WO2013146414A1 - バックコンタクトタイプ太陽電池モジュール - Google Patents

バックコンタクトタイプ太陽電池モジュール Download PDF

Info

Publication number
WO2013146414A1
WO2013146414A1 PCT/JP2013/057645 JP2013057645W WO2013146414A1 WO 2013146414 A1 WO2013146414 A1 WO 2013146414A1 JP 2013057645 W JP2013057645 W JP 2013057645W WO 2013146414 A1 WO2013146414 A1 WO 2013146414A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing material
cell module
back contact
contact type
Prior art date
Application number
PCT/JP2013/057645
Other languages
English (en)
French (fr)
Inventor
実 川▲崎▼
松政 健司
茂樹 工藤
真由美 山本
康剛 明野
智 西澤
透 大久保
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2014507731A priority Critical patent/JP6286736B2/ja
Priority to EP13768783.6A priority patent/EP2833416B1/en
Priority to CN201380017056.1A priority patent/CN104205356A/zh
Priority to ES13768783T priority patent/ES2902188T3/es
Publication of WO2013146414A1 publication Critical patent/WO2013146414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell module (back contact type solar cell module) using a back contact type solar cell, and more particularly to a material used for the back contact type solar cell module.
  • a solar cell constitutes the heart of a photovoltaic power generation system that directly converts sunlight energy into electricity, and is formed of a semiconductor. Moreover, in the use of solar cells, the solar cell elements (cells) are not used as they are, but are generally wired in series or in parallel to protect the solar cell elements over a long period of time. A unit in which several to several tens of solar cell elements are packaged in various packages is used.
  • a unit incorporated in this package is called a solar cell module.
  • a surface of a solar cell module that is exposed to sunlight is covered with a front glass, and a gap is filled with a filler formed of a thermoplastic plastic.
  • the back surface of a solar cell module is protected by the sheet
  • a solar cell module is a lamination method in which a surface protective sheet layer, a filler layer, a solar cell element as a photovoltaic element, a filler layer, a back surface protective sheet layer, and the like are laminated in this order, and vacuum suction is performed to perform thermocompression bonding ( Manufactured using a vacuum laminate).
  • silicon crystals are used in mainstream solar cell elements.
  • an n-type electrode is provided on the light-receiving surface that receives sunlight, and a p-type electrode is provided on the back surface.
  • the n-type electrode provided on the light receiving surface is indispensable for taking out the current.
  • a solar cell having no electrode on the light receiving surface and having a p-type electrode and an n-type electrode formed on the back surface is referred to as a back electrode type solar cell or a back contact cell.
  • This type of solar cell (back contact type solar cell) has no shadow loss due to electrodes, and can capture 100% of sunlight incident on the light receiving surface. Therefore, in principle, high photoelectric exchange efficiency can be realized (Patent Documents 1 to 3).
  • FIG. 3 An example of a cross-sectional view of a back contact type solar cell module having a general structure is shown in FIG.
  • the power can be taken out by connecting the solder or silver paste 6 between the cell electrode 5 disposed on the back surface of the back contact cell 9 and the metal foil 7 patterned on the surface of the circuit sheet 3.
  • a transparent sealing material 1, a back contact cell 9, a transparent sealing material 1 ′, an electrical insulating layer 10, a circuit sheet 3, and a back sheet 4 are sequentially formed on the front glass 8.
  • a normal forming method such as a lamination method in which vacuum suction is performed and thermocompression bonding is performed.
  • a conventional circuit sheet for a back contact cell requires an electrical insulation layer (ILD: Inter layer dielectrics) disposed on a patterned metal foil.
  • ILD electrical insulation layer
  • This ILD is called a solder resist.
  • the manufacturing cost of the conventional back contact type solar cell module is higher than that of the conventional solar cell module having electrodes on both the light receiving surface and the back surface. high.
  • ILD formation often requires a thermal or UV crosslinking step after ILD printing.
  • the thermal crosslinking step is usually performed at 100 to 160 ° C. for 10 to 60 minutes.
  • the heat for thermal cross-linking promotes the thermal deterioration of materials other than the insulating layer, or the module warps, or the heat
  • problems such as deterioration in dimensional accuracy may occur due to shrinkage.
  • an electrical insulating layer formed by a coating printing method generally employed in a printed wiring board is provided.
  • the step of thermal crosslinking necessary after ILD printing is omitted, the productivity of the back contact type solar cell module is improved, and the back contact type solar cell module. It is an object of the present invention to further improve the insulation. Moreover, it has various characteristics for protecting each component of the solar cell module, can be molded and processed by a general-purpose method, can be manufactured at low cost, has excellent safety and durability, and is particularly stable and high. It is an object of the present invention to provide a solar cell module having power conversion efficiency.
  • the back contact type solar cell module of the present invention has the following configuration.
  • the term “front surface (light receiving surface)” means a surface facing the sun when the solar cell module is used, and the word “back surface” faces the direction opposite to the front surface (light receiving surface). Means a face.
  • the back contact type solar cell module includes a back sheet, a circuit sheet laminated on the back sheet, and having a wiring pattern on the surface, laminated on the circuit sheet, and an insulating film and the insulation.
  • the back is formed of a pair of encapsulant layers provided on both surfaces of the film, and has a through hole and an insulating layer with an insulating layer, and is formed on the encapsulant with the insulating layer and has a cell electrode on the back surface.
  • a contact cell a transparent sealing material laminated so as to cover the sealing material with insulating layer and the back contact cell, a transparent base material laminated on the transparent sealing material, and provided in the through hole And a conductive paste that electrically and physically connects the cell electrode and the wiring pattern.
  • the insulating film may be a white film, a black film, or a colored film.
  • the insulating film may contain at least polypropylene (homo, random, block), polyester, polyamide, polyimide film, or polyethylene that can be heat-sealed with the sealing material resin.
  • the wiring pattern may be an aluminum foil or a copper foil.
  • the transparent substrate may be a glass plate.
  • the backsheet may be white.
  • the back contact type solar cell module of one embodiment of the present invention a back contact type single crystal silicon solar cell in which no electrode is formed on the light receiving surface and a p-type electrode and an n-type electrode are formed on the back surface, the back A solar cell module is formed using a contact type polycrystalline silicon solar cell or a back contact type hetero-bonded crystal (so-called “HIT” from Sanyo Electric) silicon type solar cell. For this reason, the electrodes provided in the back surface of the adjacent photovoltaic cell can be connected. Therefore, a plurality of solar cells can be easily connected in series.
  • HIT back contact type hetero-bonded crystal
  • a gap is formed in a portion surrounded by four solar cells arranged side by side in the vertical and horizontal directions. Since this gap serves as a buffer space, fatigue damage of the solar cell module due to thermal expansion and contraction of the solar cell can be prevented.
  • an insulating film is a white film, a black film, or a coloring film
  • the wiring of the circuit sheet provided in the inside of a solar cell module can be made invisible.
  • the light that has not been absorbed by the surface (light-receiving surface) of the solar cells through the interval between adjacent solar cells is reflected by the colored film.
  • a highly reflective sheet or a prism sheet as the colored film so that the power generation efficiency of the solar battery module is improved by being absorbed by the surface (light receiving surface) of the solar battery cell.
  • the wiring pattern is an aluminum foil or a copper foil
  • the processing is easy as compared with a conductive plastic film or a conductive paste. For this reason, a solar cell module can be manufactured at low cost.
  • the transparent substrate is a glass plate
  • the glass plate has high rigidity as compared with a film or a plate-like translucent resin, so that the surface of the solar cell module can be protected and the rigidity of the solar cell module can be increased. Can do.
  • a glass plate has a high light transmittance as compared with a film or a plate-like translucent resin, sunlight can be used efficiently.
  • the glass plate has a low coefficient of thermal expansion as compared with a film or a plate-like translucent resin, the fatigue of the solar battery cell and the interconnector due to the thermal expansion and contraction of the transparent substrate is small.
  • the white portion of the white backsheet may be formed by a white film, may be formed by being painted white, or may be formed by laminating a white film on the upper surface of the film. Alternatively, it may be formed by white glass or a white resin plate.
  • the wiring side sealing material may contain a white pigment. On the other hand, if a white pigment is added to the cell side sealing material, the colored resin may enter the front surface of the cell and block light, which is not desirable.
  • the back contact type solar cell module according to one embodiment of the present invention, it is possible to obtain a solar cell module excellent in various physical properties and having high productivity and cost performance.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a back contact type solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the sealing material with an insulating layer in the back contact type solar cell module shown in FIG.
  • a back contact type solar cell module 101 is laminated on a back sheet 4 and the back sheet 4, and has a wiring pattern 7 such as a metal foil on the surface.
  • a back contact cell 9 having a back surface 5, a transparent sealing material 1 laminated so as to cover the sealing material 2 with insulating layer and the back contact cell 9, and a front glass laminated on the transparent sealing material 1 of
  • the transparent substrate 8 used in the back contact type solar cell module according to one embodiment of the present invention has good light transmittance, excellent weather resistance over a long period (about 20 years), and little decrease in light transmittance. In addition, it is necessary to have various functions such as being difficult to adhere dust, scratches, and extremely low water vapor permeability.
  • the material of the transparent substrate 8 is generally glass, but may be an acrylic resin, a polycarbonate resin, a silicon resin, a fluorine resin, or a composite film containing such a resin film as a constituent.
  • the transparent sealing material 1 used for the back contact type solar cell module is transparent so that the transmittance of sunlight is high and the light transmittance is reduced by leaving outdoors for a long time.
  • Various functions such as that the physical properties of the stopper 1 do not change, that the insulation resistance is high, that other materials are not corroded, and that cracks in the resin and interfacial peeling do not occur due to sudden changes in the outside air conditions. It is necessary to have.
  • the material of the transparent sealing material 1 is preferably, for example, a polyvinyl butyral (PVB) resin, a silicon resin, a vinyl chloride resin, or a polyurethane resin.
  • a transparent type resin such as EMMA, EAA, ionomer or olefin type such as polypropylene, particularly ethylene-vinyl acetate copolymer (EVA) resin, as the material of the transparent sealing material 1.
  • EMMA ethylene-vinyl acetate copolymer
  • the thickness of the transparent sealing material 1 is preferably in the range of 100 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the transparent sealing material 1 is less than 100 ⁇ m, the solar battery cell may be broken, and when the thickness of the transparent sealing material 1 exceeds 1000 ⁇ m, the production cost increases.
  • the sealing material 2 with an insulating layer is basically composed of three layers: a sealing material layer 2a on the cell side / an insulating film 2c / a sealing material layer 2b on the circuit sheet side.
  • An anchor coat or an adhesive layer can also be provided between the sealing material layer and the insulating film.
  • the total thickness of the sealing material 2 with an insulating layer is preferably in the range of 100 ⁇ m to 1000 ⁇ m. When the total thickness of the sealing material 2 with an insulating layer is less than 100 ⁇ m, sufficient concealment or sufficient effect of improving power generation efficiency cannot be obtained, and there is a high possibility that the solar battery cell will break. When the total thickness of the sealing material 2 with an insulating layer exceeds 1000 ⁇ m, the production cost increases.
  • the contact portion of the cell electrode in the sealing material 2 with an insulating layer is made conductive. It is necessary to open a hole (through hole). It is necessary that the cell-side sealing material layer 2 a is firmly attached to the transparent sealing material 1, and the circuit sheet-side sealing material layer 2 b is firmly attached to the base film used for the circuit sheet 3.
  • the sealing material layer 2a on the cell side and the sealing material layer 2b on the circuit sheet side are appropriately selected from combinations that satisfy these conditions.
  • EVA ethylene-vinyl acetate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • EAA ethylene-acrylate copolymer
  • An olefin type such as ionomer or polypropylene, a transparent type such as PVB (polyvinyl butyral), or silicone resin
  • the thickness of the sealing material layer 2a on the cell side is preferably in the range of 10 ⁇ m to 500 ⁇ m. When the thickness of the sealing material layer 2a on the cell side is less than 10 ⁇ m, a step such as a cell cannot be filled, and the function as a filler is not achieved. Moreover, when the thickness of the sealing material layer 2a on the cell side exceeds 500 ⁇ m, the production cost increases.
  • the material of the encapsulant layer 2b on the circuit sheet 3 side is the conventional EVA encapsulant, EMMA, EAA, ionomer, olefin type such as polypropylene, PVB (polyvinyl butyral), silicon resin, etc., as well as the circuit sheet 3 It may be a heat-sealable thermoplastic resin or a heat seal material that adheres firmly to the base film to be used.
  • the thickness of the sealing material layer 2b on the circuit sheet side is preferably in the range of 1 ⁇ m to 500 ⁇ m. When the thickness of the sealing material layer 2b on the circuit sheet side is less than 1 ⁇ m, the step of the wiring pattern cannot be filled. Moreover, when the thickness of the sealing material layer 2b on the circuit sheet side exceeds 500 ⁇ m, the production cost increases.
  • a stretched polyester film, a stretched polyamide film, a fluorine film, or a polyimide film can be used.
  • an olefin-based film having a relatively high melting point formed of polypropylene (homo, random, block) or polyethylene (high density, medium density) that can be heat-sealed with the sealing material resin is used. It is also possible.
  • the film may contain a single resin or two or more of the aforementioned resins. If the film and the sealant can be melted by heat, an anchor coat or an adhesive is not necessary for the film, and the cost can be reduced.
  • the insulating film 2c it is also possible to use a colored film such as white or black in order to make the wiring of the circuit sheet arranged inside the solar cell module invisible.
  • a colored film such as white or black
  • light passing through the gap between adjacent solar cells is reflected by the insulating film 2c and absorbed by the surface of the solar battery cell, so that the power generation efficiency of the solar battery is improved.
  • a reflective film or a prism sheet it is also possible to use a reflective film or a prism sheet.
  • the thickness of the insulating film 2c is preferably in the range of 3 ⁇ m to 200 ⁇ m. When the thickness of the insulating film 2c is less than 3 ⁇ m, sufficient insulating performance cannot be obtained.
  • an insulating volume resistance value of 1 ⁇ 10 10 ⁇ ⁇ cm or more is determined according to JIS-Z-3197.
  • the sealing material 2 with an insulating layer includes a cell-side sealing material layer 2a having a low melting point of at least one melting point of the resin as a component and 120 ° C. or less, and at least one melting point of the resin as a component is 130.
  • the insulating film 2c having a high melting point of not lower than ° C. and the circuit sheet-side sealing material layer 2b having a low melting point of 120 ° C. or lower of at least one melting point of resin as a component may be constituted by three layers. . When vacuum lamination is performed at a temperature of 130 ° C.
  • the insulating film 2c having a high melting point does not dissolve. Therefore, even if a foreign object has sunk into the sealing material 2 with an insulating layer, the film thickness of the insulating film 2c is maintained (that is, the film thickness of the insulating film 2c does not decrease), and the sealing material 2 with an insulating layer 2 Insulation is ensured.
  • the sealing material 2 with an insulating layer may be a laminate formed by an extrusion lamination method.
  • a heat-resistant film such as a stretched polyester film such as a stretched polyethylene terephthalate (PET) film or a stretched polyethylene naphthalate (PEN) film or a polyimide film is used as a base film on the surface.
  • a sheet having a circuit pattern formed of metal foil or the like is used.
  • metal foil particularly copper foil or aluminum foil, is often used because it is easy to process and low cost.
  • conductive plastic is used.
  • a film or a conductive paste can also be used.
  • As a patterning method for the wiring pattern 7, a method of etching a metal foil, a method of printing a metal paste, a method of punching a metal foil, or the like can be used.
  • the back contact type solar cell module according to an embodiment of the present invention may include a back sheet 4 such as a plastic film for the purpose of protecting the back surface.
  • the material of the plastic film used for the back sheet 4 of the back contact type solar cell module according to one embodiment of the present invention is a polyester film such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), or polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • a polyolefin film such as polypropylene (PP) or polyethylene (PE), a film such as polyphenylene sulfide (PPS) or polyamide, or polyvinyl fluoride (PVF).
  • plastic films may be used as a single layer as the back sheet 4, but as a general back sheet, a back sheet composed of three layers of fluororesin / PET / fluororesin, and hydrolysis resistant PET / PET / Back sheet composed of three layers of anchor coat. If necessary, according to the required quality, for example, an aluminum foil or a vapor deposition film for moisture prevention may be added to the back sheet 4.
  • the back sheet 4 may be formed integrally with the circuit sheet 3 or may be formed separately from the circuit sheet.
  • a conductive paste 6 such as solder or silver paste is provided between the cell electrode 5 and a wiring pattern 7 such as a metal foil, and electrically and physically connects the two.
  • the conductive paste 6 There is no particular limitation on the conductive paste 6 except that the conductive paste 6 must be a heat-meltable conductive metal.
  • the conductive paste 6 is inexpensive and easy to use. It is preferable to use a silver paste.
  • an electrolytic copper foil (35 ⁇ m) as the metal foil for forming the wiring pattern 7 are urethane-based adhesives. Bonding is performed using a dry laminating method. Further, patterning is performed on the upper surface of the electrolytic copper foil by an etching method to form a backsheet with a circuit having a wiring pattern 7.
  • an EVA-based sealing material is extruded at 75 ⁇ m on both sides of the transparent PET film 2c (50 ⁇ m) by extrusion lamination to produce the sealing material 2 with an insulating layer.
  • a hole is made in a portion in contact with the electrode 5 provided on the back surface of the solar battery cell in the sealing material 2 with an insulating layer.
  • the back contact cell 9, the transparent sealing material 1, and the transparent base material 8 are arranged in this order on the back sheet with circuit, and module lamination is performed by a module laminator, and the back contact type solar cell module is obtained. Make it.
  • the back sheet with circuit, the back contact cell 9, the transparent encapsulant 1 and the transparent base material 8 are overlapped, the back surface of the solar cell and the circuit sheet contact are joined so that they are joined by heating of the module laminate. Apply silver paste between the parts.
  • the back contact type solar cell module has the back contact cell 9 having the cell electrode 5 on the back surface for extracting electrons from the p-type electrode and the n-type electrode installed on the back surface. Is provided.
  • the back contact type solar cell module which concerns on the said embodiment, since the electrodes provided in the back surface of an adjacent photovoltaic cell can be connected, it is not necessary to curve an interconnector. Therefore, disconnection of the interconnector can be prevented.
  • an interconnector is curved between adjacent solar cells and wired so that an electrode provided on one light receiving surface and the other back surface of two adjacent solar cells. It is necessary to connect the electrode provided in the.
  • the curved portion of the interconnector may break due to fatigue due to thermal expansion and contraction of a protective member or a sealing material constituting the solar battery cell.
  • the back contact type solar cell module since there is no electrode on the light receiving surface, sunlight can be received on the entire surface of the light receiving surface. For this reason, there is little loss of sunlight, sunlight can be used efficiently, and the appearance of the solar cell module is also preferable.
  • a back contact type solar cell in which a p-type electrode and an n-type electrode are formed on the back surface of the solar battery cell and the electrodes provided on the back surface can be connected to each other.
  • interval of adjacent cells can be formed small.
  • a photovoltaic cell can be arranged closely in parallel. Therefore, the power generation efficiency of the overall solar cell module can be improved.
  • the interconnector is curved and wired between adjacent solar cells, so that an electrode provided on one surface of two adjacent solar cells and the other back surface are provided. It was necessary to connect the provided electrode. For this reason, it is necessary to form a large interval between adjacent cells.
  • a back contact type solar cell in which a p-type electrode and an n-type electrode are formed on the back surface of the solar battery cell and the electrodes provided on the back surface can be connected to each other.
  • the curved wiring of the interconnector between adjacent solar cells is unnecessary.
  • the sealing material layer provided in the surface and back surface of a photovoltaic cell does not need to protect and buffer an interconnector. Therefore, the solar cell sealing material layer can be formed thin. Therefore, the solar cell module can be reduced in thickness and weight.
  • a back contact type solar cell in which a p-type electrode and an n-type electrode are formed on the back surface of the solar battery cell and the electrodes provided on the back surface can be connected to each other.
  • battery cells By using battery cells, a plurality of solar battery cells are arranged side by side in a close-packed state with few portions that do not contribute to power generation. Therefore, the power generation effective area of the solar cell can be maximized.
  • interval of the photovoltaic cells arranged in parallel is good to space apart as an insulation part, it is better that this space
  • the back contact type solar cell module is provided on the surface of the insulating film 2c and the insulating film 2c, which is laminated on the circuit sheet 3 having the wiring pattern 7 on the surface and the circuit sheet 3. It is formed on the sealing material 2 with an insulating layer composed of the cell-side sealing agent 2a and the circuit sheet-side sealing material 2b provided on the back surface of the insulating film 2c and the sealing material 2 with an insulating layer. And a back contact cell 9 having a cell electrode 5 for extracting electrons from the p-type electrode and the n-type electrode installed on the back surface on the back surface.
  • an insulating film is provided between the cell electrode disposed on the back surface of the back contact type solar cell and the wiring pattern provided on the surface of the circuit sheet.
  • a sealing material with an insulating layer having a pair of sealing material layers provided on both surfaces of the insulating film.
  • the sealing material with an insulating layer has both a function as a sealing material and a function as an electrical insulating layer. For this reason, it is not necessary to provide an electrical insulating layer separately. Therefore, compared with the case where ILD is provided separately from the sealing material by a coating printing method that requires a heat curing step, a solar cell module having high insulation can be provided more easily.
  • Example 1 a DuPont PVF film “PV2111” (25 ⁇ m) is formed as a back sheet 4, a general PET film “S10” (250 ⁇ m) manufactured by Toray as a base film for the circuit sheet 3, and a wiring pattern 7 are formed.
  • electrolytic copper foil 35 ⁇ m
  • a two-part curable urethane adhesive “A511 / A50” manufactured by Mitsui Chemicals is used so that an adhesive layer having a thickness of 5 g / m 2 is formed after the adhesive is dried. And bonded together by the dry laminating method.
  • patterning was performed on the upper surface of the electrolytic copper foil by an etching method to form a backsheet with a circuit having a wiring pattern 7.
  • transparent PET film 2c Teijin's “G2” (50 ⁇ m) is extruded on both sides by extruding and laminating EVA type sealing material “EF1001” at 75 ⁇ m and sealed with insulating layer Material 2 “EVA sealing material (75 ⁇ m) / transparent PET (50 ⁇ m) / EVA sealing material (75 ⁇ m)” was produced.
  • the back contact cell 9, the transparent EVA-based sealing material 1 (400 ⁇ m), and the front glass 8 are arranged in this order on the back sheet with a circuit, and module lamination is performed by a module laminator.
  • a solar cell module was produced.
  • the back sheet with circuit, the back contact cell 9, the transparent EVA sealing material 1 (400 ⁇ m), and the front glass 8 are overlapped, the back surface of the solar battery cell is joined so that they are bonded by heating of the module laminate.
  • a silver paste is applied between the contact portion and the circuit sheet contact portion.
  • vacuuming was performed at 145 ° C. for 3 minutes, pressure pressing was performed at 150 ° C. for 1 minute, and heat crosslinking was performed at 150 ° C. for 15 minutes.
  • Example 2 a back contact type solar cell module was produced by the same construction method as in Example 1 except that the material of the sealing material 2 with an insulating layer was different.
  • Mitsui Chemicals anchor coat agent “Takelac A3210” on both sides of white PET “Teijin DuPont Film VW (50 ⁇ m)” as an insulating layer-equipped sealant so that the applied amount after drying is 1 g / m 2
  • EMAA resin Mitsui Dupont polychemical “Nucleel N0908C” was extruded by an extruder at 50 ⁇ m
  • the sealing material with insulating layer 2 “EMAA (50 ⁇ m) / anchor coat (AC) layer / white PET (50 ⁇ m) / anchor coat (AC) Layer / EMAA (50 ⁇ m) ”.
  • Example 3 As Example 3, a back contact type solar cell module was produced by the same construction method as in Example 1 except that the material of the sealing material 2 with insulating layer was different.
  • a sealing material with an insulating layer a two-component curable urethane-based dry laminate adhesive Mitsui Chemical “A515” is dried on both sides of black PET “Teijin DuPont Film VK (50 ⁇ m)” so that the coating amount becomes 5 g / m 2.
  • Tamapoly ionomer film “HM52” (50 ⁇ m) is laminated on the dry laminate, and sealing material 2 with insulating layer “HM52 (50 ⁇ m) / DL / black” PET (50 ⁇ m) / DL / HM52 (50 ⁇ m) ”was produced.
  • Example 4 As Example 4, a back contact type solar cell module was produced by the same construction method as in Example 1 except that the material of the sealing material with insulating layer 2 was different.
  • “EVA sealing material EF1001 made by letterpress printing” was extruded at 75 ⁇ m on both sides of the “trial white olefin film (random PP 50%, polyethylene 50%)” by an extrusion lamination method.
  • a sealing material with an insulating layer 2 “EVA sealant (75 ⁇ m) / white olefin film (50 ⁇ m) / EVA sealant (75 ⁇ m)” was produced.
  • Comparative Example 1 As Comparative Example 1, the same EVA sealing material “EF1001 (200 ⁇ m)” as the transparent sealing material 1 which is the front surface side sealing material is used as the back surface side sealing material corresponding to the sealing material 2 with insulating layer. Except for this, a back contact type solar cell module was produced by the same construction method as in Example 1.
  • Comparative example 2 As Comparative Example 2, an ionomer sealing material (400 ⁇ m) was used as the transparent sealing material 1, and a white ionomer sealing material (200 ⁇ m) was used as the back surface side sealing material corresponding to the sealing material with insulating layer 2. Except for the point, a back contact type solar cell module was manufactured by the same construction method as in Example 1.
  • the sealing material with an insulating layer (back side sealing material) in the back contact type solar cell module produced in Example 1 is composed of three layers of transparent EVA / transparent PET / transparent EVA. For this reason, it is not necessary to switch the resin of the sealing material layer on the front surface (light receiving surface) side and the resin of the back surface sealing material layer. Therefore, the productivity of the sealing material is high.
  • Example 2 in which sealing material with insulating layer (back side sealing material) is composed of three layers of EMAA / white PET / EMAA, sealing material with insulating layer (back side sealing material) is ionomer / black PET
  • Example 3 composed of three layers of / ionomer and insulating layer sealing material (back side sealing material) are composed of three layers of EVA / white olefin film (PP, PE, EVA) / EVA
  • PP, PE, EVA white olefin film
  • the layer structure of the sealing material includes white colored ionomer
  • the comparative example 2 is colored when switching between the resin of the sealing material layer on the front surface (light receiving surface) side and the resin of the sealing material layer on the back surface side. A resin purge after processing is required. For this reason, the productivity of the sealing material is low.
  • the sealing material with an insulating layer includes a PET film as an insulating layer.
  • the sealing material with an insulating layer includes white olefin film (PP, PE, EVA) as an insulating layer.
  • PP, PE, EVA white olefin film
  • the back surface side sealing material does not include an insulating layer. For this reason, for example, it is necessary to separately form an insulating layer on the circuit sheet surface or the like. Therefore, the insulation is inferior to the cases of Examples 1 to 4.
  • Example 1 and Comparative Example 1 since the sealing material layer is transparent, there is no color unevenness of the sealing material. In the case of Example 2 to Example 4, the insulating film is a colored film. For this reason, the color shading in the sealing material with an insulating layer (back surface side sealing material) does not occur. On the other hand, in the case of the comparative example 2, since the back side sealing material is formed using the colored resin as the extruded resin, the color is light at the thin portion of the resin layer in the back side sealing material. Therefore, the color shading is conspicuous in the back side sealing material.
  • Example 1, Example 4, and Comparative Example 2 When comparing the other points that affect the manufacturing cost, in the case of Example 1, Example 4, and Comparative Example 2, the same EVA containing a cross-linking agent as that used in the past is used as the resin for forming the back side sealing material. ing. For this reason, it is necessary to use a dedicated machine different from a normal extruder for extrusion. Therefore, in comparison with other Examples and Comparative Examples, Example 1, Example 4, and Comparative Example 2 have a large manufacturing cost of the solar cell module. Furthermore, in the case of the comparative example 2, colored resin is used as resin which forms a back surface side sealing material. For this reason, it is necessary to perform sufficient purge at the time of resin switching.
  • Comparative Example 2 may further increase the manufacturing cost of the solar cell module.
  • a normal transparent extrusion resin is used as the resin for forming the back surface side sealing material. For this reason, a special apparatus is not required for extrusion.
  • a general-purpose colored film is used as the insulating film. Therefore, in contrast to the other examples and comparative examples, examples 2 and 3 are more preferable in that the manufacturing cost of the solar cell module can be kept extremely low.
  • the back contact type solar cell module according to the embodiment of the present invention, it has various characteristics for protecting each component of the solar cell module, and can be molded and processed by a general-purpose method. It was possible to provide a solar cell module that can be manufactured at low cost, has excellent safety and durability, and has particularly high power conversion efficiency.
  • An insulating layer (ILD) formed by a coating printing method generally employed in a printed wiring board is provided on the upper surface of a circuit sheet for a back contact type solar cell module in a crystalline solar cell having high photoelectric efficiency.
  • ILD insulating layer
  • the solar cell module using the colored sealing material can be supplied.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 このバックコンタクトタイプ太陽電池モジュールは、バックシートと、前記バックシート上に積層され、配線パターンを表面に有する回路シートと、前記回路シート上に積層され、絶縁フィルムと前記絶縁フィルムの両面に設けられた一対の封止材層とで構成され、貫通孔を有する絶縁層付封止材と、前記絶縁層付封止材の上に形成され、裏面にセル電極を有するバックコンタクトセルと、前記絶縁層付封止材及び前記バックコンタクトセルを覆うように積層される透明封止材と、前記透明封止材の上に積層される透明基材と、前記貫通孔に設けられ、前記セル電極と前記配線パターンとを電気的及び物理的に繋ぐ導電性ペーストとを備える。

Description

バックコンタクトタイプ太陽電池モジュール
 本発明は、バックコンタクトタイプの太陽電池セルを用いた太陽電池モジュール(バックコンタクトタイプ太陽電池モジュール)に関し、特に、バックコンタクトタイプ太陽電池モジュールに使用する材料に関する。
 本願は、2012年3月30日に、日本に出願された特願2012-080915号、及び2012年11月26日に、日本に出願された特願2012-258021に基づき優先権を主張し、その内容をここに援用する。
 太陽電池は、太陽光のエネルギーを直接電気に換える太陽光発電システムの心臓部を構成し、半導体で形成される。
 また、太陽電池の使用においては、太陽電池素子(セル)単体をそのままの状態で使用するのではなく、太陽電池素子を長期間に亘って保護するために、一般的に直列あるいは並列に配線された数枚~数十枚の太陽電池素子が種々のパッケージにパッケージングされたユニットを使用する。
 このパッケージに組み込まれたユニットを太陽電池モジュールと呼ぶ。一般的に太陽電池モジュールにおける太陽光が当たる面は、前面ガラスで覆われ、熱可塑性プラスチックで形成される充填材で間隙が埋められている。
 そして、太陽電池モジュールの裏面が、耐熱性、耐湿性、耐水性、及び耐候性を有するプラスチック材料などで形成されたシート(バックシート)で保護されている。
 太陽電池モジュールは屋外で使用されるため、構成部材及び構成部材の材質及び構造などにおいて、十分な耐熱性、耐候性、耐水性、防湿性、耐風圧性、耐光性、耐降雹性、耐薬品性、防湿性、防汚性、光反射性、及び光拡散性、並びに、その他の諸特性を有することが要求される。
 太陽電池素子としては、例えば、結晶シリコン太陽電池素子が使用される。太陽電池モジュールは、表面保護シート層、充填材層、光起電力素子としての太陽電池素子、充填材層、および、裏面保護シート層等の順に積層し、真空吸引して加熱圧着するラミネーション法(真空ラミネート)等を利用して製造される。
 現在主流の太陽電池素子には、シリコン結晶が用いられている。
 従来の太陽電池では、太陽光を受ける受光面にはn型電極が設けられ、裏面にはp型電極が設けられている。
 受光面に設けられたn型電極は電流の取り出しのためには必要不可欠である。一方、n型電極の下に設けられた基板には太陽光が入射しない。このため、太陽光が入射しない部分では発電しない。したがって、受光面に設けられた電極の面積が大きい場合、太陽電池の光電変換効率が低下する。なお、このような受光面に設けられた電極による光の損失をシャドウロスという。
 受光面に電極がなく、p型電極及びn型電極が裏面に形成された太陽電池を裏面電極型太陽電池、または、バックコンタクトセルなどと呼ぶ。このタイプの太陽電池(バックコンタクトタイプ太陽電池)は、電極によるシャドウロスがなく、受光面に入射する太陽光を100%太陽電池に取り込むことができる。このため、原理的に高い光電交換効率を実現できる(特許文献1~3)。
 一般的な構造を有するバックコンタクトタイプ太陽電池モジュールにおける断面図の一例を図3に示した。
 図3に示す太陽電池モジュール100では、受光面(表面)から順に前面ガラス8、透明封止材1、バックコンタクトセル9、透明封止材1’、電気絶縁層10、回路シート(ベースフィルム)3、バックシート4が積層されている。また、半田又は銀ペースト6がバックコンタクトセル9の裏面に配置されたセル電極5と回路シート3の表面にパターニングされた金属箔7との間を連結することで、電力を取り出すことができる。
 太陽電池モジュール100の代表的な製法として、前面ガラス8に順次に、透明封止材1、バックコンタクトセル9、透明封止材1’、電気絶縁層10、回路シート3、およびバックシート4を積層した後、真空吸引して加熱圧着するラミネーション法等の通常の成形法を利用して上記の各層を一体成形することにより太陽電池モジュールを製造する方法がある。
 上記のように、従来のバックコンタクトセル用の回路シートにはパターニングされた金属箔の上に配置される電気絶縁層(ILD:Inter Layer Dielectrics)が必要である。このILDはソルダーレジストと呼ばれる。しかしながら、ILDの材料が高価であり、ILDはある程度の厚みを要することから、従来のバックコンタクトタイプ太陽電池モジュールの製造コストは、受光面及び裏面の双方に電極を有する従来の太陽電池モジュールよりも高い。
 さらに、ILDの形成には、多くの場合、ILDの印刷後に熱架橋またはUV架橋の工程を要する。特に熱架橋の工程は、通常100℃から160℃で10分から60分行われる。
 このため、この熱架橋の工程において、時間がかかるために生産効率が低下する、熱架橋のための加熱によって絶縁層以外の素材の熱劣化が促進される若しくはモジュールが反ってしまう、又は、熱収縮により寸法精度が悪くなる等の問題が起きる可能性があった。
日本国特開2005-11869号公報 日本国特開2010-212630号公報 日本国特開2011-159748号公報
 高い光電効率を有する結晶系太陽電池におけるバックコンタクトタイプ太陽電池モジュール用の回路シートの上面に、一般的にプリント配線板において採用されている塗工印刷方式によって形成される電気絶縁層(ILD)を設けるのではなく、中間層として絶縁フィルムを設けることにより、ILD印刷後に必要な熱架橋の工程を省略し、バックコンタクトタイプ太陽電池モジュールの生産性を向上させること、及びバックコンタクトタイプ太陽電池モジュールの絶縁性をより高めることが本発明の課題である。
 また、これによって、太陽電池モジュールの各構成要素を保護するための諸特性を具備し、汎用の方法で成形及び加工でき、低コストで製造でき、安全性及び耐久性に優れ、特に安定した高い電力変換効率を有する太陽電池モジュールを提供することが本発明の課題である。
 上記課題の解決手段として、本発明のバックコンタクトタイプ太陽電池モジュールは以下の構成を有する。
 また、これ以降の説明において、文言「表面(受光面)」は、太陽電池モジュール使用時に太陽の方向を向く面を意味し、文言「裏面」は、表面(受光面)と反対の方向を向く面を意味する。
 本発明の一態様に係るバックコンタクトタイプ太陽電池モジュールは、バックシートと、前記バックシート上に積層され、配線パターンを表面に有する回路シートと、前記回路シート上に積層され、絶縁フィルムと前記絶縁フィルムの両面に設けられた一対の封止材層とで構成され、貫通孔を有する絶縁層付封止材と、前記絶縁層付封止材の上に形成され、裏面にセル電極を有するバックコンタクトセルと、前記絶縁層付封止材及び前記バックコンタクトセルを覆うように積層される透明封止材と、前記透明封止材の上に積層される透明基材と、前記貫通孔に設けられ、前記セル電極と前記配線パターンとを電気的及び物理的に繋ぐ導電性ペーストとを備える。
 前記絶縁フィルムが白色フィルム、黒色フィルム、または着色フィルムであってもよい。
 前記絶縁フィルムが、少なくとも封止材樹脂と熱融着可能なポリプロピレン(ホモ,ランダム,ブロック)、ポリエステル、ポリアミド、ポリイミドフィルム、又はポリエチレンを含んでいてもよい。
 前記配線パターンがアルミニウム箔または銅箔であってもよい。
 前記透明基材がガラス板であってもよい。
 前記バックシートが白色であってもよい。
 上記本発明の一態様に係るバックコンタクトタイプ太陽電池モジュールによれば、受光面に電極がなく裏面にp型電極及びn型電極が形成されたバックコンタクトタイプの単結晶シリコン型太陽電池セル、バックコンタクトタイプの多結晶シリコン型太陽電池セル、又はバックコンタクトタイプのヘテロ結合結晶(いわゆる三洋電機の「HIT」)シリコン型太陽電池セルを用いて太陽電池モジュールを形成する。このため、隣り合う太陽電池セルの裏面に設けられた電極同士を接続できる。したがって、複数の太陽電池セルを容易に直列接続できる。
 また、太陽電池セルの形状が角部が切り欠かれた四角形である場合、縦横に並設された4つの太陽電池セルに囲まれた部分に、隙間が形成される。この隙間が緩衝スペースの役割を果たすため、太陽電池セルの熱膨張収縮などによる太陽電池モジュールの疲労破壊を防ぐことができる。
 また、絶縁フィルムが白色フィルム、黒色フィルム、または着色フィルムである場合、太陽電池モジュールの内部に設けられた回路シートの配線を不可視化出来る。
 さらに、異なる色を着色して異なる外観を得るためだけでなく、隣り合う太陽電池セル同士の間隔を通り抜けて太陽電池セルの表面(受光面)に吸収されなかった光が着色フィルムで反射して太陽電池セルの表面(受光面)に吸収されることで、太陽電池モジュールの発電効率が向上するように、着色フィルムとして高反射シート又はプリズムシートを用いることも可能である。
 また、配線パターンがアルミニウム箔または銅箔である場合、導電性プラスチックフィルム又は導電性ペースト等と対比して、加工が容易である。このため、低コストで太陽電池モジュールを製造できる。
 また、透明基材がガラス板である場合、ガラス板はフィルム又は板状の透光性樹脂と対比して剛性が高いため、太陽電池モジュールの表面を保護できるとともに太陽電池モジュールの剛性を高めることができる。
 また、ガラス板はフィルム又は板状の透光性樹脂と対比して光の透過率が高いため、効率的に太陽光を利用できる。
 また、ガラス板はフィルム又は板状の透光性樹脂と対比して熱膨張率が低いため、透明基材の熱膨張及び熱収縮等による太陽電池セル及びインターコネクタの疲労が小さい。
 また、バックシートが白色である場合、隣接する太陽電池セルの隙間に入射した太陽光が、白色のバックシートで反射し、太陽電池モジュール表面で反射することにより、太陽電池セルに入射できる。この結果、太陽光の損失が抑えられる。すなわち、太陽光を有効に利用できる。したがって、太陽電池モジュールの発電効率を向上できる。
 ここで、白色のバックシートの白色部分は、白色フィルムによって形成されてもよいし、白色に塗装されることで形成されてもよいし、フィルムの上面に白色のフィルムを積層することによって形成されてもよいし、又は白色のガラス又は白色の樹脂板によって形成されてもよい。さらに、白色のバックシートと同様の効果を得るために、配線側封止材は、白い顔料を含んでもよい。一方、セル側封止材に白い顔料を入れるとセル前面に着色樹脂がまわり込んで光をさえぎる可能性があるので望ましくない。
 以上のように、上記本発明の一態様に係るバックコンタクトタイプの太陽電池モジュールによれば、様々な物性に優れ、かつ高い生産性及びコストパフォーマンスを有する、太陽電池モジュールを得ることが出来る。
本発明の一実施形態に係るバックコンタクトタイプ太陽電池モジュールの構成の一例を示す断面図である。 図1に示すバックコンタクトタイプ太陽電池モジュールにおける絶縁層付封止材の断面図である。 一般的な構造を有する従来型のバックコンタクトタイプ太陽電池モジュールにおける断面図の一例である。
 以下、本発明の一実施形態について図を参照しながら詳細に説明する。
 図1は、本発明の一実施形態に係るバックコンタクトタイプ太陽電池モジュールの構成の一例を示す断面図である。図2は、図1に示すバックコンタクトタイプ太陽電池モジュールにおける絶縁層付封止材の断面図である。
 図1および図2に示すように本発明の一実施形態に係るバックコンタクトタイプ太陽電池モジュール101は、バックシート4と、バックシート4上に積層され、金属箔等の配線パターン7を表面に有する回路シート3と、回路シート3上に積層され、絶縁フィルム2cと絶縁フィルム2cの表面に設けられたセル側封止剤2aと絶縁フィルム2cの裏面に設けられた回路シート側封止材2bとで構成され、貫通孔11を有する絶縁層付封止材2と、絶縁層付封止材2の上に形成され、裏面に設置されているp型電極及びn型電極から電子を取り出すセル電極5を裏面に有するバックコンタクトセル9と、絶縁層付封止材2及びバックコンタクトセル9を覆うように積層される透明封止材1と、透明封止材1の上に積層される前面ガラスのような透明基材8と、貫通孔11に設けられ、セル電極5と配線パターン7とを電気的及び物理的に繋ぐ半田又は銀ペースト等の導電性ペースト6と、で構成される。
 本発明の一実施形態に係るバックコンタクトタイプ太陽電池モジュールに用いる透明基材8は、光線透過率が良いこと、長期(約20年)にわたり優れた耐候性を持ち光線透過率の減少が少ないこと、埃などが付着しにくいこと、傷が付きにくいこと、及び水蒸気透過率が極めて少ないこと等の諸機能を有する必要がある。透明基材8の材質としては、ガラスが一般的であるが、アクリル樹脂、ポリカーボネート樹脂、シリコン樹脂、フッ素系樹脂、またはそれらの樹脂フィルムを構成物として含む複合フィルムなどであってもよい。
 本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールに用いる透明封止材1は、太陽光線の透過率が高いこと、長期の屋外放置などにより光線透過率が低下するなどのように透明封止材1の物性が変化しないこと、絶縁耐性が高いこと、他の材料を腐食しないこと、及び急激な外気条件の変化などにより樹脂の亀裂、及び界面剥離などが発生しないこと等の諸機能を有する必要がある。透明封止材1の材質は、たとえばポリビニルブチラール(PVB)樹脂、シリコン樹脂、塩化ビニル樹脂、又はポリウレタン樹脂などであることが好ましい。
 透明封止材1の材質として、具体的にはEMMA、EAA、アイオノマー、又はポリプロピレン等のオレフィンタイプ等の透明タイプ樹脂、とくにエチレン-酢酸ビニル共重合体(EVA)樹脂を用いることが好ましい。
 透明封止材1の厚みは、100μm以上1000μm以下の範囲が好適である。透明封止材1の厚みが100μm未満の場合、太陽電池セルが割れてしまうことがあり、透明封止材1の厚みが1000μmを超える場合、生産コストが高騰する。
 絶縁層付封止材2は、基本的にセル側の封止材層2a/絶縁フィルム2c/回路シート側の封止材層2bの3層から構成される。
 封止材層と絶縁フィルムとの間にはアンカーコート又は接着剤層を設けることも出来る。
 また、絶縁層付封止材2の総厚は100μm以上1000μm以下の範囲が好適である。絶縁層付封止材2の総厚が100μm未満の場合、十分な隠蔽姓又は発電効率向上の十分な効果が得られず、また、太陽電池セルが割れてしまう可能性が高い。
 絶縁層付封止材2の総厚が1000μmを超える場合、生産コストが高騰する。
 また、ラミネートを実施する前に、後工程においてセル電極と回路シートの配線パターンとを半田又は銀ペースト等でつなげるために、絶縁層付封止材2におけるセル電極の接点部分に導通のための穴(貫通孔)を開ける必要がある。
 セル側の封止材層2aは透明封止材1と強固に密着すること、回路シート側の封止材層2bは回路シート3に用いるベースフィルムと強固に密着することが必要である。セル側の封止材層2a及び回路シート側の封止材層2bは、これらの条件を満たす組み合わせの中から適宜選定される。
 セル側の封止材層2aの素材として、従来のEVA(エチレン-酢酸ビニル共重合体)系封止材、EMMA(エチレン-メチルメタアクリレート共重合体)、EAA(エチレン-アクリレート共重合体)、アイオノマー、ポリプロピレン等のオレフィンタイプ、PVB(ポリビニルブチラール)、又はシリコン樹脂等の透明タイプを使用出来る。
 セル側の封止材層2aの厚みは、10μm以上500μm以下の範囲が好適である。セル側の封止材層2aの厚みが10μm未満の場合、セル等の段差を埋められず、充填材としての機能を果たさない。また、セル側の封止材層2aの厚みが500μmを超える場合、生産コストが高騰する。
 回路シート3側の封止材層2bの素材は、従来のEVA系封止材、EMMA、EAA、アイオノマー、ポリプロピレン等のオレフィンタイプ、PVB(ポリビニルブチラール)、シリコン樹脂等のほか、回路シート3を用いるベースフィルムと強固に密着する熱溶着可能な熱可塑性樹脂又はヒートシール材であってもよい。
 回路シート側の封止材層2bの厚みは、1μm以上500μm以下の範囲が好適である。回路シート側の封止材層2bの厚みが1μm未満の場合、配線パターンの段差を埋められない。また、回路シート側の封止材層2bの厚みが500μmを超える場合、生産コストが高騰する。
 絶縁フィルム2cとして、延伸ポリエステルフィルム、延伸ポリアミドフィルム、フッ素フィルム、又はポリイミドフィルムを用いることが出来る。
 また、絶縁フィルム2cとして、封止材樹脂と熱融着可能なポリプロピレン(ホモ,ランダム,ブロック)、又はポリエチレン(高密度,中密度)等で形成される比較的融点の高いオレフィン系フィルムを用いることも可能である。また、そのフィルムは、前述の樹脂を単体または2つ以上含んでもよい。フィルムと封止剤とが熱溶融可能であれば、フィルムにアンカーコート又は接着剤が不要でコストダウンを図ることができる。
 また、絶縁フィルム2cとして、太陽電池モジュールの内側に配置された回路シートの配線を不可視化するために白色又は黒色等の着色フィルムを用いることも可能である。また、隣接する太陽電池セルの隙間を通り抜けた光が絶縁フィルム2cで反射して太陽電池電池セルの表面に吸収されることで太陽電池の発電効率が向上するように、絶縁フィルム2cとして、高反射フィルム又はプリズムシートを用いることも可能である。
 絶縁フィルム2cの厚みは、3μm以上200μm以下の範囲が好適である。絶縁フィルム2cの厚みが3μm未満の場合十分な絶縁性能が得られない。また、絶縁フィルム2cの厚みが200μmを超える場合、生産コストが高騰する。
 絶縁フィルム2cの絶縁性能として、JIS-Z-3197において、1×1010Ω・cm以上の絶縁体積抵抗値が求められる。
 また、絶縁層付封止材2は、成分とする樹脂の少なくとも1つの融点が120℃以下の低融点であるセル側の封止材層2aと、成分とする樹脂の少なくとも1つの融点が130℃以上の高融点である絶縁フィルム2cと、成分とする樹脂の少なくとも1つの融点が120℃以下の低融点である回路シート側の封止材層2bと、の3層により構成されてもよい。
 一般的な真空ラミネートの条件である130℃以上160℃以下の温度で真空ラミネートを実施した場合、低融点であるセル側の封止材層2a及び回路シート側の封止材層2bは各々溶解する。一方、高融点である絶縁フィルム2cは溶解しない。よって、異物が絶縁層付封止材2にめり込んだとしても絶縁フィルム2cの膜厚は保たれ(つまり、絶縁フィルム2cの膜厚が薄くなることはないので)、絶縁層付封止材2絶縁性が確保される。
 従って、真空ラミネート時に、セル側の封止材層2a及び回路シート側の封止材層2bに異物が存在しても、絶縁層付封止材2の絶縁性の低下又はセル電極5と配線パターン7との短絡不良の発生を低減できる。また、絶縁性確保のための電気絶縁層(ILD)を形成する必要がないため、電気絶縁層(ILD層)を形成した従来技術と比較して、生産コストの高騰を防止できる。
 また、絶縁層付封止材2は、押し出しラミネーション方式で形成された積層体であってもよい。
 金属箔等の配線パターン7を表面に有する回路シート3として、延伸ポリエチレンテレフタレート(PET)フィルム若しくは延伸ポリエチレンナフタレート(PEN)フィルム等の延伸ポリエステルフィルム又はポリイミドフィルム等の耐熱フィルムをベースフィルムとして表面に金属箔等で回路パターンが形成されたシートを用いる。
 配線パターン7を形成する導電性材料として、加工し易く低コストであるため、金属箔とくに銅箔又はアルミニウム箔等がよく使用されるが、配線パターン7を形成する導電性材料として、導電性プラスチックフィルム又は導電ペースト等も使用出来る。
 配線パターン7のパターニングの方式として、金属箔のエッチングによる方法、金属ペーストの印刷による方法、又は金属箔の打ち抜き加工による方法等を用いることが出来る。
 本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールは裏面保護等の目的でプラスチックフィルム等のバックシート4を備えてもよい。
 本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールのバックシート4に使用するプラスチックフィルムの素材は、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィンフィルム、ポリフェニレンサルファイド(PPS)、ポリアミド等のフィルム、又はポリフッ化ビニル(PVF)等から適宜選択できる。
 バックシート4として、これらのプラスチックフィルムを単層で用いても良いが、一般的なバックシートとして、フッ素樹脂/PET/フッ素樹脂の3層から構成されるバックシート、及び耐加水分解PET/PET/アンカーコートの3層から構成されるバックシートが挙げられる。
 必要に応じて、要求される品質に応じて、たとえば防湿のためのアルミニウム箔又は蒸着フィルム等がバックシート4に加わってもよい。
 なお、バックシート4は、回路シート3と一体として形成されても良いし、回路シートとは別に形成されてもよい。
 半田又は銀ペースト等の導電性ペースト6は、セル電極5と金属箔等の配線パターン7との間に設けられ、両者を電気的および物理的に繋ぐ。
 導電性ペースト6が熱溶融性の導電性金属でなければならないことを除いて、導電性ペースト6について格別の制約はないが、低価格であり且つ使用しやすいため、導電性ペースト6として半田又は銀ペーストを用いることが好ましい。
 つぎに、本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールの製造方法の一例を図1および図2を参照しながら説明する。
 まず、バックシート4としてPVFフィルム(25μm)と、回路シート3用のベースフィルムとしてPETフィルム(250μm)と、配線パターン7を形成する金属箔として電解銅箔(35μm)と、を、ウレタン系接着剤を用いてドライラミネート法で貼り合せる。
 さらに電解銅箔の上面にエッチング法によりパターニングを行い、配線パターン7を有する回路付きバックシートを形成する。
 回路付きバックシートとは別に、透明PETフィルム2c(50μm)の両面に押出しラミネート法によりEVA系封止材を各々75μmで押出して、絶縁層付封止材2を作製する。
 次に、絶縁層付封止材2における太陽電池セルの裏面に設けられた電極5と接する部分に穴を開ける。
 次に、上記回路付きバックシートに重ねて、さらにバックコンタクトセル9、透明封止材1、及び透明基材8をこの順に配置してモジュールラミネータによりモジュールラミネートを行ない、バックコンタクトタイプ太陽電池モジュールを作製する。
 上記回路付きバックシートとバックコンタクトセル9と透明封止材1と透明基材8とを重ね合わせる際には、モジュールラミネートの加熱でこれらが接合するように、太陽電池セルの裏面と回路シート接点部分との間に銀ペーストを塗布する。
 以上説明したように、本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールは、裏面に設置されているp型電極及びn型電極から電子を取り出すセル電極5を裏面に有するバックコンタクトセル9を備える。
 これにより、上記実施態様に係るバックコンタクトタイプ太陽電池モジュールでは、隣接する太陽電池セルの裏面に設けられた電極同士を接続できるため、インターコネクタを湾曲させる必要が無い。したがって、インターコネクタの断線を防ぐことができる。
 一方、従来の太陽電池モジュールでは、隣接する太陽電池セルの間にインターコネクタを湾曲させて配線することにより、隣接する2つの太陽電池セルのうち一方の受光面に設けられた電極と他方の裏面に設けられた電極とを接続する必要がある。このため、太陽電池セルを構成する保護部材又は封止材等の熱膨張収縮によりインターコネクタの湾曲部分が疲労断線することがあった。
 また、上記実施態様に係るバックコンタクトタイプ太陽電池モジュールでは、受光面に電極がないため、受光面面の全面で太陽光を受光することができる。このため、太陽光の損失が少なく効率的に太陽光を利用することができ、太陽電池モジュールの外観も好ましい。
 また、上記実施態様に係るバックコンタクトタイプ太陽電池モジュールでは、上述のように太陽電池セルの裏面にp型電極及びn型電極が形成され裏面に設けられた電極同士を接続できるバックコンタクトタイプの太陽電池セルを用いることにより、隣り合うセル同士の間隔を小さく形成できる。このため、太陽電池セルを密に並設できる。したがって、総体的な太陽電池モジュールの発電効率を向上できる。
 一方、従来の太陽電池モジュールでは、インターコネクタを湾曲させて隣接する太陽電池セルの間に配線することにより、隣接する2つの太陽電池セルのうち一方の表面に設けられた電極と他方の裏面に設けられた電極とを接続する必要があった。このため、隣り合うセル同士の間隔を大きく形成する必要があった。
 また、上記実施態様に係るバックコンタクトタイプ太陽電池モジュールでは、上述のように太陽電池セルの裏面にp型電極及びn型電極が形成され裏面に設けられた電極同士を接続できるバックコンタクトタイプの太陽電池セルを用いることにより、隣接する太陽電池セルの間のインターコネクタの湾曲配線が不要である。このため、太陽電池セルの表面及び裏面に設ける封止材層がインターコネクタを保護及び緩衝する必要が無い。よって、太陽電池セルの封止材層を薄く形成できる。したがって、太陽電池モジュールを薄型化、及び軽量化できる。
 また、上記実施態様に係るバックコンタクトタイプ太陽電池モジュールでは、上述のように太陽電池セルの裏面にp型電極及びn型電極が形成され裏面に設けられた電極同士を接続できるバックコンタクトタイプの太陽電池セルを用いることにより、発電に寄与しない部分が少ない最密状態で、複数の太陽電池セルが縦横に並設される。したがって、太陽電池の発電有効面積を最大にできる。
 また、並設された太陽電池セル同士の間隔は、絶縁部分として離間させておくとよいが、この離間部は極力小さいほうがよく、発電に寄与しない部分を減らすことができる。
 また、本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールは、配線パターン7を表面に有する回路シート3と、回路シート3上に積層され、絶縁フィルム2cと絶縁フィルム2cの表面に設けられたセル側封止剤2aと絶縁フィルム2cの裏面に設けられた回路シート側封止材2bとで構成される絶縁層付封止材2と、絶縁層付封止材2の上に形成され、裏面に設置されているp型電極及びn型電極から電子を取り出すセル電極5を裏面に有するバックコンタクトセル9と、を備える。すなわち、本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールでは、バックコンタクトタイプの太陽電池セルの裏面に配置されたセル電極と回路シートの表面に設けられた配線パターンとの間に絶縁フィルムと絶縁フィルムの両面に設けられた一対の封止材層とを有する絶縁層付封止材が設けられている。
 これにより、絶縁層付封止材が封止材としての機能と電気絶縁層としての機能との両方を備える。このため、電気絶縁層を別途設ける必要が無い。よって、加熱硬化の工程を要する塗工印刷方式により封止材とは別にILDを設ける場合と比較して、高い絶縁性を備えた太陽電池モジュールをより簡単に設けることが出来る。
 本発明の一実施態様に係るバックコンタクトタイプ太陽電池モジュールの具体的な実施例を図1および図2を参照して説明するが、本発明はこれらの実施例に限定されない。
<実施例1>
 まず、実施例1として、バックシート4としてデュポン社PVFフィルム「PV2111」(25μm)と、回路シート3用のベースフィルムとして東レ製一般PETフィルム「S10」(250μm)と、配線パターン7を形成する金属箔として電解銅箔(35μm)と、を、接着剤乾燥後に厚み5g/mの接着層が形成されるように、三井化学製二液硬化型ウレタン系接着剤「A511/A50」を用いてドライラミネート法で貼り合せた。
 さらに電解銅箔の上面にエッチング法によりパターニングを行い、配線パターン7を有する回路付きバックシートを形成した。
 回路付きバックシートとは別に、透明PETフィルム2c帝人製「G2」(50μm)の両面に押出しラミネート法により凸版印刷製EVA系封止材「EF1001」を各々75μmで押出して、絶縁層付封止材2「EVA封止材(75μm)/透明PET(50μm)/EVA封止材(75μm)」を作製した。
 次に、絶縁層付封止材2における太陽電池セルの裏面に設けられた電極5と接する部分に穴を開ける。
 次に、上記回路付きバックシートに重ねて、さらにバックコンタクトセル9、透明EVA系封止材1(400μm)、及び前面ガラス8をこの順に配置してモジュールラミネータによりモジュールラミネートを行ない、バックコンタクトタイプ太陽電池モジュールを作製した。
 上記回路付きバックシートとバックコンタクトセル9と透明EVA系封止材1(400μm)と前面ガラス8とを重ね合わせる際には、モジュールラミネートの加熱でこれらが接合するように、太陽電池セルの裏面と回路シート接点部分との間に銀ペーストを塗布する。
 モジュールラミネートにおいて、真空引きを145℃において3分行ったのち、加圧プレスを150℃において1分行い、加熱架橋を150℃で15分行った。
<実施例2>
 実施例2として、絶縁層付封止材2の素材が異なる点を除いて、実施例1と同一構成で同一工法によりバックコンタクトタイプ太陽電池モジュールを作製した。
 絶縁層付封止材として、白PET「帝人デュポンフィルムVW(50μm)」の両面に三井化学アンカーコート剤「タケラックA3210」を、乾燥後塗布量が1g/mとなるようにアンカーコートした後、EMAA樹脂三井デュポンポリケミカル「ニュクレルN0908C」をエクストルーダにより50μmで押出しして絶縁層付封止材2「EMAA(50μm)/アンカーコート(AC)層/白PET(50μm)/アンカーコート(AC)層/EMAA(50μm)」を作製した。
<実施例3>
 実施例3として、絶縁層付封止材2の素材が異なる点を除いて、実施例1と同一構成で同一工法によりバックコンタクトタイプ太陽電池モジュールを作製した。
 絶縁層付封止材として、黒PET「帝人デュポンフィルムVK(50μm)」の両面に二液硬化型ウレタン系ドライラミネート接着剤三井化学「A515」を乾燥後塗布量が5g/mとなるように塗工してドライラミネート(DL)を行った後、タマポリアイオノマーフィルム「HM52」(50μm)をドライラミネートの上に貼り合せて、絶縁層付封止材2「HM52(50μm)/DL/黒PET(50μm)/DL/HM52(50μm)」を作製した。
<実施例4>
 実施例4として、絶縁層付封止材2の素材が異なる点を除いて、実施例1と同一構成で同一工法によりバックコンタクトタイプ太陽電池モジュールを作製した。
 絶縁層付封止材の作製においては、「試作白オレフィンフィルム(ランダムPP 50%,ポリエチレン 50%)」の両面に、押出しラミネーション方式により「凸版印刷製EVA系封止材EF1001」を75μmで押出して、絶縁層付封止材2「EVA封止剤(75μm)/白オレフィンフィルム(50μm)/EVA封止剤(75μm)」を作製した。
<比較例1>
 比較例1として、絶縁層付封止材2に対応する裏面側封止材として表面側封止材である透明封止材1と同じEVA封止材「EF1001(200μm)」を用いた点を除いて、実施例1と同一構成で同一工法によりバックコンタクトタイプ太陽電池モジュールを作製した。
<比較例2>
 比較例2として、透明封止材1としてアイオノマー封止材(400μm)を用い、且つ、絶縁層付封止材2に対応する裏面側封止材として白色アイオノマー封止材(200μm)を用いた点を除いて、実施例1と同一構成で同一工法によりバックコンタクトタイプ太陽電池モジュールを作製した。
<評価>
 実施例1から4と比較例1及び2で作製したバックコンタクトタイプ太陽電池モジュールにおける裏面側封止材の構成の差による相違を検証するために、封止材生産性、絶縁性、封止材色ムラ、封止材色変更、製造コスト、及び、積層方法の6項目について、実施例1から4と比較例1及び2の評価を行った。
 評価結果を表1に示す。表1の評価結果で「◎」は「きわめて優秀」、「○」は「合格」、「×」は「劣等」、「-」は「評価不能」を示す。
 
Figure JPOXMLDOC01-appb-T000001
 実施例1で作製したバックコンタクトタイプ太陽電池モジュールにおける絶縁層付封止材(裏面側封止材)は、透明EVA/透明PET/透明EVAの3層で構成されている。このため、表面(受光面)側の封止材層の樹脂と裏面側封止材層の樹脂とを切り替える必要が無い。よって、封止材の生産性が高い。
 絶縁層付封止材(裏面側封止材)がEMAA/白PET/EMAAの3層で構成されている実施例2、絶縁層付封止材(裏面側封止材)がアイオノマー/黒PET/アイオノマーの3層で構成されている実施例3、及び絶縁層封止材(裏面側封止材)がEVA/白オレフィンフィルム(PP,PE,EVA)/EVAの3層で構成されている実施例4、及び封止材の層構成が透明EVA単体となっている比較例1も同様である。
 一方、比較例2は封止材の層構成が白着色アイオノマーを含むので、表面(受光面)側の封止材層の樹脂と裏面側の封止材層の樹脂とを切り替える際に、着色加工後の樹脂パージが必要になる。このため、封止材の生産性は低い。
 また、実施例1から3の場合、絶縁層付封止材(裏面側封止材)に絶縁層としてPETフィルムが含まれ、実施例4の場合、絶縁層付封止材(裏面側封止材)に絶縁層として白オレフィンフィルム(PP,PE,EVA)が含まれる。このため、実施例1から4の場合、いずれも絶縁性が良好である。一方、比較例1及び2の場合、裏面側封止材に絶縁層が含まれていない。このため、たとえば回路シート表面等に別途絶縁層を形成する必要がある。したがって、実施例1から4の場合と対比して絶縁性が劣っている。
 実施例1及び比較例1の場合、封止材層が透明であるため、封止材の色ムラがない。
 実施例2から実施例4の場合、絶縁フィルムが着色フィルムである。このため、絶縁層付封止材(裏面側封止材)における色の濃淡は発生しない。一方、比較例2の場合、着色樹脂を押出し樹脂として用いて裏面側封止材を形成するため、裏面側封止材における樹脂層の薄い部分では色が淡い。よって、裏面側封止材において色の濃淡が目立つ。
 実施例1から4の場合、セル側封止材及び回路側封止材は透明であるため、絶縁フィルムの色を替えるだけで裏面側封止材の色を簡単に替えることが出来る。一方、比較例1及び2の場合、裏面側封止材の色を替えるために、表面(受光面)側の封止材層の樹脂と裏面側封止材層の樹脂とを切り替える必要がある。このため、実施例1から4と比べて、比較例1及び2は裏面側封止材の色を替えるために多くの間接時間を要する。したがって、実施例1から4と比べて、比較例1及び2は、太陽電池モジュールの生産性が低下する。
 その他の製造コストに影響する点を比較してみると実施例1、実施例4、及び比較例2の場合、裏面側封止材を形成する樹脂として従来と同じ架橋剤入りのEVAを使用している。このため、押出しに際して通常の押出し機と異なる専用機を使う必要がある。したがって、他の実施例及び比較例と対比して、実施例1、実施例4、及び比較例2は、太陽電池モジュールの製造コストが大きい。
 さらに、比較例2の場合、裏面側封止材を形成する樹脂として着色樹脂を用いている。このため、樹脂切り替え時のパージを十分に行う必要がある。したがって、他の実施例及び比較例と対比して、比較例2は、太陽電池モジュールの製造コストがより一層大きくなるおそれがある。
 一方、実施例2及び3の場合、裏面側封止材を形成する樹脂として通常の透明な押出し用樹脂を用いている。このため、押出に際して特殊な装置を必要としない。また、絶縁フィルムとして汎用の着色フィルムを用いている。したがって、他の実施例及び比較例と対比して、実施例2及び3は、太陽電池モジュールの製造コストがきわめて低く抑えられるという点でより好ましい。
 以上の結果より、本発明の実施形態に係るバックコンタクトタイプ太陽電池モジュールによれば、太陽電池モジュールの各構成要素を保護するための諸特性を具備し、汎用の方法で成形及び加工でき、低コストで製造でき、安全性及び耐久性に優れ、特に安定した高い電力変換効率を有する太陽電池モジュールを提供することが出来た。
 高い光電効率を有する結晶系太陽電池におけるバックコンタクトタイプ太陽電池モジュール用の回路シートの上面に、一般的にプリント配線板において採用されている塗工印刷方式によって形成される絶縁層(ILD)を設けるのではなく、中間層として絶縁フィルムを設けることにより、より高い絶縁性を有する絶縁層の供給と、さらには着色フィルムの使用によって簡単に形成される着色封止材の供給と、これらの絶縁層及び着色封止材を用いた太陽電池モジュールの供給が可能になる。
100…従来の太陽電池モジュール
101…本発明の太陽電池モジュール
1…透明封止材
1’…透明封止材
2…絶縁層付封止材
2a…セル側封止材
2b…回路シート側封止材
2c…絶縁フィルム
3…回路シート(ベースフィルム)
4…バックシート
5…セル電極
6…半田または銀ペースト
7…金属箔等の配線パターン
8…前面ガラス等の透明基材
9…バックコンタクトセル
10…電気絶縁層
11…貫通孔

Claims (7)

  1.   バックシートと、
     前記バックシート上に積層され、配線パターンを表面に有する回路シートと、
     前記回路シート上に積層され、絶縁フィルムと前記絶縁フィルムの両面に設けられた一対の封止材層とで構成され、貫通孔を有する絶縁層付封止材と、
     前記絶縁層付封止材の上に形成され、裏面にセル電極を有するバックコンタクトセルと、
     前記絶縁層付封止材及び前記バックコンタクトセルを覆うように積層される透明封止材と、
     前記透明封止材の上に積層される透明基材と、
     前記貫通孔に設けられ、前記セル電極と前記配線パターンとを電気的及び物理的に繋ぐ導電性ペーストと、
    を備えることを特徴とする、バックコンタクトタイプ太陽電池モジュール。
  2.  請求項1に記載のバックコンタクトタイプ太陽電池モジュールであって、
     前記絶縁フィルムが、白色フィルム、黒色フィルム、または着色フィルムであることを特徴とするバックコンタクトタイプ太陽電池モジュール。
  3.  請求項1に記載のバックコンタクトタイプ太陽電池モジュールであって、
     前記絶縁フィルムが、少なくとも封止材樹脂と熱融着可能なポリプロピレン(ホモ,ランダム,ブロック)、又はポリエチレンを含んでいることを特徴とするバックコンタクトタイプ太陽電池モジュール。
  4.  請求項1に記載のバックコンタクトタイプ太陽電池モジュールであって、
     前記絶縁フィルムが、高反射シート又はプリズムシートであることを特徴とするバックコンタクトタイプ太陽電池モジュール。
  5.  請求項1から4のいずれか一項に記載のバックコンタクトタイプ太陽電池モジュールであって、
     前記配線パターンがアルミニウム箔または銅箔であることを特徴とするバックコンタクトタイプ太陽電池モジュール。
  6.  請求項1から5のいずれか一項に記載のバックコンタクトタイプ太陽電池モジュールであって、
     前記透明基材がガラス板であることを特徴とするバックコンタクトタイプ太陽電池モジュール。
  7.  請求項1から6のいずれか一項に記載のバックコンタクトタイプ太陽電池モジュールであって、
     前記バックシートが白色であることを特徴とするバックコンタクトタイプ太陽電池モジュール。
     
PCT/JP2013/057645 2012-03-30 2013-03-18 バックコンタクトタイプ太陽電池モジュール WO2013146414A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014507731A JP6286736B2 (ja) 2012-03-30 2013-03-18 バックコンタクトタイプ太陽電池モジュール
EP13768783.6A EP2833416B1 (en) 2012-03-30 2013-03-18 Back contact solar cell module
CN201380017056.1A CN104205356A (zh) 2012-03-30 2013-03-18 背接触型太阳能电池模块
ES13768783T ES2902188T3 (es) 2012-03-30 2013-03-18 Módulo de célula solar de contacto posterior

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012080915 2012-03-30
JP2012-080915 2012-03-30
JP2012-258021 2012-11-26
JP2012258021 2012-11-26

Publications (1)

Publication Number Publication Date
WO2013146414A1 true WO2013146414A1 (ja) 2013-10-03

Family

ID=49259675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057645 WO2013146414A1 (ja) 2012-03-30 2013-03-18 バックコンタクトタイプ太陽電池モジュール

Country Status (6)

Country Link
EP (1) EP2833416B1 (ja)
JP (1) JP6286736B2 (ja)
CN (1) CN104205356A (ja)
ES (1) ES2902188T3 (ja)
TW (1) TW201349529A (ja)
WO (1) WO2013146414A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560154A (zh) * 2013-11-14 2014-02-05 英利集团有限公司 背接触太阳能电池组件
JP2015177169A (ja) * 2014-03-18 2015-10-05 シャープ株式会社 太陽電池モジュール
JP2016051771A (ja) * 2014-08-29 2016-04-11 三菱樹脂株式会社 太陽電池ダミーモジュール及びその製造方法
JP2016051772A (ja) * 2014-08-29 2016-04-11 三菱樹脂株式会社 太陽電池モジュール及びその製造方法
JP2016063019A (ja) * 2014-09-17 2016-04-25 凸版印刷株式会社 バックコンタクト型太陽電池モジュール用電気配線付き封止材及びバックコンタクト型太陽電池モジュール
WO2016104413A1 (ja) * 2014-12-26 2016-06-30 大日本印刷株式会社 太陽電池モジュール用の集電シート
CN113611766A (zh) * 2021-06-30 2021-11-05 泰州隆基乐叶光伏科技有限公司 太阳能电池组件及其制备方法
JP2022537499A (ja) * 2020-05-21 2022-08-26 ジンガオ ソーラー カンパニー リミテッド バックコンタクト型太陽電池モジュール及び製造方法
WO2023054730A1 (ja) * 2021-10-01 2023-04-06 大日本印刷株式会社 太陽電池モジュール用絶縁フィルム、鋼板付き絶縁フィルム、配線シート付き絶縁フィルム、および太陽電池モジュール

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041475B1 (fr) * 2015-09-23 2018-03-02 Commissariat Energie Atomique Procede de fabrication de structures pour cellule photovoltaique
CN105810766B (zh) * 2016-05-09 2017-11-10 山东拜科通新材料科技有限公司 一种带有金属箔与复合导电带的电流引出装置
US20180076339A1 (en) 2016-09-14 2018-03-15 The Boeing Company Prefabricated conductors on a substrate to facilitate corner connections for a solar cell array
EP3297035B1 (en) * 2016-09-14 2021-08-04 The Boeing Company Solar cell array connections using corner conductors
US11437533B2 (en) 2016-09-14 2022-09-06 The Boeing Company Solar cells for a solar cell array
DE102017214347B4 (de) * 2017-08-17 2022-08-25 Asca Gmbh Verfahren zur Herstellung eines Fassadenelements sowie Fassadenelement
CN111354808A (zh) * 2018-12-20 2020-06-30 广东汉能薄膜太阳能有限公司 一种太阳能芯片及其制备方法
CN111916518A (zh) * 2020-06-30 2020-11-10 泰州隆基乐叶光伏科技有限公司 叠瓦组件的导电互联件、叠瓦组件及制备方法
CN113540261A (zh) * 2021-07-09 2021-10-22 普乐新能源(蚌埠)有限公司 用于背接触太阳能电池组件的绝缘层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151712A (ja) * 2000-11-15 2002-05-24 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池の裏面封止方法
JP2005011869A (ja) 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd 太陽電池モジュールおよびその製造方法
JP2010212630A (ja) 2009-03-12 2010-09-24 Sekisui Chem Co Ltd バックコンタクト型太陽電池用非導電性ペースト
JP2011091303A (ja) * 2009-10-26 2011-05-06 Toppan Printing Co Ltd 太陽電池裏面保護シート及びそれを用いた太陽電池モジュール
JP2011096777A (ja) * 2009-10-28 2011-05-12 Toppan Printing Co Ltd 太陽電池用裏面保護シート用基材及び太陽電池用裏面保護シート
JP2011159748A (ja) 2010-01-29 2011-08-18 Toppan Printing Co Ltd 太陽電池用絶縁基板、太陽電池モジュール及び太陽電池用絶縁基板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040582B2 (ja) * 1991-02-20 2000-05-15 キヤノン株式会社 太陽電池
JP3287647B2 (ja) * 1992-06-08 2002-06-04 鐘淵化学工業株式会社 太陽電池モジュール
JPH06334207A (ja) * 1993-05-27 1994-12-02 Canon Inc 太陽電池モジュール
CN1103124C (zh) * 1996-05-17 2003-03-12 佳能株式会社 光电装置及其制造方法和太阳能电池组件
JP2000243996A (ja) * 1999-02-18 2000-09-08 Canon Inc 太陽電池モジュール及びその製造方法
JP2002016273A (ja) * 2000-06-27 2002-01-18 Canon Inc 太陽電池モジュールの製造方法
JP2002026362A (ja) * 2000-07-13 2002-01-25 Canon Inc 積層体の加工方法及び加工装置
JP2008130642A (ja) * 2006-11-17 2008-06-05 Toray Ind Inc 太陽電池モジュール裏面封止用シート及び太陽電池モジュール
JP2009021288A (ja) * 2007-07-10 2009-01-29 Sanyo Electric Co Ltd 太陽電池モジュール
EP2216827A1 (en) * 2007-11-09 2010-08-11 Sharp Kabushiki Kaisha Solar battery module and method for manufacturing solar battery module
US20090288701A1 (en) * 2008-05-23 2009-11-26 E.I.Du Pont De Nemours And Company Solar cell laminates having colored multi-layer encapsulant sheets
EP2388828A1 (en) * 2009-01-16 2011-11-23 Sharp Kabushiki Kaisha Solar cell module and method for manufacturing solar cell module
JP2011129850A (ja) * 2009-12-17 2011-06-30 Dengiken:Kk 太陽電池用バックシート及びそれを用いた太陽電池モジュール
JP2012049221A (ja) * 2010-08-25 2012-03-08 Toppan Printing Co Ltd 太陽電池モジュールとその製造方法とバックシート付き回路層と太陽電池
JP5630158B2 (ja) * 2010-09-06 2014-11-26 凸版印刷株式会社 太陽電池モジュールの製造方法、および太陽電池モジュール用封止材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151712A (ja) * 2000-11-15 2002-05-24 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池の裏面封止方法
JP2005011869A (ja) 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd 太陽電池モジュールおよびその製造方法
JP2010212630A (ja) 2009-03-12 2010-09-24 Sekisui Chem Co Ltd バックコンタクト型太陽電池用非導電性ペースト
JP2011091303A (ja) * 2009-10-26 2011-05-06 Toppan Printing Co Ltd 太陽電池裏面保護シート及びそれを用いた太陽電池モジュール
JP2011096777A (ja) * 2009-10-28 2011-05-12 Toppan Printing Co Ltd 太陽電池用裏面保護シート用基材及び太陽電池用裏面保護シート
JP2011159748A (ja) 2010-01-29 2011-08-18 Toppan Printing Co Ltd 太陽電池用絶縁基板、太陽電池モジュール及び太陽電池用絶縁基板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560154A (zh) * 2013-11-14 2014-02-05 英利集团有限公司 背接触太阳能电池组件
JP2015177169A (ja) * 2014-03-18 2015-10-05 シャープ株式会社 太陽電池モジュール
JP2016051771A (ja) * 2014-08-29 2016-04-11 三菱樹脂株式会社 太陽電池ダミーモジュール及びその製造方法
JP2016051772A (ja) * 2014-08-29 2016-04-11 三菱樹脂株式会社 太陽電池モジュール及びその製造方法
JP2016063019A (ja) * 2014-09-17 2016-04-25 凸版印刷株式会社 バックコンタクト型太陽電池モジュール用電気配線付き封止材及びバックコンタクト型太陽電池モジュール
WO2016104413A1 (ja) * 2014-12-26 2016-06-30 大日本印刷株式会社 太陽電池モジュール用の集電シート
JPWO2016104413A1 (ja) * 2014-12-26 2017-10-05 大日本印刷株式会社 太陽電池モジュール用の集電シート
JP2022537499A (ja) * 2020-05-21 2022-08-26 ジンガオ ソーラー カンパニー リミテッド バックコンタクト型太陽電池モジュール及び製造方法
CN113611766A (zh) * 2021-06-30 2021-11-05 泰州隆基乐叶光伏科技有限公司 太阳能电池组件及其制备方法
WO2023054730A1 (ja) * 2021-10-01 2023-04-06 大日本印刷株式会社 太陽電池モジュール用絶縁フィルム、鋼板付き絶縁フィルム、配線シート付き絶縁フィルム、および太陽電池モジュール

Also Published As

Publication number Publication date
EP2833416B1 (en) 2021-11-10
EP2833416A1 (en) 2015-02-04
JP6286736B2 (ja) 2018-03-07
ES2902188T3 (es) 2022-03-25
TW201349529A (zh) 2013-12-01
JPWO2013146414A1 (ja) 2015-12-10
CN104205356A (zh) 2014-12-10
EP2833416A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP6286736B2 (ja) バックコンタクトタイプ太陽電池モジュール
EP1973171B1 (en) Solar cell module
JP4860652B2 (ja) 太陽電池モジュールおよびその製造方法
JP5879513B2 (ja) 太陽電池モジュール
TWI605606B (zh) Solar battery module
WO2010010821A1 (ja) 太陽電池モジュール及びその作成方法
JP2015195297A (ja) 太陽電池モジュール
JP2011054662A (ja) 太陽電池モジュール
JP2006278695A (ja) 太陽電池モジュール
JP2006278702A (ja) 太陽電池モジュール及びその製造方法
JP2009170771A (ja) 太陽電池バックシート及び太陽電池モジュール
JP2012094608A (ja) 太陽電池モジュール
JP6587191B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2014013838A (ja) 太陽電池用集電シート及び太陽電池モジュール
JP2012204533A (ja) 太陽電池モジュール及びその製造方法
KR20220124183A (ko) 적어도 제1 캡슐화 및 제2 캡슐화를 포함하는 광전자 구성 요소에 대한 캡슐화 체계, 및 이러한 유형의 캡슐화 체계를 포함하는 광전자 구성 요소
JP2001127320A (ja) 太陽電池モジュール
WO2023144866A1 (ja) 太陽電池および太陽電池の製造方法
JP5636967B2 (ja) バックコンタクト型太陽電池モジュール
JP7483345B2 (ja) 太陽電池モジュール
TW201911585A (zh) 太陽能電池模組及其製造方法
JP2007208286A (ja) 太陽電池モジュール
TW202333446A (zh) 太陽能模組
JP2013089751A (ja) 太陽電池モジュール
JP2023098329A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507731

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013768783

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE