of the present invention
  • Figure 4 is a view showing the result of detecting the position of the silicon ingot head according to the first embodiment of the present invention
  • Figure 5 is a schematic view of the sixth embodiment of the present invention after charging
  • Figure 6 is a diagram showing a minority lifetime of a polycrystalline silicon ingot obtained in Example 6 of the present invention.
  • Figure 7 is a photoluminescence spectrum detection chart of a polycrystalline silicon wafer obtained in Example 6 of the present invention.
  • Figure 8 is a schematic view showing the preparation process of Embodiment 9 of the present invention.
  • Figure 9 is a photograph showing the blocking effect of the grain boundary on the dislocation of the polycrystalline silicon ingot obtained in Example 9 of the present invention through the photoluminescence silicon wafer detecting system;
  • Figure 10 is a diagram showing a minority lifetime of a polycrystalline silicon ingot obtained in Example 9 of the present invention.
  • Figure 11 is a graph showing the minority carrier lifetime of the single crystal obtained in Comparative Experiment 1.
  • Figure 12 is a graph showing the minority lifetime of the polycrystalline silicon ingot obtained in Comparative Experiment 2. detailed description
  • a method for preparing a polycrystalline silicon ingot comprising:
  • FIG. 1 is a schematic view of the charging after the embodiment, wherein 1 is bismuth, 2 is polycrystalline silicon scrap, and 3 is Wafer.
  • the above-mentioned silicon-filled crucible is placed in an ingot furnace, the ingot casting process is started, vacuum is applied, and then heated to the melting point of silicon to slowly melt the silicon material.
  • quartz rods are used to detect silicon melt and unmelted
  • the position of the solid-liquid interface formed by the silicon material is detected every lh in the early stage of the melting stage, and every 0.5h in the late stage of the melting stage.
  • the insulating cage is slowly opened and the temperature is lowered, so that the temperature of the silicon melt is lowered, and the temperature is lowered by about At 10k/min, a certain degree of subcooling is formed, and the silicon melt begins to nucleate the crystal growth on the basis of the incompletely melted silicon material.
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the minority carrier lifetime of the obtained polycrystalline silicon ingot was measured by WT2000.
  • the detection result is shown in Fig. 2.
  • the minority carrier life distribution of the polycrystalline silicon ingot from the bottom (right) to the head (left) is very uniform, and the sub-life area is low. The area is small and the quality of the silicon ingot is high.
  • Fig. 4 is a diagram showing the result of the detection of the position of the silicon ingot.
  • the photoelectric conversion efficiency of the German halm cell sheet measuring instrument was measured. As a result of the measurement, the photoelectric conversion efficiency of the solar cell was 17.3%.
  • a method for preparing a polycrystalline silicon ingot comprising:
  • a quartz crucible and spray a layer of silicon nitride on the inner wall of the crucible Take a quartz crucible and spray a layer of silicon nitride on the inner wall of the crucible.
  • a layer of polycrystalline silicon lump with a thickness of lcm is placed on the bottom of the crucible, and then a layer of polycrystalline scrap having a size of l ⁇ 5 cm and a thickness of 2 cm is laid on the bottom.
  • various polycrystalline scraps are filled with various bulk silicon materials until they are completely loaded.
  • the above-mentioned silicon-filled crucible is placed in an ingot furnace, the ingot casting process is started, vacuum is applied, and then heated to the melting point of silicon to slowly melt the silicon material.
  • the solid-liquid interface position between the silicon melt and the unmelted silicon material is detected by a quartz rod, and detection is performed every lh in the early stage of the melting stage, and once every 0.5 hour in the late stage of the melting stage.
  • the heat insulating cage is slowly opened and the temperature is lowered to lower the temperature of the silicon melt, and the temperature is lowered. At about 20k/min, a certain degree of subcooling is formed, and the silicon melt begins to nucleate the crystal growth on the basis of the incompletely melted silicon material.
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the obtained polycrystalline silicon ingot was subjected to dislocation observation using an optical microscope (magnification 200 times), and the detection result was as follows: the average dislocation density at the bottom of the silicon ingot was 2.8 X 10 4 (pieces/cm 2 ); the average position of the silicon ingot head The error density is 3.40 X 10 4 (pieces/cm 2 ).
  • the photoelectric conversion efficiency of the German halm cell sheet measuring instrument was measured.
  • the photoelectric conversion efficiency of the solar cell was 17.46%.
  • a method for preparing a polycrystalline silicon ingot comprising:
  • a quartz crucible Take a quartz crucible and spray a layer of silicon nitride on the inner wall of the crucible.
  • a layer of graphite plate with a thickness of lcm is placed on the bottom of the crucible.
  • the graphite material is made of three high graphite, and then a layer of polycrystalline scrap with a size of l ⁇ 5cm and a thickness of 0.5cm is placed on top.
  • various polycrystalline scraps are filled with various bulk silicon materials until they are completely loaded.
  • the above-mentioned silicon-filled crucible is placed in an ingot furnace, the ingot casting process is started, vacuum is applied, and then heated. To the melting point of silicon, the silicon material is slowly melted. In the melting stage, the solid-liquid interface position between the silicon melt and the unmelted silicon material is detected by a quartz rod, and detection is performed every lh in the early stage of the melting stage, and once every 0.5 hour in the late stage of the melting stage.
  • the insulating cage is slowly opened and the temperature is lowered to lower the temperature of the silicon melt, and the temperature is lowered. At about 15k/min, a certain degree of subcooling is formed, and the silicon melt begins to nucleate the crystal growth on the basis of the incompletely melted silicon material.
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the obtained polycrystalline silicon ingot was subjected to dislocation observation using an optical microscope (magnification 200 times), and the detection result was as follows: the average dislocation density at the bottom of the silicon ingot was 3.1 ⁇ 10 4 (pieces/cm 2 ); the average position of the silicon ingot head The error density is 3.56 X 10 4 (pieces/cm 2 ).
  • the photoelectric conversion efficiency of the German halm cell sheet measuring instrument was measured.
  • the photoelectric conversion efficiency of the solar cell was 17.53%.
  • a method for preparing a polycrystalline silicon ingot comprising:
  • the above-mentioned silicon-filled crucible is placed in an ingot furnace, the ingot casting process is started, vacuum is applied, and then heated to the melting point of silicon to slowly melt the silicon material.
  • the solid-liquid interface position between the silicon melt and the unmelted silicon material is detected by a quartz rod, and detection is performed every lh in the early stage of the melting stage, and once every 0.5 hour in the late stage of the melting stage.
  • the insulating cage is slowly opened and the temperature is lowered, so that the temperature of the silicon melt is lowered and the temperature is lowered.
  • the amplitude is about 15k/min, forming a certain degree of subcooling, and the silicon melt begins to nucleate the crystal growth on the basis of the incompletely melted silicon material.
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the obtained polycrystalline silicon ingot was subjected to dislocation observation using an optical microscope (magnification 200 times), and the detection result was as follows: the average dislocation density at the bottom of the silicon ingot was 3.12 X 10 4 (pieces/cm 2 ); the average position of the silicon ingot head The error density is 3.58 X 10 4 (pieces/cm 2 ).
  • the photoelectric conversion efficiency of the German halm cell sheet measuring instrument was measured.
  • the photoelectric conversion efficiency of the solar cell was 17.48%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • a nucleation source is arranged at the bottom of the crucible to form a nucleation source layer; wherein, the nucleation source is disposed at the bottom of the crucible: 200 g of silicon powder is used, and the silicon nitride coating originally coated on the bottom of the crucible is brushed. The silicon powder was baked in a 600 degree oven for 2 hours. The particle size of the silicon powder is lmm.
  • the dislocation density of the polycrystalline silicon ingot obtained in this example was 3.6 X 10 3 ⁇ 4.8 X 10 3 /cm 2 , and the minority carrier lifetime was 18 ⁇ sec (us ).
  • the polycrystalline silicon wafer obtained by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.6%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • FIG. 5 is the embodiment After charging, the thickness of the microcrystalline nucleation layer is 120 mm;
  • the insulating cage is slowly opened and the temperature is lowered, so that the temperature of the silicon melt is lowered, and the temperature is reduced by about 5 k/min. With a certain degree of subcooling, the silicon melt begins to grow on the basis of the amorphous rod-shaped high-purity silicon material;
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the minority carrier lifetime of the obtained polycrystalline silicon ingot was measured by WT2000.
  • the detection result is shown in Fig. 6.
  • the polycrystalline silicon ingot has a low lifetime and a small number of dislocations.
  • the dislocation of the obtained polycrystalline silicon wafer was examined by a photoluminescence spectrometer. The results are shown in Fig. 7. As can be seen from Fig. 7, the polycrystalline silicon wafer has few dislocations and small and uniform crystal grains.
  • the photoelectric conversion efficiency of the German halm cell sheet measuring instrument was measured. As a result of the measurement, the photoelectric conversion efficiency of the solar cell was 17.8%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • the insulating cage is slowly opened and the temperature is lowered, so that the temperature of the silicon melt is lowered, and the temperature is reduced by about 6 k/min. With a certain degree of subcooling, the silicon melt begins to grow on the basis of the amorphous rod-shaped high-purity silicon material;
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the resulting polycrystalline silicon ingot was subjected to dislocation observation using an optical microscope (magnification of 200 times), and the detection result was 8.5 x 10 3 /cm 2 .
  • the photoelectric conversion efficiency of the German Halm battery test instrument was measured. Rate. As a result of the measurement, the photoelectric conversion efficiency of the solar cell was 18.0%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • the insulation cage is slowly opened and the temperature is lowered, so that the temperature of the silicon melt is lowered, and the temperature is reduced by about 15 k/min. With a certain degree of subcooling, the silicon melt begins to grow on the basis of microcrystalline silicon;
  • the polycrystalline silicon ingot obtained above is cooled, the polycrystalline silicon ingot is obtained by opening, and the polycrystalline silicon wafer is obtained by slicing-cleaning, and the solar cell is fabricated by using a screen printing process using the polycrystalline silicon wafer as a raw material.
  • the obtained polycrystalline silicon ingot was subjected to dislocation observation using an optical microscope (magnification of 200 times), and the detection result was 3.5 x 10 4 /cm 2 .
  • the photoelectric conversion efficiency of the German halm cell sheet measuring instrument was measured. As a result of the measurement, the photoelectric conversion efficiency of the solar cell was 17.6%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • Fig. 8 is a schematic view showing the preparation process of the present embodiment, wherein 1 is ruthenium, 2 is a seed layer, and 3 is a silicon material.
  • the silicon material in a molten state is disposed above the seed layer: loading a solid silicon material above the seed layer, heating the crucible to 1530 ° C to melt the silicon material, and at this time, the molten silicon material is disposed on the seed crystal Layer surface.
  • the bottom temperature of the crucible is 1412 °C.
  • the unmelted seed layer accounts for 60% of the seed layer laid in step (1).
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • Fig. 9 is a photograph showing the blocking effect of the grain boundary on the dislocation of the polycrystalline silicon ingot obtained in the present embodiment through the photoluminescence silicon wafer detecting system.
  • 1 is a grain boundary
  • 2 is a dislocation-free region
  • 3 is a dislocation region.
  • dislocation slip is obviously suppressed, and obvious dislocations are formed on both sides of the grain boundary 1.
  • the dislocation density of the polycrystalline silicon ingot obtained in this embodiment is 1.5 X 10 ⁇ 1.8 X 10 3 /cm 2 , and the minority carrier lifetime is 25 ⁇ sec (us ).
  • the polycrystalline silicon wafer produced by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.8%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • the crystal orientation of the seed crystal is not limited; wherein the seed crystal is a side skin material produced in a single crystal preparation method, and the seed crystal is a bulk single crystal.
  • Maximum side length The degree is 100 mm, the dislocation density is 10 3 /cm 2 , and the thickness of the seed layer is 50 mm.
  • the silicon material in a molten state is disposed above the seed layer: loading a solid silicon material above the seed layer, heating the crucible to 1560 ° C to melt the silicon material, and at this time, the molten silicon material is disposed on the seed crystal Layer surface.
  • the bottom temperature of the crucible is 1412 °C.
  • the unmelted seed layer accounts for 95% of the seed layer laid in step (1).
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • the dislocation density of the polycrystalline silicon ingot obtained in this example is 7.5 X 10 3 to 8.0 X 10 3 /cm 2 , and the minority carrier lifetime is 18 ⁇ sec (us ).
  • the polycrystalline silicon wafer produced by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.8%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • the seed crystal is a finely divided silicon material produced in a single crystal preparation method, and the seed crystal is a granular single crystal,
  • the maximum side length is 1 mm
  • the dislocation density is 10 3 /cm 2
  • the thickness of the seed layer is 5 mm.
  • the silicon material in a molten state is disposed above the seed layer: loading a solid silicon material above the seed layer, heating the crucible to 1500 ° C to melt the silicon material, and at this time, the molten silicon material is disposed on the seed crystal Floor Surface.
  • the bottom temperature of the crucible is 1412 °C.
  • the unmelted seed layer accounts for 5% of the seed layer laid in step (1).
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • the dislocation density of the polycrystalline silicon ingot obtained in this embodiment is 3.5 X 10 4 to 4.8 X 10 4 /cm 2 , and the minority carrier lifetime is 10 ⁇ sec (us).
  • the polycrystalline silicon wafer produced by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.1%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • the seed crystal is a residual silicon material produced in the polycrystal preparation method, and the seed crystal is granular residual silicon
  • the material has a maximum side length of 50 mm, a dislocation density of 10 3 /cm 2 , and a seed layer thickness of 50 mm.
  • the silicon material in a molten state is disposed above the seed layer: heating the solid silicon material in another crucible to obtain a silicon material in a molten state, and casting the molten silicon material into a crucible having a seed layer At this time, the molten silicon material is disposed on the surface of the seed layer.
  • the bottom temperature of the crucible is 1413 °C.
  • the unmelted seed layer accounts for 95% of the seed layer laid in step (1).
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • the polycrystalline silicon ingot obtained in this example has a dislocation density of 3.2 10 4 to 3.8 X 10 4 /cm 2 and a minority carrier lifetime of 15 ⁇ s (us ).
  • the polycrystalline silicon wafer obtained by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.5%.
  • the preparation method of the polycrystalline silicon ingot includes the following steps:
  • the seed crystal is a finely divided silicon material produced in a polycrystalline preparation method, and the seed crystal is granular polycrystalline,
  • the maximum side length is 1 mm
  • the dislocation density is 10 3 /cm 2
  • the thickness of the seed layer is 5 mm.
  • the silicon material in a molten state is disposed above the seed layer: loading a solid silicon material above the seed layer, heating the crucible to 1500 ° C to melt the silicon material, and at this time, the molten silicon material is disposed on the seed crystal Layer surface.
  • the bottom temperature of the crucible is 1412 °C.
  • the unmelted seed layer accounts for 60% of the seed layer laid in step (1).
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • the polycrystalline silicon ingot obtained in this example has a dislocation density of 1.2 10 4 to 1.8 X 10 4 /cm 2 and a minority carrier lifetime of 10 ⁇ sec (us).
  • the polycrystalline silicon wafer obtained by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.2%.
  • Example 14 The preparation method of the polycrystalline silicon ingot includes the following steps:
  • the silicon material has a maximum side length of 40 mm, a dislocation density of 10 3 /cm 2 , and a seed layer thickness of 40 mm.
  • the silicon material in a molten state is disposed above the seed layer: heating the solid silicon material in another crucible to obtain a silicon material in a molten state, and casting the molten silicon material into a crucible having a seed layer At this time, the molten silicon material is disposed on the surface of the seed layer.
  • the bottom temperature of the crucible is 1413 °C.
  • the unmelted seed layer accounts for 5% of the seed layer laid in step (1).
  • the temperature in the control crucible gradually rises in a direction perpendicular to the upward direction of the crucible to form a temperature gradient, so that the silicon material in the molten state inherits the crystal orientation structure of the seed crystal on the seed crystal to obtain a polysilicon bond.
  • the polycrystalline silicon ingot obtained in this embodiment has a dislocation density of 5.0 X 10 to 5.6 X 10 3 /cm 2 and a minority lifetime of 12 ⁇ s (us).
  • the polycrystalline silicon wafer obtained by using the polycrystalline silicon ingot obtained in the present embodiment is suitable for the preparation of a solar cell, and the solar cell conversion efficiency is 17.4%.
  • Comparative test 1 Using a complete single crystal rod, after cutting off the head and tail skin, the square seed crystal block is cut, the size of the block is 156mm* 156mm; the above single crystal square is regularly laid in the bottom of the crucible until all the bottom is covered. Then, the silicon material is laid on the seed crystal, and after melting at a high temperature, the bottom seed crystal is controlled to be incompletely melted. Control the temperature gradient so that the bottom is cooled first, and the silicon melt is crystallized from the surface of the seed crystal to obtain a single crystal structure. Class of single crystal silicon keys.
  • Contrast test 2 The growth process of ordinary polycrystalline silicon ingots, including loading silicon material in the crucible, heating the crucible to melt the silicon material, and preparing the internal heat field, so that the molten silicon material grows at the bottom of the crucible to obtain a polycrystalline silicon ingot. .
  • the comparison between the embodiment 9 of the present invention, the embodiment 10, the comparison test 1 and the comparison test 2 is as follows:
  • Figure 10 is a diagram showing a minority carrier lifetime of a polycrystalline silicon ingot obtained in Example 9 of the present invention
  • Figure 11 is a minority carrier lifetime diagram of a single crystal obtained in Comparative Test 1
  • Figure 12 is a minority carrier lifetime of a polycrystalline silicon ingot obtained in Comparative Experiment 2.
  • the polycrystalline silicon ingot obtained in the first embodiment of the present invention has a high lifetime, and the central low-sub-sub-region (a region representing a high degree of dislocation density to a certain extent) is less, and the comparison sheet 1 is obtained. Low crystal center The minority sub-regions are divergent, indicating that the dislocations are easy to expand.
  • the polycrystalline silicon ingot produced in Comparative Experiment 2 has a low lifetime, and the central minority has a large area and a high dislocation.
  • the dislocation density of the polycrystalline silicon ingot prepared by laying the seed layer to the silicon-shaped nucleation source layer is less than 10 5 /cm 2 , and the minority carrier lifetime is 10 to 25 us.
  • the dislocation density of the silicon ingot product obtained by the conventional method is 10 5 to 10 6 / cm 2 , and the minority carrier lifetime is 5 to 10 ⁇ s.
  • the polycrystalline silicon wafer obtained by the obtained polycrystalline silicon ingot is suitable for preparing a solar cell, and the conversion efficiency of the obtained solar cell is 17.1% to 17.8%, and the conversion efficiency of the solar cell obtained by the ordinary polycrystalline silicon wafer is 16.5 to 16.9%.
  • the efficiency of the single crystal is 17.2% to 18.5%.

Abstract

本发明公开了一种多晶硅锭的制备方法,该制备方法包括在坩埚底部设置硅质形核源层,在所述硅质形核源层上方填装硅料;加热使硅料熔化,调节所述坩埚内热场,使熔化的硅料在所述硅质形核源层基础上开始长晶;待全部结晶完后,经退火冷却得到多晶硅锭。采用该制备方法能使多晶硅锭得到良好的初始形核,降低多晶硅锭在生长过程中的位错繁殖。本发明还同时公开了一种通过该制备方法获得的多晶硅锭,以及以所述多晶硅锭为原料制得的多晶硅片。

Description

一种多晶硅锭及其制备方法和多晶硅片 本申请要求于 2012年 4月 1日提交中国专利局的申请号为 201210096232.2, 其发明名称为 "一种多晶硅锭及其制备方法和多晶硅片" 的中国专利申请、 于 2012年 4月 1 日提交中国专利局的申请号为 201210096188.5,其发明名称为 "多 晶硅锭及其制备方法和多晶硅片" 的中国专利申请的优先权, 其全部内容通过 引用结合在本申请中; 本申请要求于 2012年 4月 1 日提交中国专利局的申请号 为 201210096291.X, 其发明名称为 "多晶硅锭及其制备方法、 多晶硅片和多晶 硅铸锭用坩埚" 的中国专利申请、 于 2013年 1月 29 日提交中国专利局的申请 号为 201310033073.6, 其发明名称为 "多晶硅锭及其制备方法和多晶硅片" 的 中国专利申请的优先权, 其部分内容通过引用结合在本申请中。 技术领域
本发明涉及半导体制造领域, 尤其涉及一种多晶硅锭及其制备方法和多晶 硅片。
背景技术
近年来, 太阳能作为一种新兴的可再生绿色能源已经成为了人们开发和研 究的热点。 伴随着太阳能电池业的快速发展, 成本低且适于规模化生产的多晶 硅成为行业内最主要的光伏材料之一, 并逐步取代传统的直拉单晶硅在太阳能 电池材料市场中的主导地位。
目前, 多晶硅锭的制备方法主要为采用 GT Solar所提供的定向凝固系统法 (筒称 DSS ) 炉晶体生长技术, 该方法通常包括加热、 熔化、 凝固长晶、 退火 和冷却等步骤。 在凝固长晶过程中, 伴随着坩埚底部的持续冷却, 熔融状态的 硅料自发形成随机形核并且随机形核逐渐生长。 但由于初始形核没有得到控制, 形核过程中容易产生位错, 导致晶向杂乱, 晶粒不均勾, 因此通过该方法制备 得到的多晶硅锭质量较低。 利用该多晶硅锭制得的太阳能电池的光电转换效率 低。 因此, 为了制得位错密度低、 缺陷少的高质量多晶硅锭, 一种能有效获得 良好初始形核的多晶硅锭铸造方法变得很重要。
发明内容
为了解决上述技术问题,本发明旨在提供一种多晶硅锭的制备方法,该制备 方法能够使多晶硅锭获得良好的初始形核, 降低多晶硅锭在生长过程中的位错 繁殖, 得到高质量多晶硅锭。 本发明同时提供了通过该制备方法获得的高质量 的多晶硅锭, 以及以所述多晶硅锭为原料制得的多晶硅片。
第一方面, 本发明提供了一种多晶硅锭的制备方法, 包括:
在坩埚底部设置硅质形核源层, 在所述硅质形核源层上方填装硅料; 加热使所述硅料熔化, 调节所述坩埚内热场, 使熔化的硅料在所述硅质形 核源层基础上开始长晶;
待全部结晶完后, 经退火冷却得到多晶硅锭。
所述硅质形核源层是指硅材质形成的形核源层。 所述硅料为行业内常规的 铸锭原料。
本发明提供的多晶硅锭的制备方法, 硅熔体在硅固体层面上的形核属于同 质形核方式, 同质形核方式所需要的驱动力要远小于石英或陶瓷等材料的坩埚 上的异质形核方式, 在硅固体层面上能形成多个均匀分布的形核源, 从而使多 晶硅锭获得良好的初始形核, 进而生长出具有优势晶向的晶体。 此外, 固体硅 具有优良的导热性能, 使得硅熔体形核时获得更大的驱动力, 从而促进初始形 核的控制, 生长出具有优势晶向的晶粒。
优选地, 所述多晶硅锭的制备方法, 包括: 在坩埚内壁涂上氮化硅层后, 在所述坩埚内从下至上填装硅料; 加热使所述坩埚内硅料熔化形成硅熔体, 当所述硅熔体与未熔化的所述硅 料所形成的固液界面接近坩埚底面时, 调节热场形成过冷状态, 使所述硅熔体 在不完全熔化的硅料基础上开始长晶;
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭;
所述不完全熔化的硅料为所述硅质形核源层。
其中, 坩埚内壁上氮化硅层的设置, 可以有效防止坩埚内壁的杂质进入晶 体中, 并防止多晶硅锭发生粘锅现象, 从而提高多晶硅锭的质量和降低铸锭工 艺的操作难度。
当所述硅料未完全熔化时, 调节热场形成过冷状态, 使硅熔体在未完全熔 化的硅料基础上开始长晶。
优选地, 在硅料与所述坩埚的底部之间铺垫一层导热块。
优选地, 导热块为硅块或石墨块。
优选地, 所述硅块为单晶硅块、 多晶硅块和非晶体硅块中的一种或几种。 优选地, 导热块的铺设厚度为 lcm~2cm。
硅块和石墨块均具有优良的导热性能, 在硅熔体形核时将使得形核获得更 大的驱动力, 从而促进形核过程中产生具有优势晶向的晶粒。
优选地, 在硅料的熔化阶段, 每隔 0.2~lh, 探测一次所述硅熔体与未熔化 的所述硅料所形成的固液界面的位置。
具体地, 采用石英棒探测所述硅熔体与未熔化的所述硅料所形成的固液界 面的位置。
优选地, 在硅料的熔化阶段前期, 每隔 0.5~lh, 探测一次所述硅熔体与未 熔化的所述硅料所形成的固液界面的位置。 优选地, 在硅料的熔化阶段后期, 每隔 0.2~0.5h, 探测一次所述硅熔体与未 熔化的所述硅料所形成的固液界面的位置。
当检测到硅熔体与未熔化的所述硅料所形成的固液界面接近坩埚底面时, 开始调节热场达过冷状态, 使硅熔体在未完全熔化的硅料基础上开始长晶。
优选地,调节热场的操作为调节加热功率降温, 降温的幅度为 2~500K/min。 具体地, 降低加热装置的加热功率或直接关闭加热装置, 或打开热量散热 装置, 使硅锭生长的热场达到过冷状态, 在该过冷状态下形核长晶。
优选地, 所述多晶硅锭的制备方法, 包括:
在坩埚内壁涂上氮化硅层后, 在所述坩埚内从下至上填装硅料; 所述填装 硅料时, 先在所述坩埚底部铺设一层硅碎料, 所述硅碎料为单晶硅碎料、 多晶 硅碎料和非晶体硅碎料中的一种或几种;
加热使所述坩埚内硅料熔化形成硅熔体, 当所述硅熔体与未熔化的所述硅 料所形成的固液界面刚好处在硅碎料层或深入硅碎料层时, 调节热场形成过冷 状态, 使所述硅熔体在不完全熔化的硅料基础上开始长晶;
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
硅碎料层为所述硅质形核源层。 硅碎料铺垫在坩埚底部为无序排列, 碎料 层形成一个支架结构, 该支架结构具有无数的孔洞, 在硅料熔化阶段, 硅料熔 化形成的硅熔体将填充在孔洞中, 在初始形核阶段, 在过冷状态下, 在硅碎料 层面上形成多个均匀分布的形核源, 从而使多晶硅锭获得良好的初始形核, 进 而生长出具有优势晶向的晶体。 具体地, 控制温度使处于硅熔体与未熔化的硅 料所形成的固液界面的硅熔体及填充在孔洞中的硅熔体先达到过冷状态, 优先 形核结晶, 随后硅熔体界面向远离坩埚底部的方向移动, 硅熔体结晶凝固。 多 晶硅锭的初始形核得到良好控制, 从而生长出有益晶向占主导地位的晶体, 因 此可以防止位错的大量增殖, 得到高质量多晶硅锭。
优选地, 硅碎料的尺寸大小为 0.l m~10cm; 更优选地, 硅碎料的尺寸大 小为 0.1cm~10cm。
其中, 尺寸大小为 0.1 μ ιη~10 μ ιη的硅碎料为微粉。
优选地, 硅碎料铺设厚度为 0.5cm~5cm。
硅碎料的厚度太薄, 不容易进行铺设操作, 难以控制, 另外, 硅碎料的厚 度太薄, 不利于形成完整的支架结构, 从而不利于后续形核结晶过程。
优选地, 所述坩埚内壁上预先设置有氮化硅层。 坩埚内壁上氮化硅层的设 置, 可以有效防止坩埚内壁的杂质进入晶体中, 并防止多晶硅锭发生粘锅现象, 从而提高多晶硅锭的质量和降低铸锭工艺的操作难度。
优选地, 在硅料的熔化阶段, 每隔 0.2~lh, 探测一次所述硅料熔化形成的 固液界面的位置。
具体地, 采用石英棒探测所述硅料熔化形成的固液界面的位置。
优选地, 在硅料的熔化阶段前期, 每隔 0.5~lh, 探测一次所述硅料熔化形 成的固液界面的位置。
优选地, 在硅料的熔化阶段后期, 每隔 0.2~0.5h, 探测一次所述硅料熔化形 成的固液界面的位置。
当检测到所述硅料熔化形成的固液界面的位置刚好处在或深入硅碎料层 时, 开始调节热场达过冷状态, 使硅熔体在硅碎料层基础上开始长晶。
优选地,调节热场的操作为调节加热功率降温, 降温的幅度为 2~500K/min。 具体地, 降低加热装置的加热功率或直接关闭加热装置, 或打开热量散热 装置, 使硅锭生长的热场达到过冷状态, 在该过冷状态下形核长晶。
优选地, 所述多晶硅锭的制备方法, 包括: ( 1 )在坩埚底部设置形核源, 形成形核源层; 所述形核源为硅粉;
( 2 )在所述形核源层上设置熔融状态的硅料; 所述在形核源层上设置熔融 状态的硅料为: 在所述形核源层上方装载固体硅料, 对所述坩埚进行加热使得 所述硅料熔融, 此时, 所述熔融状态的硅料设置于所述形核源层表面; 或在另 外一个坩埚内加热固体硅料, 制得熔融状态的硅料, 将所述熔融状态的硅料浇 铸至所述铺设有形核源层的坩埚内, 此时, 所述熔融状态的硅料设置于所述形 核源层表面;
( 3 )控制所述坩埚内的温度沿垂直与所述坩埚底部向上的方向逐渐上升形 成温度梯度, 使得所述熔融状态的硅料利用所述形核源形核结晶, 制得多晶硅 键。
优选地, 所述硅粉可通过涂覆设置在所述坩埚底部, 或者是将所述硅粉直 接铺设在所述坩埚底部。
优选地, 娃粉的粒径为 0.1um~lcm。
步骤(3 ) 中, 控制坩埚内的热场为对熔融状态的硅料进行冷却, 使其达到 过冷状态后进行形核结晶。 此时, 大量的硅粉形核源的存在有利于熔融状态的 硅料迅速形核。
优选地, 形核结晶过程中控制过冷度为 -1K~-30K。 当过冷度低的时候, 散 热较慢, 此时(111 )面能够充分发育, 而高过冷度时, 由于 (110X112)的方向生 长快, 散热性好。 高的过冷度有利于形成以(110X112)占优的晶向, 同时由于晶 界为原子错排区, 位错滑移到晶界处被吸收。 适量的晶界能够阻止位错的增殖 扩展, 使得硅锭的整体位错减少, 从而提高晶体硅的转换效率。
优选地, 所述多晶硅锭的制备方法, 包括:
( 1 )在坩埚底部铺设微晶形核层,所述微晶形核层为微晶硅和 /或无定形硅; 所述微晶形核层的厚度为第一高度值; 所述微晶形核层为硅质形核源层;
( 2 )在所述微晶形核层上方填装硅料, 加热使所述硅料熔化形成硅熔体, 待所述硅料完全熔化后形成的固液界面刚好处在或深入微晶形核层时, 调节热 场形成过冷状态, 使所述硅熔体在微晶形核层基础上开始长晶;
( 3 )待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
步骤(1 )在坩埚底部设置硅质形核源层。 所述硅质形核源层的材料即提供 硅锭生长的微晶核的材料为微晶硅和 /或无定形硅。
所述微晶硅、 无定形硅的铺设方式为随意铺设, 无需人为地进行排布, 所述 微晶硅、 无定形硅的尺寸不限。 此外微晶硅、 无定形硅的来源、 形状不限。 所 述微晶硅和无定形硅的纯度为 3N以上。
优选地, 所述微晶硅和 /或无定形硅为棒状、 块状、 片状、 条状或颗粒状。 优选地, 所述无定形硅由西门子法、 改良西门子法或流化床法制备得到。 硅质形核源层的厚度即第一高度值不限, 可根据实际情况确定。 优选地, 所述第一高度值为 l~150mm。 更优选地, 所述第一高度值为 5~150mm。 进一步 优选地, 所述第一高度值为 5~30mm。
所述的坩埚指容置多晶硅锭生长的容器, 其形状和种类不限。
步骤 ( 2 )在所述硅质形核源层上方填装硅料, 加热使所述硅料熔化形成硅 熔体, 待所述硅料完全熔化后形成的固液界面刚好处在或深入硅质形核源层时, 调节热场形成过冷状态, 使所述硅熔体在硅质形核源层基础上开始长晶。
优选地, 当所述硅质形核源层为微晶硅或无定形硅或两者混合时, 待所述 硅料完全熔化形成的固液界面深入硅质形核源层且距所述坩埚底部的高度为大 于等于 1mm时,调节热场形成过冷状态,使所述硅熔体在微晶硅和 /或无定形硅 基础上开始长晶。 更优选地, 优选地, 当所述硅质形核源层为微晶硅或无定形硅或两者混合 时, 待所述硅料完全熔化形成的固液界面深入硅质形核源层且距所述坩埚底部 的高度为大于等于 5mm时, 调节热场形成过冷状态, 使所述硅熔体在微晶硅和 /或无定形硅基础上开始长晶。
其中, "刚好处在硅质形核源层时", 是指所述硅熔体熔化的固液界面距所 述坩埚底部的高度等于第一高度值时。
通常, 硅料熔化的温度为 1500~1560°C。 因此, 如果硅质形核源层为微晶硅 或无定形硅时, 铸锭过程中也会熔化, 因此需要探测其硅熔体固液界面位置, 让其形核长晶。
优选地, 在硅料的熔化阶段, 每隔 0.2~lh, 探测一次所述硅熔体熔化的固 液界面的位置。
具体地, 采用石英棒探测所述硅熔体熔化的固液界面的位置。
优选地, 在硅料的熔化阶段前期, 每隔 0.5~lh, 探测一次所述硅熔体熔化 的固液界面的位置。
优选地, 在硅料的熔化阶段后期, 每隔 0.2~0.5h, 探测一次所述硅熔体熔化 的固液界面的位置。
优选地, 调节热场的操作为调节加热功率降温, 降温的幅度为 2~30K/min。 具体地, 降低加热装置的加热功率或直接关闭加热装置, 或打开热量散热 装置, 使硅锭生长的热场达到过冷状态, 在该过冷状态下以微晶核为基础长晶, 长晶过程中控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度 梯度。
由于微晶材料或无定形材料具有一定近程有序, 因此每个近程有序的范围 内都相当于一个小微晶, 可作为长晶的微晶核。 当硅料融化时, 硅熔体与硅质 形核源层的微晶材料或无定形材料接触; 当进一步降低温度时, 硅熔体在微晶 材料或无定形材料上生长。 由于微晶材料或无定形材料中存在微晶或接近微晶 的大量的微晶核, 硅熔体在这些微晶核的作用下, 生长出大量的细小的晶粒。 经过后续的择优和淘汰生长, 得到了晶粒细小, 均匀, 位错密度低的晶体。
步骤(3 )待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
由于多晶硅锭利用微晶核生长出了大量细小晶粒, 这些细小晶粒产生类似 "缩颈" 的作用, 通过晶界排除位错。 同时具有优势晶向, 在此基础上经过择 优和生长淘汰可进而生长出有益晶向占主导地位的晶体, 因此可以防止位错的 大量增殖, 得到高质量多晶硅锭。
由于在坩埚底部铺设了硅质形核源层, 提供了均匀分布的细小的形核点, 因此可得到晶粒更细小且晶粒尺寸更均勾的晶体, 晶体缺陷更少增殖緩慢, 从 而光电转换效率更高。
优选地, 所述多晶硅锭的制备方法, 包括:
( 1 )在坩埚底部随机铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 所述 籽晶层为所述硅质形核源层;
( 2 )在所述籽晶层上方设置熔融状态的硅料, 控制所述坩埚底部温度低于 所述籽晶的熔点, 使得所述籽晶层不被完全熔化;
( 3 )控制所述坩埚内的温度沿垂直与所述坩埚底部向上的方向逐渐上升形 成温度梯度, 使得所述熔融状态的硅料在所述籽晶上继承籽晶的晶向结构进行 生长, 制得多晶硅锭。
其中, 步骤(1 )籽晶的铺设方式为随意铺设, 无需人为地进行排布, 所述 籽晶的晶向不限。 此外籽晶的来源、 种类、 形状、 最大边长度和位错密度均不 限。
优选地, 籽晶为头尾料、 边皮料、 残次硅料、 单晶碎片或细碎硅料。 头尾料 和边皮料为硅锭晶体的制备方法中产生的常见废料。 残次硅料和单晶碎片为硅 锭晶体切割过程中产生的残次品和碎片。 细碎硅料为硅锭晶体废料经过破碎后 得到。
籽晶可以为单晶或多晶。 熔融状态的硅料将在籽晶上继承晶格的结构继续 生长。
籽晶可以为片状、 块状、 条状或粒状。 当籽晶为不规则形状时, 各籽晶的 晶向随机分布, 晶界为原子错排区。 当籽晶为切割形成的规则的形状时, 由于 晶体为多面体结构, 因此随意铺设后, 各籽晶的晶向杂乱, 晶界亦为原子错排 区。
优选地, 籽晶的最大边长度为 l~100mm。 籽晶的最大边长度越小, 大量的 籽晶铺设后的晶向越不一致, 易形成为原子错排区的晶界。 更优选地, 籽晶的 最大边长度为 l~50mm。
籽晶的位错密度越低, 越有利于生长出位错密度低的多晶硅锭。 优选地, 籽晶的位错密度 103个 /cm2
籽晶层的厚度为 0.5cm~5cm。 优选地, 籽晶层的厚度为 5~50mm。
因此, 采用籽晶作为形核源层, 籽晶来源非常广泛, 取材方便, 并且相比现 有技术中所使用的连续的大尺寸的籽晶具有明显的价格优势, 大大降低了多晶 硅锭的生产成本。 此外, 籽晶随意的无规则的铺设在坩埚底部, 无需人为地进 行排布, 因此易于操作。
步骤(2 ) 中, 在籽晶层上方设置熔融状态的硅料的方式不限。 在籽晶层上 方设置熔融状态的硅料可以为: 在籽晶层上方装载固体硅料, 对坩埚进行加热 使得硅料熔融, 此时, 熔融状态的硅料设置于籽晶层表面。 还优选地, 在籽晶 层上方设置熔融状态的硅料为: 在另外一个坩埚内加热固体硅料, 制得熔融状 态的硅料, 将该熔融状态的硅料浇铸至铺设有籽晶层的坩埚内, 此时, 熔融状 态的硅料设置于籽晶层表面。 固体硅料的纯度和来源不限。
籽晶层不被完全熔化是指部分籽晶层熔化, 同时保持部分籽晶层不熔化。优 选地, 未熔化的籽晶层占步骤(1 ) 中铺设的籽晶层的 5%~95%。 通常, 硅料熔 化的温度为 1500~1560°C。 而坩埚底部铺设的籽晶层的温度低于籽晶的熔点。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。
由于本发明中在坩埚底部随意铺设了籽晶且籽晶的晶向不限, 所以能够制 得高质量的多晶硅锭。 这是因为: 随意铺设的籽晶提供适量的晶界, 该晶界为 原子错排区, 位错滑移到晶界处会被吸收, 因此能够阻止位错的增殖扩展, 使 得多晶硅锭的整体位错减少, 提高了多晶硅锭的转换效率, 从而能够提高多晶 硅锭的质量。
第二方面,本发明提供了一种多晶硅锭,所述多晶硅锭按照前述多晶硅锭的 制备方法制得。 所述多晶硅锭位错密度低、 缺陷少。
第三方面,本发明提供了一种多晶硅片,所述多晶硅片以前述多晶硅锭为原 料经开方 -切片 -清洗制得。
附图说明
图 1是本发明实施例 1的装料后示意图;
图 2是本发明实施例 1的硅锭少子寿命检测图;
图 3是本发明实施例 1的硅锭底部位错检测结果图; 图 4是本发明实施例 1的硅锭头部位错检测结果图;
图 5为本发明实施例 6装料后的示意图;
图 6为本发明实施例 6制得的多晶硅锭的少子寿命图;
图 7为本发明实施例 6制得的多晶硅片的光致发光光谱检测图;
图 8为本发明实施例 9制备过程的示意图;
图 9为本发明实施例 9制得的多晶硅锭通过光致发光硅片检测系统观测晶界 对位错的阻止作用的照片;
图 10 为本发明实施例 9制得的多晶硅锭的少子寿命图;
图 11 为对比试验 1制得的类单晶的少子寿命图;
图 12为对比试验 2制得的多晶硅锭的少子寿命图。 具体实施方式
以下所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。
实施例 1
一种多晶硅锭的制备方法, 包括:
取石英坩埚, 在该坩埚内壁喷涂一层氮化硅涂层后, 在坩埚底部铺垫一层 尺寸大小为 l~5cm, 厚度为 lcm的多晶硅碎料。 铺垫完后, 在多晶硅碎料上填装 各种块状的硅料, 直到全部装完, 图 1为本实施例装料后示意图, 其中 1为坩埚, 2为多晶娃碎料, 3为娃料。
将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后加热 到硅熔点温度, 使硅料慢慢熔化。 在熔化阶段, 采用石英棒探测硅熔体与未熔 化的硅料所形成的固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在 熔化阶段后期, 每隔 0.5h进行一次探测。
当检测到硅熔体与未熔化的硅料所形成的固液界面的位置刚好处于多晶硅 碎料层时, 开始慢慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低幅度 大约为 10k/min, 形成一定的过冷度, 硅熔体开始在不完全熔化的硅料基础上开 始形核长晶。
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
采用 WT2000检测所得多晶硅锭的少子寿命,检测结果如图 2所示,从图 中可以看出, 该多晶硅锭从底部 (右)到头部 (左) 的少子寿命分布非常均匀, 低少子寿命区域面积小, 硅锭质量高。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为: 硅锭底部的平均位错密度为 2.96 X 104 (个 /cm2 ) , 如图 3是硅锭底部 位错检测结果图; 硅锭头部的平均位错密度为 3.41 104 (个 /cm2 ), 图 4是硅锭 头部位错检测结果图。
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 17.3%。
实施例 2
一种多晶硅锭的制备方法, 包括:
取石英坩埚, 在该坩埚内壁喷涂一层氮化硅涂层后。 先在坩埚底部铺垫一 层厚度为 lcm的多晶硅块,然后再在上面铺垫一层尺寸大小为 l~5cm,厚度为 2cm 的多晶碎料。 铺垫完后, 在多晶碎料上填装各种块状的硅料, 直到全部装完。 将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后加热 到硅熔点温度, 使硅料慢慢熔化。 在熔化阶段, 采用石英棒探测硅熔体与未熔 化的硅料所形成的固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在 熔化阶段后期, 每隔 0.5h进行一次探测。
当检测到硅熔体与未熔化的硅料所形成的固液界面的位置深入多晶硅碎料 层 0.5cm时, 开始慢慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低幅 度大约为 20k/min, 形成一定的过冷度, 硅熔体开始在不完全熔化的硅料基础上 开始形核长晶。
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为: 硅锭底部的平均位错密度为 2.8 X 104 (个 /cm2 ); 硅锭头部的平均位错 密度为 3.40 X 104 (个 /cm2 ) 。
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 17.46%。
实施例 3
一种多晶硅锭的制备方法, 包括:
取石英坩埚, 在该坩埚内壁喷涂一层氮化硅涂层后。 先在坩埚底部铺垫一 层厚度为 lcm的石墨板, 石墨材质为三高石墨, 然后再在上面铺垫一层尺寸大小 为 l~5cm, 厚度为 0.5cm的多晶碎料。 铺垫完后, 在多晶碎料上填装各种块状的 硅料, 直到全部装完。
将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后加热 到硅熔点温度, 使硅料慢慢熔化。 在熔化阶段, 采用石英棒探测硅熔体与未熔 化的硅料所形成的固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在 熔化阶段后期, 每隔 0.5h进行一次探测。
当检测到硅熔体与未熔化的硅料所形成的固液界面的位置深入多晶硅碎料 层 0.2cm时, 开始慢慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低幅 度大约为 15k/min, 形成一定的过冷度, 硅熔体开始在不完全熔化的硅料基础上 开始形核长晶。
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为: 硅锭底部的平均位错密度为 3.1 χ 104 (个 /cm2 ); 硅锭头部的平均位错 密度为 3.56 X 104 (个 /cm2 ) 。
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 17.53%。
实施例 4
一种多晶硅锭的制备方法, 包括:
取石英坩埚, 在该坩埚内壁喷涂一层氮化硅涂层后。 先在坩埚内从下至上 填装各种块状的硅料, 直到全部装完。
将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后加热 到硅熔点温度, 使硅料慢慢熔化。 在熔化阶段, 采用石英棒探测硅熔体与未熔 化的硅料所形成的固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在 熔化阶段后期, 每隔 0.5h进行一次探测。 当检测到硅熔体与未熔化的硅料所形成的固液界面的位置离坩埚底面的距 离为 0.2cm时, 开始慢慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低 幅度大约为 15k/min, 形成一定的过冷度, 硅熔体开始在不完全熔化的硅料基础 上开始形核长晶。
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为: 硅锭底部的平均位错密度为 3.12 X 104 (个 /cm2 ) ; 硅锭头部的平均位 错密度为 3.58 X 104 (个 /cm2 ) 。
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 17.48 %。
实施例 5
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部设置形核源, 形成形核源层; 其中, 在坩埚底部设置形核 源为: 采用硅粉 200g, 在坩埚底部原本涂布设有的氮化硅涂层上刷涂上硅粉, 在 600度坩埚烘烤箱中烘烤 2小时。 硅粉的粒径为 lmm。
( 2 )在所述形核源层上设置熔融状态的硅料; 其中, 在形核源层上设置熔 融状态的硅料为: 在形核源层上方装载固体硅料 450~800公斤, 对坩埚进行加 热至 1560°C使得固体硅料熔融, 此时, 熔融状态的硅料设置于形核源层表面。
( 3 )控制所述坩埚内的温度沿垂直与所述坩埚底部向上的方向逐渐上升形 成温度梯度, 使得所述熔融状态的硅料利用形核源形核结晶, 制得多晶硅锭; 其中, 打开隔热笼, 控制底部温度为 1360°C , 使得硅熔融液达到过冷状态并利 用形核源形核结晶, 得到多晶硅锭。
本实施例所制得的多晶硅锭位错密度为 3.6 X 103~4.8 X 103个 /cm2,少子寿命 为 18微秒(us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.6%。
实施例 6
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部铺设由西门子法生产的无定形棒状高纯硅材料, 形成微晶 形核层; 在微晶形核层上方填装硅料, 直到全部装完; 图 5 为本实施例装料后 示意图, 其中, 微晶形核层的厚度为 120mm;
( 2 )将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后 加热到 1530°C , 使硅料慢慢熔化形成硅熔体。 在熔化阶段, 采用石英棒探测硅 熔体形成的固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在熔化阶 段后期, 每隔 0.5h进行一次探测;
( 3 ) 当检测到硅熔体熔化的固液界面距坩埚底部高度为 15mm时, 开始慢 慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低幅度大约为 5k/min, 形 成一定的过冷度, 硅熔体开始在无定形棒状高纯硅材料基础上开始长晶;
( 4 )待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
采用 WT2000检测所得多晶硅锭的少子寿命,检测结果如图 6所示,从图 6 中可以看出, 该多晶硅锭少子寿命高, 位错少。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为 2.2xl04个 /cm2
采用光致发光光谱仪检测所得多晶硅片的位错情况, 其结果如图 7所示, 从图 7中可以看出, 该多晶硅片的位错少, 晶粒小且均匀。
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 17.8%。
实施例 7
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部铺设由西门子法生产的无定形棒状高纯硅材料经破碎后得 到的块状料, 形成微晶形核层; 在微晶形核层上方填装硅料, 直到全部装完; 微晶形核层的厚度为 50mm;
( 2 )将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后 加热到 1540°C , 使硅料慢慢熔化形成硅熔体。 在熔化阶段, 采用石英棒探测硅 熔体形成的固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在熔化阶 段后期, 每隔 0.5h进行一次探测;
( 3 ) 当检测到硅熔体熔化的固液界面距坩埚底部高度为 30mm时, 开始慢 慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低幅度大约为 6k/min, 形 成一定的过冷度, 硅熔体开始在无定形棒状高纯硅材料基础上开始长晶;
( 4 )待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为 8.5xl03个 /cm2
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 18.0%。
实施例 8
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部铺设由流化床法得到高纯硅材料, 形成微晶形核层; 然后 在微晶形核层上方填装硅料, 直到全部装完; 微晶形核层的厚度为 15mm;
( 2 )将上述装有硅料的坩埚装入铸锭炉中, 启动铸锭程序, 抽真空, 然后 加热到 1500 °C , 使硅料慢慢熔化。 在熔化阶段, 采用石英棒探测硅熔体熔化的 固液界面位置, 在熔化阶段前期, 每隔 lh进行一次探测, 在熔化阶段后期, 每 隔 0.5h进行一次探测;
( 3 ) 当检测到硅熔体熔化的固液界面距坩埚底部高度为 10mm时, 开始慢 慢打开隔热笼并降温, 使硅熔体的温度降低, 温度降低幅度大约为 15k/min, 形 成一定的过冷度, 硅熔体开始在微晶硅基础上开始长晶;
( 4 )待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
将上述制得的多晶硅锭冷却后, 进行开方得到多晶硅块, 切片 -清洗后得到 多晶硅片, 以该多晶硅片为原料采用丝网印刷工艺制作成太阳能电池。
对所得多晶硅锭, 采用光学显微镜(放大 200倍)进行位错观察, 其检测 结果为 3.5xl04个 /cm2
对所得太阳能电池, 采用德国 halm公司电池片检测仪器测定其光电转换效 率。 测定结果为太阳能电池的光电转换效率为 17.6%。
实施例 9
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部随意铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 其中, 籽晶为半导体制备方法中产生的单晶碎片, 籽晶为片状单晶, 其最大 边长度为 20mm, 位错密度 103个 /cm2, 籽晶层的厚度为 50mm。
( 2 )在籽晶层上方设置熔融状态的硅料, 控制坩埚底部温度低于籽晶的熔 点, 使得籽晶层不被完全熔化;
图 8为本实施例制备过程的示意图, 其中, 1为坩埚, 2为籽晶层, 3为硅 料。 其中, 在籽晶层上方设置熔融状态的硅料为: 在籽晶层上方装载固体硅料, 对坩埚进行加热至 1530°C使得硅料熔融, 此时, 熔融状态的硅料设置于籽晶层 表面。 坩埚底部温度为 1412°C。 未熔化的籽晶层占步骤(1 ) 中铺设的籽晶层的 60%。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。
图 9 为本实施例制得的多晶硅锭通过光致发光硅片检测系统观测晶界对位 错的阻止作用的照片。 如图 9所示, 1为晶界, 2为无位错区, 3为位错区, 在 晶界 1处位错滑移被明显的抑制住, 在晶界 1两边形成明显的无位错区 2和位 错区 3。
本实施例所制得的多晶硅锭位错密度为 1.5 X 10 ~1.8 X 103个 /cm2,少子寿命 为 25微秒( us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.8%。
实施例 10
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部随意铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 其中, 籽晶为单晶制备方法中产生的边皮料, 籽晶为块状单晶, 其最大边长 度为 100mm, 位错密度 103个 /cm2, 籽晶层的厚度为 50mm。
( 2 )在籽晶层上方设置熔融状态的硅料, 控制坩埚底部温度低于籽晶的熔 点, 使得籽晶层不被完全熔化;
其中, 在籽晶层上方设置熔融状态的硅料为: 在籽晶层上方装载固体硅料, 对坩埚进行加热至 1560°C使得硅料熔融, 此时, 熔融状态的硅料设置于籽晶层 表面。 坩埚底部温度为 1412°C。 未熔化的籽晶层占步骤(1 ) 中铺设的籽晶层的 95%。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。
本实施例所制得的多晶硅锭位错密度为 7.5 X 103~8.0 X 103个 /cm2,少子寿命 为 18微秒(us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.8%。
实施例 11
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部随意铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 其中, 籽晶为单晶制备方法中产生的细碎硅料, 籽晶为粒状单晶, 其最大边 长度为 lmm, 位错密度 103个 /cm2, 籽晶层的厚度为 5mm。
( 2 )在籽晶层上方设置熔融状态的硅料, 控制坩埚底部温度低于籽晶的熔 点, 使得籽晶层不被完全熔化;
其中, 在籽晶层上方设置熔融状态的硅料为: 在籽晶层上方装载固体硅料, 对坩埚进行加热至 1500°C使得硅料熔融, 此时, 熔融状态的硅料设置于籽晶层 表面。 坩埚底部温度为 1412°C。 未熔化的籽晶层占步骤(1 ) 中铺设的籽晶层的 5%。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。
本实施例所制得的多晶硅锭位错密度为 3.5 X 104~4.8 X 104个 /cm2,少子寿命 为 10微秒( us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.1%。
实施例 12
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部随意铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 其中, 籽晶为多晶制备方法中产生的残次硅料, 籽晶为粒状残次硅料, 其最 大边长度为 50mm, 位错密度 103个 /cm2, 籽晶层的厚度为 50mm。
( 2 )在籽晶层上方设置熔融状态的硅料, 控制坩埚底部温度低于籽晶的熔 点, 使得籽晶层不被完全熔化;
其中,在籽晶层上方设置熔融状态的硅料为: 在另外一个坩埚内加热固体硅 料, 制得熔融状态的硅料, 将该熔融状态的硅料浇铸至铺设有籽晶层的坩埚内, 此时, 熔融状态的硅料设置于籽晶层表面。 坩埚底部温度为 1413 °C。 未熔化的 籽晶层占步骤( 1 ) 中铺设的籽晶层的 95%。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。 本实施例所制得的多晶硅锭位错密度为 3.2 104~3.8 X 104个 /cm2,少子寿命 为 15微秒( us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.5%。
实施例 13
多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部随意铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 其中, 籽晶为多晶制备方法中产生的细碎硅料, 籽晶为粒状多晶, 其最大边 长度为 lmm, 位错密度 103个 /cm2, 籽晶层的厚度为 5mm。
( 2 )在籽晶层上方设置熔融状态的硅料, 控制坩埚底部温度低于籽晶的熔 点, 使得籽晶层不被完全熔化;
其中, 在籽晶层上方设置熔融状态的硅料为: 在籽晶层上方装载固体硅料, 对坩埚进行加热至 1500°C使得硅料熔融, 此时, 熔融状态的硅料设置于籽晶层 表面。 坩埚底部温度为 1412°C。 未熔化的籽晶层占步骤(1 ) 中铺设的籽晶层的 60%。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。
本实施例所制得的多晶硅锭位错密度为 1.2 104~1.8 X 104个 /cm2,少子寿命 为 10微秒( us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.2%。
实施例 14 多晶硅锭的制备方法, 包括以下步骤:
( 1 )在坩埚底部随意铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 其中, 籽晶为多晶制备方法中产生的残次硅料, 籽晶为块状残次硅料, 其最 大边长度为 40mm, 位错密度 103个 /cm2, 籽晶层的厚度为 40mm。
( 2 )在籽晶层上方设置熔融状态的硅料, 控制坩埚底部温度低于籽晶的熔 点, 使得籽晶层不被完全熔化;
其中,在籽晶层上方设置熔融状态的硅料为: 在另外一个坩埚内加热固体硅 料, 制得熔融状态的硅料, 将该熔融状态的硅料浇铸至铺设有籽晶层的坩埚内, 此时, 熔融状态的硅料设置于籽晶层表面。 坩埚底部温度为 1413 °C。 未熔化的 籽晶层占步骤( 1 ) 中铺设的籽晶层的 5%。
( 3 )控制坩埚内的温度沿垂直与坩埚底部向上的方向逐渐上升形成温度梯 度, 使得熔融状态的硅料在籽晶上继承籽晶的晶向结构进行生长, 制得多晶硅 键。
本实施例所制得的多晶硅锭位错密度为 5.0 X 10 ~5.6 X 103个 /cm2,少子寿命 为 12微秒( us ) 。
利用本实施例制得的多晶硅锭制得的多晶硅片适用于制备太阳能电池, 制 得的太阳能电池转换效率为 17.4%。
效果实施例
为有力支持本发明的有益效果, 特提供对比试验数据如下。
对比试验 1 : 采用完整的单晶棒, 经过去头尾边皮, 切割得到方形籽晶块, 块的大小为 156mm* 156mm; 在坩埚底部依次规则铺设上述单晶方块,直到全部 铺满坩埚底部, 再在籽晶上铺设硅料, 高温熔化后, 控制底部籽晶不完全熔化。 控制温度梯度, 使得底部先冷却, 硅熔液从籽晶表面开长晶,得到具有单晶结构 的类单晶娃键。
对比试险 2: 普通多晶硅锭的生长过程, 包括在坩埚内装载硅料,对坩埚进 行加热使得硅料熔融, 制坩埚内控的热场, 使得熔融状态的硅料在坩埚底部生 长, 得到多晶硅锭。
本发明实施例 9、 实施例 10、 对比试险 1和对比试险 2的对比如下:
表 1. 实施例 9、 实施例 10、 对比试验 1和对比试验 2的对比
Figure imgf000027_0001
图 10为本发明实施例 9制得的多晶硅锭的少子寿命图; 图 11为对比试验 1制 得的类单晶的少子寿命图; 图 12为对比试验 2制得的多晶硅锭的少子寿命图。 从 图 10~图12中可以看出, 本发明实施例一制得的多晶硅锭少子寿命高, 中部低少 子区域(一定程度代表位错密度高的区域) 少, 对比试验 1制得的类单晶中部低 少子区域呈发散状, (表示位错容易扩展), 对比试验 2制得的多晶硅锭少子寿命 低, 中部少子低的区域大, 位错高。
综上, 本发明铺设籽晶层为硅质形核源层制得的多晶硅锭位错密度低于 105 个 /cm2, 少子寿命为 10~25us。 而传统方法得到的硅锭产品位错密度为 105~106 个 / cm2, 少子寿命为 5~10us。 以所得多晶硅锭制得的多晶硅片适用于制备太阳 能电池, 制得的太阳能电池转换效率为 17.1%~17.8% , 而普通的多晶硅片制得 的太阳能电池的转换效率为 16.5~16.9%。 类单晶的效率为 17.2%~18.5%。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1. 一种多晶硅锭的制备方法, 其特征在于, 包括:
在坩埚底部设置硅质形核源层, 在所述硅质形核源层上方填装硅料; 加热使所述硅料熔化, 调节所述坩埚内热场, 使熔化的硅料在所述硅质形 核源层基础上开始长晶;
待全部结晶完后, 经退火冷却得到多晶硅锭。
2、 如权利要求 1所述的多晶硅锭的制备方法, 其特征在于, 包括: 在坩埚内壁涂上氮化硅层后, 在所述坩埚内从下至上填装硅料;
加热使所述坩埚内硅料熔化形成硅熔体, 当所述硅熔体与未熔化的所述硅 料所形成的固液界面接近坩埚底面时, 调节热场形成过冷状态, 使所述硅熔体 在不完全熔化的硅料基础上开始长晶;
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭;
所述不完全熔化的硅料为所述硅质形核源层。
3、 如权利要求 2所述的多晶硅锭的制备方法, 其特征在于, 在所述硅料的 熔化阶段, 每隔 0.2~lh, 探测一次所述硅熔体与未熔化的所述硅料所形成的固 液界面的位置。
4、 如权利要求 1所述的多晶硅锭的制备方法, 其特征在于, 包括: 在坩埚内壁涂上氮化硅层后, 在所述坩埚内从下至上填装硅料; 所述填装 硅料时, 先在所述坩埚底部铺设一层硅碎料, 所述硅碎料为单晶硅碎料、 多晶 硅碎料和非晶体硅碎料中的一种或几种;
加热使所述坩埚内硅料熔化形成硅熔体, 当所述硅熔体与未熔化的所述硅 料所形成的固液界面刚好处在硅碎料层或深入硅碎料层时, 调节热场形成过冷 状态, 使所述硅熔体在硅碎料层基础上开始长晶;
待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
5、 如权利要求 4所述的多晶硅锭的制备方法, 其特征在于, 所述硅碎料的 尺寸大小为 0.1 m~10cm, 所述硅碎料铺设厚度为 0.5cm~5cm。
6、 如权利要求 4所述的多晶硅锭的制备方法, 其特征在于, 在所述硅料的 熔化阶段, 每隔 0.2~lh, 探测一次所述硅熔体与未熔化的所述硅料所形成的固 液界面的位置。
7、 如权利要求 1所述的多晶硅锭的制备方法, 其特征在于, 包括:
( 1 )在坩埚底部设置形核源, 形成形核源层; 所述形核源为硅粉;
( 2 )在所述形核源层上设置熔融状态的硅料; 所述在形核源层上设置熔融 状态的硅料为: 在所述形核源层上方装载固体硅料, 对所述坩埚进行加热使得 所述硅料熔融, 此时, 所述熔融状态的硅料设置于所述形核源层表面; 或在另 外一个坩埚内加热固体硅料, 制得熔融状态的硅料, 将所述熔融状态的硅料浇 铸至所述铺设有形核源层的坩埚内, 此时, 所述熔融状态的硅料设置于所述形 核源层表面;
( 3 )控制所述坩埚内的温度沿垂直与所述坩埚底部向上的方向逐渐上升形 成温度梯度, 使得所述熔融状态的硅料利用所述形核源形核结晶, 制得多晶硅 键。
8、 如权利要求 7所述的多晶硅锭的制备方法, 其特征在于, 步骤(1 )中所 述设置形核源为将所述形核源涂覆设置在所述坩埚底部, 或者是将所述形核源 直接铺设在所述坩埚底部。
9、 如权利要求 7所述的多晶硅锭的制备方法, 其特征在于, 所述形核源的 粒径为 0.1um~lcm„
10、 如权利要求 7所述的多晶硅锭的制备方法, 其特征在于, 步骤(3 ) 中 所述形核结晶过程中控制过冷度为- 1 K~-30K。
11、 如权利要求 1所述的多晶硅锭的制备方法, 其特征在于, 包括:
( 1 )在坩埚底部铺设微晶形核层,所述微晶形核层为微晶硅和 /或无定形硅; 所述微晶形核层的厚度为第一高度值; 所述微晶形核层为硅质形核源层;
( 2 )在所述微晶形核层上方填装硅料, 加热使所述硅料熔化形成硅熔体, 待所述硅料完全熔化后形成的固液界面刚好处在或深入微晶形核层时, 调节热 场形成过冷状态, 使所述硅熔体在微晶形核层基础上开始长晶;
( 3 )待全部硅熔体结晶完后, 经退火冷却得到多晶硅锭。
12、 如权利要求 11所述的多晶硅锭的制备方法, 其特征在于, 待所述硅料 完全熔化形成的固液界面深入微晶形核层且距所述坩埚底部的高度为大于等于 lmm时,调节热场形成过冷状态,使所述硅熔体在微晶形核层基础上开始长晶。
13、 如权利要求 12所述的多晶硅锭的制备方法, 其特征在于, 待所述硅料 完全熔化形成的固液界面深入微晶形核层且距所述坩埚底部的高度为大于等于 5mm时,调节热场形成过冷状态,使所述硅熔体在微晶形核层基础上开始长晶。
14、 如权利要求 11所述的多晶硅锭的制备方法, 其特征在于, 所述第一高 度值为 l~150mm。
15、 如权利要求 1所述的多晶硅锭的制备方法, 其特征在于, 包括:
( 1 )在坩埚底部随机铺设籽晶, 形成籽晶层, 所述籽晶的晶向不限; 所述 籽晶层为所述硅质形核源层;
( 2 )在所述籽晶层上方设置熔融状态的硅料, 控制所述坩埚底部温度低于 所述籽晶的熔点, 使得所述籽晶层不被完全熔化;
( 3 )控制所述坩埚内的温度沿垂直与所述坩埚底部向上的方向逐渐上升形 成温度梯度, 使得所述熔融状态的硅料在所述籽晶上继承籽晶的晶向结构进行 生长, 制得多晶硅锭。
16、 如权利要求 15 所述的多晶硅锭的制备方法, 其特征在于, 步骤(1 ) 中所述籽晶为头尾料、 边皮料、 残次硅料、 单晶碎片或细碎硅料。
17、 如权利要求 15 所述的多晶硅锭的制备方法, 其特征在于, 步骤(1 ) 中所述籽晶为单晶或多晶。
18、 一种多晶硅锭, 其特征在于, 按照如权利要求 1~17中任一权利要求所 述的制备方法制得。
19、 一种多晶硅片, 其特征在于, 所述多晶硅片为以如权利要求 18所述的 多晶硅锭为原料进行开方 -切片 -清洗后制得。
PCT/CN2013/073364 2012-04-01 2013-03-28 一种多晶硅锭及其制备方法和多晶硅片 WO2013149560A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/389,452 US9562304B2 (en) 2012-04-01 2013-03-28 Polycrystalline silicon ingot, preparation method thereof, and polycrystalline silicon wafer
KR1020147030926A KR101656596B1 (ko) 2012-04-01 2013-03-28 다결정 실리콘 잉곳, 이의 제조 방법 및 다결정 실리콘 웨이퍼
US15/357,707 US10227711B2 (en) 2012-04-01 2016-11-21 Method for preparing polycrystalline silicon ingot
US15/360,472 US10253430B2 (en) 2012-04-01 2016-11-23 Method for preparing polycrystalline silicon ingot

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201210096188.5 2012-04-01
CN201210096291.XA CN102776561B (zh) 2012-04-01 2012-04-01 多晶硅锭及其制备方法、多晶硅片和多晶硅铸锭用坩埚
CN201210096291.X 2012-04-01
CN201210096232.2A CN102776555B (zh) 2012-04-01 2012-04-01 一种多晶硅锭及其制备方法和多晶硅片
CN201210096188.5A CN102776560B (zh) 2012-04-01 2012-04-01 多晶硅锭及其制备方法和多晶硅片
CN201210096232.2 2012-04-01
CN201310033073.6A CN103074669B (zh) 2013-01-29 2013-01-29 多晶硅锭及其制备方法和多晶硅片
CN201310033073.6 2013-01-29

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/389,452 A-371-Of-International US9562304B2 (en) 2012-04-01 2013-03-28 Polycrystalline silicon ingot, preparation method thereof, and polycrystalline silicon wafer
US15/357,707 Continuation US10227711B2 (en) 2012-04-01 2016-11-21 Method for preparing polycrystalline silicon ingot
US15/360,472 Continuation US10253430B2 (en) 2012-04-01 2016-11-23 Method for preparing polycrystalline silicon ingot

Publications (1)

Publication Number Publication Date
WO2013149560A1 true WO2013149560A1 (zh) 2013-10-10

Family

ID=49299987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073364 WO2013149560A1 (zh) 2012-04-01 2013-03-28 一种多晶硅锭及其制备方法和多晶硅片

Country Status (3)

Country Link
US (3) US9562304B2 (zh)
KR (1) KR101656596B1 (zh)
WO (1) WO2013149560A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132399A1 (de) * 2014-03-06 2015-09-11 Ald Vacuum Technologies Gmbh Hybridtiegel zur kristallisation von materialien
CN111349964A (zh) * 2020-03-25 2020-06-30 南昌大学 一种单晶面积占比大、位错密度低的铸造单晶硅制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108301043A (zh) * 2018-04-03 2018-07-20 湖州五石科技有限公司 一种多晶硅片的制备方法
CN108517557B (zh) * 2018-05-22 2020-09-08 英利能源(中国)有限公司 高效多晶硅锭的制备方法及高效多晶硅锭
CN108560047A (zh) * 2018-06-02 2018-09-21 河南盛达光伏科技有限公司 一种异质成核高效多晶铸锭坩埚处理方法
TWI700403B (zh) * 2018-09-17 2020-08-01 中美矽晶製品股份有限公司 矽晶碇及其成長方法、矽晶棒及矽晶片
CN110760927A (zh) * 2019-10-10 2020-02-07 新余学院 一种基于定向凝固法铸造多晶硅的工艺
CN111809233A (zh) * 2020-05-14 2020-10-23 江苏高照新能源发展有限公司 一种降低位错的全熔高效铸造多晶生产工艺
CN112226809A (zh) * 2020-11-11 2021-01-15 浙江普智能源装备有限公司 一种用于铸锭单晶硅的坩埚
CN112522782B (zh) * 2020-11-30 2022-02-15 晶科能源有限公司 一种多晶硅锭及其制备方法
KR102366166B1 (ko) * 2021-08-18 2022-02-23 주식회사 린텍 단결정 및 다결정 로드에 의해 도가니 내부에 산소 배출 통로를 형성하는 다결정 실리콘 잉곳 제조방법
CN115012035A (zh) * 2022-06-02 2022-09-06 金阳(泉州)新能源科技有限公司 一种减少位错缺陷及多晶占比的铸造晶硅制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654805A (zh) * 2009-09-24 2010-02-24 浙江大学 一种单晶向、柱状大晶粒的铸造多晶硅的制备方法
CN102092718A (zh) * 2009-12-15 2011-06-15 上海普罗新能源有限公司 太阳能等级多晶硅的制备方法
CN102337582A (zh) * 2010-07-14 2012-02-01 中美硅晶制品股份有限公司 制造硅晶铸锭的方法
CN102732948A (zh) * 2012-06-20 2012-10-17 常州天合光能有限公司 一种提高铸锭单晶硅收率的方法
CN102776555A (zh) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 一种多晶硅锭及其制备方法和多晶硅片
CN102776561A (zh) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 多晶硅锭及其制备方法、多晶硅片和多晶硅铸锭用坩埚
CN102776560A (zh) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 多晶硅锭及其制备方法和多晶硅片

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236291A (ja) 1998-02-25 1999-08-31 Mitsubishi Materials Corp 一方向凝固多結晶組織を有するシリコンインゴット製造用ルツボ
JP4054873B2 (ja) 2003-07-17 2008-03-05 国立大学法人東北大学 Si系結晶の製造方法
CN101370970B (zh) 2006-01-20 2014-05-14 Amg艾迪卡斯特太阳能公司 制造单晶铸硅的方法和装置以及用于光电领域的单晶铸硅实体
JP5514444B2 (ja) 2006-01-20 2014-06-04 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション 幾何学的多結晶成型シリコンの製造方法および装置および光電変換用多結晶成型シリコン本体
NO327122B1 (no) 2007-03-26 2009-04-27 Elkem Solar As Beleggingssystem
JP2009022815A (ja) * 2007-07-17 2009-02-05 Yoshizaki Shokai:Kk 消雪本及びノズル取り付け管内のクリーニング及び塗装
CN101755075A (zh) * 2007-07-20 2010-06-23 Bp北美公司 从籽晶制造浇铸硅的方法和装置
CN101696514A (zh) 2009-09-30 2010-04-21 常州天合光能有限公司 一种多晶锭的生产方法
US8242033B2 (en) 2009-12-08 2012-08-14 Corning Incorporated High throughput recrystallization of semiconducting materials
TWI534307B (zh) 2010-06-15 2016-05-21 中美矽晶製品股份有限公司 製造矽晶鑄錠之方法
CN102185017A (zh) 2011-03-16 2011-09-14 常州市万阳光伏有限公司 一种制备太阳能电池级多晶硅产品的方法
CN102154686B (zh) 2011-04-14 2014-04-02 江西赛维Ldk太阳能高科技有限公司 一种晶体硅铸锭方法及硅锭
CN102709160B (zh) 2012-03-01 2018-06-22 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法和低温多晶硅薄膜
CN102776554B (zh) 2012-04-01 2015-09-16 江西赛维Ldk太阳能高科技有限公司 一种多晶硅锭及其制备方法和多晶硅片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654805A (zh) * 2009-09-24 2010-02-24 浙江大学 一种单晶向、柱状大晶粒的铸造多晶硅的制备方法
CN102092718A (zh) * 2009-12-15 2011-06-15 上海普罗新能源有限公司 太阳能等级多晶硅的制备方法
CN102337582A (zh) * 2010-07-14 2012-02-01 中美硅晶制品股份有限公司 制造硅晶铸锭的方法
CN102776555A (zh) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 一种多晶硅锭及其制备方法和多晶硅片
CN102776561A (zh) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 多晶硅锭及其制备方法、多晶硅片和多晶硅铸锭用坩埚
CN102776560A (zh) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 多晶硅锭及其制备方法和多晶硅片
CN102732948A (zh) * 2012-06-20 2012-10-17 常州天合光能有限公司 一种提高铸锭单晶硅收率的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132399A1 (de) * 2014-03-06 2015-09-11 Ald Vacuum Technologies Gmbh Hybridtiegel zur kristallisation von materialien
US10100427B2 (en) 2014-03-06 2018-10-16 Ald Vacuum Technologies Gmbh Hybrid crucible for crystallizing materials
CN111349964A (zh) * 2020-03-25 2020-06-30 南昌大学 一种单晶面积占比大、位错密度低的铸造单晶硅制备方法
CN111349964B (zh) * 2020-03-25 2021-06-22 南昌大学 一种单晶面积占比大、位错密度低的铸造单晶硅制备方法

Also Published As

Publication number Publication date
KR101656596B1 (ko) 2016-09-09
US20150056123A1 (en) 2015-02-26
KR20140141712A (ko) 2014-12-10
US20170073838A1 (en) 2017-03-16
US9562304B2 (en) 2017-02-07
US10253430B2 (en) 2019-04-09
US10227711B2 (en) 2019-03-12
US20170167051A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2013149560A1 (zh) 一种多晶硅锭及其制备方法和多晶硅片
TWI379020B (en) Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystaline cast silicon bodies for photovoltaics
TWI493082B (zh) 矽晶鑄錠之製造方法
CN102776554B (zh) 一种多晶硅锭及其制备方法和多晶硅片
KR101815620B1 (ko) 폴리결정질 실리콘 잉곳, 이에 의해 제조된 실리콘 웨이퍼 및 폴리결정질 실리콘 잉곳의 제조방법
TWI620838B (zh) 包含成核促進顆粒之矽晶鑄錠及其製造方法
CN102776560B (zh) 多晶硅锭及其制备方法和多晶硅片
JP2011528308A (ja) シード結晶からキャストシリコンを製造するための方法及び装置
CN102877129B (zh) 一种晶体硅及其制备方法
KR20100050510A (ko) 시드 결정으로부터 캐스트 실리콘을 제조하는 방법
CN101591808A (zh) 掺锗的定向凝固铸造单晶硅及其制备方法
CN103882517A (zh) 多晶硅锭的制备方法
CN102776555A (zh) 一种多晶硅锭及其制备方法和多晶硅片
WO2012149886A1 (zh) <111>晶向铸锭硅单晶及其制备方法
CN103074669B (zh) 多晶硅锭及其制备方法和多晶硅片
WO2014056157A1 (zh) 多晶硅锭及其制造方法、坩埚
CN101597787B (zh) 在氮气下铸造氮浓度可控的掺氮单晶硅的方法
CN102776556B (zh) 一种多晶硅锭及其制备方法和多晶硅片
CN101591807A (zh) 掺氮的定向凝固铸造单晶硅及其制备方法
TWI580825B (zh) 藉由定向固化作用製備鑄態矽之方法
CN103343388A (zh) 多晶硅铸锭的制备方法
CN101597788B (zh) 在氮气下融化多晶硅制备掺氮铸造单晶硅的方法
KR101954785B1 (ko) 다중결정 실리콘 제조방법
CN103866381A (zh) 制备低位错密度硅锭的新型定向凝固方法
WO2013149559A1 (zh) 一种多晶硅锭及其制备方法和多晶硅片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14389452

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030926

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13772837

Country of ref document: EP

Kind code of ref document: A1