WO2013146648A1 - ゴム架橋物の製造方法 - Google Patents

ゴム架橋物の製造方法 Download PDF

Info

Publication number
WO2013146648A1
WO2013146648A1 PCT/JP2013/058518 JP2013058518W WO2013146648A1 WO 2013146648 A1 WO2013146648 A1 WO 2013146648A1 JP 2013058518 W JP2013058518 W JP 2013058518W WO 2013146648 A1 WO2013146648 A1 WO 2013146648A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
polyether rubber
polyether
parts
crosslinked
Prior art date
Application number
PCT/JP2013/058518
Other languages
English (en)
French (fr)
Inventor
正将 篠原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014507854A priority Critical patent/JP5971332B2/ja
Priority to KR1020147024102A priority patent/KR101927242B1/ko
Priority to US14/389,134 priority patent/US9243108B2/en
Priority to CN201380016271.XA priority patent/CN104169338B/zh
Publication of WO2013146648A1 publication Critical patent/WO2013146648A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3348Polymers modified by chemical after-treatment with organic compounds containing sulfur containing nitrogen in addition to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • C08G65/24Epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins

Definitions

  • the present invention relates to a method for producing a rubber cross-linked product, and more particularly, there is little variation in electric resistance value, the electric resistance value is low, an increase in electric resistance value is suppressed even when continuously used, and compression resistance is reduced.
  • the present invention relates to a method for producing a rubber cross-linked product excellent in permanent distortion.
  • conductive members such as conductive rolls, conductive blades, and conductive belts are used as mechanisms that require semiconductivity. .
  • Such a conductive member has a desired range of conductivity (electric resistance value and its variation, environmental dependency, voltage dependency), non-contamination, low hardness, dimensional stability, etc., depending on the application. Various performances are required.
  • Patent Document 1 0.1 mol% of a monomer unit having an onium ion introduced using an aliphatic amine such as n-butyldimethylamine or trimethylamine as an onium agent is used.
  • a polyether rubber containing less than 30 mol% is disclosed.
  • the rubber cross-linked product obtained using the polyether rubber described in Patent Document 1 has little variation in electric resistance value, low electric resistance value, and even when used continuously, an increase in electric resistance value is suppressed.
  • the compression set resistance is not sufficient, and therefore it has been desired to improve the compression set resistance.
  • the present invention has been made in view of such a situation, and there is little variation in the electric resistance value, the electric resistance value is low, the increase in the electric resistance value is suppressed even when continuously used, and the resistance is improved. It aims at providing the method for manufacturing the rubber crosslinked material excellent in compression set.
  • the present inventors have identified a polyether rubber containing an epihalohydrin monomer unit, a five-membered or six-membered nitrogen-containing aromatic heterocyclic compound,
  • the polyether rubber composition containing 0.1 to 10 parts by weight of the crosslinking agent is reacted at 130 to 200 ° C., there is little variation in the electric resistance value, and the electric resistance value is low.
  • the inventors have found that a rubber cross-linked product in which an increase in resistance value is suppressed and excellent in compression set resistance can be obtained, and the present invention has been completed.
  • a polyether rubber containing an epihalohydrin monomer unit with respect to 100 parts by weight of a polyether rubber containing an epihalohydrin monomer unit, 0.1 to 100 parts by weight of a 5-membered or 6-membered nitrogen-containing aromatic heterocyclic compound and A crosslinked rubber product obtained by reacting a polyether rubber composition containing 0.1 to 10 parts by weight of at least one crosslinking agent selected from sulfur, a sulfur-containing compound and a triazine compound at 130 to 200 ° C.
  • a manufacturing method is provided.
  • the polyether rubber composition is obtained by kneading the polyether rubber, the nitrogen atom-containing aromatic heterocyclic compound, and the crosslinking agent at 0 to 100 ° C.
  • the polyether rubber further contains an unsaturated oxide monomer unit.
  • the nitrogen atom-containing aromatic heterocyclic compound is 1-methylimidazole.
  • the polyether rubber composition is heated at 130 to 200 ° C. so that the polyether rubber is crosslinked and the nitrogen atom-containing aromatic heterocyclic compound is cationized to the side chain of the polyether rubber. The reaction to be combined in the formed state proceeds simultaneously.
  • the rubber crosslinked material obtained by one of the said manufacturing methods is provided. Furthermore, according to this invention, the electroconductive member which has the said rubber crosslinked material is provided.
  • a rubber cross-linked product having little variation in electric resistance value, low electric resistance value, suppressing an increase in electric resistance value even when continuously used, and excellent in compression set resistance. Can be provided.
  • the method for producing a crosslinked rubber according to the present invention comprises a 5-membered or 6-membered nitrogen atom-containing aromatic heterocyclic compound in an amount of 0.1 to 100 with respect to 100 parts by weight of a polyether rubber containing an epihalohydrin monomer unit.
  • a polyether rubber composition containing parts by weight and 0.1 to 10 parts by weight of at least one crosslinking agent selected from sulfur, a sulfur-containing compound and a triazine compound is reacted at 130 to 200 ° C.
  • each component which comprises the polyether rubber composition used by this invention is demonstrated first.
  • a polyether rubber containing an epihalohydrin monomer unit used in the present invention (hereinafter abbreviated as “polyether rubber”) is a rubber having an epihalohydrin monomer unit as an essential constituent unit, and an epihalohydrin monomer. It may be obtained by polymerizing only a monomer, or may be obtained by copolymerizing an epihalohydrin monomer and another monomer that can be copolymerized.
  • the epihalohydrin monomer constituting the epihalohydrin monomer unit is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin and the like. Of these, epichlorohydrin is preferable.
  • An epihalohydrin monomer may be used individually by 1 type, and may use 2 or more types together.
  • the content ratio of the epihalohydrin monomer unit in the polyether rubber used in the present invention is preferably from 0.1 to 100 mol%, more preferably from 10 to 79 mol%, based on all monomer units. Preferably, it is 15 to 58 mol%.
  • the content ratio of the epihalohydrin monomer unit is within the above range, the obtained rubber cross-linked product is suppressed from increasing in electrical resistance value even when continuously used.
  • the content ratio of the epihalohydrin monomer unit is too small, crosslinking may be insufficient, and it may be difficult to maintain the shape of the resulting rubber crosslinked product.
  • the polyether rubber used in the present invention preferably further contains an unsaturated oxide monomer unit in addition to the epihalohydrin monomer unit.
  • the unsaturated oxide monomer forming the unsaturated oxide monomer unit includes at least one carbon-carbon unsaturated bond (excluding the aromatic carbon-carbon unsaturated bond) in the molecule and at least one epoxy.
  • alkenyl glycidyl ethers such as allyl glycidyl ether and butenyl glycidyl ether; 3,4-epoxy-1-butene, 1,2-epoxy-5 Alkene epoxides such as hexene and 1,2-epoxy-9-decene; Among these, alkenyl glycidyl ethers are preferable, and allyl glycidyl ether is more preferable.
  • An unsaturated oxide monomer may be used individually by 1 type, and may use 2 or more types together.
  • the content ratio of the unsaturated oxide monomer unit in the polyether rubber used in the present invention is preferably 0 to 15 mol%, more preferably 1 to 12 mol% in the total monomer units. It is preferably 2 to 10 mol%, particularly preferably.
  • the content ratio of the unsaturated oxide monomer unit is within the above range, the polyether rubber can be excellent in crosslinkability.
  • the content ratio of the unsaturated oxide monomer unit is too small, the compression set of the resulting rubber cross-linked product may deteriorate.
  • the content ratio of the unsaturated oxide monomer unit is too large, a gelling reaction (three-dimensional crosslinking reaction) or the like in the polymer molecule or between the polymer molecules is likely to occur during the polymerization reaction, and the molding processability is improved. May decrease.
  • the polyether rubber used in the present invention may further contain an ethylene oxide monomer unit in addition to the epihalohydrin monomer unit and the unsaturated oxide monomer unit from the viewpoint of low electrical resistance.
  • An ethylene oxide monomer unit is a unit formed by an ethylene oxide monomer.
  • the content ratio of the ethylene oxide monomer unit in the polyether rubber used in the present invention is preferably 0 to 90 mol%, more preferably 20 to 80 mol% in all monomer units. 40 to 75 mol% is particularly preferable. When the content ratio of the ethylene oxide monomer unit is within the above range, the resulting rubber cross-linked product is excellent in low electrical resistance.
  • the polyether rubber used in the present invention contains an epihalohydrin monomer unit, an unsaturated oxide monomer unit, and an ethylene oxide monomer unit, as well as other monomer units copolymerizable therewith. You may do it.
  • alkylene oxide monomer units excluding ethylene oxide are preferably exemplified.
  • the alkylene oxide monomer that forms the alkylene oxide monomer unit excluding ethylene oxide is not particularly limited, and examples thereof include propylene oxide, 1,2-epoxybutane, 1,2-epoxy-4-chloropentane, 1,2-epoxyhexane, 1,2-epoxyoctane, 1,2-epoxydecane, 1,2-epoxyoctadecane, 1,2-epoxyeicosane, 1,2-epoxyisobutane, 2,3-epoxyisobutane, etc.
  • linear alkylene oxide is preferable, and propylene oxide is more preferable.
  • the content of alkylene oxide monomer units excluding ethylene oxide is preferably 30 mol% or less, and 20 mol% or less in all monomer units. Is more preferable, and it is further more preferable that it is 10 mol% or less.
  • the content ratio of the alkylene oxide monomer unit excluding ethylene oxide is too large, the volume specific resistance value of the resulting rubber cross-linked product may increase.
  • copolymerizable monomers other than the alkylene oxide monomer are not particularly limited, and examples thereof include aryl epoxides such as styrene oxide and phenyl glycidyl ether.
  • the content of other copolymerizable monomer units excluding the alkylene oxide monomer in the polyether rubber used in the present invention is preferably 20 mol% or less, and preferably 10 mol% in all monomer units. The following is more preferable, and 5 mol% or less is more preferable.
  • the polyether rubber used in the present invention can be obtained by ring-opening polymerization of the above-described monomers by a solution polymerization method or a solvent slurry polymerization method.
  • the polymerization catalyst used for the polymerization is not particularly limited as long as it is a general polyether polymerization catalyst.
  • the polymerization catalyst include a catalyst obtained by reacting water and acetylacetone with organoaluminum (Japanese Patent Publication No. 35-15797); a catalyst obtained by reacting phosphoric acid and triethylamine with triisobutylaluminum (Japanese Patent Publication No. 46-27534).
  • a catalyst obtained by reacting an organic acid salt of diazabicycloundecene with phosphoric acid with triisobutylaluminum Japanese Patent Publication No.
  • a catalyst comprising a partial hydrolyzate of aluminum alkoxide and an organic zinc compound Japanese Examined Patent Publication No. 43-2945
  • a catalyst comprising an organic zinc compound and a polyhydric alcohol Japanese Examined Patent Publication No. 45-7751
  • a catalyst comprising a dialkylzinc and water Japanese Examined Patent Publication No. 36-3394
  • tributyl A catalyst comprising tin chloride and tributyl phosphate Japanese Patent No. 3223978
  • the polymerization solvent is not particularly limited as long as it is an inert solvent.
  • aromatic hydrocarbons such as benzene and toluene
  • linear saturated hydrocarbons such as n-pentane and n-hexane
  • cyclopentane And cyclic saturated hydrocarbons such as cyclohexane
  • aromatic hydrocarbons more preferably toluene, from the viewpoint of solubility of the resulting polyether rubber.
  • the polymerization reaction temperature is preferably 20 to 150 ° C, more preferably 50 to 130 ° C.
  • the polymerization mode can be carried out by any method such as batch system, semi-batch system, and continuous system.
  • the polyether rubber used in the present invention may be either a copolymerization type of block copolymerization or random copolymerization.
  • the random copolymer is more polyethylene oxide. This is preferable because it lowers the crystallinity and hardly impairs rubber elasticity.
  • the method for recovering the polyether rubber obtained by the polymerization reaction from the solvent is not particularly limited, and for example, it is performed by appropriately combining the methods of coagulation, filtration, dehydration, and drying.
  • a method for coagulating the polyether rubber from the solution in which the polyether rubber is dissolved for example, a conventional method such as steam stripping or a precipitation method using a poor solvent can be used.
  • a method of filtering polyether rubber from the slurry containing polyether rubber the method of using sieves, such as a rotary screen and a vibration screen, etc. can be mentioned as needed.
  • examples of the method for dehydrating the polyether rubber include a method of dewatering using a centrifugal dehydrator; a compressed water squeezer such as a roll, a Banbury dehydrator, a screw extruder dehydrator; and the like.
  • examples of the method for drying the polyether rubber include a method using a dryer such as a kneader-type dryer, an expander dryer, a hot air dryer, and a vacuum dryer. These methods and the devices to be used are used singly or in combination of two or more.
  • the weight average molecular weight of the polyether rubber used in the present invention is preferably 200,000 to 2,000,000, and more preferably 400,000 to 1,500,000. If the weight average molecular weight is too high, the Mooney viscosity becomes high and molding may be difficult. On the other hand, if the weight average molecular weight is too low, the compression set of the resulting rubber cross-linked product may be deteriorated.
  • the Mooney viscosity (polymer Mooney viscosity ⁇ ML 1 + 4 , 100 ° C.) of the polyether rubber used in the present invention is preferably 10 to 120, and more preferably 30 to 90. If the Mooney viscosity is too high, the molding processability is inferior, and when used for conductive member applications, it becomes difficult to mold the conductive member. Furthermore, swell (the diameter of the extrudate becomes larger than the diameter of the die at the time of extrusion) may occur, and the dimensional stability may be reduced. On the other hand, if the Mooney viscosity is too low, the mechanical strength of the resulting rubber cross-linked product may be reduced.
  • the five-membered or six-membered nitrogen-containing aromatic heterocyclic compound used in the present invention (hereinafter abbreviated as “nitrogen atom-containing aromatic heterocyclic compound”) has a five-membered ring structure or a six-membered ring. It is not particularly limited as long as it has a structure, contains a nitrogen atom in the ring structure, and has aromaticity. However, for example, condensed heterocyclic compounds such as benzimidazole are excluded.
  • the nitrogen atom-containing aromatic heterocyclic compound used in the present invention may have, for example, a heterocyclic ring having a plurality of nitrogen atoms, or other than nitrogen atoms such as oxygen atoms and sulfur atoms. It may have a heteroatom, and further, a part of the atoms constituting the heterocyclic ring may be substituted with a substituent.
  • Examples of the structure of the nitrogen-containing aromatic heterocyclic ring constituting such a nitrogen atom-containing aromatic heterocyclic compound include imidazole ring, pyrrole ring, thiazole ring, oxazole ring, pyrazole ring, and isoxazole ring.
  • Heterocyclic ring such as pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring; and the like.
  • a 5-membered heterocyclic ring is preferable, and an imidazole ring is more preferable.
  • the substituent of the nitrogen-containing aromatic heterocyclic ring is not particularly limited, and examples thereof include an alkyl group; a cycloalkyl group; an alkenyl group; an aryl group; an arylalkyl group; an alkylaryl group; an alkoxyl group; Oxy group; alkanol group; hydroxyl group; carbonyl group; alkoxycarbonyl group; amino group; imino group; nitrile group; alkylsilyl group; halogen atom;
  • nitrogen atom-containing aromatic heterocyclic compounds include five-membered heterocyclic compounds such as imidazole, 1-methylimidazole, pyrrole, 1-methylpyrrole, thiazole, oxazole, pyrazole, isoxazole; pyridine And 6-membered heterocyclic compounds such as pyrazine, pyrimidine, pyridazine, triazine, and 2,6-lutidine.
  • 5-membered heterocyclic compounds are preferable, and 1-methylimidazole is more preferable from the viewpoint that the effect of reducing the volume specific resistance value of the resulting rubber cross-linked product is high.
  • the compounding amount of the nitrogen atom-containing aromatic heterocyclic compound in the polyether rubber composition used in the present invention is 0.1 to 100 parts by weight, preferably 0.8.
  • the amount is 2 to 50 parts by weight, more preferably 0.3 to 20 parts by weight.
  • the resulting rubber cross-linked product has a low electric resistance value, and even when used continuously, an increase in the electric resistance value is suppressed, and , Excellent compression set resistance.
  • the blending amount of the nitrogen atom-containing aromatic heterocyclic compound is too small, the volume specific resistance value of the resulting rubber cross-linked product increases, and the electric resistance value may increase when voltage is continuously applied. is there.
  • the rubber crosslinked material obtained will become hard and the characteristic as a rubber elastic body may be lost.
  • These nitrogen atom-containing aromatic heterocyclic compounds may be used alone or in combination of two or more.
  • the polyether rubber composition used in the present invention contains at least one crosslinking agent selected from sulfur, a sulfur-containing compound and a triazine compound. By using these cross-linking agents, the cross-linking of the polyether rubber can be sufficiently advanced.
  • Examples of sulfur as a crosslinking agent used in the present invention include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur.
  • Examples of the sulfur-containing compound include sulfur monochloride, sulfur dichloride, 4,4′-dithiodimorpholine, alkylphenol disulfide, 6-methylquinoxaline-2, 3-dithiocarbonate, N, N′-dithio-bis. (Hexahydro-2H-azenopine-2), phosphorus-containing polysulfide, polymer polysulfide and the like.
  • examples of the triazine compound include 2,4,6-trimercapto-1,3,5-triazine.
  • the blending amount of the crosslinking agent in the polyether rubber composition used in the present invention is 0.1 to 10 parts by weight, preferably 0.2 to 7 parts by weight, based on 100 parts by weight of the polyether rubber.
  • the amount is preferably 0.3 to 5 parts by weight.
  • the blending amount of the crosslinking agent is within the above range, the crosslinking of the polyether rubber can be sufficiently advanced.
  • the blending amount of the crosslinking agent is too small, the crosslinking speed becomes slow, and the productivity of the resulting rubber cross-linked product may decrease, or the abrasiveness may decrease when the rubber cross-linked product is used after being polished. There is.
  • the hardness of the rubber crosslinked material obtained may become high, or a crosslinking agent may bloom.
  • crosslinking accelerator when sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking accelerator in combination.
  • the crosslinking acceleration aid is not particularly limited, and examples thereof include zinc white and stearic acid.
  • a crosslinking accelerator For example, a guanidine type compound; an aldehyde-amine type compound; an aldehyde-ammonia type compound; a thiazole type compound; a sulfenamide type compound; a thiourea type compound; a thiuram type compound; Salt-based compounds; and the like can be used.
  • the crosslinking aid and the crosslinking accelerator one kind may be used alone, or two or more kinds may be used in combination.
  • the blending amounts of the crosslinking accelerator and the crosslinking accelerator are not particularly limited, but are preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the polyether rubber. Part. If the amount of the crosslinking accelerator and the crosslinking accelerator used is too large, the crosslinking rate may become too fast or the surface of the resulting rubber crosslinked product may bloom. On the other hand, if the amount is too small, the crosslinking rate may be slow and the productivity may be inferior, or the mechanical properties of the rubber cross-linked product obtained by insufficient crosslinking may be inferior.
  • polyether rubber composition used in the present invention may further contain a filler.
  • the soot filler is not particularly limited, and examples thereof include carbon black and silica. These fillers can be used alone or in combination of two or more.
  • the blending ratio of the filler in the polyether rubber composition used in the present invention is not particularly limited, but is preferably 0.1 to 20 parts by weight, more preferably 1 to 100 parts by weight of the polyether rubber. ⁇ 20 parts by weight. When the blending amount of the filler is within the above range, the reinforcing effect of the obtained rubber cross-linked product is easily obtained.
  • the polyether rubber composition used in the present invention is a butadiene rubber, a styrene butadiene rubber, a chloroprene rubber, an isoprene rubber, a natural rubber, an acrylonitrile butadiene rubber, a butyl rubber, and parts of these rubbers within a range not impairing the effects of the present invention.
  • Diene rubbers such as hydrogenated products (for example, hydrogenated nitrile rubber); other than diene rubbers such as ethylene propylene rubber, acrylic rubber, polyether rubber (excluding the polyether rubber of the present invention), fluorine rubber, and silicone rubber Rubbers such as: Olefin-based thermoplastic elastomers, styrene-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, etc. ; May contain; polyvinyl chloride, coumarone resin, resins such as phenol resin.
  • thermoplastic elastomers and resins can be used alone or in combination of two or more, and the total amount of these is preferably 100 parts by weight or less with respect to 100 parts by weight of the polyether rubber, 50 parts by weight or less is more preferable, and 20 parts by weight or less is particularly preferable.
  • the polyether rubber composition used in the present invention may contain other additives usually blended in known rubbers in addition to the additives described above.
  • additives include, but are not limited to, an acid acceptor; a reinforcing agent; an anti-aging agent; an ultraviolet absorber; a light-resistant stabilizer; a tackifier; a surfactant; Colorants (dyes and pigments); flame retardants; antistatic agents;
  • the polyether rubber composition used in the present invention is prepared by kneading and kneading a nitrogen atom-containing aromatic heterocyclic compound, a cross-linking agent, and each additive used as necessary, into the polyether rubber by a desired method. Can be prepared.
  • Kneading is preferably performed at 0 to 100 ° C., more preferably kneading at 10 to 90 ° C.
  • the kneading time is preferably 30 seconds to 30 minutes.
  • any kneading and forming machine such as a kneader, a banbury, an open roll, a calender roll, and an extruder can be used, and a plurality of these may be used in combination.
  • the crosslinked rubber obtained by the production method of the present invention is produced by reacting the above-described polyether rubber composition at 130 to 200 ° C.
  • the above-described polyether rubber composition is heated at 130 to 200 ° C., so that the crosslinking of the polyether rubber is advanced, and the nitrogen atom-containing aromatic heterocyclic ring contained in the polyether rubber composition.
  • a reaction in which at least a part of the compound is bonded to the side chain of the polyether rubber in a cationized state can proceed.
  • the unit shown by following General formula (1) can be introduce
  • a + is a group containing a cationic nitrogen-containing aromatic heterocyclic ring derived from a nitrogen atom-containing aromatic heterocyclic compound, and the cationic nitrogen-containing aromatic heterocyclic ring is It is bonded to the carbon atom at the position “2” shown in the general formula (1) through one of the nitrogen atoms constituting the heterocyclic ring.
  • X ⁇ is an arbitrary counter anion.
  • the nitrogen atom-containing aromatic heterocyclic compound usually has a cation on the side chain of the polyether rubber by substituting at least a part of the halogen atoms constituting the epihalohydrin monomer unit contained in the polyether rubber. It will be combined in the state of becoming.
  • the group containing a cationic nitrogen-containing aromatic heterocycle represented by A + in the general formula (1) is preferably a group represented by the following general formula (2).
  • N- represented in the general formula (2) is bonded to the carbon atom at the position “2” shown in the general formula (1) in the general formula (1).
  • R in the general formula (2) represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R R represented in the general formula (2) is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group.
  • the nitrogen atom-containing aromatic heterocyclic compound is bonded to the side chain of the polyether rubber in a cationized state, thereby obtaining a crosslinked rubber product obtained.
  • the electrical resistance value is low, and even when used continuously, an increase in the electrical resistance value can be suppressed and the compression set resistance can be improved.
  • by simultaneously proceeding with the crosslinking of the polyether rubber and the reaction of binding the nitrogen atom-containing aromatic heterocyclic compound to the side chain of the polyether rubber in a cationized state these reactions can be carried out easily and in a short time compared to the case where the crosslinking of the polyether rubber and such reactions are carried out separately.
  • the heating temperature at the time of reacting the above-described polyether rubber composition is 130 to 200 ° C, preferably 140 to 190 ° C, more preferably 150 to 180 ° C. If the heating temperature is too low, the crosslinking of the polyether rubber composition and the cationization of the side chain of the polyether rubber will be insufficient, resulting in an increase in the volume resistivity of the resulting rubber crosslinked product, It becomes difficult to maintain the shape of the object. On the other hand, if the heating temperature is too high, the polyether rubber may be decomposed or the nitrogen atom-containing aromatic heterocyclic compound may volatilize.
  • the heating time is not particularly limited, but is preferably 1 minute to 6 hours, more preferably 5 minutes to 3 hours, and further preferably 10 minutes to 1 hour.
  • a heating method a method such as press heating, oven heating, steam heating, hot air heating, and microwave heating may be appropriately selected.
  • secondary crosslinking may be performed according to a usual method.
  • the arbitrary counter anion represented by X ⁇ is a compound or atom having a negative charge bonded to A + through an ionic bond, and the negative charge However, it is usually a halide ion derived from a halogen atom constituting the epihalohydrin monomer unit contained in the polyether rubber, and preferably a chloride ion. In the present invention, at least a part of such a counter anion may be anion-exchanged to an arbitrary counter anion by a known ion exchange reaction.
  • the content ratio of the unit represented by the general formula (1) in the crosslinked polyether rubber constituting the rubber crosslinked product obtained by the production method of the present invention is preferably 0.1 to 30 mol%. More preferably, it is 0.3 to 25 mol%, and further preferably 0.5 to 12 mol%.
  • the content ratio of the unit represented by the general formula (1) is within the above range, the obtained rubber cross-linked product has a small compression set, a low electrical resistance value, and a current carrying volume resistivity. The rise can be suppressed.
  • the content ratio of the unit represented by the general formula (1) is too small, the volume specific resistance value of the obtained rubber cross-linked product is increased, and the electric resistance value is increased when voltage is continuously applied. There is a case.
  • the rubber crosslinked material obtained when there are too many content rates of the unit represented by the said General formula (1), the rubber crosslinked material obtained will become hard and the characteristic as a rubber elastic body may be lost.
  • the crosslinked rubber obtained by the production method of the present invention among the nitrogen atom-containing aromatic heterocyclic compounds blended in the polyether rubber composition before the reaction, preferably 0.1 to 100% by weight, more preferably It is preferable that 1 to 100% by weight is bonded to the side chain of the polyether rubber in a cationized state.
  • the content ratio of the unit represented by the general formula (1) in the crosslinked polyether rubber constituting the rubber crosslinked product obtained by the production method of the present invention (hereinafter also referred to as “onium ion unit content”).
  • onium ion unit content As a method for checking, a known method may be used.
  • a cationic nitrogen-containing compound derived from a nitrogen atom-containing aromatic heterocyclic compound can be obtained by measuring the crosslinked rubber of the present invention with 13 C-NMR.
  • a method for quantifying the content of a group containing an aromatic heterocycle is mentioned.
  • the volume specific resistance value of the rubber cross-linked product obtained by the production method of the present invention is usually set at a voltage of 1000 V in a measurement environment at a temperature of 23 ° C. and a humidity of 50%, and a value 30 seconds after the start of voltage application.
  • a conductive member excellent in low electrical resistance can be obtained.
  • the volume specific resistance value of the rubber cross-linked product is too high, a higher voltage must be applied in order to pass the same current, and the amount of power consumption increases, which is not suitable for a conductive member. Moreover, if the volume specific resistance value of the rubber cross-linked product is too low, current flows in an unintended direction other than the voltage application direction, and when used as a conductive member, the function as the conductive member may be impaired. .
  • the energization increase value of the volume resistivity value of the rubber cross-linked product obtained by the production method of the present invention is from log 10 (volume resistivity value) 10 minutes after the start of voltage application under the measurement conditions of the volume resistivity value.
  • the value obtained by subtracting log 10 (volume resistivity) 30 seconds after the start of voltage application is preferably in the range of 0 to 0.5.
  • the rubber cross-linked product obtained by the production method of the present invention has little variation in electric resistance value, low electric resistance value, suppressed increase in electric resistance value even when continuously used, and resistance to compression set Therefore, taking advantage of such characteristics, it is useful as a material for various industrial rubber products.
  • Conductive members such as conductive belts; materials for shoe soles and hoses; materials for belts such as conveyor belts and handrails of escalators; materials for seals and packing; Among these, it is preferable to use as an electroconductive member used for a copying machine, a printing machine, etc., and it can use suitably especially for an electroconductive roll.
  • Mooney viscosity Mooney viscosity (ML 1 + 4 , 100 ° C.) was measured at 100 ° C. according to JIS K6300.
  • the onium ion unit content was measured using a nuclear magnetic resonance apparatus ( 13 C-NMR) as follows. Specifically, first, from the integral value of the peak derived from the polyether chain which is the main chain of the crosslinked polyether rubber constituting the rubber crosslinked product, all monomer units (including onium ion units) in the polymer are obtained. The number of moles B1 was calculated. Next, the number of moles B2 of the introduced onium ion unit (unit represented by the general formula (1)) is calculated from the integrated value of the peak derived from the group containing the cationic nitrogen-containing aromatic heterocycle. did.
  • 13 C-NMR nuclear magnetic resonance apparatus
  • Onium ion unit content 100 ⁇ B2 / B1 (3)
  • volume resistivity 23 ° C., 50% RH
  • the volume resistivity value is measured according to the K6271 double ring electrode method. The measurement conditions are a temperature of 23 ° C., a humidity of 50%, an applied voltage of 1000 V, and 30 seconds after voltage application is started. Later values were measured.
  • volume specific resistance energization increase value (23 ° C., 50% RH)
  • the energization increase value of the volume resistivity value starts application of voltage from log 10 (volume resistivity value) 10 minutes after the start of voltage application under the measurement conditions of the volume resistivity value described above. Log 10 (volume resistivity value) after 30 seconds was reduced.
  • Example 1 In an open roll at 40 ° C., 100 parts of the polyether rubber obtained in Production Example 2, 1 part of 1-methylimidazole, 0.5 part of sulfur as a crosslinking agent (Sulfax PMC, manufactured by Tsurumi Chemical Co., Ltd.), as a filler 10 parts of carbon black (Seast SO, manufactured by Tokai Carbon Co., Ltd.), 5 parts of zinc white (ZnO # 1, manufactured by Shodo Chemical Co., Ltd.) as a crosslinking accelerator, 1 part of stearic acid, and tetraethylthiuram disulfide (Noxeller) as a crosslinking accelerator
  • a polyether rubber composition was prepared by charging 1 part of TET (manufactured by Ouchi Shinsei Chemical Co., Ltd.) and kneading for 10 minutes.
  • the obtained polyether rubber composition was pressed with a press molding machine at 170 ° C. for 20 minutes to obtain a crosslinked rubber product.
  • the measurement of the onium ion unit content and the physical property evaluation of the energization increase value of the volume resistivity value, the volume resistivity value, and the compression set were performed. The results are shown in Table 1.
  • Example 2 Except that the blending amount of 1-methylimidazole was changed from 1 part to 5 parts, a polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1, and the onium ion unit content was similarly measured. And various physical properties were evaluated. The results are shown in Table 1.
  • Example 3 To an open roll at 40 ° C., 100 parts of the polyether rubber obtained in Production Example 2, 10 parts of 1-methylimidazole, and 4,4′-dithiodimorpholine as a crosslinking agent (Varnock R, manufactured by Ouchi Shinsei Chemical Co., Ltd.) 0.5 parts, carbon black (Seast SO, manufactured by Tokai Carbon Co., Ltd.) as filler, 5 parts of zinc white (ZnO # 1, manufactured by Shodo Chemical Co., Ltd.) as crosslinking accelerator, 1 part of stearic acid, crosslinking acceleration As an agent, 1.5 parts of tetraethylthiuram disulfide (Noxeller TET, manufactured by Ouchi Shinsei Chemical Co., Ltd.) and 1.5 parts of dibenzothiazyl disulfide (Noxeller DM, manufactured by Ouchi New Chemical Co., Ltd.) are added and kneaded for 10 minutes.
  • Varnock R manufactured by Ouchi Shinsei Chemical Co
  • a polyether rubber composition was prepared.
  • the obtained polyether rubber composition was pressed with a press molding machine at 180 ° C. for 15 minutes to obtain a crosslinked rubber product.
  • the measurement of onium ion unit content rate and various physical-property evaluation were performed like Example 1.
  • FIG. The results are shown in Table 1.
  • Example 4 To an open roll at 40 ° C., 100 parts of the polyether rubber obtained in Production Example 2, 5 parts of 1-methylimidazole, 6-methylquinoxaline-2, 3-dithiocarbonate as a cross-linking agent (Daisonette XL-21, Daiso Corporation) 1.4 parts, carbon black (Seast SO, manufactured by Tokai Carbon Co., Ltd.) 10 parts, slaked lime (Caldic # 1000, manufactured by Omi Chemical Co., Ltd.) 4 parts, calcium carbonate (white luster CC, A polyether rubber composition was prepared by adding 5 parts of Shiraishi Kogyo Co., Ltd., 1 part of stearic acid as a crosslinking accelerator and 0.7 part of pentaerythritol as a crosslinking accelerator, and kneading for 10 minutes.
  • Example 1 the obtained polyether rubber composition was pressed with a 160 ° C. press molding machine for 30 minutes to obtain a crosslinked rubber product. And about the obtained rubber crosslinked material, the measurement of onium ion unit content rate and various physical-property evaluation were performed like Example 1. FIG. The results are shown in Table 1.
  • Example 5 Except that the blending amount of 1-methylimidazole was changed from 5 parts to 10 parts, a polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 4, and the onium ion unit content was similarly measured. And various physical properties were evaluated. The results are shown in Table 1.
  • Example 6 To an open roll at 40 ° C., 100 parts of the polyether rubber obtained in Production Example 2, 5 parts of 1-methylimidazole, and 0.9 part of 2,4,6-trimercapto-1,3,5-triazine as a crosslinking agent , 10 parts carbon black (Seast SO, manufactured by Tokai Carbon Co., Ltd.) as filler, 3 parts magnesium oxide (Kyowa Mag 100, manufactured by Kyowa Chemical Industry Co., Ltd.), 5 parts calcium carbonate (manufactured by Shirahika CC, Shiraishi Industrial Co., Ltd.) A polyether rubber composition was prepared by adding 1 part of stearic acid as a crosslinking accelerator and kneading for 10 minutes.
  • Example 1 the obtained polyether rubber composition was pressed with a 160 ° C. press molding machine for 20 minutes to obtain a crosslinked rubber product. And about the obtained rubber crosslinked material, the measurement of onium ion unit content rate and various physical-property evaluation were performed like Example 1. FIG. The results are shown in Table 1.
  • Example 7 A polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 6 except that the blending amount of 1-methylimidazole was changed from 5 parts to 10 parts, and the onium ion unit content was measured in the same manner. And various physical properties were evaluated. The results are shown in Table 1.
  • Example 1 A polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that 1-methylimidazole was not blended, and various physical properties were evaluated in the same manner. The results are shown in Table 1.
  • Example 2 A polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 3 except that 1-methylimidazole was not blended, and various physical properties were evaluated in the same manner. The results are shown in Table 1.
  • Example 3 A polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 4 except that 1-methylimidazole was not blended, and various physical properties were evaluated in the same manner. The results are shown in Table 1.
  • Example 4 A polyether rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 6 except that 1-methylimidazole was not blended, and various physical properties were evaluated in the same manner. The results are shown in Table 1.
  • Example 5 A polyether rubber composition was obtained in the same manner as in Example 1 except that sulfur as a crosslinking agent, zinc white as a crosslinking accelerator, and tetraethylthiuram disulfide as a crosslinking accelerator were not blended. And it tried to bridge
  • Example 6 A polyether rubber composition was obtained in the same manner as Example 2 except that sulfur as a crosslinking agent, zinc white as a crosslinking accelerator, and tetraethylthiuram disulfide as a crosslinking accelerator were not blended. And it tried to bridge
  • Example 7 A polyether rubber composition and rubber in the same manner as in Example 1 except that 1 part of 2-mercaptobenzimidazole (Norack MB, manufactured by Ouchi Shinsei Chemical Co., Ltd.) was used instead of 1 part of 1-methylimidazole. A crosslinked product was obtained, and various physical properties were evaluated in the same manner. The results are shown in Table 1.
  • Example 8 A polyether rubber composition and rubber in the same manner as in Example 2 except that 5 parts of 2-mercaptobenzimidazole (NOCRACK MB, manufactured by Ouchi Shinsei Chemical Co., Ltd.) was used instead of 5 parts of 1-methylimidazole. A crosslinked product was obtained, and various physical properties were evaluated in the same manner. The results are shown in Table 1.
  • the resulting rubber cross-linked product has a volume resistivity value and / or a volume resistivity value.
  • the energization increase value was increased (Comparative Examples 1 to 4).
  • the crosslinking reaction did not proceed, and a crosslinked product capable of evaluating various physical properties could not be obtained (Comparative Examples 5 and 6). ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 エピハロヒドリン単量体単位を含有するポリエーテルゴム100重量部に対し、五員環または六員環の窒素原子含有芳香族複素環式化合物0.1~100重量部と、硫黄、含硫黄化合物およびトリアジン系化合物から選ばれる少なくともひとつの架橋剤0.1~10重量部とを含むポリエーテルゴム組成物を、130~200℃で反応させることにより得られるゴム架橋物の製造方法を提供する。

Description

ゴム架橋物の製造方法
 本発明は、ゴム架橋物の製造方法に関し、より詳しくは、電気抵抗値のばらつきが少なく、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されており、かつ、耐圧縮永久歪み性に優れたゴム架橋物を製造するための方法に関する。
  プリンタ、電子写真複写機、およびファクシミリ装置などの画像形成装置において、半導電性が必要とされる機構には、導電性ロール、導電性ブレード、導電性ベルトなどの導電性部材が用いられている。
  このような導電性部材は、その用途に応じて、所望の範囲の導電性(電気抵抗値とそのばらつき、環境依存性、電圧依存性)、非汚染性、低硬度、および寸法安定性などの種々の性能が要求されている。
  このような導電性部材の一部を構成するゴムに導電性を付与する方法としては、カーボンブラック、または金属酸化物などの導電性付与剤をゴム中に少量練りこみ、分散させることにより、導電性部材の電気抵抗を制御する方法が周知である。しかし、この方法では、練りこむ少量の導電性付与剤の分散性をコントロールすることが難しく、また、成形・架橋時のゴム流動によって、導電性付与剤の分散状態が変化し、その結果、電気抵抗値がばらつき、鮮明な画像を得にくいという問題があった。
  そこで、電気抵抗値のばらつきを解決する方法として、導電性付与剤を配合しなくてもゴム自体に半導電性を有する、ポリエーテルゴムなどが導電性部材用途に用いられてきた。しかしながら、近年、画像形成装置においては高速化が要求され、導電性部材、特に、導電性ロールには更なる低電気抵抗化が望まれている。電気抵抗値を低くする方法としては、ポリエーテルゴムの構成単位の一つであるエチレンオキサイド単量体単位量を増やすことが有効であるが、エチレンオキサイド単量体単位量を増やすと、ゴム自体が水溶性になり、製造が困難になる場合がある。また、感光体への汚染を引き起こすという問題があった。そのため、従来の方法では、ポリエーテルゴム中のエチレンオキサイド単量体単位をある一定量までしか増加することができず、低電気抵抗化の要求を十分満たすことができなかった。
  また、従来より、導電性部材に電圧を印加すると、連続使用により導電性部材が通電劣化し、導電性部材の電気抵抗値が上昇し、これにより、画像品質が低下するという問題があった。この問題に対し、たとえば、特許文献1では、n-ブチルジメチルアミンやトリメチルアミンなどの脂肪族アミンをオニウム化剤として用いて導入されたオニウムイオンを有する単量体の単位を、0.1モル%以上30モル%未満含有するポリエーテルゴムが開示されている。しかしながら、この特許文献1に記載のポリエーテルゴムを用いて得られるゴム架橋物は、電気抵抗値のばらつきが少なく、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されているものの、耐圧縮永久歪み性が十分でなく、そのため、耐圧縮永久歪み性の改善が望まれていた。
国際公開第2011/081152号
 本発明は、このような実状に鑑みてなされたものであり、電気抵抗値のばらつきが少なく、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されており、かつ、耐圧縮永久歪み性に優れたゴム架橋物を製造するための方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意研究した結果、エピハロヒドリン単量体単位を含有するポリエーテルゴムと、五員環または六員環の窒素原子含有芳香族複素環式化合物と、特定の架橋剤0.1~10重量部とを含むポリエーテルゴム組成物を、130~200℃で反応させることにより、電気抵抗値のばらつきが少なく、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されており、かつ、耐圧縮永久歪み性に優れたゴム架橋物が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、エピハロヒドリン単量体単位を含有するポリエーテルゴム100重量部に対し、五員環または六員環の窒素原子含有芳香族複素環式化合物0.1~100重量部と、硫黄、含硫黄化合物およびトリアジン系化合物から選ばれる少なくともひとつの架橋剤0.1~10重量部とを含むポリエーテルゴム組成物を、130~200℃で反応させることにより得られるゴム架橋物の製造方法が提供される。
 好ましくは、前記ポリエーテルゴム組成物が、前記ポリエーテルゴム、前記窒素原子含有芳香族複素環式化合物、および前記架橋剤を0~100℃で混練することにより得られたものである。
 好ましくは、前記ポリエーテルゴムが、不飽和オキサイド単量体単位をさらに含有する。
 好ましくは、前記窒素原子含有芳香族複素環式化合物が、1-メチルイミダゾールである。
 好ましくは、前記ポリエーテルゴム組成物を、130~200℃で加熱することにより、前記ポリエーテルゴムの架橋と、前記窒素原子含有芳香族複素環式化合物を前記ポリエーテルゴムの側鎖にカチオン化された状態で結合させる反応とを同時に進行させるものである。
 また、本発明によれば、前記いずれかの製造方法により得られるゴム架橋物が提供される。
 さらに、本発明によれば、前記ゴム架橋物を有している導電性部材が提供される。
 本発明によれば、電気抵抗値のばらつきが少なく、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されており、かつ、耐圧縮永久歪み性に優れたゴム架橋物を提供することができる。
 本発明のゴム架橋物の製造方法は、エピハロヒドリン単量体単位を含有するポリエーテルゴム100重量部に対し、五員環または六員環の窒素原子含有芳香族複素環式化合物0.1~100重量部と、硫黄、含硫黄化合物およびトリアジン系化合物から選ばれる少なくともひとつの架橋剤0.1~10重量部とを含むポリエーテルゴム組成物を、130~200℃で反応させることを特徴とする。
 以下においては、まず、本発明で用いるポリエーテルゴム組成物を構成する各成分について説明する。
<エピハロヒドリン単量体単位を含有するポリエーテルゴム>
 本発明で用いるエピハロヒドリン単量体単位を含有するポリエーテルゴム(以下、「ポリエーテルゴム」と略記する。)は、エピハロヒドリン単量体単位を必須の構成単位とするゴムであり、エピハロヒドリン単量体のみを重合することにより得られたものであってもよく、あるいは、エピハロヒドリン単量体と共重合可能な他の単量体とを共重合することにより得られたものであってもよい。
 エピハロヒドリン単量体単位を構成するエピハロヒドリン単量体としては、特に限定されないが、例えば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリンなどが挙げられる。これらのなかでも、エピクロロヒドリンが好ましい。エピハロヒドリン単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明で用いるポリエーテルゴム中における、エピハロヒドリン単量体単位の含有割合は、全単量体単位中、0.1~100モル%であることが好ましく、10~79モル%であることがより好ましく、15~58モル%であることが特に好ましい。エピハロヒドリン単量体単位の含有割合が前記範囲内にあると、得られるゴム架橋物は、連続使用した場合でも電気抵抗値の上昇が抑制される。一方、エピハロヒドリン単量体単位の含有割合が少なすぎると、架橋が不十分となり、得られるゴム架橋物の形状維持が困難になる場合がある。
 本発明で用いるポリエーテルゴムは、エピハロヒドリン単量体単位に加えて、不飽和オキサイド単量体単位をさらに含有していることが好ましい。不飽和オキサイド単量体単位を形成する不飽和オキサイド単量体としては、分子内に少なくとも一つの炭素-炭素不飽和結合(芳香環の炭素-炭素不飽和結合は除く)と、少なくとも一つのエポキシ基とを含有する化合物であれば、特に限定されないが、例えば、アリルグリシジルエーテル、ブテニルグリシジルエーテルなどのアルケニルグリシジルエーテル類;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド類;などが挙げられる。これらのなかでも、アルケニルグリシジルエーテル類が好ましく、アリルグリシジルエーテルがより好ましい。不飽和オキサイド単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明で用いるポリエーテルゴム中における、不飽和オキサイド単量体単位の含有割合は、全単量体単位中、0~15モル%であることが好ましく、1~12モル%であることがより好ましく、2~10モル%であることが特に好ましい。不飽和オキサイド単量体単位の含有割合が前記範囲内にあると、ポリエーテルゴムを架橋性に優れたものとすることができる。一方、不飽和オキサイド単量体単位の含有割合が少なすぎると、得られるゴム架橋物の圧縮永久歪が悪化する場合がある。また、不飽和オキサイド単量体単位の含有割合が多すぎると、重合反応中に、ポリマー分子中あるいはポリマー分子間のゲル化反応(3次元架橋反応)などを起こし易くなって、成形加工性が低下するおそれがある。
 また、本発明で用いるポリエーテルゴムは、低電気抵抗性の観点から、エピハロヒドリン単量体単位および不飽和オキサイド単量体単位に加えて、エチレンオキサイド単量体単位をさらに含有していることが好ましい。エチレンオキサイド単量体単位は、エチレンオキサイド単量体により形成される単位である。本発明で用いるポリエーテルゴム中における、エチレンオキサイド単量体単位の含有割合は、全単量体単位中、0~90モル%であることが好ましく、20~80モル%であることがより好ましく、40~75モル%であることが特に好ましい。エチレンオキサイド単量体単位の含有割合が前記範囲内にあると、得られるゴム架橋物は低電気抵抗性に優れる。一方、エチレンオキサイド単量体単位の含有割合が少なすぎると、得られるゴム架橋物の電気抵抗値の低減効果が得難くなる。また、エチレンオキサイド単量体単位の含有割合が多すぎると、ポリエーテルゴムの製造が困難になるおそれがある。
 さらに、本発明で用いるポリエーテルゴムは、エピハロヒドリン単量体単位、不飽和オキサイド単量体単位、およびエチレンオキサイド単量体単位に加えて、これらと共重合可能なその他の単量体単位を含有していてもよい。その他の単量体単位としては、たとえば、エチレンオキサイドを除いたアルキレンオキサイド単量体単位が好ましく挙げられる。エチレンオキサイドを除いたアルキレンオキサイド単量体単位を形成するアルキレンオキサイド単量体としては、特に限定されないが、たとえば、プロピレンオキサイド、1,2-エポキシブタン、1,2-エポキシ-4-クロロペンタン、1,2-エポキシヘキサン、1,2-エポキシオクタン、1,2-エポキシデカン、1,2-エポキシオクタデカン、1,2-エポキシエイコサン、1,2-エポキシイソブタン、2,3-エポキシイソブタンなどの直鎖状または分岐鎖状アルキレンオキサイド;1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロドデカンなどの環状アルキレンオキサイド;ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、2-メチルオクチルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテルなどのアルキル直鎖または分岐鎖を有するグリシジルエーテル;エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルなどのオキシエチレン側鎖を有するグリシジルエーテル;などが挙げられる。これらのなかでも、直鎖状アルキレンオキサイドが好ましく、プロピレンオキサイドがより好ましい。これらエチレンオキサイドを除いたアルキレンオキサイド単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明で用いるポリエーテルゴム中における、エチレンオキサイドを除いたアルキレンオキサイド単量体単位の含有割合は、全単量体単位中、30モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。エチレンオキサイドを除いたアルキレンオキサイド単量体単位の含有割合が多すぎると、得られるゴム架橋物の体積固有抵抗値が上昇するおそれがある。
  また、アルキレンオキサイド単量体を除く、その他の共重合可能な単量体としては、特に限定されないが、例えば、スチレンオキサイド、フェニルグリシジルエーテルなどのアリールエポキシド類;などが挙げられる。本発明で用いるポリエーテルゴム中における、アルキレンオキサイド単量体を除く、その他の共重合可能な単量体単位の含有割合は、全単量体単位中、20モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましい。
 本発明で用いるポリエーテルゴムは、溶液重合法または溶媒スラリー重合法などにより、上述した各単量体を開環重合することにより得ることができる。
 重合に用いる重合触媒としては、一般のポリエーテル重合用触媒であれば、特に限定されない。重合触媒としては、例えば、有機アルミニウムに水とアセチルアセトンを反応させた触媒(特公昭35-15797号公報);トリイソブチルアルミニウムにリン酸とトリエチルアミンを反応させた触媒(特公昭46-27534号公報);トリイソブチルアルミニウムにジアザビシクロウンデセンの有機酸塩とリン酸とを反応させた触媒(特公昭56-51171号公報);アルミニウムアルコキサイドの部分加水分解物と有機亜鉛化合物とからなる触媒(特公昭43-2945号公報);有機亜鉛化合物と多価アルコールとからなる触媒(特公昭45-7751号公報);ジアルキル亜鉛と水とからなる触媒(特公昭36-3394号公報);トリブチル錫クロライドとトリブチルホスフェートとからなる触媒(特許第3223978号公報);などが挙げられる。
  重合溶媒としては、不活性溶媒であれば、特に限定されないが、例えば、ベンゼン、トルエンなどの芳香族炭化水素;n-ペンタン、n-へキサンなどの直鎖状飽和炭化水素類;シクロペンタン、シクロヘキサンなどの環状飽和炭化水素類;などが用いられる。これらのなかでも、溶液重合法により開環重合する場合は、得られるポリエーテルゴムの溶解性の観点から、芳香族炭化水素を用いることが好ましく、トルエンがより好ましい。
  重合反応温度は、20~150℃が好ましく、50~130℃がより好ましい。重合様式は、回分式、半回分式、連続式などの任意の方法で行うことができる。
  本発明で用いるポリエーテルゴムは、ブロック共重合、ランダム共重合のいずれの共重合タイプでも構わないが、特に、単量体にエチレンオキサイドを用いる場合、ランダム共重合体の方がよりポリエチレンオキサイドの結晶性を低下させ、ゴム弾性を損ないにくいために好ましい。
 重合反応により得られたポリエーテルゴムを溶媒から回収する方法は、特に限定されないが、例えば、凝固・ろ別・脱水・乾燥の各方法を適宜組合わせることにより行う。ポリエーテルゴムが溶解している溶液から、ポリエーテルゴムを凝固させる方法としては、例えば、常法であるスチームストリッピングや貧溶媒を用いた析出方法などを用いることができる。また、ポリエーテルゴムを含むスラリーから、ポリエーテルゴムをろ別する方法としては、必要に応じて、例えば、回転式スクリーン、振動スクリーンなどの篩を用いる方法などを挙げることができる。さらに、ポリエーテルゴムの脱水方法としては、例えば、遠心脱水機;ロール、バンバリー式脱水機、スクリュー押出機式脱水機などの圧縮水絞機;などを用いて脱水する方法を挙げることができる。さらに、ポリエーテルゴムの乾燥方法としては、例えば、ニーダー型乾燥機、エキスパンダー乾燥機、熱風乾燥機、減圧乾燥機などの乾燥機を用いる方法;などを挙げることができる。これら上述した方法および用いる機器等は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。
 本発明で用いるポリエーテルゴムの重量平均分子量は、20万~200万であることが好ましく、40万~150万であることがより好ましい。重量平均分子量が高すぎると、ムーニー粘度が高くなり、成形加工が難しくなるおそれがある。一方、重量平均分子量が低すぎると、得られるゴム架橋物の圧縮永久歪みが悪化するおそれがある。
 本発明で用いるポリエーテルゴムのムーニー粘度(ポリマームーニー粘度・ML1+4,100℃)は、10~120であることが好ましく、30~90であることがより好ましい。ムーニー粘度が高すぎると、成形加工性に劣り、導電性部材用途に用いる場合に導電性部材への成形がし難くなる。さらに、スウェル(押し出し成形時にダイの径より押出物の径が大きくなること)が発生し、寸法安定性が低下するおそれがある。一方、ムーニー粘度が低すぎると、得られるゴム架橋物の機械的強度が低下するおそれがある。
<五員環または六員環の窒素原子含有芳香族複素環式化合物>
 本発明で用いる五員環または六員環の窒素原子含有芳香族複素環式化合物(以下、「窒素原子含有芳香族複素環式化合物」と略記する。)は、五員環構造または六員環構造を有し、該環構造中に窒素原子を含有し、かつ、芳香族性を有するものであれば特に限定されない。ただし、たとえば、ベンゾイミダゾールなどの縮合複素環式化合物は除かれる。
 本発明で用いる窒素原子含有芳香族複素環式化合物としては、たとえば、複素環中に、複数の窒素原子を有するものであってもよいし、あるいは、酸素原子、硫黄原子など、窒素原子以外のヘテロ原子を有するものであってもよいし、さらには、複素環を構成する原子のうち一部は置換基により置換されたものであってもよい。このような窒素原子含有芳香族複素環式化合物を構成する含窒素芳香族複素環の構造としては、たとえば、イミダゾール環、ピロール環、チアゾール環、オキサゾール環、ピラゾール環、イソオキサゾール環などの五員複素環;ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環などの六員複素環;などが挙げられる。これらのなかでも、五員複素環が好ましく、イミダゾール環がより好ましい。
 また、含窒素芳香族複素環の置換基としては、特に限定されないが、例えば、アルキル基;シクロアルキル基;アルケニル基;アリール基;アリールアルキル基;アルキルアリール基;アルコキシル基;アルコキシアルキル基;アリールオキシ基;アルカノール基;水酸基;カルボニル基;アルコキシカルボニル基;アミノ基;イミノ基;ニトリル基;アルキルシリル基;ハロゲン原子;などが挙げられる。
 このような窒素原子含有芳香族複素環式化合物の具体例としては、イミダゾール、1-メチルイミダゾール、ピロール、1-メチルピロール、チアゾール、オキサゾール、ピラゾール、イソオキサゾールなどの五員複素環式化合物;ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、2,6-ルチジンなどの六員複素環式化合物;などを挙げることができる。これらのなかでも、五員複素環式化合物が好ましく、得られるゴム架橋物の体積固有抵抗値の低減効果が高いという点より、1-メチルイミダゾールがより好ましい。
 本発明で用いるポリエーテルゴム組成物中における、窒素原子含有芳香族複素環式化合物の配合量は、ポリエーテルゴム100重量部に対して、0.1~100重量部であり、好ましくは0.2~50重量部、より好ましくは0.3~20重量部である。窒素原子含有芳香族複素環式化合物の配合量が前記範囲内にあると、得られるゴム架橋物は、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されており、かつ、耐圧縮永久歪み性に優れたものとなる。一方、窒素原子含有芳香族複素環式化合物の配合量が少なすぎると、得られるゴム架橋物の体積固有抵抗値が高くなり、連続して電圧を印加した場合に電気抵抗値が上昇する場合がある。また、配合量が多すぎると、得られるゴム架橋物が硬くなり、ゴム弾性体としての特質が失われる場合がある。これらの窒素原子含有芳香族複素環式化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
<架橋剤>
 また、本発明で用いるポリエーテルゴム組成物は、硫黄、含硫黄化合物およびトリアジン系化合物から選ばれる少なくともひとつの架橋剤を含有する。これらの架橋剤を用いることにより、ポリエーテルゴムの架橋を十分に進行させることができる。
 本発明で用いる架橋剤としての硫黄としては、たとえば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などが挙げられる。
 また、含硫黄化合物としては、たとえば、一塩化硫黄、二塩化硫黄、4,4’-ジチオジモルホリン、アルキルフェノールジスルフィド、6-メチルキノキサリン-2、3-ジチオカーボネート、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼノピン-2)、含リンポリスルフィド、高分子多硫化物などが挙げられる。
 さらに、トリアジン系化合物としては、たとえば、2,4,6-トリメルカプト-1,3,5-トリアジンなどが挙げられる。
 これらの架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明で用いるポリエーテルゴム組成物中における、架橋剤の配合量は、ポリエーテルゴム100重量部に対して、0.1~10重量部であり、好ましくは0.2~7重量部、より好ましくは0.3~5重量部である。架橋剤の配合量が前記範囲内にあると、ポリエーテルゴムの架橋を十分に進行させることができる。一方、架橋剤の配合量が少なすぎると、架橋速度が遅くなり、得られるゴム架橋物の生産性が低下したり、ゴム架橋物を研磨して使用する場合に研磨性が低下したりするおそれがある。また、架橋剤の配合量が多すぎると、得られるゴム架橋物の硬度が高くなったり、架橋剤がブルームしたりする可能性がある。
 また、架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進助剤、および架橋促進剤を併用することが好ましい。架橋促進助剤としては、特に限定されないが、例えば、亜鉛華、ステアリン酸などが挙げられる。架橋促進剤としては、特に限定されないが、例えば、グアニジン系化合物;アルデヒド-アミン系化合物;アルデヒド-アンモニア系化合物;チアゾール系化合物;スルフェンアミド系化合物;チオ尿素系化合物;チウラム系化合物;ジチオカルバミン酸塩系化合物;などを用いることができる。架橋助剤および架橋促進剤は、それぞれ1種を単独で使用してもよく、2種以上を併用して用いてもよい。
  架橋促進助剤および架橋促進剤の各配合量は、特に限定されないが、ポリエーテルゴム100重量部に対して、好ましくは0.01~15重量部であり、より好ましくは0.1~10重量部である。架橋促進助剤および架橋促進剤の使用量が多すぎると、架橋速度が早くなりすぎたり、得られるゴム架橋物の表面にブルームしたりするおそれがある。一方、少なすぎる場合は、架橋速度が遅くて生産性に劣ったり、架橋が十分に進行せず得られるゴム架橋物の機械的特性が劣るおそれがある。
 さらに、本発明で用いるポリエーテルゴム組成物には、充填剤がさらに含有されていてもよい。
  充填剤としては、特に限定されないが、例えば、カーボンブラック、シリカなどが挙げられる。これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。本発明で用いるポリエーテルゴム組成物中における、充填剤の配合割合は、特に限定されないが、ポリエーテルゴム100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは1~20重量部である。充填剤の配合量が上記範囲内であると、得られるゴム架橋物の補強効果が得られやすくなる。
 また、本発明で用いるポリエーテルゴム組成物は、本発明の効果を損なわない範囲で、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、イソプレンゴム、天然ゴム、アクリロニトリルブタジエンゴム、ブチルゴム、およびこれらゴムの部分水素添加物(例えば、水素化ニトリルゴム)などのジエン系ゴム;エチレンプロピレンゴム、アクリルゴム、ポリエーテル系ゴム(本発明のポリエーテルゴムを除く)、フッ素ゴム、シリコーンゴムなどのジエン系ゴム以外のゴム;オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマー;ポリ塩化ビニル、クマロン樹脂、フェノール樹脂などの樹脂;を含有していてもよい。これらのゴム、熱可塑性エラストマー、および樹脂は、単独で、あるいは2種以上組み合わせて用いることができ、これらの合計配合量は、ポリエーテルゴム100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましく、20重量部以下が特に好ましい。
  さらに、本発明で用いるポリエーテルゴム組成物には、上述した添加剤以外に、公知のゴムに通常配合されるその他の添加剤を含有していてもよい。このような添加剤としては、特に限定されないが、例えば、受酸剤;補強剤;老化防止剤;紫外線吸収剤;耐光安定剤;粘着付与剤;界面活性剤;導電性付与剤;電解質物質;着色剤(染料・顔料);難燃剤;帯電防止剤;などが挙げられる。
 本発明で用いるポリエーテルゴム組成物は、ポリエーテルゴムに、窒素原子含有芳香族複素環式化合物、および架橋剤、ならびに必要に応じて用いられる各添加剤を、所望の方法により調合、混練することにより調製することができる。なお、各成分を混練する際には、後述するポリエーテルゴムの側鎖のカチオン化が起こらない温度であり、かつ架橋剤による架橋が起こらない温度で混練することが好ましく、具体的には、0~100℃で混練を行うことが好ましく、10~90℃で混練を行うことがより好ましい。混練時間は、30秒~30分が好ましい。また、調合、混練に際しては、例えば、ニーダー、バンバリー、オープンロール、カレンダーロール、押出機など任意の混練成形機を用いることができ、これらは複数組み合わせて用いてもよい。
<ゴム架橋物の製造方法>
 本発明の製造方法により得られるゴム架橋物は、上述したポリエーテルゴム組成物を、130~200℃で反応させることにより製造される。
 本発明においては、上述したポリエーテルゴム組成物を、130~200℃で加熱することにより、ポリエーテルゴムの架橋を進行させながら、ポリエーテルゴム組成物中に含まれる窒素原子含有芳香族複素環式化合物のうち、少なくとも一部が、ポリエーテルゴムの側鎖にカチオン化された状態で結合する反応を進行させることができる。そして、これにより、得られるゴム架橋物を構成する架橋ポリエーテルゴム中に、下記一般式(1)で示す単位を導入することができる。
Figure JPOXMLDOC01-appb-C000001
  上記一般式(1)中において、Aは、窒素原子含有芳香族複素環式化合物に由来するカチオン性含窒素芳香族複素環を含有する基であり、カチオン性含窒素芳香族複素環は、複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。また、Xは任意の対アニオンである。
 なお、窒素原子含有芳香族複素環式化合物は、通常、ポリエーテルゴムに含有されるエピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を置換することで、ポリエーテルゴムの側鎖にカチオン化された状態で結合することとなる。
 本発明において、上記一般式(1)中のAで表されるカチオン性含窒素芳香族複素環を含有する基としては、下記一般式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)中に表されているN-は、上記一般式(1)において、上記一般式(1)に示す「2」の位置の炭素原子と結合している。また、上記一般式(2)中に表されているRは、水素原子、または炭素数1~20の炭化水素基を表す。
  上記一般式(2)中に表されているRは、炭素数1~10のアルキル基であることが好ましく、メチル基であることがより好ましい。
 特に、本発明によれば、窒素原子含有芳香族複素環式化合物のうち、少なくとも一部が、ポリエーテルゴムの側鎖にカチオン化された状態で結合することにより、得られるゴム架橋物を、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制され、かつ耐圧縮永久歪み性に優れたものとすることができる。加えて、本発明によれば、ポリエーテルゴムの架橋と、窒素原子含有芳香族複素環式化合物をポリエーテルゴムの側鎖にカチオン化された状態で結合させる反応とを同時に進行させることにより、ポリエーテルゴムの架橋およびこのような反応を別々に行う場合と比較して、簡易かつ短時間でこれらの反応を行うことができる。
 本発明において、上述したポリエーテルゴム組成物を、反応させる際における加熱温度は、130~200℃であり、好ましくは140~190℃、より好ましくは150~180℃である。加熱温度が低すぎると、ポリエーテルゴム組成物の架橋、およびポリエーテルゴムの側鎖のカチオン化が不十分となってしまい、得られるゴム架橋物の体積固有抵抗値が上昇したり、ゴム架橋物の形状維持が困難となる。一方、加熱温度が高すぎると、ポリエーテルゴムが分解したり、窒素原子含有芳香族複素環式化合物が揮発するおそれがある。
 また、加熱時間は特に限定されないが、好ましくは1分~6時間であり、より好ましくは5分~3時間、さらに好ましくは10分~1時間である。加熱方法としては、プレス加熱、オーブン加熱、蒸気加熱、熱風加熱、およびマイクロ波加熱などの方法を適宜選択すればよい。さらに、必要に応じて、通常の方法に従って二次架橋を行ってもよい。
  なお、上記一般式(1)中において、Xで表される任意の対アニオンとは、イオン結合にて、Aと結合している負の電荷を有する化合物または原子であり、負の電荷を持つこと以外は特に限定されないが、通常、ポリエーテルゴムに含有されるエピハロヒドリン単量体単位を構成するハロゲン原子に由来するハロゲン化物イオンであり、好ましくは塩化物イオンである。また、本発明においては、このような対アニオンの少なくとも一部を、公知のイオン交換反応により、任意の対アニオンにアニオン交換してもよい。
 また、本発明の製造方法により得られるゴム架橋物を構成する架橋ポリエーテルゴム中における、上記一般式(1)で表される単位の含有割合は、好ましくは0.1~30モル%であり、より好ましくは0.3~25モル%、さらに好ましくは0.5~12モル%である。上記一般式(1)で表される単位の含有割合が前記範囲内にあると、得られるゴム架橋物を、圧縮永久歪率が小さく、電気抵抗値が低く、かつ、体積固有抵抗値の通電上昇を抑制可能なものとすることができる。一方、上記一般式(1)で表される単位の含有割合が少なすぎると、得られるゴム架橋物の体積固有抵抗値が高くなり、連続して電圧を印加した場合に電気抵抗値が上昇する場合がある。また、上記一般式(1)で表される単位の含有割合が多すぎると、得られるゴム架橋物が硬くなり、ゴム弾性体としての特質が失われる場合がある。また、本発明の製造方法により得られるゴム架橋物において、反応前のポリエーテルゴム組成物に配合した窒素原子含有芳香族複素環式化合物のうち、好ましくは0.1~100重量%、より好ましくは1~100重量%が、ポリエーテルゴムの側鎖にカチオン化された状態で結合していることが好ましい。
 本発明の製造方法により得られるゴム架橋物を構成する架橋ポリエーテルゴム中における、上記一般式(1)で表される単位の含有割合(以下、「オニウムイオン単位含有率」とも記す。)を調べる方法としては、公知の方法を用いればよい。たとえば、オニウムイオン単位含有率を簡便かつ定量的に求める方法としては、本発明のゴム架橋物を13C-NMR測定することにより、窒素原子含有芳香族複素環式化合物に由来するカチオン性含窒素芳香族複素環を含有する基の含有量を定量する方法が挙げられる。具体的には、まず、本発明の製造方法により得られるゴム架橋物を構成する架橋ポリエーテルゴムの主鎖であるポリエーテル鎖に由来するピークの積分値から、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1を算出する。次に、カチオン性含窒素芳香族複素環を含有する基に由来するピークの積分値から、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を算出する。そして、導入されている上記一般式(1)で表される単位のモル数B2を、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1で除することにより、オニウムイオン単位含有率を、以下の式(3)により算出することができる。
  オニウムイオン単位含有率(モル%)=100×B2/B1・・(3)
 本発明の製造方法により得られるゴム架橋物の体積固有抵抗値は、温度23℃、湿度50%とした測定環境にて、印加電圧を1000Vとし、電圧印加開始から30秒後の値において、通常、1×105.0~1×109.5Ω・cmであり、好ましくは1×105.2~1×108.0Ω・cmであり、より好ましくは1×105.5~1×107.5Ω・cmである。ゴム架橋物の体積固有抵抗値が前記範囲内にあると、低電気抵抗性に優れた導電性部材が得られる。一方、ゴム架橋物の体積固有抵抗値が高すぎると、同じ電流を流すためにより高い電圧を印加しなければならず、消費電力量が多くなることから導電性部材には不向きである。また、ゴム架橋物の体積固有抵抗値が低すぎると、電圧印加方向以外の意図しない方向に電流が流れてしまい、導電性部材として用いた場合に、導電性部材としての機能を損ねるおそれがある。
  本発明の製造方法により得られるゴム架橋物の体積固有抵抗値の通電上昇値は、前記体積固有抵抗値の測定条件において、電圧印加開始から10分後のlog10(体積固有抵抗値)から、電圧印加開始から30秒後のlog10(体積固有抵抗値)を減じたものにおいて、0~0.5の範囲にあることが好ましい。
  本発明の製造方法により得られるゴム架橋物は、電気抵抗値のばらつきが少なく、電気抵抗値が低く、連続使用した場合でも電気抵抗値の上昇が抑制されており、かつ、耐圧縮永久歪み性に優れたものであり、そのため、このような特性を活かして、各種工業ゴム製品用材料として有用であり、例えば、複写機や印刷機などに使用される、導電性ロール、導電性ブレード、導電性ベルトなどの導電性部材;靴底やホース用材料;コンベアーベルトやエスカレータのハンドレールなどのベルト用材料;シール、パッキン用材料;などとして用いることができる。これらのなかでも、複写機や印刷機などに使用される導電性部材として用いることが好ましく、特に、導電性ロールに好適に用いることができる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」および「%」は、特に断りのない限り、重量基準である。
 オニウムイオン単位含有率の測定、および各種の物性については、以下の方法に従って評価した。
[ムーニー粘度]
  ムーニー粘度(ML1+4,100℃)は、JIS  K6300に従って、100℃で測定した。
[オニウムイオン単位含有率]
  実施例におけるオニウムイオン単位含有率の測定は、核磁気共鳴装置(13C-NMR)を用いて、以下のように行った。具体的には、まず、ゴム架橋物を構成する架橋ポリエーテルゴムの主鎖であるポリエーテル鎖に由来するピークの積分値から、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1を算出した。次に、カチオン性含窒素芳香族複素環を含有する基に由来するピークの積分値から、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を算出した。導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1で除することにより、オニウムイオン単位含有率を、以下の式(3)により算出した。
  オニウムイオン単位含有率(モル%)=100×B2/B1・・(3)
[体積固有抵抗値(23℃、50%RH)]
  得られたシート状のゴム架橋物(縦15cm、横10cm、厚さ2mm)を用いて、体積固有抵抗値を測定した。体積固有抵抗値の測定は、K6271の2重リング電極法に準拠して行い、測定条件は、温度23℃、湿度50%とし、印加電圧は1000Vとし、電圧の印加を開始してから30秒後の値を測定した。
[体積固有抵抗値の通電上昇値(23℃、50%RH)]
  体積固有抵抗値の通電上昇値は、上記の体積固有抵抗値の測定条件にて、電圧の印加を開始してから10分後のlog10(体積固有抵抗値)から、電圧の印加を開始してから30秒後のlog10(体積固有抵抗値)を減じたものとした。
[圧縮永久歪率]
  JIS  K6262に従い、得られたゴム架橋物(直径29mm、高さ12.7mmの円柱型)を25%圧縮させた状態で、70℃の環境下で22時間放置した後、圧縮を解放して圧縮永久歪率を測定した。圧縮永久歪率は、その数値が小さいほど、ゴム弾性を保持しており、ゴムとして優れていると判断することができる。
(製造例1、重合触媒の製造)
  密閉した耐圧ガラス容器を窒素置換して、トルエン200部およびトリイソブチルアルミニウム60部を供給した。このガラス容器を氷水に浸漬して冷却後、ジエチルエーテル230部を添加し、攪拌した。次に、氷水で冷却しながら、リン酸13.6部を添加し、さらに攪拌した。この時、トリイソブチルアルミニウムとリン酸の反応により、容器内圧が上昇するので適時脱圧を実施した。得られた反応混合物を60℃の温水浴内で1時間熟成反応して触媒溶液を得た。
(製造例2、ポリエーテルゴムの製造)
  オートクレーブに、エピクロロヒドリン223.5部、アリルグリシジルエーテル27.5部、エチレンオキサイド19.7部、トルエン2585部を入れ、窒素雰囲気下で攪拌しながら内溶液を50℃に昇温し、上記で得た触媒溶液11.6部を添加して反応を開始した。次に、反応開始からエチレンオキサイド129.3部をトルエン302部に溶解した溶液を5時間かけて等速度で連続添加した。また、反応開始後30分毎に触媒溶液を6.2部ずつ、5時間にわたり添加した。次いで、水15部を添加して攪拌し、反応を終了させた。ここに更に、老化防止剤として4,4’-チオビス-(6-tert-ブチル-3-メチルフェノール)の5%トルエン溶液45部を添加し、攪拌した。スチームストリッピングを実施してトルエンを除去し、上澄み水を除去後、60℃にて真空乾燥し、ポリエーテルゴム400部を得た。このポリエーテルゴムの単量体組成比は、H-NMRにより測定した結果、エピクロロヒドリン単量体単位40モル%、エチレンオキサイド単量体単位56モル%、アリルグリシジルエーテル単量体単位4モル%であった。また、ムーニー粘度は60であった。
[実施例1]
  40℃のオープンロールに、製造例2で得られたポリエーテルゴム100部、1-メチルイミダゾール1部、架橋剤として硫黄(サルファックスPMC、鶴見化学工業社製)0.5部、充填剤としてカーボンブラック(シーストSO、東海カーボン社製)10部、架橋促進助剤として亜鉛華(ZnO#1、正同化学社製)5部、ステアリン酸1部、および架橋促進剤としてテトラエチルチウラムジスルフィド(ノクセラーTET、大内新興化学工業社製)1部を投入し、10分間混練することにより、ポリエーテルゴム組成物を調製した。次いで、得られたポリエーテルゴム組成物を、170℃のプレス成形機で20分間プレスして、ゴム架橋物を得た。そして、得られたゴム架橋物について、上述した方法にしたがって、オニウムイオン単位含有率の測定、および体積固有抵抗値、体積固有抵抗値の通電上昇値および圧縮永久歪率の物性評価を行った。結果を表1に示す。
[実施例2]
 1-メチルイミダゾールの配合量を1部から5部に変更した以外は、実施例1と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様にオニウムイオン単位含有率の測定、および各種の物性評価を行った。結果を表1に示す。
[実施例3]
 40℃のオープンロールに、製造例2で得られたポリエーテルゴム100部、1-メチルイミダゾール10部、架橋剤として4,4’-ジチオジモルホリン(バルノックR、大内新興化学工業社製)0.5部、充填剤としてカーボンブラック(シーストSO、東海カーボン社製)10部、架橋促進助剤として亜鉛華(ZnO#1、正同化学社製)5部、ステアリン酸1部、架橋促進剤としてテトラエチルチウラムジスルフィド(ノクセラーTET、大内新興化学工業社製)1.5部、ジベンゾチアジルジスルフィド(ノクセラーDM、大内新興化学工業社製)1.5部を投入し、10分間混練することにより、ポリエーテルゴム組成物を調製した。次いで、得られたポリエーテルゴム組成物を、180℃のプレス成形機で15分間プレスして、ゴム架橋物を得た。そして、得られたゴム架橋物について、実施例1と同様にオニウムイオン単位含有率の測定、および各種の物性評価を行った。結果を表1に示す。
[実施例4]
  40℃のオープンロールに、製造例2で得られたポリエーテルゴム100部、1-メチルイミダゾール5部、架橋剤として6-メチルキノキサリン-2、3-ジチオカーボネート(ダイソネットXL-21、ダイソー社製)1.4部、充填剤としてカーボンブラック(シーストSO、東海カーボン社製)10部、受酸剤として消石灰(カルディック#1000、近江化学工業社製)4部、炭酸カルシウム(白艶華CC、白石工業社製)5部、架橋促進助剤としてステアリン酸1部、および架橋促進剤としてペンタエリスリトール0.7部を投入し、10分間混練することにより、ポリエーテルゴム組成物を調製した。次いで、得られたポリエーテルゴム組成物を、160℃のプレス成形機で30分間プレスして、ゴム架橋物を得た。そして、得られたゴム架橋物について、実施例1と同様にオニウムイオン単位含有率の測定、および各種の物性評価を行った。結果を表1に示す。
[実施例5]
 1-メチルイミダゾールの配合量を5部から10部に変更した以外は、実施例4と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様にオニウムイオン単位含有率の測定、および各種の物性評価を行った。結果を表1に示す。
[実施例6]
 40℃のオープンロールに、製造例2で得られたポリエーテルゴム100部、1-メチルイミダゾール5部、架橋剤として2,4,6-トリメルカプト-1,3,5-トリアジン0.9部、充填剤としてカーボンブラック(シーストSO、東海カーボン社製)10部、受酸剤として酸化マグネシウム(キョーワマグ100、協和化学工業社製)3部、炭酸カルシウム(白艶華CC、白石工業社製)5部、および架橋促進助剤としてステアリン酸1部を投入し、10分間混練することにより、ポリエーテルゴム組成物を調製した。次いで、得られたポリエーテルゴム組成物を、160℃のプレス成形機で20分間プレスして、ゴム架橋物を得た。そして、得られたゴム架橋物について、実施例1と同様にオニウムイオン単位含有率の測定、および各種の物性評価を行った。結果を表1に示す。
[実施例7]
 1-メチルイミダゾールの配合量を5部から10部に変更した以外は、実施例6と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様にオニウムイオン単位含有率の測定、および各種の物性評価を行った。結果を表1に示す。
[比較例1]
 1-メチルイミダゾールを配合しなかった以外は、実施例1と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様に各種の物性評価を行った。結果を表1に示す。
[比較例2]
  1-メチルイミダゾールを配合しなかった以外は、実施例3と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様に各種の物性評価を行った。結果を表1に示す。
[比較例3]
 1-メチルイミダゾールを配合しなかった以外は、実施例4と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様に各種の物性評価を行った。結果を表1に示す。
[比較例4]
 1-メチルイミダゾールを配合しなかった以外は、実施例6と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様に各種の物性評価を行った。結果を表1に示す。
[比較例5]
 架橋剤としての硫黄、架橋促進助剤としての亜鉛華、および架橋促進剤としてのテトラエチルチウラムジスルフィドを配合しなかった以外は、実施例1と同様にして、ポリエーテルゴム組成物を得た。そして、得られたポリエーテルゴム組成物を用いて、実施例1と同様に架橋を行おうとしたが、架橋反応が進行せず、各種の物性評価が行えるような架橋物を得ることができなかった。
[比較例6]
 架橋剤としての硫黄、架橋促進助剤としての亜鉛華、および架橋促進剤としてのテトラエチルチウラムジスルフィドを配合しなかった以外は、実施例2と同様にして、ポリエーテルゴム組成物を得た。そして、得られたポリエーテルゴム組成物を用いて、実施例2と同様に架橋を行おうとしたが、架橋反応が進行せず、各種の物性評価が行えるような架橋物を得ることができなかった。
[比較例7]
 1-メチルイミダゾール1部の代わりに、2-メルカプトベンゾイミダゾール(ノクラックMB、大内新興化学工業社製)1部を用いた以外は、実施例1と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様に各種の物性評価を行った。結果を表1に示す。
[比較例8]
 1-メチルイミダゾール5部の代わりに、2-メルカプトベンゾイミダゾール(ノクラックMB、大内新興化学工業社製)5部を用いた以外は、実施例2と同様にして、ポリエーテルゴム組成物およびゴム架橋物を得て、同様に各種の物性評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1より、ポリエーテルゴムに、本発明所定の窒素原子含有芳香族複素環式化合物および架橋剤を配合してなるポリエーテルゴム組成物を、130~200℃で反応させることにより得られるゴム架橋物は、いずれも、体積固有抵抗値が低く、体積固有抵抗値の通電上昇値も抑制されており、さらには、圧縮永久歪み率も小さくなる結果となった(実施例1~7)。
 一方、ポリエーテルゴム組成物に、本発明所定の窒素原子含有芳香族複素環式化合物を配合しなかった場合には、得られるゴム架橋物は、いずれも体積固有抵抗値および/または体積固有抵抗値の通電上昇値が高くなる結果となった(比較例1~4)。
 また、ポリエーテルゴム組成物に、架橋剤を配合しなかった場合には、架橋反応が進行せず、各種の物性評価が行えるような架橋物を得ることができなかった(比較例5,6)。
 さらに、本発明所定の窒素原子含有芳香族複素環式化合物に代えて、縮合複素環式化合物である2-メルカプトベンゾイミダゾールを用いた場合には、得られるゴム架橋物は、いずれも体積固有抵抗値が高くなり、また、圧縮永久歪み率も大きくなる結果となった(比較例7,8)。

Claims (7)

  1.  エピハロヒドリン単量体単位を含有するポリエーテルゴム100重量部に対し、五員環または六員環の窒素原子含有芳香族複素環式化合物0.1~100重量部と、硫黄、含硫黄化合物およびトリアジン系化合物から選ばれる少なくともひとつの架橋剤0.1~10重量部とを含むポリエーテルゴム組成物を、130~200℃で反応させることにより得られるゴム架橋物の製造方法。
  2.  前記ポリエーテルゴム組成物が、前記ポリエーテルゴム、前記窒素原子含有芳香族複素環式化合物、および前記架橋剤を0~100℃で混練することにより得られたものであることを特徴とする請求項1に記載のゴム架橋物の製造方法。
  3.  前記ポリエーテルゴムが、不飽和オキサイド単量体単位をさらに含有する請求項1または2に記載のゴム架橋物の製造方法。
  4.  前記窒素原子含有芳香族複素環式化合物が、1-メチルイミダゾールである請求項1~3のいずれかに記載のゴム架橋物の製造方法。
  5.  前記ポリエーテルゴム組成物を、130~200℃で加熱することにより、前記ポリエーテルゴムの架橋と、前記窒素原子含有芳香族複素環式化合物を前記ポリエーテルゴムの側鎖にカチオン化された状態で結合させる反応とを同時に進行させることを特徴とする請求項1~4のいずれかに記載のゴム架橋物の製造方法。
  6.  請求項1~5のいずれかに記載の製造方法により得られるゴム架橋物。
  7.  請求項6に記載のゴム架橋物を有している導電性部材。
PCT/JP2013/058518 2012-03-27 2013-03-25 ゴム架橋物の製造方法 WO2013146648A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014507854A JP5971332B2 (ja) 2012-03-27 2013-03-25 ゴム架橋物の製造方法
KR1020147024102A KR101927242B1 (ko) 2012-03-27 2013-03-25 고무 가교물의 제조 방법
US14/389,134 US9243108B2 (en) 2012-03-27 2013-03-25 Method of production of cross-linked rubber
CN201380016271.XA CN104169338B (zh) 2012-03-27 2013-03-25 橡胶交联物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071032 2012-03-27
JP2012-071032 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146648A1 true WO2013146648A1 (ja) 2013-10-03

Family

ID=49259900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058518 WO2013146648A1 (ja) 2012-03-27 2013-03-25 ゴム架橋物の製造方法

Country Status (5)

Country Link
US (1) US9243108B2 (ja)
JP (1) JP5971332B2 (ja)
KR (1) KR101927242B1 (ja)
CN (1) CN104169338B (ja)
WO (1) WO2013146648A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829397A (zh) * 2013-12-26 2016-08-03 日本瑞翁株式会社 聚醚橡胶的制造方法
JPWO2015133610A1 (ja) * 2014-03-07 2017-04-06 株式会社大阪ソーダ ゴム組成物の製造方法
JP2018016700A (ja) * 2016-07-27 2018-02-01 日本ゼオン株式会社 架橋性ゴム組成物、ゴム架橋物、および導電性部材
WO2019069766A1 (ja) * 2017-10-03 2019-04-11 日本ゼオン株式会社 エピハロヒドリンゴム組成物およびゴム積層体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6816754B2 (ja) * 2016-02-29 2021-01-20 日本ゼオン株式会社 ポリエーテルゴムの製造方法
EP3521369A4 (en) * 2016-09-28 2020-05-27 Zeon Corporation CROSSLINKABLE RUBBER COMPOSITION, CROSSLINKED RUBBER AND ELECTRICALLY CONDUCTIVE ELEMENT
WO2018061866A1 (ja) * 2016-09-28 2018-04-05 日本ゼオン株式会社 架橋性ゴム組成物、ゴム架橋物、および導電性部材
EP3597690A1 (de) * 2018-07-19 2020-01-22 Covestro Deutschland AG Heterocyclen-funktionelle polyether oder polyethercarbonate und verfahren zu deren herstellung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098866A1 (fr) * 2001-06-04 2002-12-12 Unimatec Co., Ltd. Derives d'un compose de thiol, compositions de durcissement contenant ces derives et articles moules obtenus a partir de ces compositions
JP2004035868A (ja) * 2002-06-28 2004-02-05 Keiichi Uno イオン性ゴムまたはエラストマー
WO2011081152A1 (ja) * 2009-12-29 2011-07-07 日本ゼオン株式会社 ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材
WO2012057299A1 (ja) * 2010-10-29 2012-05-03 日本ゼオン株式会社 ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885913A (en) * 1972-10-26 1975-05-27 Petrolite Corp Method of inhibiting the corrosion of metals in an acidic environment using quaternary ammonium salts of polyepihalohydrin
JP4109500B2 (ja) * 2002-07-08 2008-07-02 株式会社カネカ 熱硬化性樹脂組成物、熱硬化性樹脂溶液、および熱硬化性樹脂シート
US8034891B2 (en) * 2006-05-19 2011-10-11 Dow Corning Toray Company, Ltd. Polyether-modified organopolysiloxane, diorganopolysiloxane-polyether block copolymer, their production methods, and cosmetic preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098866A1 (fr) * 2001-06-04 2002-12-12 Unimatec Co., Ltd. Derives d'un compose de thiol, compositions de durcissement contenant ces derives et articles moules obtenus a partir de ces compositions
JP2004035868A (ja) * 2002-06-28 2004-02-05 Keiichi Uno イオン性ゴムまたはエラストマー
WO2011081152A1 (ja) * 2009-12-29 2011-07-07 日本ゼオン株式会社 ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材
WO2012057299A1 (ja) * 2010-10-29 2012-05-03 日本ゼオン株式会社 ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829397A (zh) * 2013-12-26 2016-08-03 日本瑞翁株式会社 聚醚橡胶的制造方法
US9771454B2 (en) 2013-12-26 2017-09-26 Zeon Corporation Method of production of polyether rubber
JPWO2015133610A1 (ja) * 2014-03-07 2017-04-06 株式会社大阪ソーダ ゴム組成物の製造方法
JP2018016700A (ja) * 2016-07-27 2018-02-01 日本ゼオン株式会社 架橋性ゴム組成物、ゴム架橋物、および導電性部材
WO2019069766A1 (ja) * 2017-10-03 2019-04-11 日本ゼオン株式会社 エピハロヒドリンゴム組成物およびゴム積層体

Also Published As

Publication number Publication date
US9243108B2 (en) 2016-01-26
CN104169338B (zh) 2018-01-05
JP5971332B2 (ja) 2016-08-17
KR20140138664A (ko) 2014-12-04
US20150073098A1 (en) 2015-03-12
KR101927242B1 (ko) 2018-12-10
JPWO2013146648A1 (ja) 2015-12-14
CN104169338A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5971332B2 (ja) ゴム架橋物の製造方法
JP5776494B2 (ja) ポリエーテルゴムの製造方法
JP5786716B2 (ja) ゴム組成物、ゴム架橋物、および導電性部材
KR102208710B1 (ko) 폴리에테르 고무의 제조 방법
JP6083228B2 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP2013227432A (ja) ゴム架橋物および導電性部材
JP5835060B2 (ja) ゴム架橋物の製造方法
WO2018061866A1 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
EP3424979B1 (en) Method for producing polyether rubber
JP6981420B2 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP2018016700A (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147024102

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770098

Country of ref document: EP

Kind code of ref document: A1