WO2013147197A1 - 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法 - Google Patents

耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法 Download PDF

Info

Publication number
WO2013147197A1
WO2013147197A1 PCT/JP2013/059617 JP2013059617W WO2013147197A1 WO 2013147197 A1 WO2013147197 A1 WO 2013147197A1 JP 2013059617 W JP2013059617 W JP 2013059617W WO 2013147197 A1 WO2013147197 A1 WO 2013147197A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
pipe
hydrogen
steel pipe
Prior art date
Application number
PCT/JP2013/059617
Other languages
English (en)
French (fr)
Inventor
原 卓也
泰志 藤城
太郎 村木
豪 鈴木
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201380004638.6A priority Critical patent/CN104024461B/zh
Priority to KR1020147022203A priority patent/KR101615842B1/ko
Priority to EP13768001.3A priority patent/EP2832879B1/en
Priority to BR112014019281-2A priority patent/BR112014019281B1/pt
Priority to JP2013533435A priority patent/JP5392441B1/ja
Publication of WO2013147197A1 publication Critical patent/WO2013147197A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Definitions

  • HIC resistance hydrogen-induced cracking resistance
  • the present invention relates to a steel pipe for a line pipe and a steel plate for a line pipe used therefor.
  • sour environment An environment in which wet hydrogen sulfide (H 2 S) gas exists (hereinafter referred to as “sour environment”) exists in oil, natural gas drilling, production, and transportation, and steel pipes used therein are exposed to the sour environment. If transportation line pipes for petroleum, natural gas, etc. are exposed to a sour environment, there is a concern about the occurrence of hydrogen-induced cracking (hereinafter referred to as “HIC”). This is because in the sour environment, hydrogen easily enters the steel from the surface.
  • HIC hydrogen-induced cracking
  • HIC is hydrogen accumulated around defects in steel, such as stretched MnS present in the center segregation part of steel, accumulated Ti and Nb carbonitrides, and oxide inclusions in the oxide accumulation zone. caused by.
  • Patent Documents 1 to 3 disclose a method for improving the HIC resistance by suppressing the segregation of Mn to the center of the steel sheet.
  • Patent Document 1 proposes a steel sheet in which the ratio of the Mn content of the segregation part to the average Mn content in the steel is suppressed.
  • Patent Documents 2 and 3 disclose a high-strength line pipe that limits the P concentration of the segregation part in addition to the size of the Mn segregation spot and further utilizes Ca.
  • Patent Document 4 discloses a hot-rolled steel sheet having excellent HIC resistance, focusing on Nb segregation in addition to Mn segregation.
  • Patent Documents 5 and 6 disclose methods for improving HIC resistance by suppressing inclusions such as carbides and nitrides of Ti and Nb.
  • Patent Documents 7 and 8 disclose steel pipes that prevent the occurrence of HIC by suppressing segregation of Mn, Nb, and Ti, and further by setting the maximum hardness of the central segregation part to 300 Hv or less.
  • the present invention has been made in view of the above circumstances, and is most suitable for steel pipes used for line pipes traversing the deep sea, and has an extremely high t / D and excellent HIC resistance as a whole steel pipe.
  • An object of the present invention is to provide a steel pipe for a line pipe that prevents HIC on the surface layer of the steel sheet and a line pipe steel sheet used therefor.
  • the present inventors have a steel pipe for a high-strength line pipe that has excellent HIC resistance near the inner and outer surfaces of the steel pipe even when t / D is high and has excellent resistance to hydrogen-induced cracking that can prevent HIC on the surface layer, and The earnest research was done about the conditions for obtaining the steel plate used for this.
  • the hardness of the central segregation part is reduced as in conventional steel pipes for line pipes.
  • the surface layer region has a high cooling rate and tends to become hard.
  • the present inventors can reduce the hardness of the surface layer region of the steel sheet, which was conventionally about 350 Hv, to 300 Hv or less, resulting in a high t / It was found that even with the steel pipe of D, HIC generation from inclusions in the vicinity of the inner and outer surfaces can be suppressed, and a steel pipe having excellent HIC resistance near the inner and outer surfaces of the steel pipe can be obtained.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the steel plate used as a base material is mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 1.2 to 1.8%, Nb: 0.00. 001 to 0.10%, Ca: 0.0005 to 0.0050%, N: 0.0010 to 0.0060%, O: 0.0001 to 0.0035%, and P: 0.01 %, S: 0.0020% or less, Al: 0.030% or less, Ti: 0.030% or less, S and Ca contents satisfy S / Ca ⁇ 0.5, the balance Fe and unavoidable impurities, maximum Mn segregation degree: 2.0 or less, Nb segregation degree: 4.0 or less, Ti segregation degree: 4.0 or less, length of unbonded part of center segregation part: 0.0.
  • the total fraction of polygonal ferrite and processed ferrite having an aspect ratio of 3 or more in the surface layer region from the outermost surfaces of both the front and back plates to a depth of 5 mm is 0.1 to 20%
  • the thickness t [ mm] and the outer diameter D [mm] of the steel pipe after pipe forming satisfy t ⁇ 25 and t / D ⁇ 0.035.
  • the steel sheet is in% by mass, further Ni: 0.01 to 2.0%, Cu: 0.01 to 1.0%, Cr: 0.01 to 1.0%, Mo: 0.00. 01 to 0.60%, W: 0.01 to 1.0%, V: 0.01 to 0.10%, Zr: 0.0001 to 0.050%, Ta: 0.0001 to 0.050% , B: 0.0001 to 0.0020%, REM: 0.0001 to 0.01%, Mg: 0.0001 to 0.01%, Y: 0.0001 to 0.005%, Hf: 0.0001
  • the high-strength line pipe excellent in resistance to hydrogen-induced cracking as described in (1) above, containing one or more of 0.005% to 0.005% and Re: 0.0001 to 0.005% Steel pipe.
  • a steel sheet for high-strength line pipe excellent in hydrogen-induced crack resistance used in the steel pipe for high-strength line pipe excellent in hydrogen-induced crack resistance described in (1) or (2) above.
  • a steel sheet for high-strength line pipe excellent in hydrogen-induced crack resistance used for the steel pipe for high-strength line pipe excellent in hydrogen-induced crack resistance in (3) above.
  • the start temperature of the first reheat treatment is 300 ° C. or more
  • the end temperature of all the reheat treatments is less than 750 ° C.
  • the molten steel is in% by mass, further Ni: 0.01 to 2.0%, Cu: 0.01 to 1.0%, Cr: 0.01 to 1.0%, Mo: 0.00. 01 to 0.60%, W: 0.01 to 1.0%, V: 0.01 to 0.10%, Zr: 0.0001 to 0.050%, Ta: 0.0001 to 0.050% , B: 0.0001 to 0.0020%, REM: 0.0001 to 0.01%, Mg: 0.0001 to 0.01%, Y: 0.0001 to 0.005%, Hf: 0.0001
  • the steel pipe for high-strength linepipe and steel plate for high-strength linepipe of the present invention has less segregation of Mn, Nb, Ti, the length of the non-crimped part of the center segregation part and the maximum hardness, and the surface layer region The hardness of is also suppressed. As a result, the HIC resistance is surely and sufficiently excellent, and it is extremely excellent as a material for a line pipe used in a sour environment.
  • the steel pipe for line pipe of the present invention is such that the thickness t [mm] of the steel sheet and the outer diameter D [mm] of the steel pipe after pipe formation satisfy t ⁇ 25 and t / D ⁇ 0.035.
  • Nb Ti segregation degree, length and maximum hardness of the non-crimped portion of the center segregation portion, maximum hardness and structure of the surface layer region from the outermost surface of both the front and back plate surfaces to a depth of 5 mm are appropriately defined. .
  • C 0.02 to 0.08%
  • C is an element that improves the strength of the steel and needs to be added in an amount of 0.02% or more. If the amount of C exceeds 0.08%, the formation of carbides is promoted and the HIC resistance is impaired. In order to secure more excellent HIC resistance and suppress deterioration of weldability and toughness, the C content is preferably 0.06% or less.
  • Si 0.01-0.5%
  • Si is a deoxidizing element, and addition of 0.01% or more is necessary.
  • the amount of Si exceeds 0.5%, the toughness of the weld heat affected zone (HAZ) decreases.
  • Mn 0.8 to 1.8%
  • Mn is an element that improves strength and toughness, and needs to be added in an amount of 0.8% or more. When the amount of Mn exceeds 1.8%, the HIC resistance decreases. In order to further suppress HIC, the Mn content is preferably 1.6% or less.
  • Nb is an element that forms carbides and nitrides, promotes the refinement of the steel sheet as it is rolled, and contributes to the improvement of strength. In order to obtain the effect, it is necessary to add 0.0001% or more of Nb. If Nb is added excessively, the maximum degree of segregation of Nb is increased, the accumulation of Nb carbonitrides is caused, and the HIC resistance is lowered. Therefore, the upper limit of the Nb amount is 0.10%. When HIC resistance is more important, the Nb content is preferably 0.05% or less.
  • Ca 0.0005 to 0.0050%
  • Ca is an element that produces sulfide CaS, suppresses the production of MnS extending in the rolling direction, and contributes significantly to the improvement of HIC resistance. If the addition amount of Ca is less than 0.0005%, the effect cannot be obtained. When the addition amount of Ca exceeds 0.0050%, oxides accumulate and the HIC resistance is impaired.
  • N is an element that forms nitrides such as TiN and NbN.
  • nitrides such as TiN and NbN.
  • the N content exceeds 0.0060%, Ti and Nb carbonitrides are easily accumulated, and the HIC resistance is impaired.
  • the N content is preferably 0.0035% or less in order to suppress TiN coarsening.
  • O is an impurity and is limited to 0.0035% or less in order to suppress the accumulation of oxides and improve the HIC resistance.
  • the O content is preferably 0.0035% or less, and more preferably 0.0020% or less. The smaller the amount of O, the better.
  • the refining time becomes long and the cost becomes high, so the lower limit is made 0.0001%.
  • P 0.01% or less
  • P is an impurity. If the content exceeds 0.01%, the HIC resistance is impaired, and the toughness of the HAZ decreases. Therefore, the P content is limited to 0.01% or less.
  • S is an element that reduces the HIC resistance by generating MnS that extends in the rolling direction during hot rolling.
  • the S content is preferably 0.0010% or less. The smaller the amount of S, the better.
  • the lower limit is preferably made 0.0001% or more from the viewpoint of manufacturing cost.
  • Al 0.030% or less
  • Al is a deoxidizing element, but when the addition amount exceeds 0.030%, an integrated cluster of Al oxides is generated.
  • the Al content is preferably 0.017% or less.
  • the lower limit of the amount of Al is not particularly limited, it is preferable to add Al in an amount of 0.0005% or more in order to reduce the amount of oxygen in the molten steel.
  • Ti 0.030% or less
  • Ti is an element usually used as a deoxidizer or nitride-forming element for refining crystal grains, but is an element that reduces HIC resistance and toughness by forming carbonitride. Therefore, the Ti content is limited to 0.030% or less.
  • FIG. 1 shows the relationship between CLR (HIC length ratio) and S / Ca in the HIC test of 0.04% C-1.25% Mn steel.
  • CLR HIC length ratio
  • S / Ca ratio when the S / Ca ratio is 0.5 or more, HIC occurs. This is because when the S / Ca ratio is 0.5 or more, MnS is generated and MnS stretched during rolling is formed, and as a result, the HIC resistance deteriorates. Therefore, the S / Ca ratio needs to be less than 0.5.
  • the steel pipe for line pipes and the steel sheet for line pipes of the present invention include Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B as elements that improve strength and toughness as necessary.
  • One or two or more elements selected from may be added. The reason for limiting the addition amount of these optional additive elements is as follows.
  • Ni 0.01-2.0%
  • Ni is an element effective for improving toughness and strength, and in order to obtain the effect, addition of 0.01% or more is necessary. When the added amount of Ni exceeds 2.0%, the HIC resistance and weldability deteriorate.
  • Cu 0.01 to 1.0%
  • Cu is an element effective for increasing strength without reducing toughness, and in order to obtain the effect, addition of 0.01% or more is necessary. If the added amount of Cu exceeds 1.0%, cracks are likely to occur during heating of the steel slab or during welding.
  • Cr 0.01 to 1.0%
  • Cr is an element that improves the strength of steel by precipitation strengthening, and in order to obtain the effect, addition of 0.01% or more is necessary.
  • the added amount of Cr exceeds 1.0%, the hardenability is increased and a bainite structure is formed. As a result, the HIC resistance and the toughness are lowered.
  • Mo 0.01 to 0.60%
  • Mo is an element that improves hardenability and at the same time forms carbonitrides and improves strength. In order to obtain the effect, addition of 0.01% or more is necessary. If the amount of Mo exceeds 0.60%, the cost increases. If the strength of the steel is excessively increased, the HIC resistance and toughness may be lowered. Therefore, the preferable addition amount of Mo is 0.20% or less.
  • W 0.01 to 1.0%
  • W is an element effective for improving the strength, and in order to obtain the effect, addition of 0.01% or more is necessary. If the addition amount of W exceeds 1.0%, the toughness may be lowered.
  • Zr 0.0001 to 0.050%
  • Zr is an element that contributes to the improvement of strength by forming carbides and nitrides like V, and in order to obtain the effect, it is necessary to add 0.0001% or more. If the amount of Zr added exceeds 0.050%, the toughness may decrease.
  • Ta 0.0001 to 0.050%
  • Ta is an element that forms carbides and nitrides and contributes to the improvement of strength. In order to obtain the effect, it is necessary to add 0.0001% or more. If the amount of Ta exceeds 0.050%, the toughness may decrease.
  • B is an element that segregates at the grain boundaries of steel and contributes significantly to improving the hardenability. In order to obtain this effect, 0.0001% or more of B must be added. B is an element that generates BN, lowers the solid solution N, and contributes to the improvement of the toughness of the weld heat affected zone, so addition of 0.0005% or more is preferable. When the addition amount of B exceeds 0.0020%, segregation to the grain boundary becomes excessive, and the toughness may be lowered.
  • the steel pipe for line pipes and the steel sheet for line pipes of the present invention include REM (rare earth element), Mg, Y, Hf, and One or more selected from Re may be added.
  • REM rare earth element
  • Mg Mg
  • Y Y
  • Hf Hf
  • One or more selected from Re may be added. The reason for limiting the addition amount of these optional additive elements is as follows.
  • REM rare earth element
  • REM is an element added as a deoxidizing agent and a desulfurizing agent, and 0.0001% or more must be added to obtain the effect.
  • the amount of REM added exceeds 0.010%, coarse oxides are generated, and the HIC resistance, the toughness of the base material and HAZ may be lowered.
  • Mg is an element added as a deoxidizing agent and a desulfurizing agent.
  • a fine oxide is generated and contributes to improvement of HAZ toughness.
  • Y like Ca, is an element that generates sulfides, suppresses the generation of MnS elongated in the rolling direction, and contributes to improvement in HIC resistance. In order to obtain such an effect, it is necessary to add Y in an amount of 0.0001% or more. When the added amount of Y exceeds 0.005%, the oxides increase, aggregate and coarsen, and the HIC resistance is impaired.
  • Hf 0.0001 to 0.005%
  • Hf is an element that generates sulfides and suppresses the generation of MnS elongated in the rolling direction and contributes to improvement in HIC resistance. In order to obtain such an effect, it is preferable to add 0.0001% or more of Hf. On the other hand, if the amount of Hf exceeds 0.005%, the oxides increase, aggregate and coarsen, and the HIC resistance is impaired.
  • Re like Ca, is an element that generates sulfides and suppresses the generation of MnS elongated in the rolling direction and contributes to improvement in HIC resistance. In order to obtain such an effect, it is necessary to add 0.0001% or more of Re. When the added amount of Re exceeds 0.005%, the oxide increases, aggregates and coarsens, and the HIC resistance is impaired.
  • each element is Fe and inevitable impurities. It should be noted that the above-described Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B are all allowed to contain a trace amount less than the lower limit as an impurity. Also, REM, Mg, Y, Hf, and Re are allowed to contain trace amounts less than the respective lower limit values as impurities.
  • the HIC is caused by hydrogen accumulated around the stretched MnS present in the center segregation portion of the steel, accumulated Ti, Nb carbonitride and the like.
  • the maximum Mn segregation degree of the steel plate and the steel pipe needs to be 2.0 or less. Furthermore, by suppressing the accumulated Ti and Nb carbonitrides, the occurrence of HIC in the steel pipe for line pipe and the steel sheet for line pipe can be remarkably prevented.
  • the N content is 0.0050% or less
  • the C content is 0.06% or less
  • the maximum segregation degree of Nb and Ti is 4.0 or less, respectively. do it.
  • the maximum Mn segregation degree is the maximum Mn amount of the central segregation portion with respect to the average Mn amount in the Mn concentration distribution in the plate thickness direction of the steel sheet and the Mn concentration distribution in the thickness direction of the tube wall of the steel pipe.
  • the Nb segregation degree and the Ti segregation degree are the average Nb amount (Ti amount) in the concentration distribution of Nb and Ti in the plate thickness direction of the steel sheet and the concentration distribution of Nb and Ti in the thickness direction of the tube wall of the steel pipe. It is the maximum Nb amount (Ti amount) averaged at the center segregation part.
  • the maximum Mn segregation degree is obtained by measuring the Mn concentration distribution of steel plates and steel pipes by EPMA (Electron Probe Micro Analyzer) or CMA (Computer Aided Micro Analyzer) capable of image processing the measurement results by EPMA.
  • the measurement object is an HIC test piece (20 mm width ⁇ 20 mm thickness ⁇ 100 mm length), and the measurement area is 20 mm width (test piece width) ⁇ 20 mm thickness (HIC test piece thickness) of the HIC test piece.
  • the Nb segregation degree and the Ti segregation degree the same region may be measured by EPMA or CMA, and the Nb concentration distribution and the Ti concentration distribution may be measured, respectively.
  • the probe diameter of EPMA (or CMA) is 2 ⁇ m.
  • the concentration of Mn in the measurement area of 20 mm width (HIC test piece width) ⁇ 20 mm thickness (HIC test piece thickness) is measured in the plate thickness direction and plate width direction using EPMA with a beam diameter of 50 ⁇ m.
  • the Mn concentration distribution is measured at regular intervals, and the average value in the measured Mn concentration distribution is defined as the average Mn concentration.
  • the beam diameter was changed to 2 ⁇ m, and 50 points ⁇ 50 at equal intervals in the plate thickness direction and the plate width direction.
  • the Mn concentration at the point is measured, and the maximum Mn concentration is obtained from the distribution.
  • the ratio of the maximum Mn concentration obtained with a beam diameter of 2 ⁇ m and the average Mn concentration obtained with a beam diameter of 50 ⁇ m is defined as the maximum Mn segregation degree.
  • the Nb segregation degree and the Ti segregation degree use EPMA, and the concentration of Nb and Ti in the thickness direction in a measurement region of 20 mm width (HIC test piece width) ⁇ 20 mm thickness (HIC test piece thickness) with a beam diameter of 50 ⁇ m. After the distribution is measured, the place where the amount of Nb and Ti is most concentrated is obtained by measuring the concentration of Nb and Ti in a region of 1 mm (width) ⁇ 1 mm (thickness) with a beam diameter of 2 ⁇ m.
  • each segregation degree is obtained by excluding the measured value in that region.
  • the uncrimped portion is a portion in which a void generated in a steel piece during solidification is not crimped by hot rolling and remains on the steel plate.
  • the length of the non-bonded portion can be measured by nondestructive inspection such as ultrasonic waves.
  • the reason why the uncompressed portion remains in the center segregation portion is mainly hydrogen contained in the steel slab before hot rolling.
  • the steel is continuously cast after being melted by a converter and secondary refining, the steel is solidified, cooled, and contracted, so that a void is likely to be generated particularly at the center of the steel slab.
  • this void has a negative pressure, if the amount of hydrogen contained in the steel slab is large, hydrogen gas enters the void.
  • the hydrogen contained in the steel when melted by secondary refining remains almost intact in the voids in the steel slab after continuous casting.
  • the structure of the steel slab is austenite having a large amount of hydrogen that can be dissolved in face-centered cubic crystals, so that hydrogen is not diffused out of the steel slab. If the steel slab is heated and subjected to reduction by hot rolling, the internal voids in the steel slab become smaller, but the pressure of hydrogen gas contained in the voids increases in inverse proportion to the size of the voids. For this reason, the gap cannot be crimped even by hot rolling, and an uncompressed portion remains in the steel sheet, particularly in the central segregation portion.
  • the amount of hydrogen in the steel is a value obtained by measuring molten steel collected after secondary refining by a combustion method.
  • the hydrogen partial pressure in the atmosphere during secondary refining may be reduced.
  • the hydrogen partial pressure can be reduced by blowing inert gas, nitrogen, or the like into the atmosphere.
  • the amount of hydrogen remaining in the steel sheet after hot rolling is such that hydrogen is dissipated to the outside if the steel sheet is cooled and the metal structure is transformed from austenite to ferrite, bainite, martensite, pearlite, etc. Reduced compared to amount.
  • Maximum hardness of center segregation part 300 Hv or less
  • it is effective to set the maximum hardness of the center segregation part to 300 Hv or less.
  • the maximum hardness of the center segregation part is measured by corroding with 3% nitric acid + 97% nital solution and then performing a Vickers hardness test with a load of 25 g in accordance with JIS Z 2244.
  • the center segregation part is a part where the concentration of Mn measured by EPMA or CMA is maximized.
  • the maximum hardness of the surface layer region is determined by performing a Vickers hardness test at a predetermined interval (for example, 0.1 mm interval) in the depth direction from the outermost surface to a depth of 5 mm. To do.
  • the steel structure of the base material is a uniform and fine acicular ferrite or bainite structure. Therefore, the structure of the steel base material for the high-strength line pipe of the present invention considering HIC resistance is basically preferably bainite or acicular ferrite.
  • steel pipes for thick line pipes are often required to have characteristics that can withstand drop weight tests such as DWTT.
  • the structure of a conventional steel pipe for line pipes does not have the characteristics to withstand a drop weight test such as DWTT, but if 0.1% or more of polygonal ferrite and processed ferrite are generated, DWTT characteristics are improved.
  • DWTT drop weight test
  • FIG. 2 shows the relationship between the total area ratio of polygonal ferrite and processed ferrite on the surface layer of the steel pipe and the HIC area ratio.
  • 3 o'clock, 6 o'clock, and 9 o'clock are the positions in the circumferential direction of the steel pipe from which the test piece was taken, the welded part was taken as 0 o'clock, and 3 o'clock (90 °) and 6 o'clock as viewed from the bottom of the steel pipe ( 180 °), a specimen was taken from 9 o'clock (270 °), and the tissue was observed.
  • the HIC area ratio greatly exceeds 3%. Therefore, even when polygonal ferrite and processed ferrite are included in the surface region, in order to reliably improve the HIC resistance, the total fraction of polygonal ferrite and processed ferrite is suppressed to 20% or less in terms of area ratio. It is desirable. From the viewpoint of HIC resistance, the smaller the processed ferrite, the better.
  • the fraction of processed ferrite is preferably 10% or less in terms of area ratio, more preferably not present.
  • the fraction of polygonal ferrite and processed ferrite by taking five 200 ⁇ optical micrographs, extracting polygonal ferrite and processed ferrite, and using the values obtained by image analysis.
  • the white area is polygonal ferrite or processed ferrite
  • the aspect ratio (the ratio of the horizontal length to the vertical length) is less than 3
  • the polygonal ferrite is the one with an aspect ratio of 3 or more Defined as processed ferrite.
  • the rolling end temperature and / or the water cooling start temperature is set to 750 ° C. or higher, the fraction of polygonal ferrite and processed ferrite in the surface layer region can be set to 20% or lower.
  • the rolling end temperature and / or the water cooling start temperature is lower than 750 ° C., the polygonal ferrite and the processed ferrite in the surface layer region tend to increase by over 20%. It is preferable to set it as 750 degreeC or more.
  • the rolling end temperature or the water cooling start temperature it is more preferable to set the rolling end temperature or the water cooling start temperature to 770 ° C. or higher.
  • the above-mentioned fraction means the area ratio when observed in the L cross section (surface in the plate thickness direction and rolling direction).
  • the structure other than the polygonal ferrite and the processed ferrite that is, the structure occupying an area of 80% or more of the surface layer region may be bainite and / or acicular ferrite pearlite.
  • the structure on the inner side from the surface layer region is not particularly limited, but as a steel plate and steel pipe for high-strength line pipe with a tensile strength of 500 MPa or more, a high strength of the base material, base material toughness, HAZ toughness, weldability, etc. are secured.
  • a structure mainly composed of acicular ferrite or bainite may be used.
  • the steel having the above-described composition is melted by a conventional method so that the hydrogen content in the molten steel after the secondary refining is 2.5 ppm or less, and then steel slab is obtained by continuous casting. Heat to thick plate rolling to obtain a steel plate.
  • continuous casting as described above, it is preferable to apply light reduction while controlling the amount of reduction in accordance with the distribution in the width direction of the central solid phase ratio at the final solidification position of the slab.
  • the austenite particle size can be 20 ⁇ m or less.
  • the steel sheet after rolling is subjected to water cooling at a start temperature of 750 ° C. or higher and a stop temperature of 400 to 600 ° C.
  • the stop temperature of water cooling here refers to the maximum temperature of the steel sheet that has been raised by recuperation after stopping the cooling water.
  • the recrystallization temperature range is a temperature range where recrystallization occurs after rolling, and is generally over 900 ° C. for the steel components of the present invention.
  • the non-recrystallization temperature range is a temperature range in which recrystallization and ferrite transformation do not occur after rolling, and is generally 750 to 900 ° C. for the components of the steel of the present invention.
  • Rolling in the recrystallization temperature range is called recrystallization rolling or rough rolling, and rolling in the non-recrystallization temperature range is called non-recrystallization rolling or finish rolling.
  • the maximum hardness of the center segregation part can be suppressed to 300 Hv or less by starting water cooling from a temperature of 750 ° C. or higher and setting the water cooling stop temperature to 400 ° C. or higher.
  • the water cooling start temperature is less than 750 ° C.
  • C carbon
  • C is discharged from the ferrite to austenite
  • C is concentrated in the austenite phase.
  • the austenite phase enriched with C is transformed into hard martensite containing a large amount of C during the cooling process.
  • the water cooling start temperature is set to 750 ° C. or higher, the formation of hard martensite can be suppressed, so that the maximum hardness of the central segregation portion can be suppressed to 300 Hv or lower.
  • the water cooling stop temperature is set to 400 ° C. or higher, the hard martensite after transformation is partially decomposed, so that the maximum hardness of the center segregation portion can be suppressed to 300 Hv or less. If the water cooling stop temperature is too high, the strength of the steel pipe is lowered, so the water cooling stop temperature is set to 600 ° C. or less.
  • the maximum hardness from the outermost layer to 5 mm can be reduced to 300 Hv or less by performing recuperation at least twice. This is because the tempering effect is exhibited by recuperating and the hardness of the surface layer region can be lowered.
  • the lower limit of the recuperation temperature is preferably 300 ° C.
  • the upper limit temperature is preferably 750 ° C.
  • recuperation temperature When the recuperation temperature is less than 300 ° C., 50% or more of martensite is generated and cured, and the hardness of the surface layer does not decrease. When the recuperation temperature exceeds 750 ° C., the hardness of the surface layer region is too low.
  • 3A and 3B show examples of the cooling pattern of the cooling process in the present invention.
  • 1 is a temperature change due to reheat treatment
  • 2 is a recuperation start temperature
  • 3 is a recuperation end temperature.
  • the temperature of 4 in the graph is the water cooling stop temperature.
  • Such a cooling pattern can be controlled by switching on and off a nozzle that discharges cooling water, and adjusting the amount of water.
  • FIG. 3C is a cooling pattern by a conventional manufacturing method. Since the temperature of the steel plate rises after the cooling water is stopped, one recuperation is included.
  • the total fraction of polygonal ferrite and processed ferrite can be suppressed to 20% or less in the structure of the surface layer region from the outermost surface to 5 mm.
  • the water cooling start temperature is lower than 750 ° C., it falls below the ⁇ / ⁇ transformation temperature of steel of 500 MPa or more, so polygonal ferrite and processed ferrite are easily generated, and the total fraction of polygonal ferrite and processed ferrite is 20%. Over.
  • the butt portion is arc-welded to form a welded steel pipe.
  • the forming step is preferably a UOE step of C-pressing, U-pressing or O-pressing the steel plate.
  • arc welding it is preferable to employ submerged arc welding from the viewpoint of the toughness and productivity of the weld metal.
  • the heat input during arc welding is not particularly limited, but usually it is preferably 2.0 to 15.0 kJ / mm.
  • Tables 1A to 1C Steels 1 to 35 having chemical components shown in Tables 1A to 1C were melted, and steel pieces having a thickness of 240 mm or 300 mm were obtained by continuous casting. Tables 1A to 1C also show analytical values of the hydrogen content of the molten steel.
  • the first recuperation start and end temperatures and the second recuperation start temperature are shown in Table 2A.
  • the second recuperation end temperature (or the first recuperation end temperature when the number of recuperations is one) is the cooling end temperature.
  • the obtained steel sheet was formed into a tubular shape by a C press, U press, and O press, end surfaces were tack welded, main welding was performed from the inner and outer surfaces, and after pipe expansion, a steel pipe for a line pipe was obtained. Note that submerged arc welding was applied to the main welding.
  • Tensile test pieces, HIC test pieces, and macro test pieces were sampled from the obtained steel plates and steel pipes and subjected to respective tests.
  • the HIC test was performed according to NACETM0284.
  • the segregation degree of Mn, Nb, and Ti was measured by EPMA using a macro test piece.
  • the degree of segregation by EPMA was measured with probe diameters of 50 ⁇ m and 2 ⁇ m.
  • the Vickers hardness of the central segregation part and the Vickers hardness in the surface layer region from the outermost surface of the steel plate and the steel pipe to the depth of 5 mm were measured according to JIS Z 2244. Vickers hardness was measured at a site where the load was 25 g and the Mn concentration was highest in the distribution of Mn concentration in the thickness direction measured by EPMA.
  • Tables 2A to 2C show the steel sheet thickness, maximum Mn segregation degree, Nb segregation degree, Ti segregation degree, unbonded part length, center segregation part maximum hardness, surface area maximum hardness, tensile strength and HIC.
  • the length ratio (CLR) of HIC obtained by the test and the total fraction of polygonal ferrite and processed ferrite in the surface layer region are shown.
  • Table 3 shows the thickness of the steel pipe, the heat input of the main welding, and the length ratio (CLR) of the HIC determined by the HIC test.
  • the maximum Mn segregation degree, Nb segregation degree, Ti segregation degree, the length of the non-crimped part, and the maximum hardness of the central segregation part in the steel pipe are all equivalent to the steel sheet, and the tensile strength of the steel pipe is Is about 10 to 20 MPa.
  • Steel plates 1 to 23 are examples of the present invention. As shown in Tables 2A to 2C, the maximum Mn segregation degree of these steel sheets was 1.6 or less, the Nb segregation degree was 4.0 or less, and the Ti segregation degree was 4.0 or less. The maximum hardness from the outermost surface of the upper and lower surfaces of the steel plate and the inner and outer surfaces of the steel pipe to 5 mm thickness was 300 Hv or less, and the maximum hardness of the central segregation part was 300 Hv or less. Furthermore, the total of polygonal ferrite and processed ferrite The fraction was also 20% or less. Therefore, no HIC is generated by the HIC test. Similar results were obtained for steel pipes made of these steel plates 1 to 23 as shown in Table 3.
  • Steel plates 24 to 43 are comparative examples that are outside the scope of the present invention.
  • the steel plates 24 to 35 are out of the scope of the present invention in which any of the basic components or any of the additional elements is included.
  • the steel plates 36 to 43 do not satisfy the production conditions of the present invention.
  • HIC was generated in the HIC test, CLR exceeded 3%, or ductile fracture of DWTT at 0 ° C.
  • the area ratio was less than 85%.
  • FIG. 4A shows a hardness distribution from the outermost surface layer of steel 11 manufactured by the manufacturing method of the present invention to a thickness of 5 mm
  • FIG. 4B shows a structural photograph of the surface layer of steel 11.
  • FIG. 5A shows a hardness distribution from the outermost layer of steel 40 manufactured by a conventional method to a thickness of 5 mm
  • FIG. 5B shows a structural photograph of the surface layer of steel 40.
  • the hardness distribution of the steel sheet of the present invention shown in FIG. 4A is as low as 245 Hv in the maximum hardness, but the hardness distribution of the steel sheet manufactured by the conventional method shown in FIG. 5A has a portion where the hardness locally exceeds 300 Hv. Can be the starting point of HIC. Since the steel plate manufactured by the conventional method shown in FIG. 5B has one recuperation, the base material is not tempered sufficiently, and a hard structure is generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 肉厚と外径の比が0.035以上であっても鋼管の表層での割れを防止できる耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管であって、所定の成分組成を有し、表裏両板面の最表面から5mmの深さまでの表層領域の最高硬度が300Hv以下、表裏両板面の最表面から5mmの深さまでの表層領域におけるポリゴナルフェライトとアスペクト比が3以上の加工フェライトの合計分率:0.1~20%であることを特徴とする。

Description

耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法
 本発明は、石油、天然ガス等の輸送用ラインパイプ等の用途に最適な耐水素誘起割れ性(以下「耐HIC性」という)に優れたAPI規格X60~X80(TS=500~650MPa)のラインパイプ用鋼管及びこれに用いるラインパイプ用鋼板に関する。
 湿潤硫化水素(HS)ガスが存在する環境(以下「サワー環境」という)が、石油、天然ガスの掘削、生産、輸送に存在し、そこで使用される鋼管はサワー環境に曝される。石油、天然ガス等の輸送用ラインパイプがサワー環境に曝されると、水素誘起割れ(以下「HIC」という)の発生が懸念される。これは、サワー環境においては、表面から鋼中に水素が侵入しやすいためである。
 HICは、特に鋼の中心偏析部に存在する延伸化したMnSや集積したTiやNbの炭窒化物あるいは酸化物集積帯における酸化物系介在物などの、鋼中の欠陥の周囲に集積した水素に起因する。
 サワー環境では鋼中に侵入した水素が欠陥の周囲に集積してガスとなり、その圧力による応力拡大係数(K)が水素を含有する鋼の応力拡大係数(KIH)を超えると、HICが発生する。さらに、鋼の中心偏析部、介在物の周辺などが硬化していると、HICが伝播しやすくなる。そこで、従来から、サワー環境で使用されるラインパイプについては、耐HIC性を改善するため、延伸化したMnSの生成、Ti、Nbの炭窒化物の集積や、酸化物の集積を抑制し、また、中心偏析の硬化相の形成を抑制するなど、種々の提案がなされている。
 特許文献1~3には、鋼板の中心へのMnの偏析を抑制することによって耐HIC性を改善する方法が、開示されている。特許文献1には、鋼中の平均Mn含有量に対する偏析部のMn含有量の比を抑制した鋼板が提案されている。特許文献2及び3には、Mn偏析スポットの大きさに加えて、偏析部のP濃度を限定し、さらに、Caを活用した高強度ラインパイプが開示されている。
 特許文献4には、Mnの偏析に加えて、Nbの偏析にも着目した、耐HIC性に優れる熱延鋼板が開示されている。特許文献5、6では、Ti、Nbの炭化物、窒化物などの介在物を抑制して耐HIC性を改善する方法が開示されている。
 特許文献7、8には、Mn、Nb、Tiの偏析を抑制し、さらに、中心偏析部の最高硬度を300Hv以下とすることで、HICの発生を防止した鋼管が開示されている。
特開平6-220577号公報 特開平6-256894号公報 特開平6-271974号公報 特開2002-363689号公報 特開2006-63351号公報 特開2008-7841号公報 特開2010-209460号公報 特開2010-209461号公報
 前述のように、従来から、Mnの偏析の抑制やCaを利用したMnSの形態制御に関する開発は盛んに行われている。しかしながら、(偏析部の最大Mn含有量)/(鋼中の平均Mn含有量)や、Mn偏析スポットの大きさを制御するだけでは、HICを完全に防止することは困難であり、そこで、より厳密に制御することが必要である。
 また、Mnの偏析を解消しても、Nbの偏析が問題になる。Nbの偏析についても、(偏析部の最大Nb含有量)/(鋼中の平均Nb含有量)の制御だけでは不十分であり、より厳密に制御する必要がある。また、Nb-Ti-C-N系の介在物の長さや、(Ti、Nb)(C、N)系介在物の面密度及び長さを制御しても、それだけでは、HICの発生を確実に防止することは困難であった。
 さらに、近年、ラインパイプでは、深海を横断するプロジェクトが数多くあり、鋼管が圧潰しないように、肉厚(t)と外径(D)の比(t/D)が極めて高い鋼管(t/D≧0.035)が要求されている。高t/D鋼管の製造においては、鋼板から鋼管へ成形する際に成形ひずみが鋼管の内外表面に多く加わり、鋼管の内外表面付近に介在物が生成される。サワー環境などでは、鋼管の内外表面付近に介在物が存在するとHICが多発する。そのため、サワー環境下で使用可能な高t/D鋼管の製造は困難であった。
 本発明は、以上の実情に鑑みてなされたものであり、深海を横断するラインパイプ等に使用される鋼管に最適な、t/Dが極めて高く、鋼管全体として優れた耐HIC性を有し、かつ鋼板の表層でのHICを防止したラインパイプ用鋼管及びこれに用いるラインパイプ鋼板の提供を課題とする。
 本発明者らは、t/Dが高くても、鋼管の内外表面付近で優れた耐HIC性を有し表層でのHICを防止できる耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる鋼板を得るための条件について鋭意研究を行った。
 t/Dが高くても、鋼管の内外表面付近で優れた耐HIC性を有し表層でのHICを防止するためには、従来のラインパイプ用鋼管のように中心偏析部の硬さを低くするだけではなく、さらに、表層領域の硬さを低くする必要がある。一般には、表層領域は冷却速度が速く、硬くなりやすい。本発明者らは、鋼板圧延後の冷却条件を最適化することによって、従来350Hv程度であった鋼板の表層領域の硬さを、300Hv以下と低くすることが可能となり、その結果、高t/Dの鋼管であっても内外表面付近での介在物からのHIC発生を抑制でき、鋼管の内外表面付近で優れた耐HIC性を有する鋼管が得られることを見出した。本発明は上記の知見に基づきなされたものであって、その要旨は、以下のとおりである。
 (1)母材となる鋼板が質量%で、C:0.02~0.08%、Si:0.01~0.5%、Mn:1.2~1.8%、Nb:0.001~0.10%、Ca:0.0005~0.0050%、N:0.0010~0.0060%、O:0.0001~0.0035%を含有し、かつ、P:0.01%以下、S:0.0020%以下、Al:0.030%以下、Ti:0.030%以下に制限し、S、Caの含有量が、S/Ca<0.5を満足し、残部がFe及び不可避的不純物であり、最大Mn偏析度:2.0以下、Nb偏析度:4.0以下、Ti偏析度:4.0以下、中心偏析部の未圧着部の長さ:0.1mm以下、中心偏析部の最高硬度:300Hv以下、表裏両板面の最表面から5mmの深さまでの表層領域の最高硬度:300Hv以下、表裏両板面の最表面から5mmの深さまでの表層領域におけるポリゴナルフェライトとアスペクト比が3以上の加工フェライトの合計分率:0.1~20%であり、鋼板の厚さt[mm]と造管後の鋼管の外径D[mm]が、t≧25、t/D≧0.035を満たすことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
 (2)前記鋼板が、質量%で、さらに、Ni:0.01~2.0%、Cu:0.01~1.0%、Cr:0.01~1.0%、Mo:0.01~0.60%、W:0.01~1.0%、V:0.01~0.10%、Zr:0.0001~0.050%、Ta:0.0001~0.050%、B:0.0001~0.0020%、REM:0.0001~0.01%、Mg:0.0001~0.01%、Y:0.0001~0.005%、Hf:0.0001~0.005%、及びRe:0.0001~0.005%のうち1種又は2種以上を含有することを特徴とする前記(1)の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
 (3)表裏両板面の最表面から5mmの深さまでの表層領域においてアスペクト比が3以上の加工フェライトが存在しないことを特徴とする前記(1)又は(2)の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
 (4)前記(1)又は(2)の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管に用いる耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
 (5)前記(3)の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管に用いる耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
 (6)質量%で、C:0.02~0.08%、Si:0.01~0.5%、Mn:1.2~1.8%、Nb:0.001~0.10%、Ca:0.0005~0.0050%、N:0.0010~0.0060%、O:0.0001~0.0035%を含有し、かつ、P:0.01%以下、S:0.0020%以下、Al:0.030%以下、Ti:0.030%以下に制限し、S、Caの含有量が、S/Ca<0.5を満足し、2次精錬後の水素の含有量が2.5ppm以下であり、残部がFe及び不可避的不純物である溶鋼を溶製する工程と、前記溶鋼を連続鋳造により鋼片とする工程と、前記鋼片を1000℃以上に加熱する工程と、加熱した鋼片を、再結晶温度域での圧下比を2以上、未再結晶温度域での圧下比を3以上の熱間圧延し、鋼板を得る工程と、前記鋼板を、750℃以上の温度から400~600℃になるまで冷却する冷却工程を含み、前記冷却工程は、前記鋼板の温度を上昇させる復熱処理を2回以上含み、前記復熱処理において、1回目の復熱処理の開始温度が300℃以上であり、かつ、すべての復熱処理の終了温度が750℃未満であることを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法。
 (7)前記溶鋼が、質量%で、さらに、Ni:0.01~2.0%、Cu:0.01~1.0%、Cr:0.01~1.0%、Mo:0.01~0.60%、W:0.01~1.0%、V:0.01~0.10%、Zr:0.0001~0.050%、Ta:0.0001~0.050%、B:0.0001~0.0020%、REM:0.0001~0.01%、Mg:0.0001~0.01%、Y:0.0001~0.005%、Hf:0.0001~0.005%、及びRe:0.0001~0.005%のうち1種又は2種以上を含有することを特徴とする前記(6)の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法。
 (8)前記(6)又は(7)の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法により得られた鋼板から鋼管を製造する方法であって、前記鋼板を管状に成形する工程と、突き合わせ部を溶接する工程を含み、鋼板の厚さt[mm]と造管後の鋼管の外径D[mm]が、t≧25、t/D≧0.035を満たすことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管の製造方法。
 本発明の高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板は、Mn、Nb、Tiの偏析が少なく、かつ中心偏析部の未圧着部の長さ及び最高硬さが抑えられ、しかも表層領域の硬さも抑えられている。その結果、耐HIC性が確実かつ十分に優れており、サワー環境で使用されるラインパイプの素材として極めて優れている。
SとCaの含有量の比S/CaとHIC試験におけるHICの長さ率(CLR)との関係を示す図である。 ポリゴナルフェライトと加工フェライトの合計の面積率とHIC試験におけるHICの面積率との関係を示す図である。 本発明の製造方法における鋼板の冷却パターンの一例を示す図である。 本発明の製造方法における鋼板の冷却パターンの他の例を示す図である。 従来の製造方法における鋼板の冷却パターンの一例を示す図である。 本発明のラインパイプ用鋼管の表層組織のSEM像である。 本発明のラインパイプ用鋼管の表層組織の高度分布を示す図である。 従来のラインパイプ用鋼管の表層組織のSEM像である。 従来のラインパイプ用鋼管の表層組織の硬度分布を示す図である。
 以下、本発明について詳細に説明する。
 本発明のラインパイプ用鋼管は、鋼板の厚さt[mm]と造管後の鋼管の外径D[mm]が、t≧25、t/D≧0.035を満たすものであり、Mn、Nb、Tiの偏析度、中心偏析部の未圧着部の長さ及び最高硬度、表裏両板面の最表面から5mmの深さまでの表層領域の最高硬度及び組織を適切に規定したものである。
 はじめに、本発明の鋼管及び鋼板に使用される鋼母材の成分組成の限定理由について説明する。以下、「%」は、すべて質量%を表すものとする。
〔C:0.02~0.08%〕
 Cは、鋼の強度を向上させる元素であり、0.02%以上の添加が必要である。C量が0.08%を超えると、炭化物の生成が促進されて耐HIC性を損なう。より優れた耐HIC性を確保し、溶接性、靱性の低下を抑制するためには、C量を0.06%以下とすることが好ましい。
〔Si:0.01~0.5%〕
 Siは脱酸元素であり、0.01%以上の添加が必要である。Si量が0.5%を超えると、溶接熱影響部(HAZ)の靱性が低下する。
〔Mn:0.8~1.8%〕
 Mnは、強度及び靱性を向上させる元素であり、0.8%以上の添加が必要である。Mn量が、1.8%を超えると、耐HIC性が低下する。HICをさらに抑制するには、Mn量を1.6%以下とすることが好ましい。
〔Nb:0.001~0.10%〕
 Nbは、炭化物、窒化物を形成し、圧延まま鋼板の細粒化を促進し、強度の向上に寄与する元素である。その効果を得るためには、0.0001%以上のNbを添加することが必要である。Nbを過剰に添加すると、最大Nb偏析度が増加し、Nbの炭窒化物の集積を招いて、耐HIC性が低下するので、Nb量の上限は0.10%とする。耐HIC性をより重視する場合、Nb量は0.05%以下にすることが好ましい。
〔Ca:0.0005~0.0050%〕 
 Caは、硫化物CaSを生成し、圧延方向に伸長するMnSの生成を抑制し、耐HIC性の改善に顕著に寄与する元素である。Caの添加量が0.0005%未満では、効果が得られない。Caの添加量が0.0050%を超えると、酸化物が集積し、耐HIC性を損なう。
〔N:0.0010~0.0060%〕
 Nは、TiN、NbNなどの窒化物を形成する元素である。窒化物を利用して加熱時のオーステナイト粒径を微細にするためには、N量の添加量を0.0010%以上とすることが必要である。Nの含有量が0.0060%を超えると、TiとNbの炭窒化物が集積しやすくなり、耐HIC性を損なう。靭性が要求される場合には、TiNの粗大化を抑制するため、N量を0.0035%以下にすることが好ましい。
〔O:0.0001~0.0035%〕
 Oは不純物であり、酸化物の集積を抑制して、耐HIC性を向上させるために、0.0035%以下に制限する。酸化物の生成を抑制して、母材及びHAZ靭性を向上させるためには、O量を0.0035%以下とすることが好ましく、0.0020%以下がより好ましい。O量は少ないほど好ましいが、0.0001%未満とするためには、精錬時間が長時間になってコストが高くなるので、下限を0.0001%とする。
〔P:0.01%以下〕
 Pは不純物であり、含有量が0.01%を超えると、耐HIC性を損ない、また、HAZの靱性が低下する。したがって、Pの含有量を0.01%以下に制限する。
〔S:0.020%以下〕
 Sは、熱間圧延時に圧延方向に延伸するMnSを生成して、耐HIC性を低下させる元素である。本発明では、S量を0.0020%以下に低減することが必要である。耐HIC特性を向上させるためには、S量を0.0010%以下とすることが好ましい。S量は、少ないほど好ましいが、0.0001%未満にすることは困難であり、製造コストの観点から、下限を0.0001%以上にすることが好ましい。
〔Al:0.030%以下〕
 Alは脱酸元素であるが、添加量が0.030%を超えるとAl酸化物の集積クラスターが生成される。特に良好な靭性が要求される場合には、Al量を0.017%以下にすることが好ましい。Al量の下限値は特に限定しないが、溶鋼中の酸素量を低減させるためには、Alを0.0005%以上添加することが好ましい。
〔Ti: 0.030%以下〕
 Tiは、通常、脱酸剤や窒化物形成元素として結晶粒の細粒化に利用される元素であるが、炭窒化物の形成によって耐HIC性や靱性を低下させる元素である。したがって、Tiの含有量は、0.030%以下に制限する。
〔S/Ca<0.5〕
 本発明では、Caを添加して、CaSを形成させることにより、Sの固定を図りMnSの生成を抑制する。優れた耐HIC性を得るためには、さらに、S/Caの比を適切に規制することが必要である。図1に0.04%C-1.25%Mn鋼のHIC試験におけるCLR(HICの長さ率)とS/Caの関係を示す。図1に示すように、S/Caの比が0.5以上になると、HICが発生する。これは、S/Caの比が0.5以上になると、MnSが生成されて、圧延時に延伸化したMnSが形成され、その結果、耐HIC性が劣化するためである。したがって、S/Caの比は0.5未満とする必要がある。
 その他、本発明のラインパイプ用鋼管、ラインパイプ用鋼板には、必要に応じ、強度及び靱性を改善する元素として、Ni、Cu、Cr、Mo、W、V、Zr、Ta、及びBのうちから選ばれた1種又は2種以上の元素が添加してもよい。これらの任意の添加元素の添加量の限定理由は次のとおりである。
〔Ni:0.01~2.0%〕
 Niは、靱性及び強度の改善に有効な元素であり、その効果を得るためには0.01%以上の添加が必要である。Niの添加量が2.0%を超えると、耐HIC性及び溶接性が低下する。
〔Cu:0.01~1.0%〕
 Cuは、靱性を低下させずに強度の上昇に有効な元素であり、その効果を得るためには0.01%以上の添加が必要である。Cuの添加量が1.0%を超えると、鋼片加熱時や溶接時に割れが生じやすくなる。
〔Cr:0.01~1.0%〕
 Crは、析出強化による鋼の強度を向上させる元素であり、その効果を得るためには0.01%以上の添加が必要である。Crの添加量が1.0%を超えると、焼入れ性が上昇して、ベイナイト組織が生じ、その結果、耐HIC性、靱性が低下する。
〔Mo:0.01~0.60%〕
 Moは、焼入れ性を向上させると同時に、炭窒化物を形成し強度を改善する元素であり、その効果を得るためには、0.01%以上の添加が必要である。Moの添加量が0.60%を超えると、コストが上昇する。鋼の強度が過度に上昇すると、耐HIC性及び靱性が低下することがあるので、好ましいMoの添加量は0.20%以下である。
〔W:0.01~1.0%〕
 Wは、強度の向上に有効な元素であり、その効果を得るためには0.01%以上の添加が必要である。Wの添加量が1.0%を超えると、靱性が低下することがある。
〔Zr:0.0001~0.050%〕
 Zrは、Vと同様に炭化物、窒化物を形成して強度の向上に寄与する元素であり、その効果を得るためには、0.0001%以上を添加することが必要である。Zrの添加量が0.050%を超えると、靱性が低下することがある。
〔Ta:0.0001~0.050%〕
 Taも、Vと同様に炭化物、窒化物を形成し強度の向上に寄与する元素であり、その効果を得るためには、0.0001%以上を添加する必要がある。Taの添加量が0.050%を超えると、靱性が低下することがある。
〔B:0.0001~0.0020%〕
 Bは、鋼の粒界に偏析して焼入れ性の向上に著しく寄与する元素である。この効果を得るには、0.0001%以上のBの添加が必要である。Bは、BNを生成し、固溶Nを低下させて、溶接熱影響部の靱性の向上にも寄与する元素であるため、0.0005%以上の添加が好ましい。Bの添加量が0.0020%を超えると、粒界への偏析が過剰になり、靱性が低下することがある。
 さらに、本発明のラインパイプ用鋼管、ラインパイプ用鋼板には、酸化物や硫化物などの介在物を制御するために、必要に応じて、REM(希土類元素)、Mg、Y、Hf、及びReのうちから選ばれた1種又は2種以上を添加してもよい。これらの任意の添加元素の添加量の限定理由は次のとおりである。
〔REM(希土類元素):0.0001~0.01%〕
 REMは、脱酸剤及び脱硫剤として添加される元素であり、その効果を得るためには0.0001%以上の添加が必要である。REMの添加量が0.010%を超えると、粗大な酸化物を生じて、耐HIC性や、母材及びHAZの靱性が低下することがある。
〔Mg:0.0001~0.01%〕
 Mgは、脱酸剤及び脱硫剤として添加される元素であり、特に、微細な酸化物を生じて、HAZ靭性の向上にも寄与する。この効果を得るには、0.0001%以上のMgを添加することが必要である。Mgの添加量が0.010%を超えると、酸化物が凝集、粗大化しやすくなり、耐HIC性や、母材及びHAZの靱性が低下することがある。
〔Y:0.0001~0.005%〕
 Yは、Caと同様、硫化物を生成し、圧延方向に伸長したMnSの生成を抑制し、耐HIC性の向上に寄与する元素である。このような効果を得るには、Yを0.0001%以上添加することが必要である。Yの添加量が0.005%を超えると、酸化物が増加して、凝集、粗大化し、耐HIC性を損なう。
〔Hf:0.0001~0.005%〕
 Hfも、Caと同様、硫化物を生成し、圧延方向に伸長したMnSの生成を抑制し、耐HIC性の向上に寄与する元素である。このような効果を得るには、Hfを0.0001%以上添加することが好ましい。一方、Hfの量が0.005%を超えると、酸化物が増加して、凝集、粗大化し、耐HIC性を損なう。
〔Re:0.0001~0.005%〕
 Reも、Caと同様、硫化物を生成し、圧延方向に伸長したMnSの生成を抑制し、耐HIC性の向上に寄与する元素である。このような効果を得るには、Reを0.0001%以上添加する必要がある。Reの添加量が0.005%を超えると、酸化物が増加して、凝集、粗大化し、耐HIC性を損なう。
 以上の各元素の残部は、Fe及び不可避的不純物である。なお、前述のNi、Cu、Cr、Mo、W、V、Zr、Ta、及びBについては、いずれも前記の下限値未満の微量を不純物として含有することは許容される。また、REM、Mg、Y、Hf、及びReについても、それぞれの下限値未満の極微量を不純物として含有することは許容される。
 次に、本発明のラインパイプ用鋼管、及び鋼板の組織について説明する。
 〔最大Mn偏析度:2.0以下、Nb偏析度:4.0以下、Ti偏析度:4.0以下〕
 HICは、鋼の中心偏析部に存在する延伸化したMnSや、集積したTiやNbの炭窒化物などの周囲に集積した水素に起因する。
 延伸化した粗大なMnSを抑制するためには、鋼板及び鋼管の最大Mn偏析度を2.0以下にすることが必要である。さらに、集積したTi、Nbの炭窒化物の抑制によって、ラインパイプ用鋼管及びラインパイプ用鋼板のHICの発生を顕著に防止できる。
 Ti、Nbの炭窒化物の集積を抑制するには、N量を0.0050%以下、C量を0.06%以下とし、かつ、NbとTiの最大偏析度をそれぞれ4.0以下にすればよい。
 最大Mn偏析度とは、鋼板の板厚方向のMn濃度分布、鋼管の管壁の肉厚方向のMn濃度分布における、平均のMn量に対する中心偏析部の最大のMn量である。同様に、Nb偏析度とTi偏析度は、鋼板の板厚方向のNb、Tiの濃度分布、鋼管の管壁の肉厚方向のNb、Tiの濃度分布における、平均のNb量(Ti量)に対する中心偏析部の平均化した最大のNb量(Ti量)である。
 最大Mn偏析度は、EPMA(Electron Probe Micro Analyzer)、又はEPMAによる測定結果を画像処理することができるCMA(Computer Aided Micro Analyzer)によって鋼板及び鋼管のMn濃度分布を測定することにより求められる。測定対象は、HIC試験片(20mm幅×20mm厚×100mm長さ)とし、そのHIC試験片の20mm幅(試験片幅)×20mm厚(HIC)試験片厚)を測定領域とする。Nb偏析度及びTi偏析度についても同様に、同じ領域を、EPMA又はCMAによって測定して、それぞれNb濃度分布及びTi濃度分布を測定すればよい。EPMA(又はCMA)のプローブ径は2μmとする。
 最大Mn偏析度は、EPMAを用い、50μmのビーム径で、20mm幅(HIC試験片幅)×20mm厚(HIC試験片厚)の測定領域におけるMnの濃度を、板厚方向及び板幅方向に等間隔で測定して、Mnの濃度分布を測定し、測定したMn濃度分布における平均値を平均Mn濃度とする。次に、最もMn量が濃化していた個所を含む1mm(幅)×1mm(厚み)の領域について、ビーム径を2μmに変更し、板厚方向及び板幅方向に等間隔で50点×50点のMn濃度を測定し、分布から最大Mn濃度を求める。そして、2μmのビーム径で得られた最大Mn濃度と、50μmのビーム径で得られた平均Mn濃度の比を、最大Mn偏析度と定義する。
 Nb偏析度、Ti偏析度も、同様にEPMAを用い、50μmのビーム径で20mm幅(HIC試験片幅)×20mm厚(HIC試験片厚)の測定領域におけるNb、Tiの板厚方向の濃度分布を測定した後、最もNb、Ti量が濃化していた場所を、さらに2μmのビーム径で1mm(幅)×1mm(厚み)の領域のNb、Tiの濃度を測定することにより求める。
 Nb、Tiの炭窒化物などの介在物が存在すると、偏析度が見かけ上大きくなることがあるが、介在物が存在する場合には、Nb、Tiの濃度分布で急激にピークが立ち上がる領域として判別することができるから、その領域での測定値は除いて各偏析度を求める。
 次に、最大Mn偏析度、Nb偏析度及びTi偏析度を抑制するための具体的方法を説明する。
 Mn、Nb及びTiの偏析を抑制するには、連続鋳造における最終凝固時の軽圧下(英語 soft reduction)が最適である。最終凝固時の軽圧下は、鋳造の冷却の不均一に起因する、凝固部と未凝固部との混在を解消するために施すものである。これにより、凝固収縮に伴う空隙をなくして、未凝固部の溶鋼流動を抑えて、鋼片を均一に凝固させることができる。
 また、幅方向に不均一な凝固が生じた後で軽圧下を加えると、凝固部の変形抵抗が大きいことに起因して、未凝固部の溶鋼流動を抑えることができなくなる。したがって、このようなW型の凝固を生じさせないようにするためには、鋳片の最終凝固位置における中心固相率の幅方向の分布に応じて圧下量を制御しながら軽圧下することが好ましい。これにより、幅方向でも中心偏析が抑制され、最大Mn偏析度、Nb偏析度、Ti偏析度をさらに小さくすることができる。
 〔中心偏析部の未圧着部の長さ:0.1mm以下〕
 鋼板の中心偏析部に、長さ0.1mm以上の未圧着部があると、HICの起点となり、耐HIC性が劣化する。未圧着部とは、凝固時に鋼片に生じた空隙が、熱間圧延によって圧着されず、鋼板に残存したものである。未圧着部の長さは、超音波等の非破壊検査で測定できる。
 中心偏析部に未圧着部が残存する原因は、主として、熱間圧延前に鋼片に含まれる水素である。鋼を転炉及び2次精錬によって溶製した後連続鋳造する際に、鋼は凝固し、冷却されて収縮するので、特に鋼片の中心部には空隙が生じやすい。この空隙が負圧の場合、鋼片に含まれる水素量が多いと、水素ガスが空隙中に侵入する。2次精錬によって溶製した際に鋼に含有される水素は、ほとんどそのまま、連続鋳造後の鋼片中の空隙内に残存する。
 連続鋳造後の熱間圧延のための加熱時には、鋼片の組織が、面心立方晶で固溶できる水素量の多いオーステナイトであるので、水素が鋼片の外に放散されない。鋼片を加熱して熱間圧延により圧下を加えれば、鋼片に内部の空隙は小さくなるが、空隙に含まれる水素ガスの圧力は、空隙のサイズに反比例して高くなる。そのため、熱間圧延によっても空隙を圧着させることができず、鋼板内部、特に中心偏析部に未圧着部が残存する。
 本発明者らが鋼中の水素量と未圧着部の長さとの関係を詳細に調査した結果、鋼中の水素量を2.5ppm以下に抑えれば、鋼板の中心偏析部に残存する未圧着部の長さが0.1mm以下になることが分かった。ここでいう鋼中の水素量は、2次精錬後に採取した溶鋼を燃焼法で測定したものである。
 2次精錬における水素量を低減するには、2次精錬を行う際の雰囲気中の水素分圧を低下させればよい。たとえば、雰囲気中に不活性ガスや、窒素などを吹き込むことで、水素分圧を低下させることができる。
 なお、熱間圧延後に鋼板に残留する水素量は、鋼板が冷却され金属組織がオーステナイトからフェライト、ベイナイト、マルテンサイト、パーライトなどに変態すれば水素が外部に放散するので、2次精錬後の水素量に比べると低下する。
 〔中心偏析部の最高硬度:300Hv以下〕
 耐HIC性改善には、中心偏析部の最高硬さを300Hv以下とすることが有効である。中心偏析部最高硬さの上限を300Hv以下とすることによって、確実にHICの発生を防止することができる。中心偏析部の最高硬さは、3%硝酸+97%ナイタール溶液で腐食した後、JIS Z 2244に準拠し、25gの荷重でビッカース硬さ試験を行って、測定する。中心偏析部とは、EPMAやCMAによって測定したMnの濃度が最大になる部位である。
 〔表裏両板面の最表面から5mmの深さまでの表層領域の最高硬度:300Hv以下〕
 鋼板における表裏の板面(圧延面)の最表面から板の厚み方向(深さ方向)へ5mmまでの領域(表層領域)、及び鋼管における内外の最表面から管壁の厚み方向(深さ方向)へ5mmまでの領域(表層領域)の最高硬さを、いずれも300Hv以下とすると、耐HIC性を確実に高めることができる。すなわち、最表面から5mmまでの表層領域の最高硬さの上限を300Hv以下とすることによって、t/Dが0.035以上と高いラインパイプ用鋼管においても、確実に介在物やブリスターなどの表層に起因するHICの発生を防止することができる。表層領域の最高硬さは、最表面から5mmの深さの位置まで、深さ方向に所定間隔(例えば0.1mm間隔)ごとにビッカース硬さ試験を行い、そのうちの最も高い値を最高硬さとする。具体的には、0.13%硝酸+97%ナイタール溶液で腐食した後、JIS Z 2244に準拠し、25gの荷重で、最表面から5mmの深さの位置まで、0.1mm間隔の50点×50点のビッカース硬さ試験を行って、調べる。
 〔表裏両板面の最表面から5mmの深さまでの表層領域におけるポリゴナルフェライトとアスペクト比が3以上の加工フェライトの合計分率:0.1~20%〕
 耐HIC性向上のためには、基本的には、母材の鋼組織が均一かつ微細なアシキュラーフェライト又はベイナイト組織であることが望ましい。したがって、耐HIC性を考慮した本発明の高強度ラインパイプ用の鋼母材の組織は、基本的にはベイナイトあるいはアシキュラーフェライトが好ましい。しかしながら、厚肉のラインパイプ用鋼管は、DWTTのような落重試験に耐え得る特性が要求される場合が多い。
 厚肉の鋼管の場合、従来のラインパイプ用鋼管の組織では、DWTTのような落重試験に耐える特性は得られないが、0.1%以上のポリゴナルフェライト、加工フェライトを生成させれば、DWTT特性が改善される。しかしながら、表層領域のポリゴナルフェライトと加工フェライトの合計の分率が20%を超える組織になると、耐HIC性が急激に低下する。
 図2に、鋼管の表層のポリゴナルフェライトと加工フェライトの合計の面積率と、HIC面積率との関係を示す。図中の3時、6時、9時は、試験片を採取した鋼管の周方向の位置であり、溶接部を0時とし、鋼管の底部から見た3時(90°)、6時(180°)、9時(270°)の位置から試験片を採取し、組織を観察した。
 表層のポリゴナルフェライトと加工フェライトの合計の面積率が20%を超えると、HIC面積率は3%を大きく超える。したがって、表層領域にポリゴナルフェライトと加工フェライトが含まれる場合でも、耐HIC性を確実に向上させるためには、ポリゴナルフェライトと加工フェライトの合計の分率を面積率で20%以下に抑制することが望ましい。耐HIC性の観点からは、加工フェライトは少ないほどよく、加工フェライトの分率が面積率で10%以下であることが好ましく、存在しないことがより好ましい。
 ポリゴナルフェライトと加工フェライトの分率の測定方法は、200倍の光学顕微鏡写真を5枚撮影し、ポリゴナルフェライトと加工フェライトを抽出して、画像解析によって求めた値とする。200倍の光学顕微鏡で観察した場合、白い領域がポリゴナルフェライト又は加工フェライトであり、アスペクト比(横長さと縦長さの比)が3未満のものをポリゴナルフェライト、アスペクト比が3以上のものを加工フェライトと定義する。
 ここで、表層領域のポリゴナルフェライトと加工フェライトの合計分率を0.1%以上20%以下に抑制するためには、後述する製造方法に従えばよい。すなわち、圧延終了温度及び/又は水冷開始温度を750℃以上にすれば、表層領域のポリゴナルフェライトと加工フェライトの分率を20%以下にすることが可能である。ただし、圧延終了温度及び/又は水冷開始温度が750℃を下回ると、表層領域のポリゴナルフェライトと加工フェライトが20%を越えて増加する傾向を示すので、圧延終了温度及び/又は水冷開始温度を750℃以上とすることが好ましい。また、ポリゴナルフェライトと加工フェライトの分率を10%以下にするためには、圧延終了温度又は水冷開始温度を770℃以上することがさらに好ましい。
 上記の分率は、L断面(板厚方向と圧延方向の面)で観察したときの面積率を意味する。また、上記のポリゴナルフェライト、及び加工フェライト以外の組織、すなわち表層領域の80%以上の面積を占める組織は、ベイナイト及び/又はアシキュラーフェライトパーライトであればよい。
 上記の表層領域より内部の側の組織は特に限定しないが、引張り強度が500MPa以上の高強度ラインパイプ用鋼板、鋼管として、母材高強度、母材靭性、HAZ靭性、溶接性などを確保するためには、アシキュラーフェライト又はベイナイト主体の組織とすればよい。
 次に本発明のラインパイプ用鋼板、ラインパイプ用鋼管を製造するための好ましい方法について説明する。
 製鋼工程で、上述した成分組成を有する鋼を、2次精錬後の溶鋼中の水素量が2.5ppm以下となるように常法により溶製後、連続鋳造により鋼片とし、鋼片を再加熱して厚板圧延を施し、鋼板とする。連続鋳造時には、上述のように、鋳片の最終凝固位置における中心固相率の幅方向の分布に応じて圧下量を制御しながら軽圧下を加えることが好ましい。
 連続鋳造後の鋼片の再加熱温度は1000℃以上とし、再結晶温度域での圧下比を2以上、未再結晶域での圧下比を3以上にして厚板圧延を行えば、平均旧オーステナイト粒径を20μm以下にすることができる。圧延終了後の鋼板に、水冷を、開始温度を750℃以上、停止温度を400~600℃として施す。ここでいう水冷の停止温度とは、冷却水を停止し、その後復熱により上昇した鋼板の温度の最高温度をいう。
 再結晶温度域は、圧延後に再結晶が生じる温度範囲であり、本発明の鋼の成分では概ね900℃超である。未再結晶温度域は、圧延後に再結晶及びフェライト変態が生じない温度範囲であり、本発明の鋼の成分では概ね750~900℃である。再結晶温度域での圧延を再結晶圧延又は粗圧延といい、未再結晶温度域での圧延を未再結晶圧延又は仕上げ圧延という。
 未再結晶圧延後、750℃以上の温度から水冷を開始し、水冷停止温度を400℃以上とすることにより、中心偏析部の最大硬度を300Hv以下に抑制することができる。水冷開始温度を750℃未満にすると、冷却開始前にフェライトが多く生成され、フェライトからC(炭素)がオーステナイトへ排出され、オーステナイト相にCが濃化される。その結果、Cが濃縮したオーステナイト相は、冷却過程で、多量のC量を含む硬質のマルテンサイトに変態する。
 これに対し、水冷開始温度を750℃以上にすると、硬質のマルテンサイトの生成を抑制できるので、中心偏析部の最大硬度を300Hv以下に抑制することができる。また、水冷停止温度を400℃以上にすると、変態後の硬質なマルテンサイトが一部分解するので、中心偏析部の最大硬度を300Hv以下に抑制することができる。水冷停止温度が高すぎると鋼管の強度が低下するので、水冷停止温度は600℃以下とする。
 さらに、最表面から5mmまでの表層領域の最高硬度を300Hv以下に抑えるためには、水冷停止温度を400℃から600℃以下にする以外に、表層の冷却パターンを最適化する必要がある。具体的には、表層の冷却の際に、少なくとも2回以上の復熱を行うことにより、最表層から5mmまでの最高硬度を300Hv以下にすることができる。これは、復熱を行うことにより焼戻し効果が発揮されて、表層領域の硬度を下げることができるからである。復熱温度の下限は300℃とし、上限温度は、750℃とすることが好ましい。復熱温度が300℃未満になると、50%以上のマルテンサイトが生じて、硬化し、表層の硬度が低下しなくなる。復熱温度が750℃を越えると、表層領域の硬度が下がりすぎる。
 図3A、図3Bに、本発明における冷却工程の冷却パターンの例を示す。グラフ中の1が復熱処理による温度変化であり、2の温度が復熱開始温度、3の温度が復熱終了温度である。グラフ中の4の温度が水冷停止温度である。このような冷却パターンは、冷却水を吐出するノズルのオン、オフの切り替えや、水量の調整により制御することができる。
 図3Cは、従来の製造方法による冷却パターンである。冷却水を停止した後は鋼板の温度が上昇するので、1回の復熱が含まれる。
 さらに、上述した水冷開始温度を750℃以上にすることによって、最表面から5mmまでの表層領域の組織を、ポリゴナルフェライトと加工フェライトの合計分率を20%以下に抑制することができる。水冷開始温度が750℃より低温になると、500MPa以上の鋼のγ/α変態温度を下回るので、ポリゴナルフェライトや加工フェライトが容易に生成し、ポリゴナルフェライトと加工フェライトの合計分率が20%を超える。
 上述のようにして得られた鋼板を用いてラインパイプ用鋼管を製造するにあたっては、母材鋼板を管状に成形した後、突き合わせ部をアーク溶接し、溶接鋼管とすればよい。ここで、成形工程としては、鋼板をCプレス、Uプレス、OプレスするUOE工程が好ましい。またアーク溶接としては、溶接金属の靭性と生産性の観点から、サブマージドアーク溶接を採用することが好ましい。アーク溶接時の入熱は特に限定しないが、通常は、2.0~15.0kJ/mmとすることが好ましい。
 以下、本発明について実施例によって具体的に説明する。なお、以下の実施例は、本発明による具体的な効果を示すためのものであって、実施例に記載された条件が本発明の技術的範囲を限定するものでないことはもちろんである。
 表1A~表1Cに示す化学成分を有する鋼1~35を溶製し、連続鋳造により、厚みが240mm又は300mmである鋼片とした。また、表1A~表1Cには、溶鋼の水素量の分析値も示した。
 連続鋳造では、最終凝固時に、圧下率約2%の軽圧下を実施した。得られた鋼片を1100~1250℃に加熱し、900℃超の再結晶温度域で熱間圧延を行い、引き続き、750~950℃の未再結晶温度域での熱間圧延を行った。
 熱間圧延後は、750℃以上から水冷を開始し、400~600℃の温度で水冷を停止した。その間、1回又は2回、鋼板の温度を上昇させる復熱処理を行った。鋼板の温度は、冷却水を停止することによって上昇させた。1回目の復熱開始、終了温度、2回目の復熱開始温度を表2Aに示す。2回目の復熱終了温度(復熱回数が1回の場合は1回目の復熱終了温度)は、冷却終了温度である。
 得られた鋼板を、Cプレス、Uプレス、Oプレスによって管状に成形し、端面を仮付け溶接し、内外面から本溶接を行った後、拡管後、ラインパイプ用の鋼管とした。なお、本溶接には、サブマージドアーク溶接を適用した。
 得られた鋼板及び鋼管から引張試験片、HIC試験片、マクロ試験片を採取し、それぞれの試験に供した。HIC試験は、NACETM0284に準拠して行った。また、マクロ試験片を用いて、Mn、Nb、Tiの偏析度をEPMAによって測定した。EPMAによる偏析度の測定は、プローブ径50μm及び2μmで行った。
 また、中心偏析部のビッカース硬度、及び鋼板、鋼管の最表面から深さ5mmまでの表層領域におけるビッカース硬度をJIS Z 2244に準拠して測定した。ビッカース硬度の測定は、荷重を25gとし、EPMAによって測定した厚み方向のMn濃度の分布における、Mn濃度が最も高い部位で行った。
 さらに、鋼管の最表面から5mmの深さまでの表層領域のミクロ組織を同定するため、200倍の光学顕微鏡写真を、L断面(板厚方向と圧延方向の面)についてそれぞれ5枚撮影して、ポリゴナルフェライトと加工フェライトの面積率(分率)を測定し、これらの合計分率を算出した。
 表2A~表2Cに、鋼板の板厚、最大Mn偏析度、Nb偏析度、Ti偏析度、未圧着部の長さ、中心偏析部の最高硬さ、表面領域の最高硬度、引張り強度及びHIC試験によって求められたHICの長さ率(CLR)、表層領域におけるポリゴナルフェライトと加工フェライトの合計の分率を示す。
 表3に、鋼管の肉厚、本溶接の入熱量、HIC試験によって求められたHICの長さ率(CLR)を示す。なお、鋼管における最大Mn偏析度、Nb偏析度、Ti偏析度、未圧着部の長さ、中心偏析部の最高硬さは、いずれも鋼板と同等であり、また鋼管の引張り強度は、鋼板よりも10~20MPa程度大きくなっている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 鋼板1~23は本発明例である。表2A~表2Cに示すように、これらの鋼板の最大Mn偏析度は1.6以下、Nb偏析度は4.0以下、Ti偏析度は4.0以下であった。また、鋼板の上下面及び鋼管の内外面の最表層から5mm厚までの最高硬度が300Hv以下、中心偏析部の最高硬さは300Hv以下であった、さらに、ポリゴナルフェライトと加工フェライトの合計の分率も20%以下であった。したがって、HIC試験によるHICは発生していない。これらの鋼板1~23を素材とする鋼管についても、表3に示すように同様な結果が得られた。
 鋼板24~43は本発明の範囲外である比較例である。鋼板24~35は基本成分、又は任意の添加元素のうちいずれかの元素が、本発明の範囲外である。鋼板36~43は、本発明の製造条件を満足しない。その結果、鋼板(表2A~表2C参照)、鋼管(表3参照)のいずれにおいても、HIC試験にてHICが発生し、CLRが3%を超えた、又は0℃でのDWTTの延性破面率が85%に満たなかった。
 図4Aに、本願発明の製造方法で製造した鋼11の最表層から5mm厚までの硬度分布、図4Bに鋼11の表層の組織写真を示す。また、図5Aに、従来法で製造した鋼40の最表層から5mm厚までの硬度分布、図5Bに鋼40の表層の組織写真を示す。
 図4Aに示す本発明の鋼板の硬度分布は、最大硬度が245Hvと低いが、図5Aに示す従来法で製造した鋼板の硬度分布は、局所的に硬度が300Hvを超える部分があり、これは、HICの起点となり得る。図5Bに示す従来法で製造した鋼板は、復熱回数が1回なので、母材が十分に焼戻されず、硬い組織が生成している。
 1  復熱処理
 2  復熱開始温度
 3  復熱終了温度
 4  水冷停止温度

Claims (8)

  1.  母材となる鋼板が質量%で、
      C :0.02~0.08%、
      Si:0.01~0.5%、
      Mn:1.2~1.8%、
      Nb:0.001~0.10%、
      Ca:0.0005~0.0050%、
      N :0.0010~0.0060%、
      O :0.0001~0.0035%
    を含有し、かつ、
      P :0.01%以下、
      S :0.0020%以下、
      Al:0.030%以下、
      Ti:0.030%以下
    に制限し、S、Caの含有量が、
      S/Ca<0.5
    を満足し、残部がFe及び不可避的不純物であり、
     最大Mn偏析度:2.0以下、
     Nb偏析度:4.0以下、
     Ti偏析度:4.0以下、
     中心偏析部の未圧着部の長さ:0.1mm以下、
     中心偏析部の最高硬度:300Hv以下、
     表裏両板面の最表面から5mmの深さまでの表層領域の最高硬度:300Hv以下、
     表裏両板面の最表面から5mmの深さまでの表層領域におけるポリゴナルフェライトとアスペクト比が3以上の加工フェライトの合計分率:0.1~20%
    であり、
     鋼板の厚さt[mm]と造管後の鋼管の外径D[mm]が、
      t≧25
      t/D≧0.035
    を満たすことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
  2.  前記鋼板が、質量%で、さらに、
      Ni:0.01~2.0%、
      Cu:0.01~1.0%、
      Cr:0.01~1.0%、
      Mo:0.01~0.60%、
      W :0.01~1.0%、
      V :0.01~0.10%、
      Zr:0.0001~0.050%、
      Ta:0.0001~0.050%、
      B :0.0001~0.0020%、
      REM:0.0001~0.01%、
      Mg:0.0001~0.01%、
      Y :0.0001~0.005%、
      Hf:0.0001~0.005%、及び
      Re:0.0001~0.005%
    のうち1種又は2種以上を含有することを特徴とする請求項1に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
  3.  表裏両板面の最表面から5mmの深さまでの表層領域においてアスペクト比が3以上の加工フェライトが存在しないことを特徴とする請求項1又は2に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
  4.  請求項1又は2に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管に用いる耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
  5.  請求項3に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管に用いる耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
  6.  質量%で、
      C :0.02~0.08%、
      Si:0.01~0.5%、
      Mn:1.2~1.8%、
      Nb:0.001~0.10%、
      Ca:0.0005~0.0050%、
      N :0.0010~0.0060%、
      O :0.0001~0.0035%
    を含有し、かつ、
      P :0.01%以下、
      S :0.0020%以下、
      Al:0.030%以下、
      Ti:0.030%以下
    に制限し、S、Caの含有量が、
      S/Ca<0.5
    を満足し、
     2次精錬後の水素の含有量が2.5ppm以下であり、残部がFe及び不可避的不純物である溶鋼を溶製する工程と、
     前記溶鋼を連続鋳造により鋼片とする工程と、
     前記鋼片を1000℃以上に加熱する工程と、
     加熱した鋼片を、再結晶温度域での圧下比を2以上、未再結晶温度域での圧下比を3以上の熱間圧延し、鋼板を得る工程と、
     前記鋼板を、750℃以上の温度から400~600℃になるまで冷却する冷却工程を含み、
     前記冷却工程は、前記鋼板の温度を上昇させる復熱処理を2回以上含み、
     前記復熱処理において、1回目の復熱処理の開始温度が300℃以上であり、かつ、すべての復熱処理の終了温度が750℃未満である
    ことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法。
  7.  前記溶鋼が、質量%で、さらに、
      Ni:0.01~2.0%、
      Cu:0.01~1.0%、
      Cr:0.01~1.0%、
      Mo:0.01~0.60%、
      W :0.01~1.0%、
      V :0.01~0.10%、
      Zr:0.0001~0.050%、
      Ta:0.0001~0.050%、
      B :0.0001~0.0020%、
      REM:0.0001~0.01%、
      Mg:0.0001~0.01%、
      Y :0.0001~0.005%、
      Hf:0.0001~0.005%、及び
      Re:0.0001~0.005%
    のうち1種又は2種以上を含有することを特徴とする請求項6に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法。
  8.  請求項6又は7に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法により得られた鋼板から鋼管を製造する方法であって、
     前記鋼板を管状に成形する工程と、
     突き合わせ部を溶接する工程
    を含み、
     鋼板の厚さt[mm]と造管後の鋼管の外径D[mm]が、
      t≧25
      t/D≧0.035
    を満たすことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管の製造方法。
PCT/JP2013/059617 2012-03-30 2013-03-29 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法 WO2013147197A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380004638.6A CN104024461B (zh) 2012-03-30 2013-03-29 抗氢诱发裂纹性优良的高强度管道用钢管和其所使用的高强度管道用钢板、以及它们的制造方法
KR1020147022203A KR101615842B1 (ko) 2012-03-30 2013-03-29 내수소 유기 균열성이 우수한 고강도 라인 파이프용 강관 및 이것에 사용하는 고강도 라인 파이프용 강판 및 이들의 제조 방법
EP13768001.3A EP2832879B1 (en) 2012-03-30 2013-03-29 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel plate for line pipe using same, and method for manufacturing same
BR112014019281-2A BR112014019281B1 (pt) 2012-03-30 2013-03-29 Tubo de aço para uso em oleoduto de alta resistência excelente em resistência à fratura induzida pelo hidrogênio e chapa de aço para uso em oleoduto de alta resistência que use tal chapa e método para produção da mesma
JP2013533435A JP5392441B1 (ja) 2012-03-30 2013-03-29 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012079554 2012-03-30
JP2012-079554 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147197A1 true WO2013147197A1 (ja) 2013-10-03

Family

ID=49260438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059617 WO2013147197A1 (ja) 2012-03-30 2013-03-29 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法

Country Status (5)

Country Link
EP (1) EP2832879B1 (ja)
JP (1) JP5392441B1 (ja)
KR (1) KR101615842B1 (ja)
CN (1) CN104024461B (ja)
WO (1) WO2013147197A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104526A1 (ja) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
WO2016104527A1 (ja) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
JP2016125138A (ja) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
JP2016125137A (ja) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
WO2017018108A1 (ja) * 2015-07-27 2017-02-02 新日鐵住金株式会社 ラインパイプ用鋼管及びその製造方法
TWI656224B (zh) * 2017-02-20 2019-04-11 日商新日鐵住金股份有限公司 Steel plate
JP2019131840A (ja) * 2018-01-29 2019-08-08 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板の製造方法、及び耐サワーラインパイプ用高強度鋼板、並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP2020012168A (ja) * 2018-07-19 2020-01-23 日本製鉄株式会社 耐サワーラインパイプ用厚鋼板およびその製造方法
JP2020503445A (ja) * 2016-12-22 2020-01-30 ポスコPosco 耐水素誘起割れ性に優れた引張強度450MPa級の厚肉鋼材及びその製造方法
JP2020117779A (ja) * 2019-01-24 2020-08-06 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2021193383A1 (ja) * 2020-03-26 2021-09-30 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP2022536627A (ja) * 2019-06-24 2022-08-18 ポスコ 耐腐食性に優れた高強度構造用鋼材及びその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846260A (zh) * 2015-04-20 2015-08-19 杭州科明电子有限公司 一种工具开关的扳机
CN104928568B (zh) * 2015-06-30 2017-07-28 宝山钢铁股份有限公司 一种铁素体低密度高强钢及其制造方法
CN104988401B (zh) * 2015-07-03 2017-07-07 中国石油大学(华东) 一种含钽起重机悬臂
JP2017078221A (ja) * 2015-10-21 2017-04-27 株式会社神戸製鋼所 鋼板及び接合体
US20170333955A1 (en) 2016-05-23 2017-11-23 Robowash Pty Ltd. Apparatus and method for cleaning machines
JP6869151B2 (ja) * 2016-11-16 2021-05-12 株式会社神戸製鋼所 鋼板およびラインパイプ用鋼管並びにその製造方法
US10744538B2 (en) 2016-12-13 2020-08-18 Robowash Pty Ltd. Apparatus and method for cleaning industrial parts
WO2019058422A1 (ja) * 2017-09-19 2019-03-28 新日鐵住金株式会社 鋼管及び鋼板
KR102364255B1 (ko) * 2017-09-19 2022-02-17 닛폰세이테츠 가부시키가이샤 강관 및 강판
EP3686303B1 (en) * 2017-09-19 2021-12-29 Nippon Steel Corporation Steel pipe and steel plate
CN108456834B (zh) * 2018-03-05 2020-04-24 白婷婷 一种具有含Ti析出物的高强度管线钢及其制备方法
JP6460297B1 (ja) * 2018-06-29 2019-01-30 新日鐵住金株式会社 鋼管及び鋼板
KR102131537B1 (ko) * 2018-11-30 2020-07-08 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
CN110735084A (zh) * 2019-09-20 2020-01-31 包头钢铁(集团)有限责任公司 一种管线钢x42m热轧钢带及其制备方法
KR102326109B1 (ko) * 2019-12-16 2021-11-16 주식회사 포스코 황화물 응력부식 균열 저항성이 우수한 강재 및 이의 제조방법
CN113862572B (zh) * 2021-09-28 2022-07-26 武汉科技大学 一种海洋用抗氢致开裂x80级管线钢及其制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (ja) 1993-01-26 1994-08-09 Kawasaki Steel Corp 耐hic特性に優れた高張力鋼及びその製造方法
JPH06256894A (ja) 1993-03-08 1994-09-13 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ
JPH06271974A (ja) 1993-03-18 1994-09-27 Nippon Steel Corp 耐水素誘起割れ性に優れたラインパイプ
JP2002363689A (ja) 2001-06-12 2002-12-18 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた熱延鋼板およびその製造方法
JP2006063351A (ja) 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管
JP2008007841A (ja) 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd 厚鋼板用連続鋳造鋳片及びその製造方法並びに厚鋼板
JP2009174020A (ja) * 2008-01-25 2009-08-06 Jfe Steel Corp 延性亀裂伝播特性および耐サワー性に優れる熱延鋼板の製造方法
WO2009123292A1 (ja) * 2008-03-31 2009-10-08 Jfeスチール株式会社 高張力鋼およびその製造方法
WO2010052928A1 (ja) * 2008-11-07 2010-05-14 新日本製鐵株式会社 超高強度ラインパイプ用鋼板および鋼管の製造方法
JP2010209460A (ja) 2009-02-12 2010-09-24 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
JP2010209461A (ja) 2009-02-12 2010-09-24 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040075971A (ko) * 2002-02-07 2004-08-30 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (ja) 1993-01-26 1994-08-09 Kawasaki Steel Corp 耐hic特性に優れた高張力鋼及びその製造方法
JPH06256894A (ja) 1993-03-08 1994-09-13 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ
JPH06271974A (ja) 1993-03-18 1994-09-27 Nippon Steel Corp 耐水素誘起割れ性に優れたラインパイプ
JP2002363689A (ja) 2001-06-12 2002-12-18 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた熱延鋼板およびその製造方法
JP2006063351A (ja) 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管
JP2008007841A (ja) 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd 厚鋼板用連続鋳造鋳片及びその製造方法並びに厚鋼板
JP2009174020A (ja) * 2008-01-25 2009-08-06 Jfe Steel Corp 延性亀裂伝播特性および耐サワー性に優れる熱延鋼板の製造方法
WO2009123292A1 (ja) * 2008-03-31 2009-10-08 Jfeスチール株式会社 高張力鋼およびその製造方法
WO2010052928A1 (ja) * 2008-11-07 2010-05-14 新日本製鐵株式会社 超高強度ラインパイプ用鋼板および鋼管の製造方法
JP2010209460A (ja) 2009-02-12 2010-09-24 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
JP2010209461A (ja) 2009-02-12 2010-09-24 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832879A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104527A1 (ja) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
JP2016125138A (ja) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
JP2016125137A (ja) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
CN107109566A (zh) * 2014-12-26 2017-08-29 株式会社神户制钢所 抗氢致裂纹性优异的钢板和管线管用钢管
WO2016104526A1 (ja) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
WO2017018108A1 (ja) * 2015-07-27 2017-02-02 新日鐵住金株式会社 ラインパイプ用鋼管及びその製造方法
JPWO2017018108A1 (ja) * 2015-07-27 2017-11-02 新日鐵住金株式会社 ラインパイプ用鋼管及びその製造方法
JP2020503445A (ja) * 2016-12-22 2020-01-30 ポスコPosco 耐水素誘起割れ性に優れた引張強度450MPa級の厚肉鋼材及びその製造方法
TWI656224B (zh) * 2017-02-20 2019-04-11 日商新日鐵住金股份有限公司 Steel plate
JP2019131840A (ja) * 2018-01-29 2019-08-08 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板の製造方法、及び耐サワーラインパイプ用高強度鋼板、並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP2020012168A (ja) * 2018-07-19 2020-01-23 日本製鉄株式会社 耐サワーラインパイプ用厚鋼板およびその製造方法
JP7155702B2 (ja) 2018-07-19 2022-10-19 日本製鉄株式会社 耐サワーラインパイプ用厚鋼板およびその製造方法
JP2020117779A (ja) * 2019-01-24 2020-08-06 日本製鉄株式会社 鋼板及び鋼板の製造方法
JP7248885B2 (ja) 2019-01-24 2023-03-30 日本製鉄株式会社 鋼板及び鋼板の製造方法
JP2022536627A (ja) * 2019-06-24 2022-08-18 ポスコ 耐腐食性に優れた高強度構造用鋼材及びその製造方法
JP7348963B2 (ja) 2019-06-24 2023-09-21 ポスコ カンパニー リミテッド 耐腐食性に優れた高強度構造用鋼材及びその製造方法
WO2021193383A1 (ja) * 2020-03-26 2021-09-30 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JPWO2021193383A1 (ja) * 2020-03-26 2021-09-30
JP7264269B2 (ja) 2020-03-26 2023-04-25 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管

Also Published As

Publication number Publication date
JP5392441B1 (ja) 2014-01-22
EP2832879A1 (en) 2015-02-04
BR112014019281A8 (pt) 2017-07-11
JPWO2013147197A1 (ja) 2015-12-14
CN104024461A (zh) 2014-09-03
KR20140116913A (ko) 2014-10-06
KR101615842B1 (ko) 2016-04-26
EP2832879A4 (en) 2016-01-13
EP2832879B1 (en) 2019-11-20
BR112014019281A2 (ja) 2017-06-20
CN104024461B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5392441B1 (ja) 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法
JP5423323B2 (ja) 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
JP5423324B2 (ja) 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
EP2505682B1 (en) Welded steel pipe for linepipe with superior compressive strength, and process for producing same
KR101247089B1 (ko) 라인 파이프용 강판 및 강관
EP2505681B1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
JP5353156B2 (ja) ラインパイプ用鋼管及びその製造方法
EP1870484B1 (en) High-strength steel plate and process for production thereof, and high-strength steel pipe
JP5131714B2 (ja) 低温靭性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
JP5141073B2 (ja) X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法
JP2008056962A (ja) 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
JP5768603B2 (ja) 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法
JP2015189984A (ja) 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管
JP5509654B2 (ja) 耐pwht特性および一様伸び特性に優れた高強度鋼板並びにその製造方法
EP2093302A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP7155703B2 (ja) ラインパイプ用厚鋼板およびその製造方法
JP4719313B2 (ja) 耐サワー性に優れた鋼板及びラインパイプ用鋼管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380004638.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013533435

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022203

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013768001

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014019281

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014019281

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140805