WO2013146124A1 - 転動疲労特性に優れた軸受用鋼材およびその製造方法 - Google Patents

転動疲労特性に優れた軸受用鋼材およびその製造方法 Download PDF

Info

Publication number
WO2013146124A1
WO2013146124A1 PCT/JP2013/056009 JP2013056009W WO2013146124A1 WO 2013146124 A1 WO2013146124 A1 WO 2013146124A1 JP 2013056009 W JP2013056009 W JP 2013056009W WO 2013146124 A1 WO2013146124 A1 WO 2013146124A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
less
rolling fatigue
region
steel
Prior art date
Application number
PCT/JP2013/056009
Other languages
English (en)
French (fr)
Inventor
正樹 貝塚
新堂 陽介
藤田 学
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020147027338A priority Critical patent/KR101527336B1/ko
Priority to ES13768602.8T priority patent/ES2628637T3/es
Priority to CN201380017474.0A priority patent/CN104220625B/zh
Priority to US14/384,065 priority patent/US9624559B2/en
Priority to EP13768602.8A priority patent/EP2832893B1/en
Publication of WO2013146124A1 publication Critical patent/WO2013146124A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Definitions

  • the present invention relates to a steel material for manufacturing bearing parts used in automobiles and various industrial machines, and particularly to a steel material for bearings that exhibits excellent rolling fatigue life when used as a bearing part, and a method for manufacturing the same. It is about.
  • high carbon chromium bearing steels such as SUJ2 specified in JIS G 4805 (1999) have been used as bearing materials used in various fields such as automobiles and various industrial machines.
  • bearings are used in harsh environments such as inner and outer rings and rolling elements such as ball bearings and roller bearings with extremely high contact surface pressure, fatigue failure is likely to occur due to very fine defects (inclusions, etc.).
  • inclusions, etc. there is a problem that frequent maintenance (replacement, inspection, etc.) is necessary.
  • attempts have been made to improve the steel for bearings in order to increase the rolling fatigue life and reduce the number of maintenance operations.
  • Patent Document 3 discloses that the rolling fatigue life is improved by refining crystal grains.
  • Patent Document 3 the rolling temperature is lowered and the forging pressure ratio is increased (60 or more) to reduce the hardness variation caused by stripe segregation.
  • Patent Document 4 the soaking time is lengthened. This suppresses the formation of giant carbides and improves the life.
  • these methods are limited in terms of rolling method and size, and thus cannot be said to be industrially highly flexible, and it is difficult to say that the effect of improving the service life is not necessarily increased to a desired level. It was.
  • Patent Document 5 the spheroidizing treatment time is lengthened and the crystal grains are refined by applying induction hardening. However, the longer spheroidizing treatment deteriorates manufacturability and the induction hardening treatment. Therefore, it is not an industrially highly flexible method.
  • Patent Document 6 describes the size and density of the Al-based nitrogen compound dispersed in steel, in particular, in order to improve the grindability when processing into a product shape and to stably obtain a good rolling fatigue life, and Specifies the size and area ratio of cementite.
  • Patent Document 7 discloses a bearing steel wire material suitable for strong wire drawing that does not break even when wire drawing is performed so that the wire drawing area reduction ratio exceeds about 50% (further 70%). It has been proposed to control the manufacturing conditions to keep the average equivalent circle diameter and standard deviation of cementite after spheroidizing annealing to a certain level or less to suppress variations.
  • the present invention has been made paying attention to the above-described circumstances, and an object thereof is to realize a steel material for bearings for obtaining a bearing component having a further improved rolling fatigue life.
  • the steel material for bearings excellent in rolling fatigue characteristics of the present invention that has solved the above problems is C: 0.95 to 1.10% (meaning mass%, the same applies to chemical components), Si: 0.15-0.35%, Mn: 0.2 to 0.50%, Cr: 1.30 to 1.60%, P: 0.025% or less (excluding 0%), S: 0.025% or less (excluding 0%), Ni: 0.02 to 0.25%, Cu: 0.02 to 0.25%, Mo: less than 0.08% (including 0%), Al: 0.001% to 0.050%, Ti: 0.0015% or less (excluding 0%), O: 0.001% or less (not including 0%), and N: 0.020% or less (not including 0%)
  • the balance consists of iron and inevitable impurities, Si (interface Si), Mn (interface Mn), Cr (interface Cr), Cu (interface Cu), Ni (interface Ni) included in the parent phase region (interface region) from the surface of spheroidized cementite to 20 nm, and Mo (interface
  • the present invention also includes a method for producing the above-mentioned bearing steel, which uses the steel material having the above component composition, and spheroidizing annealing, A primary soaking process in which (Ac1e + 30) to (Ac1e + 50) ° C.
  • the present invention it is possible to realize a bearing steel material that further improves the rolling fatigue life. Therefore, when a bearing obtained using the bearing steel material is used in a harsh environment, an excellent rolling fatigue life is achieved. And can reduce maintenance (replacement, inspection, etc.).
  • FIG. 1 is a state diagram used for calculating Ac1e and Ac1b in the present invention.
  • spheroidized cementite is dispersed in the martensite substrate, and a weak incompletely quenched region (bainite, pearlite) is generated around the spheroidized cementite.
  • the present inventors consider that cracks are likely to occur and propagate in this incompletely quenched region, and in order to extend the life of the bearing, unlike the conventional techniques for reducing non-metallic inclusions, the above incompletely quenched From the viewpoint that suppression of region generation is effective, the specific means was examined.
  • the inventors first performed a line analysis of the periphery of spheroidized cementite by FE-TEM. As a result, Cr and Mn, which are hardenability improving elements, are concentrated in the spheroidized cementite, and the spheroidized cementite periphery (spheroidized cementite). It was found that the Cr and Mn concentrations were deficient in the parent phase region in contact with. As a cause of the occurrence of the incompletely quenched region, it is considered that quenching becomes insufficient due to the lack of Cr and Mn concentrations.
  • the coefficient of the right side (hereinafter referred to as “interface Di value”) in the above formula (1) is obtained as follows. That is, a test piece was collected from a steel bar (outer diameter 60 mm) having a composition of steel materials 1 to 14 in Table 1 in Examples described later, and a Jominy test was performed in accordance with a method defined in JIS G-0561. At that time, the heating condition of the test piece was 920 ° C. ⁇ 30 minutes. Next, the distance from the end of the test piece on the coolant supply side to the position indicating Rockwell C hardness 60 required for bearing strength was determined for each steel.
  • the interface Di value is set to 9.0 or more as shown in the above formula (1), a desired rolling fatigue life (1.0 ⁇ 10 7 times or more).
  • the interface Di value is less than 9.0, the hardenability of the interface region is insufficient, and a fragile incompletely quenched region is formed. The reduction of the becomes remarkable.
  • the interface Di value is preferably 9.5 or more, more preferably 10.0 or more.
  • the individual ranges of the interface Si, the interface Mn, the interface Cu, the interface Ni, the interface Cr, and the interface Mo are not particularly limited, and may satisfy the above formula (1).
  • the present inventors satisfy the formula (1) in the steel of each of the hardenability improving elements (Si, Mn, Cr, Cu, Ni, Mo). It is found that it is necessary to make the content within a predetermined range and perform a predetermined spheroidizing annealing treatment to diffuse Cr and Mn in the spheroidized cementite into the parent phase to suppress these Mn and Cr deficient regions. It was.
  • C 0.95 to 1.10%
  • C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to ensure wear resistance. Therefore, C must be contained in an amount of 0.95% or more, preferably 0.98% or more. However, if the amount of C is excessively large, giant carbides are likely to be generated and adversely affect the rolling fatigue characteristics. Therefore, the amount of C is set to 1.10% or less. Preferably it is 1.05% or less.
  • Si is an element useful for strengthening the solid solution of the matrix, improving the temper softening resistance, improving the hardenability of the matrix phase, and improving the hardenability of the interfacial region (securing the interface Si).
  • the amount of Si is preferably 0.17% or more, and more preferably 0.20% or more.
  • the Si amount is set to 0.35% or less.
  • it is 0.33% or less, More preferably, it is 0.30% or less.
  • Mn is an element effective for strengthening the solid solution of the matrix, improving the hardenability of the matrix, and improving the hardenability of the interfacial region (securing the interface Mn). Further, it is an element necessary for preventing hot brittleness due to S. In order to exert such effects, it is necessary to contain 0.2% or more of Mn.
  • the amount of Mn is preferably 0.25% or more, more preferably 0.3% or more. However, if the amount of Mn is too large, the workability and machinability are remarkably lowered, so the amount of Mn is set to 0.50% or less. Preferably it is 0.45% or less, More preferably, it is 0.40% or less.
  • Cr 1.30 to 1.60%
  • Cr is an element useful in combination with C to form fine cementite and ensure wear resistance. It is also an element useful for improving the hardenability of the matrix and improving the hardenability of the interfacial region (securing the interface Cr).
  • the Cr content is set to 1.30% or more. Preferably it is 1.35% or more.
  • the Cr content is 1.60% or less. Preferably it is 1.55% or less, More preferably, it is 1.50% or less.
  • P 0.025% or less (excluding 0%)
  • P is an element inevitably contained as an impurity, and it is desirable to reduce it as much as possible because it segregates at the grain boundary and embrittles, and deteriorates workability and rolling fatigue characteristics.
  • the P content is set to 0.025% or less.
  • it is 0.020% or less (more preferably 0.015% or less).
  • S 0.025% or less (excluding 0%)
  • S is an element that is inevitably contained as an impurity, and it is preferably reduced as much as possible because it precipitates as MnS and reduces the rolling fatigue life.
  • the S content is set to 0.025% or less.
  • it is 0.020% or less (more preferably 0.015% or less).
  • Ni is an element that has a low equilibrium partition coefficient, acts as an element that improves the hardenability of the interface region (to ensure the interface Ni), increases the hardness, and contributes to the improvement of rolling fatigue characteristics. It also contributes to improvement of the hardenability of the matrix.
  • the Ni amount needs to be 0.02% or more. Preferably it is 0.05% or more, More preferably, it is 0.07% or more. However, when the amount of Ni becomes excessive, workability deteriorates. Therefore, the Ni content is 0.25% or less. Preferably it is 0.22% or less, More preferably, it is 0.20% or less.
  • Cu is an element that has a low equilibrium partition coefficient, acts as an element that improves the hardenability of the interface region (ensures the interface Cu), increases hardness, and contributes to improvement of rolling fatigue characteristics. It also contributes to improvement of the hardenability of the matrix. In order to exhibit these effects, it is necessary to make Cu amount 0.02% or more. Preferably it is 0.05% or more, More preferably, it is 0.07% or more. However, when the amount of Cu becomes excessive, workability deteriorates. Therefore, the amount of Cu is made 0.25% or less. Preferably it is 0.22% or less, More preferably, it is 0.20% or less.
  • Mo less than 0.08% (including 0%)
  • Mo is an element that has a low equilibrium partition coefficient, acts as an element that improves the hardenability of the interface region (ensures the interface Mo), increases hardness, and contributes to improvement of rolling fatigue characteristics.
  • Mo is not an essential additive element, and the lower limit of the content is not particularly limited as long as the above formula (1) is satisfied.
  • the spheroidizing treatment conditions and other hardenability improving elements in the interface region Si, Cr, Mn , Ni, Cu, etc.
  • it is preferable to contain 0.01% or more. More preferably, it is 0.03% or more.
  • the Mo amount is less than 0.08%.
  • it is 0.07% or less, More preferably, it is 0.05% or less.
  • Al 0.001% to 0.050%
  • Al is a deoxidizing element and is useful in reducing oxides that reduce the amount of O in steel and adversely affect the life of the bearing, and is therefore usually added intentionally.
  • the Al content needs to be 0.001% or more. More preferably, it is more than 0.005%, and more preferably 0.010% or more.
  • the Al amount is set to 0.050% or less. Preferably it is 0.040% or less, More preferably, it is 0.030% or less.
  • Ti 0.0015% or less (excluding 0%)
  • Ti is a harmful element that has a large adverse effect on the rolling fatigue life because Ti easily combines with N in steel to produce coarse TiN. Therefore, although it is desirable to reduce as much as possible, since extreme reduction leads to an increase in steelmaking cost, the upper limit of Ti content is set to 0.0015%. Preferably it is 0.0010% or less.
  • O is an element that greatly affects the form of impurities in the steel, and it forms inclusions such as Al 2 O 3 and SiO 2 that adversely affect rolling fatigue characteristics. Therefore, it is preferable to reduce it as much as possible.
  • the upper limit of the O amount is set to 0.001%. Preferably it is 0.0008% or less, More preferably, it is 0.0006% or less.
  • N 0.020% or less (excluding 0%)
  • N is one of the inevitable impurities, and when the amount of N is excessive, hot workability is lowered, and problems in manufacturing the steel are likely to occur. Further, N combines with Ti present as an inevitable impurity to form a nitride that is harmful to rolling fatigue characteristics, which can adversely affect the fatigue characteristics of the bearing. Therefore, the N amount is 0.020% or less. Preferably it is 0.015% or less, More preferably, it is 0.010% or less.
  • the components of the steel of the present invention are as described above, and the balance is composed of iron and inevitable impurities.
  • the hot rolled material or hot forged material is heated in the temperature range of 780 to 800 ° C. for 2 to 8 hours, and then cooled to 680 ° C. at a cooling rate of 10 to 15 ° C./hr. After that, the spheroidized cementite was dispersed by cooling to the atmosphere. However, as a result, Cr and Mn remain in the spheroidized cementite that precipitates during cooling and are not diffused to the parent phase side, and Cr and Mn in the interface region are deficient and do not satisfy the above formula (1). It was.
  • spheroidizing annealing is performed, Primary soaking step: maintained for 2 to 9 hr in the temperature range of (Ac1e + 30) to (Ac1e + 50) ° C., second soaking step: held for 1.5 to 6 hr in the temperature range of Ac 1e to (Ac1e + 10) ° C. Third soaking step: Hold for 1 to 3 hours in the temperature range of Ac1b to (Ac1b + 10) ° C. and, By performing a step of cooling to 680 ° C.
  • T1 is set to (Ac1e + 30) ° C. or higher.
  • it is (Ac1e + 35) ° C. or higher.
  • t1 shall be 2 hr or more.
  • it is 4 hours or more.
  • T1 exceeds (Ac1e + 50) ° C. or when t1 is too long, Si, Ni, Cu, and Mo concentrated in the interface region diffuse to the matrix phase side, and interface Si, interface Ni, interface Cu and interface Mo are reduced and the above formula (1) is not satisfied. Therefore, T1 is set to (Ac1e + 50) ° C. or less. Preferably, it is (Ac1e + 45) ° C. or lower. Moreover, t1 shall be 9 hr or less. Preferably it is 7 hr or less.
  • T2 is set to Ac1e or more.
  • it is (Ac1e + 2) ° C. or higher.
  • t2 shall be 1.5 hr or more.
  • it is 1.7 hr or more.
  • T2 exceeds (Ac1e + 10) ° C.
  • Cr and Mn in the spheroidized cementite precipitated up to the Ac1e point cannot be sufficiently diffused to the matrix side, and the interface Cr and interface Mn are insufficient.
  • T2 is set to (Ac1e + 10) ° C. or lower.
  • it is (Ac1e + 8) ° C. or lower.
  • t2 exceeds 6 hr, Si, Ni, Cu, and Mo concentrated in the interface region diffuse to the parent phase side, and the interface Si, interface Ni, interface Cu, and interface Mo decrease, and the above formula ( Does not satisfy 1). Therefore, t2 is set to 6 hr or less. Preferably it is 4 hr or less.
  • T3 is set to Ac1b or more.
  • it is (Ac1b + 2) ° C. or higher.
  • t3 shall be 1 hr or more.
  • it is 1.5 hr or more.
  • T3 exceeds (Ac1b + 10) ° C.
  • Cr and Mn in the spheroidized cementite precipitated up to the Ac1b point cannot be sufficiently diffused, and the interface Cr and the interface Mn are insufficient and the above formula (1) is satisfied. It becomes difficult to meet. Therefore, T3 is set to (Ac1b + 10) ° C. or lower.
  • T3 is preferably (Ac1b + 8) ° C. or lower.
  • t3 exceeds 3 hr, Si, Ni, Cu, and Mo concentrated in the interface region diffuse to the matrix phase side, and the interface Si, interface Ni, interface Cu, and interface Mo decrease, and the above formula ( 1) cannot be satisfied. Therefore, t3 is set to 3 hr or less. Preferably it is 2 hr or less.
  • the said average cooling rate shall be 10 degrees C / hr or more. Preferably it is 12 degrees C / hr or more.
  • the said average cooling rate shall be 20 degrees C / hr or less. Preferably it is 18 degrees C / hr or less.
  • the average cooling rate (CR2) during cooling is not particularly limited. However, from the viewpoint of facility restrictions and productivity, the CR1 and CR2 are preferably within the range of 60 ° C./hr to 180 ° C./hr.
  • the cooling rate to room temperature after cooling to 680 ° C. is not particularly limited, but it is desirable to allow cooling (air cooling) from the viewpoint of improving productivity.
  • the steel material of the present invention is processed into a predetermined part shape after performing the spheroidizing annealing as described above, and is subsequently quenched and tempered to be manufactured into a bearing part or the like. It includes both linear and bar shapes that can be applied to such production, and the size can also be appropriately determined according to the final product.
  • the slabs having the chemical composition shown in Table 1 were heated to 1100-1300 ° C. in a heating furnace, and then subjected to block rolling at 900-1200 ° C. Thereafter, hot rolling was performed at 830 to 1100 ° C. to obtain a steel material (rolled material) having a predetermined diameter ( ⁇ 65 mm).
  • the underlined Mo amount in Table 1 indicates the amount of Mo mixed inevitably.
  • spheroidizing annealing was performed using the obtained steel material.
  • Spheroidizing annealing is performed under the heat treatment conditions (temperature / time) shown in Table 2 or Table 3 from room temperature to T1, with an average temperature increase rate of 50 to 150 ° C./hr, and maintained at a soaking temperature T1 for a soaking time t1. Then, the temperature is cooled to the soaking temperature T2, held at the soaking temperature T2 and maintained at the soaking time t2, and then cooled to the soaking temperature T3 and held at the soaking temperature T3 at the soaking time t3. After cooling from T3 (from T1 in No. 3 as a comparative example and from T2 in No. 21) to 680 ° C. at the average cooling rate shown in Table 2 or Table 3, it was allowed to cool to the atmosphere.
  • the cooling from T1 to T2 and the cooling from T2 to T3 were performed at the average cooling rate shown in Table 2 or Table 3.
  • test piece after spheroidizing annealing is cut with a longitudinal section (a section parallel to the rolling direction) so that the position of D (diameter) / 4 can be observed, and after polishing this section, the sample is prepared by a thin film method.
  • the spheroidized cementite was observed by FE-TEM (field emission type transmission electron microscope).
  • the line analysis of the spheroidized cementite was conducted so as to pass through the substantially circular center of the spheroidized cementite by EDX (energy dispersive X-ray detector) of TEM (measurement conditions are as follows), Fe, The concentration of each element of Si, Mn, Cr, Cu, Ni, and Mo was measured. This analysis is performed on five arbitrarily selected spheroidized cementites, and the average value of each element in the parent phase region (interface region) from the spheroidized cementite surface to the parent phase side to the position of 20 nm is obtained. , Interface Si, interface Mn, interface Cr, interface Cu, interface Ni, and interface Mo. And the right-side value (interface Di value) of Formula (1) was calculated
  • the fatigue life L10 (the number of stress repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting on Weibull probability paper) was evaluated. At this time, the fatigue life L10 (L10 life) was set to 1.0 ⁇ 10 7 times or more as an acceptance criterion.
  • No. No. 4 has a short soaking time (t2 and t3) in the secondary soaking process and the tertiary soaking process, so that the interface Cr and the interface Mn are insufficient to satisfy the formula (1), and the rolling fatigue life is short. became.
  • No. No. 6 is No. 6 because the soaking temperature T1 of the primary soaking process is too low. In No. 8, since the soaking time t1 of the primary soaking step was too short, both the interface Cr and the interface Mn were insufficient and the formula (1) was not satisfied, and the rolling fatigue life was shortened.
  • No. No. 7 is because the soaking temperature T1 in the primary soaking process is too high.
  • No. 9 since the soaking time t1 of the primary soaking process is too long, all of Si, Ni and Cu concentrated in the interface region diffuse to the parent phase side, and the interface Si, interface Ni and interface Cu are (For the interface Mo, the amount of Mo in the steel is small, the interface Mo is small, and the decrease due to diffusion is also small. The same applies to Nos. 13, 17, and 18 below) and the equation (1) is not satisfied. The rolling fatigue life is shortened.
  • No. No. 10 is because the soaking temperature T2 in the secondary soaking process is too low. No. 12, since the soaking time t2 of the secondary soaking process was too short, both the interface Cr and the interface Mn were insufficient, and the formula (1) was not satisfied, and the rolling fatigue life was shortened.
  • No. No. 14 has a soaking temperature T3 in the third soaking process that is too low.
  • T3 soaking temperature
  • No. No. 20 was not subjected to secondary soaking treatment, so that no. No. 21 was not subjected to the third soaking process, so that Cr and Mn in the spheroidized cementite precipitated in each temperature range could not be sufficiently diffused, and the interface Cr and the interface Mn were insufficient and the formula (1) Not satisfied, rolling fatigue life was shortened.
  • No. No. 46 has an insufficient amount of Mn in the steel, so the interface Mn also decreases, does not satisfy the formula (1), the interface region is insufficiently quenched, and the parent phase is not sufficiently quenched, resulting in a rolling fatigue life. Became shorter.
  • No. No. 47 has insufficient Cr in the steel, so the interface Cr is small, the equation (1) is not satisfied, the interfacial area is insufficiently quenched, and the matrix phase is also insufficiently quenched, resulting in rolling fatigue. Life is shortened.
  • No. No. 57 cannot secure the interface Cu because the amount of Cu in the steel is insufficient.
  • No. 58 cannot secure the interface Ni because the amount of Ni in the steel is insufficient.
  • No. 59 had insufficient Cr in the steel, so sufficient interface Cr could not be secured, and none of the formulas (1) was satisfied, so that quenching in the interface area was insufficient. In both cases, the quenching of the parent phase was insufficient and the rolling fatigue life was shortened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 解決すべき課題は、転動疲労寿命を更に向上させた軸受部品を得るための軸受用鋼材を実現することである。軸受用鋼材は、所定の成分組成を満たし、球状化セメンタイトの表面から20nmまでの母相領域(界面域)に含まれるSi(界面Si)、Mn(界面Mn)、Cr(界面Cr)、Cu(界面Cu)、Ni(界面Ni)、およびMo(界面Mo)が、下記式(1)を満たす。 9.0 ≦ 1.4×界面Si+1.8×界面Mn+5.5×界面Cu+4.2×界面Ni+4.8×界面Cr+5.5×界面Mo …(1)

Description

転動疲労特性に優れた軸受用鋼材およびその製造方法
 本発明は、自動車や各種産業機械などに使用される軸受部品を製造するための鋼材であって、特に軸受部品として用いたときに優れた転動疲労寿命を発揮する軸受用鋼材およびその製造方法に関するものである。
 軸受用鋼として、従来からJIS G 4805(1999)に規定されるSUJ2等の高炭素クロム軸受鋼が、自動車や各種産業機械等の種々の分野で用いられている軸受の材料として使用されている。しかし軸受は、接触面圧が非常に高い玉軸受やころ軸受等の内・外輪や転動体等、過酷な環境で用いられるため、非常に微細な欠陥(介在物等)から疲労破壊が生じ易く、これを防止するため、頻繁な保守(交換、点検等)が必要といった問題がある。この問題に対し、転動疲労寿命を高めて上記保守の回数を低減させるべく、軸受用鋼材の改善が試みられている。
 従来、上記転動疲労寿命の長寿命化は、非金属介在物を低減することで改善されてきた(例えば特許文献1や特許文献2)。しかし、工業的に非金属介在物を低減することは限界にきている。
 そこで、他の観点からの寿命向上方法として、縞状偏析の低減(例えば特許文献3)、中心偏析部の炭化物生成の抑制(例えば特許文献4)が提案されている。また特許文献5には、結晶粒を微細化することにより転動疲労寿命を向上することが開示されている。
 上記特許文献3では、圧延温度を低めとし、鍛圧比を大きく(60以上)することによって縞状偏析に起因する硬さばらつきを低減しており、また特許文献4では、均熱処理時間を長くすることで、巨大炭化物生成を抑制し、寿命を向上している。しかしながらこれらの方法は、圧延方法や圧延サイズに制約があるため、工業的に自由度の高い方法とはいえず、寿命の改善効果も、所望のレベルにまで必ずしも高まるとは言い難いものであった。また特許文献5では、球状化処理時間を長くし、高周波焼入れを適用することで結晶粒を微細化しているが、球状化処理の長時間化は、製造性を悪化させ、また、高周波焼入れ処理に限定されることから工業的に自由度の高い手法とはいえない。
 更に特許文献6は、製品形状に加工する際の研磨性を良好にすると共に、良好な転動疲労寿命を安定して得るべく、特に鋼中に分散するAl系窒素化合物のサイズと密度、およびセメンタイトのサイズと面積率を規定している。また、特許文献7は、伸線減面率が約50%(更には70%)を超えるよう強伸線加工を行っても断線しない、強伸線加工に適した軸受鋼線材を得るべく、製造条件を制御して、球状化焼鈍後のセメンタイトの平均円相当径と標準偏差を一定以下にしてバラツキを抑えることを提案している。
 しかしいずれも析出物の形態を制御するものであり、ある程度の改善効果はみられるものの、転動疲労寿命をより高めるには、更に別の観点から検討する必要があると思われる。
特許第3889931号公報 特開2006-63402号公報 特開2009-84647号公報 特開平09-165643号公報 特開2007-231345号公報 特開2011-111668号公報 特開2007-224410号公報
 本発明は上記の様な事情に着目してなされたものであって、その目的は、転動疲労寿命を更に向上させた軸受部品を得るための軸受用鋼材を実現することにある。
 上記課題を解決し得た本発明の転動疲労特性に優れた軸受用鋼材は、
C:0.95~1.10%(質量%の意味、化学成分について以下同じ)、
Si:0.15~0.35%、
Mn:0.2~0.50%、
Cr:1.30~1.60%、
P:0.025%以下(0%を含まない)、
S:0.025%以下(0%を含まない)、
Ni:0.02~0.25%、
Cu:0.02~0.25%、
Mo:0.08%未満(0%を含む)、
Al:0.001%~0.050%、
Ti:0.0015%以下(0%を含まない)、
O:0.001%以下(0%を含まない)、および
N:0.020%以下(0%を含まない)
を満たし、残部が鉄および不可避不純物からなり、
 球状化セメンタイトの表面から20nmまでの母相領域(界面域)に含まれるSi(界面Si)、Mn(界面Mn)、Cr(界面Cr)、Cu(界面Cu)、Ni(界面Ni)、およびMo(界面Mo)が、下記式(1)を満たすところに特徴を有する。
 9.0 ≦ 1.4×界面Si+1.8×界面Mn+5.5×界面Cu+4.2×界面Ni+4.8×界面Cr+5.5×界面Mo …(1)
(式(1)において、界面Si、界面Mn、界面Cu、界面Ni、界面Cr、界面Moは、それぞれ、球状化セメンタイトの表面から20nmまでの母相領域(界面域)に含まれるSi、Mn、Cu、Ni、Cr、Moの含有量(質量%)を示す)
 本発明は、上記軸受用鋼材を製造する方法も含むものであって、該方法は、上記成分組成の鋼材を用い、球状化焼鈍を、
(Ac1e+30)~(Ac1e+50)℃の温度域(T1)で2~9hr(t1)保持する1次均熱処理工程、
Ac1e~(Ac1e+10)℃の温度域(T2)で1.5~6hr(t2)保持する2次均熱処理工程、
Ac1b~(Ac1b+10)℃の温度域(T3)で1~3hr(t3)保持する3次均熱処理工程、および、
上記T3から680℃までを平均冷却速度10~15℃/hrで冷却する工程をこの順に含むように行うところに特徴を有する。
 本発明によれば、転動疲労寿命を更に向上させた軸受用鋼材が実現できるので、該軸受用鋼材を用いて得られた軸受を過酷な環境で使用した場合に、優れた転動疲労寿命を発揮でき、保守(交換、点検等)を低減することができる。
図1は、本発明におけるAc1eとAc1bの算出に用いた状態図である。
 軸受用鋼材は、マルテンサイト素地に球状化セメンタイトが分散しており、この球状化セメンタイト周囲に脆弱な不完全焼入れ領域(ベイナイト、パーライト)が生成する。本発明者らは、この不完全焼入れ領域において、亀裂が発生・伝播しやすいと考え、軸受の長寿命化のためには、これまでの非金属介在物の低減技術と異なり、上記不完全焼入れ領域生成の抑制が有効であるとの観点から、その具体的手段について検討した。
 本発明者らはまず、球状化セメンタイト周囲をFE-TEMにてライン分析したところ、焼入性向上元素であるCr、Mnが、球状化セメンタイト中に濃化し、球状化セメンタイト周囲(球状化セメンタイトと接する母相領域)では、Cr、Mn濃度が欠乏していることが判った。上記不完全焼入れ領域発生の原因として、このCr、Mn濃度の欠乏により、焼入れが不十分となることが考えられる。
 そこで、上記球状化セメンタイトと接する母相領域におけるCr、Mn、およびその他の元素の含有量と、不完全焼入れ領域の生成と、転動疲労寿命との関係について検討したところ、特に、球状化セメンタイト表面から20nmの位置までの母相領域(以下、この母相領域を「界面域」ということがある)において、欠乏しやすいCrおよびMnと、平衡分配係数が低く界面域に濃化しやすいSi、Cu、Ni、Moとが、下記式(1)を満たすようにすれば、焼入れ時に界面域も十分焼入れされて、転動疲労寿命の長寿命化を実現できることを見出した。
 9.0 ≦ 1.4×界面Si+1.8×界面Mn+5.5×界面Cu+4.2×界面Ni+4.8×界面Cr+5.5×界面Mo …(1)
(式(1)において、界面Si、界面Mn、界面Cu、界面Ni、界面Cr、界面Moは、それぞれ、球状化セメンタイトの表面から20nmまでの母相領域(界面域)に含まれるSi、Mn、Cu、Ni、Cr、Moの含有量(質量%)を示す)
 上記式(1)における右辺(以下、「界面Di値」という)の係数は、次の様にして求めたものである。即ち、後述する実施例における表1の鋼材番号1~14の成分組成の棒鋼(外径60mm)から試験片を採取し、JIS G 0561に規定される方法に準拠してジョミニー試験をおこなった。その際、試験片の加熱条件は、920℃×30分間保持とした。次いで、軸受強度に必要であるロックウェルC硬度60を示す位置までの冷媒供給側の試験片端部からの距離を各鋼について求めた。そして、この求めた各鋼の距離と、鋼の焼入性に大きな影響を及ぼすといわれているSi、Mn、Cr、Cu、Ni、Moの6元素の含有量とから、各元素の効果が加算できると仮定し、最小二乗法によって、各元素の係数を求めた。
 更に、界面Di値と転動疲労寿命との関係について、検討した結果、上記式(1)の通り界面Di値を9.0以上とすれば、所望の転動疲労寿命(1.0×10回以上)が得られることを見出した。上記界面Di値が9.0未満の場合、界面域の焼入性が不足し、脆弱な不完全焼入れ領域が形成されるため、この領域で亀裂の発生や伝播が生じやすく、転動疲労寿命の低下が著しくなる。
 上記界面Di値は、好ましくは9.5以上、より好ましくは10.0以上である。
 本発明において、界面Si、界面Mn、界面Cu、界面Ni、界面Cr、界面Moの、個々の範囲は特に限定されず、上記式(1)を満たすようにすればよい。
 また本発明者らは、界面域における不完全焼入れ領域を低減すべく、式(1)を満たすには、各焼入性向上元素(Si、Mn、Cr、Cu、Ni、Mo)の鋼中含有量を所定範囲にすると共に、所定の球状化焼鈍処理を行い、球状化セメンタイト中のCr、Mnを母相に拡散させて、これらMn、Crの欠乏領域を抑制する必要があることを見出した。
 以下、上記焼入性向上元素を含む成分組成と、製造条件について詳述する。
 まず、上述した組織を得ると共に、軸受用鋼材として必要な特性を確保するための成分組成について説明する。
 〔C:0.95~1.10%〕
 Cは、焼入硬さを増大させ、室温および高温における強度を維持して耐摩耗性を確保するために必須の元素である。従ってCは、0.95%以上含有させる必要があり、好ましくは0.98%以上である。しかしながらC量が多くなり過ぎると、巨大炭化物が生成し易くなり、転動疲労特性に却って悪影響を及ぼすので、C量は1.10%以下とする。好ましくは1.05%以下である。
 〔Si:0.15~0.35%〕
 Siは、マトリックスの固溶強化、焼戻し軟化抵抗性の向上、母相の焼入性向上、および界面域の焼入性の向上(界面Siの確保)に有用な元素である。こうした効果を発揮させるには、Siを0.15%以上含有させる必要がある。Si量は、好ましくは0.17%以上であり、より好ましくは0.20%以上である。しかしながら、Si量が多くなり過ぎると、加工性や被削性が著しく低下するので、Si量は0.35%以下とする。好ましくは0.33%以下であり、より好ましくは0.30%以下である。
 〔Mn:0.2~0.50%〕
 Mnは、マトリックスの固溶強化、母相の焼入性向上、および界面域の焼入性向上(界面Mnの確保)に有効な元素である。更に、Sによる熱間脆性の防止に必要な元素でもある。こうした効果を発揮させるには、Mnを0.2%以上含有させる必要がある。Mn量は、好ましくは0.25%以上であり、より好ましくは0.3%以上である。しかしながら、Mn量が多くなり過ぎると、加工性や被削性が著しく低下するので、Mn量は0.50%以下とする。好ましくは0.45%以下であり、より好ましくは0.40%以下である。
 〔Cr:1.30~1.60%〕
 Crは、Cと結びついて微細なセメンタイトを形成し、耐摩耗性を確保するのに有用な元素である。また、母相の焼入性向上や、界面域の焼入性向上(界面Crの確保)に有用な元素でもある。これらの効果を発揮させるため、Cr量を1.30%以上とする。好ましくは1.35%以上である。しかし、Crが過剰に含まれると、粗大なセメンタイトが生成し、転動疲労寿命が却って低下する。従ってCr量は、1.60%以下とする。好ましくは1.55%以下であり、より好ましくは1.50%以下である。
 〔P:0.025%以下(0%を含まない)〕
 Pは、不可避的に不純物として含まれる元素であり、粒界に偏析して脆化させ、加工性、転動疲労特性を低下させるため極力低減することが望ましい。しかし、極端な低減は製鋼コストの増大を招くため、P量は0.025%以下とした。好ましくは0.020%以下(より好ましくは0.015%以下)である。
 〔S:0.025%以下(0%を含まない)〕
 Sは、不可避的に不純物として含まれる元素であり、MnSとして析出し、転動疲労寿命を低下させるため極力低減することが望ましい。しかし、極端な低減は製鋼コストの増大を招くため、S量は0.025%以下とした。好ましくは0.020%以下(より好ましくは0.015%以下)である。
 〔Ni:0.02~0.25%〕
 Niは、平衡分配係数が低く、界面域の焼入性を向上する(界面Niを確保する)元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素である。また母相の焼入性向上にも寄与する。これらの効果を発揮させるには、Ni量を0.02%以上とする必要がある。好ましくは0.05%以上、より好ましくは0.07%以上である。しかしながらNi量が過剰になると、加工性が劣化する。よって、Ni量は0.25%以下とする。好ましくは0.22%以下、より好ましくは0.20%以下である。
 〔Cu:0.02~0.25%〕
 Cuは、平衡分配係数が低く、界面域の焼入性を向上する(界面Cuを確保する)元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素である。また母相の焼入性向上にも寄与する。これらの効果を発揮させるには、Cu量を0.02%以上とする必要がある。好ましくは0.05%以上、より好ましくは0.07%以上である。しかしながらCu量が過剰になると、加工性が劣化する。よって、Cu量は0.25%以下とする。好ましくは0.22%以下、より好ましくは0.20%以下である。
 〔Mo:0.08%未満(0%を含む)〕
 Moは、平衡分配係数が低く、界面域の焼入性を向上する(界面Moを確保する)元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素である。Moは、必須添加元素ではなく、含有量の下限は、上記式(1)を満たす限り特に限定されず、球状化処理条件や、界面域のその他の焼入性向上元素(Si、Cr、Mn、Ni、Cu等)の量に応じて、適宜用いることのできる元素である。Moの上記効果を発揮させるには、0.01%以上含有させることが好ましい。より好ましくは0.03%以上である。一方、Mo量が過剰になると、熱間圧延時の割れを助長する。よってMo量は、0.08%未満とする。好ましくは0.07%以下、より好ましくは0.05%以下である。
 〔Al:0.001%~0.050%〕
 Alは、脱酸元素であり、鋼中のO量を低減して、軸受の寿命に悪影響を及ぼす酸化物の低減に有用であるため、通常、意図的に添加される。上記脱酸効果を充分に発揮させるには、Al量を、0.001%以上とする必要がある。より好ましくは0.005%超であり、更に好ましくは0.010%以上である。しかし、Al量が過剰になると、アルミナ系の介在物が粗大化して軸受の寿命を低下させる。また前記脱酸効果も飽和する。そこでAl量は、0.050%以下とする。好ましくは0.040%以下、より好ましくは0.030%以下である。
 〔Ti:0.0015%以下(0%を含まない)〕
 Tiは、鋼中のNと結合して粗大なTiNを生成し易いため、転動疲労寿命への悪影響が大きい有害元素である。よって、極力低減することが望ましいが、極端な低減は製鋼コストの増大を招くため、Ti量の上限を0.0015%とした。好ましくは0.0010%以下である。
 〔O:0.001%以下(0%を含まない)〕
 Oは、鋼中の不純物の形態に大きな影響を及ぼす元素であり、転動疲労特性に悪影響を及ぼすAlやSiO等の介在物を形成するため、極力低減することが好ましい。しかし、極端な低減は製鋼コストの増大を招くため、O量の上限を0.001%とした。好ましくは0.0008%以下、より好ましくは0.0006%以下である。
 〔N:0.020%以下(0%を含まない)〕
 Nは、不可避不純物の1つであり、N量が過剰になると熱間加工性が低下して、鋼材製造上の不具合が生じやすい。またNは、不可避不純物として存在するTiと結合して、転動疲労特性に有害な窒化物を形成し、軸受の疲労特性に悪影響を及ぼし得る。そこでN量は0.020%以下とする。好ましくは0.015%以下、より好ましくは0.010%以下である。
 本発明鋼材の成分は上記の通りであり、残部は鉄および不可避不純物からなるものである。
 [製造条件]
 上記規定の界面域を有する軸受用鋼材を得るには、上記成分組成の鋼材を用い、製造工程における球状化焼鈍を、下記の条件で行うことが必要である。
 従来の球状化焼鈍では、上記熱間圧延材または熱間鍛造材を、780~800℃の温度範囲で2~8時間加熱した後、10~15℃/hrの冷却速度で680℃まで冷却してから大気放冷することにより、球状化セメンタイトを分散させていた。しかしその結果、冷却中に析出する球状化セメンタイト中にCr、Mnがとどまって母相側に拡散されず、界面域のCr、Mnが欠乏して、上記式(1)を満たさないものとなっていた。
 これに対し本発明では、球状化焼鈍を、
1次均熱処理工程:(Ac1e+30)~(Ac1e+50)℃の温度域で2~9hr保持、2次均熱処理工程:Ac1e~(Ac1e+10)℃の温度域で1.5~6hr保持、
3次均熱処理工程:Ac1b~(Ac1b+10)℃の温度域で1~3hr保持、
および、
3次均熱処理工程後に680℃まで平均冷却速度10~15℃/hrで冷却する工程をこの順に含むように行うことによって、
1~3次均熱処理工程の各温度域で析出する球状化セメンタイト中のCr、Mnを、母相側に十分拡散でき、界面域のCr、Mn(界面Cr、界面Mn)を十分確保することができる。併せて、界面域のSi、Cu、Ni、Mo(界面Si、界面Cu、界面Ni、界面Mo)を母相側に拡散させることなく確保し、その結果、上記式(1)を満たすようにすることができる。
 以下、上記各製造条件を規定した理由について詳述する。
 〔1次均熱処理:(Ac1e+30)~(Ac1e+50)℃の温度域(T1)で2~9hr(t1)保持〕
 1次均熱処理における均熱温度T1が(Ac1e+30)℃を下回る場合や、1次均熱処理における均熱時間t1が、2hr未満の場合、球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満たさない。よってT1は、(Ac1e+30)℃以上とする。好ましくは(Ac1e+35)℃以上である。また、t1は2hr以上とする。好ましくは4hr以上である。
 一方、T1が(Ac1e+50)℃を超える場合や、t1が長すぎる場合は、界面域に濃化しているSi、Ni、Cu、Moが母相側に拡散して、界面Si、界面Ni、界面Cu、界面Moが少なくなり、上記式(1)を満たさない。よって、T1は(Ac1e+50)℃以下とする。好ましくは、(Ac1e+45)℃以下である。また、t1は9hr以下とする。好ましくは7hr以下である。
 尚、上記Ac1e(点)および後述するAc1b(点)は、THERMO-CALC SOFTWARE Ver.R(伊藤忠テクノソリューションズ)を用いて鋼材成分のC、Si、Cr、Mn、Mo、Alの量を指定して計算することにより図1のような状態図を作成し、鋼材成分のC量を指定してその状態図から読み取って求めた変態点である。
 〔2次均熱処理:Ac1e~(Ac1e+10)℃の温度域(T2)で1.5~6hr(t2)保持〕
 2次均熱処理における均熱温度T2がAc1e未満の場合や、均熱時間t2が1.5hr未満の場合、前記図1に示すようなオーステナイト(γ)+セメンタイト(θ)の2相域で析出した球状化セメンタイト中のCr、Mnを母相側に十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満たさない。よってT2は、Ac1e以上とする。好ましくは(Ac1e+2)℃以上である。またt2は、1.5hr以上とする。好ましくは1.7hr以上である。
 一方、T2が(Ac1e+10)℃を超えると、Ac1e点までに析出する球状化セメンタイト中のCr、Mnを母相側に十分拡散させることができず、界面Crと界面Mnが不足して上記(1)式を満足できない。よってT2は、(Ac1e+10)℃以下とする。好ましくは(Ac1e+8)℃以下である。
 また、t2が6hrを超えると、界面域に濃化しているSi、Ni、Cu、Moが母相側に拡散して、界面Si、界面Ni、界面Cu、界面Moが少なくなり、上記式(1)を満たさない。よってt2は6hr以下とする。好ましくは4hr以下である。
 〔3次均熱処理:Ac1b~(Ac1b+10)℃の温度域(T3)で1~3hr(t3)保持〕
 3次均熱処理における均熱温度T3がAc1b未満の場合や、均熱時間t3が1hr未満の場合、前記図1に示すようなオーステナイト(γ)+フェライト(α)+セメンタイト(θ)の3相域で析出する球状化セメンタイト中のCr、Mnを母相側に十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満たさない。よってT3は、Ac1b以上とする。好ましくは(Ac1b+2)℃以上である。またt3は、1hr以上とする。好ましくは1.5hr以上である。
 一方、T3が(Ac1b+10)℃を超えると、Ac1b点までに析出する球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満たすことが難しくなる。よってT3は(Ac1b+10)℃以下とする。T3は、好ましくは(Ac1b+8)℃以下である。
 またt3が、3hrを超えると、界面域に濃化しているSi、Ni、Cu、Moが母相側に拡散して、界面Si、界面Ni、界面Cu、界面Moが少なくなり、上記式(1)を満足できなくなる。よってt3は3hr以下とする。好ましくは2hr以下である。
 〔T3から680℃までの平均冷却速度:10~20℃/hr〕
 3次均熱処理工程後、上記T3から680℃までの平均冷却速度が10℃/hr未満では、界面域に濃化しているSi、Ni、Cu、Moが母相側に拡散して、界面Si、界面Ni、界面Cu、界面Moが少なくなり、上記式(1)を満たさない。よって、上記平均冷却速度は10℃/hr以上とする。好ましくは12℃/hr以上である。一方、上記平均冷却速度が20℃/hrを超えると、球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満足できない。よって上記平均冷却速度は20℃/hr以下とする。好ましくは18℃/hr以下である。
 尚、上記範囲で均熱される限り、上記1次均熱温度T1から2次均熱温度T2へ冷却時の平均冷却速度(CR1)と、2次均熱温度T2から3次均熱温度T3へ冷却時の平均冷却速度(CR2)は、特に限定されない。ただし、設備制約や生産性の観点から、上記CR1とCR2は、60℃/hr~180℃/hrの範囲内とすることが望ましい。
 上記680℃まで冷却後、室温までの冷却速度は特に限定されないが、生産性向上の観点から放冷(大気放冷)とすることが望ましい。
 本発明の鋼材は、上記のような球状化焼鈍を行った後、所定の部品形状に加工され、引き続き焼入れ・焼戻しされて軸受部品等に製造されるものであるが、鋼材段階の形状についてはこうした製造に適用できるような線状・棒状のいずれも含むものであり、そのサイズも、最終製品に応じて適宜決めることができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 表1に示す化学成分組成の鋳片を、加熱炉において1100~1300℃に加熱した後、900~1200℃で分塊圧延を実施した。その後、830~1100℃で熱間圧延し、所定の径(φ65mm)の鋼材(圧延材)を得た。尚、表1における下線を付したMo量は、不可避的に混入したMo量を示している。
 次いで、得られた鋼材を用いて、球状化焼鈍(熱処理)を行った。球状化焼鈍は、表2または表3に示す熱処理条件(温度・時間)で、室温からT1まで、平均昇温速度50~150℃/hrで加熱し、均熱温度T1で均熱時間t1保持し、その後、均熱温度T2まで冷却し、均熱温度T2で均熱時間t2保持し、その後、均熱温度T3まで冷却し、均熱温度T3で均熱時間t3保持した後、均熱温度T3から(比較例であるNo.3ではT1から、またNo.21ではT2から)680℃まで表2または表3に示す平均冷却速度で冷却してから、大気放冷した。
 尚、上記T1からT2への冷却、およびT2からT3への冷却は、表2または表3に示す平均冷却速度で冷却した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記球状化焼鈍後の鋼材を用いて、界面域の各元素(Fe、Si、Mn、Cr、Cu、Ni、Mo)濃度の測定、および界面Di値の算出、転動疲労寿命の測定を、以下の通り行った。
 [界面域の各元素濃度の測定]
 上記球状化焼鈍後の試験片を、D(直径)/4の位置を観察できるように縦断面(圧延方向に並行な断面)で切断し、この断面を研磨した後、薄膜法にて試料を作製し、FE-TEM(電界放出型透過型電子顕微鏡)により球状化セメンタイト観察を実施した。この際、TEMのEDX(エネルギー分散型X線検出器)により球状化セメンタイトのライン分析を、球状化セメンタイトのほぼ円中心を通るように実施し(測定条件は下記の通りである)、Fe、Si、Mn、Cr、Cu、Ni、Moの各元素の濃度を測定した。この分析を、任意に選択した球状化セメンタイト5個について行い、球状化セメンタイト表面から母相側へ20nm位置までの母相領域(界面域)の上記各元素の平均値を求めて、それぞれ界面Fe、界面Si、界面Mn、界面Cr、界面Cu、界面Ni、界面Moの量とした。そしてこれらの測定値を用いて、式(1)の右辺値(界面Di値)を求めた。
 (測定条件)
 倍率:500000倍
 測定ステップ:2nm
 分析長さ:100nm
 [転動疲労寿命の測定]
 上記球状化焼鈍後、φ60mm、厚さ6mmの試験片を切り出し、840℃で30分間加熱後に油焼入れを実施し、160℃で120分間焼戻しを行った。次いで、仕上げ研磨を施して表面粗さ:0.04μmRa以下のスラスト転動疲労試験片を作製した。
 そしてスラスト型転動疲労試験機にて、繰り返し速度:1500rpm、面圧:5.3GPa、中止回数:2×10回の条件にて、各鋼材(試験片)につき転動疲労試験を各16回ずつ実施し、疲労寿命L10(ワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数)を評価した。このとき、疲労寿命L10(L10寿命)で1.0×10回以上を合格基準とした。
 これらの結果を表4および表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~5から、次の様に考察できる。即ち、No.1、2、5、22~34、36~44は、本発明で規定の要件を満たすものであり、転動疲労特性に優れた軸受用鋼材が得られている。これに対し、上記No.以外の例は、本発明で規定のいずれかを要件を満たさないため転動疲労特性に劣っている。詳細には以下の通りである。
 即ち、No.3は、2次均熱処理と3次均熱処理を実施していないため、界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.4は、2次均熱処理工程と3次均熱処理工程の均熱時間(t2とt3)が短いため、界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.6は、1次均熱処理工程の均熱温度T1が低すぎるため、またNo.8は、1次均熱処理工程の均熱時間t1が短すぎるため、いずれも界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.7は、1次均熱処理工程の均熱温度T1が高すぎるため、またNo.9は、1次均熱処理工程の均熱時間t1が長すぎるため、いずれも界面域に濃化しているSi、NiおよびCuが母相側に拡散して、界面Si、界面Niおよび界面Cuが少なくなり(尚、界面Moについては、鋼中Mo量が少ないのでも界面Moも少なく拡散による減少量も少ない。以下、No.13、17、18についても同じ)、式(1)を満たさず、転動疲労寿命が短くなった。
 No.10は、2次均熱処理工程の均熱温度T2が低すぎるため、またNo.12は、2次均熱処理工程の均熱時間t2が短すぎるため、いずれも界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.11は、2次均熱処理工程の均熱温度T2が高すぎるため、Ac1e点までに析出する球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満たさず、転動疲労寿命が短くなった。
 No.13は、2次均熱処理工程の均熱時間t2が長すぎるため、界面域に濃化しているSi、NiおよびCuが母相側に拡散して、界面Si、界面Niおよび界面Cuが少なくなり、その結果式(1)を満たさず、転動疲労寿命が短くなった。
 No.14は、3次均熱処理工程の均熱温度T3が低すぎるため、またNo.16は、3次均熱処理工程の均熱時間t3が短すぎるため、いずれも界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.15は、3次均熱処理工程の均熱温度T3が高すぎるため、Ac1b点までに析出する球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して上記式(1)を満たさず、転動疲労寿命が短くなった。
 No.17は、3次均熱処理工程の均熱時間t3が長すぎるため、界面域に濃化しているSi、NiおよびCuが母相側に拡散して、界面Si、界面Niおよび界面Cuが少なくなり、その結果、式(1)を満たさず転動疲労寿命が短くなった。
 No.18は、680℃までの平均冷却速度が小さすぎるため、界面域に濃化しているSi、NiおよびCuが母相側に拡散して、界面Si、界面Niおよび界面Cuが少なくなり、その結果、式(1)を満たさず転動疲労寿命が短くなった。一方、No.19は、680℃までの平均冷却速度が大きすぎるため、球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.20は、2次均熱処理を行わなかったため、またNo.21は、3次均熱処理を行わなかったため、それぞれの温度域で析出する球状化セメンタイト中のCr、Mnを十分拡散させることができず、界面Crと界面Mnが不足して式(1)を満たさず、転動疲労寿命が短くなった。
 No.45は、鋼中Si量が不足しているため、界面Siも少なくなり式(1)を満たさず界面域の焼き入れが不足し、また母相の焼き入れ不足と軟化抵抗性の低下により、転動疲労寿命が短くなった。
 No.46は、鋼中Mn量が不足しているため、界面Mnも少なくなり式(1)を満たさず界面域の焼き入れが不足し、また母相の焼き入れも不足して、転動疲労寿命が短くなった。
 No.47は、鋼中のCrが不足しているため、界面Crが少なく、また式(1)を満たさず界面域の焼き入れが不足し、更に母相の焼き入れも不足して、転動疲労寿命が短くなった。
 No.48は、鋼中N量が過剰であるため、粗大な窒化物(TiN等)が形成されて転動疲労寿命が低下した。No.49は、鋼中O量が過剰であるため、粗大な酸化物が鋼中に分散して転動疲労寿命が低下した。
 No.50は、鋼中P量が過剰であるため、粒界が脆化して転動疲労寿命が低下した。No.51は、鋼中S量が過剰であるため、粗大なMnSが形成されて、転動疲労寿命が低下した。
 No.52は、鋼中C量が過剰であるため、粗大な炭化物が形成されて、転動疲労寿命が低下した。またNo.53は、鋼中C量が不足しているため、強度を確保することができず、転動疲労寿命が低下した。
 No.54は、鋼中Al量が過剰であるため、粗大なAlが形成されて転動疲労寿命が低下した。また鋼中Mn量が過剰であるため、加工性や被削性を確保できない。
 No.55は、鋼中Ti量が過剰であるため、粗大なTiNが形成されて転動疲労寿命が低下した。またNo.56は、鋼中Cr量が過剰であり、粗大な炭化物が形成されたため、転動疲労寿命が低下した。
 No.57は、鋼中Cu量が不足しているため界面Cuを確保できず、No.58は、鋼中Ni量が不足しているため界面Niを確保できず、更に、No.59は、鋼中Cr量が不足しているため界面Crを十分確保できず、いずれも式(1)を満たさないため界面域の焼き入れが不足した。またいずれも、母相の焼き入れも不足して、転動疲労寿命が短くなった。

Claims (2)

  1.  C:0.95~1.10%(質量%の意味、化学成分について以下同じ)、
    Si:0.15~0.35%、
    Mn:0.2~0.50%、
    Cr:1.30~1.60%、
    P:0.025%以下(0%を含まない)、
    S:0.025%以下(0%を含まない)、
    Ni:0.02~0.25%、
    Cu:0.02~0.25%、
    Mo:0.08%未満(0%を含む)、
    Al:0.001%~0.050%、
    Ti:0.0015%以下(0%を含まない)、
    O:0.001%以下(0%を含まない)、および
    N:0.020%以下(0%を含まない)
    を満たし、残部が鉄および不可避不純物からなり、
     球状化セメンタイトの表面から20nmまでの母相領域(界面域)に含まれるSi(界面Si)、Mn(界面Mn)、Cr(界面Cr)、Cu(界面Cu)、Ni(界面Ni)、およびMo(界面Mo)が、下記式(1)を満たすことを特徴とする転動疲労特性に優れた軸受用鋼材。
     9.0 ≦ 1.4×界面Si+1.8×界面Mn+5.5×界面Cu+4.2×界面Ni+4.8×界面Cr+5.5×界面Mo …(1)
    (式(1)において、界面Si、界面Mn、界面Cu、界面Ni、界面Cr、界面Moは、それぞれ、球状化セメンタイトの表面から20nmまでの母相領域(界面域)に含まれるSi、Mn、Cu、Ni、Cr、Moの含有量(質量%)を示す)
  2.  請求項1に記載の軸受用鋼材を製造する方法であって、
    請求項1に記載の成分組成の鋼材を用い、球状化焼鈍を、
    (Ac1e+30)~(Ac1e+50)℃の温度域(T1)で2~9hr(t1)保持する1次均熱処理工程、
    Ac1e~(Ac1e+10)℃の温度域(T2)で1.5~6hr(t2)保持する2次均熱処理工程、
    Ac1b~(Ac1b+10)℃の温度域(T3)で1~3hr(t3)保持する3次均熱処理工程、および、
    上記T3から680℃までを平均冷却速度10~15℃/hrで冷却する工程をこの順に含むように行うことを特徴とする転動疲労特性に優れた軸受用鋼材の製造方法。
PCT/JP2013/056009 2012-03-30 2013-03-05 転動疲労特性に優れた軸受用鋼材およびその製造方法 WO2013146124A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147027338A KR101527336B1 (ko) 2012-03-30 2013-03-05 전동 피로 특성이 우수한 베어링용 강재 및 그의 제조 방법
ES13768602.8T ES2628637T3 (es) 2012-03-30 2013-03-05 Material de acero de rodamiento que tiene características superiores de fatiga a la rodadura y un método para producir el mismo
CN201380017474.0A CN104220625B (zh) 2012-03-30 2013-03-05 滚动疲劳特性优异的轴承用钢材及其制造方法
US14/384,065 US9624559B2 (en) 2012-03-30 2013-03-05 Bearing steel excellent in rolling-contact fatigue properties and method for producing same
EP13768602.8A EP2832893B1 (en) 2012-03-30 2013-03-05 Bearing steel material having superior rolling fatigue characteristics and a method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-083067 2012-03-30
JP2012083067A JP5820326B2 (ja) 2012-03-30 2012-03-30 転動疲労特性に優れた軸受用鋼材およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013146124A1 true WO2013146124A1 (ja) 2013-10-03

Family

ID=49259396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056009 WO2013146124A1 (ja) 2012-03-30 2013-03-05 転動疲労特性に優れた軸受用鋼材およびその製造方法

Country Status (8)

Country Link
US (1) US9624559B2 (ja)
EP (1) EP2832893B1 (ja)
JP (1) JP5820326B2 (ja)
KR (1) KR101527336B1 (ja)
CN (1) CN104220625B (ja)
ES (1) ES2628637T3 (ja)
TW (1) TWI485267B (ja)
WO (1) WO2013146124A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624560A (zh) * 2014-11-24 2016-06-01 现代自动车株式会社 一种具有改进的耐疲劳性的轴承钢及其制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492800B1 (ko) 2014-10-13 2015-02-12 장인금속(주) 탄소강의 구상화소둔 열처리 방법 및 블레이드 탄소강제품
US20160281647A1 (en) * 2015-03-09 2016-09-29 Caterpillar Inc. Turbocharger and Method
US9739238B2 (en) 2015-03-09 2017-08-22 Caterpillar Inc. Turbocharger and method
US9752536B2 (en) * 2015-03-09 2017-09-05 Caterpillar Inc. Turbocharger and method
US9683520B2 (en) * 2015-03-09 2017-06-20 Caterpillar Inc. Turbocharger and method
CN111621703A (zh) * 2020-06-02 2020-09-04 钢铁研究总院 一种窄成分高碳轴承钢及其制备方法
CN114134397B (zh) * 2021-04-01 2022-07-29 江阴兴澄特种钢铁有限公司 一种适用于冷挤压滚珠丝母用钢及其生产方法
CN115976422A (zh) * 2023-03-21 2023-04-18 江苏永钢集团有限公司 一种适用于轴承钢的柔性第二相生产控制方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165643A (ja) 1995-12-12 1997-06-24 Kobe Steel Ltd 転動疲労特性に優れた軸受鋼
JP2006063402A (ja) 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd 転がり疲労寿命に優れた機械用部品に使用される鋼
JP3889931B2 (ja) 2001-01-26 2007-03-07 Jfeスチール株式会社 軸受材料
JP2007224410A (ja) 2006-01-24 2007-09-06 Kobe Steel Ltd 伸線性に優れた軸受鋼線材およびその製造方法
JP2007231345A (ja) 2006-02-28 2007-09-13 Jfe Steel Kk 軸受用鋼部品およびその製造方法
JP2009084647A (ja) 2007-09-28 2009-04-23 Kobe Steel Ltd 転動疲労寿命の安定性に優れた軸受用鋼材
JP2011111668A (ja) 2009-11-30 2011-06-09 Kobe Steel Ltd 転動疲労寿命の安定性に優れた鋼材
JP2012062515A (ja) * 2010-09-15 2012-03-29 Kobe Steel Ltd 冷間加工性、耐摩耗性、及び転動疲労特性に優れた軸受用鋼

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556968B2 (ja) 1994-06-16 2004-08-25 新日本製鐵株式会社 高炭素系高寿命軸受鋼
FR2761699B1 (fr) * 1997-04-04 1999-05-14 Ascometal Sa Acier et procede pour la fabrication d'une piece pour roulement
JP3405277B2 (ja) * 1999-08-03 2003-05-12 住友金属工業株式会社 被削性に優れた軸受要素部品用の鋼線材、棒鋼及び鋼管
JP2003328081A (ja) 2002-05-17 2003-11-19 Toyota Central Res & Dev Lab Inc 高面圧疲労強度部材および高面圧疲労強度部材の製造方法
CN100344784C (zh) * 2003-01-30 2007-10-24 住友金属工业株式会社 轴承零件用钢管、其制造方法及切削方法
JP4252837B2 (ja) * 2003-04-16 2009-04-08 Jfeスチール株式会社 転動疲労寿命の優れた鋼材及びその製造方法
CN101397628B (zh) * 2007-09-25 2011-04-13 宝山钢铁股份有限公司 连铸轴承钢圆钢及其制造方法
JP5380001B2 (ja) * 2008-05-15 2014-01-08 新日鐵住金株式会社 軸受鋼鋼材の製造方法
JP4958966B2 (ja) * 2009-12-03 2012-06-20 株式会社鷺宮製作所 切換弁
JP5582855B2 (ja) * 2010-04-14 2014-09-03 高周波熱錬株式会社 機械構造部品の製造方法
CN102337462B (zh) * 2011-10-28 2013-02-13 武汉钢铁(集团)公司 一种GCr15轴承钢管的生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165643A (ja) 1995-12-12 1997-06-24 Kobe Steel Ltd 転動疲労特性に優れた軸受鋼
JP3889931B2 (ja) 2001-01-26 2007-03-07 Jfeスチール株式会社 軸受材料
JP2006063402A (ja) 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd 転がり疲労寿命に優れた機械用部品に使用される鋼
JP2007224410A (ja) 2006-01-24 2007-09-06 Kobe Steel Ltd 伸線性に優れた軸受鋼線材およびその製造方法
JP2007231345A (ja) 2006-02-28 2007-09-13 Jfe Steel Kk 軸受用鋼部品およびその製造方法
JP2009084647A (ja) 2007-09-28 2009-04-23 Kobe Steel Ltd 転動疲労寿命の安定性に優れた軸受用鋼材
JP2011111668A (ja) 2009-11-30 2011-06-09 Kobe Steel Ltd 転動疲労寿命の安定性に優れた鋼材
JP2012062515A (ja) * 2010-09-15 2012-03-29 Kobe Steel Ltd 冷間加工性、耐摩耗性、及び転動疲労特性に優れた軸受用鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832893A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624560A (zh) * 2014-11-24 2016-06-01 现代自动车株式会社 一种具有改进的耐疲劳性的轴承钢及其制造方法

Also Published As

Publication number Publication date
CN104220625A (zh) 2014-12-17
KR101527336B1 (ko) 2015-06-09
CN104220625B (zh) 2015-12-02
EP2832893A1 (en) 2015-02-04
KR20140123115A (ko) 2014-10-21
JP2013213241A (ja) 2013-10-17
US20150047750A1 (en) 2015-02-19
EP2832893B1 (en) 2017-05-31
US9624559B2 (en) 2017-04-18
ES2628637T3 (es) 2017-08-03
JP5820326B2 (ja) 2015-11-24
TWI485267B (zh) 2015-05-21
EP2832893A4 (en) 2015-09-02
TW201404896A (zh) 2014-02-01

Similar Documents

Publication Publication Date Title
JP5820326B2 (ja) 転動疲労特性に優れた軸受用鋼材およびその製造方法
KR101413902B1 (ko) 기소강 및 그의 제조 방법
JP5742801B2 (ja) 熱間圧延棒鋼または線材
JP5556151B2 (ja) 異物環境下での転動疲労特性に優れた軸受部品の製造方法
JP5385656B2 (ja) 最大結晶粒の縮小化特性に優れた肌焼鋼
WO2012029212A1 (ja) 転動疲労寿命特性に優れた軸受鋼、軸受用造塊材並びにそれらの製造方法
JP2009215597A (ja) 転動部品及びその製造方法
JPWO2015098528A1 (ja) 熱間鍛造用鋼材およびその製造方法ならびにその鋼材を用いた熱間鍛造素形材の製造方法
JP5503170B2 (ja) 最大結晶粒の縮小化特性に優れた肌焼鋼
JP4569961B2 (ja) ボールネジまたはワンウェイクラッチ用部品の製造方法
JP2010236049A (ja) 異物環境下での転動疲労特性に優れた軸受部品の製造方法
JP5739689B2 (ja) 機械構造部材
WO2018212196A1 (ja) 鋼及び部品
JP5601861B2 (ja) ボロン鋼圧延焼鈍鋼板の製造法
JP2022170056A (ja) 鋼材
JP5976581B2 (ja) 転動疲労特性に優れた軸受用鋼材、および軸受部品
JP2013185204A (ja) 冷間加工性に優れた肌焼用条鋼
WO2017146057A1 (ja) 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法
TWI480387B (zh) 冷加工性優異之軸承用鋼材及其製造方法
TW201843317A (zh) 滾動疲勞壽命的穩定性優異的鋼材、及滲碳鋼零件以及這些的製造方法
JP2024114621A (ja) 切削浸炭用鋼材及び切削浸炭用鋼材の製造方法
JP2014189895A (ja) 転動疲労特性に優れた肌焼鋼
JP2020105603A (ja) 浸炭鋼部品用鋼材
JP2014015632A (ja) 軸受鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14384065

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013768602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013768602

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027338

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014023955

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014023955

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140926