WO2013146742A1 - 多孔質膜用保存液 - Google Patents

多孔質膜用保存液 Download PDF

Info

Publication number
WO2013146742A1
WO2013146742A1 PCT/JP2013/058702 JP2013058702W WO2013146742A1 WO 2013146742 A1 WO2013146742 A1 WO 2013146742A1 JP 2013058702 W JP2013058702 W JP 2013058702W WO 2013146742 A1 WO2013146742 A1 WO 2013146742A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
membrane
preservation solution
mass
solution
Prior art date
Application number
PCT/JP2013/058702
Other languages
English (en)
French (fr)
Inventor
規孝 柴田
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2013519664A priority Critical patent/JP6202473B2/ja
Priority to KR1020147026599A priority patent/KR101743423B1/ko
Priority to CN201380027511.6A priority patent/CN104334261B/zh
Publication of WO2013146742A1 publication Critical patent/WO2013146742A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0097Storing or preservation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Definitions

  • the present invention relates to a preservation solution for a hydrophobic porous membrane.
  • it relates to the preservation of a porous membrane such as an ultrafiltration membrane and the use of the porous membrane.
  • porous membranes are increasingly used for the separation, purification and concentration of liquids or gases in a very wide range of fields such as water treatment, food industry, pharmaceutical industry, and electronics industry.
  • a polymer film forming solution is exposed to a low molecular non-solvent (for example, water) to be separated into two phases, a polymer rich phase and a dilute phase.
  • a phase separation occurs, and a hollow fiber membrane is formed.
  • the hollow fiber membrane forms a porous structure of a certain size by a polymer, and is formed in a state in which a non-solvent is contained inside the porous material.
  • the water permeation rate is significantly reduced unless re-wetting with ethanol or the like.
  • the hollow fiber membrane when the hollow fiber membrane is incorporated into a membrane module, stored, transported or processed, it is easier to handle when the hollow fiber membrane is somewhat dry. Therefore, even when the hollow fiber membrane is in a dry state, it is necessary to moisten the membrane so as not to change the membrane structure and maintain the water permeation rate. That is, the permeation rate can be maintained even after drying by impregnating the inside of the membrane with a preservation solution (or water retention agent) after the hollow fiber membrane is formed.
  • a preservation solution or water retention agent
  • Patent Documents 1 and 2 Conventionally, glycerin or a glycerin aqueous solution is often used as a preservation solution for a porous membrane (see, for example, Patent Documents 1 and 2).
  • Patent Document 3 exemplifies a method in which a surfactant is dissolved in alcohol and the porous membrane is immersed and dried in the solution, or hydrophilicized with alcohol and then coated with the surfactant.
  • Patent Document 4 shows that the water permeability after drying is not reduced by including a surfactant in the porous membrane. When the concentration of the surfactant becomes several mass% or more, a large amount of the surfactant adheres to the porous membrane. Therefore, it is necessary to wash and remove for a long time with a large amount of water before using the porous membrane. Cause inconvenience.
  • hydrophobic membranes such as polyvinylidene fluoride, polysulfone, and polyethersulfone, which are excellent in heat resistance and chemical resistance, have been used as membrane materials for water treatment.
  • a vinylidene fluoride resin is preferable as a film material because it is excellent in weather resistance, mechanical strength, and the like.
  • the membrane is hydrophobic, it is necessary to perform a hydrophilic treatment before use.
  • glycerin Patent Document 6
  • surfactant Patent Document 7
  • glycerin and interface A method of treating with a mixed liquid of an activator (Patent Document 8) is known.
  • the membrane material is a strong hydrophobic polymer such as vinylidene fluoride. Because of its low wettability, it is difficult to uniformly adhere glycerin to the film. Further, in the method of treating with a surfactant (Patent Document 2), the membrane can be hydrophilized, but on the other hand, it is easy to foam when substituting the preservation solution with water for use, so that the workability during use is improved. There are problems such as bad.
  • an object of the present invention is to solve the conventional problems and to provide an optimal preservation solution for a porous membrane, particularly a hydrophobic porous membrane.
  • the present invention provides a method for determining the concentration of a preservative solution to be contained in a porous membrane so that the permeation rate is not lowered even when the membrane is dried, and the membrane can be easily handled during storage and transportation.
  • the object of the present invention is that no pretreatment or the like is required, and it is possible to impart stable moisture retention to the membrane for a long period of time. Moreover, even if the membrane is dried, the permeation rate is not lowered and no foaming is caused. It is to provide a preservation solution for a porous membrane.
  • the inventors of the present invention have achieved the above-mentioned object by adding glycerin and a polyhydric alcohol having a surface tension of 40 mN / m or less to the preservation solution when the porous membrane is hydrophilized and preserved. It has been found that a separation liquid can be provided with stable moisture retention for a long period of time without necessity and a storage solution free from foaming can be obtained.
  • the surface tension is at room temperature (25 ° C.). That is, the present invention provides the following.
  • Stock solution for porous membrane [2] The porous membrane preservation solution according to [1], wherein the polyhydric alcohol concentration is 20% by mass or more and 40% by mass or less based on the total mass of the preservation solution. [3] The porous membrane preservation solution according to [1] or [2], wherein the preservation solution has a surface tension of 50 mN / m or less.
  • the polyhydric alcohol having a surface tension of 40 mN / m or less is selected from the group consisting of 1,3-butylene glycol, propylene glycol, dipropylene glycol and mixtures thereof [1] to [3]
  • the total concentration of glycerin and / or polyglycerin and a polyhydric alcohol having a surface tension of 40 mN / m or less is 40% by mass or more and 70% by mass or less with respect to the total mass of the preservation solution.
  • the preservation solution for a porous membrane according to any one of [4].
  • the porous membrane as described in [8], wherein the material of the layer constituting the pores of the porous membrane is made of a polyvinylidene fluoride resin.
  • the present invention it is possible to impart a long-term stable moisturizing property to a porous membrane without the need for pretreatment, etc., and even if the membrane is dried, the permeation rate is not lowered, and the porous membrane has no foaming. A preservative solution can be obtained.
  • the preservation solution for a porous membrane of the present invention contains glycerin and / or polyglycerin and a polyhydric alcohol having a surface tension of 40 mN / m or less.
  • Polyglycerin is a compound obtained by dehydration condensation of n ⁇ 2 or more glycerin units represented by the following formula.
  • the value of n is appropriately determined to be 2 or more.
  • n is preferably 10 or less.
  • glycerin and polyglycerin may coexist in the preservation solution.
  • the concentration of glycerin and the polyglycerol concentration in the preservation solution are combined and preserved. It is good in it being 10 mass% or more and 30 mass% or less with respect to the liquid total mass.
  • the concentration of glycerin and / or polyglycerin is 10% by mass or more and 30% by mass or less, more preferably 15% by mass or more and 25% by mass or less, based on the total mass of the preservation solution.
  • the concentration of glycerin and / or polyglycerin means the concentration of glycerin when glycerin is used alone, the concentration of polyglycerin when polyglycerin is used alone, and the coexistence of glycerin and polyglycerin. Means the sum of the glycerin concentration and the polyglycerin concentration. If the concentration of glycerin and / or polyglycerin is less than 10% by mass, the effects of antibacterial / antifungal properties that are characteristic of glycerin and / or polyglycerin and freezing prevention under freezing may not be sufficiently obtained. In addition, the water permeability retention after the drying treatment is not preferable. On the other hand, if the concentration of glycerin and / or polyglycerin is higher than 30% by mass, the viscosity becomes too high, so that the permeability to the porous membrane is lowered and the water retention performance is lowered.
  • the polyhydric alcohol used in the preservation solution for a porous membrane of the present invention is not particularly limited as long as it is a polyhydric alcohol exhibiting a surface tension of 40 mN / m or less, but specifically, 1,3-butylene from the viewpoint of toxicity and the like.
  • examples include glycol (1,3BG surface tension: 37.3 mN / m), propylene glycol (PG surface tension: 35.6 mN / m), dipropylene glycol (DPG surface tension: 32.8 mN / m), and the like.
  • the total concentration of the polyhydric alcohol having a surface tension of 40 mN / m or less and glycerol and / or polyglycerol is preferably 40% by mass or more and 70% by mass or less with respect to the total mass of the preservation solution. If it is less than 40% by mass, the proportion of water increases, the surface tension becomes 60 mN / m or more, and the permeability decreases, which is not preferable. On the other hand, when it exceeds 70% by mass, the solution viscosity becomes too high and the permeability is deteriorated. Particularly, in the ultrafiltration membrane as the object of the present invention, the permeability is extremely deteriorated and the hydrophilicity due to insufficient penetration. This is because expression decreases.
  • the balance of the preservation solution of the present invention is water and may contain additional components such as bactericides and preservatives as necessary.
  • the preservation solution for a porous membrane of the present invention can be produced by introducing glycerin and / or polyglycerin and a polyhydric alcohol into water (for example, distilled water or ion-exchanged water) and mixing them.
  • water for example, distilled water or ion-exchanged water
  • the order of charging is not particularly limited, and glycerin and / or polyglycerin, water, polyhydric alcohol, and other additive components such as preservatives and bactericides may be added in any order.
  • the polyhydric alcohol, glycerin, polyglycerin and the additive component may themselves contain moisture. Moreover, you may heat and pressurize in mixing.
  • the concentration of the polyhydric alcohol is preferably 20% by mass or more and 40% by mass or less based on the total mass of the preservation solution.
  • the polyhydric alcohol concentration is higher than 40% by mass, there is a problem in that the storage liquid flows out when the drying process is performed, and thus the water storage performance retention rate is lowered.
  • it is less than 20% by mass, the surface tension of the mixed solution does not become 50 mN / m or less, so that it cannot spontaneously permeate.
  • Glycerin and polyglycerol have high surface tensions of 63 mN / m and 64 mN / m, respectively, and the porous membrane cannot be wetted by itself or an aqueous solution. Therefore, in order to fill and store the glycerin aqueous solution in the hollow fiber membrane module, it is usually made hydrophilic once with ethanol etc. and then replaced with the glycerin aqueous solution. However, if the solution is not sufficiently replaced, the water permeability is maintained. This is not preferable because the rate decreases. Moreover, even if it is fully replaced, the waste liquid generated by the replacement work has been a problem.
  • the surface tension value of the solution after mixing is preferably 50 mN / m or less, and can be sufficiently wetted.
  • the surface tension value of the solution after mixing is preferably 50 mN / m or less and 40 mN / m or more.
  • the preservation solution for porous membrane of the present invention can be used for treatment of a separation membrane (which may be processed into a separation membrane module).
  • the separation membrane means a membrane used in a separation process such as microfiltration or ultrafiltration.
  • the processing method of the separation membrane using the preservation solution is not particularly limited. Examples include a method of immersing the separation membrane in a preservation solution, a method of filtering the preservation solution through a separation membrane, and the like.
  • the material of the separation membrane is preferably a hydrophobic resin excellent in heat resistance and chemical resistance, and examples thereof include polysulfone, polyethersulfone, polyethylene, polypropylene, and polyvinylidene fluoride. Among these, a polyvinylidene fluoride resin having excellent mechanical strength and weather resistance is particularly preferable. Examples of the polyvinylidene fluoride resin include a homopolymer of vinylidene fluoride, a copolymer of vinylidene fluoride and other monomers, or a mixture thereof.
  • the shape of the separation membrane is not particularly limited. Examples of the shape of the separation membrane include a flat membrane and a hollow fiber membrane.
  • the separation membrane When the separation membrane is a hollow fiber, it can be treated by filling the hollow fiber with the preservation solution of the present invention.
  • the method of filling is not limited, but the method of immersing the hollow fiber membrane in the preservation solution is the simplest. This immersion is usually performed for 20 min or more at room temperature, but the time can be shortened by increasing the temperature of the preservation solution.
  • the hollow fiber membrane is preferably a dense layer on both or either of the inner and outer surfaces of the membrane. That is, it is preferable that the pore size of the film gradually increases from the minimum value on the inner surface from the inner surface to the outer surface, has at least one maximum value, and again becomes the minimum value on the outer surface. .
  • the pore size of the dense layer that is the minimum value is the size of the ultrafiltration membrane region intended for separation of the polymer substance, and is usually in the range of 0.01 to 0.001 ⁇ m in pore size.
  • the ultrafiltration membrane refers to a membrane having a fractional molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 6 Da.
  • porous membrane or separation membrane of the present invention include those having a porous membrane layer as a fractionation layer on the outer peripheral surface or inside of a support, preferably a non-porous support.
  • the fractionation layer may be disposed on either or both of the inner surface and the outer surface.
  • the fractional pore diameter of the fractionation layer is 100 nm or less, preferably 1-100 nm.
  • porous membranes especially hydrophobic porous membranes, are used for the first time when the porous membrane is used, when the membrane is replaced, when the membrane is washed with chemicals, when the membrane is not used for a long time, etc. It may be in a dry state in contact with air. In this case, even if it is soaked in a liquid to be treated (liquid to be treated) or the like to filter the liquid to be treated, the liquid permeation performance is deteriorated and the original function as a separation membrane cannot be exhibited.
  • hydrophilization of the porous membrane includes bringing the porous membrane into contact with the porous membrane preservation solution.
  • the hydrophilic treatment using the hydrophobic porous membrane of the present invention in the membrane module is performed by injecting the hydrophobic porous membrane preservation solution from the side facing the second chamber having the outlet of the hydrophobic porous membrane. Done.
  • the storage solution for the hydrophobic porous membrane may be injected from all outlets, and (b) the storage for the hydrophobic porous membrane from at least one outlet.
  • the liquid may be injected, and the remaining porous membrane preservation solution may be discharged from the remaining outlet.
  • the storage solution can be pumped from the outlet.
  • bubbles inside the membrane module are released, and the entire membrane can be filled with the storage solution.
  • the adhesion rate of the storage solution for the hydrophobic porous membrane to the porous membrane is, for example, 5 to 30% by mass, preferably 8 to 15% by mass with respect to the dry mass of the porous membrane.
  • the adhesion rate refers to the mass (W0) (g) of the porous membrane before the hydrophilic treatment and the mass (W1) (g) of the hydrophobic porous membrane after the hydrophilic treatment and further drying.
  • adhesion rate (%) [(W0 (g) ⁇ W1 (g)) / W0 (g)] ⁇ 100.
  • the adhesion rate is 8% by mass or more, good hydrophilicity is expressed, and if it is 30% by mass or less, an extra preservation solution for the porous membrane may be included in the hollow fiber membrane (hollow part). This is preferable because excessive elution can be prevented.
  • the temperature of the preservation solution for a porous membrane of the present invention during the preservation treatment is, for example, 10 to 50 ° C., preferably 20 to 30 ° C. If it is 10 degreeC or more, a osmosis
  • the immersion time of the preservation solution for porous membrane may be recovered immediately after the preservation solution for porous membrane is injected, but is at least 30 seconds or more, 10 to 120 minutes, preferably 30 to 30 minutes. It is preferable that the preservation solution for porous membrane is allowed to stand for 90 minutes in the hydrophobic porous membrane so as to completely hydrophilize and improve the liquid permeation performance.
  • the water used here is preferably pure water such as pure water or purified water that does not contaminate the second chamber side having the outlet. More preferably, it may be a bactericidal liquid containing a small amount of sodium hypochlorite aqueous solution or a preservative / bactericidal agent. Further, water obtained by filtering normal tap water or ion-exchanged water through a hollow fiber membrane having a pore diameter of 0.01 to 1 ⁇ m may be used.
  • the membrane module has a main body, an inlet, an outlet and a porous membrane as described above, and the porous membrane divides the main body into a first chamber having an inlet and a second chamber having an outlet. Connected to the inside of the main body.
  • each member such as the main body, inlet, outlet, and porous membrane itself, or a defect in the connecting portion between the porous membrane and the inside of the main body (for example, holes, cracks, incomplete connection, clogging of the porous membrane, etc.) If it exists, it will not function as a good membrane module. It is therefore necessary to inspect these defects. Therefore, the preservation solution of the present invention can be used for defect inspection because of its low surface tension to such an extent that it can be wetted spontaneously.
  • bubble point method One of the typical methods for product inspection is the “bubble point method”. This method was originally developed for the purpose of evaluating the pore size, but because of the simplicity of the method, it is currently widely used in the integrity test of microfiltration membranes and ultrafiltration membranes. JIS K3832 “microfiltration” The method is defined in “Bubble Point Test Method for Membrane Elements and Modules”. If the membrane is damaged or has large pores, air begins to permeate at pressures much lower than expected, and it can be detected that the membrane is defective.
  • the membrane module may be introduced with an inspection gas immediately after being immersed, but it is preferable to leave the membrane module immersed for a predetermined time in order to completely hydrophilize the membrane module.
  • the immersion time of the membrane module is, for example, 30 seconds to 30 minutes, preferably 5 to 20 minutes.
  • an inert gas such as air, nitrogen, or argon can be used.
  • the inspection gas is gradually inspected to a target pressure in the range of 5 kPa to 1 MPa.
  • the pressure may be applied in the range of about 10 to 100 KPa.
  • the inspection gas introduced into the membrane module is discharged from the outlet.
  • the end of the outlet may be closed to inspect the connection of the inlet, outlet, main body, and the like.
  • the test gas is introduced into the membrane module, and from the whole membrane module, the inlet, the outlet, the bubbles that can be released from the main body, the bubbles that can be released from the connection portion of each member, the hydrophobic porous membrane, and the connection portion between this and the main body The bubbles that can be released are visually observed.
  • the porous membrane is dried / hydrophobized due to the flow of inspection gas, and the deterioration of the liquid permeation performance due to hydrophobicity is suppressed. can do. This is because the hydrophobic porous membrane spontaneously gets wet with water by contacting with the preservation solution of the present invention even if the inspection gas is vented.
  • the preservation treatment is mainly carried out by immersing the membrane module in the above step (1) in the preservation solution for porous membrane of the present invention, and then drying subsequent to the inspection step, The surface is hydrophilized and can be distributed as a product in a dry state.
  • the liquid to be treated can be passed with high liquid permeability without further hydrophilization treatment, and as a waste liquid.
  • the drying temperature after defect inspection is, for example, in the range of 20 to 70 ° C., preferably 30 to 50 ° C. If the drying temperature is 20 ° C. or higher, sufficiently high liquid permeability can be imparted. If the drying temperature is 70 ° C. or lower, the thermal shrinkage of the hydrophobic porous membrane and the preservation solution for the porous membrane of the present invention can be achieved. It is also possible to suppress a decrease in liquid permeation performance due to outflow.
  • the mixed substance can be easily removed from the hollow fiber membrane.
  • the hollow fiber membrane structure as in the present invention having a dense layer on the inner surface or the outer surface of the membrane, or both of them, even when the membrane is immersed in the preservation solution, the preservation solution diffuses throughout the porous interior of the membrane.
  • the mixed substance of the present invention can effectively perform the moisture retaining action of the film even in such a film structure.
  • Permeability retention performance (permeability retention rate), permeability when the porous membrane and stored water permeability after drying at 40 ° C. After treatment with liquid F 1 (m / hr ⁇ MPa ), and hydrophilizing the membrane in an aqueous ethanol solution The ratio was F 0 (m / hr ⁇ MPa), and the value was F 1 / F 0 .
  • Example 1 Hydrophobic made of an ultrafiltration hollow fiber membrane (made by Mitsubishi Rayon Co., Ltd.) made of vinylidene fluoride resin having a pure water permeability coefficient of 6 m 3 / m 2 / hr / MPa, an outer diameter of 1.5 mm, and a pore diameter of 20 nm. A porous membrane was used. A 0.2 m 2 mini-module was created. An aqueous solution (surface tension 49.5 mN / m) composed of 25% by mass of glycerin and 25% by mass of 1,3-butylene glycol was used as a preservative solution.
  • an ultrafiltration hollow fiber membrane made by Mitsubishi Rayon Co., Ltd.
  • vinylidene fluoride resin having a pure water permeability coefficient of 6 m 3 / m 2 / hr / MPa, an outer diameter of 1.5 mm, and a pore diameter of 20 nm.
  • a porous membrane was used.
  • the mini module was immersed in a storage solution for 30 min, and leak inspection was performed by the bubble point method from the secondary side of the membrane module at 100 kpa with air. It was confirmed that the module was hydrophilized by sufficiently permeating the hollow fiber membrane, no bubbles were generated due to hydrophobicity due to poor hydrophilization, and there was no leak as a module.
  • This module was dried at 40 ° C. for about 6 hours and completely dried. The adhesion rate in that case was 10 mass%. Dried again, was 5.8m 3 / m 2 / hr / MPa when measured water permeability F 1 was immersed in water.
  • the water permeability F 0 was measured again and found to be 6 m 3 / m 2 / hr / MPa. It was confirmed that the water permeation performance equivalent to that of ethanol hydrophilization can be maintained by using this stock solution.
  • Example 2 The same hollow fiber membrane as in Example 1 was used, and an aqueous solution (surface tension of 47.0 mN / m) consisting of 15% by mass of glycerin and 35% by mass of 1,3-butylene glycol was used as a storage solution.
  • the hydrophilization treatment and leak test were performed in the same manner as in Example 1. As in Example 1, the leakage failure due to the poor hydrophilicity could not be measured.
  • This module was dried at 40 ° C. for about 6 hours and completely dried. The adhesion rate in that case was 9.8 mass%. Dried again, was 5.67m 3 / m 2 / hr / MPa when measured water permeability F 1 was immersed in water.
  • the water permeability F 0 was measured again and found to be 6 m 3 / m 2 / hr / MPa. It was confirmed that the water permeation performance equivalent to that of ethanol hydrophilization can be maintained by using this stock solution.
  • Example 1 The same hollow fiber membrane as in Example 1 was used, and a 50% by mass glycerin aqueous solution was used as a preservation solution. The hydrophilization treatment and leak test were performed in the same manner as in Example 1. Coarse bubbles associated with poor hydrophilization were detected and could not be sufficiently hydrophilized.
  • Example 2 The same hollow fiber membrane as that of Example 1 was used, and a 50 mass% 1,3-butylene glycol aqueous solution was used as a preservation solution.
  • the hydrophilization treatment and leak test were performed in the same manner as in Example 1. As in Example 1, the leakage failure due to the poor hydrophilicity could not be measured.
  • This module was dried at 40 ° C. for about 6 hours and completely dried. The adhesion rate in that case was 6.5 mass%. Dried again, was 3.50m 3 / m 2 / hr / MPa when measured water permeability F 1 was immersed in water.
  • the water permeability F 0 was measured again and found to be 6 m 3 / m 2 / hr / MPa. It was confirmed that this preservation solution could not maintain the water permeability equivalent to ethanol hydrophilization.
  • Example 3 The same hollow fiber membrane as in Example 1 was used, and an aqueous solution (surface tension 45.6 mN / m) composed of 5% by mass of glycerin and 45% by mass of 1,3-butylene glycol was used as a storage solution.
  • This module was dried at 40 ° C. for about 6 hours and completely dried.
  • the adhesion rate in that case was 5.5 mass%. Dried again, was 2.40m 3 / m 2 / hr / MPa when measured water permeability F 1 was immersed in water. Further, after thoroughly washing with ethanol, the water permeability F 0 was measured again and found to be 6 m 3 / m 2 / hr / MPa. It was confirmed that this preservation solution could not maintain the water permeability equivalent to ethanol hydrophilization.
  • Example 4 The same hollow fiber membrane as in Example 1 was used, and an aqueous solution (surface tension 53.7 mN / m) composed of 35% by mass of glycerin and 15% by mass of 1,3-butylene glycol was used as a preservation solution.
  • This module was dried at 40 ° C. for about 6 hours and completely dried. The adhesion rate at that time was 2.5% by mass. Dried again, was 1.25m 3 / m 2 / hr / MPa when measured water permeability F 1 was immersed in water. Further, after thoroughly washing with ethanol, the water permeability F 0 was measured again and found to be 6 m 3 / m 2 / hr / MPa. It was confirmed that this preservation solution could not maintain the water permeability equivalent to ethanol hydrophilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 前処理などを必要とせず膜に長期間安定した保湿性を付与することができ、かつ泡立ちのない多孔質膜用保存液を提供することを課題とし、グリセリン及び/又はポリグリセリンと表面張力40mN/m以下の多価アルコールとを含有することを特徴とする多孔質膜用保存液により前記課題が解決される。

Description

多孔質膜用保存液
 本発明は、疎水性多孔質膜用保存液に関する。特に限外ろ過膜等の多孔質膜の保存及び上記多孔質膜の使用に関する。
 近年、多孔質膜、特に中空糸膜は水処理分野、食品工業、医薬工業、電子工業などの非常に幅広い分野において、液体または気体の分離・精製および濃縮を目的として、ますます利用されている。
 高分子中空糸膜の湿式または乾湿式製膜法では、一般に高分子の製膜溶液が低分子の非溶媒(例えば水)にさらされることによって高分子濃厚相と希薄相の2つの相に分離する、いわゆる相分離が起こって、中空糸膜が形成する。この際、中空糸膜は高分子による一定の大きさの多孔質構造を形成して、多孔質内部に非溶媒を含んだ状態で製膜される。ところが、このような中空糸膜をそのまま乾燥し、非溶媒が多孔質内部から抜け出してしまうとエタノールなどで再湿潤しないかぎり、水の透過速度が著しく低下する。
 一方、中空糸膜を膜モジュールに組み込んだり、保存、輸送あるいは加工したりする場合には、中空糸膜がある程度乾燥した状態の方が取り扱いやすい。従って、中空糸膜は乾燥した状態においても、膜構造を変化させず、水透過速度を保持する程度に湿らせておく必要がある。すなわち中空糸膜の製膜後に保存液(あるいは保水剤)を膜の多孔質内部に含浸させることによって乾燥後も透過速度を保つことができる。
 多孔質膜の保存液として従来よりグリセリンまたはグリセリン水溶液がしばしば用いられている(例えば、特許文献1、2参照)。特許文献3には、界面活性剤をアルコールに溶解させて、その液中に多孔質膜を浸漬・乾燥させるか、アルコールで親水化した後に界面活性剤でコーティングする方法が例示されている。
 また、特許文献4には、界面活性剤を多孔質膜に含ませることによって、乾燥後の透水性を低下させないことが示されている。界面活性剤の濃度が数質量%以上になると、界面活性剤が多孔質膜に多く付着するため、多孔質膜の使用前に多量の水で長時間の洗浄・除去をする必要があるなどの不都合を生ずる。
 酢酸セルロースの逆浸透膜に用いた保存液の例としてグリセリン等の多価アルコール類、界面活性剤および水を含む水溶液が紹介されており、この保存液によって乾燥後の膜の透水速度が低下しないことが知られている(特許文献5参照)。
 従来より、水処理用途の膜素材として、耐熱性、耐薬品性等に優れたポリフッ化ビニリデン、ポリスルフォン、ポリエーテルスルフォン等の疎水性ポリマーが多く使用されている。中でもフッ化ビニリデン系の樹脂は、耐候性、機械的強度等に優れているため膜素材として好ましい。しかしその反面、膜が疎水性であることから、使用前には親水化処理を行う必要がある。
 このような疎水性多孔膜を親水化状態で保存する方法は、これまでにいくつか提案されており、例えば、グリセリン(特許文献6)や、界面活性剤(特許文献7)あるいは、グリセリンと界面活性剤の混合液(特許文献8)で処理する方法などが知られている。
特開昭47-11662号公報 特開昭60-12072号公報 特許第3153905号 特開平3-143534号公報 特開昭53-92867号公報 特開2002-95939号公報 特開昭63-277251号公報 特開2010-88996号公報
 しかし、グリセリンで処理する方法(特許文献1)では、グリセリンの保湿効果が高いにもかかわらず表面張力が高いために、膜素材がフッ化ビニリデンのように強い疎水性ポリマーであると、界面での濡れ性が小さいため、グリセリンを膜に均一に付着させるのが困難である。
 また、界面活性剤で処理する方法(特許文献2)では、膜の親水化は可能であるが、その反面、使用にあたって保存液を水に置換する際に泡立ちやすいため、使用時の作業性が悪いなどの問題点がある。
 従って、本発明は、従来の問題点を解決して多孔質膜、特に疎水性多孔質膜の最適な保存液を提供することを目的とする。また、本発明は、多孔質膜に含有させる保存液濃度を決定することによって、膜を乾燥しても透過速度を低下させず、また膜の保存、輸送における取扱いを容易にできる方法を提供することを目的とする。
 更に、本発明の目的は、前処理などを必要とせず、膜に長期間安定した保湿性を付与することができ、また、膜を乾燥しても透過速度を低下させず、かつ泡立ちのない多孔質膜用保存液を提供することにある。
 本発明者らは、多孔質膜を親水化し、保存する際に、グリセリンと表面張力40mN/m以下の多価アルコールとを保存液に含有させることにより、上記目的が達成され、前処理などを必要とせずに分離膜に長期間安定した保湿性を付与することができ、かつ泡立ちのない保存液を得ることができることを見いだした。なお本明細書において表面張力は室温(25℃)におけるものである。
 すなわち、本発明は以下を提供する。
[1]グリセリン及び/又はポリグリセリンと表面張力40mN/m以下の多価アルコールとを含有し、グリセリン及び/又はポリグリセリン濃度が保存液全質量に対し10質量%以上30質量%以下である、多孔質膜用保存液。
[2]多価アルコール濃度が保存液全質量に対し20質量%以上40質量%以下である[1]記載の多孔質膜用保存液。
[3]保存液の表面張力が50mN/m以下であることを特徴とする[1]または[2]記載の多孔質膜用保存液。
[4]表面張力40mN/m以下の多価アルコールが1,3-ブチレングリコール、プロピレングリコール、ジプロピレングリコール及びこれらの混合物からなる群より選択されることを特徴とする[1]~[3]のいずれか一項に記載の多孔質膜用保存液。
[5]グリセリン及び/又はポリグリセリンと表面張力40mN/m以下の多価アルコールとの合計濃度が保存液全質量に対し40質量%以上70質量%以下であることを特徴とする[1]~[4]のいずれか一項に記載の多孔質膜用保存液。
[6]多孔質膜が中空糸膜または平膜である[1]~[5]のいずれか一項に記載の多孔質膜用保存液。
[7]多孔質膜が限外濾過膜であることを特徴とする[1]~[6]のいずれか一項に記載の多孔質膜用保存液。
[8]少なくとも一方の表面に[1]~[7]のいずれか一項に記載の多孔質膜用保存液が付着した多孔質膜。
[9]多孔質膜の細孔を構成する層の素材が、ポリフッ化ビニリデン系樹脂からなることを特徴とする[8]に記載の多孔質膜。
[10][8]または[9]に記載の多孔質膜を有する多孔質膜モジュール。
[11]バブルポイント法(JIS K3832)による多孔質膜モジュールの欠陥検査方法において、
 浸漬液として[1]~[7]のいずれか一項に記載の多孔質膜用保存液を用いる多孔質膜モジュールの欠陥検査方法。
 本発明により、前処理などを必要とせず多孔質膜に長期間安定した保湿性を付与することができ、また、膜を乾燥しても透過速度を低下させず、更に泡立ちのない多孔質膜用保存液を得ることができる。
 以下、本発明を詳細に説明する。
(保存液)
 本発明の多孔質膜用の保存液は、グリセリン及び/又はポリグリセリンと表面張力40mN/m以下の多価アルコールとを含有することを特徴とする。
 ポリグリセリンは、下記式で表されるn≧2以上のグリセリン単位が脱水縮合した化合物である。ここでnの値は2以上で適宜定められるが、nが大きくなると粘度が高くなることから、nは10以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 本発明においては、グリセリンとポリグリセリンとが保存液中に共存していてもよく、この場合、本発明の保存液としては、保存液中のグリセリンの濃度とポリグリセリン濃度とが合計して保存液全質量に対し10質量%以上30質量%以下であるとよい。
 グリセリン及び/又はポリグリセリンの濃度は、保存液の全質量を基準として、10質量%以上30質量%以下であり、更に好ましくは、15質量%以上25質量%以下である。
 本明細書において、グリセリン及び/又はポリグリセリンの濃度とは、グリセリンを単独で使用する場合はグリセリンの濃度、ポリグリセリンを単独で使用する場合はポリグリセリンの濃度、グリセリンとポリグリセリンを共存させる場合はグリセリン濃度とポリグリセリン濃度の合計をいう。
 グリセリン及び/又はポリグリセリンの濃度が10質量%よりも小さいと、グリセリン及び/又はポリグリセリンの特長である防菌・防黴や、氷点下での凍結防止の効果が充分に得られなくなる場合があるだけでなく、乾燥処理後の透水性能保持率が低下するため好ましくない。一方グリセリン及び/又はポリグリセリンの濃度が30質量%よりも高すぎると、粘度が高くなりすぎる為に多孔質膜への浸透性が低下し、保水性能が低下するため好ましくない。
 本発明の多孔質膜用保存液に用いる多価アルコールとしては、表面張力40mN/m以下を示す多価アルコールであれば特に制限されないが、具体的には毒性などの観点から1,3-ブチレングリコール(1,3BG 表面張力: 37.3mN/m)あるいはプロピレングリコール(PG 表面張力: 35.6mN/m)、ジプロピレングリコール(DPG 表面張力:32.8mN/m)等が挙げられる。
 表面張力40mN/m以下の多価アルコールとグリセリン及び/又はポリグリセリンの合計濃度は、保存液全質量に対し40質量%以上70質量%以下であることが好ましい。40質量%未満であると水の占める割合が高くなり表面張力が60mN/m以上となり浸透性が低下するために好ましくない。また、70質量%を超えると溶液粘度が高くなりすぎ浸透性が悪くなり、特に本発明が対象とするような限外濾過膜では極端に浸透性が悪化し十分に浸透しないことによる親水性の発現が低下するためである。
 本発明の保存液の残部は、水であり、必要に応じて、殺菌剤や防腐剤等の添加成分が含まれていてもよい。
 本発明の多孔質膜用保存液は、グリセリン及び/又はポリグリセリン並びに多価アルコールを、水(例えば、蒸留水、イオン交換水)中に投入して混合することで製造することができる。投入順序は特に限定されず、グリセリン及び/又はポリグリセリン、水、多価アルコール、さらには、防腐剤・殺菌剤などのその他の添加成分を任意の順序で投入してよい。多価アルコール、グリセリン、ポリグリセリン及び添加成分は、それ自体水分を含有していてもよい。また、混合に当たり加温や加圧を行ってもよい。
 多価アルコールの濃度は、保存液の全質量を基準として、20質量%以上40質量%以下であることが好ましい。多価アルコール濃度が40質量%よりも高いと乾燥工程を経る際に、溶液粘度が低下するために保存液が流出し、透水性能保持率が低下する問題がある。また、20質量%よりも小さいと混合溶液の表面張力が50mN/m以下にならないために自発的に浸透することができないので好ましくない。
 グリセリン及びポリグリセリンは、表面張力がそれぞれ63mN/m及び64mN/mと高く、それ自体及び水溶液でも多孔質膜を濡らすことができない。そのため、通常、グリセリン水溶液を中空糸膜モジュールに充填・保存するにはエタノールなどで一度、親水化した上で、グリセリン水溶液に置き換える方法がとられるが、溶液が十分に置き換わっていないと透水性能保持率が低下するため好ましくない。また十分に置き換えられてもその置換作業により生じる廃液が問題であった。また上記の多価アルコールはいずれも40mN/m以下であるために単独で多孔質膜を親水化し濡らすことが可能である。しかし、乾燥工程を経ると溶液粘度が低下するために保存液が流出し、透水性能保持率が低下する問題があった。
 自発的に濡れる状態にするには、混合後の溶液の表面張力値が50mN/m以下であることが好ましく、十分に濡らすことが可能である。混合後の溶液の表面張力値は更に、50mN/m以下40mN/m以上であることが好ましい。
(分離膜)
 本発明の多孔質膜用保存液は、分離膜(分離膜モジュールに加工されていてもよい)の処理に用いることができる。ここで分離膜とは、精密濾過や限外濾過等の分離プロセスに用いられる膜を意味する。保存液を用いた分離膜の処理方法は特に限定されない。例としては、分離膜を保存液に浸漬させる方法や、保存液を分離膜で濾過する方法等が挙げられる。
 分離膜あるいは分離膜モジュールを本発明の保存液により処理することにより、透水性能を劣化させること無く、分離膜を長期間保管することが可能である。
 分離膜の素材としては、耐熱性、耐薬品性等に優れた疎水性の樹脂が好ましく、例えば、ポリスルフォン、ポリエーテルスルフォン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデンなどが挙げられる。この中でも、優れた機械的強度、耐候性を持つポリフッ化ビニリデン系樹脂が特に好ましい。ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体、フッ化ビニリデンと他のモノマーとの共重合体あるいはこれらの混合物が挙げられる。
 分離膜の形状は特に限定されない。分離膜の形状としては、例えば平膜、中空糸膜などが挙げられる。
 分離膜が中空糸である場合には、中空糸内に本発明の保存液を充填することにより処理することができる。充填の方法は、制限されないが、中空糸膜を保存液中に浸漬する方法が最も簡便である。この浸漬は室温においては、通常、20min以上行えばよいが、保存液の温度を上昇させると時間を短縮することができる。
 本発明において中空糸膜は、膜の内外表面の両方あるいはいずれかが緻密層であることが好ましい。
 すなわち、膜の空孔サイズは膜内表面から外表面に向かって、内表面での極小値から徐々に大きくなり、少なくとも1つの極大値があり、再び外表面にて極小値となることが好ましい。この極小値となる緻密層の孔径は、高分子物質の分離を対象とする限外濾過膜領域のサイズであり、通常孔径で0.01~0.001μmの範囲にある。また、本発明において、限外濾過膜とは、または分画分子量が1×103~1×106Daである膜をいう。
 本発明の多孔質膜あるいは分離膜の他の態様として、支持体、好ましくは非多孔質の支持体の外周面あるいは内部に分画層として多孔質膜層を有しているものが挙げられる。分画層は、内表面・外表面のいずれかあるいは、その両方に配置されていても良い。
 前記分画層の分画孔径は100nm以下、好ましくは1~100nmの大きさを有する。
(親水化・保存処理方法)
 通常、多孔質膜、特に疎水性多孔質膜は、初めてこの多孔質膜を使用する場合、膜交換をする場合、膜を薬品で洗浄する場合、膜を長期間使用しない場合等、膜表面が空気に触れて乾燥した状態となっている場合がある。
 この場合、処理されるべき液体(被処理液)等に浸漬して被処理液をろ過しようとしても、透液性能が悪化し、本来の分離膜としての機能を発揮することができなくなる。
 従って、多孔質膜の細孔を一旦親水化した上で被処理液を通すことによって、向上した透液性能と、良好な膜の耐汚染性を両立することができる。なお、保存液は、多孔質膜に液体を通すことによって速やかに除去されることが、処理された液体を廃液として回収する非効率性を排除する点、早期に疎水性多孔質膜を使用できる点などから好ましい。
 ここで、多孔質膜の親水化は、多孔質膜と、上記多孔質膜用保存液とを接触させることを含む。
 以下、膜モジュール内の多孔質膜の親水化を例にとって説明する。
 膜モジュールにおける本発明の疎水性多孔質膜を用いた親水化処理は、疎水性多孔質膜の出口を有する第2室に面する側から上記疎水性多孔質膜用保存液を注入することによって行われる。
 出口が2カ所以上ある場合は、(a)すべての出口から疎水性多孔質膜用保存液を注入してもよく、また、(b)少なくとも1つ以上の出口から疎水性多孔質膜用保存液を注入し、残りの出口から残余の多孔質膜用保存液を排出してもよい。
 (a)すべての出口から多孔質膜用保存液を注入する場合、出口及び出口を有する第2室内に滞留している気体を多孔質膜用保存液によって入口を有する第1室に押し出す。これにより、多孔質膜は第2室側から第1室側に向かって序々に親水化される。
 (b)少なくとも1つ以上の出口から多孔質膜用保存液を注入し、残りの出口から残余の多孔質膜用保存液を排出する場合、出口及び出口を有する第2室内に滞留している気体を一方の出口から他方の出口へ、多孔質膜用保存液によって押し出すことができる。特に中空糸膜モジュールでは、構造が複雑で気泡の滞留が生じやすい。
 処理水槽内に設置した膜モジュールの入口及び出口のすべてが、当該水槽の水面より上部にあって空気などの対流部を生じにくいような構造を有する場合には、出口から保存液をポンプなどで所定圧力・所定流量で押し込むことで膜モジュール内部の気泡が抜け、膜全体を保存液で満たすことが出来る。
 多孔質膜への疎水性多孔質膜用保存液の付着率は、多孔質膜の乾燥質量に対し、例えば、5~30質量%、好ましくは、8~15質量%であることが適当である。ここで付着率とは、親水化処理する前の多孔質膜の質量(W0)(g)と、親水化処理を施し、さらに乾燥した後の疎水性多孔質膜の質量(W1)(g)とを測定し、以下の式;付着率(%)=[(W0(g)-W1(g))/W0(g)]×100によって求めることができる。付着率が8質量%以上であれば、良好な親水性を発現し、30質量%以下であれば、余分な多孔質膜用保存液を中空糸膜の内部(中空部)に内包することもなく、過剰な溶出を防止できるので好ましい。
 保存処理の際の本発明の多孔質膜用保存液の温度は、例えば、10~50℃、好ましくは20~30℃であることが適当である。10℃以上であれば、浸透速度が低下することもなく、十分に親水化処理が行われて透液性能を向上させることができる。また、50℃以下であれば、熱収縮及び保存液の流出によって透液性能が低下したりすることもない。
 また、多孔質膜用保存液の浸漬時間は、多孔質膜用保存液を注入した後すぐに保存液を回収してもよいが、少なくとも30秒以上、10~120分、好ましくは、30~90分間、多孔質膜用保存液を疎水性多孔質膜に静置して浸漬することが、親水化を完全ならしめ、透液性能を向上するためにも好ましい。
 ここで使用する水は、純水や精製水など、出口を有する第2室側を汚染しない程度の清浄な水を使用することが好ましい。より好ましくは、少量の次亜塩素酸ナトリウム水溶液あるいは防腐剤・殺菌剤を含むような殺菌性のある液体であってもよい。また、通常の水道水やイオン交換水を孔径0.01~1μmの中空糸膜で濾過した水であってもよい。
(膜モジュールの検査方法)
 通常、膜モジュールは、上述したように本体、入口、出口及び多孔質膜を有し、多孔質膜は、本体を、入口を有する第1室と、出口を有する第2室とに分割するように本体内部に連結されている。しかし、本体、入口、出口及び多孔質膜等の各部材自体や、多孔質膜と本体内部との連結部分に欠陥(例えば、穴、亀裂、不完全な連結、多孔質膜の目詰まりなど)が存在すると、良好な膜モジュールとして機能しなくなる。従って、これらの欠陥を検査することが必要となる。
 そこで本発明の保存液は、自発的に濡れることができる程度に表面張力が低いことにより、欠陥検査に用いることも可能である。
 製品検査の代表的な方法の一つとして「バブルポイント法」という方法があげられる。この方法は、もともと、孔径評価を目的に開発された方法であるが、その方法の簡便さから、現在、精密濾過膜や限外濾過膜の完全性試験で多く用いられ、JIS K3832「精密濾過膜エレメントおよびモジュールのバブルポイント試験方法」にその方法が規定されている。
 もし、膜に損傷や大きな孔があいていたりすると、期待値よりもきわめて低い圧力において空気が透過し始め、膜に欠陥があることを検知することができる。
 膜モジュールは浸漬後すぐに検査用気体を導入してもよいが、所定時間膜モジュールを浸漬したままとすることが親水化を完全ならしめるためにも好ましい。膜モジュールの浸漬時間は、例えば30秒~30分、好ましくは5~20分とすることが適当である。
 検査用気体としては、空気、窒素、アルゴン等の不活性気体等を使用することができる。検査用気体は、JIS K3832「精密濾過膜エレメントおよびモジュールのバブルポイント試験方法」に従うと5kPa以上1MPa以下の範囲で目標とする圧力まで徐々にかけて検査を行う。特にポッティング部分の欠陥などの工程上の大きな部位を見つける場合などは比較的低圧で見出すことが出来るので、10~100KPa程度の範囲で加圧してもよい。
 膜モジュールに導入された検査用気体は、出口から排出されるが、出口の端部を閉じて、入口、出口、本体等の接続部分の欠陥検査を行ってもよい。膜モジュールに検査用気体を導入し、膜モジュール全体、入口、出口、本体から放出され得る気泡、各部材の接続部分から放出され得る気泡、疎水性多孔質膜及びこれと本体との接続部分から放出され得る気泡を、目視にて観察する。
 このように、本発明の疎水性多孔質膜保存液中で欠陥検査を行うことにより、検査用気体の通気による多孔質膜の乾燥・疎水化、及び疎水化に伴う透液性能の低下を抑制することができる。
 検査用気体を通気させても、本発明の保存液と接触することよって疎水性多孔質膜は自発的に水に濡れるようになるからである。
 また、本発明のような界面活性剤を含まない保存液を使用することにより、欠陥部分から生じた泡が水面に滞留し欠陥箇所を見つけることが困難になることもない。膜モジュール内部から検査用加圧気体を導入しても膜モジュールを浸漬した溶液が発泡することはなく、連続的に検査を実施することが可能となる。
 保存処理は、主に、上記(1)工程の膜モジュールを本発明の多孔質膜用保存液に浸漬することによって行われるが、その後に検査工程に引き続いて乾燥することによって、多孔質膜の表面が親水化された、乾燥状態のまま製品として流通させることができ、使用時には更に親水化処理を行うことなく高い透液性能を持って被処理液を通過さることができ、かつ、廃液として回収される処理済液の初流をできる限り少なくした膜モジュール製品を提供することができる。
 また、本発明の多孔質膜用保存液は、界面活性剤を含まないために非起泡性を有するので、このように上記欠陥検査と保存処理を同時に行うことができる。
 この、欠陥検査後の乾燥温度は、例えば、20~70℃、好ましくは30~50℃の範囲内である。乾燥温度が20℃以上であれば十分に高い透液性能を付与することができ、また、70℃以下であれば、疎水性多孔質膜の熱収縮及び本発明の多孔質膜用保存液の流出による透液性能の低下も抑えることができる。
 中空糸膜を所定の温度で乾燥しても完全に除去されず、中空糸膜に適度の保水性を与えるために、乾燥後も多孔質構造を変化させず、またこの膜を水に浸漬して容易に混合物質を中空糸膜から除去できる。膜の内表面・外表面のいずれかあるいはその両方に緻密層をもつ本発明のような中空糸膜構造では一般に膜を保存液に浸漬しても、保存液が膜の多孔質内部全体に拡散する速度が著しく小さくなるが、本発明の混合物質はそのような膜構造でも膜の保湿作用を効果的に行うことができる。
 以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 なお、実施例及び比較例における透水保持率・表面張力は以下の方法により測定した。
(透水保持率の測定方法)
 透水保持性能(透水保持率)は、多孔質膜を保存液で処理後に40℃で乾燥後の透水量F1(m/hr・MPa)とし、その膜をエタノール水溶液で親水化した際の透水量F0(m/hr・MPa)の比、F1/F0の値で評価した。
(表面張力の測定方法)
 室温(25℃)における表面張力を表面張力計(HLV-ST型、共和界面科学(株)製)を用いて測定した。
[実施例1]
 純水透過係数が、6m3/m2/hr/MPa、外径1.5mm、孔径20nmのフッ化ビニリデリン樹脂製の限外濾過中空糸膜(三菱レイヨン(株)製)からなる疎水性の多孔質膜を用いた。0.2m2のミニモジュールを作成した。
 保存液としてグリセリン25質量%、1,3-ブチレングリコール25質量%からなる水溶液(表面張力49.5mN/m)を使用した。ミニモジュールを保存液中に30min浸漬し、空気で100kpaで膜モジュールの2次側からバブルポイント法によるリーク検査を行った。中空糸膜に十分に浸透することによって親水化され、親水化不良に伴う疎水化を原因とする気泡の発生もなく、モジュールとしてリークが無いことを確認した。
 このモジュールを40℃で6hrほど乾燥し、完全に乾かした。その際の付着率は10質量%であった。
 乾燥後に再度、水に浸漬し透水性能F1を計測すると5.8m3/m2/hr/MPaであった。さらにエタノールでよく洗浄した上で、再度透水性能F0を計測すると6m3/m2/hr/MPaであった。
 この保存液を用いることでエタノール親水化並の透水性能を保持できることを確認した。
[実施例2]
 実施例1と同じ中空糸膜を用い、保存液としてグリセリン15質量%、1,3-ブチレングリコール35質量%からなる水溶液(表面張力47.0mN/m)を使用した。
 親水化処理・リーク検査についても実施例1と同様に行った。実施例1と同様に親水化不良に伴うリーク不良は計測できなかった。
 このモジュールを40℃で6hrほど乾燥し、完全に乾かした。その際の付着率は9.8質量%であった。
 乾燥後に再度、水に浸漬し透水性能F1を計測すると5.67m3/m2/hr/MPaであった。さらにエタノールでよく洗浄した上で、再度透水性能F0を計測すると6m3/m2/hr/MPaであった。
 この保存液を用いることでエタノール親水化並の透水性能を保持できることを確認した。
[比較例1]
 実施例1と同じ中空糸膜を用い、保存液として、50質量%グリセリン水溶液を使用した。
 親水化処理・リーク検査についても実施例1と同様に行った。親水化不良に伴う粗大気泡が検出され十分に親水化できていなかった。
[比較例2]
 実施例1と同じ中空糸膜を用い、保存液として、50質量%1,3ブチレングリコール水溶液を使用した。
 親水化処理・リーク検査についても実施例1と同様に行った。実施例1と同様に親水化不良に伴うリーク不良は計測できなかった。
 このモジュールを40℃で6hrほど乾燥し、完全に乾かした。その際の付着率は6.5質量%であった。
 乾燥後に再度、水に浸漬し透水性能F1を計測すると3.50m3/m2/hr/MPaであった。さらにエタノールでよく洗浄した上で、再度透水性能F0を計測すると6m3/m2/hr/MPaであった。
 この保存液ではエタノール親水化並の透水性能を保持できないことを確認した。
[比較例3]
 実施例1と同じ中空糸膜を用い、保存液としてグリセリン5質量%、1,3-ブチレングリコール45質量%からなる水溶液(表面張力45.6mN/m)を使用した。
 このモジュールを40℃で6hrほど乾燥し、完全に乾かした。その際の付着率は5.5質量%であった。
 乾燥後に再度、水に浸漬し透水性能F1を計測すると2.40m3/m2/hr/MPaであった。さらにエタノールでよく洗浄した上で、再度透水性能F0を計測すると6m3/m2/hr/MPaであった。
 この保存液ではエタノール親水化並の透水性能を保持できないことを確認した。
[比較例4]
 実施例1と同じ中空糸膜を用い、保存液としてグリセリン35質量%、1,3-ブチレングリコール15質量%からなる水溶液(表面張力53.7mN/m)を使用した。このモジュールを40℃で6hrほど乾燥し、完全に乾かした。その際の付着率は2.5質量%であった。
 乾燥後に再度、水に浸漬し透水性能F1を計測すると1.25m3/m2/hr/MPaであった。
 さらにエタノールでよく洗浄した上で、再度透水性能F0を計測すると6m3/m2/hr/MPaであった。
 この保存液ではエタノール親水化並の透水性能を保持できないことを確認した。

Claims (11)

  1.  グリセリン及び/又はポリグリセリンと表面張力40mN/m以下の多価アルコールとを含有し、グリセリン及び/又はポリグリセリン濃度が保存液全質量に対し10質量%以上30質量%以下である、多孔質膜用保存液。
  2.  多価アルコール濃度が保存液全質量に対し20質量%以上40質量%以下である請求項1記載の多孔質膜用保存液。
  3.  保存液の表面張力が50mN/m以下であることを特徴とする請求項1または2記載の多孔質膜用保存液。
  4.  表面張力40mN/m以下の多価アルコールが1,3-ブチレングリコール、プロピレングリコール、ジプロピレングリコール及びこれらの混合物からなる群より選択されることを特徴とする請求項1~3のいずれか一項に記載の多孔質膜用保存液。
  5.  グリセリン及び/又はポリグリセリンと表面張力40mN/m以下の多価アルコールとの合計濃度が保存液全質量に対し40質量%以上70質量%以下であることを特徴とする請求項1~4のいずれか一項に記載の多孔質膜用保存液。
  6.  多孔質膜が中空糸膜または平膜である請求項1~5のいずれか一項に記載の多孔質膜用保存液。
  7.  多孔質膜が限外濾過膜であることを特徴とする請求項1~6のいずれか一項に記載の多孔質膜用保存液。
  8.  少なくとも一方の表面に請求項1~7のいずれか一項に記載の多孔質膜用保存液が付着した多孔質膜。
  9.  多孔質膜の細孔を構成する層の素材が、ポリフッ化ビニリデン系樹脂からなることを特徴とする請求項8に記載の多孔質膜。
  10.  請求項8または9に記載の多孔質膜を有する多孔質膜モジュール。
  11.  バブルポイント法(JIS K3832)による多孔質膜モジュールの欠陥検査方法において、
     浸漬液として請求項1~7のいずれか一項に記載の多孔質膜用保存液を用いる多孔質膜モジュールの欠陥検査方法。
PCT/JP2013/058702 2012-03-26 2013-03-26 多孔質膜用保存液 WO2013146742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013519664A JP6202473B2 (ja) 2012-03-26 2013-03-26 多孔質膜用保存液
KR1020147026599A KR101743423B1 (ko) 2012-03-26 2013-03-26 다공질막용 보존액
CN201380027511.6A CN104334261B (zh) 2012-03-26 2013-03-26 多孔质膜用保存液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069552 2012-03-26
JP2012-069552 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146742A1 true WO2013146742A1 (ja) 2013-10-03

Family

ID=49259993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058702 WO2013146742A1 (ja) 2012-03-26 2013-03-26 多孔質膜用保存液

Country Status (4)

Country Link
JP (1) JP6202473B2 (ja)
KR (1) KR101743423B1 (ja)
CN (1) CN104334261B (ja)
WO (1) WO2013146742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103463982A (zh) * 2013-10-12 2013-12-25 深圳市诚德来实业有限公司 超滤膜的保存方法
CN112774452A (zh) * 2020-12-18 2021-05-11 武汉艾科滤膜技术有限公司 一种超滤膜组件保存方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300945B1 (ko) * 2014-12-05 2021-09-10 주식회사 엘지생활건강 폴리글리세린-3을 함유하는 항균 또는 보존용 조성물
JP2020175343A (ja) * 2019-04-19 2020-10-29 株式会社超微細科学研究所 エアレータ
CN112774455A (zh) * 2020-12-18 2021-05-11 武汉艾科滤膜技术有限公司 一种柱式中空纤维超滤膜组件干态检漏方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284035A (ja) * 1989-04-25 1990-11-21 Toyobo Co Ltd 疎水性中空糸型多孔質膜のリークテスト法
JP2002095939A (ja) * 2000-09-21 2002-04-02 Toyobo Co Ltd 複合半透膜、複合半透膜分離素子およびそれらの製造方法と再湿潤化方法
JP2002177748A (ja) * 2000-12-08 2002-06-25 Nok Corp 多孔質有機中空糸膜の処理方法
JP2002289228A (ja) * 2001-03-22 2002-10-04 Nok Corp 加湿器およびその使用方法
JP2004097918A (ja) * 2002-09-09 2004-04-02 Nok Corp ポリエーテルイミド複合中空糸膜およびその製造法
JP2007210642A (ja) * 2006-02-09 2007-08-23 Toyobo Co Ltd 中空糸膜の梱包体および梱包方法
JP2007313491A (ja) * 2006-04-25 2007-12-06 Kureha Corp 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP2008093543A (ja) * 2006-10-10 2008-04-24 Nitto Denko Corp 乾燥複合半透膜の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284035A (ja) * 1989-01-12 1990-03-26 Mitsuba Electric Mfg Co Ltd 自転車用発電機ケースの首部構造
JPH10131083A (ja) * 1996-10-23 1998-05-19 Kenji Nakamura 水解紙およびそれによる汚物処理紙

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284035A (ja) * 1989-04-25 1990-11-21 Toyobo Co Ltd 疎水性中空糸型多孔質膜のリークテスト法
JP2002095939A (ja) * 2000-09-21 2002-04-02 Toyobo Co Ltd 複合半透膜、複合半透膜分離素子およびそれらの製造方法と再湿潤化方法
JP2002177748A (ja) * 2000-12-08 2002-06-25 Nok Corp 多孔質有機中空糸膜の処理方法
JP2002289228A (ja) * 2001-03-22 2002-10-04 Nok Corp 加湿器およびその使用方法
JP2004097918A (ja) * 2002-09-09 2004-04-02 Nok Corp ポリエーテルイミド複合中空糸膜およびその製造法
JP2007210642A (ja) * 2006-02-09 2007-08-23 Toyobo Co Ltd 中空糸膜の梱包体および梱包方法
JP2007313491A (ja) * 2006-04-25 2007-12-06 Kureha Corp 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP2008093543A (ja) * 2006-10-10 2008-04-24 Nitto Denko Corp 乾燥複合半透膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUZUKI, TAKASHI ET AL., FRAGRNACE JOURNAL, vol. 21, no. 7, July 1993 (1993-07-01), pages 30 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103463982A (zh) * 2013-10-12 2013-12-25 深圳市诚德来实业有限公司 超滤膜的保存方法
CN112774452A (zh) * 2020-12-18 2021-05-11 武汉艾科滤膜技术有限公司 一种超滤膜组件保存方法
CN112774452B (zh) * 2020-12-18 2022-04-22 武汉艾科滤膜技术有限公司 一种超滤膜组件保存方法

Also Published As

Publication number Publication date
JPWO2013146742A1 (ja) 2015-12-14
CN104334261A (zh) 2015-02-04
JP6202473B2 (ja) 2017-09-27
KR101743423B1 (ko) 2017-06-05
CN104334261B (zh) 2016-11-16
KR20140134683A (ko) 2014-11-24

Similar Documents

Publication Publication Date Title
US11352270B2 (en) Porous membrane for membrane distillation, and method for operating membrane distillation module
JP6202473B2 (ja) 多孔質膜用保存液
US7882962B2 (en) Hydrophilizing agent for hydrophobic porous membrane, and method for hydrophilizing hydrophobic porous membrane and test method using this agent
JP6694326B2 (ja) 複合膜
US20080277334A1 (en) Process for Producing Semipermeable Composite Membrane
US10155204B2 (en) High-functional polyamide-based dry water treatment separator and method for manufacturing same
US20210086139A1 (en) Hydrophilic porous membrane and method for producing hydrophilic porous membrane
KR102302236B1 (ko) 중공사형 정삼투 분리막 및 이의 제조방법
KR102309927B1 (ko) 중공사형 정삼투 분리막 및 이의 제조방법
JP2004195380A (ja) 液体分離膜モジュール包装体およびその製造方法ならびに液体分離膜モジュールの保存方法
US11819807B2 (en) Porous membrane and filter cartridge
JP5176499B2 (ja) 多孔質中空糸膜およびその製造方法、および中空糸膜モジュール
JP7301061B2 (ja) 中空糸多孔膜
JP2003033633A (ja) 中空糸膜の製造方法および中空糸膜モジュール
JP2017144390A (ja) 複合膜
KR20170060342A (ko) 수처리 분리막, 이의 제조방법 및 수처리 분리막을 포함하는 수처리 모듈
KR102266896B1 (ko) 중공사형 정삼투 분리막 및 이의 제조방법
WO2023277033A1 (ja) 正浸透膜及びその製造方法
WO2023276642A1 (ja) 正浸透膜モジュール、及びその製造方法
WO2023276483A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
WO2023276614A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
WO2023017781A1 (ja) ポリアミド多孔膜及びポリアミド多孔膜の製造方法
JPH05208121A (ja) 多孔質膜の親水化方法
Naim et al. Characterization study of PVDF/cloisite hollow fiber membrane in aqueous diethanolamine
Sherhan et al. Preparation of PPSU Hollow Fiber Nanofiltration Membranes for Nanofiltration Application

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013519664

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026599

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769890

Country of ref document: EP

Kind code of ref document: A1