WO2013147539A1 - 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체 - Google Patents

멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체 Download PDF

Info

Publication number
WO2013147539A1
WO2013147539A1 PCT/KR2013/002618 KR2013002618W WO2013147539A1 WO 2013147539 A1 WO2013147539 A1 WO 2013147539A1 KR 2013002618 W KR2013002618 W KR 2013002618W WO 2013147539 A1 WO2013147539 A1 WO 2013147539A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
polyolefin resin
cyclopentadienyl
fluorenyl
zirconium
Prior art date
Application number
PCT/KR2013/002618
Other languages
English (en)
French (fr)
Inventor
손병길
유승택
유상원
전용재
홍사문
Original Assignee
대림산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49260712&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013147539(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 대림산업 주식회사 filed Critical 대림산업 주식회사
Priority to SI201331093T priority Critical patent/SI2832753T1/en
Priority to ES13767447.9T priority patent/ES2677147T3/es
Priority to EP13767447.9A priority patent/EP2832753B1/en
Priority to CN201380018667.8A priority patent/CN104203996B/zh
Publication of WO2013147539A1 publication Critical patent/WO2013147539A1/ko
Priority to US14/501,468 priority patent/US10040883B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • the present invention relates to a multimodal polyolefin resin and a molded article produced therefrom, and more particularly, to a multimodal polyolefin resin and a polyolefin resin molded article having excellent properties such as formability, mechanical strength, appearance, and the like.
  • the toughness, strength, environmental stress, crack resistance, etc. of a polyolefin resin should be excellent. Increasing the molecular weight of the polyolefin resin (polymer) easily improves these properties, but the higher the molecular weight of the polymer, the worse the moldability of the resin. Because of the disadvantages of such polyolefin resins, it is preferable to use a polyolefin resin having a single physical property alone, but to properly adjust the structure of the polymer or to use an appropriate processing aid, rather than using a combination of polyolefin resins having different physical properties.
  • polyethylene resins made of Ziegler-Natta and metallocene catalysts have a narrow molecular weight distribution, which causes various problems when used alone. Therefore, the use of a polymer having a broad molecular weight distribution or a multi-modal molecular weight distribution improves moldability while maintaining properties such as toughness, strength, environmental stress, and crack resistance, thereby eliminating the disadvantage of a polyolefin resin having a narrow molecular weight distribution. can do.
  • a polyolefin having a multimodal molecular weight distribution is a polyolefin including two or more components having different molecular weights, for example, a relatively high molecular weight component and a low molecular weight component.
  • Many studies have been conducted to prepare polyolefins having a broad molecular weight distribution or a multimodal molecular weight distribution.
  • One method is post-reactor or melt blending, in which polyolefins having two or more different molecular weights are blended together before or during processing.
  • US Pat. No. 4,461,873 discloses a method of physically blending polymers of two different physical properties to produce a bimodal polymeric blend.
  • Another method of preparing polyolefins having a multimodal molecular weight distribution is to use a multistage reactor.
  • the method employs two or more reactors, wherein a first polymer component having one of two different molecular weight distributions of the bimodal polymer in a first reactor is prepared under certain conditions, and the first polymer component A second polymer component, which is delivered to two reactors and has a molecular weight distribution different from the first polymer component in the second reactor, is prepared under conditions different from the reaction conditions of the first reactor.
  • the method can solve the problems associated with the gel, but because of the use of multiple reactors, there is a concern that the efficiency will be lowered or the manufacturing cost will be high, and if the high molecular weight component is produced in the first reactor, the low molecular weight in the second reactor No components are made, so that the final produced polyolefin particles can consist only of high molecular weight components.
  • Another method of preparing polyolefins having a broad molecular weight distribution or multimodal molecular weight distribution is to polymerize the polyolefins using a catalyst mixture in a single reactor.
  • various attempts have been made in the art to produce polyolefins having a broad molecular weight distribution or a multimodal molecular weight distribution using two or more different catalysts in a single reactor.
  • the resin particles are uniformly mixed at the subparticle level, so that resin components having different molecular weight distributions exist on the same phase.
  • 4,530,914 and 4,935,474 disclose ethylene or higher alpha- in the presence of a catalyst system comprising two or more metallocenes and aluminoxanes having different reaction evolution and termination rate constants.
  • a method for producing a polyolefin having a broad molecular weight distribution is disclosed.
  • US Pat. Nos. 6,841,631 and 6,894,128 prepare polyethylenes having bimodal or multimodal molecular weight distributions using metallocene catalysts comprising at least two metal compounds, and film , For use in the manufacture of pipes, blow molded articles and the like.
  • the polyethylene thus produced has good workability, but the dispersion state of the polyethylene component for each molecular weight in the unit particles is not uniform, and even in relatively good processing conditions, the appearance is rough and the physical properties are not stable.
  • US Pat. No. 4,937,299 discloses the preparation of polyolefins using a catalyst system comprising at least two metallocenes having different reaction ratios for the monomers to be polymerized.
  • US Patent No. 4,808,561 discloses preparing a supported catalyst by reacting metallocene with aluminoxane in the presence of a support. The metallocene is supported on the support to form a solid powder catalyst.
  • the carrier inorganic materials such as silica, alumina, silica-alumina, magnesia, titania, zirconia and mixtures thereof and resinous materials such as polyolefins (for example, finely divided polyethylene) were used. Aluminoxanes were deposited on the dehydrated support material.
  • polymers made with Ziegler-Natta catalysts alone or with metallocene catalyst systems have a narrow molecular weight distribution, and therefore cannot produce satisfactory polyolefins having a multimodal molecular weight distribution or a wide molecular weight distribution. Therefore, in the art, a method for producing a bimodal resin using a mixed catalyst system containing a Ziegler-Natta catalyst and a metallocene catalyst component is known.
  • the mixed catalyst system or hybrid catalyst system typically comprises a combination of a heterogeneous Ziegler-Natta catalyst and a homogeneous metallocene catalyst.
  • the mixed catalyst system is used for producing a polyolefin having a wide molecular weight distribution or a bimodal molecular weight distribution, and serves as a means for controlling the molecular weight distribution and the polydispersity of the polyolefin.
  • U.S. Patent 5,539,076 discloses a metallocene / nonmetallocene mixed catalyst system for preparing certain peak high density copolymers.
  • the catalyst system is supported on an inorganic support.
  • Ziegler-Natta / metallocene catalysts mixed with a carrier such as silica, alumina, magnesium-chloride, etc. are described in US Pat. Nos. 5,038,673, EP 6,764,181, EP 1,755,755, US Pat. 0705848A2, U.S. Patent No. 4659685, U.S. Patent 5395810, U.S. Patent No. 0477402A1, U.S. Patent No. 5266544, International Publication No. 9613532, and the like.
  • the problem with the supported Ziegler-Natta and metallocene catalyst systems is that the supported hybrid catalysts are less active than homogeneous homocatalysts, making it difficult to produce polyolefins having properties suitable for the application.
  • the polyolefin is produced in a single reactor, there is a concern that a gel generated in the blending method may be produced, the insertion of a comonomer into the high molecular weight portion is difficult, and the shape of the resulting polymer may be poor. There is a fear that the two polymer components are not mixed uniformly, making quality control difficult.
  • SR melt flow index ratio
  • Another object of the present invention is to provide a multi-modal polyolefin resin having a low extrusion load during molding and having a large amount of extrusion, and having excellent productivity.
  • Another object of the present invention is to provide a polyolefin resin molded article having excellent appearance characteristics and mechanical strength.
  • this invention provides the polyolefin resin which satisfy
  • melt flow index (MIE, 190 °C, 2.16 kg load conditions): 0.01 to 1.0 g / 10 minutes
  • this invention provides the molded object which consists of said polyolefin resin.
  • the multimodal polyolefin resin according to the present invention forms a polyolefin resin molded article having excellent moldability and having excellent mechanical strength and appearance.
  • the polyolefin resin according to the present invention is not only used for the production of various molded articles such as blow molded articles, inflation molded articles, cast molded articles, extrusion laminate molded articles, extrusion molded articles such as pipes and mold releases, foam molded articles, injection molded articles, but also fibers, mono It can also be used for the manufacture of filaments, nonwovens and the like.
  • FIG. 7 is a graph showing a cumulative amount of dissolution (% by weight) of a sample according to temperature by performing a temperature rising elution fractionation (TREF) dissolution test on polyethylene of Examples and Comparative Examples of the present invention.
  • TEZ temperature rising elution fractionation
  • FIG. 8 is a graph showing the distribution of sample elution amount (% by weight) according to temperature by performing a TREF elution test for polyethylene of Examples and Comparative Examples of the present invention.
  • polyolefin resins are simply referred to as polymers or polyolefins, or ethylene-based polymers, polymers, olefin polymers, polymers, and the like, as necessary.
  • the multimodal polyolefin resin according to the present invention is a polyolefin resin having a wide molecular weight distribution, for example, a bimodal or multimodal molecular weight distribution, is excellent in moldability, and is particularly suitable for the blow molding method, the extrusion molding method, and the film molding method, The mechanical strength and appearance of the molded body have excellent features.
  • the polyolefin resin according to the present invention is produced to satisfy all of the following requirements (1) to (5), and thus has excellent moldability.
  • Ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) (Mw / Mn, Molecular weight distribution (MWD)) measured by gel permeation chromatography (GPC): 12 to 60, preferably 13 to 50, more preferably 15 to 30
  • the content of the polyolefin having a weight average molecular weight (Mw) of 10,000 or less was 15% by weight, preferably more than 20% by weight, and the weight average molecular weight (Mw)
  • the content of this polyolefin of 1,000,000 or more is 1.5% by weight, preferably more than 2.0% by weight.
  • the weight average molecular weight (Mw, measured by gel permeation chromatography) of the polyolefin resin according to the present invention is preferably 100,000 to 400,000, more preferably 120,000 to 300,000.
  • M Lp the peak having the smallest molecular weight
  • M Hp the peaks (M Hp ) indicating are represented at 100,000 g / mol to 400,000 g / mol.
  • the polyolefin forming the peak molecular weight peak (M Hp ) improves the mechanical properties and melt strength of the polymer resin
  • the polyolefin forming the peak molecular weight peak (M Lp ) improves the moldability of the polymer resin. do. Therefore, when the molecular weight of the said polyolefin resin is out of the said range, there exists a possibility that the moldability of a polyolefin resin may fall and the physical property of the molded article molded may fall.
  • CFC Cross-Fractionation Chromatography
  • the cross fractionation chromatography (CFC) was performed to analyze the microstructure of the polyolefin. As the temperature of the sample was increased, the content of the polyolefin eluted at each temperature section and the molecular weight and molecular weight distribution of the eluted polyolefin were measured by cross fractionation chromatography (CFC).
  • CFC cross fractionation chromatography
  • TREF Temporal Rising Elution Fractionation
  • the content of the component eluting at 80 ° C. or lower is 8% by weight or more, preferably 10% by weight or more.
  • the polyolefin resin according to the present invention has a melt flow index ratio (SR) of 50 to 300, a flow activation energy (Ea) of 25 to 30 kJ / mol, and a melt tension measured at 230 ° C. melt tension) is preferably 3.0 to 10 gf.
  • a linear aliphatic olefin having 2 to 12 carbon atoms, preferably 2 to 10 carbon atoms, a cyclic olefin having 3 to 24 carbon atoms, preferably 3 to 18 carbon atoms, and dienes , Trienes, styrenes and the like can be used.
  • the linear aliphatic olefins include ethylene, propylene, butene-1, pentene-1, 3-methylbutene-1, hexene-1, 4-methylpentene-1, 3-methylpentene-1, heptene-1, and octene-1.
  • Decene-1 (decene-1), 4,4-dimethyl-1-pentene, 4,4-diethyl-1-hexene, 3,4-dimethyl-1-hexene and the like can be exemplified.
  • cyclic olefin cyclopentene, cyclobutene, cyclohexene, 3-methylcyclohexene, cyclooctene, tetracyclodecene, octacyclodecene, dicyclopentadiene, norbornene, 5-methyl-2- Norbornene, 5-ethyl-2-norbornene, 5-isobutyl-2-norbornene, 5,6-dimethyl-2-norbornene, 5,5,6-trimethyl-2-norbornene And ethylene norbornene etc.
  • polyenes having 4 to 26 carbon atoms having two or three double bonds are preferable.
  • 1,3-butadiene, 1,4-pentadiene, 1,4-hexadiene , 1,5-hexadiene, 1,9-decadiene, 2-methyl-1,3-butadiene and the like can be exemplified.
  • styrene styrene substituted with styrene or a C1-C10 alkyl group, a C1-C10 alkoxy group, a halogen group, an amine group, a silyl group, a halogenated alkyl group, etc. are preferable.
  • the olefin monomers may be homopolymerized or alternating, random, or block copolymerized.
  • the polyolefin resin according to the present invention is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1- Undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-aitocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1, Sole of an olefin monomer selected from the group consisting of 4-butadiene, 1,5-butadiene, 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene and 3-chloromethylstyrene Polymer or copolymer.
  • the polyolefin resin according to the present invention is selected from the group consisting of ethylene, propylene, and mixtures thereof, and as the remaining auxiliary components, derived from an ⁇ -olefin having 4 to 10 carbon atoms, for example, 6 to 8 carbon atoms It is preferable to contain 0.01-3.0 weight% of structural units.
  • the content of the comonomer ( ⁇ -olefin) can be measured by 13 C-NMR.
  • the polyolefin resin according to the present invention is a blow (molding) molded body, an inflation molded body, a cast molded body, an extruded laminate molded body, an extruded molded body such as a pipe or a mold release, a foamed molded body, an injection molded body, a sheet, a film It can be used not only for the production of various molded articles, etc., but also for the production of fibers, monofilaments, nonwoven fabrics and the like.
  • the polyolefin resin of the present invention is useful for the production of blow molded bodies, extrusion molded bodies such as mold release, or film molded bodies, and is particularly suitable for the production of pipes such as heating pipes.
  • the polyolefin resin according to the present invention can be crosslinked in the molding process, and the molded body includes a composite molded body (laminated body or the like) including a part made of a polyolefin resin according to the present invention and a part made of another resin.
  • the molded body may further include conventional additives, modifiers, and the like for improving physical properties.
  • the molded pipe preferably further satisfies the following conditions (1) and (2).
  • the polyolefin resin according to the present invention is a catalyst system expressing a relatively low molecular weight polymer, at least one organometallic compound represented by the following Formula 1 and at least one first organic transition metal compound represented by the following Formula 2, relatively medium molecular weight And at least one second organic transition metal compound represented by the following Chemical Formula 3, which is a catalyst system expressing a high molecular weight polymer, and aluminoxane.
  • M 1 is an element of Group 1, 2, 12, 13 or 14 of the periodic table
  • M 2 is titanium (Ti), zirconium (Zr) or hafnium (Hf)
  • R 1 , R 4 , R 5 and R 6 are each independently a cyclic hydrocarbon group having 5 to 30 carbon atoms having two or more conjugated double bonds
  • R 2 and R 3 are each independently a hydrocarbon having 1 to 24 carbon atoms
  • Group is a hydrocarbyl group
  • X is a halogen atom
  • l is an integer greater than or equal to 1 and an integer less than or equal to the valence of M 1
  • m and n are each independently an integer from 0 to 2
  • l + m + n is M 1 Is equal to the valence of p
  • p is an integer from 0 to 2
  • q is an integer from 2 to 4
  • p + q is equal to the valence of M 2
  • Q is (CR 7 2 ) connecting R 5 and
  • M 1 of Chemical Formula 1 is an element of Group 1, 2, 12, 13 or 14 of the periodic table, and includes lithium (Li), sodium (Na), potassium (K), magnesium (Mg), zinc (Zn), and boron ( B), aluminum (Al), gallium (Ga), indium (In) or thallium (Thallium; Tl), and the like, and lithium (Li), sodium (Na), magnesium (Mg) or aluminum (Al). Preference is given to using.
  • R 1 is a substituted or unsubstituted cyclic hydrocarbon group having 5 to 30 carbon atoms having two or more conjugated double bonds, and the conjugated double bonds are preferably 2 to 4, more preferably 2 to 3 It is preferable that carbon number of the said cyclic hydrocarbon group is 5-13.
  • a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, an azulene group (azulene), a substituted azulene group, a fluorenyl group, a substituted fluorenyl group, etc. are exemplified. can do.
  • R 1 may be partially substituted with 1 to 6 substituents, the substituent is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms , Aryl group having 6 to 20 carbon atoms, arylalkyl group having 6 to 20 carbon atoms, arylsilyl group having 6 to 20 carbon atoms, alkylaryl group having 6 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkylsiloxane having 1 to 20 carbon atoms It may be selected from the group consisting of an aryloxy group having 6 to 20 carbon atoms, a halogen atom, an amino group and a mixture thereof.
  • R 2 and R 3 are each independently a hydrocarbon group having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, specifically methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, Alkyl groups such as hexyl and octyl; cycloalkyl groups such as cyclopentyl, cyclohexyl and cycloheptyl; aryl groups such as phenyl and arylalkyl groups such as benzyl.
  • l is an integer of 1 or more, an integer equal to or less than the valence of M 1
  • m and n are each independently an integer of 0 to 2
  • l + m + n is equal to the valence of M 1 .
  • Non-limiting examples of the organometallic compound represented by the formula (1) cyclopentadienyl lithium, methylcyclopentadienyl lithium, 1,2,3,4-tetramethyl cyclopentadienyl lithium, ethylcyclopentadienyl Lithium, propylcyclopentadienyl lithium, butylcyclopentadienyl lithium, isobutylcyclopentadienyl lithium, octadecylcyclo pendienyl lithium, cyclopentylcyclopentadienyl lithium, cyclohexylcyclopentadienyl lithium, 1,3-butylmethylcyclopentadienyllithium, indenylithium, 1-methylindenylithium, 2-methylindenylithium, 1-ethylindenylithium, 2-ethylindenylithium, 1-propylindenylithium , 2-propylindenylithium, 2-phenylindenylith
  • M 2 of Chemical Formula 2 is titanium (Ti), zirconium (Zr) or hafnium (Hf), R 4 is the same as the definition of R 1 of Chemical Formula 1, and X is a halogen atom.
  • p is an integer of 0, 1 or 2
  • q is an integer of 2, 3 or 4
  • Non-limiting examples of the first organic transition metal compound represented by Formula 2 include bis (cyclopentadienyl) zirconium diflurolide, bis (methylcyclopentadienyl) zirconium diflurolide, bis (normal-propylcyclo) Pentadienyl) zirconium diflurolide, bis (normal-butylcyclopentadienyl) zirconium diflurolide, bis (cyclopentylcyclopentadienyl) zirconium diflurolide, bis (cyclohexylcyclopentadienyl) zirconium diflu Lurolide, bis (1,3-dimethylcyclopentadienyl) zirconium diflurolide, bis (isobutylcyclopentadienyl) zirconium diflurolide, bis (indenyl) zirconium diflurolide, bis (fluorenyl) Zirconium diflurolide, bis (4,5,6,7-te
  • M 2 of Chemical Formula 3 is the same as the definition of M 2 of Chemical Formula 2
  • R 5 and R 6 are the same as the definition of R 1 of Chemical Formula 1
  • X is a halogen atom.
  • Q is a divalent group selected from (CR 7 2 ) b , (SiR 7 2 ) b , (GeR 7 2 ) b , NR 7 or PR 7 connecting R 5 and R 6 , wherein the substituents R 7 are each independently , A hydrogen atom, a hydrocarbon group of 1 to 20 carbon atoms, b is an integer of 1 to 4, and when Q is (CR 7 2 ) b , (SiR 7 2 ) b or (GeR 7 2 ) b , carbon ( C), two substituents R 7 connected to silicon (Si) and germanium (Ge) may be connected to each other to form a ring having 2 to 7 carbon atoms.
  • the second organic transition metal compound may make a polymer having a relatively medium molecular weight (for example, a weight average molecular weight of 50,000 to 200,000) and a high molecular weight (for example, a weight average molecular weight of 300,000 to 650,000).
  • the second organic transition metal compound is one or two aryl groups, in particular bonded to the bridging atoms of the crosslinked ligand in the cyclopentadienyl-type portion of the rigidly-bridged ligand Tightly-crosslinked ansa-metallocene comprising one or two phenyl groups is included, but is not limited thereto.
  • the aluminoxane is for activator function and impurity removal, and for example, an aluminoxane represented by Formula 4 may be used.
  • the aluminoxane may have a linear, cyclic or network structure.
  • the linear aluminoxane may be represented by the following Chemical Formula 5
  • the cyclic aluminoxane may be represented by the following Chemical Formula 6.
  • R ' is a hydrocarbon group, preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably if most of R' is a methyl group, and x is 1 It is an integer of 70-70, Preferably it is an integer of 1-50, More preferably, it is an integer of 10-40, y is an integer of 3-50, Preferably it is an integer of 10-40.
  • alkyl aluminoxane a commercially available alkyl aluminoxane
  • non-limiting examples of the alkyl aluminoxane include methyl aluminoxane, ethyl aluminoxane, butyl aluminoxane, isobutyl aluminoxane, hexyl aluminoxane and octyl aluminoxane.
  • Decyl aluminoxane, etc. can be illustrated.
  • the aluminoxane is commercially available in various forms of a hydrocarbon solution, and among them, it is preferable to use an aromatic hydrocarbon solution aluminoxane, and more preferably to use an aluminoxane solution dissolved in toluene.
  • the aluminoxanes used in the present invention may be used alone or in combination of two or more thereof.
  • the alkylaluminoxane may be prepared by various conventional methods such as adding an appropriate amount of water to trialkylaluminum, or reacting a trialkylaluminum with a hydrocarbon compound or an inorganic hydrate salt containing water, and is generally linear and cyclic. Aluminoxanes are obtained in mixed form.
  • the amount of the organometallic compound represented by Formula 1 is 0.2 to 20 moles, preferably 0.5 to 1 mole of the first organic transition metal compound represented by Formula 2 above. To 10 moles, more preferably 1 to 7 moles.
  • the amount of the second organic transition metal compound represented by Chemical Formula 3 is 0.01 to 100 moles, preferably 0.1 to 20 moles, more preferably relative to 1 mole of the first organic transition metal compound represented by Formula 2 above. Is 1 to 10 moles.
  • the amount of the organometallic compound represented by the formula (1) is too small, there is a fear that a high molecular weight polymer (polyolefin) is mainly produced, and when too much, a low molecular weight polymer (polyolefin) may be mainly produced.
  • the amount of the aluminoxane used is 1 to 100,000 mol of aluminum of the aluminoxane, with respect to 1 mol of the total of the first organic transition metal compound represented by Formula 2 and the second organic transition metal compound represented by Formula 3. It may be used to mix 1 to 5,000 moles, more preferably 1 to 2,500 moles.
  • the first organic transition metal compound 1 to 100,000 mol, preferably 1 to 5,000 mol of aluminum is used so that the first organic transition metal compound, the organometallic compound represented by Formula 1, and A solution of aluminoxane and a solution of aluminoxane were prepared so that 1 to 100,000 moles, preferably 1 to 5,000 moles of aluminum was used per 1 mole of the second organic transition metal compound.
  • the catalyst for olefin polymerization which concerns on this invention can be manufactured.
  • the organometallic compound, the first and the second organic transition metal compound, and the aluminoxane may be mixed simultaneously for 5 minutes to 24 hours, preferably 15 minutes to 16 hours.
  • the mixing may also first mix the organometallic compound and aluminoxane for 5 minutes to 10 hours, preferably 15 minutes to 4 hours, and then add it to the mixture of the first organic transition metal compound and aluminoxane, To a solution mixed for 5 minutes to 24 hours, preferably 15 minutes to 16 hours, a solution obtained by mixing the second organometallic compound and aluminoxane for 5 minutes to 10 hours, preferably 15 minutes to 4 hours is added.
  • the mixture may be performed for 5 minutes to 24 hours, preferably 15 minutes to 16 hours.
  • the mixing may be performed under an inert atmosphere of nitrogen or argon, without using a solvent, or in the presence of an inert hydrocarbon solvent such as heptane, hexane, benzene, toluene, xylene, or a mixture thereof,
  • the temperature is 0 to 150 ° C, preferably 10 to 100 ° C.
  • the catalyst in a solution state uniformly dissolved in the hydrocarbon solvent or the like may be used as it is, or may be used in a solid powder state in which the solvent is removed.
  • the catalyst in the solid powder state solidifies the precipitate after precipitating the catalyst in the solution state. It can also manufacture by the method of making.
  • the catalyst used in the present invention may be a mixture of the organometallic compound, the first and second organic transition metal compounds, and the aluminoxane on an organic or inorganic carrier.
  • the catalysts used in the present invention may be present in the form of a solid powder or a solution in a homogeneous solution, as well as a form supported on an organic or inorganic porous carrier (silica, alumina, silica-alumina mixture, etc.) or insoluble particles of the carrier. It includes a catalyst.
  • the method of contacting (supporting) the catalyst in solution with the porous carrier is as follows, but is not limited to the following method.
  • the supporting method includes a catalyst in a solution state prepared by mixing the organometallic compound, the first and second organic transition metal compounds, and the aluminoxane, and the porous carrier (for example, a pore size of 50 to 500 mm 3 and 0.1 to 5.0 cm 3).
  • a catalyst in the form of a solid powder may be prepared.
  • the acoustic wave or vibration wave is preferably ultrasonic waves.
  • the supported method (supporting method) of the catalyst and the support is to add the acoustic or vibration wave, and then use the hydrocarbon selected from the group consisting of pentane, hexane, heptane, isoparaffin, toluene, xylene, and mixtures thereof to carry out the supported catalyst.
  • the process may further include washing.
  • a porous inorganic material As the porous carrier, a porous inorganic material, an inorganic salt or an organic compound having fine pores and a large surface area can be used without limitation.
  • the inorganic (inorganic salt or inorganic) carrier in the porous carrier may be used without limitation as long as it can obtain a predetermined form in the process for preparing the supported catalyst, and may be in the form of powder, particles, flakes, foils, fibers, or the like. Can be illustrated.
  • the maximum length of the inorganic carrier is 5 to 200 mu m, preferably 10 to 100 mu m
  • the surface area of the inorganic carrier is 50 to 1,000 m 2 / g
  • the void volume is 0.05 to 5 cm 3. / g is preferred.
  • the inorganic carrier must undergo a water or hydroxy group removal process before use, which can be carried out by calcining the carrier to a temperature of 200 to 900 °C in an inert gas atmosphere such as air, nitrogen, argon or the like.
  • Non-limiting examples of the inorganic salts or inorganic materials include silica, alumina, bauxite, zeolite, magnesium chloride (MgCl 2 ), calcium chloride (CaCl 2 ), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), Silica-magnesium oxide (TiO 2 ), boron oxide (B 2 O 3 ), calcium oxide (CaO), zinc oxide (ZnO), barium oxide (BaO), thorium oxide (ThO 2 ) or mixtures thereof SiO 2 -MgO), silica-alumina (SiO 2 -Al 2 O 3 ), silica-titanium oxide (SiO 2 -TiO 2 ), silica-vanadium pentoxide (SiO 2 -V 2 O 5 ), silica-chromium oxide ( SiO 2 -CrO 3 ), silica-titanium oxide-magnesium oxide (SiO 2
  • Non-limiting examples of the organic compound may include starch, cyclodextrin, synthetic polymers, and the like.
  • the solvent used to contact the catalyst in the solution state with the porous carrier is an aliphatic hydrocarbon solvent such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, benzene, monochlorobenzene, dichlorobenzene, Aromatic hydrocarbon solvents, such as trichlorobenzene and toluene, and halogenated aliphatic hydrocarbon solvents, such as dichloromethane, trichloromethane, dichloroethane, and trichloroethane, can be used.
  • the composition of each component of the catalyst is the same as that of a catalyst in a solution or solid state, and the supported amount of the aluminum component of the catalyst for olefin polymerization is 100% by weight of the carrier.
  • the amount is 5 to 30 parts by weight, preferably 7 to 20 parts by weight, and the supported amount of the transition metal component of the catalyst is 0.01 to 2 parts by weight, preferably 0.05 to 1.5 parts by weight.
  • the polyolefin according to the present invention may be a liquid phase, a slurry phase, a bulk phase or a gas phase reaction. Can be polymerized.
  • each polymerization condition may be appropriately modified depending on the state of the catalyst used (uniform or heterogeneous phase (supported type)), the polymerization method (solution polymerization, slurry polymerization, gas phase polymerization), the desired polymerization result or the form of the polymer. Can be.
  • a solvent or olefin itself can be used as the medium.
  • the solvent includes propane, butane, pentane, hexane, octane, decane, dodecane, cyclopentane, methylcyclopentane, cyclohexane, benzene, toluene, xylene, dichloromethane, chloroethane, 1,2-dichloroethane, chloro Benzene etc. can be illustrated and these solvent can also be mixed and used in fixed ratio.
  • the amount of the first and second organic transition metal compounds is not particularly limited, but the central metal concentration of the first and second organic transition metal compounds in the reaction system used for polymerization is 10 -8 to 10 mol / l is preferable, and 10 -7 to 10 -2 mol / l is more preferable.
  • the polymerization temperature is not particularly limited because it may vary depending on the reaction material, reaction conditions and the like, but is usually 70 to 110 ° C.
  • the polymerization temperature is 0 to 250 °C, preferably 10 to 200 °C when the solution polymerization is carried out, 0 to 120 °C, preferably 20 to 110 °C when performing the slurry or gas phase polymerization .
  • the polymerization pressure is from atmospheric pressure to 500 kgf / cm2, preferably atmospheric pressure to 60 kgf / cm2, more preferably 10 to 60 kgf / cm2, the polymerization may be carried out batch, semi-continuous or continuous. .
  • the polymerization can also be carried out in two or more stages with different reaction conditions, the molecular weight and molecular weight distribution of the final polymer prepared using the catalyst according to the invention is a method of changing the polymerization temperature or injecting hydrogen into the reactor Can be adjusted.
  • Polymerization of the polyolefin resin according to the present invention, a conventional single loop reactor, gas phase reactor, internally circulating fluidized bed (ICFB) reactor (see Korean Patent No. 981612, 999543, 999551, etc.) Can be performed using
  • the polyolefin according to the present invention may be polymerized through a prepolymerization and a main polymerization process.
  • the olefin polymer or copolymer is preferably produced in 0.05 to 500 g, preferably 0.1 to 300 g, more preferably 0.2 to 100 g per g of the olefin catalyst.
  • Olefins usable in the prepolymerization process are ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1- C2-C20 alpha olefins, such as tetradecene, 3-methyl-1- butene, 3-methyl-1- pentene, etc. can be illustrated, It is preferable to use the same olefin as used at the time of superposition
  • the catalysts were prepared by Schlenk technique in which air and moisture were completely blocked, and purified dry nitrogen was used as the inert gas.
  • the solvent was dried over sodium metal in an inert nitrogen atmosphere.
  • Molecular weight and molecular weight distribution It measured as follows using gel permeation chromatography (GPC, Polymer Laboratory Inc. 220 system). Two Olexis and one Guard were used as separation columns, and the column temperature was maintained at 160 ° C. Calibration was performed using a standard set of polystyrene from Polymer Laboratory Inc. Trichlorobenzene containing 0.0125% by weight of BHT (antioxidant) was used as eluent. Samples were prepared at a rate of 0.1 to 1 mg / ml, the injection amount was 0.2 ml, the injection time was 30 minutes, the pump flow rate was maintained at 1.0 ml / min, measured for 30 to 60 minutes.
  • Cross fractionation chromatography (CFC, PolymerChar) was measured as follows. As a separation column, two Olexis and one Guard were used, the column temperature was maintained at 150 ° C., and calibration was performed using a standard polystyrene set from Polymer Laboratory Inc. Trichlorobenzene was used as the eluent, and the sample concentration was prepared at 70 to 80 mg / ml, the injection amount was 0.5 ml, and the pump flow rate was 1.0 ml / min. After sample injection, oven temperature was raised at 40 degree-C / min, and the temperature of the sample was raised to 150 degreeC.
  • the temperature was lowered to 40 ° C / min, and the temperature of the sample was lowered to 95 ° C. After 45 minutes of holding at 95 ° C, the temperature was lowered to 30 ° C at 0.5 ° C / min and then held for 30 minutes. Thereafter, the temperature of the sample was increased from 35 ° C. to 120 ° C., and each fraction was divided into 22 fractions at 4 ° C., 0.5 mL of sample was injected for each fraction, and the elution fractions were TREF column and Olexis column. While passing through the column, the TREF value and the molecular weight were measured.
  • PE conversion molecular weight was computed using the calibration curve using a standard polystyrene set. Data processing was performed using the apparatus-supplied analysis program "CFC calibration", the analysis took about 600 minutes, and the infrared spectrometer was used as a detector.
  • Flow activation energy (Ea): Using a Wabash hydraulic heat press set at 190 ° C, a test piece having a diameter of 24 mm was punched out on a 2 mm thick press sheet at a pressure of 100 kg / cm 2. . Measurements were made using RMS 800 (RHEOMETRICS). The measurement temperature was 150 °C, 170 °C, 190 °C, 10% strain, 0.1 rad / sec ⁇ 100 rad / sec was measured, Ea was measured using the TAI-Orchestrator TTS curve shifting software.
  • Izod Impact Measured according to ASTM D256. The width and thickness of the test piece were measured, a V-notch was formed, an impact was applied to the test piece, and the impact strength value was measured. At least five measurements were taken to obtain an average value.
  • PENT Measured according to ASTM D1473. Using a hydraulic heat press (manufactured by Shin-Eung Metal Co., Ltd.) set at 190 ° C, a test piece was manufactured from a 6 mm thick press sheet at a pressure of 100 kg / cm 2, and notches were formed on three sides (a wide surface was 2.5 mm). Notch in depth, notch on narrow side with 1 mm depth). The test piece was placed in a 95 chamber to fix the top / bottom, and then a pressure of 3.7 MPa was applied to measure the time for breaking.
  • a hydraulic heat press manufactured by Shin-Eung Metal Co., Ltd.
  • Pipe water pressure test measured according to KS M ISO 1167. A pipe having an outer diameter of 16 mm and a thickness of 1.4 mm was put in 95 ° C water, and a circumferential stress corresponding to a pressure of 3.9 MPa and 3.7 MPa was applied to the inside of the pipe to measure the time for the pipe to break.
  • the hybrid supported metallocene catalyst obtained from Preparation Example 1 was continuously introduced at a rate of 1.5 g / h into the single loop slurry polymerization process, and 1-hexene was used as the comonomer.
  • 1-hexene was used as the comonomer.
  • polyethylene Specifically, isobutane was charged into a 53 L single loop reactor and ethylene, 1-hexene and the catalyst were continuously injected, but adjusted to the conditions of Table 1 below to obtain polyethylene continuously.
  • the pipe hydrostatic pressure test result of the comparative example is equivalent to or poor in Example 2, but the sheet physical properties were worse than in Example 2.
  • the polyethylene of the present invention is excellent in moldability while embodying product properties equivalent to those of conventional polyethylene, and has an advantage of reducing energy usage or increasing productivity of molded products. More specifically, the polyethylene of the present invention has particularly excellent physical properties as a raw material for high-temperature, high-pressure heating pipes, and has a merit of having excellent moldability even at high molecular weight due to its bimodal structure, as compared with conventional polyethylene for pipes. .
  • FIGS. 4 to 6 are CFC data of polyethylene obtained in Comparative Examples 1 to 3, respectively.
  • the horizontal axis represents the log value of the molecular weight detected by the CFC infrared spectroscopy
  • the vertical axis represents the elution temperature. Therefore, polyethylene having a high horizontal axis value and a low value (temperature) on the vertical axis means a material having a large molecular weight and a large amount of comonomer. 1 to 6, it can be expected that the polyethylene of the example will be superior to the polyethylene of the comparative example, mechanical properties and long-term hydraulic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

성형성, 기계적 강도, 외관 등의 특성이 우수한 멀티모달 폴리올레핀 수지 및 폴리올레핀 수지 성형체가 개시된다. 상기 폴리올레핀 수지는 하기 (1) 내지 (5)의 요건을 모두 만족시킨다. (1) 밀도(d): 0.934 내지 0.963 g/㎤, (2) 용융흐름지수(MIE, 190℃, 2.16 kg 하중 조건): 0.01 내지 1.0 g/10분, (3) 겔투과 크로마토그라피(GPC)로 측정한 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn, Molecular weight distribution(MWD)): 12 내지 60, (4) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 2개 이상의 봉우리(peak)가 나타남. (5) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 중량평균 분자량(Mw)이 10,000 이하인 폴리올레핀의 함량이 20 중량%를 초과하고, 중량평균 분자량(Mw)이 1,000,000 이상인 폴리올레핀의 함량이 1.5 중량%를 초과함.

Description

멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
본 발명은 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체에 관한 것으로서, 더욱 상세하게는, 성형성, 기계적 강도, 외관 등의 특성이 우수한 멀티모달 폴리올레핀 수지 및 폴리올레핀 수지 성형체에 관한 것이다.
특정 용도에 폴리올레핀 수지를 이용하기 위해서는, 폴리올레핀 수지의 인성, 강도, 환경 응력, 내균열성 등이 우수하여야 한다. 폴리올레핀 수지(중합체)의 분자량을 증가시키면, 이러한 특성들이 쉽게 향상되지만, 중합체의 분자량이 커지면 수지의 성형성이 나빠진다. 이러한 폴리올레핀 수지의 단점 때문에, 다른 물성을 가지는 폴리올레핀 수지들을 복합하여 사용하기 보다는, 단일 물성을 가지는 폴리올레핀 수지를 단독으로 사용하되, 중합체의 구조를 적절히 조정하거나, 적절한 가공조제를 사용하는 것이 바람직하다. 그러나, 일반적으로, 지글러-나타 및 메탈로센 촉매로 만들어진 폴리에틸렌 수지는 분자량 분포가 좁아, 단독으로 사용할 경우, 여러 가지 문제점이 발생한다. 따라서, 넓은 분자량 분포 또는 멀티모달 분자량 분포를 갖는 중합체를 사용하면, 인성, 강도, 환경 응력, 내균열성 등의 특성을 유지하면서, 성형성을 개선하여, 분자량 분포가 좁은 폴리올레핀 수지의 단점을 해소할 수 있다.
멀티모달 분자량 분포를 갖는 폴리올레핀은, 분자량이 다른 2 가지 이상의 성분을 포함하는 폴리올레핀으로서, 예를 들면, 고분자량 성분 및 저분자량 성분을 비교적 균형 있게 포함하는 것이다. 넓은 분자량 분포 또는 멀티모달 분자량 분포를 갖는 폴리올레핀을 제조하기 위한 많은 연구가 진행되어 왔다. 그 중 한 방법은 2 가지 이상의 상이한 분자량을 갖는 폴리올레핀을 가공 전 또는 가공 중에 함께 블렌딩하는 후-반응기법(post-reactor) 또는 용융 블렌딩법이다. 예를 들면, 미국특허 제4,461,873호는, 이정점 중합체성 블렌드를 제조하기 위해, 2가지 상이한 물성의 중합체를 물리적으로 블렌딩하는 방법을 개시한다. 그러나, 이러한 물리적인 블렌드를 이용하면, 겔 함량이 높은 성형체가 만들어지기 쉽고, 겔 성분에 의한 제품 외관 불량으로 인하여, 필름 등의 용도로는 사용될 수 없다. 또한, 상기 물리적 블렌딩 방법은 완전한 균일화를 필요로 하므로, 제조 비용이 증가하는 단점이 있다.
멀티모달 분자량 분포를 갖는 폴리올레핀, 예를 들면, 바이모달 분자량 분포를 갖는 폴리올레핀을 제조하는 다른 방법은, 다단계 반응기를 사용하는 것이다. 상기 방법은 2개 또는 그 이상의 반응기를 사용하는 것으로서, 제1 반응기에서 상기 바이모달 중합체의 2가지 상이한 분자량 분포 중 하나를 갖는 제1 중합체 성분이 일정 조건에서 제조되고, 상기 제1 중합체 성분이 제2 반응기로 전달되고, 제2 반응기에서 상기 제1 중합체 성분과 상이한 분자량 분포를 갖는 제2 중합체 성분이 제1 반응기의 반응 조건과 상이한 조건에서 제조된다. 상기 방법은 상기 겔과 관련된 문제점을 해결할 수 있지만, 다중 반응기를 사용하므로, 효율이 떨어지거나, 제조 비용이 높아질 우려가 있고, 고분자량 성분이 제1 반응기에서 제조되는 경우, 제2 반응기에서 저분자량 성분이 만들어지지 않아, 최종 생산된 폴리올레핀 입자가 고분자량 성분으로만 이루어질 수 있다.
넓은 분자량 분포 또는 멀티모달 분자량 분포를 갖는 폴리올레핀을 제조하는 또 다른 방법은, 단일 반응기에서 촉매 혼합물을 사용하여 폴리올레핀을 중합하는 것이다. 최근, 해당 기술분야에서는, 단일 반응기에서, 2가지 이상의 상이한 촉매를 사용하여, 넓은 분자량 분포 또는 멀티모달 분자량 분포를 갖는 폴리올레핀을 제조하기 위한 다양한 시도가 이루어지고 있다. 이 방법을 사용하면, 수지 입자가 하위입자(subparticle) 수준으로 균일하게 혼합되어, 서로 다른 분자량 분포를 갖는 수지 성분들이 동일상에서 존재한다. 예를 들어, 미국특허 제4,530,914호 및 제4,935,474호는, 서로 다른 반응전개 및 종결 속도 상수를 갖는 2종 이상의 메탈로센 및 알루미녹산을 포함하는 촉매 시스템의 존재 하에, 에틸렌 또는 보다 고급의 알파-올레핀을 중합함으로써, 넓은 분자량 분포의 폴리올레핀을 제조하는 방법을 개시한다. 또한, 미국특허 제6,841,631호 및 제6,894,128호는, 적어도 2종의 금속 화합물을 포함하는 메탈로센 촉매를 이용하여, 이정(bimodal) 또는 다정(multimodal) 분자량 분포를 갖는 폴리에틸렌을 제조하고, 이를 필름, 파이프, 중공성형품 등의 제조에 사용하는 것을 개시하고 있다. 이와 같이 제조된 폴리에틸렌은 가공성이 양호하지만, 단위 입자 내의 분자량별 폴리에틸렌 성분의 분산 상태가 균일하지 못해, 비교적 양호한 가공 조건에서도, 외관이 거칠고 물성이 안정적이지 못한 단점이 있다.
미국특허 제4,937,299호는, 중합되는 단량체에 대해 상이한 반응 비를 갖는 2종 이상의 메탈로센을 포함하는 촉매 시스템을 사용하여 폴리올레핀을 제조하는 것을 개시한다. 또한, 미국특허 제4,808,561호는, 담지체의 존재 하에, 메탈로센을 알루미녹산과 반응시켜 담지 촉매를 제조하는 것을 개시하고 있다. 상기 메탈로센은 담지체에 담지되어 고체 분말 촉매를 형성한다. 상기 담지체로는 실리카, 알루미나, 실리카-알루미나, 마그네시아, 티타니아, 지르코니아 및 이들의 혼합물과 같은 무기 산화물 및 폴리올레핀(예를 들어, 미분된 폴리에틸렌)과 같은 수지성 물질이 사용되었고, 상기 메탈로센 및 알루미녹산은 탈수된 담지체 물질상에 침착되었다.
통상적으로, 지글러-나타 촉매 단독 또는 메탈로센 촉매 시스템으로 제조된 중합체는 좁은 분자량 분포를 가지므로, 멀티모달 분자량 분포 또는 넓은 분자량 분포를 갖는 만족스러운 폴리올레핀을 제조할 수 없다. 따라서, 해당 기술분야에서는, 지글러-나타 촉매 및 메탈로센 촉매 성분을 함유한 혼합 촉매 시스템을 사용하여 바이모달 수지를 제조하는 방법이 알려져 있다. 상기 혼합 촉매 시스템 또는 혼성 촉매 시스템은 통상적으로 불균일 지글러-나타 촉매와 균일 메탈로센 촉매의 조합을 포함한다. 상기 혼합 촉매 시스템은, 넓은 분자량 분포 또는 바이모달 분자량 분포를 가지는 폴리올레핀의 제조에 사용되어, 폴리올레핀의 분자량 분포 및 다분산성을 조절하는 수단이 된다.
미국특허 제5,539,076호는, 특정 이정점 고밀도 공중합체를 제조하기 위한 메탈로센/비메탈로센 혼합 촉매 시스템을 개시한다. 상기 촉매 시스템은 무기 담지체상에 담지된다. 실리카, 알루미나, 마그네슘-클로라이드 등의 담지체와 혼합된 지글러-나타/메탈로센 촉매는 미국특허 제5183867호, 유럽특허 제0676418A1호, 유럽특허 제717755B1호, 미국특허 제5747405호, 유럽특허 제0705848A2호, 미국특허 제4659685호, 미국특허 제5395810호, 유럽특허 제0747402A1호, 미국특허 제5266544호, 국제공개공보 제9613532호 등에도 개시되어 있다. 상기 담지된 지글러-나타 및 메탈로센 촉매 시스템의 문제점은, 담지된 혼성 촉매가 균일 단독 촉매 보다 활성이 낮아, 용도에 맞는 특성을 가지는 폴리올레핀을 제조하기 어렵다는 것이다. 또한, 단일 반응기에서 폴리올레핀을 제조하기 때문에, 상기 블렌딩 방법에서 발생하는 겔이 생성될 우려가 있고, 고분자량 부분에 공단량체의 삽입이 어렵우며, 생성되는 중합체의 형태가 불량해질 우려가 있고, 또한 2가지 중합체 성분이 균일하게 혼합되지 않아, 품질 조절이 어려워질 우려가 있다.
따라서, 본 발명의 목적은, 성형에 적절한 범위의 분자량, 분자량 분포 및 용융 흐름 지수비(Shear Response, SR)를 가지는 멀티모달 폴리올레핀 수지를 제공하는 것이다.
본 발명의 다른 목적은, 성형 가공시 압출 부하가 적고, 압출량이 많아서 생산성이 우수한 멀티모달 폴리올레핀 수지를 제공하는 것이다.
본 발명의 또 다른 목적은, 우수한 외관 특성 및 기계적 강도를 가지는 폴리올레핀 수지 성형체를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 하기 (1) 내지 (5)의 요건을 모두 만족시키는 폴리올레핀 수지를 제공한다.
(1) 밀도(d): 0.934 내지 0.963 g/㎤,
(2) 용융흐름지수(MIE, 190℃ , 2.16 kg 하중 조건): 0.01 내지 1.0 g/10분,
(3) 겔투과 크로마토그라피(GPC)로 측정한 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn, Molecular weight distribution(MWD)): 12 내지 60
(4) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 2개 이상의 봉우리(peak)가 나타남.
(5) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 중량평균 분자량(Mw)이 10,000 이하인 폴리올레핀의 함량이 15 중량%를 초과하고, 중량평균 분자량(Mw)이 1,000,000 이상인 폴리올레핀의 함량이 1.5 중량%를 초과함.
또한, 본 발명은 상기 폴리올레핀 수지로 이루어진 성형체를 제공한다.
본 발명에 따른 멀티모달 폴리올레핀 수지는, 성형성이 우수하고, 우수한 기계적 강도 및 외관을 가지는 폴리올레핀 수지 성형체를 형성한다. 본 발명에 따른 폴리올레핀 수지는, 블로우 성형체, 인플레이션 성형체, 캐스트 성형체, 압출 라미네이트 성형체, 파이프나 이형(異形) 등의 압출 성형체, 발포 성형체, 사출 성형체 등 각종 성형체의 제조에 사용될 뿐만 아니라, 섬유, 모노필라멘트, 부직포 등의 제조에도 사용될 수 있다.
도 1 내지 3은 각각 본 발명의 실시예 1 내지 3에서 얻은 폴리에틸렌의 CFC 데이터.
도 4 내지 6은 각각 비교예 1 내지 3에서 얻은 폴리에틸렌의 CFC 데이터.
도 7은, 본 발명의 실시예와 비교예의 폴리에틸렌에 대하여, TREF (temperature rising elution fractionation) 용출 시험을 수행하여, 온도에 따른 시료의 누적 용출량(중량%)을 보여주는 그래프.
도 8은, 본 발명의 실시예와 비교예의 폴리에틸렌에 대하여, TREF 용출 시험을 수행하여, 온도에 따른 시료 용출량(중량%)의 분포도를 보여주는 그래프.
도 9는, 본 발명의 실시예와 비교예의 폴리에틸렌에 대하여, 겔투과 크로마토그라피로부터 얻은 분자량 분포를 보여주는 그래프.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세히 설명한다. 이하의 설명에서, 필요에 따라, 폴리올레핀 수지를 단순히 폴리머 또는 폴리올레핀으로 부르거나, 에틸렌계 폴리머, 중합체, 올레핀 중합체, 고분자 등으로 부르기도 한다.
본 발명에 따른 멀티모달 폴리올레핀 수지는, 넓은 분자량 분포, 예를 들면, 바이모달 또는 멀티모달 분자량 분포를 갖는 폴리올레핀 수지로서, 성형성이 우수하여, 블로우 성형법, 압출 성형법 및 필름 성형법에 특히 적합하고, 성형체의 기계적 강도 및 외관이 우수한 특징을 가진다. 본 발명에 따른 폴리올레핀 수지는 하기 (1) 내지 (5)의 요건을 모두 만족시키도록 제조됨으로서, 우수한 성형성을 가진다.
(1) 밀도(d): 0.934 내지 0.963 g/㎤, 바람직하게는 0.934 내지 0.954 g/㎤
(2) 용융흐름지수(MIE, 190℃ , 2.16 kg 하중 조건): 0.01 내지 1.0 g/10분, 바람직하게는 0.03 내지 0.8 g/10분
(3) 겔투과 크로마토그라피(GPC)로 측정한 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn, Molecular weight distribution(MWD)): 12 내지 60, 바람직하게는 13 내지 50, 더욱 바람직하게는 15 내지 30
(4) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 2개 이상의 봉우리(peak)가 나타남.
(5) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 중량평균 분자량(Mw)이 10,000 이하인 폴리올레핀의 함량이 15 중량%, 바람직하게는 20 중량%를 초과하고, 중량평균 분자량(Mw)이 1,000,000 이상인 폴리올레핀의 함량이 1.5 중량%, 바람직하게는 2.0 중량%를 초과함.
본 발명에 따른 폴리올레핀 수지의 중량평균 분자량(Mw, 겔투과 크로마토그라피법으로 측정)은 100,000 내지 400,000 인 것이 바람직하고, 120,000 내지 300,000 이면 더욱 바람직하다. 본 발명에 따른 폴리올레핀 수지의 분자량을 겔투과 크로마토그라피법으로 분석할 경우, 두 개 이상의 봉우리가 나타나며, 그 중 가장 작은 분자량을 나타내는 봉우리(MLp)는 20,000 g/mol 이하에서 나타나고, 가장 큰 분자량을 나타내는 봉우리(MHp)는 100,000 g/mol 내지 400,000 g/mol 에서 나타나는 것이 바람직하다. 분자량이 가장 큰 봉우리(MHp)를 형성하는 폴리올레핀은 고분자 수지의 기계적 물성과 용융강도를 향상시키며, 분자량이 가장 작은 봉우리(MLp)를 형성하는 폴리올레핀은 고분자 수지의 성형성을 향상시키는 기능을 한다. 따라서, 상기 폴리올레핀 수지의 분자량이 상기 범위를 벗어나면, 폴리올레핀 수지의 성형성이 저하되고, 성형된 성형품의 물성이 저하될 우려가 있다.
또한, 본 발명에 따른 폴리올레핀 수지는, 크로스분별 크로마토그라피(CFC, Cross-Fractionation Chromatography)법으로 분석할 경우, 하기 (1) 및/또는 (2)의 조건을 만족시키는 것이 바람직하다. 상기 크로스분별 크로마토그라피(CFC)는 폴리올레핀의 미세 구조를 분석하기 위해 수행되었다. 시료의 온도를 증가시키면서, 온도 구간별로 용출되는 폴리올레핀의 함량 및 용출되는 폴리올레핀의 분자량과 분자량 분포를 크로스분별 크로마토그라피(CFC)로 측정하였다. 크로스분별 크로마토그라피(CFC)의 기능, 운전 등에 대한 내용은 Macromol. Symp. 2007, 207, 13-28 에 상세히 기술되어 있다.
(1) TREF(Temperature Rising Elution Fractionation) 용출시험에서 두 개 이상의 봉우리가 나타남.
(2) TREF 용출시험에서, 80℃ 이하에서 용출하는 성분의 함량이 8 중량% 이상, 바람직하게는 10 중량% 이상임.
또한, 본 발명에 따른 폴리올레핀 수지는 용융 흐름 지수비(SR) 값이 50 ~ 300이고, 흐름 활성화 에너지(Flow Activation Energy, Ea)가 25 내지 30 kJ/mol 이며, 230 ℃에서 측정한 용융장력(melt tension)이 3.0 내지 10 gf 인 것이 바람직하다.
본 발명에 따른 폴리올레핀 수지를 형성하는 올레핀 단량체로는, 탄소수 2 내지 12, 바람직하게는 2 내지 10의 선형 지방족 올레핀, 탄소수 3 내지 24, 바람직하게는 3 내지 18의 환상 올레핀, 디엔(diene)류, 트리엔(triene)류, 스티렌(styrene)류 등을 사용할 수 있다. 상기 선형 지방족 올레핀으로는 에틸렌, 프로필렌, 부텐-1, 펜텐-1, 3-메틸부텐-1, 헥센-1, 4-메틸펜텐-1, 3-메틸펜텐-1, 헵텐-1, 옥텐-1, 데센-1(decene-1), 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센, 3,4-디메틸-1-헥센 등을 예시할 수 있다. 상기 환상 올레핀으로는, 시클로펜텐(cyclopentene), 시클로부텐, 시클로헥센, 3-메틸시클로헥센, 시클로옥텐, 테트라시클로데센, 옥타시클로데센, 디시클로펜타디엔, 노르보르넨, 5-메틸-2-노르보르넨, 5-에틸-2-노르보르넨, 5-이소부틸-2-노르보르넨, 5,6-디메틸-2-노르보르넨, 5,5,6-트리메틸-2-노르보르넨 및 에틸렌노르보르넨 등을 예시할 수 있다. 상기 디엔류 및 트리엔류로는, 2개 또는 3개의 이중결합을 갖는 탄소수 4 내지 26의 폴리엔이 바람직하며, 구체적으로 1,3-부타디엔, 1,4-펜타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 1,9-데카디엔, 2-메틸-1,3-부타디엔 등을 예시할 수 있다. 상기 스티렌류로는 스티렌 또는 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 할로겐기, 아민기, 실릴기, 할로겐화알킬기 등으로 치환된 스티렌 등이 바람직하다. 상기 올레핀 단량체는 단독 중합되거나 교대(alternating), 랜덤(random), 또는 블록(block) 공중합 될 수 있다.
바람직하게는, 본 발명에 따른 폴리올레핀 수지는, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 올레핀 단량체의 단독 중합체 또는 공중합체이다. 또한, 본 발명에 따른 폴리올레핀 수지는, 주성분이 에틸렌, 프로필렌 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 나머지 보조 성분으로서, 탄소수 4 내지 10, 예를 들면 탄소수 6 내지 8의 α-올레핀으로부터 유도되는 구성 단위를 0.01 내지 3.0 중량% 함유하는 것이 바람직하다. 여기서, 상기 공단량체(α-올레핀)의 함량은 13C-NMR로 측정할 수 있다.
본 발명에 따른 폴리올레핀 수지는, 블로우 (몰딩) 성형체, 인플레이션 성형체, 캐스트 성형체, 압출 라미네이트 성형체, 파이프나 이형(異形) 등의 압출 성형체, 발포 성형체, 사출 성형체, 시이트(sheet), 필름(film) 등 각종 성형체의 제조에 사용될 뿐만 아니라, 섬유, 모노필라멘트, 부직포 등의 제조에도 사용될 수 있다. 특히, 본 발명의 폴리올레핀 수지는 블로우 성형체, 이형 등의 압출 성형체, 또는 필름 성형체의 제조에 유용하며, 특히 난방용 파이프 등 파이프의 제조에 적합하다. 본 발명에 따른 폴리올레핀 수지는 성형 과정에서 가교될 수 있으며, 상기 성형체는 본 발명에 따른 폴리올레핀 수지로 이루어진 부분과 다른 수지로 이루어지는 부분을 포함하는 복합 성형체(적층체 등)를 포함한다. 상기 성형체는 물성의 향상을 위하여 통상의 첨가제(additives), 향상제(modifiers) 등을 더욱 포함할 수 있다.
본 발명에 따른 폴리올레핀 수지를 이용하여, 파이프를 성형하는 경우, 성형된 파이프는 하기 (1) 및 (2)의 조건을 더욱 만족시키는 것이 바람직하다.
(1) KS M ISO 1167에 따라, 95 ℃의 물로 3.7 Mpa의 압력에 해당하는 응력을 가하여, 파이프가 파괴되는 시간을 측정하는 파이프 내수압 시험에서, 파이프 파괴시간이 200 시간을 초과할 것.
(2) KS M ISO 1167에 따라, 95℃의 물로 3.9 Mpa의 압력에 해당하는 응력을 가하여, 파이프가 파괴되는 시간을 측정하는 파이프 내수압 시험에서, 파이프 파괴시간이 50 시간을 초과할 것.
본 발명에 따른 폴리올레핀 수지는, 상대적으로 저분자량의 폴리머를 발현하는 촉매계인 하기 화학식 1로 표시되는 하나 이상의 유기 금속 화합물 및 하기 화학식 2로 표시되는 하나 이상의 제1 유기 전이금속 화합물, 상대적으로 중간분자량 및 고분자량의 폴리머를 발현하는 촉매계인 하기 화학식 3으로 표시되는 하나 이상의 제2 유기 전이금속 화합물, 및 알루미녹산을 포함하는 촉매 조성물의 각 성분들을 적절히 조합함에 의하여 제조될 수 있다.
[화학식 1]
Figure PCTKR2013002618-appb-I000001
[화학식 2]
Figure PCTKR2013002618-appb-I000002
[화학식 3]
Figure PCTKR2013002618-appb-I000003
상기 화학식 1, 2 및 3에서, M1은 주기율표의 1, 2, 12, 13 또는 14족(group)의 원소이고, M2는 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고, R1, R4, R5 및 R6은 각각 독립적으로, 2 이상의 콘쥬게이션 이중결합을 갖는 탄소수 5 내지 30의 싸이클릭 탄화수소기이고, R2 및 R3은 각각 독립적으로 탄소수 1 내지 24의 탄화수소기(hydrocarbyl group)이고, X는 할로겐 원자이며, l은 1 이상의 정수로 M1의 원자가 이하의 정수이고, m 및 n은 각각 독립적으로 0 내지 2의 정수이고, l+m+n은 M1의 원자가와 동일하고, p는 0 내지 2의 정수, q는 2 내지 4의 정수이고, p+q는 M2의 원자가와 동일하고, Q는 R5과 R6을 연결하는 (CR7 2)b, (SiR7 2)b, (GeR7 2)b, NR7 또는 PR7에서 선택되는 2가기이며, 여기서 치환체 R7은 각각 독립적으로, 수소 원자, 탄소수 1 내지 20의 탄화수소기이고, b는 1 내지 4의 정수이며, Q가 (CR7 2)b, (SiR7 2)b, (GeR7 2)b 일 경우, 탄소(C), 규소(Si), 게르마늄(Ge)에 연결된 2개의 치환체 R7은 서로 연결되어 탄소수 2 내지 7의 고리를 형성할 수 있다.
먼저, 상기 화학식 1로 표시되는 유기 금속 화합물에 관하여 구체적으로 설명한다. 상기 화학식 1의 M1은 주기율표의 1, 2, 12, 13 또는 14족의 원소로서, 리튬(Li), 소듐(Na), 포타슘(K), 마그네슘(Mg), 아연(Zn), 보론(B), 알루미늄(Al), 갈륨(Ga), 인듐(In) 또는 탈륨(Thallium; Tl) 등을 예시할 수 있고, 리튬(Li), 소듐(Na), 마그네슘(Mg) 또는 알루미늄(Al)을 사용하는 것이 바람직하다. 상기 R1은 2 이상의 콘쥬게이션 이중결합을 갖는 탄소수 5 내지 30의 치환되거나 치환되지 않은 싸이클릭 탄화수소기로서, 상기 콘쥬게이션 이중결합은 바람직하게는 2 내지 4개, 더욱 바람직하게는 2 내지 3개이며, 상기 싸이클릭 탄화수소기의 탄소수는 5 내지 13인 것이 바람직하다. 구체적으로 상기 R1으로는 시클로펜타디에닐기, 치환된 시클로펜타디에닐기, 인데닐기, 치환된 인데닐기, 아줄렌기(azulene), 치환된 아줄렌기, 플루오레닐기, 치환된 플루오레닐기 등을 예시할 수 있다. 또한 상기 R1은 1 내지 6개의 치환체로 부분 치환될 수 있으며, 상기 치환체는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 1 내지 20의 할로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 6 내지 20의 아릴알킬기, 탄소수 6 내지 20의 아릴실릴기, 탄소수 6 내지 20의 알킬아릴기, 탄소수 1 내지 20의 알콕시기, 탄소수 1 내지 20의 알킬실록시기, 탄소수 6 내지 20의 아릴옥시기, 할로겐 원자, 아미노기 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 상기 R2 및 R3은 각각 독립적으로 탄소수 1 내지 24개, 바람직하게는 1 내지 12개의 탄화수소기이며, 구체적으로는 메틸, 에틸, 프로필, 이소프로필, 부틸, t-부틸, 이소부틸, 펜틸, 헥실, 옥틸 등의 알킬기, 시클로펜틸, 시클로헥실, 시클로헵틸 등의 시클로알킬기, 페닐 등의 아릴기, 벤질 등의 아릴알킬기이다. 또한 상기 l은 1 이상의 정수로 M1의 원자가 이하의 정수이고, m 및 n은 각각 독립적으로 0 내지 2의 정수이고, l+m+n은 M1의 원자가와 동일하다.
상기 화학식 1로 표시되는 유기 금속 화합물의 비한정적인 예로는, 시클로펜타디에닐리튬, 메틸시클로펜타디에닐리튬, 1,2,3,4-테트라메틸 시클로펜타디에닐리튬, 에틸시클로펜타디에닐리튬, 프로필시클로펜타디에닐리튬, 부틸시클로펜타디에닐리튬, 이소부틸시클로펜타디에닐리튬, 옥타데실시클로 펜타디에닐리튬, 시클로펜틸시클로펜타디에닐리튬, 시클로헥실시클로펜타디에닐 리튬, 1,3-부틸메틸시클로펜타디에닐리튬, 인데닐리튬, 1-메틸인데닐리튬, 2-메틸인데닐리튬, 1-에틸인데닐리튬, 2-에틸인데닐리튬, 1-프로필인데닐리튬, 2-프로필인데닐리튬, 2-페닐인데닐리튬, 3-페닐인데닐리튬, 플루오레닐리튬, 시클로펜타디에닐소듐, 메틸시클로펜타디에닐소듐, 1,2,3,4-테트라메틸 시클로펜타디에닐소듐, 에틸시클로펜타디에닐소듐, 프로필시클로펜타디에닐소듐, 부틸시클로펜타디에닐소듐, 이소부틸시클로펜타디에닐소듐, 옥타데실시클로 펜타디에닐소듐, 시클로펜틸시클로펜타디에닐소듐, 시클로헥실시클로 펜타디에닐소듐, 1,3-부틸메틸시클로펜타디에닐소듐, 인데닐소듐, 1-메틸인데닐소듐, 2-메틸인데닐소듐, 1-에틸인데닐소듐, 2-에틸인데닐소듐, 1-프로필인데닐소듐, 2-프로필인데닐소듐, 2-페닐인데닐소듐, 3-페닐인데닐소듐, 플루오레닐소듐, 시클로펜타디에닐마그네슘 메틸, 시클로펜타디에닐마그네슘 에틸, 시클로펜타디에닐마그네슘 이소부틸, 시클로펜타디에닐마그네슘 프로필, 시클로펜타디에닐마그네슘 헵틸, 시클로펜타디에닐마그네슘 옥틸, 메틸시클로펜타디에닐마그네슘 메틸, 메틸시클로펜타디에닐마그네슘 에틸, 메틸시클로펜타디에닐마그네슘 이소부틸, 메틸시클로펜타디에닐마그네슘 프로필, 메틸시클로펜타디에닐마그네슘 헵틸, 메틸시클로펜타디에닐마그네슘 옥틸, 1,2,3,4-테트라메틸시클로펜타디에닐마그네슘 메틸, 1,2,3,4-테트라메틸 시클로펜타디에닐마그네슘 에틸, 1,2,3,4-테트라메틸시클로펜타디에닐마그네슘 이소부틸, 1,2,3,4-테트라메틸시클로펜타디에닐마그네슘 프로필, 1,2,3,4-테트라 메틸시클로펜타디에닐마그네슘 헵틸, 1,2,3,4-테트라메틸시클로펜타디에닐마그네슘 옥틸, 에틸시클로펜타디에닐마그네슘 메틸, 에틸시클로펜타디에닐마그네슘 에틸, 에틸시클로펜타디에닐마그네슘 이소부틸, 에틸시클로펜타디에닐마그네슘 프로필, 에틸시클로펜타디에닐마그네슘 헵틸, 에틸시클로펜타디에닐마그네슘 옥틸, 프로필시클로펜타디에닐마그네슘 메틸, 프로필시클로펜타디에닐마그네슘 에틸, 프로필시클로펜타디에닐마그네슘 이소부틸, 프로필시클로펜타디에닐마그네슘 프로필, 프로필시클로펜타디에닐마그네슘 헵틸, 프로필시클로펜타디에닐마그네슘 옥틸, 부틸시클로펜타디에닐마그네슘 메틸, 부틸시클로펜타디에닐마그네슘 에틸, 부틸시클로펜타디에닐마그네슘 이소부틸, 부틸시클로펜타디에닐마그네슘 프로필, 부틸시클로펜타디에닐마그네슘 헵틸, 부틸시클로펜타디에닐마그네슘 옥틸, 이소부틸시클로펜타디에닐마그네슘 메틸, 이소부틸시클로펜타디에닐마그네슘 에틸, 이소부틸시클로펜타디에닐마그네슘 이소부틸, 이소부틸시클로펜타디에닐마그네슘 프로필, 이소부틸시클로펜타디에닐마그네슘 헵틸, 이소부틸시클로펜타디에닐마그네슘 옥틸, 옥타데실시클로펜타디에닐마그네슘 메틸, 옥타데실시클로펜타디에닐마그네슘 에틸, 옥타데실시클로펜타디에닐마그네슘 이소부틸, 옥타데실시클로펜타디에닐마그네슘 프로필, 옥타데실시클로펜타디에닐마그네슘 헵틸, 옥타데실시클로펜타디에닐마그네슘 옥틸, 시클로펜틸시클로펜타디에닐마그네슘 메틸, 시클로펜틸시클로펜타디에닐마그네슘 에틸, 시클로펜틸시클로펜타디에닐마그네슘 이소부틸, 시클로펜틸시클로펜타디에닐 마그네슘 프로필, 시클로펜틸시클로펜타디에닐마그네슘 헵틸, 시클로펜틸시클로 펜타디에닐마그네슘 옥틸, 시클로헥실시클로펜타디에닐마그네슘 메틸, 시클로헥실시클로펜타디에닐마그네슘 에틸, 시클로헥실시클로펜타디에닐마그네슘 이소부틸, 시클로헥실시클로펜타디에닐마그네슘 프로필, 시클로헥실시클로 펜타디에닐마그네슘 헵틸, 시클로헥실시클로펜타디에닐마그네슘 옥틸, 1,3-부틸메틸시클로펜타디에닐마그네슘 메틸, 1,3-부틸메틸시클로펜타디에닐 마그네슘 에틸, 1,3-부틸메틸시클로펜타디에닐마그네슘 이소부틸, 1,3-부틸 메틸시클로펜타디에닐마그네슘 프로필, 1,3-부틸메틸시클로펜타디에닐마그네슘 헵틸, 1,3-부틸메틸시클로펜타디에닐마그네슘 옥틸, 비스(시클로펜타디에닐)마그네슘, 비스(알킬-시클로펜타디에닐)마그네슘, 비스(인데닐)마그네슘, 비스(알킬-인데닐) 마그네슘, 인데닐마그네슘 메틸, 인데닐마그네슘 에틸, 인데닐마그네슘 이소부틸, 인데닐마그네슘 프로필, 인데닐마그네슘 헵틸, 인데닐마그네슘 옥틸, 2-메틸인데닐마그네슘 메틸, 2-메틸인데닐마그네슘 에틸, 2-메틸인데닐마그네슘 이소부틸, 2-메틸인데닐마그네슘 프로필, 2-메틸인데닐마그네슘 헵틸, 2-메틸인데닐마그네슘 옥틸, 3-메틸인데닐마그네슘 메틸, 3-메틸인데닐마그네슘 에틸, 3-메틸인데닐마그네슘 이소부틸, 3-메틸인데닐마그네슘 프로필, 3-메틸인데닐마그네슘 헵틸, 3-메틸인데닐마그네슘 옥틸, 2-페닐인데닐마그네슘 메틸, 2-페닐인데닐마그네슘 에틸, 2-페닐인데닐마그네슘 이소부틸, 2-페닐인데닐마그네슘 프로필, 2-페닐인데닐마그네슘 헵틸, 2-페닐인데닐마그네슘 옥틸, 3-페닐인데닐마그네슘 메틸, 3-페닐인데닐마그네슘 에틸, 3-페닐인데닐마그네슘 이소부틸, 3-페닐인데닐마그네슘 프로필, 3-페닐인데닐마그네슘 헵틸, 3-페닐인데닐마그네슘 옥틸, 플루오레닐마그네슘 메틸, 플루오레닐마그네슘 에틸, 플루오레닐마그네슘 이소부틸, 플루오레닐마그네슘 프로필, 플루오레닐마그네슘 헵틸, 플루오레닐마그네슘 옥틸, 시클로펜타디에닐알루미늄 디메틸, 시클로펜타디에닐알루미늄 디에틸, 시클로펜타디에닐알루미늄 디이소부틸, 시클로펜타디에닐알루미늄 디프로필, 시클로펜타디에닐알루미늄 디헵틸, 시클로펜타디에닐알루미늄 디옥틸, 메틸시클로펜타디에닐알루미늄 디메틸, 메틸시클로펜타디에닐알루미늄 디에틸, 메틸시클로펜타디에닐알루미늄 디이소부틸, 메틸시클로펜타디에닐알루미늄 디프로필, 메틸시클로펜타디에닐알루미늄 디헵틸, 메틸시클로펜타디에닐알루미늄 디옥틸, 1,2,3,4-테트라메틸시클로펜타디에닐알루미늄 디메틸, 1,2,3,4-테트라메틸시클로펜타디에닐알루미늄 디에틸, 1,2,3,4-테트라메틸시클로 펜타디에닐알루미늄 디이소부틸, 1,2,3,4-테트라메틸시클로펜타디에닐알루미늄 디프로필, 1,2,3,4-테트라메틸시클로펜타디에닐알루미늄 디헵틸, 1,2,3,4-테트라 메틸시클로펜타디에닐알루미늄 디옥틸, 에틸시클로펜타디에닐알루미늄 디메틸, 에틸시클로펜타디에닐알루미늄 디에틸, 에틸시클로펜타디에닐알루미늄 디이소부틸, 에틸시클로펜타디에닐알루미늄 디프로필, 에틸시클로펜타디에닐알루미늄 디헵틸, 에틸시클로펜타디에닐알루미늄 디옥틸, 프로필시클로펜타디에닐알루미늄 디메틸, 프로필시클로펜타디에닐알루미늄 디에틸, 프로필시클로펜타디에닐알루미늄 디이소부틸, 프로필시클로펜타디에닐알루미늄 디프로필, 프로필시클로 펜타디에닐알루미늄 디헵틸, 프로필시클로펜타디에닐알루미늄 디옥틸, 부틸시클로펜타디에닐알루미늄 디메틸, 부틸시클로펜타디에닐알루미늄 디에틸, 부틸시클로펜타디에닐알루미늄 디이소부틸, 부틸시클로펜타디에닐알루미늄 디프로필, 부틸시클로펜타디에닐알루미늄 디헵틸, 부틸시클로펜타디에닐알루미늄 디옥틸, 이소부틸시클로펜타디에닐알루미늄 디메틸, 이소부틸시클로 펜타디에닐알루미늄 디에틸, 이소부틸시클로펜타디에닐알루미늄 디이소부틸, 이소부틸시클로펜타디에닐알루미늄 디프로필, 이소부틸시클로펜타디에닐알루미늄 디헵틸, 이소부틸시클로펜타디에닐알루미늄 디옥틸, 옥타데실시클로펜타디에닐알루미늄 디메틸, 시클로펜타디에닐알루미늄 디에틸, 옥타데실시클로펜타디에닐알루미늄 디이소부틸, 옥타데실시클로펜타디에닐알루미늄 디프로필, 옥타데실시클로펜타디에닐알루미늄 디헵틸, 옥타데실시클로펜타디에닐알루미늄 디옥틸, 시클로펜틸시클로펜타디에닐알루미늄 디메틸, 시클로펜틸시클로펜타디에닐알루미늄 디에틸, 시클로펜틸시클로펜타디에닐알루미늄 디이소부틸, 시클로펜틸시클로펜타디에닐알루미늄 디프로필, 시클로펜틸시클로펜타디에닐 알루미늄 디헵틸, 시클로펜틸시클로펜타디에닐알루미늄 디옥틸, 시클로헥실 시클로펜타디에닐알루미늄 디메틸, 시클로헥실시클로펜타디에닐알루미늄 디에틸, 시클로헥실시클로펜타디에닐알루미늄 디이소부틸, 시클로헥실시클로펜타디에닐 알루미늄 디프로필, 시클로헥실시클로펜타디에닐알루미늄 디헵틸, 시클로헥실 시클로펜타디에닐알루미늄 디옥틸, 1,3-부틸메틸시클로펜타디에닐알루미늄 디메틸, 1,3-부틸메틸시클로펜타디에닐알루미늄 디에틸, 1,3-부틸메틸시클로펜타디에닐 알루미늄 디이소부틸, 1,3-부틸메틸시클로펜타디에닐알루미늄 디프로필, 1,3-부틸메틸시클로펜타디에닐알루미늄 디헵틸, 1,3-부틸메틸시클로펜타디에닐 알루미늄 디옥틸, 인데닐알루미늄 디메틸, 인데닐알루미늄 디에틸, 인데닐알루미늄 디이소부틸, 인데닐알루미늄 디프로필, 인데닐알루미늄 디헵틸, 인데닐알루미늄 디옥틸, 2-메틸인데닐알루미늄 디메틸, 2-메틸인데닐알루미늄 디에틸, 2-메틸인데닐알루미늄 디이소부틸, 2-메틸인데닐알루미늄 디프로필, 2-메틸인데닐알루미늄 디헵틸, 2-메틸인데닐알루미늄 디옥틸, 3-메틸인데닐알루미늄 디메틸, 3-메틸인데닐알루미늄 디에틸, 3-메틸인데닐알루미늄 디이소부틸, 3-메틸인데닐알루미늄 디프로필, 3-메틸인데닐알루미늄 디헵틸, 3-메틸인데닐알루미늄 디옥틸, 2-페닐인데닐알루미늄 디메틸, 2-페닐인데닐알루미늄 디에틸, 2-페닐인데닐알루미늄 디이소부틸, 2-페닐인데닐알루미늄 디프로필, 2-페닐인데닐알루미늄 디헵틸, 2-페닐인데닐알루미늄디옥틸, 3-페닐인데닐알루미늄 디메틸, 3-페닐인데닐알루미늄 디에틸, 3-페닐인데닐알루미늄 디이소부틸, 3-페닐인데닐알루미늄 디프로필, 3-페닐인데닐알루미늄 디헵틸, 3-페닐인데닐알루미늄 디옥틸, 플루오레닐알루미늄 디메틸, 플루오레닐알루미늄 디에틸, 플루오레닐알루미늄 디이소부틸, 플루오레닐알루미늄 디프로필, 플루오레닐알루미늄 디헵틸, 플루오레닐알루미늄 디옥틸, 비스(시클로펜타디에닐)알루미늄 에틸, 비스(시클로펜타디에닐)알루미늄 메틸, 비스(메틸-시클로펜타디에닐)알루미늄 에틸, 트리스(시클로펜타디에닐)알루미늄, 트리스(메틸-시클로펜타디에닐)알루미늄, 비스(인데닐)알루미늄 에틸, 비스(메틸-인데닐)알루미늄 에틸, 트리스(인데닐)알루미늄, 트리스(메틸- 인데닐)알루미늄 등을 예시할 수 있고, 상기 화합물들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
다음으로, 상기 화학식 2로 표시되는 제1 유기 전이금속 화합물에 대하여 설명한다. 상기 화학식 2의 M2는 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고, 상기 R4는 상기 화학식 1의 R1의 정의와 동일하며, X는 할로겐 원자이다. p는 0, 1 또는 2의 정수, q는 2, 3 또는 4 의 정수이고, p+q는 M2의 원자가와 동일하며, p=2 및 q=2인 화학식 2로 표시되는 화합물이 사용될 경우, p=0 및 q=4인 화학식 2로 표시되는 화합물과 함께 제1 유기 전이금속 화합물로서 사용되는 것이 바람직하다.
상기 화학식 2로 표시되는 제1 유기 전이금속 화합물의 비한정적인 예로는, 비스(시클로펜타디에닐)지르코늄 디플루로라이드, 비스(메틸시클로펜타디에닐) 지르코늄 디플루로라이드, 비스(노말-프로필시클로펜타디에닐)지르코늄 디플루로라이드, 비스(노말-부틸시클로펜타디에닐)지르코늄 디플루로라이드, 비스(시클로펜틸시클로펜타디에닐)지르코늄 디플루로라이드, 비스(시클로헥실시클로펜타디에닐)지르코늄 디플루로라이드, 비스(1,3-디메틸시클로펜타디에닐) 지르코늄 디플루로라이드, 비스(이소부틸시클로펜타디에닐)지르코늄 디플루로라이드, 비스(인데닐)지르코늄 디플루로라이드, 비스(플루오레닐)지르코늄 디플루로라이드, 비스(4,5,6,7-테트라하이드로-1-인데닐)지르코늄 디플루로라이드, 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐) 지르코늄 디클로라이드, 비스(노말-프로필시클로펜타디에닐)지르코늄 디클로라이드, 비스(노말-부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로헥실시클로펜타디에닐)지르코늄 디클로라이드, 비스(1,3-디메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(이소부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(인데닐)지르코늄 디클로라이드, 비스(플루오레닐)지르코늄 디클로라이드, 비스(4,5,6,7-테트라하이드로-1-인데닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)지르코늄 디브로마이드, 비스(메틸시클로펜타디에닐)지르코늄 디브로마이드, 비스(노말- 프로필시클로펜타디에닐)지르코늄 디브로마이드, 비스(노말-부틸시클로펜타디에닐)지르코늄 디브로마이드, 비스(시클로펜틸시클로펜타디에닐)지르코늄 디브로마이드, 비스(시클로헥실시클로펜타디에닐)지르코늄 디브로마이드, 비스(1,3-디메틸시클로펜타디에닐)지르코늄 디브로마이드, 비스(이소부틸 시클로펜타디에닐)지르코늄 디브로마이드, 비스(인데닐)지르코늄 디브로마이드, 비스(플루오레닐)지르코늄 디브로마이드, 비스(4,5,6,7-테트라하이드로-1- 인데닐)지르코늄 디브로마이드, 시클로펜타디에닐티타늄 트리플루오라이드, 시클로펜타디에닐티타늄 트리클로라이드, 시클로펜타디에닐티타늄 트리브로마이드, 시클로펜타디에닐티타늄 트리아이오다이드, 시클로펜타디에닐지르코늄 트리플루오라이드, 시클로펜타디에닐지르코늄 트리클로라이드, 시클로펜타디에닐 지르코늄 트리브로마이드, 시클로펜타디에닐지르코늄 트리아이오다이드, 시클로펜타디에닐하프늄 트리플루오라이드, 시클로펜타디에닐하프늄 트리 클로라이드, 시클로펜타디에닐하프늄 트리브로마이드, 시클로펜타디에닐하프늄 트리아이오다이드, 메틸시클로펜타디에닐티타늄 트리플루오라이드, 메틸시클로펜타디에닐티타늄 트리클로라이드, 메틸시클로펜타디에닐티타늄 트리브로마이드, 메틸시클로펜타디에닐티타늄 트리아이오다이드, 메틸시클로펜타디에닐지르코늄 트리플루오라이드, 메틸시클로펜타디에닐지르코늄 트리클로라이드, 메틸시클로 펜타디에닐지르코늄 트리브로마이드, 메틸시클로펜타디에닐지르코늄 트리아이오다이드, 메틸시클로펜타디에닐하프늄 트리플루오라이드, 메틸시클로펜타디에닐하프늄 트리클로라이드, 메틸시클로펜타디에닐하프늄 트리브로마이드, 메틸시클로펜타디에닐하프늄 트리아이오다이드, 부틸시클로펜타디에닐티타늄 트리플루오라이드, 부틸시클로펜타디에닐티타늄 트리클로라이드, 부틸시클로펜타디에닐티타늄 트리브로마이드, 부틸시클로펜타디에닐티타늄 트리아이오다이드, 부틸시클로펜타디에닐지르코늄 트리플루오라이드, 부틸시클로펜타디에닐지르코늄 트리클로라이드, 부틸시클로펜타디에닐지르코늄 트리브로마이드, 부틸시클로펜타디에닐지르코늄 트리아이오다이드, 부틸시클로펜타디에닐하프늄 트리플루오라이드, 부틸시클로펜타디에닐하프늄 트리클로라이드, 부틸시클로펜타디에닐하프늄 트리 브로마이드, 부틸시클로펜타디에닐하프늄 트리아이오다이드, 펜타메틸시클로펜타디에닐티타늄 트리플루오라이드, 펜타메틸시클로펜타디에닐티타늄 트리클로라이드, 펜타메틸시클로펜타디에닐티타늄 트리브로마이드, 펜타메틸시클로펜타디에닐티타늄 트리아이오다이드, 펜타메틸시클로펜타디에닐지르코늄 트리플루오라이드, 펜타메틸시클로펜타디에닐지르코늄 트리클로라이드, 펜타메틸시클로펜타디에닐지르코늄 트리브로마이드, 펜타메틸시클로펜타디에닐지르코늄 트리아이오다이드, 펜타메틸시클로펜타디에닐하프늄 트리플루오라이드, 펜타메틸시클로펜타디에닐하프늄 트리클로라이드, 펜타메틸시클로펜타디에닐하프늄 트리브로마이드, 펜타메틸시클로펜타디에닐하프늄 트리아이오다이드, 인데닐티타늄 트리플루오라이드, 인데닐티타늄 트리클로라이드, 인데닐티타늄 트리브로마이드, 인데닐티타늄 트리아이오다이드, 인데닐지르코늄 트리플루오라이드, 인데닐지르코늄 트리클로라이드, 인데닐지르코늄 트리브로마이드, 인데닐지르코늄 트리아이오다이드, 인데닐하프늄 트리플루오라이드, 인데닐하프늄 트리클로라이드, 인데닐하프늄 트리브로마이드, 인데닐하프늄 트리아이오다이드, 4,5,6,7-테트라하이드로인데닐티타늄 트리플루오라이드, 4,5,6,7-테트라하이드로 인데닐티타늄 트리클로라이드, 4,5,6,7-테트라하이드로인데닐티타늄 트리브로마이드, 4,5,6,7-테트라하이드로인데닐티타늄 트리아이오다이드, 4,5,6,7-테트라하이드로 인데닐지르코늄 트리플루오라이드, 4,5,6,7-테트라하이드로인데닐지르코늄 트리클로라이드, 4,5,6,7-테트라하이드로인데닐지르코늄 트리브로마이드, 4,5,6,7-테트라하이드로인데닐지르코늄 트리아이오다이드, 4,5,6,7-테트라하이드로 인데닐하프늄 트리플루오라이드, 4,5,6,7-테트라하이드로인데닐하프늄 트리클로라이드, 4,5,6,7-테트라하이드로인데닐하프늄 트리브로마이드, 4,5,6,7- 테트라하이드로인데닐하프늄 트리아이오다이드, 메틸인데닐티타늄 트리플루오라이드, 메틸인데닐티타늄 트리클로라이드, 메틸인데닐티타늄 트리브로마이드, 메틸인데닐티타늄 트리아이오다이드, 메틸인데닐지르코늄 트리플루오라이드, 메틸인데닐지르코늄 트리클로라이드, 메틸인데닐지르코늄 트리브로마이드, 메틸인데닐지르코늄 트리아이오다이드, 메틸인데닐하프늄 트리플루오라이드, 메틸인데닐하프늄 트리클로라이드, 메틸인데닐하프늄 트리브로마이드, 메틸인데닐하프늄 트리아이오다이드, 페닐인데닐티타늄 트리플루오라이드, 페닐인데닐티타늄 트리클로라이드, 페닐인데닐티타늄 트리브로마이드, 페닐인데닐티타늄 트리아이오다이드, 페닐인데닐지르코늄 트리플루오라이드, 페닐인데닐지르코늄 트리클로라이드, 페닐인데닐지르코늄 트리브로마이드, 페닐인데닐지르코늄 트리아이오다이드, 페닐인데닐하프늄 트리플루오라이드, 페닐인데닐하프늄 트리클로라이드, 페닐인데닐하프늄 트리브로마이드, 페닐인데닐하프늄 트리아이오다이드, 플루오레닐티타늄 트리플루오라이드, 플루오레닐티타늄 트리클로라이드, 플루오레닐티타늄 트리브로마이드, 플루오레닐티타늄 트리아이오다이드, 플루오레닐지르코늄 트리플루오라이드, 플루오레닐지르코늄 트리클로라이드, 플루오레닐지르코늄 트리브로마이드, 플루오레닐지르코늄 트리아이오다이드, 플루오레닐하프늄 트리플루오라이드, 플루오레닐하프늄 트리클로라이드, 플루오레닐하프늄 트리브로마이드, 플루오레닐하프늄 트리아이오다이드 등을 예시할 수 있고, 특히 p=0, q=4인 화학식 2로 표시되는 제1 유기 전이금속 화합물의 예로는, 티타늄 플루오라이드, 티타늄 클로라이드, 티타늄 브로마이드, 티타늄 아이오다이드, 지르코늄 플루오라이드, 지르코늄 클로라이드, 지르코늄 브로마이드, 지르코늄 아이오다이드, 하프늄 플루오라이드, 하프늄 클로라이드, 하프늄 브로마이드, 하프늄 아이오다이드 등을 예시할 수 있고, 상기 화합물들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
다음으로, 상기 화학식 3으로 표시되는 제2 유기 전이금속 화합물에 대하여 설명한다. 상기 화학식 3의 M2는 상기 화학식 2의 M2의 정의와 동일하고, 상기 R5 및 R6는 상기 화학식 1의 R1의 정의와 동일하며, X는 할로겐 원자이다. Q는 R5과 R6을 연결하는 (CR7 2)b, (SiR7 2)b, (GeR7 2)b, NR7 또는 PR7에서 선택되는 2가기이며, 여기서 치환체 R7는 각각 독립적으로, 수소 원자, 탄소수 1 내지 20의 탄화수소기이고, b는 1 내지 4의 정수이며, Q가 (CR7 2)b, (SiR7 2)b 또는 (GeR7 2)b 일 경우, 탄소(C), 규소(Si), 게르마늄(Ge)에 연결된 2개의 치환체 R7는 서로 연결되어 탄소수 2 내지 7의 고리를 형성할 수 있다.
상기 제2 유기 전이금속 화합물은, 상대적으로 중간크기 분자량(예를 들면, 중량평균 분자량 5만 내지 20만) 및 고분자량(예를 들면, 중량평균분자량 30만 내지 65만)의 폴리머를 만들 수 있는 촉매 성분으로, 고온(약 80℃ 이상)에서도 안정하게 비교적 큰 분자량을 발현시킬 수 있고, 공단량체(comonomer) 삽입 능력이 저분자량 폴리머를 발현하는 촉매 성분(상기 유기 금속 화합물 및 제1 유기 전이금속 화합물)보다 우수하다. 상기 제2 유기 전이금속 화합물(메탈로센)은, 단단히 가교된(rigidly-bridged) 리간드의 사이클로펜타디엔일-형 부분중의 가교된 리간드의 가교 원자에 결합된 하나 또는 둘의 아릴기, 특히 하나 또는 둘의 페닐기를 포함하는 단단히-가교된 안사-메탈로센(ansa-metallocene)을 포함하지만 이것으로 한정되지는 않는다.
상기 화학식 3으로 표시되는 제2 유기 전이금속 화합물의 비한정적인 예로는, rac-에틸렌비스(1-인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-인데닐)하프늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로-인데닐)지르코늄 디클로라이드, rac-에틸렌비스(1-테트라하이드로-인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-테트라하이드로벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-4,5-벤즈인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스 (2-메틸-4,5-벤즈인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸- 4,5-벤즈인데닐)하프늄 디클로라이드, rac-디메틸실란디일비스(2-메틸- 5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디메틸실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)지르코늄 디클로라이드, rac-디페닐실란디일비스(2-메틸-5,6-시클로펜타디에닐인데닐)하프늄 디클로라이드, rac-디메틸실릴비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, rac-디메틸실릴비스(2-메틸- 4-페닐인데닐)하프늄 디클로라이드, rac-디페닐실릴비스(2-메틸-4-페닐인데닐) 지르코늄 디클로라이드, rac-디페닐실릴비스 (2-메틸-4-페닐인데닐)하프늄 디클로라이드, 이소-프로필리덴(시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(시클로펜타디에닐) (9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐) (9-플루오레닐)하프늄 디클로라이드, 이소-프로필리덴(3-메틸시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴 (3-메틸시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(3-메틸시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐실릴(시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐실릴 (시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴 (시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(시클로펜타디에닐)(2,7-디-터트-부틸플루오렌- 9-일)하프늄 디클로라이드, 디페닐메틸리덴(3-터트-부틸시클로펜타디에닐) (2,7-디-터트-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴 (3-터트-부틸시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(3-터트-부틸-5-메틸시클로펜타디에닐)(2,7-디-터트- 부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(3-터트-부틸- 5-메틸시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 1,2-에틸렌비스(9-플루오레닐)지르코늄 디클로라이드, 1,2-에틸렌비스 (9-플루오레닐)하프늄 디클로라이드, rac-[1,2-비스(9-플루오레닐)-1-페닐- 에탄]지르코늄 디클로라이드, rac-[1,2-비스(9-플루오레닐)-1-페닐-에탄]하프늄 디클로라이드, [1-(9-플루오레닐)-2-(5,6-시클로펜타-2-메틸-1-인데닐)-에탄] 지르코늄 디클로라이드, [1-(9-플루오레닐)-2-(5,6-시클로펜타-2-메틸-1-인데닐)- 에탄]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-페닐-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸- 2-페닐-테트라하이드로펜타렌]하프늄 디클로라이드, 이소-프로필리덴(2-페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소-프로필리덴 (2-페닐-시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 디페닐메틸리덴 (2-페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴 (2-페닐-시클로펜타디에닐)(9-플루오레닐)하프늄 디클로라이드, 이소프로필리덴 (2-페닐-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)지르코늄 디클로라이드, 이소프로필리덴(2-페닐-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)지르코늄 디클로라이드, 디페닐메틸리덴(2-페닐-시클로펜타디에닐) (2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, [4-(플루오레닐)-4,6,6- 트리메틸-2-(p-톨릴)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(p-톨릴)-테트라하이드로펜타렌]하프늄 디클로라이드, [이소 프로필리덴-(2-(p-톨릴)-시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴-(2-(p-톨릴)-시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸- 2-(m-톨릴)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(m-톨릴)-테트라하이드로펜타렌] 하프늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)-시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)-시클로펜타디에닐)- (9-플루오레닐)]하프늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)-시클로펜타디에닐)-(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)- 시클로펜타디에닐)-(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(m- 톨릴)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(m-톨릴)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)-시클로펜타디에닐)(2,7-디-터트- 부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(m-톨릴)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(o-톨릴)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4- (플루오레닐)-4,6,6-트리메틸-2-(o-톨릴)-테트라하이드로펜타렌]하프늄 디클로라이드, [이소프로필리덴(2-(o-톨릴)- 시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(o-톨릴)-시클로펜타디에닐)(9-플루오레닐)] 하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,3-디메틸페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,3- 디메틸페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6- 트리메틸-2-(2,4-디메틸페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4- (플루오레닐)-4,6,6-트리메틸-2-(2,4-디메틸페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐) -시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [이소프로필리덴(2- (2,3-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [디페닐 메틸리덴(2-(2,3-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)] 하프늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)-시클로펜타디에닐) (9-플루오레닐)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)- 시클로펜타디에닐)(9-플루오레닐)]하프늄 디클로라이드, [이소프로필리덴(2-(2,3- 디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,3-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]하프늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]지르코늄 디클로라이드, [이소프로필리덴(2-(2,4-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,3-디메틸페닐)-시클로펜타디에닐) (2,7-디-터트-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2- (2,3-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]하프늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]지르코늄 디클로라이드, [디페닐메틸리덴(2-(2,4-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,6-디메틸페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,6-디메틸페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5- 디메틸페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6- 트리메틸-2-(3,5-디메틸페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-테트라메틸페닐-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-테트라메틸페닐-테트라하이드로펜타렌] 하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(2,4-디메톡시페닐)- 테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸- 2-(2,4-디메톡시페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메톡시페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디메톡시페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(클로로페닐)- 테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸- 2-(클로로페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)- 4,6,6-트리메틸-2-(플루오로페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(플루오로페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리 메틸-2-(펜타플루오로페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(디플루오로페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(터트-부틸-페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-트리플루오로메틸-페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6- 트리메틸-2-(3,5-트리플루오로메틸-페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디-터트-부틸페닐)테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디-터트-부틸 페닐)테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸- 2-(비페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6- 트리메틸-2-(비페닐)-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)- 4,6,6-트리메틸-2-나프틸-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-나프틸-테트라하이드로펜타렌]하프늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디페닐-페닐)-테트라하이드로펜타렌]지르코늄 디클로라이드, [4-(플루오레닐)-4,6,6-트리메틸-2-(3,5-디페닐-페닐)- 테트라하이드로펜타렌]하프늄 디클로라이드, 이소프로필리덴(2-테트라메틸페닐- 시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,6- 디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,4-디메톡시페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디메톡시페닐)-시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,3-디메톡시페닐)- 시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(2,6- 디메톡시페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(클로로페닐)-시클로펜타디에닐)(9-플루오레닐) 지르코늄 디클로라이드, 이소프로필리덴(2-(디클로로페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(트리클로로페닐)-시클로펜타디에닐)(9-플루오레닐) 지르코늄 디클로라이드, 이소프로필리덴(2-(플루오로페닐)-시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(디플루오로페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(펜타플루오로페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드 이소프로필리덴(2-(3,5-트리플루오로메틸-페닐)-시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(터트-부틸페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디-터트-부틸페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(비페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-(3,5-디페닐- 페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2- 나프틸-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-테트라메틸페닐-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디 클로라이드, 디페닐메틸리덴(2-(3,5-디메틸페닐)-시클로펜타디에닐)(9-플루오레닐) 지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,4-디메톡시페닐)-시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메톡시페닐)- 시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,3- 디메톡시페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메톡시페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(클로로페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(디클로로페닐)-시클로펜타디에닐)(9-플루오레닐) 지르코늄 디클로라이드, 디페닐메틸리덴(2-(트리클로로페닐)-시클로펜타디에닐) (9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(플루오로페닐)- 시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2- (디플루오로페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(펜타플루오로페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-트리플루오로메틸-페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(터트-부틸페닐)-시클로펜타 디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디-터트- 부틸페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸 리덴(2-(비페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디페닐-페닐)-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 디페닐메틸리덴(2-나프틸-시클로펜타디에닐)(9-플루오레닐)지르코늄 디클로라이드, 이소프로필리덴(2-테트라메틸페닐-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,6-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴 (2-(3,5-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디 클로라이드, 이소프로필리덴(2-(2,4-디메톡시페닐)-시클로펜타디에닐)(2,7-디- 터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디메톡시페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,3-디메톡시페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(2,6-디메톡시페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(클로로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(디클로로페닐)-시클로펜타디에닐)(2,7-디-터트- 부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(트리클로로페닐)- 시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(플루오로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(디플루오로페닐)-시클로펜타디에닐)(2,7-디- 터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(펜타플루오로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-트리플루오로메틸-페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(터트-부틸페닐)- 시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디-터트-부틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(비페닐)-시클로펜타디에닐)(2,7-디- 터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-(3,5-디페닐-페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 이소프로필리덴(2-나프틸-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-테트라메틸페닐-시클로펜타디에닐)(2,7-디- 터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디메틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,4-디메톡시페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2- (3,5-디메톡시페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,3-디메톡시페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(2,6-디메톡시페닐)- 시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(클로로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(디클로로페닐)-시클로펜타디에닐)(2,7-디- 터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(트리클로로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(플루오로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(디플루오로페닐)-시클로펜타디에닐) (2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(펜타플루오로페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-트리플루오로메틸-페닐)-시클로펜타디에닐)(2,7- 디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(터트- 부틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디-터트-부틸페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(비페닐)-시클로펜타디에닐) (2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-(3,5-디페닐-페닐)-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)하프늄 디클로라이드, 디페닐메틸리덴(2-나프틸-시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9- 일)하프늄 디클로라이드 등을 예시할 수 있고, 상기 화합물들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 알루미녹산은 활성체 기능 및 불순물 제거를 위한 것으로, 예를 들어, 하기 화학식 4로 표시되는 알루미녹산을 사용할 수 있다. 상기 알루미녹산은 선상, 환상 또는 그물(Network) 구조를 가질 수 있고, 예를 들어, 상기 선상 알루미녹산은 하기 화학식 5로 표시될 수 있고, 상기 환상 알루미녹산은 하기 화학식 6으로 표시될 수 있다.
[화학식 4]
Figure PCTKR2013002618-appb-I000004
[화학식 5]
Figure PCTKR2013002618-appb-I000005
[화학식 6]
Figure PCTKR2013002618-appb-I000006
상기 화학식 4, 5 및 6에서, R'은 탄화수소기(hydrocarbonyl group)로서, 탄소수 1 내지 10의 선상 또는 가지상의 알킬기인 것이 바람직하고, 상기 R'의 대부분이 메틸기이면 더욱 바람직하며, x는 1 내지 70의 정수, 바람직하게는 1 내지 50의 정수, 더욱 바람직하게는 10 내지 40의 정수이고, y는 3 내지 50의 정수, 바람직하게는 10 내지 40의 정수이다.
본 발명에서는 통상적으로 시판되는 알킬알루미녹산을 사용할 수 있으며, 상기 알킬알루미녹산의 비한정적인 예로서, 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, 헥실알루미녹산, 옥틸알루미녹산, 데실알루미녹산 등을 예시할 수 있다. 또한, 상기 알루미녹산은 여러 가지 형태의 탄화수소 용액 상태로 시판되고 있는데, 그 중에서 방향족 탄화수소 용액 알루미녹산을 사용하는 것이 바람직하며, 톨루엔에 용해된 알루미녹산 용액을 사용하는 것이 더욱 바람직하다. 본 발명에서 사용되는 알루미녹산은 단독 또는 2종 이상 혼합하여 사용할 수 있다. 상기 알킬알루미녹산은 트리알킬알루미늄에 적량의 물을 첨가하거나, 물을 포함하는 탄화수소 화합물 또는 무기 수화물 염과 트리알킬알루미늄을 반응시키는 등 통상의 다양한 방법으로 제조할 수 있으며, 일반적으로 선상과 환상의 알루미녹산이 혼합된 형태로 얻어진다.
본 발명에 사용되는 올레핀 중합용 촉매에 있어서, 상기 화학식 2로 표시되는 제1 유기 전이금속 화합물 1몰에 대하여, 상기 화학식 1로 표시되는 유기 금속 화합물의 사용량은 0.2 내지 20몰, 바람직하게는 0.5 내지 10몰, 더욱 바람직하게는 1 내지 7몰이다. 또한, 상기 화학식 2로 표시되는 제1 유기 전이금속 화합물 1몰에 대하여, 상기 화학식 3으로 표시되는 제2 유기 전이금속 화합물의 사용량은 0.01 내지 100몰, 바람직하게는 0.1 내지 20몰, 더욱 바람직하게는 1 내지 10몰이다. 여기서, 상기 화학식 1로 표시되는 유기 금속 화합물의 사용량이 너무 작으면, 주로 고분자량의 폴리머(폴리올레핀)가 만들어질 우려가 있고, 너무 많으면, 주로 저분자량의 폴리머(폴리올레핀)가 만들어질 우려가 있다. 또한, 상기 화학식 2로 표시되는 제1 유기 전이금속 화합물에 있어서, p=2 및 q=2인 화학식 2의 화합물과 p=0 및 q=4인 화학식 2의 화합물이 함께 사용될 경우, 상기 p=2 및 q=2인 화학식 2의 화합물 1몰에 대하여, 상기 p=0 및 q=4인 화학식 2의 화합물의 사용량은 0.5 내지 1.5몰, 바람직하게는 0.8 내지 1.2몰이다. 상기 p=0 및 q=4인 화학식 2의 화합물의 사용량이 상기 범위를 벗어날 경우, 넓은 분자량 분포 또는 멀티모달 분자량 분포를 갖는 폴리올레핀을 제조하지 못할 우려가 있다.
상기 알루미녹산의 사용량은, 상기 화학식 2로 표시되는 제1 유기 전이금속 화합물 및 화학식 3으로 표시되는 제2 유기 전이금속 화합물 합계 1 몰에 대하여, 알루미녹산의 알루미늄이 1 내지 100,000몰, 바람직하게는 1 내지 5,000몰, 더욱 바람직하게는 1 내지 2,500몰 혼합되도록 사용될 수 있다. 예를 들면, 상기 제1 유기 전이금속 화합물 1몰에 대하여, 알루미늄이 1 내지 100,000몰, 바람직하게는 1 내지 5,000몰 사용되도록, 상기 제1 유기 전이금속 화합물, 화학식 1로 표시되는 유기 금속 화합물 및 알루미녹산을 혼합한 용액과, 상기 제2 유기 전이금속 화합물 1몰에 대하여, 알루미늄이 1 내지 100,000몰, 바람직하게는 1 내지 5,000몰 사용되도록, 알루미녹산을 혼합한 용액을 제조하고, 상기 두 용액을 서로 혼합함으로써, 본 발명에 따른 올레핀 중합용 촉매를 제조할 수 있다.
상기 촉매 성분의 혼합은 특별한 제한 없이 임의로 수행될 수 있다. 예를 들면, 상기 유기 금속 화합물, 제1 및 제2 유기 전이금속 화합물 및 알루미녹산을 동시에 5분 내지 24시간, 바람직하게는 15분 내지 16시간 동안 혼합시킬 수 있다. 상기 혼합은 또한, 상기 유기 금속 화합물과 알루미녹산을 5분 내지 10시간, 바람직하게는 15분 내지 4시간 동안 먼저 혼합시킨 다음, 이를 상기 제1 유기 전이금속 화합물과 알루미녹산의 혼합물에 첨가하여, 5분 내지 24시간, 바람직하게는 15분 내지 16시간 동안 혼합시킨 용액에, 상기 제2 유기 금속 화합물과 알루미녹산을 5분 내지 10시간, 바람직하게는 15분 내지 4시간 동안 혼합시킨 용액을 첨가하여, 5분 내지 24시간, 바람직하게는 15분 내지 16시간 동안 혼합하는 방식일 수 있다. 상기 혼합은 질소 또는 아르곤의 불활성 분위기하에서, 용매를 사용하지 않거나, 헵탄, 헥산, 벤젠, 톨루엔, 크실렌(xylene) 등의 불활성 탄화수소 용매 또는 그 혼합물의 존재 하에서, 수행될 수 있으며, 상기 혼합 과정의 온도는 0 내지 150℃ , 바람직하게는 10 내지 100 ℃이다. 상기 탄화수소 용매 등에 균일하게 용해된 용액 상태의 촉매는 그대로 사용되거나, 용매를 제거시킨 고체분말 상태로 사용될 수 있으며, 상기 고체분말 상태의 촉매는 용액 상태의 촉매를 침전화 반응시킨 후, 침전물을 고체화시키는 방법으로 제조할 수도 있다.
본 발명에 사용되는 촉매는, 상기 유기 금속 화합물, 제1 및 제2 유기 전이금속 화합물 및 알루미녹산의 혼합물을 유기 또는 무기 담체(carrier)에 담지시킨 것일 수 있다. 따라서, 본 발명에 사용되는 촉매는, 고체 분말 또는 균일 용액 상태의 촉매뿐만 아니라, 유기 또는 무기 다공성 담체(실리카, 알루미나, 실리카-알루미나 혼합물 등)에 담지된 형태 또는 담체의 불용성 입자 형태로 존재하는 촉매를 포함한다. 상기 용액 상태의 촉매를 상기 다공성 담체에 접촉(담지)시키는 방법은 다음과 같으나, 하기 방법에 한정되지는 않는다. 상기 담지 방법은, 상기 유기 금속 화합물, 제1 및 제2 유기 전이금속 화합물 및 알루미녹산을 혼합시켜 제조된 용액 상태의 촉매를, 상기 다공성 담체(예: 50 내지 500Å 의 세공크기 및 0.1 내지 5.0 ㎤/g의 기공부피를 갖는 실리카 담체)와 접촉시켜 슬러리 상태로 만드는 단계; 상기 슬러리 상태의 혼합물에 1 내지 10,000 kHz, 바람직하게는 20 내지 500 kHz 주파수 범위의 음향파 또는 진동파를 0 내지 120℃, 바람직하게는 0 내지 80 ℃에서 0.1 내지 6 시간, 바람직하게는 0.5 내지 3 시간 동안 작용시켜, 상기 촉매 성분들을 상기 다공성 담체의 미세 세공 깊숙이 균일하게 침투시키는 단계; 및 상기 다공성 담체의 미세 세공에 침투된 촉매 성분들을 진공 처리 또는 질소 흐름에서 건조시키는 단계를 포함하며, 상기 단계를 거쳐 고체분말 형태의 촉매를 제조할 수 있다. 상기 음향파 또는 진동파는 초음파(ultrasonic waves)인 것이 바람직하다. 상기 촉매와 담체의 접촉방법(담지 방법)은 상기 음향파 또는 진동파를 가한 다음, 펜탄, 헥산, 헵탄, 이소파라핀, 톨루엔, 크실렌 및 그들의 혼합물로 이루어진 군으로부터 선택된 탄화수소를 사용하여 상기 담지 촉매를 세척하는 공정을 더욱 포함할 수 있다.
상기 다공성 담체로는 미세한 세공(pore) 및 넓은 표면적을 지닌 다공성 무기물, 무기염 또는 유기 화합물을 제한 없이 사용할 수 있다. 상기 다공성 담체 중 무기(무기염 또는 무기물) 담체의 형태는 상기 담지 촉매 제조를 위한 공정에서 소정의 형태를 얻을 수 있는 것이라면, 제한 없이 사용할 수 있으며, 분말, 입자, 플레이크, 호일, 섬유 등의 형태를 예시할 수 있다. 상기 무기 담체의 형태와 상관없이, 무기 담체의 최대 길이는 5 내지 200㎛, 바람직하게는 10 내지 100㎛ 이고, 상기 무기 담체의 표면적은 50 내지 1,000 ㎡/g이고, 공극 체적은 0.05 내지 5㎤ /g인 것이 바람직하다. 일반적으로 상기 무기 담체는 사용 전에 물 또는 하이드록시기 제거 과정을 거쳐야 하는데, 상기 과정은 공기나 질소, 아르곤 등의 불활성 기체 분위기에서 담체를 200 내지 900 ℃의 온도로 소성시킴으로써 수행될 수 있다. 상기 무기염 또는 무기물의 비한정적인 예로는 실리카, 알루미나, 보오크싸이트(Bauxite), 제올라이트, 염화마그네슘(MgCl2), 염화칼슘(CaCl2), 산화마그네슘(MgO), 산화지르코늄(ZrO2), 산화티탄(TiO2), 산화붕소(B2O3), 산화칼슘(CaO), 산화아연(ZnO), 산화바륨(BaO), 산화토륨(ThO2) 또는 이들의 혼합물로서 실리카-산화마그네슘(SiO2-MgO), 실리카-알루미나(SiO2-Al2O3), 실리카-산화티탄(SiO2-TiO2), 실리카-오산화바나듐(SiO2-V2O5), 실리카-산화크롬 (SiO2-CrO3), 실리카-산화티탄-산화마그네슘(SiO2-TiO2-MgO) 또는 이들 화합물에 소량의 카보네이트(carbonate), 썰페이트(sulfate) 또는 나이트레이트(nitate)가 포함된 화합물 등을 예시할 수 있고, 상기 유기 화합물의 비한정적인 예로는 전분, 시클로덱스트린, 합성 폴리머 등을 예시할 수 있다. 상기 용액 상태의 촉매를 상기 다공성 담체와 접촉시킬 때 사용되는 용매는 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 운데칸, 도데칸 등의 지방족 탄화수소계 용매, 벤젠, 모노클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 톨루엔 등의 방향족 탄화수소계 용매, 디클로로메탄, 트리클로로메탄, 디클로로에탄, 트리클로로에탄 등의 할로겐화 지방족 탄화수소 용매를 사용할 수 있다. 본 발명에 사용되는 올레핀 중합용 촉매가 담체에 담지될 경우, 상기 촉매의 각 성분 조성은 용액 또는 고체 상태의 촉매 조성과 동일하며, 상기 올레핀 중합용 촉매의 알루미늄 성분의 담지량은, 상기 담체 100 중량부에 대하여, 5 내지 30 중량부, 바람직하게는 7 내지 20 중량부이고, 상기 촉매의 전이금속 성분의 담지량은 0.01 내지 2 중량부, 바람직하게는 0.05 내지 1.5 중량부이다.
다음으로, 본 발명에 따른 폴리올레핀의 중합 방법을 설명한다. 상기 촉매 조성물은, 균일 용액 상태뿐만 아니라, 유기 또는 무기 다공성 담체에 담지된 형태 또는 담체의 불용성 입자 형태로 존재하므로, 본 발명에 따른 폴리올레핀은 액상, 슬러리상, 괴상(Bulk Phase) 또는 기상 반응으로 중합될 수 있다. 또한 각각의 중합반응 조건은 사용되는 촉매의 상태(균일상 또는 불균일상(담지형)), 중합 방법(용액중합, 슬러리 중합, 기상중합), 목적하는 중합결과 또는 중합체의 형태에 따라 적절히 변형될 수 있다. 상기 중합이 액상 또는 슬러리상에서 실시되는 경우, 용매 또는 올레핀 자체를 매질로 사용할 수 있다. 상기 용매로는 프로판, 부탄, 펜탄, 헥산, 옥탄, 데칸, 도데칸, 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 벤젠, 톨루엔, 자일렌, 디클로로메탄, 클로로에탄, 1,2-디클로로에탄, 클로로벤젠 등을 예시할 수 있으며, 이들 용매를 일정한 비율로 섞어 사용할 수도 있다. 본 발명의 올레핀을 중합 또는 공중합하는데 있어서, 상기 제1 및 제2 유기 전이금속 화합물의 양은 특별히 한정되지 않지만, 중합에 사용되는 반응계 내에서 상기 제1 및 제2 유기 전이금속 화합물의 중심 금속 농도가 10-8 내지 10 mol/l 것이 바람직하며, 10-7 내지 10-2 mol/l이면 더욱 바람직하다.
본 발명에 따른 올레핀의 중합 또는 공중합에 있어서, 중합온도는 반응 물질, 반응 조건 등에 따라 변할 수 있기 때문에 특별히 한정되지는 않지만, 통상 70 내지 110 ℃이다. 구체적으로, 중합온도는, 용액 중합을 수행할 경우, 0 내지 250 ℃, 바람직하게는 10 내지 200 ℃이고, 슬러리 또는 기상중합을 수행할 경우, 0 내지 120℃ , 바람직하게는 20 내지 110 ℃이다. 또한 중합압력은 대기압 내지 500 kgf/㎠, 바람직하게는 대기압 내지 60 kgf/㎠, 더욱 바람직하게는 10 내지 60 kgf/㎠이며, 상기 중합은 배치식, 반연속식 또는 연속식으로 수행 될 수 있다. 상기 중합은 상이한 반응조건을 갖는 두 가지 이상의 단계로도 수행될 수 있으며, 본 발명에 따른 촉매를 이용하여 제조되는 최종 중합체의 분자량과 분자량 분포는 중합온도를 변화시키거나 반응기내에 수소를 주입하는 방법으로 조절할 수 있다. 본 발명에 따른 폴리올레핀 수지의 중합은, 통상의 단일 루프 반응기, 기상 반응기, 내부순환 유동층(ICFB, internally circulating fluidized-bed) 반응기 (한국특허 제981612호, 제999543호, 제999551호 등 참조)를 이용하여 수행 될 수 있다
본 발명에 따른 폴리올레핀은, 예비중합 및 본중합 공정을 통하여 중합될 수 있다. 상기 예비중합 공정에서, 올레핀 중합체 또는 공중합체는 상기 올레핀 촉매 1 g당 0.05 내지 500 g, 바람직하게는 0.1 내지 300 g, 더욱 바람직하게는 0.2 내지 100 g으로 제조되는 것이 바람직하다. 상기 예비중합 공정에 사용 가능한 올레핀류로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 3-메틸-1-부텐, 3-메틸-1-펜텐 등의 탄소수 2 내지 20의 α-올레핀류 등을 예시할 수 있으며, 중합 시에 사용된 것과 동일한 올레핀을 사용하는 것이 바람직하다.
이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. 하기 실시예에서, 촉매는 공기와 수분이 완전히 차단된 쉬렌크(Schlenk) 기법으로 제조되었고, 불활성 기체로서 정제 건조된 질소를 사용하였다. 또한, 용매는 불활성 질소 분위기의 나트륨 금속으로 건조하였다. 본 명세서 및 실시예에 있어서, 각 물성의 측정 방법은 다음과 같다.
(1) 밀도: ASTM 1505 및 ASTM D 1928에 따라 측정
(2) 용융흐름지수(MIE, 2.16 kg/10분): 190 ℃에서 ASTM D1238 에 따라 측정
(3) 고하중 용융흐름지수(MIF, 21.6 kg/10분): 190℃ 에서 ASTM D1238 에 따라 측정.
(4) 용융흐름지수비(SR): MIF/MIE
(5) 분자량 및 분자량 분포: 겔투과 크로마토그라피(GPC, Polymer Laboratory Inc. 220 system)을 사용하여 이하와 같이 측정하였다. 분리 컬럼으로서 Olexis 2개, Guard 1개를 사용하였고, 컬럼 온도는 160℃ 로 유지하였다. 캘리브레이션은 Polymer Laboratory Inc의 표준 폴리스티렌 세트를 사용하여 수행하였으며, 용리액으로서 0.0125 중량%의 BHT(산화 방지제)가 함유된 트리클로로벤젠을 사용하였다. 시료는 0.1 ~ 1 mg/ml의 비율로 준비하였고, 주입량은 0.2 ml 였으며, 주입 시간은 30분, 펌프 유속은 1.0 ml/min을 유지하여, 30 ~ 60분간 측정하였다. 폴리스티렌 표준물질인 Easical A와 Easical B(Agilent사 제품)를 사용하여 유니버설 교정한 후, 폴리에틸렌으로 환산하여, 수 평균 분자량(Mn), 중량평균 분자량(Mw), 및 z 평균 분자량(Mz)을 측정하였다. 검출기로는 굴절율(RI, Refractive Index) 검출기를 사용하였다. 분자량 분포(Mw/Mn)는 중량평균 분자량과 수평균 분자량의 비율을 나타낸다.
(6) 에틸렌 및 α-올레핀 함량 측정: 13C-NMR에 의해, 에틸렌 중합체 분자쇄의 카본 1000개당 메틸 분기수를 측정하였다. 13C-NMR의 측정은 독일 부루커 사의 500 핵자기 공명 장치(1H: 500 )를 사용하여, 적산 회수 1천 내지 3천회로 측정하고, 화학 시프트 기준으로서 주쇄 메틸렌 피크(29.97 ppm)를 사용하였다. NMR 측정은, 직경 5 의 시판용 NMR 측정 석영 유리관에, 샘플 100 내지 200 mg 및 1,1,2,2-테트라클로로에탄 2 ml를 넣고, 120℃에서 가열, 균일 분산시킨 용액에 대하여 수행하였다.
(7) 크로스분별 크로마토그라피(CFC): 크로스분별 크로마토그라피(CFC, PolymerChar 제품) 측정은 다음과 같이 수행하였다. 분리 컬럼으로서, Olexis 2개, Guard 1개를 사용하였고, 컬럼 온도는 150℃ 로 유지하였으며, 캘리브레이션은 Polymer Laboratory Inc의 표준 폴리스티렌 세트를 사용하여 수행하였다. 용리액으로서 트리클로로벤젠을 사용하고, 시료 농도는 70 ~ 80 mg/ml로 준비하였으며, 주입량은 0.5 ml, 펌프 유속은 1.0 ml/min이었다. 시료 주입 후, 40℃ /분으로 오븐 온도를 상승시켜, 시료의 온도를 150℃ 까지 상승시켰다. 150℃ 에서 60 분간 유지시킨 후, 40℃ /min로 온도를 낮추어, 시료의 온도를 95℃ 까지 내렸다. 95℃ 에서 45분간 유지시킨 후, 0.5℃ /분으로 다시 30℃ 까지 온도를 내린 후, 30분간 유지시켰다. 그 후, 35℃ 에서 120℃ 까지 시료의 온도를 올리면서, 4 ℃ 간격으로 온도별 분획을 22개로 나누고, 각 분획마다 0.5 mL의 시료를 주입하며, 용출 분획이 TREF 칼럼(column)과 Olexis 칼럼(column)을 거치도록 하면서, TREF값과 분자량을 측정하였다. 그리고, 표준 폴리스티렌 세트를 이용한 교정 곡선을 사용하여, PE 환산 분자량을 산출하였다. 데이터 처리는, 장치 부속 해석 프로그램인 "CFC calibration"을 사용하여 실시하였으며, 분석에는 약 600분의 시간이 소요되었고, 검출기로는 적외선 분광기를 사용하였다.
(8) 흐름 활성화 에너지(Ea): 190℃ 로 설정한 와바시(Wabash) 유압식 열프레스기를 사용하여, 100 kg/㎠의 압력으로 2 mm 두께 프레스 시트에 지름 24 mm의 시험편을 펀칭하여 준비하였다. RMS 800 (RHEOMETRICS 제품)를 사용하여 다음과 같이 측정하였다. 측정온도는 150℃ , 170℃ , 190℃ 이며, 10% strain, 0.1 rad/sec ~ 100 rad/sec로 측정하였고, TAI-Orchestrator TTS curve shifting 소프트웨어을 이용하여 Ea를 측정하였다.
(9)장쇄 분지(Long Chain Branch, LCB): 상기 흐름 활성화 에너지(Ea)를 이용하여, 하기 식으로부터 LCB를 측정하였다.
LCB = [Ea/4.186)-6.24 / (7.93 x 105)] x (1.4 x 104)
(10) 용융 장력(Melt Tension): 카피로그래프(Capirograph 1B, Toyoseiki 제품)를 사용하여 다음과 같이 측정하였다. 펠렛(Pellet) 시료 5 ~ 10 g을, 길이 10 mm, 지름 1.0 mm의 모세관을 이용하여, 측정 온도 230℃ , 속도 10 mm/min, Draw 30 m/min 의 조건에서 측정하였으며, 한 시료당 3회 측정하여 평균값을 구하였다.
(11) 항복점 인장 강도(Tensile Strength at Yield): ASTM D638에 따라 측정하였다. 시험 속도는 50 mm/min이었으며, 한 시편당 5회 측정하여 평균값을 구하였다.
(12) 신율(Elongation): ASTM D638에 따라 측정하였다. 시험 속도는 50 mm/min이었으며, 한 시편당 5회 측정하여 평균값을 구하였다.
(13) 굴곡 탄성율(Flexural Modulus): ASTM D790에 따라 측정하였다. 5% 변형 시까지 측정하였으며, 한 시편당 5회 측정하여 평균값을 구하였다.
(14) 아이조드 충격 강도(Izod Impact): ASTM D256에 따라 측정하였다. 시험편의 폭 및 두께를 측정하고, V-노치를 형성하고, 시험편에 충격을 가하여 충격 강도값을 측정하였다. 최소 5회 측정하여 평균값을 구하였다.
(15) PENT: ASTM D1473에 따라 측정하였다. 190 ℃ 설정한 유압식 열프레스기(신등금속공업사 제품)를 사용하여, 100 kg/㎠의 압력으로 6 mm 두께 프레스 시트로부터 시험편을 제조하여, 3면에 노치를 형성하였다(폭이 넓은 면은 2.5 mm 깊이의 노치, 폭이 좁은 면은 1 mm 깊이의 노치). 상기 시험편을 95 챔버에 넣어 상부/하부를 고정한 후, 3.7 MPa의 압력을 가하여, 파괴되는 시간을 측정하였다.
(16) 파이프 내수압 시험: KS M ISO 1167에 따라 측정하였다. 95℃ 의 물에 외경 16 mm, 두께 1.4 mm의 파이프를 넣고, 파이프 내부에 3.9 MPa, 3.7 MPa의 압력에 해당되는 원주 응력을 가하여, 파이프가 파괴되는 시간을 측정하였다.
(17) 파이프 외관: 육안관찰로 양호, 보통, 불량으로 판정하였다.
(18) 제품 성형성 평가: Shin Hwa HDPE Blown M/C 압출기(Die Dia: 50Φ, Screw dia: 40Φ)를 사용하여, 200 ℃의 압출기 온도(Die 온도 및 Adapter 온도)에서, 필름(폭(Width): 45 cm, 두께(Thickness): 25㎛)을 압출 성형하였다. 또한, 파이프 압출기(원일이엔지 제품, 16φ Die Dia., 41φ Screw Dia.)를 이용하여, 200℃ 의 압출 온도(Die 온도)에서 외경 16 mm, 두께 1.4 mm의 파이프를 압출 성형하였다(Line speed : 10m/min).
(18a) 수지 용융 압력(bar): 상기 가공 조건에서, 필름 및 파이프를 압출할 때, 압출 부위에서 발생되는 수지 용융 압력을 측정하였다.
(18b) 압출량(g/min): 상기 가공 조건에서, 필름 및 파이프를 압출할 때, 분당 압출되는 수지의 무게를 측정하였다.
[제조예 1] 촉매의 제조
질소 분위기에서, 150 L 반응기에 유기금속 화합물(성분 1)로서 비스(인데닐)알루미늄 에틸((Ind)2AlEt), 제1 유기 전이금속 화합물(성분 2)로서 비스(이소부틸시클로펜타디에닐)지르코늄 디클로라이드/지르코늄 클로라이드((iBuCp)2ZrCl2/ ZrCl4), 제2 유기 전이금속 화합물(성분 3)로서 디페닐메틸리덴(노말부틸시클로펜타디에닐)(2,7-디-터트-부틸플루오렌-9-일)지르코늄 디클로라이드(Ph2C(2,7-t-BuFlu)) (nBu-Cp)ZrCl2 및 메틸알루미녹산(MAO, Albemarle사 제품, 10% 톨루엔 용액)을 혼합하고, 60℃ 에서 60분 동안 교반하여 용액을 제조하였다. 상기 용액에 250℃ 에서 소성된 실리카(SiO2)를 넣고, 1시간 동안 초음파를 가한 후, 상층액을 제거하였다. 다음으로 잔존하는 고체 입자를 헥산으로 2회 세척한 후, 진공으로 건조하여 자유롭게 흐르는 고체 분말의 담지촉매를 제조하였다. 상기 담지촉매의 알루미늄 함량은 12.5중량% 이고, 지르코늄 함량은 0.2중량% 였다.
[실시예 1~3] 에틸렌/1-헥센 공중합 및 공중합체의 가공성 및 물성 평가
연속 단일 루프 공법의 중합 방법에 따라, 상기 제조예 1로부터 얻어진 혼성 담지 메탈로센 촉매를 단일 루프 슬러리 중합 공정에 1.5 g/h의 속도로 연속적으로 투입하고, 공단량체로는 1-헥센을 사용하여 폴리에틸렌을 제조하였다. 구체적으로, 53 L의 단일 루프 반응기에 이소부탄을 채우고, 에틸렌, 1-헥센 및 상기 촉매를 연속적으로 주입하되, 하기 표 1의 조건이 되도록 조절하여 연속적으로 폴리에틸렌을 수득하였다. 얻어진 폴리에틸렌 공중합체에 1차 산화방지제(Ethanox 330, 알버말) 1000 ppm, 1차 및 2차 산화방지제 블렌드 제품(S12B, 송원산업) 3000 ppm과 가공조제(Zn-St, 송원산업) 1500 ppm을 첨가하고, 이축 압출기(W&P Twin Screw Extruder, 75 파이, L/D = 36)를 사용하여 170 ~ 220℃ 의 압출 온도에서 제립하였다. 폴리에틸렌 중합체의 원료 물성 및 제품 제반 물성(Mw/1000 (중량평균 분자량/1000), 용융지수(Melt Index: MIE, MIF), 용융 흐름 지수비(SR (MIF/MIE)) 및 밀도)을 상술한 특성 평가 방법에 따라 평가하였으며, 결과를 표 1 에 나타내었다.
표 1
Figure PCTKR2013002618-appb-T000001
[비교예 1~3] 상용 공중합체의 물성 평가
상업적으로 시판되는 폴리에틸렌 제품 3종(비교예 1 ~ 3)의 물성 및 성형성을 실시예 2의 폴리에틸렌과 동일한 조건에서 비교하여, 표 2, 3, 4에 나타내었다.
실시예 2의 중합체와 상업적으로 유통되는 폴리에틸렌 제품의 물성, 시트 물성 및 파이프 성형성을 표 2 내지 3에 나타내었다. 또한, 수지의 장기 물성을 비교하기 위하여, 실시예 2의 중합체와 상업적으로 유통되는 폴리에틸렌 제품으로 제조된 시트의 PENT 물성과 파이프의 내수압 시험 결과를 표 4에 나타내었다.
표 2
Figure PCTKR2013002618-appb-T000002
표 3
Figure PCTKR2013002618-appb-T000003
표 4
Figure PCTKR2013002618-appb-T000004
상기 표 1 및 2로부터, 실시예 1 내지 3에서 얻은 폴리에틸렌의 GPC 는 모두 바이모달의 형태를 가지는 반면, 비교예 1 내지 3의 폴리에틸렌의 GPC는 모두 모노모달의 형태를 가짐을 알 수 있다. 또한, 시트 물성에 있어서, 본 발명에 따른 폴리에틸렌의 아이조드 충격강도가 가장 우수함을 알 수 있다(표 2의 실시예 2). 파이프 성형성에 있어서는, 비교예 1의 폴리에틸렌과 비교하여, 본 발명의 폴리에틸렌이, 낮은 스크류 회전수 및 모터 회전수에서, 압출량이 20% 이상 높으므로, 성형성이 우수함을 알 수 있다(표 3). 또한, 실시예 2와 비교예 2, 3의 폴리에틸렌을 비교하면, 동일한 스크류 회전수 및 모터 회전수에서, 압출량이 높음에도 불구하고 수지 용융 압력과 암페어가 낮으므로, 낮은 에너지를 사용하여 양호한 성형 결과를 얻음을 알 수 있다. 이러한 높은 성형성에도 불구하고, 시트의 물성과 파이프의 내수압 시험 결과, 본 발명의 폴리에틸렌이 비교예 보다 우수하거나 동등한 결과를 나타내었다.
또한, 비교예의 파이프 내수압 시험 결과는 실시예 2와 동등하거나 열악하지만, 시트 물성은 실시예 2보다 열악한 결과를 얻었다. 이는 파이프의 생산 이후, 운송 및 시공 과정에서 노치 등이 생길 경우, 본 발명의 폴리에틸렌으로 제조한 파이프에 비해 짧은 시간에 파괴될 가능성을 나타낸다. 따라서, 95℃ 및 3.7 Mpa 조건에서의 파이프 내수압 시험(KS M ISO 1167) 및 동시에 시트에 대한 PENT 시험(ASTM D1473)에서 200 시간 이상 견디는 것(즉, 파괴 시간이 200 시간 이상임)이 바람직하고, 600 시간 이상 견디는 것이 더욱 바람직하며, 1000 시간 이상 견디는 것이 가장 바람직하다.
따라서, 본 발명의 폴리에틸렌은 종래의 폴리에틸렌과 비교하여 동등 이상의 제품 물성을 구현하면서, 성형성이 우수한 것으로서, 에너지의 사용량을 감소시키거나, 성형품의 생산성을 증가시킬 수 있는 장점이 있다. 더욱 상세하게는, 본 발명의 폴리에틸렌은 고온, 고압 난방용 파이프의 원료로써 특히 우수한 물성을 가지며, 종래의 파이프용 폴리에틸렌과 비교하여, 바이모달 구조에 의해, 높은 분자량에도 우수한 성형성을 가지는 장점이 있다.
한편, 도 1 내지 3은 각각 실시예 1 내지 3에서 얻은 폴리에틸렌의 CFC 데이터이고, 도 4 내지 6은 각각 비교예 1 내지 3에서 얻은 폴리에틸렌의 CFC 데이터이다. 도 1 내지 6에서, 가로축은 CFC 적외선 분광기로 검출한 분자량의 로그(log) 값이며, 세로축은 용출 온도를 나타낸다. 따라서, 가로축 값이 높고, 세로축의 값(온도)이 낮은 폴리에틸렌은 분자량이 크고, 공단량체가 많이 삽입된 물질을 의미한다. 상기 도 1 내지 6으로부터, 실시예의 폴리에틸렌이 비교예의 폴리에틸렌 보다, 기계적 물성 및 장기 수압 물성이 우수할 것임을 예측할 수 있다. 또한, 실시예 1 ~ 3 및 비교예 1 ~ 3의 폴리에틸렌에 대하여, TREF 용출 시험을 수행한 다음, 온도에 따른 시료의 누적 용출량(중량%)를 산출하여 도 7에 나타냈었고, 온도에 따른 시료 용출량(중량%)의 분포도(TREF distribution)를 도 8에 나타냈었다. 또한, 실시예 1 ~ 3 및 비교예 1 ~ 3의 폴리에틸렌에 대하여, 겔투과 크로마토그라피로부터 얻은 분자량 분포를 도 9에 나타내었다.

Claims (12)

  1. 하기 (1) 내지 (5)의 요건을 모두 만족시키는 폴리올레핀 수지,
    (1) 밀도(d): 0.934 내지 0.963 g/㎤,
    (2) 용융흐름지수(MIE, 190℃, 2.16 kg 하중 조건): 0.01 내지 1.0 g/10분,
    (3) 겔투과 크로마토그라피(GPC)로 측정한 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn, Molecular weight distribution(MWD)): 12 내지 60
    (4) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 2개 이상의 봉우리(peak)가 나타남.
    (5) 겔투과 크로마토그라피(GPC)로 분자량을 측정하였을 때, 중량평균 분자량(Mw)이 10,000 이하인 폴리올레핀의 함량이 15 중량%를 초과하고, 중량평균 분자량(Mw)이 1,000,000 이상인 폴리올레핀의 함량이 1.5 중량%를 초과함.
  2. 청구항 1에 있어서, 상기 밀도(d)는 0.934 내지 0.954 g/㎤이고, 상기 용융흐름지수(MIE, 190℃, 2.16 kg 하중 조건)는 0.03 내지 0.8 g/10분이며, 상기 겔투과 크로마토그라피(GPC)로 측정한 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn, Molecular weight distribution(MWD))는 13 내지 50 이고, 상기 중량평균 분자량(Mw)이 10,000 이하인 폴리올레핀의 함량이 20 중량%를 초과하고, 중량평균 분자량(Mw)이 1,000,000 이상인 폴리올레핀의 함량이 2.0 중량%를 초과하는 것인, 폴리올레핀 수지.
  3. 청구항 1에 있어서, 상기 폴리올레핀 수지의 중량평균 분자량(Mw, 겔투과 크로마토그라피법으로 측정)은 100,000 내지 400,000 인 것인, 폴리올레핀 수지.
  4. 청구항 1에 있어서, 상기 폴리올레핀 수지는, 크로스분별 크로마토그라피(CFC)법으로 분석할 경우, TREF 용출시험에서 두 개 이상의 봉우리가 나타나는 것인, 폴리올레핀 수지.
  5. 청구항 1에 있어서, 상기 폴리올레핀 수지는, 크로스분별 크로마토그라피(CFC)법으로 분석할 경우, TREF 용출시험에서, 80℃ 이하에서 용출하는 성분의 함량이 10 중량% 이상인 것인, 폴리올레핀 수지.
  6. 청구항 1에 있어서, 상기 폴리올레핀 수지의 용융 흐름 지수비(SR) 값이 50 ~ 300 이고, 흐름 활성화 에너지(Flow Activation Energy, Ea)가 25 내지 30 kJ/mol 인 것인, 폴리올레핀 수지.
  7. 청구항 1에 있어서, 상기 폴리올레핀 수지는, 95℃ 및 3.7 Mpa 조건에서의 파이프 내수압 시험(KS M ISO 1167) 및 시트에 대한 PENT 시험(ASTM D1473)에서, 파괴 시간이 200 시간 이상인 것인, 폴리올레핀 수지.
  8. 청구항 1에 있어서, 상기 폴리올레핀 수지는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 올레핀 단량체의 단독 중합체 또는 공중합체인 것인, 폴리올레핀 수지.
  9. 청구항 1에 있어서, 상기 폴리올레핀 수지는 주성분이 에틸렌, 프로필렌 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 나머지 보조 성분으로서, 탄소수 4 내지 10의 α-올레핀으로부터 유도되는 구성 단위를 0.01 내지 3.0 중량% 함유하는 것인, 폴리올레핀 수지.
  10. 청구항 1 내지 8 중 어느 하나에 따른 폴리올레핀 수지로 이루어진 성형체.
  11. 청구항 9에 있어서, 상기 성형체는 블로우 몰딩 성형체, 인플레이션 성형체, 캐스트 성형체, 압출 라미네이트 성형체, 압출 성형체, 발포 성형체, 사출 성형체, 시이트(sheet), 필름(film), 섬유, 모노필라멘트, 및 부직포로 이루어진 군으로부터 선택되는 것인 성형체.
  12. 청구항 9에 있어서, 상기 성형체는 난방용 파이프인 것인 성형체.
PCT/KR2013/002618 2012-03-30 2013-03-29 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체 WO2013147539A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SI201331093T SI2832753T1 (en) 2012-03-30 2013-03-29 Multimodal polyolefin resin and molded product prepared from it
ES13767447.9T ES2677147T3 (es) 2012-03-30 2013-03-29 Resina de poliolefina multimodal y producto moldeado preparado a partir de la misma
EP13767447.9A EP2832753B1 (en) 2012-03-30 2013-03-29 Multimodal polyolefin resin and molded product prepared therefrom
CN201380018667.8A CN104203996B (zh) 2012-03-30 2013-03-29 多峰聚烯烃树脂以及由其制备的成型体
US14/501,468 US10040883B2 (en) 2012-03-30 2014-09-30 Multimodal polyolefin resin and molded product prepared therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0033525 2012-03-30
KR1020120033525A KR101331556B1 (ko) 2012-03-30 2012-03-30 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/501,468 Continuation US10040883B2 (en) 2012-03-30 2014-09-30 Multimodal polyolefin resin and molded product prepared therefrom

Publications (1)

Publication Number Publication Date
WO2013147539A1 true WO2013147539A1 (ko) 2013-10-03

Family

ID=49260712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002618 WO2013147539A1 (ko) 2012-03-30 2013-03-29 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체

Country Status (8)

Country Link
US (1) US10040883B2 (ko)
EP (1) EP2832753B1 (ko)
KR (1) KR101331556B1 (ko)
CN (1) CN104203996B (ko)
ES (1) ES2677147T3 (ko)
PT (1) PT2832753T (ko)
SI (1) SI2832753T1 (ko)
WO (1) WO2013147539A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394943B1 (ko) 2012-11-19 2014-05-14 대림산업 주식회사 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법
KR101437509B1 (ko) * 2012-12-03 2014-09-03 대림산업 주식회사 성형성 및 기계적 물성이 우수한 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 중합 방법
KR102483085B1 (ko) * 2014-05-30 2022-12-30 닛산 가가쿠 가부시키가이샤 박막의 평탄화 방법, 평탄화 박막의 형성 방법 및 박막 형성용 바니시
KR20170049272A (ko) * 2015-10-28 2017-05-10 대림산업 주식회사 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
KR101950462B1 (ko) 2016-02-24 2019-02-20 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR101800866B1 (ko) * 2016-04-26 2017-12-21 대림산업 주식회사 용융강도가 높은 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
SG11201903393RA (en) 2016-11-08 2019-05-30 Univation Tech Llc Bimodal polyethylene
EP3676298A1 (en) 2017-08-28 2020-07-08 Univation Technologies, LLC Bimodal polyethylene
EP3681946A1 (en) 2017-09-11 2020-07-22 Univation Technologies, LLC Carbon black-containing bimodal polyethylene composition
KR102304973B1 (ko) * 2017-11-29 2021-09-24 롯데케미칼 주식회사 폴리에틸렌, 그 제조 방법 및 이를 이용한 분리막
KR101904496B1 (ko) * 2017-12-13 2018-11-28 대림산업 주식회사 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
MX2020009655A (es) 2018-03-28 2020-10-08 Univation Tech Llc Composicion de polietileno multimodal.
WO2019198694A1 (ja) * 2018-04-11 2019-10-17 三井化学株式会社 4-メチル-1-ペンテン系重合体粒子および4-メチル-1-ペンテン系樹脂の製造方法
EP3840928B1 (en) * 2018-08-21 2023-10-18 LiquiForm Group LLC Process for making containers formed of polyolefin resin
KR102116476B1 (ko) * 2019-01-18 2020-05-28 대림산업 주식회사 폴리올레핀 중합 촉매 조성물, 폴리올레핀의 제조 방법 및 폴리올레핀 수지
EP4222212A1 (en) 2020-09-30 2023-08-09 Univation Technologies, LLC Bimodal polyethylene copolymers for pe-80 pipe applications
US11578156B2 (en) 2020-10-20 2023-02-14 Chevron Phillips Chemical Company Lp Dual metallocene polyethylene with improved processability for lightweight blow molded products
CN116547310A (zh) 2020-12-02 2023-08-04 埃克森美孚化学专利公司 具有宽正交组成分布的中密度聚乙烯组合物
EP4423152A1 (en) 2021-10-26 2024-09-04 ExxonMobil Chemical Patents Inc. Highly oriented linear low density polyethylene films with outstanding processability and mechanical properties
JP7393505B2 (ja) * 2021-11-25 2023-12-06 旭化成株式会社 エチレン系樹脂組成物及び成形体
WO2023190476A1 (ja) * 2022-03-30 2023-10-05 三井化学株式会社 エチレン系重合体物組成物およびそれからなるパイプ

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461873A (en) 1982-06-22 1984-07-24 Phillips Petroleum Company Ethylene polymer blends
US4530914A (en) 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4659685A (en) 1986-03-17 1987-04-21 The Dow Chemical Company Heterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound
US4808561A (en) 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4937299A (en) 1983-06-06 1990-06-26 Exxon Research & Engineering Company Process and catalyst for producing reactor blend polyolefins
US5183867A (en) 1986-09-09 1993-02-02 Exxon Chemical Patents Inc. Polymerization process using a new supported polymerization catalyst
US5266544A (en) 1989-12-29 1993-11-30 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for the polymerization of olefins
US5395810A (en) 1991-09-30 1995-03-07 Fina Technology, Inc. Method of making a homogeneous-heterogenous catalyst system for olefin polymerization
EP0676418A1 (en) 1994-04-07 1995-10-11 BP Chemicals Limited Polymerisation process
EP0705848A2 (en) 1994-09-16 1996-04-10 Phillips Petroleum Company Compositions useful for olefin polymerization and processes therefor and therewith
WO1996013532A1 (en) 1994-10-31 1996-05-09 W.R. Grace & Co.-Conn. In situ dehydroxylation of supports and preparation of supported metallocene polyolefin catalysts
US5539076A (en) 1993-10-21 1996-07-23 Mobil Oil Corporation Bimodal molecular weight distribution polyolefins
EP0747402A1 (en) 1995-06-07 1996-12-11 Fina Technology, Inc. Ziegler-Natta catalysts with metallocenes for olefin polymerization
US5747405A (en) 1992-09-04 1998-05-05 Bp Chemicals Limited Catalyst compositions and process for preparing polyolefins
EP0717755B1 (en) 1994-07-08 1999-02-17 Montell Technology Company bv Components and catalysts for the polymerization of olefins
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
KR100562875B1 (ko) * 2000-04-13 2006-03-24 보레알리스 테크놀로지 오와이. 파이프용 중합체 조성물
KR20080026604A (ko) * 2005-06-14 2008-03-25 유니베이션 테크놀로지즈, 엘엘씨 블로우 성형 용도를 위한 증진된 escr 이봉 hdpe
US20100121006A1 (en) * 2007-05-02 2010-05-13 Joon-Hee Cho Polyolefin and preparation method thereof
US20100129579A1 (en) * 2008-11-24 2010-05-27 Fina Technology, Inc. Rapid Crack Properties in High Performance Pipe
KR100981612B1 (ko) 2010-04-30 2010-09-10 대림산업 주식회사 내부순환 유동층 중합반응기 및 이를 이용한 폴리올레핀의 중합 방법
KR100999543B1 (ko) 2010-06-30 2010-12-08 대림산업 주식회사 알파-올레핀의 기상중합 방법
KR100999551B1 (ko) 2010-06-30 2010-12-08 대림산업 주식회사 알파-올레핀의 기상중합 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798081A (en) 1985-11-27 1989-01-17 The Dow Chemical Company High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US6448341B1 (en) 1993-01-29 2002-09-10 The Dow Chemical Company Ethylene interpolymer blend compositions
FI98916C (fi) 1994-03-24 1997-09-10 Borealis Polymers Oy Menetelmä eteenin ja -olefiinin kopolymeroimiseksi
US6420298B1 (en) 1999-08-31 2002-07-16 Exxonmobil Oil Corporation Metallocene catalyst compositions, processes for making polyolefin resins using such catalyst compositions, and products produced thereby
US6605675B2 (en) 2000-12-04 2003-08-12 Univation Technologies, Llc Polymerization process
CN101230161B (zh) 2001-08-31 2011-06-01 陶氏环球技术公司 多峰聚乙烯材料
EP1359192A1 (en) 2002-04-30 2003-11-05 Solvay Polyolefins Europe-Belgium (Société Anonyme) Polyethylene pipe resins
EP1764390A1 (en) 2002-06-04 2007-03-21 Union Carbide Chemicals & Plastics Technology Corporation Polymer compositions and method of making pipes thereof
US20100291334A1 (en) 2002-12-27 2010-11-18 Univation Technologies, Llc Broad Molecular Weight Polyethylene Having Improved Properties
US6828395B1 (en) 2003-10-15 2004-12-07 Univation Technologies, Llc Polymerization process and control of polymer composition properties
US7288596B2 (en) 2003-12-22 2007-10-30 Univation Technologies, Llc Polyethylene compositions having improved tear properties
US8202940B2 (en) 2004-08-19 2012-06-19 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US7868092B2 (en) * 2005-06-14 2011-01-11 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US20060038315A1 (en) 2004-08-19 2006-02-23 Tunnell Herbert R Iii Oxygen tailoring of polyethylene resins
BRPI0517210B1 (pt) * 2004-12-17 2017-01-24 Dow Global Technologies Inc “composição adequada para tubos, composição adequada para películas sopradas, composição adequada para artigos moldados soprados, tubo, película, artigo moldado por sopro e método para melhorar o comportamento de fluxo de fluência de uma resina”
US7858702B2 (en) 2005-06-14 2010-12-28 Univation Technologies, Llc Enhanced ESCR bimodal HDPE for blow molding applications
TWI404730B (zh) 2007-02-05 2013-08-11 Univation Tech Llc 控制聚合物性質之方法
EP2003166A1 (en) 2007-06-12 2008-12-17 Repsol Ypf S.A. Polyethylene compositions and their use in the manufacture of pipes
EP2072589A1 (en) * 2007-12-20 2009-06-24 Borealis Technology Oy Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof
CN101965368B (zh) 2007-12-31 2014-08-27 陶氏环球技术有限责任公司 基于乙烯的聚合物组合物及其制备方法和由其制备的制品
TWI445751B (zh) 2008-07-16 2014-07-21 Univation Tech Llc 聚乙烯組成物
BRPI0913169B1 (pt) 2008-08-28 2019-09-10 Dow Global Technologies Llc processo para moldar um artigo por injeção e sopro e artigo
EP2410011A1 (en) 2010-07-23 2012-01-25 INEOS Manufacturing Belgium NV Polyethylene composition

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461873A (en) 1982-06-22 1984-07-24 Phillips Petroleum Company Ethylene polymer blends
US4530914A (en) 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4937299A (en) 1983-06-06 1990-06-26 Exxon Research & Engineering Company Process and catalyst for producing reactor blend polyolefins
US4808561A (en) 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4659685A (en) 1986-03-17 1987-04-21 The Dow Chemical Company Heterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound
US5183867A (en) 1986-09-09 1993-02-02 Exxon Chemical Patents Inc. Polymerization process using a new supported polymerization catalyst
US5266544A (en) 1989-12-29 1993-11-30 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for the polymerization of olefins
US5395810A (en) 1991-09-30 1995-03-07 Fina Technology, Inc. Method of making a homogeneous-heterogenous catalyst system for olefin polymerization
US5747405A (en) 1992-09-04 1998-05-05 Bp Chemicals Limited Catalyst compositions and process for preparing polyolefins
US5539076A (en) 1993-10-21 1996-07-23 Mobil Oil Corporation Bimodal molecular weight distribution polyolefins
EP0676418A1 (en) 1994-04-07 1995-10-11 BP Chemicals Limited Polymerisation process
EP0717755B1 (en) 1994-07-08 1999-02-17 Montell Technology Company bv Components and catalysts for the polymerization of olefins
EP0705848A2 (en) 1994-09-16 1996-04-10 Phillips Petroleum Company Compositions useful for olefin polymerization and processes therefor and therewith
WO1996013532A1 (en) 1994-10-31 1996-05-09 W.R. Grace & Co.-Conn. In situ dehydroxylation of supports and preparation of supported metallocene polyolefin catalysts
EP0747402A1 (en) 1995-06-07 1996-12-11 Fina Technology, Inc. Ziegler-Natta catalysts with metallocenes for olefin polymerization
US6894128B2 (en) 1999-10-22 2005-05-17 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
KR100562875B1 (ko) * 2000-04-13 2006-03-24 보레알리스 테크놀로지 오와이. 파이프용 중합체 조성물
KR20080026604A (ko) * 2005-06-14 2008-03-25 유니베이션 테크놀로지즈, 엘엘씨 블로우 성형 용도를 위한 증진된 escr 이봉 hdpe
US20100121006A1 (en) * 2007-05-02 2010-05-13 Joon-Hee Cho Polyolefin and preparation method thereof
US20100129579A1 (en) * 2008-11-24 2010-05-27 Fina Technology, Inc. Rapid Crack Properties in High Performance Pipe
KR100981612B1 (ko) 2010-04-30 2010-09-10 대림산업 주식회사 내부순환 유동층 중합반응기 및 이를 이용한 폴리올레핀의 중합 방법
KR100999543B1 (ko) 2010-06-30 2010-12-08 대림산업 주식회사 알파-올레핀의 기상중합 방법
KR100999551B1 (ko) 2010-06-30 2010-12-08 대림산업 주식회사 알파-올레핀의 기상중합 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOL. SYMP., vol. 207, 2007, pages 13 - 28
See also references of EP2832753A4

Also Published As

Publication number Publication date
ES2677147T3 (es) 2018-07-30
EP2832753B1 (en) 2018-04-11
SI2832753T1 (en) 2018-08-31
KR101331556B1 (ko) 2013-11-20
EP2832753A4 (en) 2015-11-25
US20150017365A1 (en) 2015-01-15
PT2832753T (pt) 2018-07-13
CN104203996A (zh) 2014-12-10
US10040883B2 (en) 2018-08-07
CN104203996B (zh) 2018-04-20
KR20130111042A (ko) 2013-10-10
EP2832753A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2013147539A1 (ko) 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
WO2017074077A1 (ko) 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
KR101437509B1 (ko) 성형성 및 기계적 물성이 우수한 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 중합 방법
KR101132180B1 (ko) 멀티모달 폴리올레핀 제조를 위한 촉매 및 이를 이용한 올레핀의 중합방법
US9975977B2 (en) Multimodal polyolefin resin having high melt strength and molded product prepared with the same
US6995216B2 (en) Process for manufacturing single-site polyolefins
JP5587556B2 (ja) エチレン系重合体、該エチレン系重合体を含む熱可塑性樹脂組成物およびこれらから得られる成形体
RU2754179C1 (ru) Получение мультимодального полиолефина многоэтапным способом непрерывной полимеризации
KR101904496B1 (ko) 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
KR102060669B1 (ko) 용융강도가 높은 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 멀티모달 폴리올레핀 공중합체
JP2009197226A (ja) エチレン共重合体、該エチレン共重合体を含む熱可塑性樹脂組成物およびこれらから得られる成形体
WO2005113614A1 (en) Process for the preparation of bimodal polyethylene
KR101269202B1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀의 중합 방법
JP3660066B2 (ja) 溶融張力が改良されたポリエチレン組成物の製造方法
KR20230069640A (ko) 광택성이 향상된 폴리에틸렌 수지 조성물 및 이를 이용하여 제조된 파이프
JP2016186020A (ja) エチレン系重合体組成物からなるパイプ成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013767447

Country of ref document: EP